
1

Toward Responsive DBMS:
Optimal Join Algorithms, Enumeration,
Factorization, Ranking, and Dynamic Programming

ICDE 2022 tutorial

Nikolaos Tziavelis, Wolfgang Gatterbauer, Mirek Riedewald

Northeastern University, Boston

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 International License.
See https://creativecommons.org/licenses/by-nc-sa/4.0/ for details

Part 1 : Introduction

Slides: https://northeastern-datalab.github.io/responsive-dbms-tutorial
DOI: https://doi.org/10.1109/ICDE53745.2022.00299
Data Lab: https://db.khoury.northeastern.edu

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://doi.org/10.1109/ICDE53745.2022.00299
https://db.khoury.northeastern.edu/

2Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Recommended Zoom interaction (also posted in Slack)

• Q&A: Please use the chat for questions.
One of two not presenting will answer in the box.

• Post-tutorial Zoom space: We have 30min after the tutorial for
discussion on the same zoom space

• We love feedback. If you have questions / comments / concerns
after the tutorial today, please contact us. We are also happy to
meet again later if there is interest.

https://northeastern-datalab.github.io/responsive-dbms-tutorial

3

Outline tutorial

1: Introduction (Nikos) ~40min
2: Tree Decompositions (Mirek) ~20min
3: Acyclic Queries & Enumeration (Wolfgang) ~25min

4: Factorization (Nikos) ~10min
5: Dynamic Programming & Semirings (Wolfgang) ~20min
6: Any-𝑘 or Ranked Enumeration (Nikos) ~35min
7. Decomposition of Comparison Predicates (Mirek) ~10min
8. Conclusion (Mirek) ~10min

BREAK

4

Outline Part 1

Part 1: Introduction
– What is this tutorial about?

– Overview of Queries/Tasks

– Measures of Success

– Overview of Techniques

5Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Why “Responsive DBMS”

• Database systems can become unresponsive when submitting a query, not returning
anything in the output for a long time

• This is often the case when the query involves the join of many tables

• However, the user might not be interested in the entire join output,
but in some task f() over the join

𝑄

DBMS
…

⋈ ⋈
⋈()f

Example tasks f():
• Count #join answers
• Find top-k answers
• Find median answer
• …

Typical DBMS strategy:
first materialize the join,

then perform f()

https://northeastern-datalab.github.io/responsive-dbms-tutorial

6Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Why “Responsive DBMS”

• How do we cope with this problem?

• Strategy 1: push f() into the join

Can we perform the task f() without
(and significantly faster than)

materializing the join?

⋈

Join

f

https://northeastern-datalab.github.io/responsive-dbms-tutorial

7Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Why “Responsive DBMS”

• How do we cope with this problem?

• Strategy 1: push f() into the join

• Strategy 2: if the output of f() is large, then enumerate

Can we return some answers
back to the user before all the

answers are available?

#answers

time

Preprocessing

Enumeration

https://northeastern-datalab.github.io/responsive-dbms-tutorial

8Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Dynamic
Programming

Any-k

Free-connex CQs

Semirings

Aggregates

Ranking

Enumeration

Yannakakis

Factorization

Selection/
Direct Access

(Hyper)tree
Decompositions

Batch

Worst-case
Optimal Joins

Relevant Concepts

https://northeastern-datalab.github.io/responsive-dbms-tutorial

9Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Batch

Dynamic
Programming

Any-k

Free-connex CQs

SemiringsAggregates

Ranking

Enumeration

Yannakakis

Factorization

Selection/
Direct Access

(Hyper)tree
Decompositions

Worst-case
Optimal Joins

Queries/Tasks Techniques

Relationships

https://northeastern-datalab.github.io/responsive-dbms-tutorial

10

Outline Part 1

Part 1: Introduction
– What is this tutorial about?

– Overview of Queries/Tasks

– Measures of Success

– Overview of Techniques

11Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Conjunctive Queries

• Common for all queries we are interested in:

- Joins

- Projections

- Selections comparing attributes to constants, e.g., R3.Z2=4

SELECT X1, X2 --Projection
FROM R1, R2, R3 --Joined relations
WHERE R1.Z1 = R2.Z1 AND R1.A2 = R2.A2

AND R2.X2 = R3.X2
--Selections
AND R3.Z2 = 4

https://northeastern-datalab.github.io/responsive-dbms-tutorial

12Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Conjunctive Queries

• Common for all queries we are interested in:

