Toward Responsive DBMS:
Optimal Join Algorithms, Enumeration,
Factorization, Ranking, and Dynamic Programming

Nikolaos Tziavelis, Wolfgang Gatterbauer, Mirek Riedewald

Part 4: Factorization Khoury College

of Computer
Sciences
Slides: https://northeastern-datalab.github.io/responsive-dbms-tutorial

DOI: https://doi.org/10.1109/ICDE53745.2022.00299 DATA LA B
Data Lab: https://db.khoury.northeastern.edu
@@@@ This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 International License. a)NortheaStern

See https://creativecommons.org/licenses/by-nc-sa/4.0/ for details

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://doi.org/10.1109/ICDE53745.2022.00299
https://db.khoury.northeastern.edu/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Outline tutorial

4: Factorization (Nikos) ~10min

Outline Part 4

Part 4: Factorization
— High-level idea

Overview

DB size: O(n)
> Constructed directly
Q from the DB
Factorized Representation
X

4 N
~N
X
Lossless : i
\)

Size < Join-output size

O (n) size for equi-joins
O (n polylog n) for inequality-joins
0 (n?) for theta-joins

n = #tuples Join-output
¢ = #relations size: 0(n?)

Olteanu, Zavodny. Size bounds for factorised representations of query results. TODS 2015 https://doi.org/10.1145/2656335
Tziavelis, Gatterbauer, Riedewald. Beyond Equi-joins: Ranking, Enumeration and Factorization. PVLDB’21 https://doi.org/10.14778/3476249.3476306
Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://doi.org/10.1145/2656335
https://doi.org/10.14778/3476249.3476306

Intuition: Edges -> Paths

« How is it possible to have such a compact representation?

18 edges 27 paths
Graph + X Paths (from left to right)
9 nodes 3 nodes
aibicy azbicy asbiCy
. aibic; a,b1¢; azbicy
Left-to-right 21b1cs 2515 2ub1cs
traversals 31b,Cy 2,b,C4 23b,C4
a1b,c, a,b,c, asb,c,
a1b,cs a,b,cs asb,cs
a1bscy a,bscy asbscy
a1bsc; aybsc; asbsc;
a1bscs a,bscs asbscs

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Intuition: Paths -> Edges

« How is it possible to have such a compact representation?
- Because of shared structure (redundancy)

Paths (from left to right)

aibicy
a1bic,
a;bics
a1b2c1
alb2C2
a1b2c3
a1b3c1
a1b3c2
a1b3c3

azbicy
a,bicy
a,bics3
azbzcl
azb2C2
azb2C3
a2b3c1
azb3C2
a2b3c3

asbicy
asbic,
asbics
33b2C1
33b2C2
33b2C3
33b3C1
a3b3c2
a3b3c3

27 paths 18 edges
X +
3 nodes 9 nodes

Factorization

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

(exponentially) more compact
lossless

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Relationship to Algebraic Factorization

« Factorization of algebraic formulas can also be interpreted in this way

Distributivity
of X over +
(a;Xbq) + (a1Xb,) + (a1 Xbs) +
(a;Xb1) + (a;xb;) + (a;Xbs) (a1t+az) X (b1+ba+bs)

@\ Node v the wmiddle a
@ forces paths to @

share edoes

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Factorization

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Outline Part 4

Part 4: Factorization

— Factorized representation of path-CQ

Factorized Representation of Join Query Results

Q(X,y,Z,U) . R(le)l S(y,Z), T(Zlu)

Bl wW | IN|PFR xR
NN PR R
N (R R e
N|o|uvu |~ |N
ol |bh|bH|N
Arlw| N |&

Connections: joining tuples

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Factorized Representation of Join Query Results

Q(X,y,Z,U) . R(le)/ S(ylz)l T(Z,U)

R(x,y) S(y,2) T(zu) + Nodes =Tuples
 Edges = Joining pairs
1,1 @ Paths =Join results

2,1 1,5

16
%\@

’

P
e

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial 10

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Factorized Representation of Join Query Results

Q(lelzlu) . R(le)/ S(ylz)l T(Z,U)

