
1

Optimal Join Algorithms meet Top-𝑘
SIGMOD 2020 tutorial

Nikolaos Tziavelis, Wolfgang Gatterbauer, Mirek Riedewald

Northeastern University, Boston

Slides: https://northeastern-datalab.github.io/topk-join-tutorial/
DOI: https://doi.org/10.1145/3318464.3383132
Data Lab: https://db.khoury.northeastern.edu

Ranked results

Time

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 International License.
See https://creativecommons.org/licenses/by-nc-sa/4.0/ for details

Part 3 : Ranked Enumeration

https://northeastern-datalab.github.io/topk-join-tutorial/
https://doi.org/10.1145/3318464.3383132
https://db.khoury.northeastern.edu/
https://creativecommons.org/licenses/by-nc-sa/4.0/

2

Outline tutorial

• Part 1: Top-𝑘 (Wolfgang): ~20min
• Part 2: Optimal Join Algorithms (Mirek): ~30min
• Part 3: Ranked enumeration over Joins (Nikolaos): ~40min

– Ranked Enumeration

– Top-1 Result for Path Queries

– From Top-1 to Any-k

• Anyk-Part

• Anyk-Rec

– Beyond Path Queries

– Ranking Function

– Open Problems

3

Ranked Enumeration Example

𝑅1

𝑤1𝐴1

11

22

33

44

𝐴2

0

0

0

1

𝑅2

𝐴2 𝑤2

0

0

0

0

𝐴3

1

1

1

2

𝑅3

𝐴3 𝐴4

1 1

1 2

2 3

2 4

𝑤3

5

7

8

6

20

40

10

30

select A1, A2, A3, A4,
w1 + w2 + w3 as weight

from R1, R2, R3

where R1.A1=R2.A1

and R2.A2=R3.A2

order by weight
limit k any-k

(1, 0, 2, 3, 17) (2, 0, 2, 3, 18) (3, 0, 2, 3, 19)

Rank-1 Rank-2 Rank-3

…

4

Ranked Enumeration: Problem Definition

RAM Cost Model: TT k = Time-to-𝑘𝑡ℎ result

• TTF = Time-to-First = TT 1

• Delay

• TTL = Time-to-Last = TT |out|

#r
es

u
lt

s
timeTTF

TTL

Delay

“Any-k”
Anytime algorithms + Top-k

Most important results first
(ranking function on output
tuples, e.g. sum of weights)

All results eventually returned
No need to set k in advance

5

Top-𝑘 Optimal Join Algorithms

ranking function

most important
results first

RAM cost model

minimize
intermediate
results

Any-𝑘middleware
cost model
(# accesses)

return only
𝑘-best results

small result size;
wish: 𝑂(𝑘)

all results
are equally
important

query
decompositions

return all results;
wish: 𝑂 𝑟 , 𝑟>𝑛

conjunctive queries

incremental
computation

6

Resorting to other paradigms

• Using Top-𝑘:

- Most top-𝑘 join algorithms can be adapted to support ranked enumeration
(k is usually not a hard requirement)

- But different cost model, huge intermediate results

• Using (Optimal) Join Algorithms:

- Batch computation of full output then sort

- Good TTL, Bad TTF

How do we push the sorting into the join?

7

Unranked Enumeration

Related problem: enumerate join results in no particular order

What if we have projections?
[Bagan+ 07]: “Free-connex” acyclic queries
• Linear pre-processing
• Constant delay

Pre-processing
(1, 1, 3)

Delay

𝑅1

𝐴1

1

2

3

𝐴2

1

4

2

𝑅2

𝐴2

2

5

1

𝐴3

1

2

3

(3, 2, 1)

[Bagan+ 07] Bagan, Durand, Grandjean. On acyclic conjunctive queries and constant delay enumeration. CSL'07 https://doi.org/10.1007/978-3-540-74915-8_18

https://doi.org/10.1007/978-3-540-74915-8_18

8

Unranked Enumeration vs Ranked Enumeration

Challenge: return the output tuples in the right order

vs ?
Pre-processing

(1, 1, 3) (3, 2, 1)

𝑅1

𝐴1

1

2

3

𝐴2

1

4

2

𝑅2

𝐴2

2

5

1

𝐴3

1

2

3

Our focus: ranking, no projections

9

Conceptual Roadmap

Top-1 Path Queries

DP

Any-k DP

Top-1 Conjunctive Queries

Union of Tree-DP (UT-DP)

