
1

Toward Responsive DBMS:
Optimal Join Algorithms, Enumeration,

Factorization, Ranking, and Dynamic Programming

ICDE 2022 tutorial

Nikolaos Tziavelis, Wolfgang Gatterbauer, Mirek Riedewald

Northeastern University, Boston

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 International License.
See https://creativecommons.org/licenses/by-nc-sa/4.0/ for details

Part 7 : Beyond Equi-Joins, Conclusions

Slides: https://northeastern-datalab.github.io/responsive-dbms-tutorial
DOI: https://doi.org/10.1109/ICDE53745.2022.00299
Data Lab: https://db.khoury.northeastern.edu

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://doi.org/10.1109/ICDE53745.2022.00299
https://db.khoury.northeastern.edu/

2

Outline tutorial

1: Introduction (Nikos) ~40min
2: Tree Decompositions (Mirek) ~20min
3: Acyclic Queries & Enumeration (Wolfgang) ~25min

4: Factorization (Nikos) ~10min
5: Dynamic Programming & Semirings (Wolfgang) ~20min
6: Any-𝑘 or Ranked Enumeration (Nikos) ~35min
7. Decomposition of Comparison Predicates (Mirek) ~10min
8. Conclusion (Mirek) ~10min

BREAK

3

Motivating Example

c1

c2

c3

c4 c5

Reddit Network

• Timestamp
• Sentiment measure
• Readability score

[K+ 18] Kumar, Hamilton, Leskovec, Jurafsky. Community Interaction and Conflict on the Web. WWW’18. https://doi.org/10.1145/3178876.3186141

https://doi.org/10.1145/3178876.3186141

4

Motivating Example

Q: - length-2 paths
- timestamps in increasing order
- sentiment in decreasing order
- top results by sum of readability

select *
from Reddit R1, Reddit R2
where R2.Source = R1.Target

AND R2.Timestamp > R1.Timestamp
AND R2.Sentiment < R1.Sentiment

order by weight desc
limit 1000

Join in SQL:
, R1.Readability + R2.Readability as weight

Equality

Inequalities

Ranking

Naïve plan:
1. Compute all O(𝑛2) join results
2. Sort them

c1

c2

c3

c4 c5

Reddit Network

(Timestamp1, Sentiment1)

(Timestamp2, Sentiment2)

< >

Any-k with factorized representation:
TT 𝑘 = ෩𝐎(𝒏 + 𝒌) (ignoring log
factors)

Tziavelis, Gatterbauer, Riedewald. Beyond Equi-joins: Ranking, Enumeration and Factorization. PVLDB’21 https://doi.org/10.14778/3476249.3476306

https://doi.org/10.14778/3476249.3476306

5

Ranked Enumeration for Full Acyclic Join Queries
DB

𝑛 tuples

R

S T

U W

Join
ℓ relations

Lower bound: TT 𝑘 = Ω 𝑛 + 𝑘
Equi-joins [T+20]: TT 𝑘 = O(𝑛 + 𝑘 log 𝑘)

Join-then-rank: TT 𝑘 = O 𝑛ℓ + 𝑘 log 𝑛

Any-k applied to DNF of (in)equalities [T+21]:
TT 𝑘 = O(𝑛 polylog 𝑛 + 𝑘 log 𝑘)

Any-k applied to theta-join [T+21]:
TT 𝑘 = O(𝑛2 + 𝑘 log 𝑘)

[T+20] Tziavelis, Ajwani, Gatterbauer, Riedewald, Yang. Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries. PVLDB’20
https://doi.org/10.14778/3397230.3397250

Assumptions

• Data complexity (ℓ, #attributes constant)

• Indexes must be built on-the-fly

• In-memory computation

[T+21] Tziavelis, Gatterbauer, Riedewald. Beyond Equi-joins: Ranking, Enumeration and Factorization. PVLDB’21 https://doi.org/10.14778/3476249.3476306

https://doi.org/10.14778/3397230.3397250
https://doi.org/10.14778/3476249.3476306

6

Factorized Representation for (Acyclic) Theta-Joins

Enumeration Graph

1,1 1,2 2,3 3,4 3,5 3,6S(A,B)

