

Toward Responsive DBMS: Optimal Join Algorithms, Enumeration, Factorization, Ranking, and Dynamic Programming

Nikolaos Tziavelis, Wolfgang Gatterbauer, Mirek Riedewald

Northeastern University, Boston

Part 2: Cycles and Tree Decompositions

Slides: https://northeastern-datalab.github.io/responsive-dbms-tutorial

DOI: https://doi.org/10.1109/ICDE53745.2022.00299

Data Lab: https://db.khoury.northeastern.edu

Outline tutorial

- 1: Introduction (Nikos) ~40min
- 2: Tree Decompositions (Mirek) ~20min
- 3: Acyclic Queries & Enumeration (Wolfgang) ~25min

BREAK

- 4: Factorization (Nikos) ~10min
- 5: Dynamic Programming & Semirings (Wolfgang) ~20min
- 6: Any-k or Ranked Enumeration (Nikos) ~35min
- 7. Decomposition of Comparison Predicates (Mirek) ~10min
- 8. Conclusion (Mirek) ~10min

Overview

- Focus here is on the structure of the join conditions
 - Acyclic join query: "easy"
 - Cyclic join query: hard
- Why are cyclic joins harder?
- How to deal with them: reduce to (union of) acyclic join queries on possibly larger relations

```
SELECT A1, A2, A3, A4 --Projection: all attributes
FROM R1, R2, R3, R4 --Joined relations
WHERE --Join conditions: Ai = Aj
R1.A1 = R2.A1 AND R1.A2 = R2.A2
AND R2.A2 = R3.A2
AND R2.A1 = R4.A1 AND R2.A2 = R4.A2
--Selections: A Θ constant
AND A4 < 1
```

Lower Bound for Any Query

- Need to read entire input at least once: $\Omega(\ell n)$
 - $\Omega(n)$ data complexity

Lower Bound for Any Query

- Need to read entire input at least once: $\Omega(\ell n)$
 - $\Omega(n)$ data complexity
- Need to output every result, each of size ℓ : $\Omega(\ell r)$
 - $\Omega(r)$ data complexity

Lower Bound for Any Query

- Need to read entire input at least once: $\Omega(\ell n)$
 - $\Omega(n)$ data complexity
- Need to output every result, each of size ℓ : $\Omega(\ell r)$
 - $\Omega(r)$ data complexity

• Together: $\Omega(n+r)$ time complexity to compute any CQ

Acyclic queries and the Yannakakis Algorithm

- What is the key idea?
 - For acyclic queries (that do not require cyclic joins), we can remove in linear time all dangling tuples: those that are not part of any answer
 - This allows us to evaluate them very efficiently
 - The Yannakakis algorithm answers acyclic CQs in O(n + r), which is optimal

CQs with Cycles

- 3-path: $Q_{3p} = R_1(A_1, A_2) \bowtie R_2(A_2, A_3) \bowtie R_3(A_3, A_4)$
- 3-cycle: $Q_{3c} = R_1(A_1, A_2) \bowtie R_2(A_2, A_3) \bowtie R_3(A_3, A_1)$

CQs with Cycles

- 3-path: $Q_{3p} = R_1(A_1, A_2) \bowtie R_2(A_2, A_3) \bowtie R_3(A_3, A_4)$
- 3-cycle: $Q_{3c} = R_1(A_1, A_2) \bowtie R_2(A_2, A_3) \bowtie R_3(A_3, A_1)$
- Already semi-join reduced in the example

R_3	
R_2	,

Join tree

R_1	A_1	A_2
_	1	1
	2	1
	•••	•••
	n	1

R_3	A_3	*
3	1	1
	2	2
	•••	•••
	n	n

CQs with Cycles

- 3-path: $Q_{3p} = R_1(A_1, A_2) \bowtie R_2(A_2, A_3) \bowtie R_3(A_3, A_4)$
- 3-cycle: $Q_{3c} = R_1(A_1, A_2) \bowtie R_2(A_2, A_3) \bowtie R_3(A_3, A_1)$
- For Q_{3p} , $\mathbf{r} = n^2$ and hence $O(n+r) = O(n^2)$
- For Q_{3c} , $\mathbf{r} = \mathbf{n}$ and hence O(n + r) = O(n)
- $R_1 \bowtie R_2$ produces n^2 intermediate results

