Toward Responsive DBMS:

Optimal Join Algorithms, Enumeration,
Factorization, Ranking, and Dynamic Programming

Nikolaos Tziavelis, Wolfgang Gatterbauer, Mirek Riedewald

Part 2 : Cycles and Tree Decompositions

y
Khoury College
of Computer

Sciences
Slides: https://northeastern-datalab.github.io/responsive-dbms-tutorial

DOI: https://doi.org/10.1109/ICDE53745.2022.00299

Data Lab: https://db.khoury.northeastern.edu DATA LAB

@@@@ This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 International License . @NortheaStern

See https://creativecommons.org/licenses/by-nc-sa/4.0/ for details

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://doi.org/10.1109/ICDE53745.2022.00299
https://db.khoury.northeastern.edu/

Outline tutorial

2: Tree Decompositions (Mirek) ~20min

BREAK

Overview

e Focus here is on the
- Acyclic join query: “easy”
- Cyclic join query: hard

« Why are cyclic joins harder?

« How to deal with them: reduce to (union of) acyclic join queries on
possibly larger relations

SELECT A1, A2, A3, A4 --Projection: all attributes
FROM R1, R2, R3, R4 --Joined relations
WHERE --Join conditions: Ai = Aj

--Selections: A © constant
AND A4 < 1

Lower Bound for Any Query

« Need to read entire input at least once: Q(¥n)
- (n) data complexity

Lower Bound for Any Query

« Need to read entire input at least once: Q(¥n)
- (n) data complexity

« Need to output every result, each of size £: Q(£1)
- (r) data complexity

Lower Bound for Any Query

« Need to read entire input at least once: Q(¥n)
- (n) data complexity

« Need to output every result, each of size £: Q(£1)
- (r) data complexity

« Together: time complexity to compute any CQ

Acyclic queries and the Yannakakis Algorithm

« What is the key idea?

- For acyclic queries (that do not require cyclic joins), we can remove in linear time all
dangling tuples: those that are not part of any answer

- This allows us to evaluate them very efficiently
- The Yannakakis algorithm answers acyclic CQs in O(n +), which is optimal

How do we know whether a CQ
does not require cyclic joins?

Join Tree
 Nodes: relations
* the nodes containing
the same variable

U(z,p,w)

T(y,z,p)

are connected

R(x,y,2)

S(y,p)

Compared to query plans:
only partial join order.

Here TR and TxS
before TxU.

W(u,p,w)

CQs with Cycles

» 3-path: Q3, = R;(4;,A43) X Ry(A,, A3) X R3(As,
o 3-cycle: Q3. = R1(Aq,Ay) ™ Ry(Ay, A3) ™ R3(As3,

3¢

)
)

CQs with Cycles

° 3-path: Qgp — Rl(AllAZ) X Rz(Az,A3) X R3(A3,A4) Join tree
* 3-cycle: Q3¢ = R1(A1,42) ™ Ry (A2, A3) ™ R3(A43,41) R3
e Already semi-join reduced in the example

2 1 1 2 2 2

CQs with Cycles

» 3-path: Q3p = R1(A1,42) M Ry(Az, A3) ™ R3(A3,44)
* 3-cycle: Q3¢ = R1(A1,42) ™ Ry (A2, A3) ™ R3(A43,41)
« For Q3,, r = n” and hence O(n + r) = 0(n?)

e For Qs,, and hence O(n+r) = 0(n)

. R; X R, produces n* intermediate results

R, R, R, N
1 1 E Z 1 1 1 1
2 1 1 2 2 2

...... P

Join tree

10

What Went Wrong?

e The tree for the 3-cycle is not attribute-connected!
- In the right tree, A, violates this property

Usp |R; (1%\144) RB(‘@}(\Al) Q3¢
Rz(&%‘\\é\a) Rz(&%{\\é\a)
R1(A1)4p) R1 (A1) 4p)

Solutions for Cycles? Some Bad News

« Maybe we just need an algorithm that is better suited for cyclic
CQs?

e Yes, but...

e ...[Ngo+ 18]:

- O(n + r) unattainable based on well-accepted complexity-theoretic
assumptions

[Ngo+ 18] Ngo, Porat, Ré, Rudra. Worst-case optimal join algorithms. J. ACM’18 https://doi.org/10.1145/3180143

12

https://doi.org/10.1145/3180143

What Can Be Done?

o Worst-case-optimal (WCO) join
algorithms
[Veldhuizen 14, Ngo+ 14, Ngo+ 18]

e Instead of O(n + 1), get
O(n + rwe) = O(ryc)
« Ty = largest output of Q over any
possible DB instance

- Determined by the AGM bound!

