Optimal Join Algorithms meet Top-k

Nikolaos Tziavelis, Wolfgang Gatterbauer, Mirek Riedewald
Northeastern University, Boston

Part 1: Top-k

Slides: https://northeastern-datalab.github.io/topk-join-tutorial/
DOI: https://doi.org/10.1145/3318464.3383132
Data Lab: https://db.khoury.northeastern.edu

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 International License. See https://creativecommons.org/licenses/by-nc-sa/4.0/ for details.
Why "Optimal Join Algorithms meet Top-k"?

Optimal Join algorithms

Return all results over joins

⇒ How to avoid large intermediate results?

Top-k

Given k, return k “best” results

⇒ How to avoid working on any lower ranked results?

Ranked Enumeration (Any-k)

Incrementally return the k “best” results over joins (for any $k = 1, 2, ...$)

⇒ How to most effectively push sorting through joins?
Top-k

- middleware cost model (# accesses)
- small result size; wish: $O(k)$
- return only k-best results

Any-k

- ranking function
- most important results first
- return only k-best results
- return all results; wish: $O(r), r > n$
- incremental computation

Optimal Join Algorithms

- RAM cost model
- conjunctive queries
- query decompositions
- minimize intermediate results
- all results are equally important

Conjunctive queries wish to minimize intermediate results.
Outline tutorial

• Part 1: Top-k (Wolfgang): ~20min
 – Top-k selection problem
 – Threshold algorithm [Fagin+ '03]
 – Top-k join problem
 – J^* algorithm [Natsev+ '01]
 – Discussion on cost models

• Part 2: Optimal Join Algorithms (Mirek): ~30min

• Part 3: Ranked enumeration over joins (Nikolaos): ~40min
Top-k Selection Query: overall setup

- n objects $X_1, X_2, ..., X_n$ with ℓ numeric weight attributes $w_1, w_2, ..., w_\ell$
- weight of object = aggregate function over its weights $\rho(w_1, w_2, ..., w_\ell) = \rho(X)$
- Goal: Find top-k objects according to some order (e.g. min)

<table>
<thead>
<tr>
<th>id</th>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>X_2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>X_3</td>
<td>6</td>
<td>8</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>X_4</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>X_5</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>20</td>
</tr>
</tbody>
</table>

Example aggregate function: $\rho = \text{sum}\{w_1, w_2, w_3\}$

$\rho(X_i)$ for every $X_i \in T$ and every $X_j \notin T$

In most original papers assumed to be max!
Top-k Selection Query: information in different relations

- Weights are stored in ℓ distinct relations R_i

<table>
<thead>
<tr>
<th></th>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>X_2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>X_3</td>
<td>6</td>
<td>8</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>X_4</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>X_5</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>w_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>3</td>
</tr>
<tr>
<td>X_2</td>
<td>4</td>
</tr>
<tr>
<td>X_3</td>
<td>6</td>
</tr>
<tr>
<td>X_4</td>
<td>7</td>
</tr>
<tr>
<td>X_5</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>w_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>4</td>
</tr>
<tr>
<td>X_2</td>
<td>2</td>
</tr>
<tr>
<td>X_3</td>
<td>8</td>
</tr>
<tr>
<td>X_4</td>
<td>6</td>
</tr>
<tr>
<td>X_5</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>w_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>3</td>
</tr>
<tr>
<td>X_2</td>
<td>4</td>
</tr>
<tr>
<td>X_3</td>
<td>1</td>
</tr>
<tr>
<td>X_4</td>
<td>6</td>
</tr>
<tr>
<td>X_5</td>
<td>5</td>
</tr>
</tbody>
</table>
Top-k Selection Query: sorted access

- Weights are stored in ℓ distinct relations R_i
 - each R_i is sorted by attribute w_i

<table>
<thead>
<tr>
<th></th>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>X_2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>X_3</td>
<td>6</td>
<td>8</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>X_4</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>X_5</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>20</td>
</tr>
</tbody>
</table>

R_1

<table>
<thead>
<tr>
<th></th>
<th>w_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>3</td>
</tr>
<tr>
<td>X_2</td>
<td>4</td>
</tr>
<tr>
<td>X_3</td>
<td>6</td>
</tr>
<tr>
<td>X_4</td>
<td>7</td>
</tr>
<tr>
<td>X_5</td>
<td>8</td>
</tr>
</tbody>
</table>

R_2

<table>
<thead>
<tr>
<th></th>
<th>w_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>4</td>
</tr>
<tr>
<td>X_2</td>
<td>2</td>
</tr>
<tr>
<td>X_3</td>
<td>8</td>
</tr>
<tr>
<td>X_4</td>
<td>6</td>
</tr>
<tr>
<td>X_5</td>
<td>7</td>
</tr>
</tbody>
</table>