- Joins

- Projections

- Selections comparing attributes to constants, e.g., R3.Z2=4

• Formalized by the language of Conjunctive Queries

𝑄(𝑥1, 𝑥2) ∶ − 𝑅1(𝑥1, 𝑧1), 𝑅2 (𝑧1, 𝑥2), 𝑅3 (𝑥2, 4)

Query Answer

Relations from the DB

Equi-join conditions

SelectionProjected-out column

𝑅1

1 2

𝑅2

2 3

𝑅3

3 4

𝑄 1, 3 : − 𝑅1 1, 2 , 𝑅2 2, 3 , 𝑅3(3, 4)

Full CQ = No projections

https://northeastern-datalab.github.io/responsive-dbms-tutorial

13Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Aggregates

• Task: perform aggregate operations over the join output

• Examples:

- Count (exactly) the number of query answers

- Find the lightest 4-path in a graph

- Find the answer with the highest probability of being true

- Does the query have any answer at all?

https://northeastern-datalab.github.io/responsive-dbms-tutorial

14Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Aggregates

• Task: perform aggregate operations over the join output

• Apply a (binary) operator ⊕ on some attribute of the join result

• Can be SUM (+), MIN (min), MAX (max), BOOLEAN OR (∨)

• More complex:

- Group-bys

- …

⋈
𝑄 ⊕

https://northeastern-datalab.github.io/responsive-dbms-tutorial

15Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Speeding up Aggregates

𝑅

𝑤𝐴

11

22

33

…...

𝐵

0

0

0

0

𝑆

𝐵 𝑤

0

0

0

0

𝐶

1

2

3

...

1

2

3

…

join

𝑛n 0 0 n 𝑛

tQ1= 0.1 sec

tQ1= 9.4 sec

tQ2<1 msec

tQ2=3 msec

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

n= 1,000:

n=10,000:

DB materializes the join Force DB to
not materialize the join

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

16Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Unranked Enumeration

• Task: enumerate one-by-one the join output (in arbitrary order)

• Why?

- The join output can be extremely large

- Computing it all at once may be hopelessly slow because of its size

- Enumeration alleviates this by returning some answers quickly

⋈
𝑄

https://northeastern-datalab.github.io/responsive-dbms-tutorial

17Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Unranked Enumeration in Practice

Starts returning answers with minimal preprocessing
(only after 0.2 seconds)

https://northeastern-datalab.github.io/responsive-dbms-tutorial

18Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Ranking: Ranked Enumeration

• Task: enumerate the join output in ranked order
(according to a ranking function)

⋈
𝑄

5 4 7 2 1 3 6 9 8

5 4 7 2 1 3 6 9 8

Ranking function w()

https://northeastern-datalab.github.io/responsive-dbms-tutorial

19Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

91

91

Ranking: Ranked Enumeration

• Task: enumerate the join output in ranked order
(according to a ranking function)

• This prioritizes enumeration with some measure of importance

- This can be freshness (date), quality, trust, or other application-dependent

• The join result is sorted incrementally

⋈
𝑄

54 72 3 6 8

Sort

54 72 3 6 8

Ranking function w()

https://northeastern-datalab.github.io/responsive-dbms-tutorial

20Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Ranked Enumeration in Practice

Top results returned very fast by Ranked Enumeration
Only slower than unranked by a factor of 3
Returns the last answer faster than sorting!

https://northeastern-datalab.github.io/responsive-dbms-tutorial

21Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

91

91

Ranking: Top-k

• Task: top-k join answers
(according to a ranking function)

• A special case of ranked enumeration

- We stop at LIMIT k

- The k answers don’t need to be enumerated

⋈
𝑄

54 72 3 6 8

Sort

54 72 3 6 8

k=3

Ranking function w()

https://northeastern-datalab.github.io/responsive-dbms-tutorial

22Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

91

91

Selection

• Task: return the kth-ranked answer
(according to a ranking function)

• Median, quantiles, etc.

• Not to be confused with relational-algebra selection!

⋈
𝑄

54 72 3 6 8

Sort

54 72 3 6 8

Ranking function w()

k=4

https://northeastern-datalab.github.io/responsive-dbms-tutorial

23Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

91

91

Direct Access

• Task: handle multiple selection tasks
(according to a ranking function)

• Ideally, a data structure handles multiple accesses more efficiently
than performing selection multiple times

⋈
𝑄

54 72 3 6 8

Sort

54 72 3 6 8

Ranking function w()

k=4 k=7k=2

https://northeastern-datalab.github.io/responsive-dbms-tutorial

24Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Tractable and Non-Tractable Queries

(LEX) 𝐴 → 𝐵 → 𝐶, Direct Access ✓

(LEX) 𝐴 → 𝐶 → 𝐵, Direct Access 

(LEX) 𝐴 → 𝐶 → 𝐵, Selection ✓

(SUM) 𝐴 + 𝐵 + 𝐶, Direct Access 

(SUM) 𝐴 + 𝐵 + 𝐶, Selection ✓

𝑅

𝑤𝐴

11

22

33

…...