Any-k UT-DP

Any-k UT-DP over
selective dioids

Tropical semiring (min, +)

Join Problems

Optimization

Ranked
Enumeration

Paths/Serial Cyclic/General

10

Outline tutorial

• Part 1: Top-𝑘 (Wolfgang): ~20min
• Part 2: Optimal Join Algorithms (Mirek): ~30min
• Part 3: Ranked enumeration over Joins (Nikolaos): ~40min

– Ranked Enumeration

– Top-1 Result for Path Queries

– From Top-1 to Any-k

• Anyk-Part

• Anyk-Rec

– Beyond Path Queries

– Ranking Function

– Open Problems

Top-1 Path Queries

DP

Any-k DP

Top-1 Conjunctive Queries

Union of Tree-DP (UT-DP)

Any-k UT-DP

Any-k UT-DP over
selective dioids

11

Top-1 result

• Idea: Modify the bottom-up phase of Yannakakis to propagate the
minimum weight

- (min, +) operators in each step

- Top-1 result can be constructed with one top-down traversal

12

Top-1 result: Example

𝑅1

𝑤1𝐴1

11

22

33

44

𝐴2

0

0

0

1

𝑅2

𝐴2 𝑤2

0

0

0

0

𝐴3

1

1

1

2

𝑅3

𝐴3 𝐴4

1 1

1 2

2 3

2 4

𝑤3

5

7

8

6

20

40

10

30

13

Top-1 result: Example

𝑅1 𝑅2 𝑅3

20

10

40

30

5

8

7

6

1

3

2

4

Nodes = Tuples
Edges = Joining pairs
Labels = Weights

14

Top-1 result: Example

𝑅1 𝑅2 𝑅3

20

10

40

30

5

8

7

6

1

3

2

4

Bottom-up

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

15

Top-1 result: Example

𝑅1 𝑅2 𝑅3

20

10

40

30

5

8

7

6

1

3

2

4

Each node passes on the
minimum total weight it
can reach

20

40

10

30

∞

∞

∞

∞

∞

∞

∞

∞

16

Top-1 result: Example

𝑅1 𝑅2 𝑅3

20

10

40

30

5

8

7

6

1

3

2

4

Each node passes on the
minimum total weight it
can reach

min 20, 40 + 5 = 25

25

27

28

16

20

40

10

30

∞

∞

∞

∞

17

Top-1 result: Example

𝑅1 𝑅2 𝑅3

20

10

40

30

5

8

7

6

1

3

2

4

Each node passes on the
minimum total weight it
can reach

17

18

19

25

27

28

16

20

40

10

30∞

18

Top-1 result: Example

Each node passes on the
minimum total weight it
can reach

Minimum result weight = 17

𝑅1 𝑅2 𝑅3

20

10

40

30

5

8

7

6

1

3

2

4

25

27

28

16

20

40

10

30

17

18

19min

∞

19

Top-1 result: Example

𝑅1 𝑅2 𝑅3

20

10

40

30

5

8

7

6

1

3

2

4

Top-down for
Top-1 result

Follow the winning edges

20

Top-1 result & DP

Rank-1 algorithm for path queries = (Serial) Dynamic Programming

Subproblem
Minimum achievable weight
starting from 𝑟𝑖 ∈ 𝑅𝑖

Subproblem
from tuple “1”

𝑅1 𝑅2 𝑅3

20

10

40

30

5

8

7

6

1

3

2

4 Subproblem
from tuple “5”

Overlapping Subproblems

21

Top-1 result & DP

Rank-1 algorithm for path queries = (Serial) Dynamic Programming

𝑅1 𝑅2 𝑅3

Edges = Decisions
(Dependencies)

Relations = Stages
(Independent problems)

Nodes = States
(Subproblems)

20

10

40

30

5

8

7

6

1

3

2

4

Principle of Optimality
An optimal solution must contain

optimal solutions (to subproblems)

22

DP Equi-join State Space

Total time = #Edges = 𝑂(𝑛2 ℓ)