R_3

<table>
<thead>
<tr>
<th></th>
<th>w_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>3</td>
</tr>
<tr>
<td>X_2</td>
<td>4</td>
</tr>
<tr>
<td>X_3</td>
<td>1</td>
</tr>
<tr>
<td>X_4</td>
<td>6</td>
</tr>
<tr>
<td>X_5</td>
<td>5</td>
</tr>
</tbody>
</table>
Top-k Selection Query: sorted access

- Weights are stored in ℓ distinct relations R_i
 - each R_i is sorted by attribute w_i

Notice we sort in increasing order.
Top-k Selection Query: "middleware" assumption

- **Weights** are stored in ℓ distinct relations R_i
 - each R_i is sorted by attribute w_i
- **Goal**: Find top-k with minimal access cost
 - get next object in R_i sequentially: "sorted" sequential access cost c_{seq}
 - obtain the weight for a specific object in R_i: random access (index lookup) cost c_{rand}

Assumption 1: Middleware cost model:
- we aggregate rankings of other services.
 - we only pay for accesses to attribute lists
 - 2 types of access: sequential / random

<table>
<thead>
<tr>
<th>id</th>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>X_2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>X_3</td>
<td>6</td>
<td>8</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>X_4</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>X_5</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>id</th>
<th>w_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>3</td>
</tr>
<tr>
<td>X_2</td>
<td>4</td>
</tr>
<tr>
<td>X_3</td>
<td>6</td>
</tr>
<tr>
<td>X_4</td>
<td>7</td>
</tr>
<tr>
<td>X_5</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>id</th>
<th>w_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>2</td>
</tr>
<tr>
<td>X_2</td>
<td>4</td>
</tr>
<tr>
<td>X_4</td>
<td>6</td>
</tr>
<tr>
<td>X_5</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>id</th>
<th>w_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_3</td>
<td>1</td>
</tr>
<tr>
<td>X_1</td>
<td>3</td>
</tr>
<tr>
<td>X_2</td>
<td>4</td>
</tr>
<tr>
<td>X_5</td>
<td>5</td>
</tr>
</tbody>
</table>

Notice we sort in increasing order.
Top-\(k\) Selection Query as a Join Problem

- Weights are stored in \(\ell\) distinct relations \(R_i\)
 - each \(R_i\) is sorted by attribute \(w_i\)
- Goal: Find top-\(k\) with minimal access cost
 - get next object in \(R_i\) sequentially: "sorted" sequential access cost \(c_{seq}\)
 - obtain the weight for a specific object in \(R_i\): random access (index lookup) cost \(c_{rand}\)

Assumption 1: Middleware cost model:
we aggregate rankings of other services.
- we only pay for accesses to attribute lists
- 2 types of access: sequential / random

\[
\begin{array}{c|c|c|c|c|c}
\text{id} & w_1 & w_2 & w_3 & \text{sum} \\
\hline
X_1 & 3 & 4 & 3 & 10 \\
X_2 & 4 & 2 & 4 & 10 \\
X_3 & 6 & 8 & 1 & 15 \\
X_4 & 7 & 6 & 6 & 18 \\
X_5 & 8 & 7 & 5 & 20 \\
\end{array}
\]

\[
\begin{array}{c|c}
\text{id} & w_1 \\
\hline
X_1 & 3 \\
X_2 & 4 \\
X_3 & 6 \\
X_4 & 7 \\
X_5 & 8 \\
\end{array}
\quad
\begin{array}{c|c}
\text{id} & w_2 \\
\hline
X_1 & 4 \\
X_2 & 6 \\
X_4 & 7 \\
X_5 & 8 \\
\end{array}
\quad
\begin{array}{c|c}
\text{id} & w_3 \\
\hline
X_3 & 1 \\
X_1 & 3 \\
X_2 & 4 \\
X_3 & 5 \\
X_4 & 6 \\
\end{array}
\]

~ Joins on unique object id: 1-1 relationships

!!!select R_1.id, sum(w_1, w_2, w_3) as weight from R_1, R_2, R_3 where R_1.id=R_2.id and R_2.id=R_3.id order by weight limit 2!!!
Naive algorithm: retrieve all items

- Weights are stored in ℓ distinct relations R_i
 - each R_i is sorted by attribute w_i
- Goal: Find top-k with minimal access cost
 - get next object in R_i sequentially: "sorted" sequential access cost c_{seq}
 - obtain the weight for a specific object in R_i: random access (index lookup) cost c_{rand}

Assumption 1: Middleware cost model:
we aggregate rankings of other services.
- we only pay for accesses to attribute lists
- 2 types of access: sequential / random

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>X_4</th>
<th>X_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>8</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Cost = $n \cdot \ell \cdot c_{sort}$
Assumption 2: The aggregate function ρ is monotone: $\rho(w_1, w_2, ..., w_\ell) \leq \rho(w'_1, w'_2, ..., w'_\ell)$ if $w_i \leq w'_i$ for all i.