𝐵

0

0

0

0

𝑆

𝐵 𝑤

0

0

0

0

𝐶

1

2

3

...

1

2

3

…

join

𝑛n 0 0 n 𝑛

Carmeli, Tziavelis, Gatterbauer, Kimelfeld, Riedewald. Tractable Orders for Direct Access to Ranked Answers of Conjunctive Queries. PODS’21 https://doi.org/10.1145/3452021.3458331
Extended version: https://arxiv.org/abs/1911.05582

• Tractable selection: in time close to the DB size (not the join output size)

• Tractable direct access: data structure construction time close to the DB size and allows
accesses much more efficiently

Q(A,B,C) :- R(A,B), S(B,C)

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://doi.org/10.1145/3452021.3458331
https://arxiv.org/abs/1911.05582

25Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Dichotomies for Direct Access and Selection

SelectionDirect Access

AcyclicSJ-free
CQs

Free ⊆
atom

L-connex
and no

disruptive trio

Not L-connex
or

disruptive trio

Free-connex

Both intractable

LEX tractable,
SUM intractable

Both tractable

Maximal free
hyperdges ≤ 2

AcyclicSJ-free
CQs

Free ⊆
atom

Free-connex

(hardness results conditional on fine-grained complexity hypotheses)

Carmeli, Tziavelis, Gatterbauer, Kimelfeld, Riedewald. Tractable Orders for Direct Access to Ranked Answers of Conjunctive Queries. PODS’21 https://doi.org/10.1145/3452021.3458331
Extended version: https://arxiv.org/abs/1911.05582

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://doi.org/10.1145/3452021.3458331
https://arxiv.org/abs/1911.05582

26Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Batch

• Task: Simply produce the join output (no task on top of join)

• This is also part of the tasks that we consider (f is the identity
function), but there is obviously no way to avoid the join
materializing cost

• Still, the goal is to avoid unnecessary intermediate results

⋈
𝑄

https://northeastern-datalab.github.io/responsive-dbms-tutorial

27Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Avoiding Intermediate Results in Practice

𝑅

𝐴

n

2

1

0

𝐵

-1

-1

-1

0

𝑆

𝐵

-1

-1

-1

0

𝐶

1

2

3

0

join

1 -2

𝐶

0

-2

-2

-2

𝐷

0

1

2

n

2 -2

n -2

join

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

n=1,000:

n=2,000:

tQ1=1.4 sec

tQ1=6.1 sec

tQ2=5 msec

tQ2=8 msecO(n2)  O(n) ☺

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

28

Outline Part 1

Part 1: Introduction
– What is this tutorial about?

– Overview of Queries/Tasks

– Measures of Success

– Overview of Techniques

29Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Complexity Notation

• Standard O and Ω notation for time and memory complexity in the RAM
model of computation

- Database size 𝑛

- Query size ℓ

- Output size 𝑟

• We present most results using data complexity

- Scalability in data size

- Treat query size ℓ as a constant

- E.g., O 𝑓 ℓ ⋅ 𝑛𝑓(ℓ) + log 𝑛 𝑓(ℓ) ⋅ 𝑟 simplifies to O 𝑛𝑓(ℓ) + log 𝑛 𝑓(ℓ) ⋅ 𝑟

• ෩O-notation (soft-O): abstracts away polylog factors that clutter formulas

- E.g., O 𝑛𝑓(ℓ) + log 𝑛 𝑓(ℓ) ⋅ 𝑟 further simplifies to ෩O 𝑛𝑓(ℓ) + 𝑟

https://northeastern-datalab.github.io/responsive-dbms-tutorial

30Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Measures of Success

• A join of ℓ relations can have an 𝑂(𝑛ℓ) output

• Ideally, we want running times close to 𝑂(𝑛)

• Assumptions:

- No pre-computed data structures such as indexes, sorted representation, materialized
views

- In-memory computation, no I/O cost

- Hash tables support 𝑂(1) lookups, otherwise additional log factor in analysis

• Linear time 𝑂(𝑛) is basically “for free” since we must look at each input tuple
at least once for all the problems we discuss

https://northeastern-datalab.github.io/responsive-dbms-tutorial

31Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Lower max delay does not
necessarily give a faster

algorithm!

