

A Unified Approach For Reverse Data Management

Neha Makhija Northeastern University (Joint work with Wolfgang Gatterbauer)

https://northeastern-datalab.github.io/unified-reverse-data-management/

1

Data Management

But sometimes, results are

- unexpected
- undesirable
- not understandable

Reverse Data Management

But sometimes, results are

- unexpected
- undesirable
- not understandable

Then we need to reason about the input in terms of the output!

Reverse Data Management

"The handling of transformations that perform actions on the input data, on behalf of desired outcomes in the output data"

Dayal, Bernstein. On the correct translation of update operations on relational views, TODS 1982 <u>https://doi.org/10.1145/319732.319740</u> Buneman, Khanna, Tan. On propagation of deletions and annotations through views, PODS 2002 <u>https://doi.org/10.1145/543613.543633</u>

Meliou, Gatterbauer, Halpern, Koch, Moore, Suciu. Causality in Databases, IEEE Special Bulletin 2010 <u>http://sites.computer.org/debull/A10sept/p59.pdf</u> Meliou, Gatterbauer, Moore, Suciu. The complexity of causality and responsibility for query answers and non-answers, PVLDB 2010 <u>https://doi.org/10.14778/1880172.1880176</u>

Our Goal

Simplest Reverse Data Management Problem?

Simplest Reverse Data Management Problem?

- Diagnose Points of Failure
- Equivalent to Deletion Propagation with Source Side-Effects

- Reverse Data Management Problems
- Our Focus: Resilience
- Results
- Our Unified Approach
- Takeaways + Open Questions

Sees(person, movie) Buys(person, item) Featured-In(item, movie)

Query:- What person *sees* a movie and *buys* an item *featured in* the movie? Q(person, movie, item):- Sees(person, movie), Buys(person, item), Featured-In(item, movie)

Query:- What person *sees* a movie and *buys* an item *featured in* the movie?

Query:- What person *sees* a movie and *buys* an item *featured in* the movie?

Query:- What person *sees* a movie and *buys* an item *featured in* the movie?

Query:- What person *sees* a movie and *buys* an item *featured in* the movie?

Query:- What person *sees* a movie and *buys* an item *featured in* the movie?

Query:- What person *sees* a movie and *buys* an item *featured in* the movie?

Query:- What person *sees* a movie and *buys* an item *featured in* the movie? Q(person, movie, item):- Sees(person, movie), Buys(person, item), Featured-In(item, movie)

Recall: Resilience = What minimal change would it take to **delete the output**?"

Query:- What person *sees* a movie and *buys* an item *featured in* the movie?

Q(person, movie, item):- Sees(person, movie), Buys(person, item), Featured-In(item, movie)

Recall: Resilience = What minimal change would it take to delete the output?"

Resilience Complexity

Query:- What person *sees* a movie and *buys* an item *featured in* the movie?

Query:- What person *sees* a movie and *buys* an item *featured in* the movie that is rare? Q(person, movie, item):- Sees(person, movie), Buys(person, item), Featured-In(item, movie), Rare(Item)

Freire, Gatterbauer, Immerman, Meliou. The complexity of resilience and responsibility for self-join-free conjunctive queries, PVLDB 2015 https://dl.acm.org/doi/10.14778/2850583.2850592

- Reverse Data Management Problems
- Our Focus: Resilience
- Results
- Our Unified Approach
- Takeaways + Open Questions

Resilience Complexity: Self-Join Free Queries

Complexity Results for *Self-Join Free* **Queries**

Buneman, Khanna, Tan. On propagation of deletions and annotations through views, PODS 2002 <u>https://doi.org/10.1145/543613.543633</u> Freire, Gatterbauer, Immerman, Meliou. The complexity of resilience and responsibility for self-join-free conjunctive queries, PVLDB 2015 <u>https://dl.acm.org/doi/10.14778/2850583.2850592</u> Makhija, Gatterbauer. A Unified Approach for Resilience and Causal Responsibility with Integer Linear Programming (ILP) and LP Relaxations, *SIGMOD 2024* <u>https://arxiv.org/abs/2212.08898</u>