𝑅1 𝑅2 𝑅3

20

10

40

30

5

8

7

6

1

3

2

4

3 × 4 3 × 2 + 1 × 2

𝑛

ℓ

23

DP Equi-join State Space

Total time = #Edges = 𝑂(𝑛 ℓ)

𝑅1 𝑅2 𝑅3

20

10

40

30

5

8

7

6

1

3

2

4

Transform the state space
(at most one incoming
/outgoing edge per tuple)

3 4 4 4

Linear in the size

of the database

𝑛

ℓ

Equivalent to the
“messages” of Yannakakis

24

Connection to Factorized Databases

𝑅1 𝑅2 𝑅3

20

10

40

30

5

8

7

6

1

3

2

4

𝐴2 = 0
𝐴3 = 1

𝐴3 = 2

[Olteanu+ 16]:
Conditional independence of
the non-joining attributes given
the joining attribute value

𝐴2 𝐴3

[Olteanu+ 16] Olteanu, Schleich. Factorized databases. SIGMOD Record‘06 https://doi.org/10.1145/3003665.3003667

https://doi.org/10.1145/3003665.3003667

25

Outline tutorial

• Part 1: Top-𝑘 (Wolfgang): ~20min
• Part 2: Optimal Join Algorithms (Mirek): ~30min
• Part 3: Ranked enumeration over Joins (Nikolaos): ~40min

– Ranked Enumeration

– Top-1 Result for Path Queries

– From Top-1 to Any-k

• Anyk-Part

• Anyk-Rec

– Beyond Path Queries

– Ranking Function

– Open Problems

Top-1 Path Queries

DP

Any-k DP

Top-1 Conjunctive Queries

Union of Tree-DP (UT-DP)

Any-k UT-DP

Any-k UT-DP over
selective dioids

26

DP as a Shortest Path Problem

• DP computation equivalent to finding the shortest path in a graph

source
node

terminal
node

Note: We ignore the artificial intermediate nodes for simplicity

20

10

40

30

5

8

7

6

1

3

2

4

s t

27

K-Shortest Paths

• How do we find the 𝑘𝑡ℎ best solution to a DP problem?

- Rank-1 DP solution => shortest path

- Rank-𝑘 DP solution => 𝑘𝑡ℎ shortest path

Shortest Path
(17)

2nd Shortest Path
(26)

s t

source
node

terminal
node

20

10

40

30

5

8

7

6

1

3

2

4

28

K-Shortest Paths

• Two major approaches for computing the 𝑘𝑡ℎ shortest path in a
directed acyclic multi-stage graph

• Anyk-Part

- Partition the solution space

• Anyk-Rec

- Recursively compute the lower-rank paths from all nodes (suffixes)

29

Outline tutorial

• Part 1: Top-𝑘 (Wolfgang): ~20min
• Part 2: Optimal Join Algorithms (Mirek): ~30min
• Part 3: Ranked enumeration over Joins (Nikolaos): ~40min

– Ranked Enumeration

– Top-1 Result for Path Queries

– From Top-1 to Any-k

• Anyk-Part

• Anyk-Rec

– Beyond Path Queries

– Ranking Function

– Open Problems

Top-1 Path Queries

DP

Any-k DP

Top-1 Conjunctive Queries

Union of Tree-DP (UT-DP)

Any-k UT-DP

Any-k UT-DP over
selective dioids

30

Lawler-Murty Procedure

[Lawler 72]: generic procedure for ranked enumeration

• Repeatedly partitions the solution space

• Applicable to a wide range of problems

• Generalization of an earlier algorithm of [Murty 68]

Available

Fixed

Disjoint Subspaces
Variables

V
al

u
es

Original Space

Best solution

[Lawler 72] Lawler. A procedure for computing the k best solutions to discrete optimization problems and its application to the shortest path problem. Management Science’72
https://doi.org/10.1287/mnsc.18.7.401

[Murty 68] Murty. An Algorithm for Ranking all the Assignments in Order of Increasing Cost. Operations Research’68 https://doi.org/10.1287/opre.16.3.682

https://doi.org/10.1287/mnsc.18.7.401
https://doi.org/10.1287/opre.16.3.682

31

2nd Best Path

What can the 2nd best path be?