 Can we lower the quadratic

R(x,y) S(y,z) T(z,u) cost?
 |fthejoin pattern between the
1,1 (1,4)

relations is arbitrary (theta-

N @ .
join) then no
<= Lo @ * Equi-joins have a very regular
@\ pattern which can be exploited
12 2 @

’

Total time/space = #Nodes + #Edges = 0(n? ¥)

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial 11

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Factorized Representation of Join Query Results

Q(lelzlu) . R(le)l S(y,Z), T(Z,U)

4

Further factorization:
Nodes in the middle create
groups of common join values

R(x,y) S(y,z) T(z,u)

Linear v the size of
+the database

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial 12

Total time/space = #Nodes + #Edges = O (n ¥)

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Factorized Representation Construction

Q(lelzlu) . R(le)/ S(ylz)l T(Z,U)

* How do we construct this
R(x,y) S(y,z) T(z,u) representation?
 Bottom-up (right-to-left), using
@ appropriate indexes on the
relations

seos

15
(16
@

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial 13

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Semi-join Reduction

Q(lelzlu) . R(le)l S(y,Z), T(Z,U)

R(x,y) S(y,z) T(z,u)

Y VA

1: (1,4), (1,5) 4:(4,1), (4,2)
(1,6) 5:(5,3)

2:(2,7) 6: (6,4)

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Whenever a node on the left
doesn’t join with a node on the
right, we can remove it
Equivalent to the semi-join
reduction of Yannakis
Afterwards, no dead-ends if we
traverse the representation
top-down (left-to-right)

Hash Indexes
14

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Outline Part 4

Part 4: Factorization

— Factorized representation of tree-CQ & enumeration

15

Factorized Representation for Tree Query

1y Q(x,y,z,v,p,u) :- R(xy), S(z,v), T(p,x,y), Uly), W(u,xy).
a; | by
di b2
3z | bs * In general, we construct the representation
/ \ according to the join-tree order
S(z,v) T(p,x,y)
z v P XY
C1 d1 €1 | a1 bl
C1 dz €1 | a1 b2
Ca d6 €3 | d3 b1
€3 | di b4
€| dr b3
U(y) W(u,x,y)
y ulx|y
b1 fl di1 bl
bz fl di1 b2
b3 f2 di b2
f |az | by

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Factorized Representation for Tree Query

Q(lelzlvlplu) .~ R(le)l S(ZIV)I T(plxly)l U(y)l W(ulxly)'

R(x,y) by

£

S(Z’V) C1d C1d C4d

T(p,x y) e alb e alb/x x/x

P4 P4 P
U(y) b, b, bs

v v \
W(U,X’y) flalbl flalbz fzalbz fzazbz

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

One layer of nodes for
each relation

The edges have a top-

down direction

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Factorized Representation for Tree Query

Q(lelzlvlplu) .~ R(le)l S(ZIV)I T(plxly)l U(y)l W(ulxly)'

R(Xry) albl a1b2
P

* The representation supports
unranked enumeration by traversing
the graph top-down

 The advantage now is that no hash

AR TR ¥ v lookups are required during
S(z,v) adi ady cds ||T(p,X,y) ealb @1aib enumeration

Join results
X|ylz |v]p]u

Uly) bs bz W(u,x,y) fia, b f1a, b fza b, fa,b,

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial 18

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Factorized Representation for Tree Query

Q(lelzlvlplu) .~ R(le)l S(ZIV)I T(plxly)l U(y)l W(ulxly)'

R(le) albl a1b2
P

* The representation supports
unranked enumeration by traversing
the graph top-down

 The advantage now is that no hash

N ¥ v lookups are required during
S(z,v) ‘ady ad; cds | |T(p,X,y) ealb @1aib enumeration

Join results
X|ylz |v]p]u
dq b1 C1 dl SY] f1

U(ly) b bz uxy) fia, b fa, b fza b, fa,b,

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial 19

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Factorized Representation for Tree Query

Q(lelzlvlplu) .~ R(le)l S(ZIV)I T(plxly)l U(y)l W(ulxly)'

