SIGMOD 2020 tutorial

Optimal Join Algorithms meet Top k

Nikolaos Tziavelis, Wolfgang Gatterbauer, Mirek Riedewald

. . ARanked |
Northeastern University, Boston ks
. —
Part 3 : Ranked Enumeration Time
Khoury College
ofComputer
Slides: https://northeastern-datalab.github.io/topk-join-tutorial/ Sciences

DOI: https://doi.org/10.1145/3318464.3383132

Data Lab: https://db.khoury.northeastern.edu DATA LA B

@@@@ This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 International License. @Northeastern

See https://creativecommons.org/licenses/by-nc-sa/4.0/ for details

https://northeastern-datalab.github.io/topk-join-tutorial/
https://doi.org/10.1145/3318464.3383132
https://db.khoury.northeastern.edu/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Outline tutorial

e Part 3: Ranked enumeration over Joins (Nikolaos): ~40min
— Ranked Enumeration

Ranked Enumeration Example

Ry
A Ay |y
1 0 1
2 0 2
3 0 3
4 1 4
Rank-1

(1,0,2,3,17)

—

R2 R3
select AL A, AL A,
A A w 4 Tw W, + W, + W, as
B 3|74 7S from R, Ry, Ry
01115 111120 where Rj.A=R,.A
0 117 1 2 (40 and Ry.A=R3.A,
0 . X 2 110 order by
8 itk any-k
0 2 | 6 2 4 |30
Rank-2 Rank-3

(2,0,2,3,18)

—

(3,0,2,3,19)

—

Ranked Enumeration: Problem Definition

llAny_kII
Anytime algorithms + Top-k

TTL
< > All results eventually returned
No need to set k in advance

Hresults

Most important results first
(ranking function on output
tuples, e.g. sum of weights)

Delay time

RAM Cost Model: TT(k) = Time-to-kt" result
TTF = Time-to-First= TT(1)

« Delay
TTL = Time-to-Last = TT(|out|)

middleware
cost model
(# accesses)

small result size;
wish: O (k)

return only
k-best results

Top-k

ranking function

RAM cost model return all results;

wish: O(r), r>n
conjunctive queries

query
decompositions
mos’lctlrr;_potrtant s all results
results firs T are equally
i important
incremental

computation

Resorting to other paradigms

e Using Top-k:

- Most top-k join algorithms can be adapted to support ranked enumeration
(k is usually not a hard requirement)

- But different cost model, huge intermediate results
e Using (Optimal) Join Algorithms:

- Batch computation of full output then sort
- Good TTL, Bad TTF

How do we push the sorting into the join?

Unranked Enumeration

Related problem: enumerate join results in no particular order

A | A, A, | As Pre-processing Delay

1|1 2 | 1 | > (1,1,3) ——> (3,2,1)
3|2 1] 3

What if we have projections?

[Bagan+ 07]: “Free-connex” acyclic queries
* Linear pre-processing

* Constant delay

[Bagan+ 07] Bagan, Durand, Grandjean. On acyclic conjunctive queries and constant delay enumeration. CSL'07 https://doi.org/10.1007/978-3-540-74915-8_18

https://doi.org/10.1007/978-3-540-74915-8_18

Unranked Enumeration vs Ranked Enumeration

Challenge: return the output tuples in the right order

A3 Pre-processing

1 | > (1,1,3)

Rl

Our focus: ranking, no projections

VS

(3,2, 1)

?

Conceptual Roadmap

Paths/Serial Cyclic/General
Join Problems} | Top-1 Path Queries » Top-1 Conjunctive Queries
Optimization DP — Union of Tree-DP (UT-DP)
Ranked ; -
Enumeration Any-k DP » Any-k UT-DP

Tropical semiring (min, +) Any-k UT-DP over

selective dioids

Outline tutorial

e Part 3: Ranked enumeration over Joins (Nikolaos): ~40min

— Top-1 Result for Path Queries

Top-1 Path Queries

A 4

Top-1 Conjunctive Queries

l

A 4

Union of Tree-DP (UT-DP)

A\ 4

A 4

Any-k UT-DP

Any-k UT-DP over
selective dioids

Top-1 result

« ldea: Modify the bottom-up phase of Yannakakis to propagate the
minimum weight
- (min, +) operators in each step
- Top-1 result can be constructed with one top-down traversal

11

Top-1 result: Example

W3

20
40

10
30

Ay

A3

|4)