s

20

10

40

30

5

8

7

6

1

3

2

𝑅1 𝑅2 𝑅3

t

Top-1 Path

32

2nd Best Path

Option 1: Deviate in the first stage

s

20

10

40

30

5

8

7

6

1

3

2

𝑅1 𝑅2 𝑅3

t

Top-1 Path

33

2nd Best Path

Option 2: Keep the first decision
Deviate in the second stage

s

20

10

40

30

5

8

7

6

1

3

2

𝑅1 𝑅2 𝑅3

t

Top-1 Path

34

2nd Best Path

Option 3: Keep the first and second decisions
Deviate in the third stage

s

20

10

40

30

5

8

7

6

1

3

2

𝑅1 𝑅2 𝑅3

t

Top-1 Path

35

• Partition the solution space into 3 disjoint subspaces (subgraphs)

• Compute the best solution in each subspace

• 2nd best = winner among the 3

2nd Best Path

(18) (26) (37)

s

20

10

40

30

5

8

7

6

1

3

2
t s

20

10

40

30

5

8

7

6

1

3

2
t s

20

10

40

30

5

8

7

6

1

3

2
t

36

Rank-𝑘 path

• In general, maintain a global Priority Queue

- Pop to find winner

- Partition winner further

s

20

10

40

30

5

8

7

6

1

3

2
t s

20

10

40

30

5

8

7

6

1

3

2
t s

20

10

40

30

5

8

7

6

1

3

2
t

s

20

10

40

30

5

8

7

6

1

3

2
t s

20

10

40

30

5

8

7

6

1

3

2
t s

20

10

40

30

5

8

7

6

1

3

2
t

37

Anyk-Part: Default

• How do we find the best solution in each subspace?

• Default approach: Shortest path algorithm from scratch

s

20

10

40

30

5

8

7

6

1

3

2
t

38

Anyk-Part: Default

• How do we find the best solution in each subspace?

• Default approach: Shortest path algorithm from scratch

s

20

10

40

30

5

8

7

1

t

39

• How do we find the best solution in each subspace?

• Default approach: Shortest path algorithm from scratch

𝑂 𝑛 ℓ per new subspace

0

Anyk-Part: Default

s

20

10

40

30

5

8

7

1

t

20

40

10

30

25

27

28

26

26

40

Anyk-Part: Default

[Kimelfeld+ 06]:

• Ranked enumeration with delay linear in the size of the database

• Does not fully exploit the structure of the problem

[Kimelfeld+ 06] Kimelfeld, Sagiv. Incrementally Computing Ordered Answers of Acyclic Conjunctive Queries. NGITS’06 https://doi.org/https://doi.org/10.1007/11780991_13

https://doi.org/
https://doi.org/10.1007/11780991_13

41

Successor: given a prefix and a

decision, what is the next best

decision we can make?

Anyk-Part: Exploiting the DP structure

Fixed prefix:
Same as previous
solution

Choose
“successor” of
previous decision

Reach the terminal
optimally

Can we calculate the

Top-1 weight of each

subspace faster?

s

20

10

40

30

5

8

7

6

1

3

2
t

42

Anyk-Part: Exploiting the DP structure

Fixed prefix:
Same as previous
solution

Reach the terminal
optimally

Computed from DP bottom-up

s

20

10

40

30

5

8

7

6

1

3

2
t

25

27

28

16

Choose
“successor” of
previous decision

43

Anyk-Part Variants

• We already know the minimum weight we can get from choosing each decision

• We just need to compare them to find the “successor”

• Do some pre-processing after DP bottom-up to accomplish that

- 4 different variants

What is the

successor of 6?

5

8

7

6

25

27

28

16

1

44

Anyk-Part Variant 1: “All”

[Yang+ 18]:

• The solutions will be compared by the global priority queue anyway, so insert all
of them as potential successors

• But delay will again be linear in the size of the database

[Yang+ 18]: Yang, Ajwani, Gatterbauer, Nicholson, Riedewald, Sala. Any-k: Anytime Top-k Tree Pattern Retrieval in Labeled Graphs. WWW’18
https://doi.org/https://doi.org/10.1145/3178876.3186115

5

8

7

25

27

28

Successors

5

8

7

6

25

27

28

16

1

https://doi.org/
https://doi.org/10.1145/3178876.3186115

45

Anyk-Part Variant 2: “Eager”