- Based on fractional edge cover of the join
hypergraph

5

 3-cycle: n'* vs naive upper bound n3

[Veldhuizen 14] Veldhuizen. Triejoin: A simple, worst-case optimal join algorithm. ICDT’14 https://doi.org/10.5441/002/icdt.2014.13
[Ngo+ 14] Ngo, Re, Rudra. Skew strikes back: New developments in the theory of join algorithms. SIGMOD Rec.’14 https://doi.org/10.1145/2590989.2590991

[Ngo+ 18] Ngo, Porat, Ré, Rudra. Worst-case optimal join algorithms. J. ACM’18 https://doi.org/10.1145/3180143
[Atserias+ 13] Atserias, Grohe, Marx. Size bounds and query plans for relational joins. . SIAM J. Comput.’13 https://doi.org/10.1137/110859440

13

https://doi.org/10.1145/3180143
https://doi.org/10.5441/002/icdt.2014.13
https://doi.org/10.1145/2590989.2590991
https://doi.org/10.1137/110859440

What Can Be Done?

o Worst-case-optimal (WCO) join
algorithms
[Veldhuizen 14, Ngo+ 14, Ngo+ 18]

e Instead of O(n + 1), get
O(n + rwe) = O(ryc)
« Tywc = largest output of Q over any
possible DB instance

- Determined by the AGM bound!

- Based on fractional edge cover of the join
hypergraph

5

 3-cycle: n'* vs naive upper bound n3

Hyper-tree decompositions

Put more effort into pre-processing to
avoid large intermediate results

- Use WCO joins as sub-routine

Goal: 5(nd + r) for smallest d possible
- ﬁ(nd) captures pre-processing cost

- d =1 foracyclic CQ

[Veldhuizen 14] Veldhuizen. Triejoin: A simple, worst-case optimal join algorithm. ICDT’14 https://doi.org/10.5441/002/icdt.2014.13

[Ngo+ 14] Ngo, Re, Rudra. Skew strikes back: New developments in the theory of join algorithms. SIGMOD Rec.’14 https://doi.org/10.1145/2590989.2590991
[Ngo+ 18] Ngo, Porat, Ré, Rudra. Worst-case optimal join algorithms. J. ACM’18 https://doi.org/10.1145/3180143

[Atserias+ 13] Atserias, Grohe, Marx. Size bounds and query plans for relational joins. . SIAM J. Comput.’13 https://doi.org/10.1137/110859440

14

https://doi.org/10.1145/3180143
https://doi.org/10.5441/002/icdt.2014.13
https://doi.org/10.1145/2590989.2590991
https://doi.org/10.1137/110859440

WCO vs Hyper-tree Decompositions

m WCO complexity | HT decomposition complexity

3-cycle

3-cycle
4-cycle

4-cycle
6-cycle

6-cycle
21-cycle

Small: 0(1), 0(n)

O(nl.S)
Small: 0(1), 0(n)

0(n?)
Small: 0(1), 0(n)

0(n3)
Small: 0(1), 0(n)

O(nl 5)

O(nl.S)
0(n?)
0(n?)
o(n®)
o(n3)
o(n’)

(n**+1..n) = 0(n'>)

O(nl.S + n1.5) — O(nl.S)
0(n'® +1..n) = 0(n'd)

0(n'® +n?) = 0(n?)
0(n®3 +1..n) = 0(n°3)

0(n%3 +n3) = 0(n3)
O(n* V¥ +1..n) = 0(n*"?) = o(n?)