A3

Az

W1

A,

Aq

12

Top-1 result: Example

R4 R, R3

! © (o)

3 8
B NG &

Nodes = Tuples
Edges = Joining pairs
Labels = Weights

13

Top-1 result: Example

ammmmm Bottom-up

R R

1 \ O
=3 /\><
ST

3 S (10)
O) /5

No

14

Top-1 result: Example

R4 R, R
1 & ©
oo oo 40
/\><
’ L -

Each node passes on the
minimum total weight it
can reach

15

Top-1 result: Example

{min(20,40) + 5= 25]

: —~

1 Rz R3
oo /\25 20
S
- oo - 16 O
& G @

Each node passes on the
minimum total weight it
can reach

16

Top-1 result: Example

R, R, R,

20

27 — 40
@)

Each node passes on the
minimum total weight it
can reach

17

Top-1 result: Example

min —

Minimum result weight =17

Each node passes on the
minimum total weight it
can reach

18

Top-1 result: Example

Follow the winning edges

Top-down for
Top-1 result

19

Top-1 result & DP

Rank-1 algorithm for path queries = (Serial) Dynamic Programming

R4 R, R3

Subproblem

Minimum achievable weight
starting from r; € R;

Overlapping Subproblems Subproblem
from tuple “1”

20

Top-1 result & DP

Rank-1 algorithm for path queries = (Serial) Dynamic Programming

Relations = Stages

R4 R; R3 (Independent problems)

1 (5) 20

2 7 40
7 O Nodes = States

’ 8 (Subproblems)
O NG &

Principle of Optimality
An optimal solution must contain
optimal solutions (to subproblems)

Edges = Decisions
(Dependencies)

21

DP Equi-join State Space

4

R, R, R,

3 X4 3IX2+1X%2

Total time = #Edges = 0(n* ¥)

22

DP Equi-join State Space Equivalent to the

y / “messages” of Yannakakis

Transform the state space
(at most one incoming

R3
4
P a > _________ :;z /outgoing edge per tuple)

<
<
/
/
I
1
1
I
[l
1
\
N,

Total time = #Edges = O(n g) Livear v the size
of the database

23

Connection to Factorized Databases

[Olteanu+ 16]:

Conditional independence of
the non-joining attributes given
the joining attribute value

24

[Olteanu+ 16] Olteanu, Schleich. Factorized databases. SIGMOD Record‘06 https://doi.org/10.1145/3003665.3003667

https://doi.org/10.1145/3003665.3003667

Outline tutorial

— From Top-1 to Any-k

Top-1 Path Queries

A 4

Top-1 Conjunctive Queries

l

Any-k DP

A 4

Union of Tree-DP (UT-DP)

A\ 4

A 4

Any-k UT-DP

Any-k UT-DP over
selective dioids

DP as a Shortest Path Problem

« DP computation equivalent to finding the shortest path in a graph

6

Note: We ignore the artificial intermediate vodes for simplicity

26

K-Shortest Paths

 How do we find the k" best solution to a DP problem?
- Rank-1 DP solution => shortest path
- Rank-k DP solution => k" shortest path

Shortest Path
(17)

27

K-Shortest Paths

 Two major approaches for computing the k" shortest path in a
directed acyclic multi-stage graph

e Anyk-Part
- Partition the solution space

e Anyk-Rec
- Recursively compute the lower-rank paths from all nodes (suffixes)

28

Outline tutorial

* Anyk-Part

Top-1 Path Queries

A 4

Top-1 Conjunctive Queries

l

Any-k DP

A 4

Union of Tree-DP (UT-DP)

A\ 4

A 4

Any-k UT-DP

Any-k UT-DP over
selective dioids

Lawler-Murty Procedure

[Lawler 72]: generic procedure for ranked enumeration
e Repeatedly partitions the solution space

« Applicable to a wide range of problems

e Generalization of an earlier algorithm of [Murty 68]

Original Space Disjoint Subspaces

Variables

=

Values

[Lawler 72] Lawler. A procedure for computing the k best solutions to discrete optimization problems and its application to the shortest path problem. Management Science’72

https://doi.org/10.1287/mnsc.18.7.401
[Murty 68] Murty. An Algorithm for Ranking all the Assignments in Order of Increasing Cost. Operations Research’68 https://doi.org/10.1287/0pre.16.3.682 30

https://doi.org/10.1287/mnsc.18.7.401
https://doi.org/10.1287/opre.16.3.682

2nd Best Path

Top-1 Path

What can the 2" best path be?