R(E,F) 1,1 1,2 1,3 1,4 2,5 3,6

T(C,D) 1,1 1,2 2,3 3,4 3,5 3,6

S.B < T.D

T.C > R.E

Tuple-Level Factorization Graph (TLFG)

• DAG between 2 relation layers

• Path from S tuple to T tuple
⇔

Valid join pair

• Ranked enumeration for any TLFG

- Size affects preprocessing time

- Depth (longest path) affects delay

relation layers (tuples)

7

Direct TLFGs

Enumeration Graph

1,1 1,2 2,3 3,4 3,5 3,6S(A,B)

R(E,F) 1,1 1,2 1,3 1,4 2,5 3,6

T(C,D) 1,1 1,2 2,3 3,4 3,5 3,6

S.B < T.D

T.C > R.E

Direct TLFG

• O(𝑛2) edges

• Depth = 1

• Works for any join condition

TT 𝑘 = O(𝑛2 + 𝑘 log 𝑘)

8

Binary Partitioning Method

• 𝑂(𝑛 log 𝑛) size

• Depth = 2

• For 1 inequality predicate

Binary Partitioning for Inequality Predicate

Enumeration Graph

1,1 1,2 2,3 3,4 3,5 3,6S(A,B)

R(E,F) 1,1 1,2 1,3 1,4 2,5 3,6

T(C,D) 1,1 1,2 2,3 3,4 3,5 3,6

S.B < T.D

T.C > R.E

v1 v2 v3 v4 v5

TT 𝑘 = 𝑂(𝑛 log 𝑛 + 𝑘 log 𝑘)

⋈< ⋈=
𝑂(𝑛)-size
relations

𝑂(𝑛 log 𝑛)-size
relations

9

Factorization Generalization and Extensions

• Band predicates (|S.A – T.B| < ε)

• Non-equality predicates (S.A ≠ T.B)

• Conjunctions/Disjunctions of predicates

• Optimizations for improved memory consumption

10

Experiments

METHOD DETAILS

Factorized • Our method

QuadEqui
• Direct TLFG (materializes auxiliary relations of size 𝑂(𝑛2)

to reduce theta-join to equi-join)
• Uses ranked enumeration for equi-joins
• Time measured after materialization

Batch • Time to rank all results with a Priority Queue
• Time for join not measured

PSQL • Prebuilt indexes
• Limit clause

System X • Commercial DBMS
• In-memory optimized

DBMSs

Thus, lower bound
on any
implementation

Thus, idealized
compared to real
implementation!

11

Exp1: Synthetic Data

Other methods face memory
problems as 𝑛 increases.

256× larger database

n = relation size

Out-of-Memory

Si(Ai, Ai+1, W)

select *, S1.W + S2.W as weight
from S1, S2
where S1.A2 < S2.A3
order by weight asc

Top-1000

Factorized

System XPSQL

Batch=QuadEqui

• Tuples values drawn
randomly from
integer domain

• Binary join with one
inequality predicate

12

Exp2: Paths on Reddit

Our method is robust to different query sizes
and complicated join conditions.

ℓ = #relations

select *
from Reddit R1, Reddit R2
where R2.Source = R1.Target

AND R2.Timestamp > R1.Timestamp
AND R2.Sentiment < R1.Sentiment

order by weight desc

Out-of-MemoryBatch

QuadEqui

System X

PSQL

Factorized

Q: - length-ℓ paths
- timestamps in increasing order
- sentiment in decreasing order
- top results by sum of readability

~286k edges

13

Summary

• DBMSs typically struggle with complex join predicates like inequalities.

• The any-k factorized algorithm can return the top join results
(e.g., top-1000) in time comparable to sorting the input

• For (full) acyclic queries with DNFs of equalities and inequalities:
TT 𝑘 = 𝑂 𝑛 polylog 𝑛 + 𝑘 log 𝑘

• This factorization also applies to the other query types (e.g., unranked
enumeration, aggregation) with analogous time complexity guarantees

Website: https://northeastern-datalab.github.io/anyk/

Even for 𝑂 𝑛ℓ

join results!