15

WCO vs Hyper-tree Decompositions

m WCO complexity HT decomposition complexity

3-cycle Small: 0(1), 0(n) o(n'®) n'> +1..n) = 0(n'd)
3-cyc|e O(nl.S) O(nl.S) O(nl.S + n1.5) — O(nl.S)

4-cycle Small: 0(1), 0(n) 0(n?) 0(n'> +1..n) = 0(n'>)
4-cycle 0(n?) 0(n?) 0(n> + n?) = 0(n?)

6-cycle Small: 0(1),0(n) 0(n?) 0(n®3 +1..n) = 0(n°3)
6-cycle 0(n?) o(n3) 0(n%3 +n3) = 0(n3)

2l-cycle Small: 0(1),0(n) 0(n?) O(n* V¥ +1..n) = 0(n*"?) = o(n?)

Hyper-tree decompositions never lose. This is true in general. Does that mean we
do not need WCO joins at all?

16

WCO vs Hyper-tree Decompositions

m WCO complexity HT decomposition complexity

3-cycle Small: 0(1), 0(n) o(n'®) n'> +1..n) = 0(n'd)
3-cycle 0(n'®) o(n'®) 0(n'® + n'%) = o(n'®)

4-cycle Small: 0(1), 0(n) 0(n?) 0(n'> +1..n) = 0(n'>)
4-cycle 0(n?) 0(n?) 0(n> + n?) = 0(n?)

6-cycle Small: 0(1),0(n) 0(n?) 0(n®3 +1..n) = 0(n°3)
6-cycle 0(n?) o(n3) 0(n%3 +n3) = 0(n3)

2l-cycle Small: 0(1),0(n) 0(n?) O(n* V¥ +1..n) = 0(n*"?) = o(n?)

Hyper-tree decompositions never lose. This is true in general. Does that mean we
do not need WCO joins at all?
No. WCO joins are used as a subroutine by the HT decomposition approach!

17

Main Idea of Tree Decompositions

1. Convert cyclic CO to a rooted tree-shaped CQ

decompositio>

R4(A4, As) X R5(As,Ag) ™ Rg(Ag, Ay)

18

Main Idea of Tree Decompositions

1. Convert cyclic CO to a rooted tree-shaped CQ
2. Materialize all tree nodes (“bags”) using a WCO join algorithm

S =R1(A1,47) X Ry(Az, A3) X R3(A3,A,)

decompositio> >

T = R4(A4, As) ™ R5(As, Ag) ™ Re(Ag, A1)

Main Idea of Tree Decompositions

1. Convert cyclic CO to a rooted tree-shaped CQ

2. Materialize all tree nodes (“bags”) using a WCO join algorithm

3. Apply Yannakakis algorithm on the tree
- Achieves O(x + r) where x is the size of the largest bag

S =R1(A1,47) X Ry(Az, A3) X R3(A3,A,)

decompositio>

Yannakakis

=

T = R4(A4, As) ™ R5(As, Ag) ™ Re(Ag, A1)

S

20

Tree Decomposition Intuition

Q6C(A1'

,A¢) = R1(A1,4,) X R,(4,, A3)
X R3(As,A4) X Ry(Ay, As)
X Rs(As,46) ™ Rg(Ag, Ar)

21

Tree Decomposition Intuition

Qsc(Aq, ..., Ag) = R1(A1,43) X Ry(A3, A3)
M R3(Asz, As) ™ R4(Ay, As)
X Rs(As, Ag) ™M Rg(Ae, A1)

Every relation appearing in the
query is covered by a bag (tree
node)

For each attribute, the bags
containing it are connected

22

Tree Decomposition Intuition

Qsc(Aq, ..., Ag) = R1(A1,43) X Ry(A3, A3)
M R3(Asz, As) ™ R4(Ay, As)
X Rs(As, Ag) ™M Rg(Ae, A1)

Every relation appearing in the

What is the @ﬁlﬁfﬂ[@ﬂ@@ﬁ query is covered by a bag (tree
tree with these node)
properties? For each attribute, the bags

containing it are connected

23

Tree Decomposition Intuition

Q6C(A1'

Rl (Al' AZ)I RZ (Az, AB)I R3 (ABJ A4)
R4(A4,As), Rs(As,Ag), Rg (A6, A1)

Bag materialization costs O(n>) (AGM bound)

,A¢) = R1(A1,4,) X R,(A4,, A3)
X R3(A3,As) X Ry(Ay, As)
X Rs(As,46) ™ Rg(Ag, Ar)