31

2nd Best Path

Top-1 Path

Option 1: Deviate in the first stage

32

2nd Best Path

Top-1 Path

Option 2: Keep the first decision
Deviate in the second stage

33

2nd Best Path

Top-1 Path

Option 3: Keep the first and second decisions
Deviate in the third stage

34

2nd Best Path

 Partition the solution space into 3 disjoint subspaces (subgraphs)
« Compute the best solution in each subspace
« 2" best = winner among the 3

35

-k path

Rank

, maintain a global Priority Queue

e In general

- Pop to find winner

Partition winner further

36

Anyk-Part: Default

« How do we find the best solution in each subspace?
o Default approach: Shortest path algorithm from scratch

37

Anyk-Part: Default

« How do we find the best solution in each subspace?
o Default approach: Shortest path algorithm from scratch

38

Anyk-Part: Default

« How do we find the best solution in each subspace?
o Default approach: Shortest path algorithm from scratch

O(n €) per new subspace

39

Anyk-Part: Default

[Kimelfeld+ 06]:

« Ranked enumeration with delay linear in the size of the database
« Does not fully exploit the structure of the problem

[Kimelfeld+ 06] Kimelfeld, Sagiv. Incrementally Computing Ordered Answers of Acyclic Conjunctive Queries. NGITS'06 https://doi.org/https://doi.org/10.1007/11780991_13

40

https://doi.org/
https://doi.org/10.1007/11780991_13

Anvyk-Part: Exploiting the DP structure

Successor: given a prefix and a Con we calcnlate the
decision, what is +he next best .
decision we can wmake? TOP*/\ W@l@\/ﬁ’ O‘F eaclh

subspace faster?

v
v
v

Fixed prefix: Choose Reach the terminal
Same as previous “successor” of optimally
solution previous decision

41

Anvyk-Part: Exploiting the DP structure

Computed from DP bottom-up

v

v

Choose
“successor” of
previous decision

v

Reach the terminal
optimally

42

Anyk-Part Variants

« We already know the minimum weight we can get from choosing each decision
« We just need to compare them to find the “successor”

« Do some pre-processing after DP bottom-up to accomplish that

- 4 different variants

N
(92

What is the
successor of @7

GN@
~

N
co

°l—‘°
(o)}

43

Anyk-Part Variant 1: “All”

[Yang+ 18]:

« The solutions will be compared by the global priority queue anyway, so insert all
of them as potential successors

« But delay will again be linear in the size of the database

N
(92

~

GNQ
~

Successors

Q00

el—‘@
(o)}

[Yang+ 18]: Yang, Ajwani, Gatterbauer, Nicholson, Riedewald, Sala. Any-k: Anytime Top-k Tree Pattern Retrieval in Labeled Graphs. WWW'’18
https://doi.org/https://doi.org/10.1145/3178876.3186115

44

https://doi.org/
https://doi.org/10.1145/3178876.3186115

Anyk-Part Variant 2: “Eager”

e Invest more into pre-processing to get a lower delay
e Sort the decisions and find the true successor

Sorted List
16
. ©
7 < Successor
Lz ;
(&) <

Anvyk-Part Variant 3: “Lazy”

« Sorting = wasted effort if enumeration is stopped early

[Chang+ 15]:
« sort incrementally with a priority queue (per node)
e store order for future reusage

25 PQ
= &
o2

27 28
6 ©

Pop

Sorted List
16

o)

25

[Chang+ 15] Chang, Lin, Zhang, Yu, Zhang, Qin. Optimal enumeration: Efficient top-k tree matching. PVLDB’15 https://doi.org/10.14778/2735479.2735486

Successor

46

https://doi.org/10.14778/2735479.2735486

Anyk-Part Variant 4: “Take2”

« We want to lower both preprocessing time and delay
[Tziavelis+ 20]:
« Build a heap (binary tree) in linear time

« Heap order gives only two potential successors (asymptotically same as one)

Binary Heap
25 16

0 8 6%5 é)ﬂ Successors

16

o
0

QIO
09

[Tziavelis+ 20] Tziavelis, Ajwani, Gatterbauer, Riedewald, Yang. Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries. PVLDB’20
https://doi.org/10.14778/3397230.3397250

47

https://doi.org/10.14778/3397230.3397250

Anyk-Part Complexity

« O(fn) same as DP bottom-up

« O(klogk) same as sorting k objects

« O(k £) needed to enumerate each result

Algorithm

TT(k)