Join tree

R_1	A_1	A_2	R_2	A_2	A_3	R_3	A_3	*
1	1	1		1	1		1	1
	2	1		1	2		2	2
	•••	•••		•••	•••		•••	•••
	n	1		1	n		n	n

What Went Wrong?

- The tree for the 3-cycle is not attribute-connected!
 - In the right tree, A_1 violates this property

Solutions for Cycles? Some Bad News

 Maybe we just need an algorithm that is better suited for cyclic CQs?

Yes, but...

- ... [Ngo+ 18]:
 - $\widetilde{\mathrm{O}}(n+r)$ unattainable based on well-accepted complexity-theoretic assumptions

What Can Be Done?

- Worst-case-optimal (WCO) join algorithms
 - [Veldhuizen 14, Ngo+ 14, Ngo+ 18]
- Instead of $\widetilde{O}(n+r)$, get $\widetilde{O}(n+r_{\mathrm{WC}}) = \widetilde{O}(r_{\mathrm{WC}})$
- r_{WC} = largest output of Q over any possible DB instance
 - Determined by the AGM bound^[4]
 - Based on fractional edge cover of the join hypergraph
 - 3-cycle: $n^{1.5}$ vs naive upper bound n^3

What Can Be Done?

- Worst-case-optimal (WCO) join algorithms
 [Veldhuizen 14, Ngo+ 14, Ngo+ 18]
- Instead of $\widetilde{O}(n+r)$, get $\widetilde{O}(n+r_{\mathrm{WC}}) = \widetilde{O}(r_{\mathrm{WC}})$
- r_{WC} = largest output of Q over any possible DB instance
 - Determined by the AGM bound^[4]
 - Based on fractional edge cover of the join hypergraph
 - 3-cycle: $n^{1.5}$ vs naive upper bound n^3

- Hyper-tree decompositions
- Put more effort into pre-processing to avoid large intermediate results
 - Use WCO joins as sub-routine
- Goal: $\widetilde{O}(n^d + r)$ for smallest d possible
 - $\widetilde{\mathrm{O}}(n^d)$ captures pre-processing cost
 - d = 1 for acyclic CQ

WCO vs Hyper-tree Decompositions

Query	Output size r	WCO complexity	HT decomposition complexity
3-cycle	Small: $0(1), 0(n)$	$O(n^{1.5})$	$0(n^{1.5} + 1 \dots n) = 0(n^{1.5})$
3-cycle	$0(n^{1.5})$	$O(n^{1.5})$	$O(n^{1.5} + n^{1.5}) = 0(n^{1.5})$
4-cycle	Small: $0(1), 0(n)$	$O(n^2)$	$0(n^{1.5} + 1 \dots n) = 0(n^{1.5})$
4-cycle	$0(n^2)$	$O(n^2)$	$O(n^{1.5} + n^2) = \mathbf{O}(n^2)$
6-cycle	Small: $0(1), 0(n)$	$O(n^3)$	$O(n^{5/3} + 1 \dots n) = \mathbf{O}(n^{5/3})$
6-cycle	$0(n^3)$	$O(n^3)$	$O(n^{5/3} + n^3) = \mathbf{O}(n^3)$
2l-cycle	Small: $0(1), 0(n)$	$0(n^\ell)$	$0(n^{2-1/\ell} + 1 \dots n) = 0(n^{2-1/\ell}) = o(n^2)$