Unified Algorithm (Easy or Hard)

Self-Join Free PTIME Cases

Self-Join Free NPC Cases: Exact Evaluation

Self-Join Free NPC Cases: Approximations

Queries with Self-Joins

<u>Prior Work</u> (RES+RESP)

Flow based encodings specific to query [Freire+15]

No prior algorithm: brute force trivially

No prior algorithm

Flow algorithms for some known PTIME queries [Freire+20] Our Approach (RES+RESP)

One **Unified** Algorithm

- Solves all cases
- All known PTIME cases terminate in PTIME

Freire, Gatterbauer, Immerman, Meliou. The complexity of resilience and responsibility for self-join-free conjunctive queries, PVLDB 2015 https://dl.acm.org/doi/10.14778/2850583.2850592 Freire, Gatterbauer, Immerman, Meliou. New results for the complexity of resilience for binary conjunctive queries with self-joins, PODS 2020 https://doi.org/10.14778/2850583.2850592 Makhija, Gatterbauer. A Unified Approach for Resilience and Causal Responsibility with Integer Linear Programming (ILP) and LP Relaxations, *SIGMOD 2024* https://arxiv.org/abs/2212.08898

Unified Algorithm (Across Different Settings)

Prior Work Our Work Semantics Set Semantics Set + **Bag** Semantics Self-Join Free Queries Queries **All** UCQs + Some Restricted SJ Queries Take advantage of Functional Can leverage known FDs unspecified FDs in data Dependencies

- Reverse Data Management Problems
- Our Focus: Resilience
- Results
- Our Unified Approach
 - Unified Algorithm
 - Unified Hardness Criterion
- Takeaways + Open Questions

Resilience as an Integer Linear Program (ILP)

min $\mathbf{C}^{\mathsf{T}}\mathbf{X}$ constraint vector objective vector $Ax \ge b$ constraint matrix $\mathbf{X} \in \{0,1\}^n$

 Q_{Λ} Example:

(S_1)	$b_1(f_1)s_2$	(b_2)	f 2	S ₃)

		wa m		
Person	Movie	ltem		
Ро	Moana	Iron	s ₁ b	1 <i>f</i> ₁
Pip	Moana	Iron	s ₂ b	$p_2 f_1$
Pip	Mulan	Iron	<mark>s₃b</mark>	2f ₂

Queries with self-joins are modelled the same way. Not all constraints must have the same arity.

Weights if applied can go in the objective

 $\min[\frac{x[s_1] + x[b_1] + x[f_1] + x[s_2]}{+ x[b_2] + x[f_2] + x[f_2] + x[s_3]}]$

 $x[s_1] + x[b_1] + x[f_1] \ge 1$ $x[f_1] + x[s_2] + x[b_2] \ge 1$ $x[b_2] + x[f_2] + x[s_3] \ge 1$ \forall tuples t: $\mathbf{x}[\mathbf{t}] \in \{0,1\}$

Setting $X[f_1] = X[b_2] = 1$, and all other variables to 0 satisfies the ILP. Optimal value = 2

Resilience as a Linear Program (LP)

objective vector $Ax \ge b$ constraint matrix $\mathbf{x} \in \{0,1\}^n$ $\mathbf{x} = [0,1]^n$ Q_{Λ} Example: **b**2) <mark>\$</mark>3) f_2 $S_1 b_1$ Output $s_1 b_1 f_1$ Moana Po Iron $s_2 b_2 f_1$ Moana Pip Iron $s_3b_2f_2$

Iron

Mulan

Pip

 $\min[\frac{x[s_1] + x[b_1] + x[f_1] + x[s_2]}{+ x[b_2] + x[f_2] + x[f_2] + x[s_3]}]$

 $x[s_1] + x[b_1] + x[f_1] \ge 1$ $x[f_1] + x[s_2] + x[b_2] \ge 1$ $x[b_2] + x[f_2] + x[s_3] \ge 1$ \forall tuples t: $\mathbf{x}[\mathbf{t}] \in \{0,1\}$ \forall tuples t: $0 \leq \mathbf{x}[\mathbf{t}] \leq 1$

Linear programs allow fractional solutions We can get a lower bound in PTIME.