TAKE2
LAzYy
EAGER
ALL

OUn + k(logk + £))

OUn + k(logk + £ + logn))
Onlogn + k(logk + £))
OUn + k(logk + €n))

(*) assuming constant-time lookup with hashing

48

Outline tutorial

* Anyk-Rec

Top-1 Path Queries

A 4

Top-1 Conjunctive Queries

l

Any-k DP

A 4

Union of Tree-DP (UT-DP)

A\ 4

A 4

Any-k UT-DP

Any-k UT-DP over
selective dioids

Anyk-Rec: Motivation

I, (s) = k" shortest path from node s

Principle of Optimality (DP)
C C C If [1; (s) begins with node r then
[11(s) = solly(r)

Hl(s) »>

Generalized Principle of Optimality If I1,, (s) begins with node r then

W M (s) = soIl;(r) forsome j <k

M (s) >

Martins, Pascoal, Santos. A new improvement for a K shortest paths algorithm. Investigacao Operacional’01 http://apdio.pt/documents/10180/15407/10vol21n1.pdf

50

http://apdio.pt/documents/10180/15407/IOvol21n1.pdf

Anyk-Rec: Example

|dea: Store ordering of lower-rank suffixes and reuse it as much as possible

For each node (e.g. 1) - ll
we want to compute the Zi)
ranking of paths-suffixes
eoP M15(1)
|

51

Anyk-Rec: Example

PQ

@DEHOG

100,(5) [25]
1o11,(7) [27]
1011,(8) [28]

[16]

101,(6) [16

Sorted List

Initially
Empty

One entry per outgoing edge

Stores ordering of suffixes

52

Anyk-Rec: Example

PQ
(S| 1om(5) [25]
D] 1em(() [27] Po
p ©
1011,(8) [28]\ a
® 1o11,(6) [16] (D o
Sorted List e I1,(6)

Anyk-Rec: Example

PQ
100,(5) [25]
1o11,(7) [27]
1011,(8) [28]

@DEHOG

Sorted List

[1,(1) =1-1,(6) [16]

1.1,(6) [16]

Store

I1,(6)

54

Anyk-Rec: Example

p—
(@)
—
[
N\
o
-/
_— o o~
(\)
o
e e e

Sorted List

[1,(1) =1-1,(6) [16]

Replace

T

1.1,(6) [36]

Computed recursively

55

Anyk-Rec: Example

PQ

111,(7) [27]

@DEHOG

101,(6) [36]

Sorted List

Pop

1oM(®) [28]] T~

161,(5) [25]

[1,(1) =1-1,(6) [16]

I1,(5)

56

Anyk-Rec: Example

PQ

1o11,(7) [27]
1011,(8) [28]
101,(6) [36]

@DEHOG

Sorted List

[1,(1) =1-1,(6) [16]

|
[M>(1) = 1-1,(5) [25]

1.1,(5) [25]

Store

I1,(5)

57

Anyk-Rec: Example

OIONOI0,

Sorted List

45)
[27)
28]
361

[1,(1) =1-1,(6) [16]

v
[M>(1) = 1-1,(5) [25]

Replace

1610,(5) [45]

Computed recursively

I1,(5)

M(5)

58

Anyk-Rec: Suffix Reusage

PQ
&
@
®
Sorted List
M,(1) =1 olH1(6) [16]

[M(1) = 1-11,(5) [25]
|

Later...

Reuse I1,(1) for all subsequent calls!

59

Anyk-Rec: Suffix Reusage

« In general, delay is higher than Anyk-Part
- O(flogn) vs O(logk + ¢) of Take2

e But reusing computation may pay off in the end
- If a lot of suffixes are shared, TTL can be faster than sorting!

« If join pattern = Cartesian product with n? results:
- Anyk-Rec TTL: O(nf(logn + {’))
- Sorting the output: O(nf logn - {’)

60

More on the History of Anyk-Rec

« [Bellman+ 60]: Keep the k best solutions per node
 [Dreyfus 69]: Recursive equations

e [Jiménez+ 99]: Top-down approach

 [Deep+ 19]: Application to conjunctive queries

e [Tziavelis+ 20]: Improved TTL guarantees

[Bellman+ 60] Bellman and Kalaba. “On k th best policies”. JSIAM’60 https://doi.org/10.1137/0108044

[Dreyfus 69] Dreyfus. An appraisal of some shortest-path algorithms. Operations research’69 https://doi.org/10.1287/opre.17.3.395