Every relation appearing in the
query is covered by a bag (tree
node)

For each attribute, the bags
containing it are connected

24

Tree Decomposition Intuition

Q6C(A1'

Rl (Al' AZ)I RZ (Az, AS)I R3 (ABJ A4)
R4(A4,As), Rs(As, Ag), R (Ag, A1)

Bag materialization costs O(n>) (AGM bound)

,Ag) = R1(A1,A;) X R,(A4,,A3)
X R3(As,A4) X Ry(Ay, As)
X Rs(As,46) ™ Rg(Ag, Ar)

Every relation appearing in the
qguery is covered by a bag (tree
node)

For each attribute, the bags
containing it are connected

25

Tree Decomposition Intuition

Q6C(A1'

Rl (Al' AZ)I RZ (AZI AB)I R3 (ABJ A4)

R4(A4,As), Rs(As,Ag), R (A6, Aq)

Bag materialization costs O(n*) (AGM bound)

,A¢) = R1(A1,4,) X R,(A4,, A3)
X R3(A3,As) X Ry(Ay, As)
X Rs(As,46) ™ Rg(Ag, Ar)

Every relation appearing in the
query is covered by a bag (tree
node)

For each attribute, the bags
containing it are connected

26

Tree Decomposition Intuition

Q6C(A1'

Rl (Al' AZ)I RZ (Az, AS)I R3 (ABJ A4)

Bag materialization costs O(n?) (AGM bound)

,Ag) = R1(A1,A;) X R,(A4,,A3)
X R3(As,A4) X Ry(Ay, As)
X Rs(As,46) ™ Rg(Ag, Ar)

Every relation appearing in the
qguery is covered by a bag (tree
node)

For each attribute, the bags
containing it are connected

27

Tree Decomposition Intuition

T3

Rl (All AZ)

RZ (AZ) AB)

R3 (A3) A4)

R4 (A4-) AS)

RS(A5'A6)

R6(A6'A1)

O(n) bag materialization...?

Qsc(A1, ..., Ag) = R1(41,4;) X Ry(A3, A3)
X R3(As,A4) X Ry(Ay, As)
X Rs(As,46) ™ Rg(Ag, Ar)

Every relation appearing in the
qguery is covered by a bag (tree
node)

For each attribute, the bags
containing it are connected

28

Tree Decomposition Intuition

T3

Rl (Al) AZ)

RZ (Az, AB)

R3 (A?)) A4)

R4 (A41 AS)

RS(A5'A6)

R6(A6!A1)

Qsc(Aq, ..., Ag) = R1(A1,43) X Ry(A3, A3)
X R3(A3,As) X Ry(Ay, As)
X Rs(As,46) ™ Rg(Ag, Ar)

Every relation appearing in the
query is covered by a bag (tree
node)

For each attribute, the bags
containing it are connected

29

Tree Decomposition Intuition

T3

Rl (All AZ)

RZ (Az, AB)I

R3 (A3, A4—)/

R4- (A4, AS);

RS (A5, A6)1

R6(A6'A1)

Qsc(A1, ..., Ag) = R1(41,4;) X Ry(A3, A3)
X R3(As,A4) X Ry(Ay, As)
X Rs(As,46) ™ Rg(Ag, Ar)

Every relation appearing in the
qguery is covered by a bag (tree
node)

O(n- ‘nAl (R1)D bag materialization: still

30

Tree Decomposition: Formal Definition

Re

e Given: hypergraph H = (V,)
- P: attributes
* E.g., {A1,43,A43,A4 A5, Ag} R.
- &E:relations

* E.g., Ry is hyperedge (A3, A,)

e Atree decomposition of H is a pair (T, ¥) where
- T =W(@),E(T))isatree

Rl(Ali AZ)

RZ (AZr AB)/ Rl (Alr —)

R3 (A3) A4)/ Rl (Ali _)

R4 (A4r AS)/ Rl (Ali —)

RS (A5r A6)/ Rl (Alr _)

Re(As, A1)

- x:V(T) - 2V assigns a bag y(v) to each tree node v such that
* Each hyperedge F € £ is covered, i.e.,, VF € E:Jv e V(T): F € y(v)

 Foreachu €V, the bags containing u are connected

[Khamis, Ngo, Suciu. What do shannon-type inequalities, submodular width, and disjunctive datalog have to do with one another? PODS’17]
https://doi.org/10.1145/3034786.3056105

31

https://doi.org/10.1145/3034786.3056105

Tree-Decomposition Properties

e Query has multiple decompositions—which is best?