Unified Algorithm for Resilience

But ILPS are NP-Hard!

Unified Algorithm for Resilience

But ILPS are NP-Hard!

Unified Algorithm for Resilience

When does LP = ILP?

Theorem.

For all known PTIME cases of Resilience, LP=ILP

THEORY OF LINEAR AND INTEGER PROGRAMMING IER SCHRIIVER UNCH SAME S IN CHARGE THE MAIL WARRANT AND OF THE SAME

Alexander Schrijver

Combinatorial Optimization

Polyhedra and Efficiency

Volume A-C

Our PTIME constraint matrixes need not be balanced or Totally Unimodular

The PTIME cases go beyond these known criterion!

83	Balanced and unimedular hypergraphs		
	83.1	Balanced hypergrads 1439	
	83.2	Characterization of alanced hypergraphs 1440	
		83.2a Totally balanced matrices	
		83.2b Examples of balanced hypergraphs 1447	
		83.2c Balanced $0, \pm 1$ matrices	
	83.3	Unimodular hyperrephs	
		83.3a Further notes	

When does LP = ILP?

- Reverse Data Management Problems
- Our Focus: Resilience
- Results
- Our Unified Approach
 - Unified Algorithm
 - Unified Hardness Criterion
- Takeaways + Open Questions

Resilience(Q, D) = f(k)

VC(G) = k

What is an Independent Join Path?

Database under query Q, with endpoints, with 5 *testable* properties:

1. Data hypergraph is connected

What is an Independent Join Path?

Database under query Q, with endpoints, with 5 *testable* properties:

- 1. Data hypergraph is connected
- 2. Database is reduced

What is an Independent Join Path?

Database under query Q, with endpoints, with 5 *testable* properties:

- 1. Data hypergraph is connected
- 2. Database is reduced
- 3. Endpoints are "valid"

What is an Independent Join Path?

Database under query Q, with endpoints, with 5 *testable* properties:

- 1. Data hypergraph is connected
- 2. Database is reduced

3. Endpoints are "valid"

- 4. OR property "Key" properties:
 Semantically defined
- 5. Composability 🖍
- I will just show intuition

Key Property #2: Composability of IJPs

Our Goal

NP

s_a b_{ab1}

 Σ_2^P

NP

 $s_a b_{ab_1}$

 $\mathbf{s}_{a} \mathbf{b}_{ab_{1}}$

Finding IJPs with DLP: 5 New Hardness Gadgets

• Can recover all previous hardness results + find new ones!

Dichotomy Conjectures for Resilience

 $\exists IJP \rightarrow LP = ILP$

Conjecture. [PTIME]

 \nexists IJP \rightarrow There is a flow graph that encodes resilience

Takeaways

- One unified algorithm, only need to prove PTIME
- One unified hardness criterion
 - Automatic search
- **Open Problems**

- Which RDM problems can we solve with this unified approach?
 - Resilience
 - Causal Responsibility
 - Minimal Factorization of Provenance of CQs
 - Claim: many more

Many more details, proofs, experiments, approximations:

- https://northeastern-datalab.github.io/unified-reverse-data-management/
- Makhija, Gatterbauer. A Unified Approach for Resilience and Causal Responsibility with Integer Linear Programming (ILP) and LP Relaxations, *To appear SIGMOD 2024* (<u>https://arxiv.org/abs/2212.08898</u>)
- Makhija, Gatterbauer. Towards a Dichotomy for Minimally Factorizing the Provenance of Self-Join Free Conjunctive Queries, Arxiv 2021 (<u>https://arxiv.org/abs/2105.14307</u>)