WCO vs Hyper-tree Decompositions

Query	Output size r	WCO complexity	HT decomposition complexity
3-cycle	Small: $0(1), 0(n)$	$O(n^{1.5})$	$0(n^{1.5} + 1 \dots n) = 0(n^{1.5})$
3-cycle	$0(n^{1.5})$	$O(n^{1.5})$	$O(n^{1.5} + n^{1.5}) = 0(n^{1.5})$
4-cycle	Small: $0(1), 0(n)$	$O(n^2)$	$O(n^{1.5} + 1 \dots n) = 0(n^{1.5})$
4-cycle	$O(n^2)$	$O(n^2)$	$O(n^{1.5} + n^2) = \mathbf{O}(n^2)$
6-cycle	Small: $0(1), 0(n)$	$0(n^3)$	$O(n^{5/3} + 1 \dots n) = \mathbf{O}(n^{5/3})$
6-cycle	$0(n^3)$	$O(n^3)$	$O(n^{5/3} + n^3) = \mathbf{O}(n^3)$
2 <i>l</i> -cycle	Small: $0(1), 0(n)$	$O(n^\ell)$	$0(n^{2-1/\ell} + 1 \dots n) = 0(n^{2-1/\ell}) = o(n^2)$

Hyper-tree decompositions never lose. This is true in general. Does that mean we do not need WCO joins at all?

WCO vs Hyper-tree Decompositions

Query	Output size r	WCO complexity	HT decomposition complexity
3-cycle	Small: $0(1), 0(n)$	$O(n^{1.5})$	$O(n^{1.5} + 1 \dots n) = 0(n^{1.5})$
3-cycle	$O(n^{1.5})$	$O(n^{1.5})$	$O(n^{1.5} + n^{1.5}) = 0(n^{1.5})$
4-cycle	Small: $0(1), 0(n)$	$O(n^2)$	$O(n^{1.5} + 1 \dots n) = 0(n^{1.5})$
4-cycle	$O(n^2)$	$O(n^2)$	$O(n^{1.5} + n^2) = 0(n^2)$
6-cycle	Small: $0(1), 0(n)$	$0(n^3)$	$O(n^{5/3} + 1 \dots n) = \mathbf{O}(n^{5/3})$
6-cycle	$0(n^3)$	$O(n^3)$	$O(n^{5/3} + n^3) = \mathbf{O}(n^3)$
2l-cycle	Small: $0(1), 0(n)$	$O(n^\ell)$	$0(n^{2-1/\ell} + 1 \dots n) = 0(n^{2-1/\ell}) = o(n^2)$

Hyper-tree decompositions never lose. This is true in general. Does that mean we do not need WCO joins at all?

No. WCO joins are used as a subroutine by the HT decomposition approach!

Main Idea of Tree Decompositions

Convert cyclic CQ to a rooted tree-shaped CQ

Main Idea of Tree Decompositions

- 1. Convert cyclic CQ to a rooted tree-shaped CQ
- 2. Materialize all tree nodes ("bags") using a WCO join algorithm

Main Idea of Tree Decompositions

- 1. Convert cyclic CQ to a rooted tree-shaped CQ
- 2. Materialize all tree nodes ("bags") using a WCO join algorithm
- 3. Apply Yannakakis algorithm on the tree
 - Achieves O(x + r) where x is the size of the largest bag

$$Q_{6c}(A_1, ..., A_6) = R_1(A_1, A_2) \bowtie R_2(A_2, A_3)$$

$$\bowtie R_3(A_3, A_4) \bowtie R_4(A_4, A_5)$$

$$\bowtie R_5(A_5, A_6) \bowtie R_6(A_6, A_1)$$

$$Q_{6c}(A_1, ..., A_6) = R_1(A_1, A_2) \bowtie R_2(A_2, A_3)$$

$$\bowtie R_3(A_3, A_4) \bowtie R_4(A_4, A_5)$$

$$\bowtie R_5(A_5, A_6) \bowtie R_6(A_6, A_1)$$

Every relation appearing in the query is covered by a bag (tree node)

For each attribute, the bags containing it are connected

$$Q_{6c}(A_1, ..., A_6) = R_1(A_1, A_2) \bowtie R_2(A_2, A_3)$$

$$\bowtie R_3(A_3, A_4) \bowtie R_4(A_4, A_5)$$

$$\bowtie R_5(A_5, A_6) \bowtie R_6(A_6, A_1)$$

What is the simplest tree with these properties?