32

Tree-Decomposition Properties

e Query has multiple decompositions—which is best?

« Consider a tree with O(¥) nodes, each materialized using WCO join
- Size of bag i is O(n%) for some d; = 1 (AGM bound)
(fhw) d = max d; [Grohe+ 14]
l

- Total bag-materialization cost: 0(n%)
- Size of a materialized bag: 0(n%)
- Resulting cost for Yannakakis algorithm on materialized tree:

[Grohe+ 14] Grohe and Marx. Constraint solving via fractional edge covers. ACM TALG’14. https://doi.org/10.1145/2636918

33

https://doi.org/10.1145/2636918

Who Wins?

J3

Rl (Al' AZ)

RZ (Az, A3)1 Rl (A1) _)

R3 (A3, A4), Rl (A1; —)

R4 (A4' AS)/ Rl (A1; —)

RS (AS, A6)/ Rl (Al) _)

R6(A6!A1)

Rl (All AZ)I RZ (Az, A3)l R3 (ABI A4-)
R4(A4,As), Rs(As,Ag), R (A6, A1)

Rl (A1; AZ)/ RZ (Az, AB)/ R3 (Ag, A4)

R4(A4,As), Rs(As,Ag), R (A6, A1)

34

A Closer Look

« J; loses, because it does not decompose the query

35

A Closer Look

« J; loses, because it does not decompose the query

e Are J, and J5 really equally good?
- In J,, bag computation requires joining 3 relations

- In J3, bag computation requires joining 2 relations
* One of them is just the set of distinct A;-values in Ry

36

A Closer Look

« J; loses, because it does not decompose the query

e Are J, and J5 really equally good?

- In J,, bag computation requires joining 3 relations

- In J3, bag computation requires joining 2 relations
* One of them is just the set of distinct A;-values in Ry

« What if there are “few” distinct A;-valuesin R4, e.g., O(n2/3)
instead of O(n)?

37

Who Wins?

Ry (Ar, 42)

RZ (Az, AB)I

R3 (ABJ A4)/

R4 (A4-) A5)/

R5 (A5, A6)1

Re(Ag, Ar)

I3

O(n)
0(n%/3)
0(n°/3)
0(n°/3)
0(n°/3)
O(n)

Degree constraint:

“The number of distinet A4

values m Ry 1s at most n

2/3n

38

Who Wins?

Randy O(n) Degree constraint:

RZ(AZIAB)I O(nS/B) 2

O(Tl) Ri(A1,43),R;(A;,A3), R3(A3, Ay)

Rs(A3,Ay), 0(n>/3)

R,(A,, As), >/3 2

+(A4, 4s5) O(Tl) O(Tl) R4(A4, As), Rs(As, Ag), Rg (A6, A1)
Rs(As, Ag), 0(n°/3) T,
R¢(Ag, Ay) O(n)

J3

39

Could J5 Win?

« Consider bag R{(4,4,) @ R,(A,,A3) W R3;(A3,A,) inT,

« What if each R;-tuple joins with only “a few” R,-tuples?
« What if each R,-tuple joins with only “a few” R;-tuples?

« What if “a few” was at most ?

40

Who Wins Now?

Degree constraint: Vi € {2,3,5,6}:
V] TT 5 O-Ai=j(Ri) < 7’11/3

(i+1) mod 6

“Each +uple from Ry joins with at most nt/3 tuples from R,

and each tuple from R, joins with at most nl/3 tuples from
R3. The same holds analogously for Ry, Rs, and Rg.”

41

Who Wins Now?

Degree constraint: Vi € {2,3,5,6}:
Vji |ay,, 00,2 (RO| < nt/3

0(n>/3)

0(n>/3)

Rl (Al) AZ)/ RZ (Az, A3), R3 (Ag, A4)

R,(A4,As), Rs(As, Ag), R (A6, A1)

J>

42

Who Wins Now?