Enumeration: TT(k) vs Delay

• Two ways to measure success for an
enumeration algorithm

- TT(𝑘): Time-to-the-kth answer

- Preprocessing time and delay between answers

• Why delay?

- Can be useful for bounding TT 𝑘

- If delay ≤ 𝑐 then TT 𝑘 ≤ Prep + 𝑐𝑘

• Low delay is sufficient but not necessary for
low TT(𝑘)

5

Time

Higher delay

k
6

4

3

2

1

Algorithm A

Algorithm B

Higher
TT(k) ∀𝑘

https://northeastern-datalab.github.io/responsive-dbms-tutorial

32Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Enumeration: TT(k) vs Delay

• Given a low-TT(𝑘) algorithm, can we lower its
delay?

- Yes! By buffering the answers and returning them at
regular intervals

- But this slows down the algorithm…

• When is a low-delay algorithm desirable?

- A downstream application requires regular
interarrival times

- Additionally, there is not enough buffer space

Buffering

5

k
6

4

3

2

1

Time
produced

Time
returned

Time

Delay is a more restrictive requirement than TT(𝑘)
but with limited practical applications

Capelli, Strozecki. Incremental delay enumeration: space and time. Discrete Applied Mathematics 2019. https://doi.org/10.1016/j.dam.2018.06.038

Carmeli, Kröll. On the enumeration complexity of unions of conjunctive queries. TODS 2021. https://doi.org/10.1145/3450263

Deep, Hu, Koutris. Enumeration Algorithms for Conjunctive Queries with Projection. ICDT’21. https://doi.org/10.4230/LIPIcs.ICDT.2021.14

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://doi.org/10.1016/j.dam.2018.06.038
https://doi.org/10.1145/3450263
https://doi.org/10.4230/LIPIcs.ICDT.2021.14

33

Outline Part 1

Part 1: Introduction
– What is this tutorial about?

– Overview of Queries/Tasks

– Measures of Success

– Overview of Techniques

34Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Factorized Representations

• What is the key idea?

- Represent the query answers compactly in a lossless way

- Allow other tasks directly on this representation

- Forms the basis for all the tasks that we discuss (enumeration, direct access, etc.)

• Why “factorized”?

- Factorization is the process of simplifying a formula
by identifying common subexpressions

- Similarly, query answers can have redundancy which
can be “factored out”

𝑎𝑏 + 𝑎𝑐 = 𝑎(𝑏 + 𝑐)

Common factor

4 elements,
3 operations

3 elements,
2 operations

To be continued in

Part 4&7

https://northeastern-datalab.github.io/responsive-dbms-tutorial

35Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Factorized Representations

×

Factorized Representation

Join-output

size: 𝑂(𝑛ℓ)
n = #tuples
ℓ = #relations

𝑂(𝑛) size for equi-joins
𝑂(𝑛 polylog 𝑛) for inequality-joins
𝑂(𝑛2) for theta-joins

⋈
𝑄

DB size: 𝑂(𝑛)

5 4 7 2 1 3 6 9 8

Constructed directly
from the DB

Lossless

Size ≪ Join-output size

Olteanu, Závodný. Size bounds for factorised representations of query results. TODS 2015 https://doi.org/10.1145/2656335

Tziavelis, Gatterbauer, Riedewald. Beyond Equi-joins: Ranking, Enumeration and Factorization. PVLDB’21 https://doi.org/10.14778/3476249.3476306

To be continued in

Part 4&7

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://doi.org/10.1145/2656335
https://doi.org/10.14778/3476249.3476306

36Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

S(y,p)S(y,p) W(u,p,w)

T(y,z,p)

U(z,p,w)

Acyclic queries and the Yannakakis Algorithm

• What is the key idea?

- For acyclic queries (that do not require cyclic joins), we can remove in linear time all
dangling tuples: those that are not part of any answer

- This allows us to evaluate them very efficiently

- The Yannakakis algorithm answers acyclic CQs in 𝑂(𝑛 + 𝑟), which is optimal

How do we know whether a CQ

does not require cyclic joins?

Join Tree
• Nodes: relations
• the nodes containing

the same variable
are connected

W(u,p,w)R(x,y,z)

T(y,z,p)

U(z,p,w)

Compared to query plans:
only partial join order.