[Jiménez+ 99] Jiménez, Marzal. Computing the k shortest paths: A new algorithm and an experimental comparison. WAE’99 https://doi.org/10.1007/3-540-48318-7_4

[Deep+ 19] Deep and Koutris. Ranked enumeration of conjunctive query results. ArXiv’'19 http://arxiv.org/abs/1902.02698

[Tziavelis+ 20] Tziavelis, Ajwani, Gatterbauer, Riedewald, Yang. Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries. PVLDB’20
https://doi.org/10.14778/3397230.3397250 61

https://doi.org/10.1137/0108044
https://doi.org/10.1287/opre.17.3.395
http://arxiv.org/abs/1902.02698
https://doi.org/10.1007/3-540-48318-7_4
https://doi.org/10.14778/3397230.3397250

Overview

« Take2 has lower complexity over all instances

e But there are cases where the recursive approach wins for TTL

Algorithm |TT (k) TTL for |out| = Q(¢n)|TTL for |out| = ©(n*)
RECURSIVE| O (In + k€logn) O(|out|flogn) O(n*(logn + £))
TAKE2 OUn + k(logk + £)) O(|out|(log |out| + £)) [O(n* - £logn)

LAZY On + k(logk + £ + logn))|O(Jout|(log |out| + £)) |O(n* - £logn)

EAGER Onlogn + k(logk + £)) |O(Jout|(log |out| + £)) |O(n* - £logn)

ALL OUn + k(logk + ¢n)) O(|out|(log [out| + £)) [O(n* - £1logn)

BATcH O(¢n + |out|(log |out| + £)) |O(|out|(log |out| + £)) |O(n" - Llogn)

(*) assuming constant-time lookup with hashing

62

Some Experimental Results

1e7 4-Path Query, n=10%, all results 1e5 4-Path Query, n=10°, few results
5 482 : 5
Batch
(No Sort) 4
Anyk-Rec
£ £ 3
> >
(2] wn
(] (]
o o 2 -
* *H
Anyk-Part
1 i
' " O_
N T T T T T T T
P 5 10 15 4.0 4.5 5.0 5.5
* Time(sec) Time(sec)

Anyk-Part is usually faster in the beginning

* Anyk starts much faster than Batch
* Anyk-Rec also finishes faster than Batch

Tziavelis, Ajwani, Gatterbauer, Riedewald, Yang. Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries. PVLDB’20
https://doi.org/10.14778/3397230.3397250

63

https://doi.org/10.14778/3397230.3397250

Some Experimental Results

Path Query TTF, |OUT|=10"

1. /.7
10— — 7 4
21 Batch
0 Batch
—_ 10 (|\?OCSOI’t)
8 Anyk-Part
) Boolean
(qé 10—1 05 1363x
= .
Anyk-Rec
> 0.08
10 Y
le
2 3 4 5 6
Query Size

* Boolean (is there any result?) is the
best we can do
* Anykisonly 2 times slower

Path Query TTL, |OUT|=10’ le—5
201 Anyk-Part
5
X
151 -
Q
S 3
@ 49
n o
o 10
E :
- 33
5 2
<
-2
0 | :
2 3 4 5 6
Query Size

* Anyk-Rec is getting faster when there are

more opportunities for suffix reusage

64

Outline tutorial

— Beyond Path Queries

Top-1 Path Queries

Top-1 Conjunctive Queries

A\

l

Union of Tree-DP (UT-DP)

A\

\ 4

\ 4

Any-k UT-DP

Any-k UT-DP over
selective dioids

65

Acyclic Queries

If the query is acyclic, it can be
represented by a join tree

(ApAzA3)

(ApAzAy)

(A2,A3As)

(A1,A3,A¢)

66

Tree-DP

Stages of DP form a tree
instead of a path (Tree-DP)

ONO

R3

©

6

R4

ONO

For Top-1, go bottom-up and
choose decisions
independently in each branch

67

Ranked Enumeration for Tree-DP

e Anyk-Part:
- Serialize the stages and treat it like the path case
- Complexity guarantees remain the same

« Anyk-Rec:
- Apply the path algorithm in each branch
- Difficulty: how do we combine the solutions from each branch?
- Improved TTL only if the tree has significant depth

[Deep+ 19] Deep and Koutris. Ranked enumeration of conjunctive query results. ArXiv’'19 http://arxiv.org/abs/1902.02698

[Tziavelis+ 20] Tziavelis, Ajwani, Gatterbauer, Riedewald, Yang. Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries. PVLDB’20
https://doi.org/10.14778/3397230.3397250

68

http://arxiv.org/abs/1902.02698
https://doi.org/10.14778/3397230.3397250

Cyclic Queries

e For cyclic queries, use tree decompositions
e Submodular width decompositions: union of acyclic queries

Acyclic 1 Acyclic 2 Acyclic 3

0(n5/3) 0(n5/3) 0(n5/3)
‘ .