Rinay |O(n) Degree constraint:

R,(A;, A3), O(nz) 5/3

, O(n /) R1(A1,43), Ry(A3,A3), R3(A3, Ay)

R3(A3,Ay), O(n*)

R, (A, As), g 5/3

+(Ag, 45) O(Tl) O(Tl /) R4(A4, As), Rs(As, Ag), R (Ag, A1)
Rs(As, A, 0(n?) T,
R¢(Ag, Ay) O(n)

J3

43

Best of Both Worlds

« Depending on the degree constraints that hold for a DB instance, we
may sometimes prefer 7, and sometimes J3

« What if we used ? [Alon+ 97, Marx 13]

- Intuition: each decomposition is a different query “plan”
e Query output = union of individual plans’ results
- Decide for each input tuple to which plan(s) to send it

- Main idea: split each input relation into and

* Goal: enforce desirable degree constraints for each tree

[Alon+ 97] Alon, Yuster, Zwick. Finding and counting given length cycles. Algorithmica’97 https://doi.org/10.1007/BF02523189
[Marx 13] Marx. Tractable hypergraph properties for constraint satisfaction and conjunctive queries. JJACM’13 https://doi.org/10.1145/2535926 44

https://doi.org/10.1145/2535926
https://doi.org/10.1007/BF02523189

Multiple Plans: Plan 1

. contains all tuples whose
A{-values occur more than
Ry(Aq, AL), n1/3 times (fewer than n2/3
such A-values exist)

45

Multiple Plans: Plan 1 Degree constraint:

0(n)
. contains all tuples whose
R, (A3, A3) O(Tls/g)
o A;-values occur more than
Ry (Aq, AL, 0n5/3) nl/3 times (fewer than n?/3
such A+-values exist)
R4 (A4, As), O(Tls/g) 1
R5(As, As), 0(n°/3)
Re(4sA)) |O(N)

J3: computes DX R, X - X R,

More Plans

e Note that
- Q6C — Rl X Rz X R3 X R4 X R5 X R6 together with
= R; \

e implies that Q. is the union of
M R, M R; X R, ™M R X Rg and
M R, X R; X Ry, M R X Ry

« To compute the latter, apply the same trick to R,

47

Multiple Plans

. Plan 2

R3 (ABJ A4-)1

R4- (A4-) AS)/

R5 (AS, A6)/

R6(A6J Al)/

R%(AliAZ)

J3: computes

Degree constraint:

. contains all tuples whose
A,-values occur more than

n1/3 times (fewer than n2/3
such A,-values exist)

=Ry \

D4 M Ry X -+ X R

48

Plans 3 to 6

e Plans discussed so far
M R, M R; X R, X R X Rg
D M Ry X R, X R X R,

e Continue analogously to compute

D4 D X R, X R X Rg
X X X M R X Rg
X X X X X Rg
D4 D D D D

« What is missing?

49

The 7-th Plan

« Join all light-only partitions with each other:
X X X X X

e Input now satisfies the other degree constraint:
- Vi €{2,3,56}:V): |y, 04-;(R)| < n/3

 Use decomposition J5 for it!

50

Analysis and Discussion

« Rewrite 6-cycle into 7 sub-queries

- Six of them use J-, copying the heavy attribute to intermediate bags

- One uses J- on the all-light case

e Analysis
- Assigning input tuples to subqueries: O(n)
- Bag materialization: 0(n°/3)
- Bag size: 0(n°/3)

« Running Yannakakis on each of the 7 trees takes
- Beats single-tree complexity O(n? + r) and WCO-join complexity O(n3)

51

Tree Decompositions: The Big Picture

e Reduce hard cyclic join to (union of) acyclic join(s)
- Cyclic join on input of size O(n) becomes acyclic join on “bags”
- Bags are of size 0(n%), each materialized using WCO join algorithm

- Width d depends on AGM bound and “how close to a tree” the cyclic query
is, e.g., d = 1 for acyclic join

- Finding the optimal width and achieving it are research challenges

« Remainder of the tutorial: focus on acyclic joins
- Next: Yannakakis algorithm

52