• Invest more into pre-processing to get a lower delay

• Sort the decisions and find the true successor

5
25

7
27

8
28

6
16

Successor5

8

7

6

25

27

28

16

1

Sorted List

46

Anyk-Part Variant 3: “Lazy”

• Sorting = wasted effort if enumeration is stopped early

[Chang+ 15]:

• sort incrementally with a priority queue (per node)

• store order for future reusage

[Chang+ 15] Chang, Lin, Zhang, Yu, Zhang, Qin. Optimal enumeration: Efficient top-k tree matching. PVLDB’15 https://doi.org/10.14778/2735479.2735486

PQ

5

87

625

27 28

16
Sorted List

5
25

Pop

Successor

5

8

7

6

25

27

28

16

1

https://doi.org/10.14778/2735479.2735486

47

Anyk-Part Variant 4: “Take2”

• We want to lower both preprocessing time and delay

[Tziavelis+ 20]:

• Build a heap (binary tree) in linear time

• Heap order gives only two potential successors (asymptotically same as one)

[Tziavelis+ 20] Tziavelis, Ajwani, Gatterbauer, Riedewald, Yang. Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries. PVLDB’20
https://doi.org/10.14778/3397230.3397250

5

8

7

6

25 27

28

16
Binary Heap

Successors

5

8

7

6

25

27

28

16

1

https://doi.org/10.14778/3397230.3397250

48

Anyk-Part Complexity

• 𝑂 ℓ 𝑛 same as DP bottom-up

• 𝑂 𝑘 𝑙𝑜𝑔𝑘 same as sorting 𝑘 objects

• 𝑂 𝑘 ℓ needed to enumerate each result

(*) assuming constant-time lookup with hashing

49

Outline tutorial

• Part 1: Top-𝑘 (Wolfgang): ~20min
• Part 2: Optimal Join Algorithms (Mirek): ~30min
• Part 3: Ranked enumeration over Joins (Nikolaos): ~40min

– Ranked Enumeration

– Top-1 Result for Path Queries

– From Top-1 to Any-k

• Anyk-Part

• Anyk-Rec

– Beyond Path Queries

– Ranking Function

– Open Problems

Top-1 Path Queries

DP

Any-k DP

Top-1 Conjunctive Queries

Union of Tree-DP (UT-DP)

Any-k UT-DP

Any-k UT-DP over
selective dioids

50

Anyk-Rec: Motivation

Principle of Optimality (DP)
If Π1 𝑠 begins with node 𝑟 then

Π1 𝑠 = 𝑠 ○ Π1 𝑟

Generalized Principle of Optimality If Π𝑘 𝑠 begins with node 𝑟 then
Π𝑘 𝑠 = 𝑠 ○ Π𝑗 𝑟 for some 𝑗 ≤ 𝑘

Π𝑘 𝑠 = 𝑘𝑡ℎ shortest path from node 𝑠

s r

Π1 𝑠
Π1 𝑟

s r

Π𝑘 𝑠
Π𝑗 𝑟

Martins, Pascoal, Santos. A new improvement for a K shortest paths algorithm. Investigação Operacional’01 http://apdio.pt/documents/10180/15407/IOvol21n1.pdf

http://apdio.pt/documents/10180/15407/IOvol21n1.pdf

51

Anyk-Rec: Example

For each node (e.g. 1)
we want to compute the
ranking of paths-suffixes

Π1 1

Π2 1

Π3 1

Idea: Store ordering of lower-rank suffixes and reuse it as much as possible

20

10

40

30

5

8

7

6

1

3

2

4

s t

52

Anyk-Rec: Example

PQ

5

7

8

6

1 ○ Π1 5 [25]

1 ○ Π1 7 [27]

1 ○ Π1 8 [28]

1 ○ Π1 6 [16]

5

8

7

6

1

One entry per outgoing edge

Stores ordering of suffixes
Initially
Empty

Sorted List

53

Anyk-Rec: Example

PQ

5

7

8

6 1 ○Π1 6 [16]

5

8

7

6

1

Pop

Π1 6Sorted List

1 ○ Π1 5 [25]

1 ○ Π1 7 [27]

1 ○ Π1 8 [28]

54

Anyk-Rec: Example

PQ

5

7

8

6

5

8

7

6

1

Sorted List Π1 6Store
Π1 1 = 1 ○Π1 6 [16]

1 ○Π1 6 [16]