Every relation appearing in the query is covered by a bag (tree node)

For each attribute, the bags containing it are connected

$$Q_{6c}(A_1, ..., A_6) = R_1(A_1, A_2) \bowtie R_2(A_2, A_3)$$

$$\bowtie R_3(A_3, A_4) \bowtie R_4(A_4, A_5)$$

$$\bowtie R_5(A_5, A_6) \bowtie R_6(A_6, A_1)$$

$$\mathcal{T}_{1} \begin{vmatrix} R_{1}(A_{1}, A_{2}), R_{2}(A_{2}, A_{3}), R_{3}(A_{3}, A_{4}) \\ R_{4}(A_{4}, A_{5}), R_{5}(A_{5}, A_{6}), R_{6}(A_{6}, A_{1}) \end{vmatrix}$$

Every relation appearing in the query is covered by a bag (tree node)

For each attribute, the bags containing it are connected

Bag materialization costs $O(n^3)$ (AGM bound)

$$Q_{6c}(A_1, ..., A_6) = R_1(A_1, A_2) \bowtie R_2(A_2, A_3)$$

$$\bowtie R_3(A_3, A_4) \bowtie R_4(A_4, A_5)$$

$$\bowtie R_5(A_5, A_6) \bowtie R_6(A_6, A_1)$$

$$\mathcal{T}_{1} \left| \begin{array}{l} R_{1}(A_{1}, A_{2}), R_{2}(A_{2}, A_{3}), R_{3}(A_{3}, A_{4}) \\ R_{4}(A_{4}, A_{5}), R_{5}(A_{5}, A_{6}), R_{6}(A_{6}, A_{1}) \end{array} \right|$$

Every relation appearing in the query is covered by a bag (tree node)

Can we do better?

For each attribute, the bags containing it are connected

Bag materialization costs $O(n^3)$ (AGM bound)

$$Q_{6c}(A_1, ..., A_6) = R_1(A_1, A_2) \bowtie R_2(A_2, A_3)$$

$$\bowtie R_3(A_3, A_4) \bowtie R_4(A_4, A_5)$$

$$\bowtie R_5(A_5, A_6) \bowtie R_6(A_6, A_1)$$

$$\mathcal{T}_{2}$$
 $R_{1}(A_{1}, A_{2}), R_{2}(A_{2}, A_{3}), R_{3}(A_{3}, A_{4})$

$$R_4(A_4, A_5), R_5(A_5, A_6), R_6(A_6, A_1)$$

Every relation appearing in the query is covered by a bag (tree node)

For each attribute, the bags containing it are connected

Bag materialization costs $O(n^2)$ (AGM bound)

$$Q_{6c}(A_1, ..., A_6) = R_1(A_1, A_2) \bowtie R_2(A_2, A_3)$$

$$\bowtie R_3(A_3, A_4) \bowtie R_4(A_4, A_5)$$

$$\bowtie R_5(A_5, A_6) \bowtie R_6(A_6, A_1)$$

$$\mathcal{T}_2$$
 $R_1(A_1,A_2),R_2(A_2,A_3),R_3(A_3,A_4)$ Can we "slim down" the bags even more?