Part 3: tropical semiring (min, sum) is instance of "selective dioid" (i.e. $\min(a,b) = a$ or b).

ρ is decomposable: $\rho(w_1, w_2, w_3) = \rho\{w_1, w_2, w_3\}$

Assumption 1: Middleware cost model:
we aggregate rankings of other services.
• we only pay for accesses to attribute lists
• 2 types of access: sequential / random

Select $R_1.id,$
\[\text{sum}(w_1, w_2, w_3) \text{ as weight}\]
From R_1, R_2, R_3
Where $R_1.id = R_2.id$
And $R_2.id = R_3.id$
Order by weight
Limit 2

- Weights are stored in ℓ distinct relations R_i
 - each R_i is sorted by attribute w_i
- Goal: Find top-k with minimal access cost
 - get next object in R_i sequentially: "sorted" sequential access cost c_{seq}
 - obtain the weight for a specific object in R_i: random access (index lookup) cost c_{rand}
Important early work making these assumptions

- **Fagin’s algorithm:**
 - Fagin. Combining fuzzy information from multiple systems. PODS 1996. https://doi.org/10.1145/237661.237715
 - Fagin. Fuzzy queries in multimedia database systems. PODS 1998. https://doi.org/10.1145/275487.275488
 - Fagin. Combining fuzzy information from multiple systems. JCSS 1999. https://doi.org/10.1006/jcss.1998.1600

- **Threshold Algorithm (TA):**
 - Nepal, Ramakrishna. Query processing issues in image (multimedia) databases. ICDE 1999. https://doi.org/10.1109/ICDE.1999.754894
 - Fagin, Lotem, Naor. Optimal aggregation algorithms for middleware. JCSS 2003. https://doi.org/10.1016/S0022-0000(03)00026-6

2014 Gödel Prize on "a framework to design and analyze algorithms where aggregation of information from multiple data sources is needed... introduced the notion of instance optimality"
Outline tutorial

• Part 1: Top-k (Wolfgang): ~20min
 – Top-k selection problem
 – Threshold algorithm [Fagin+ '03]
 – Top-k join problem
 – J* algorithm [Natsev+ '01]
 – Discussion on cost models
• Part 2: Optimal Join Algorithms (Mirek): ~30min
• Part 3: Ranked enumeration over joins (Nikolaos): ~40min
Threshold algorithm [Fagin+ 03]

1. Access next objects in all R_i sequentially

<table>
<thead>
<tr>
<th></th>
<th>R_1</th>
<th>R_2</th>
<th>R_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>w_1</td>
<td>w_2</td>
<td>w_3</td>
</tr>
<tr>
<td>X_1</td>
<td>3</td>
<td>X_2</td>
<td>2</td>
</tr>
<tr>
<td>X_2</td>
<td>4</td>
<td>X_1</td>
<td>4</td>
</tr>
<tr>
<td>X_3</td>
<td>6</td>
<td>X_4</td>
<td>6</td>
</tr>
<tr>
<td>X_4</td>
<td>7</td>
<td>X_5</td>
<td>7</td>
</tr>
<tr>
<td>X_5</td>
<td>8</td>
<td>X_3</td>
<td>8</td>
</tr>
</tbody>
</table>

Threshold algorithm [Fagin+ 03]

1. Access next objects in all R_i sequentially
 a. Set threshold τ to the aggregate of the weights last seen in sorted access

\begin{align*}
\tau &= \text{sum}(3, 2, 1) = 6
\end{align*}

<table>
<thead>
<tr>
<th></th>
<th>R_1</th>
<th></th>
<th>R_2</th>
<th></th>
<th>R_3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>w_1</td>
<td>id</td>
<td>w_2</td>
<td>id</td>
<td>w_3</td>
<td></td>
</tr>
<tr>
<td>X_1</td>
<td>3</td>
<td>X_2</td>
<td>2</td>
<td>X_3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>X_2</td>
<td>4</td>
<td>X_1</td>
<td>4</td>
<td>X_1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>X_3</td>
<td>6</td>
<td>X_4</td>
<td>6</td>
<td>X_2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>X_4</td>
<td>7</td>
<td>X_5</td>
<td>7</td>
<td>X_5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>X_5</td>
<td>8</td>
<td>X_3</td>
<td>8</td>
<td>X_4</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Threshold algorithm [Fagin+ 03]