1 ○ Π1 5 [25]

1 ○ Π1 7 [27]

1 ○ Π1 8 [28]

55

Anyk-Rec: Example

PQ

5

7

8

6

5

8

7

6

1

Sorted List Π1 6

Π1 1 = 1 ○Π1 6 [16]

Replace

1 ○Π2 6 [36]

Π2 6

Computed recursively

1 ○ Π1 5 [25]

1 ○ Π1 7 [27]

1 ○ Π1 8 [28]

1 ○ Π2 6 [36]

56

Anyk-Rec: Example

PQ

5

7

8

6

5

8

7

6

1

Sorted List

Π1 5

Π1 1 = 1 ○Π1 6 [16]

Pop

1 ○Π1 5 [25]

1 ○ Π1 7 [27]

1 ○ Π1 8 [28]

1 ○ Π2 6 [36]

57

Anyk-Rec: Example

PQ

5

7

8

6

5

8

7

6

1

Sorted List

Π1 5

Π1 1 = 1 ○Π1 6 [16]

1 ○Π1 5 [25]

Store

Π2 1 = 1 ○Π1 5 [25]

1 ○ Π1 7 [27]

1 ○ Π1 8 [28]

1 ○ Π2 6 [36]

58

Anyk-Rec: Example

PQ

5

7

8

6

5

8

7

6

1

Sorted List

Π1 5

Π1 1 = 1 ○Π1 6 [16]

1 ○Π2 5 [45]

Π2 1 = 1 ○Π1 5 [25]

Replace

Computed recursively

Π2 5

1 ○ Π1 7 [27]

1 ○ Π1 8 [28]

1 ○ Π2 6 [36]

1 ○ Π2 5 [45]

59

Π2 1 = 1 ○Π1 5 [25]

Anyk-Rec: Suffix Reusage

PQ

5

7

8

6

5

8

7

6

1

Sorted List

Π1 1 = 1 ○Π1 6 [16]

.

.

.

…

Reuse Π2 1 for all subsequent calls!

Π2 1 ?

Π2 1 ?

Prefix 1

Prefix 2

Later…

60

Anyk-Rec: Suffix Reusage

• In general, delay is higher than Anyk-Part

- 𝑂 ℓ log 𝑛 vs 𝑂 log 𝑘 + ℓ of Take2

• But reusing computation may pay off in the end

- If a lot of suffixes are shared, TTL can be faster than sorting!

• If join pattern = Cartesian product with 𝑛ℓ results:

- Anyk-Rec TTL: 𝑂 𝑛ℓ(log 𝑛 + ℓ)

- Sorting the output: 𝑂 𝑛ℓ log 𝑛 ∙ ℓ

61

More on the History of Anyk-Rec

• [Bellman+ 60]: Keep the 𝑘 best solutions per node

• [Dreyfus 69]: Recursive equations

• [Jiménez+ 99]: Top-down approach

• [Deep+ 19]: Application to conjunctive queries

• [Tziavelis+ 20]: Improved TTL guarantees

[Bellman+ 60] Bellman and Kalaba. “On k th best policies”. JSIAM’60 https://doi.org/10.1137/0108044

[Dreyfus 69] Dreyfus. An appraisal of some shortest-path algorithms. Operations research’69 https://doi.org/10.1287/opre.17.3.395

[Deep+ 19] Deep and Koutris. Ranked enumeration of conjunctive query results. ArXiv’19 http://arxiv.org/abs/1902.02698

[Jiménez+ 99] Jiménez, Marzal. Computing the k shortest paths: A new algorithm and an experimental comparison. WAE’99 https://doi.org/10.1007/3-540-48318-7_4

[Tziavelis+ 20] Tziavelis, Ajwani, Gatterbauer, Riedewald, Yang. Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries. PVLDB’20
https://doi.org/10.14778/3397230.3397250

https://doi.org/10.1137/0108044
https://doi.org/10.1287/opre.17.3.395
http://arxiv.org/abs/1902.02698
https://doi.org/10.1007/3-540-48318-7_4
https://doi.org/10.14778/3397230.3397250

62

Overview

• Take2 has lower complexity over all instances

• But there are cases where the recursive approach wins for TTL

(*) assuming constant-time lookup with hashing

63

Some Experimental Results

?
• Anyk starts much faster than Batch
• Anyk-Rec also finishes faster than Batch