Every relation appearing in the query is covered by a bag (tree node)

For each attribute, the bags containing it are connected

Bag materialization costs $O(n^2)$ (AGM bound)

O(n) bag materialization...?

$$Q_{6c}(A_1, ..., A_6) = R_1(A_1, A_2) \bowtie R_2(A_2, A_3)$$

$$\bowtie R_3(A_3, A_4) \bowtie R_4(A_4, A_5)$$

$$\bowtie R_5(A_5, A_6) \bowtie R_6(A_6, A_1)$$

Every relation appearing in the query is covered by a bag (tree node)

For each attribute, the bags containing it are connected

$$Q_{6c}(A_1, ..., A_6) = R_1(A_1, A_2) \bowtie R_2(A_2, A_3)$$

$$\bowtie R_3(A_3, A_4) \bowtie R_4(A_4, A_5)$$

$$\bowtie R_5(A_5, A_6) \bowtie R_6(A_6, A_1)$$

Every relation appearing in the query is covered by a bag (tree node)

For each attribute, the bags containing it are connected

$$Q_{6c}(A_1, ..., A_6) = R_1(A_1, A_2) \bowtie R_2(A_2, A_3)$$

$$\bowtie R_3(A_3, A_4) \bowtie R_4(A_4, A_5)$$

$$\bowtie R_5(A_5, A_6) \bowtie R_6(A_6, A_1)$$

Every relation appearing in the query is covered by a bag (tree node)

For each attribute, the bags containing it are connected

 $O(n \cdot |\pi_{A_1}(R_1)|)$ bag materialization: still $O(n^2)$

Tree Decomposition: Formal Definition

- Given: hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$
 - \mathcal{V} : attributes
 - E.g., $\{A_1, A_2, A_3, A_4, A_5, A_6\}$
 - \mathcal{E} : relations
 - E.g., R_3 is hyperedge (A_3, A_4)

- A tree decomposition of ${\mathcal H}$ is a pair $({\mathcal T},\chi)$ where
 - $\mathcal{T} = (V(\mathcal{T}), E(\mathcal{T}))$ is a tree
 - $\chi: V(\mathcal{T}) \to 2^{\mathcal{V}}$ assigns a bag $\chi(v)$ to each tree node v such that
 - Each hyperedge $F \in \mathcal{E}$ is covered, i.e., $\forall F \in \mathcal{E} : \exists v \in V(\mathcal{T}) : F \subseteq \chi(v)$
 - For each $u \in \mathcal{V}$, the bags containing u are connected

[Khamis, Ngo, Suciu. What do shannon-type inequalities, submodular width, and disjunctive datalog have to do with one another? PODS'17] https://doi.org/10.1145/3034786.3056105

Tree-Decomposition Properties

Query has multiple decompositions—which is best?

Tree-Decomposition Properties

Query has multiple decompositions—which is best?

- Consider a tree with $\mathrm{O}(\ell)$ nodes, each materialized using WCO join
 - Size of bag i is $O(n^{d_i})$ for some $d_i \ge 1$ (AGM bound)
 - Fractional hypertree width (fhw) $d = \max_{i} d_i$ [Grohe+ 14]
 - Total bag-materialization cost: $O(n^d)$
 - Size of a materialized bag: $O(n^d)$
 - Resulting cost for Yannakakis algorithm on materialized tree: $O(n^d + r)$

Who Wins?

A Closer Look

• \mathcal{T}_1 loses, because it does not decompose the query

A Closer Look

• \mathcal{T}_1 loses, because it does not decompose the query

- Are \mathcal{T}_2 and \mathcal{T}_3 really equally good?
 - In \mathcal{T}_2 , bag computation requires joining 3 relations
 - In \mathcal{T}_3 , bag computation requires joining 2 relations
 - One of them is just the set of distinct A_1 -values in R_1

A Closer Look

• \mathcal{T}_1 loses, because it does not decompose the query

- Are \mathcal{T}_2 and \mathcal{T}_3 really equally good?
 - In \mathcal{T}_2 , bag computation requires joining 3 relations
 - In \mathcal{T}_3 , bag computation requires joining 2 relations
 - One of them is just the set of distinct A_1 -values in R_1

• What if there are "few" distinct A_1 -values in R_1 , e.g., $O(n^{2/3})$ instead of O(n)?

Who Wins?