. :> Acyclic 4 Acyclic 5 Acyclic 6

%’@ 0(n3/3) 0(n5/3) 0(n3/3)

Acyclic 7

0(n>/3)

Ranked Enumeration for Cyclic Queries

« Straightforward to run any-k with a top-level Priority Queue
o« TTF = 0(n5/3) for Q¢ (same as Boolean query)

Acyclic 2

0(n>/3)

Acyclic 3

PQ Acyclic 1
0(n>/3)

Acyclic 4
5/3
get next() o)

Acyclic 5

0(n>/3)

0(n>/3)

Acyclic 6

Acyclic 7

0(n>/3)

0(n>/3)

70

Outline tutorial

— Ranking Function

Top-1 Path Queries

A 4

Top-1 Conjunctive Queries

l

A 4

Union of Tree-DP (UT-DP)

A\ 4

A 4

Any-k UT-DP

Any-k UT-DP over
selective dioids

What ranking functions can be supported?

So far (min, +). Can we substitute these operators with others?

1. We need to be able to do Dynamic Programming

&
40
E min(ZO

2. The 1t operator has to induce an order on the domain

72

Semirings

« Semiring (W,©,&,0,1)
1. (W,8,0) is commutative monoid
2. (W,®,1) is monoid
3. ® distributes over ®: x D V)R z=xQ2) D (yQ2z) +—— zfef}/c?;r?fye[toypgor
4. 0 annihilates ®: 0 @ x=0

e Examples
1. (R*,min,+,0,0) “Tropical semiring”
2. ({0,1},v,A0,1) Boolean No ordering
3. (N,+,-,0,1) Number of paths (What would the 2@

best solution be?)

Aji, MicEliece. The generalized distributive law. IEEE Trans. Inf'00 https://doi.org/10.1109/18.825794
Mohri. Semiring frameworks and algorithms for shortest-distance problems. JALC'02 http://www.jalc.de/issues/2002/issue_7_3/abs-321.pdf

73

https://doi.org/10.1109/18.825794
http://www.jalc.de/issues/2002/issue_7_3/abs-321.pdf

Selective Dioids

« Aselective dioid (W,0,&,0,1) is a semiring with an additional property
- @isselective: xPy=x)VEDBy=y)

o Selectivity of @ gives us a total order on W:

- xyiffx@Py=x
- Eg x<yiff min(x,y) =x

Gondran, Minoux. Graphs, Dioids and Semirings: New Models and Algorithms. Springer’08. https://doi.org/10.1007/978-0-387-75450-5

74

https://doi.org/10.1007/978-0-387-75450-5

DP & Yannakakis

Yannakakis Bottom-up: DP over Boolean semiring ({0,1},V,A,0,1)

R1 Rz R3

1 >< Any-k with Boolean semiring?
Equivalent to standard query

o evaluation of Yannakakis if we use

\ @ “smarter” PQs (sorted lists of 0-1)
— 7—16 oy

Dangling tuple

Yannakakis Minimum SUM

75

Lexicographic Orders

Lexicographic Order
R, — Ry — R3

Results first weighted
on R, then R, then R,

76

Lexicographic Orders

Lexicographic Order

W: £-dimensional vectors
@ has input weight (0, 5, 0)

@ : lexicographic min
(0,5,20) & (0,6,10) = (0, 5, 20)

X : element-wise addition
(0,0,20) ® (0,5, 0) = (0, 5, 20)

77

Outline tutorial

— Open Problems

78

Open Problems

« How does any-k interact with other relational operators?
- Projections (drawing ideas from constant-delay enumeration)
- Disjunctions
- Groupings
« How does the query plan affect the performance of any-k algorithms? How
would the database optimizer choose the best algorithm/join plan?
« Can we efficiently decompose every query into a union of disjoint trees?
« Can we prove results beyond the worst-case? (e.g. instance-optimality)

o Can we “push” the any-k functionality inside the bags of the tree
decomposition instead of materializing them beforehand?

79