1. Access next objects in all R_i sequentially
 a. Set threshold τ to the aggregate of the weights last seen in sorted access
 b. Use random accesses and compute the aggregate weights ρ of all objects seen

<table>
<thead>
<tr>
<th>id</th>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>X_2</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>X_3</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>X_4</td>
<td>6</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>X_5</td>
<td>7</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

$\tau = \text{sum}(3, 2, 1) = 6$
Threshold algorithm [Fagin+ 03]

1. Access next objects in all R_i sequentially
 a. Set threshold τ to the aggregate of the weights last seen in sorted access
 b. Use random accesses and compute the aggregate weights ρ of all objects seen

\[
\begin{array}{|c|c|c|c|}
\hline
\text{id} & w_1 & w_2 & w_3 \\
\hline
X_1 & 3 & 4 & 3 \\
X_2 & 2 & & \\
X_3 & & & 1 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
\text{id} & w_1 \\
\hline
X_1 & 3 \\
X_2 & 4 \\
X_3 & 6 \\
X_4 & 7 \\
X_5 & 8 \\
\hline
\end{array}
\quad
\begin{array}{|c|c|}
\hline
\text{id} & w_2 \\
\hline
X_1 & 4 \\
X_4 & 6 \\
X_5 & 7 \\
\hline
\end{array}
\quad
\begin{array}{|c|c|}
\hline
\text{id} & w_3 \\
\hline
X_1 & 3 \\
X_2 & 4 \\
X_3 & 8 \\
X_4 & 6 \\
\hline
\end{array}
\]

$\tau = \text{sum}(3, 2, 1) = 6$

Threshold algorithm [Fagin+ 03]

1. Access next objects in all R_i sequentially

a. Set threshold τ to the aggregate of the weights last seen in sorted access

b. Use random accesses and compute the aggregate weights ρ of all objects seen

<table>
<thead>
<tr>
<th></th>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>X_2</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>X_3</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

$\tau = \text{sum}(3, 2, 1) = 6$
Threshold algorithm [Fagin+ 03]

1. Access next objects in all R_i sequentially
 a. Set threshold τ to the aggregate of the weights last seen in sorted access
 b. Use random accesses and compute the aggregate weights ρ of all objects seen

\[
\begin{array}{cccc}
\text{id} & w_1 & w_2 & w_3 \\
X_1 & 3 & 4 & 3 \\
X_2 & 4 & 2 & 4 \\
X_3 & 6 & 8 & 1 \\
\end{array}
\]

\[
\begin{array}{ccc}
R_1 & R_2 & R_3 \\
\begin{array}{cccc}
\text{id} & w_1 & & \\
X_1 & 3 & & \\
X_2 & 4 & & \\
X_3 & 6 & & \\
X_4 & 7 & & \\
X_5 & 8 & & \\
\end{array} & \\
\begin{array}{cccc}
\text{id} & w_2 & & \\
X_1 & 4 & & \\
X_4 & 6 & & \\
X_5 & 7 & & \\
X_3 & 8 & & \\
\end{array} & \\
\begin{array}{cccc}
\text{id} & w_3 & & \\
X_3 & 1 & & \\
X_2 & 4 & & \\
X_5 & 5 & & \\
X_4 & 6 & & \\
\end{array}
\end{array}
\]

$\tau = \text{sum}(3, 2, 1) = 6$

Threshold algorithm [Fagin+ 03]

1. Access next objects in all R_i sequentially
 a. Set threshold τ to the aggregate of the weights last seen in sorted access
 b. Use random accesses and compute the aggregate weights ρ of all objects seen

<table>
<thead>
<tr>
<th>id</th>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>X_2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>X_3</td>
<td>6</td>
<td>8</td>
<td>1</td>
<td>15</td>
</tr>
</tbody>
</table>

$k=2$

Focus only on top-k (can purge rest)

$\tau = \text{sum}(3, 2, 1) = 6$

Threshold algorithm [Fagin+ 03]

1. Access next objects in all R_i sequentially
 a. Set threshold τ to the aggregate of the weights last seen in sorted access
 b. Use random accesses and compute the aggregate weights ρ of all objects seen
 c. Continue until the aggregate weights ρ of the top-$k \leq \tau$

X_1	3	4	3	10
X_2	4	2	4	10
X_3	6	8	1	15

Focus only on top-k (can purge rest)

$\tau = \text{sum}(3, 2, 1) = 6$

10 \not\leq 6: continue: access next objects sequentially

Threshold algorithm [Fagin+ 03]