Degree constraint: $|\pi_{A_1}(R_1)| \le n^{2/3}$

"The number of distinct A_1 values in R_1 is at most $n^{2/3}$ "

Who Wins?

Could \mathcal{T}_2 Win?

• Consider bag $R_1(A_1, A_2) \bowtie R_2(A_2, A_3) \bowtie R_3(A_3, A_4)$ in \mathcal{T}_2

- What if each R_1 -tuple joins with only "a few" R_2 -tuples?
- What if each R_2 -tuple joins with only "a few" R_3 -tuples?

• What if "a few" was at most $n^{1/3}$?

Who Wins Now?

Degree constraint: $\forall i \in \{2,3,5,6\}$:

$$\forall j: \left| \pi_{A_{(i+1) \mod 6}} \sigma_{A_i=j}(R_i) \right| \le n^{1/3}$$

"Each tuple from R_1 joins with at most $n^{1/3}$ tuples from R_2 and each tuple from R_2 joins with at most $n^{1/3}$ tuples from R_3 . The same holds analogously for R_4 , R_5 , and R_6 ."

Who Wins Now?

Degree constraint:
$$\forall i \in \{2,3,5,6\}$$
:
$$\forall j \colon \left| \pi_{A_{i+1}} \sigma_{A_i=j}(R_i) \right| \leq n^{1/3}$$

$$O(n^{5/3}) \left|_{R_1(A_1,A_2), R_2(A_2,A_3), R_3(A_3,A_4)} \right|$$

$$O(n^{5/3}) \left|_{R_4(A_4,A_5), R_5(A_5,A_6), R_6(A_6,A_1)} \right|$$

$$\mathcal{T}_2$$

Who Wins Now?

Degree constraint: $\forall i \in \{2,3,5,6\}$:

$$\forall j: \left| \pi_{A_{i+1}} \sigma_{A_i=j}(R_i) \right| \le n^{1/3}$$

$$O(n^{5/3})$$
 $R_1(A_1, A_2), R_2(A_2, A_3), R_3(A_3, A_4)$

$$O(n^{5/3})$$
 $R_4(A_4, A_5), R_5(A_5, A_6), R_6(A_6, A_1)$

 J_2

Best of Both Worlds

• Depending on the degree constraints that hold for a DB instance, we may sometimes prefer \mathcal{T}_2 and sometimes \mathcal{T}_3

- What if we used both? [Alon+ 97, Marx 13]
 - Intuition: each decomposition is a different query "plan"
 - Query output = union of individual plans' results
 - Decide for each input tuple to which plan(s) to send it
 - Main idea: split each input relation into heavy and light
 - Goal: enforce desirable degree constraints for each tree

Multiple Plans: Plan 1

 R_1^H : contains all tuples whose A_1 -values occur more than $n^{1/3}$ times (fewer than $n^{2/3}$ such A_1 -values exist)

Multiple Plans: Plan 1

$$R_1^H(A_1,A_2)$$
 $O(n)$

$$R_2(A_2, A_3), R_1^H(A_1, _) O(n^{5/3})$$

$$R_3(A_3, A_4), R_1^H(A_1, _) O(n^{5/3})$$

$$R_4(A_4, A_5), R_1^H(A_1, _) O(n^{5/3})$$

$$R_5(A_5, A_6), R_1^H(A_1, _) O(n^{5/3})$$

$$R_6(A_6,A_1)$$
 O(n)

$$\mathcal{T}_3$$
: computes $R_1^H \bowtie R_2 \bowtie \cdots \bowtie R_6$

Degree constraint: $|\pi_{A_1}(R_1^H)| \le n^{2/3}$

 R_1^H : contains all tuples whose A_1 -values occur more than $n^{1/3}$ times (fewer than $n^{2/3}$ such A_1 -values exist)

$$\bowtie R_2 \bowtie \cdots \bowtie R_6$$

More Plans

- Note that
 - $Q_{6c} = R_1 \bowtie R_2 \bowtie R_3 \bowtie R_4 \bowtie R_5 \bowtie R_6$ together with
 - $R_1^L = R_1 \setminus R_1^H$
- implies that Q_{6c} is the union of
 - $R_1^H \bowtie R_2 \bowtie R_3 \bowtie R_4 \bowtie R_5 \bowtie R_6$ and
 - $-R_1^L \bowtie R_2 \bowtie R_3 \bowtie R_4 \bowtie R_5 \bowtie R_6$