Here T⋈R and T⋈S
before T⋈U.

To be continued in

Part 3

https://northeastern-datalab.github.io/responsive-dbms-tutorial

37Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Acyclic queries and the Yannakakis Algorithm

• Yannakakis algorithm: two passes over the database according to the join tree
order

• This removes all dangling tuples

• Consequently, joins (following the tree order) can never produce intermediate
results that are not needed

Bottom-up

Top-down

Yannakakis. Algorithms for acyclic database schemes. VLDB’81 https://dl.acm.org/doi/10.5555/1286831.1286840

W(u,p,w)R(x,y,z) S(y,p)

T(y,z,p)

U(z,p,w)

𝑂(𝑛 + 𝑟)

To be continued in

Part 3

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://dl.acm.org/doi/10.5555/1286831.1286840

38Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Projections and free-connex queries

• What is the key idea?

- With projections, it is more difficult to avoid unnecessary intermediate results

- For Yannakakis, as well as enumeration and direct access, there are “easy” and “hard”
projections.
The easy cases are captured by the class of free-connex CQs

- For free-connex CQs, it is possible to eliminate all projections in linear time

Q(y,z,u) :- R(x,y), S(y,z), T(z,u) πy(R) ⋈ S ⋈ T

Q(z,u) :- R(x,y), S(y,z), T(z,u) πz(R ⋈ S) ⋈ T
R ⋈ S can

take 𝑂(𝑛2)

Projected-out

y is needed for R ⋈ S

To be continued in

Part 3

Bagan, Durand, Grandjean. On acyclic conjunctive queries and constant delay enumeration. CSL’07. https://doi.org/10.1007/978-3-540-74915-8_18

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://doi.org/10.1007/978-3-540-74915-8_18

39Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Projections and free-connex queries

Q(y,z,u) :- R(x,y), S(y,z), T(z,u) πy(R) ⋈ S ⋈ T

Q(z,u) :- R(x,y), S(y,z), T(z,u)

Q(x,u) :- R(x,y), S(y,z), T(z,u)

⋈
𝑄

Database D
size 𝑂(𝑛)

⋈
𝑄’

Database D’
size 𝑂(𝑛)

𝑄 has projections
and is free-connex

𝑄’ has no projections

Q’(z,u) :- T’(z,u)



Free-connex

Free-connex

Not free-connex

𝑂(𝑛)

(conditional on fine-grained
complexity hypotheses)

Bagan, Durand, Grandjean. On acyclic conjunctive queries and constant delay enumeration. CSL’07. https://doi.org/10.1007/978-3-540-74915-8_18

To be continued in

Part 3

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://doi.org/10.1007/978-3-540-74915-8_18

40Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Dynamic Programming

• Dynamic Programming (DP) is the archetypical paradigm for solving
problems that exhibit a shared structure

• Bellman-Ford algorithm: shortest path in a DAG 𝐺 in 𝑂(|𝐺|)

Bottom-up: from target

node to source node

(in reverse topological sort)

Shared structure
different paths share
common edgess

CA

B

t

2

D
4

2

2

5

4

1

31

source target

0

2

43

4

4

Optimal cost to reach t

To be continued in

Part 5

https://northeastern-datalab.github.io/responsive-dbms-tutorial

41Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Dynamic Programming

• What is the key idea?

- We can use DP to compute different aggregates over the join result

- The factorized representation gives the shared structure!

Shared structure
different paths share
common edges

different output
tuples share common
input tuples

s

CA

B

t

2

D
4

2

2

5

4

1

31

source

𝒓𝟏

𝑅 𝑆

𝒔𝟏

𝑇
𝒕𝟏

𝒕𝟐

𝑟1𝑠1𝑡1

𝑟1𝑠1𝑡2

target

To be continued in

Part 5

https://northeastern-datalab.github.io/responsive-dbms-tutorial

42Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Semirings and DP

• Using DP on acyclic queries we can compute in linear time:

- The exact count of query answers

- The query answer with the minimum sum of weights

- The query answer with the highest probability of being true

• These are computed with the same DP algorithm, simply by
swapping operators

• What do they have in common? Similar algebraic properties,
described by algebraic structures called semirings

+,×

min, +

max,×

Abo Khamis, Ngo, Rudra. FAQ: Questions Asked Frequently. PODS’16. https://doi.org/10.1145/2902251.2902280

Mohri. Semiring frameworks and algorithms for shortest-distance problems. Journal of Automata, Languages and Combinatorics 2002. https://doi.org/10.5555/639508.639512

To be continued in

Part 5

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://doi.org/10.1145/2902251.2902280
https://doi.org/10.5555/639508.639512

43Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Any-k

• Any-k algorithms perform ranked enumeration (related to top-k)

• What is the key idea?