1. Access next objects in all R_i sequentially
 a. Set threshold τ to the aggregate of the weights last seen in sorted access
 b. Use random accesses and compute the aggregate weights ρ of all objects seen
 c. Continue until the aggregate weights ρ of the top-$k \leq \tau$

 \[
 \begin{array}{c|cccc|c}
 \text{id} & w_1 & w_2 & w_3 & \text{sum} \\
 \hline
 X_1 & 3 & 4 & 3 & 10 \\
 X_2 & 4 & 2 & 4 & 10 \\
 X_3 & 6 & 8 & 1 & 15 \\
 \end{array}
 \]

 \[
 \begin{array}{c|c|c|c|c}
 R_1 & \text{id} & w_1 & \text{id} & w_2 & \text{id} & w_3 \\
 \hline
 X_1 & 3 & \text{--} & \text{--} & \text{--} & \text{--} \\
 X_2 & 4 & \text{--} & \text{--} & \text{--} & \text{--} \\
 X_3 & \text{--} & \text{--} & \text{--} & \text{--} \\
 X_4 & \text{--} & \text{--} & \text{--} & \text{--} \\
 X_5 & \text{--} & \text{--} & \text{--} & \text{--} \\
 \end{array}
 \]

 \[
 \begin{array}{c|c|c|c|c}
 R_2 & \text{id} & w_1 & \text{id} & w_2 & \text{id} & w_3 \\
 \hline
 X_1 & \text{--} & \text{--} & 4 & \text{--} & \text{--} \\
 X_2 & \text{--} & \text{--} & \text{--} & \text{--} & \text{--} \\
 X_4 & \text{--} & \text{--} & \text{--} & \text{--} & \text{--} \\
 X_5 & \text{--} & \text{--} & \text{--} & \text{--} & \text{--} \\
 \end{array}
 \]

 \[
 \begin{array}{c|c|c|c|c}
 R_3 & \text{id} & w_1 & \text{id} & w_2 & \text{id} & w_3 \\
 \hline
 X_3 & \text{--} & \text{--} & \text{--} & 1 & \text{--} \\
 X_2 & \text{--} & \text{--} & \text{--} & \text{--} & 4 \\
 X_5 & \text{--} & \text{--} & \text{--} & \text{--} & \text{--} \\
 \end{array}
 \]

 $\tau = \text{sum}(3,2,1) = 6$
 $\tau = \text{sum}(4,4,3) = 11$

 focus only on top-k
 (can purge rest)

 $10 \leq 11$: stop!

Threshold algorithm [Fagin+ 03]

- Why can we avoid looking at X_4?

From the monotonicity property: for any object not seen, the score of the object is bigger than the threshold τ.

\[\rho(X_4) \geq \tau \]

\[\tau = \text{sum}(4, 4, 3) = 11 \]
Instance Optimality of Threshold Algorithm (TA)

• The TA algorithm is **instance cost-optimal**
 – within a constant factor of the best algorithm on any database*

• Let \(\text{cost}(A, D) = \text{access cost of algorithm } A \text{ on database } D \):
 – \(\text{cost}(\text{TA}, D) = O(\text{cost}(A, D)) \) for all \(A \) and \(D \)

* Excluding those that make “wild guesses” = random access to object without first seeing it with sorted access

Outline tutorial

• Part 1: Top-\(k\) (Wolfgang): \(\sim20\)min
 – Top-\(k\) selection problem
 – Threshold algorithm [Fagin+ '03]
 – Top-\(k\) join problem
 – J* algorithm [Natsev+ '01]
 – Discussion on cost models

• Part 2: Optimal Join Algorithms (Mirek): \(\sim30\)min

• Part 3: Ranked enumeration over joins (Nikolaos): \(\sim40\)min
Goal: Generalize TA setup to arbitrary join patterns

- Same cost model: measuring access cost
 - to simplify, we ignore random accesses

- Many-to-many relationships
- No unique identifier per join result
- Arbitrary join conditions possible

natural join

```
select A_1, A_2, A_3, A_4,
    sum(w_1, w_2, w_3) as weight
from R_1, R_2, R_3
where R_1.A_2 = R_2.A_2
    and R_2.A_3 = R_3.A_3
order by weight
limit 1
```
Outline tutorial

• Part 1: Top-k (Wolfgang): ~20min
 – Top-k selection problem
 – Threshold algorithm [Fagin+ '03]
 – Top-k join problem
 – J* algorithm [Natsev+ '01]
 – Discussion on cost models

• Part 2: Optimal Join Algorithms (Mirek): ~30min

• Part 3: Ranked enumeration over joins (Nikolaos): ~40min
J* Algorithm [Natsev+ 01]