• To compute the latter, apply the same trick to R_2

Multiple Plans: Plan 2

Degree constraint:
$$\left|\pi_{A_2}(R_2^H)\right| \le n^{2/3}$$

 $R_2^H(A_2, A_3)$ $R_3(A_3, A_4), R_2^H(A_2, _)$ $R_4(A_4, A_5), R_2^H(A_2, _)$ $R_5(A_5, A_6), R_2^H(A_2, _)$ $R_6(A_6, A_1), R_2^H(A_2, _)$ $R_1^L(A_1, A_2)$

 R_2^H : contains all tuples whose A_2 -values occur more than $n^{1/3}$ times (fewer than $n^{2/3}$ such A_2 -values exist)

$$R_2^L = R_2 \setminus R_2^H$$

 \mathcal{T}_3 : computes $R_1^L \bowtie R_2^H \bowtie R_3 \bowtie \cdots \bowtie R_6$

Plans 3 to 6

Plans discussed so far

- $R_1^H \bowtie R_2 \bowtie R_3 \bowtie R_4 \bowtie R_5 \bowtie R_6$
- $R_1^L \bowtie R_2^H \bowtie R_3 \bowtie R_4 \bowtie R_5 \bowtie R_6$

Continue analogously to compute

- $R_1^L \bowtie R_2^L \bowtie R_3^H \bowtie R_4 \bowtie R_5 \bowtie R_6$
- $R_1^L \bowtie R_2^L \bowtie R_3^L \bowtie R_4^H \bowtie R_5 \bowtie R_6$
- $R_1^L \bowtie R_2^L \bowtie R_3^L \bowtie R_4^L \bowtie R_5^H \bowtie R_6$
- $R_1^L \bowtie R_2^L \bowtie R_3^L \bowtie R_4^L \bowtie R_5^L \bowtie R_6^H$

What is missing?

The 7-th Plan

Join all light-only partitions with each other:

-
$$R_1^L \bowtie R_2^L \bowtie R_3^L \bowtie R_4^L \bowtie R_5^L \bowtie R_6^L$$

- Input now satisfies the other degree constraint:
 - $\forall i \in \{2,3,5,6\}: \forall j: \left| \pi_{A_{i+1}} \sigma_{A_i=j}(R_i) \right| \le n^{1/3}$

• Use decomposition \mathcal{T}_2 for it!

Analysis and Discussion

- Rewrite 6-cycle into 7 sub-queries
 - Six of them use \mathcal{T}_3 , copying the heavy attribute to intermediate bags
 - One uses \mathcal{T}_2 on the all-light case
- Analysis
 - Assigning input tuples to subqueries: O(n)
 - Bag materialization: $O(n^{5/3})$
 - Bag size: $O(n^{5/3})$

- Running Yannakakis on each of the 7 trees takes $O(n^{5/3} + r)$
 - Beats single-tree complexity $\mathrm{O}(n^2+r)$ and WCO-join complexity $\mathrm{O}(n^3)$

Tree Decompositions: The Big Picture

- Reduce hard cyclic join to (union of) acyclic join(s)
 - Cyclic join on input of size O(n) becomes acyclic join on "bags"
 - Bags are of size $\mathrm{O}(n^d)$, each materialized using WCO join algorithm
 - Width d depends on AGM bound and "how close to a tree" the cyclic query is, e.g., d=1 for acyclic join
 - Finding the optimal width and achieving it are research challenges

- Remainder of the tutorial: focus on acyclic joins
 - Next: Yannakakis algorithm