- The top-1 problem is solvable by DP

- For any-k, we want the 2nd best, 3rd best,… solution to a DP problem
(ranked enumeration for DP)

• There are two incomparable algorithms:

- One is faster for small k

- The other is faster for large k

• Latest result: best-of-both-worlds algorithm

• They can be used for any DP problem:

- Longest increasing subsequence

- Knapsack

- …

To be continued in

Part 6

Tziavelis, Gatterbauer, Riedewald. Any-k Algorithms for Enumerating Ranked Answers to Conjunctive Queries. arXiv’22 https://arxiv.org/abs/2205.05649

Tziavelis, Ajwani, Gatterbauer, Riedewald, Yang. Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries. PVLDB’20
https://doi.org/10.14778/3397230.3397250 Extended report: https://arxiv.org/abs/1911.05582

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://arxiv.org/abs/2205.05649
https://doi.org/10.14778/3397230.3397250
https://arxiv.org/abs/1911.05582

44Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Any-k

• For appropriate ranking functions, ranked enumeration for CQs is slower than unranked
enumeration only by a logarithmic factor

- Unranked: TT 𝑘 = 𝑂(𝑛 + 𝑘)

- Ranked: TT 𝑘 = 𝑂(𝑛 + 𝑘 log 𝑘)

• When the last answer is returned, any-k can be faster than (generic comparison-based)
sorting!

- The query answers are not independent because of their shared (factorized) structure

(free-connex CQs, data complexity,
sum-of-weights ranking)

𝑝1

𝑝2 𝑠2

𝑠1

𝑠1 ≤ 𝑠2

𝑝1 + 𝑠1 ≤ 𝑝1 + 𝑠2

𝑝2 + 𝑠1 ≤ 𝑝2 + 𝑠2

(in combined complexity)

To be continued in

Part 6

Tziavelis, Gatterbauer, Riedewald. Any-k Algorithms for Enumerating Ranked Answers to Conjunctive Queries. arXiv’22 https://arxiv.org/abs/2205.05649

Tziavelis, Ajwani, Gatterbauer, Riedewald, Yang. Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries. PVLDB’20
https://doi.org/10.14778/3397230.3397250 Extended report: https://arxiv.org/abs/1911.05582

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://arxiv.org/abs/2205.05649
https://doi.org/10.14778/3397230.3397250
https://arxiv.org/abs/1911.05582

45Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Worst-case optimal joins

• What is the key idea?

- Traditional binary-join plans are suboptimal for cyclic queries because they
can take more time than the worst-case output

- For every query, we can find its worst-case output by solving a linear
program, now known as the AGM bound

- There are WCOJ algorithms that match this bound

Q(x,y,z) :- R(x,y), S(y,z), T(z,x)

Triangle Query R⋈(S⋈T)

(R⋈S)⋈T

(R⋈T)⋈S

𝑂(𝑛2)
R

S

T

𝑂(𝑛1.5)

WCOJ

Ngo, Porat, Ré, Rudra. Worst-case optimal join algorithms. JACM 2018. https://doi.org/10.1145/3180143

Atserias, Grohe, Marx. Size bounds and query plans for relational joins. SIAM Journal on Computing. 2013. https://doi.org/10.1137/110859440

To be continued in

Part 2

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://doi.org/10.1145/3180143
https://doi.org/10.1137/110859440

46Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

(Hyper)tree decompositions

• What is the key idea?

- Tree decompositions allow us to transform a cyclic query to
(potentially a union of) acyclic queries

- The new query is over larger relations that we have to materialize

- Cost of materializing those relations => “width” of the decomposition

- Tree decompositions use WCOJ as a subroutine (for materializing the new relations)

⋈
𝑄

Database 𝐷
size 𝑂(𝑛) ⋈

𝑄′
Database 𝐷′
size 𝑂(𝑛𝑑)

d: width

Cyclic 𝑄 Acyclic 𝑄′

To be continued in

Part 2

Gottlob, Greco, Leone, Scarcello. Hypertree decompositions: Questions and answers. PODS’16. https://doi.org/10.1145/2902251.2902309

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://doi.org/10.1145/2902251.2902309