- Idea: A* search on the Cartesian product to find top-k join results
 - Keep Priority Queue (PQ) of partial results
 - Pop partial result with smallest lower bound (based on what has been seen) and access lists to extend it

Partial Solution	Next Tuple	Lower Bound
() | $R_1: 1$ | $0+0+0=0$

![Diagram showing partial solutions and lower bounds](image_url)
J* Algorithm [Natsev+ 01]

- Idea: A* search on the Cartesian product to find top-k join results
 - Keep Priority Queue (PQ) of partial results
 - Pop partial result with smallest lower bound (based on what has been seen) and access lists to extend it
 - If still incomplete, push back 2 new ones: one “longer”, one “deeper”

\[
\begin{array}{c|c|c|c}
\text{Partial Solution} & \text{Next Tuple} & \text{Lower bound} \\
\hline
(1) & R_2:1 & 1+0+0=1 \\
() & R_1:2 & 1+0+0=1 \\
\end{array}
\]

\[
\begin{array}{c|c|c|c}
A_1 & A_2 & w_1 \\
\hline
\text{a} & \text{b} & 1 \\
\text{c} & \text{b} & 4 \\
\text{b} & \text{d} & 5 \\
\end{array}
\quad
\begin{array}{c|c|c|c}
A_2 & A_3 & w_2 \\
\hline
\text{d} & \text{c} & 1 \\
\text{b} & \text{c} & 2 \\
\text{b} & \text{a} & 3 \\
\end{array}
\quad
\begin{array}{c|c|c|c}
A_3 & A_4 & w_3 \\
\hline
\text{c} & \text{d} & 1 \\
\text{a} & \text{a} & 2 \\
\text{a} & \text{d} & 3 \\
\end{array}
\]

J* Algorithm [Natsev+ 01]

- Idea: A* search on the Cartesian product to find top-k join results
 - Keep Priority Queue (PQ) of partial results
 - Pop partial result with smallest lower bound (based on what has been seen) and access lists to extend it
 - If still incomplete, push back 2 new ones: one “longer”, one “deeper”

Partial Solution

Next Tuple Lower bound

| (1) | R_2: 1 | 1 + 0 + 0 = 1 |
| () | R_1: 2 | 1 + 0 + 0 = 1 |

J* Algorithm [Natsev+ 01]

- Idea: A* search on the Cartesian product to find top-k join results
 - Keep Priority Queue (PQ) of partial results
 - Pop partial result with smallest lower bound (based on what has been seen) and access lists to extend it
 - If still incomplete, push back 2 new ones: one “longer”, one “deeper”

<table>
<thead>
<tr>
<th>Partial Solution</th>
<th>Next Tuple</th>
<th>Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>R₂:2</td>
<td>1+1+0=2</td>
</tr>
<tr>
<td>()</td>
<td>R₁:2</td>
<td>1+0+0=1</td>
</tr>
</tbody>
</table>

Partial Solution Next Tuple Lower Bound
(1) R₂:2 1+1+0=2
()
R₁:2 1+0+0=1

Invalid join condition, thus discard partial solution

J* Algorithm [Natsev+ 01]

- Idea: A* search on the Cartesian product to find top-k join results
 - Keep Priority Queue (PQ) of partial results
 - Pop partial result with smallest lower bound (based on what has been seen) and access lists to extend it
 - If still incomplete, push back 2 new ones: one "longer”, one “deeper”

Partial Solution Next Tuple Lower bound
(1) R₂:2 1+1+0=2
() R₁:2 1+0+0=1

J* Algorithm [Natsev+ 01]

- Idea: A* search on the Cartesian product to find top-k join results
 - Keep Priority Queue (PQ) of partial results
 - Pop partial result with smallest lower bound (based on what has been seen) and access lists to extend it
 - If still incomplete, push back 2 new ones: one “longer”, one “deeper”

Partial Solution	Next Tuple	Lower bound
(1) | R₂:2 | 1+1+0=2
(2) | R₂:1 | 4+0+0=4
(3) | R₁:3 | 4+0+0=4

<table>
<thead>
<tr>
<th>R_1</th>
<th>A_1</th>
<th>A_2</th>
<th>w_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>d</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>b</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R_2</th>
<th>A_2</th>
<th>A_3</th>
<th>w_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>c</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R_3</th>
<th>A_3</th>
<th>A_4</th>
<th>w_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>d</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>d</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

J* Algorithm [Natsev+ 01]

- **Idea:** A* search on the Cartesian product to find top-k join results
 - Keep Priority Queue (PQ) of partial results
 - Pop partial result with smallest lower bound (based on what has been seen) and access lists to extend it
 - If still incomplete, push back 2 new ones: one “longer”, one “deeper”