Code available online!

https://northeastern-datalab.github.io/anyk/

14

Conclusions

15

Queries Discussed

• Focused on conjunctive queries

- SELECT-FROM-WHERE with only AND-connected constraints

• Also explored extensions using union and aggregation

- DNF of inequality join conditions

- ORDER BY

• Covers a large spectrum of real-world SQL queries for

- Unranked enumeration

- Ranked enumeration

- Direct access to specific output position

16

Complexity of Join Computation

• A join query of ℓ relations of size 𝑛 has output size 𝑟 = O(𝑛ℓ)

- AGM bound gives tighter upper bound specific to the given query, e.g.,
O(𝑛1.5) instead of O(𝑛3) for the 3-cycle query

• Lower bound to compute the join: Ω(𝑛 + 𝑟)

• Matching it requires avoiding intermediate results greater than 𝑟

- Yannakakis algorithm achieves O(𝑛 + 𝑟) for full acyclic queries

• Bottom-up and top-down sweeps of semi-join reduction on join tree

• Then bottom-up join of relation leftovers

- Generally not achievable for cyclic queries

• Best possible so far is 𝑂(𝑛𝑑 + 𝑟), where 𝑑 ≥ 1 is a width parameter

• Approach uses tree decompositions and worst-cast optimal join algorithms

17

Getting Faster Responses (Full Acyclic Queries)

• …even when join output size is 𝑛ℓ

• Enumeration: output join answers (unordered)

- TT 𝑘 = O(𝑛 + 𝑘)

• Ranked enumeration: output in order of “monotonic” ranking
function

- TT 𝑘 = O(𝑛 + 𝑘 log 𝑘)

• Direct access (for fragment of acyclic queries and limited class of
monotonic ranking functions)

- TT 𝑘 = O(𝑛 polylog 𝑛 + 𝑘 polylog 𝑘)

18

Extended Results

• Selection: easy

- Apply in pre-processing

• Projection: can be hard!

- Intuition: it creates “duplicates” that cause large delays until next returned
answer

- In SQL only an issue for SELECT DISTINCT queries

- TT 𝑘 = O(𝑛 + 𝑘) achievable for (and only for) free-connex acyclic queries

• Joins with conditions other than equality: ranked enumeration

- DNF of inequalities: TT 𝑘 = O(𝑛 polylog 𝑛 + 𝑘 log 𝑘)

- Theta-join: TT 𝑘 = O(𝑛2 + 𝑘 log 𝑘)

19

The “Secret Sauce”

• Semi-join reductions (Yannakakis algorithm)

• Dynamic programming

- Graph of related sub-problems to efficiently compute top-1 answer

• Generalization to compute top-2, top-3,… efficiently

• Factorization

- Represent a binary join of size O(𝑛2) in space O(𝑛) (equi-join) or
O(𝑛 polylog 𝑛) (DNF of inequality conditions)

• Semi-rings

- Enabler of factorization: 𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑 = (𝑎 + 𝑏)(𝑐 + 𝑑)

20

What is Next?

• Support for more general types of predicates

- E.g., 𝑅. 𝐴 + 𝑆. 𝐵 < 𝑇. 𝐶

• Efficient incremental maintenance under updates

- Some results for enumeration and aggregates (e.g., triangle count)

• ML over factorized data

• General question: What can we compute quickly/efficiently without
having to materialize the entire join result?

21

Thank you!

Slides: https://northeastern-datalab.github.io/responsive-dbms-tutorial
DOI: https://doi.org/10.1109/ICDE53745.2022.00299
Data Lab: https://db.khoury.northeastern.edu

This work was supported in part by the Office of Naval Research (Grant#: N00014-21-C-1111), the National Institutes of Health (NIH) under award
number R01 NS091421, and by the National Science Foundation (NSF) under award numbers CAREER IIS-1762268and IIS-1956096. Any opinions,
findings, and conclusions or recommendations expressed in this presentation are those of the authors and do not necessarily reflect the views of the
funding agencies.

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://doi.org/10.1109/ICDE53745.2022.00299
https://db.khoury.northeastern.edu/