R(Xry) albl a1b2
P

* The representation supports
unranked enumeration by traversing
the graph top-down

 The advantage now is that no hash

AR TR ¥ v lookups are required during
S(z,v) adi ‘ady cds ||T(p,X,y) ealb @1aib enumeration

Join results
X|ylz |v]p]u
ap | by ci|difer|fr
a; | by| ca|dy|er|fr

U(ly) b bz uxy) fia, b fa, b fza b, fa,b,

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial 20

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Factorized Representation for Tree Query

Q(x,y,z,v,p,u) - R(x,y), S(z,v), T(p,x,y), Uly), W(u,x,y).
R(x,y) aib; aib,

— The representation supports
unranked enumeration by traversing
the graph top-down
The advantage now is that no hash

TN v v lookups are required during
S(Z,V) cid; cid, cadg T(p,X y e a1b e alb

RN

enumeration
Join results

Xy Z \' p | u
a1 b1 C1 d1 e1 f1
d; b1 C1 dz e1 fl

W(u,x,y) flab

fla b

fza b

di b1 Cy d6 €1 fl
f2a2b2

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

21

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Factorized Representation for Tree Query

R(x,y), S(z,v), T(p,x,y), Uly), W(u,x,y).

Q(lelzlvlplu) .
R(Xry) albl albz
S
4 v N v v
S(Z,V) cid; cid, cud T(p,xy ealb 1a1b

ﬂk

The representation supports

unranked enumeration by traversing
the graph top-down

The advantage now is that no hash
lookups are required during
enumeration

Join results

y

\"

ny) f1ab

f1a b

fza b

f2a2b2

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

by
by
by
b>

d1
dz
de
dy

e1

22

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Outline Part 4

Part 4: Factorization

— Tuple-level vs Attribute-level representations

23

Attribute-level vs Tuple-level Factorizations

« Dual perspective: nodes are attribute values instead of tuples
° Formahzed by Work on factonzed data bases (The actual representation used by factorized

databases is in the form of circuit with union and
product nodes that is equivalent for join queries)

— < “d-tree” instead of join tree
Z ¢ ¢ V by b, (actually, a forest here)
| \ | | 7
\ Voo . Y
\ l l
v N\ " v v V X
V d; dy dg X a; ag a, repeated
>\ /\
4/4/ N
L= \ ’ g
U f‘/fv 0 ; Dependent attributes veed to be on the
1 2 1
same root-to-leaf path

Olteanu, Zavodny. Size bounds for factorised representations of query results. TODS 2015 https://doi.org/10.1145/2656335
Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial 24

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://doi.org/10.1145/2656335

Attribute-level vs Tuple-level Factorizations

« Key differences for attribute-level:
- The structure is not given by the join tree, but instead by a “d-tree”
- Nodes corresponding to the same value can be repeated
- Also factorizes the individual relations, which is not possible if a tuple is one unit

- Theory on how to factorize query results with cycles or projections directly, without
tree-decompositions or free-connex transformation

e Both can be constructed in O (n) for full acyclic CQs (without projections)
e A lot of work beyond unranked enumeration

- Enumeration with lexicographic orders
- Learning models directly on the factorized representation
- Maintenance under updates

Elghandour, Kara, Olteanu, Vansummeren. Incremental Techniques for Large-Scale Dynamic Query Processing. CIKM’18. https://doi.org/10.1145/3269206.3274271
Bakibayev, Kocisky, Olteanu, Zavodny. Aggregation and ordering in factorised databases. PVLDB’13. https://doi.org/10.14778/2556549.2556579
Schleich, Olteanu, Ciucanu. Learning linear regression models over factorized joins. SIGMOD’16. https://doi.org/10.1145/2882903.2832939

Kara, Ngo, Nikolic, Olteanu, Zhang. Maintaining triangle queries under updates. TODS 2020. https://doi.org/10.1145/3396375
Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

25

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://doi.org/10.1145/2882903.2882939
https://doi.org/10.1145/3396375
https://doi.org/10.14778/2556549.2556579
https://doi.org/10.1145/3269206.3274271