Table:

<table>
<thead>
<tr>
<th>Partial Solution</th>
<th>Next Tuple</th>
<th>Lower bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>R₂:2</td>
<td>1+1+0=2</td>
</tr>
<tr>
<td>(2)</td>
<td>R₂:1</td>
<td>4+0+0=4</td>
</tr>
<tr>
<td>()</td>
<td>R₁:3</td>
<td>4+0+0=4</td>
</tr>
</tbody>
</table>

Diagram:

- **R_1**
 - A_1: a, b
 - A_2: b, c
 - w_1: 1, 4
- **R_2**
 - A_2: d, c
 - A_3: b, c
 - w_2: 1, 2
- **R_3**
 - A_3: c, d
 - A_4: a, a
 - w_3: 1, 2

J* Algorithm [Natsev+ 01]

- Idea: A* search on the Cartesian product to find top-\(k\) join results
 - Keep Priority Queue (PQ) of partial results
 - Pop partial result with smallest lower bound (based on what has been seen) and access lists to extend it
 - If still incomplete, push back 2 new ones: one “longer”, one “deeper”

<table>
<thead>
<tr>
<th>Partial Solution</th>
<th>Next Tuple</th>
<th>Lower bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,2)</td>
<td>(R_3:1)</td>
<td>1+2+0=3</td>
</tr>
<tr>
<td>(1)</td>
<td>(R_2:3)</td>
<td>1+2+0=3</td>
</tr>
<tr>
<td>(2)</td>
<td>(R_2:1)</td>
<td>4+0+0=4</td>
</tr>
<tr>
<td>()</td>
<td>(R_1:3)</td>
<td>4+0+0=4</td>
</tr>
</tbody>
</table>

![Diagram of J* Algorithm](https://doi.org/10.5555/645927.672365)
J* Algorithm [Natsev+ 01]

- Idea: A* search on the Cartesian product to find top-k join results
 - Keep Priority Queue (PQ) of partial results
 - Pop partial result with smallest lower bound (based on what has been seen) and access lists to extend it
 - If still incomplete, push back 2 new ones: one “longer”, one “deeper”

Partial Solution	Next Tuple	Lower bound
(1,2) | R₃:1 | 1+2+0=3
(1) | R₂:3 | 1+2+0=3
(2) | R₂:1 | 4+0+0=4
() | R₁:3 | 4+0+0=4

J* Algorithm [Natsev+ 01]

• Idea: A* search on the Cartesian product to find top-k join results
 – Keep Priority Queue (PQ) of partial results
 – Pop partial result with smallest lower bound (based on what has been seen) and access lists to extend it
 – If still incomplete, push back 2 new ones: one “longer”, one “deeper”

<table>
<thead>
<tr>
<th>Partial Solution</th>
<th>Next Tuple</th>
<th>Lower bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,2,1)</td>
<td>R₂:2</td>
<td>1+2+1=4</td>
</tr>
<tr>
<td>(1,2)</td>
<td>R₂:3</td>
<td>1+2+0=3</td>
</tr>
<tr>
<td>(1)</td>
<td>R₂:3</td>
<td>1+2+0=3</td>
</tr>
<tr>
<td>(2)</td>
<td>R₂:1</td>
<td>4+0+0=4</td>
</tr>
<tr>
<td>()</td>
<td>R₁:3</td>
<td>4+0+0=4</td>
</tr>
</tbody>
</table>

J* Algorithm [Natsev+ 01]

- Idea: A* search on the Cartesian product to find top-k join results
 - Keep Priority Queue (PQ) of partial results
 - Pop partial result with smallest lower bound (based on what has been seen) and access lists to extend it
 - If still incomplete, push back 2 new ones: one “longer”, one “deeper”

Partial Solution	Next Tuple	Lower bound
(1,2,1) | | 1+2+1=4
(1,2) | R₂:2 | 1+2+1=4
(1,3) | R₃:2 | 1+3+0=4
(2) | R₃:1 | 4+0+0=4
() | R₁:3 | 4+0+0=4

J* Algorithm [Natsev+ 01]

- Idea: A* search on the Cartesian product to find top-\(k\) join results
 - Keep Priority Queue (PQ) of partial results
 - Pop partial result with smallest lower bound (based on what has been seen) and access lists to extend it
 - If still incomplete, push back 2 new ones: one “longer”, one “deeper”