• Anyk-Part is usually faster in the beginning

Tziavelis, Ajwani, Gatterbauer, Riedewald, Yang. Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries. PVLDB’20
https://doi.org/10.14778/3397230.3397250

https://doi.org/10.14778/3397230.3397250

64

Some Experimental Results

• Boolean (is there any result?) is the
best we can do

• Anyk-Rec is getting faster when there are
more opportunities for suffix reusage

• Anyk is only 2 times slower

65

Outline tutorial

• Part 1: Top-𝑘 (Wolfgang): ~20min
• Part 2: Optimal Join Algorithms (Mirek): ~30min
• Part 3: Ranked enumeration over Joins (Nikolaos): ~40min

– Ranked Enumeration

– Top-1 Result for Path Queries

– From Top-1 to Any-k

• Anyk-Part

• Anyk-Rec

– Beyond Path Queries

– Ranking Function

– Open Problems

Top-1 Path Queries

DP

Any-k DP

Top-1 Conjunctive Queries

Union of Tree-DP (UT-DP)

Any-k UT-DP

Any-k UT-DP over
selective dioids

66

Acyclic Queries

R2(A1,A2,A4) R3(A2,A3,A5) R4(A1,A3,A6)

R1(A1,A2,A3)

If the query is acyclic, it can be
represented by a join tree

67

Tree-DP

𝑅1

1 2

𝑅2 3 4 5 6 7 8𝑅3 𝑅4

Stages of DP form a tree
instead of a path (Tree-DP)

For Top-1, go bottom-up and
choose decisions
independently in each branch

68

Ranked Enumeration for Tree-DP

• Anyk-Part:

- Serialize the stages and treat it like the path case

- Complexity guarantees remain the same

• Anyk-Rec:

- Apply the path algorithm in each branch

- Difficulty: how do we combine the solutions from each branch?

- Improved TTL only if the tree has significant depth

[Deep+ 19] Deep and Koutris. Ranked enumeration of conjunctive query results. ArXiv’19 http://arxiv.org/abs/1902.02698

[Tziavelis+ 20] Tziavelis, Ajwani, Gatterbauer, Riedewald, Yang. Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries. PVLDB’20
https://doi.org/10.14778/3397230.3397250

http://arxiv.org/abs/1902.02698
https://doi.org/10.14778/3397230.3397250

69

Cyclic Queries

• For cyclic queries, use tree decompositions

• Submodular width decompositions: union of acyclic queries

A1

A4

A3

A2A6

A5

R6 R1

R2

R3R4

R5

Acyclic 1 Acyclic 2 Acyclic 3

Acyclic 4 Acyclic 5 Acyclic 6

Acyclic 7

𝑂(𝑛5/3) 𝑂(𝑛5/3) 𝑂(𝑛5/3)

𝑂(𝑛5/3)𝑂(𝑛5/3)𝑂(𝑛5/3)

𝑂(𝑛5/3)

70

Ranked Enumeration for Cyclic Queries

• Straightforward to run any-k with a top-level Priority Queue

PQ Acyclic 1 Acyclic 2 Acyclic 3

Acyclic 4 Acyclic 5 Acyclic 6

Acyclic 7

𝑂(𝑛5/3) 𝑂(𝑛5/3) 𝑂(𝑛5/3)

𝑂(𝑛5/3)𝑂(𝑛5/3)𝑂(𝑛5/3)

𝑂(𝑛5/3)

get_next()

• TTF = 𝑂(𝑛5/3) for 𝑄6𝑐 (same as Boolean query)

71

Outline tutorial

• Part 1: Top-𝑘 (Wolfgang): ~20min
• Part 2: Optimal Join Algorithms (Mirek): ~30min
• Part 3: Ranked enumeration over Joins (Nikolaos): ~40min

– Ranked Enumeration

– Top-1 Result for Path Queries

– From Top-1 to Any-k

• Anyk-Part

• Anyk-Rec

– Beyond Path Queries

– Ranking Function

– Open Problems

Top-1 Path Queries

DP

Any-k DP

Top-1 Conjunctive Queries

Union of Tree-DP (UT-DP)

Any-k UT-DP

Any-k UT-DP over
selective dioids

72

What ranking functions can be supported?