<table>
<thead>
<tr>
<th>Partial Solution</th>
<th>Next Tuple</th>
<th>Lower bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,2,1)</td>
<td>R₃:2</td>
<td>1+2+1=4</td>
</tr>
<tr>
<td>(1,2)</td>
<td>R₃:1</td>
<td>1+2+1=4</td>
</tr>
<tr>
<td>(1,3)</td>
<td>R₃:1</td>
<td>1+3+0=4</td>
</tr>
<tr>
<td>(2)</td>
<td>R₂:1</td>
<td>4+0+0=4</td>
</tr>
<tr>
<td>()</td>
<td>R₁:3</td>
<td>4+0+0=4</td>
</tr>
</tbody>
</table>

Partial Solution

- **Next Tuple**
- **Lower bound**

![Diagram](https://via.placeholder.com/150)

J* w/ iterative deepening [Natsev+ 01] & Rank Join [Ilyas+ 04]

- To guarantee instance optimality for J*, go deeper only after producing all results (iterative deepening) [Natsev+ 01]
- Rank-Join [Ilyas+ 04]: Instead of A* type of search use a threshold value similarly to TA. Also instance-optimal in terms of accesses
- Many variants and much follow-up work (different join strategies, heuristics to prioritize relations, etc.)

![Diagram](https://via.placeholder.com/150)

References

Figures from [Ilyas+ 04]

Similar access cost, but different times in practice. Is # of access cost thus a reasonable cost model?
Outline tutorial

• Part 1: Top-\(k\) (Wolfgang): \(~20\text{min}\)
 – Top-\(k\) selection problem
 – Threshold algorithm [Fagin+ '03]
 – Top-\(k\) join problem
 – J* algorithm [Natsev+ '01]
 – Discussion on cost models
• Part 2: Optimal Join Algorithms (Mirek): \(~30\text{min}\)
• Part 3: Ranked enumeration over joins (Nikolaos): \(~40\text{min}\)
Middleware cost model vs. in-database join computations

<table>
<thead>
<tr>
<th></th>
<th>(R_1)</th>
<th>(R_2)</th>
<th>(R_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(A_2)</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(w_1)</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(w_2)</td>
<td>10</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>(w_3)</td>
<td>90</td>
<td>900</td>
<td></td>
</tr>
</tbody>
</table>

Middleware cost model vs. in-database join computations

- J* and Rank-Join produce n^2 partial results to find top-1 result
 - Are number of accesses a realistic measure for in-database join computation?
 - E.g. if tables are available in a database, we don't have to fetch tuples over a network.

⇒ How to most effectively push sorting through joins?

<table>
<thead>
<tr>
<th>RAM cost model</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-memory join comp.</td>
</tr>
<tr>
<td>quadratic cost</td>
</tr>
<tr>
<td>in-memory processing: join time matters</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Middleware cost model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimize access depth</td>
</tr>
<tr>
<td>linear cost</td>
</tr>
<tr>
<td>Information retrieval: latency/ access cost matters</td>
</tr>
</tbody>
</table>

Assuming sorted accesses only. If random accesses allowed, another slightly more complicated example shows the same issue.

A natural question:

What can one do under a RAM cost model for general conjunctive queries?

Assuming sorted accesses only. If random accesses allowed, another slightly more complicated example shows the same issue.

\(n^2 \) partial results to find top-1 result

- Are number of accesses a realistic measure for in-database join computation?

E.g. if tables are available in a database, we don't have to fetch tuples over a network.

\(\Rightarrow \) How to most effectively push sorting through joins?
An excerpt of rich literature, once access determines cost ...

- What if the ranking function is the distance from a desired (high-dimensional) point?
 - [Bruno+ TODS’02]: Rewrite as a range query and restart if #results < k
- What if we are allowed to pre-compute data structures and learn the ranking function at query time?
 - [Tsaparas+ ICDE’03]: Find linear ranking functions that act as “separators” (i.e., they change the top-k set)
 - [Chang+ SIGMOD’00]: Construct convex hulls for linear ranking functions
 - [Hristidis+ SIGMOD’01, Das+ VLDB’06]: Materialize ranked views for some selected ranking functions
- What if the ranking function is non-monotone?
 - [Zhang+ SIGMOD’06]: Use continuous function optimization methods
- What if the query model is different?
 - "SMART" [Wu+ VLDB’10]: Query contains disjunctions, partial results allowed to be returned
- ...

Please see dedicated tutorials and surveys on top-k

Outline tutorial

• Part 1: Top-k (Wolfgang): ~20min
 – Top-k selection problem
 – Threshold algorithm [Fagin+ '03]
 – Top-k join problem
 – J* algorithm [Natsev+ '01]
 – Discussion on cost models

• Part 2: Optimal Join Algorithms (Mirek): ~30min

• Part 3: Ranked enumeration over joins (Nikolaos): ~40min