So far (min, +). Can we substitute these operators with others?

1. We need to be able to do Dynamic Programming

2. The 1st operator has to induce an order on the domain

𝑅2 𝑅3

20

40

5

min 20, 40 + 5 = 25

25 20

40

73

Semirings

• Semiring (W,⊕,⊗,0,1)

1. (W,⊕,0) is commutative monoid

2. (W,⊗,1) is monoid

3. ⊗ distributes over ⊕: (x ⊕ y)⊗ z = (x ⊗ z) ⊕ (y ⊗ z)

4. 0 annihilates ⊗: 0 ⊗ x = 0

• Examples

1. (R∞,min,+,∞,0) “Tropical semiring”

2. ({0,1},∨,∧,0,1) Boolean

3. (N,+, ∙ ,0,1) Number of paths

Key property for
efficiency (DP)

No ordering
(What would the 2nd

best solution be?)

Aji, McEliece. The generalized distributive law. IEEE Trans. Inf’00 https://doi.org/10.1109/18.825794

Mohri. Semiring frameworks and algorithms for shortest-distance problems. JALC’02 http://www.jalc.de/issues/2002/issue_7_3/abs-321.pdf

https://doi.org/10.1109/18.825794
http://www.jalc.de/issues/2002/issue_7_3/abs-321.pdf

74

Selective Dioids

• A selective dioid (W,⊕,⊗,0,1) is a semiring with an additional property

- ⊕ is selective: (x ⊕ y = x) ∨ (x ⊕ y = y)

• Selectivity of ⊕ gives us a total order on W:

- x≤y iff x ⊕ y = x

- E.g. x≤y iff min(x, y) = x

Gondran, Minoux. Graphs, Dioids and Semirings: New Models and Algorithms. Springer’08. https://doi.org/10.1007/978-0-387-75450-5

https://doi.org/10.1007/978-0-387-75450-5

75

DP & Yannakakis

𝑅1 𝑅2 𝑅3

20

10

40

30

5

8

7

6

1

3

2

4

Minimum SUMYannakakis

T

T

T

F

T

T

T

T

T

T

T

T

Yannakakis Bottom-up: DP over Boolean semiring ({0,1},∨,∧,0,1)

Dangling tuple

17

18

19

∞

25

27

28

16

20

40

10

30

Any-k with Boolean semiring?

Equivalent to standard query
evaluation of Yannakakis if we use
“smarter” PQs (sorted lists of 0-1)

76

Lexicographic Orders

𝑅1 𝑅2 𝑅3

20

10

40

30

5

8

7

6

1

3

2

4

(5, 1, 20) (5, 1, 40) (5, 2, 20) …

Lexicographic Order

𝑅2 − 𝑅1 − 𝑅3

Results first weighted

on 𝑅2 then 𝑅1 then 𝑅3

77

Lexicographic Orders

𝑅1 𝑅2 𝑅3

20

10

40

30

5

8

7

6

1

3

2

4

W: ℓ-dimensional vectors

5 has input weight (0, 5, 0)

⊕ : lexicographic min

(0, 5, 20) ⊕ (0, 6, 10) = (0, 5, 20)

⊗ : element-wise addition

(0, 0, 20) ⊗ (0, 5, 0) = (0, 5, 20)

Lexicographic Order

𝑅2 − 𝑅1 − 𝑅3

78

Outline tutorial

• Part 1: Top-𝑘 (Wolfgang): ~20min
• Part 2: Optimal Join Algorithms (Mirek): ~30min
• Part 3: Ranked enumeration over Joins (Nikolaos): ~40min

– Ranked Enumeration

– Top-1 Result for Path Queries

– From Top-1 to Any-k

• Anyk-Part

• Anyk-Rec

– Beyond Path Queries

– Ranking Function

– Open Problems

79

Open Problems

• How does any-k interact with other relational operators?

- Projections (drawing ideas from constant-delay enumeration)

- Disjunctions

- Groupings

• How does the query plan affect the performance of any-k algorithms? How
would the database optimizer choose the best algorithm/join plan?

• Can we efficiently decompose every query into a union of disjoint trees?

• Can we prove results beyond the worst-case? (e.g. instance-optimality)

• Can we “push” the any-k functionality inside the bags of the tree
decomposition instead of materializing them beforehand?

