Toward Responsive DBMS:
Optimal Join Algorithms, Enumeration,

Factorization, Ranking, and Dynamic Programming
Nikolaos Tziavelis, Wolfgang Gatterbauer, Mirek Riedewald

Part 1 : Introduction e,
of Computer
Sciences
Slides: https://northeastern-datalab.github.io/responsive-dbms-tutorial

DOI: https://doi.org/10.1109/ICDE53745.2022.00299

Data Lab: https://db.khoury.northeastern.edu DATA LAB

@@@@ This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 International License. a)NOr’[heaStel‘n
See https://creativecommons.org/licenses/by-nc-sa/4.0/ for details

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://doi.org/10.1109/ICDE53745.2022.00299
https://db.khoury.northeastern.edu/

Recommended Zoom interaction (also posted in Slack)

« Q&A: Please use the chat for questions. —
One of two not presenting will answer in the box.
e Post-tutorial Zoom space: \We have 30min after the tutorial for

discussion on the same zoom space

« We love feedback. If you have questions / comments / concerns
after the tutorial today, please contact us. We are also happy to
meet again later if there is interest.

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Outline tutorial

1: Introduction (Nikos) ~40min

BREAK

Outline Part 1

Part 1: Introduction
— What is this tutorial about?

Why “Responsive DBMS”

« Database systems can become unresponsive when submitting a query, not returning
anything in the output for a long time

« This is often the case when the query involves the join of many tables

« However, the user might not be interested in the entire join output,

but in some task f() over the join
Typical DBMS strategy:

Example tasks f():

* Count #join answers first materialize the join,
* Find top-k answers then perform fO
YR * Find median answer
Qf(”.)] - .
7 >
DBMS i
~

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Why “Responsive DBMS”

« How do we cope with this problem?
 Strategy 1: push f() into the join

Can we perform the task f() without
(and significantly faster than)
materializing the join?

TN .
— Join
&
K.--—’¢
~

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Why “Responsive DBMS”

« How do we cope with this problem?
 Strategy 1: push f() into the join
 Strategy 2: if the output of f() is large, then enumerate

Can we return some answers
Enumeration back to the user before all the
answers are available?

Hanswers

time

Preprocessing

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Relevant Concepts
Dynamic
Programming
(Hyper)tree
Decompositions
Aggregates Selection/
Direct Access

Optimal Joins
*’

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Relationships Any-k

Aggregates Semirings

(Hyper)tree

Enumeration Decompositions

Free-connex CQs

Ranking
Factorization
Selection/
Direct Access Yannakakis
Worst-case

Batch Optimal Joins

Dynamic
Programming

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Outline Part 1

Part 1: Introduction

— OQverview of Queries/Tasks

10

Conjunctive Queries

« Common for all queries we are interested in:

- Joins
- Projections
- Selections comparing attributes to constants, e.g., R3.22=4

SELECT X1, X2 --Projection
FROM R1, R2, R3 --Joined relations
WHERE R1.Z1=R2.Z1 AND R1.A2 =R2.A2
AND R2.X2 = R3.X2
--Selections
AND R3.72 =4

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

11

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Conjunctive Queries

« Common for all queries we are interested in:
- Joins
- Projections
- Selections comparing attributes to constants, e.g., R3.22=4

« Formalized by the language of Conjunctive Queries

Relations from the DB Projected-ont column Selection Full CQ = No projections
~. 1 s
Q(xy,x2) 2 — Rl(xl)w,xw,@ Rl/\Rz/\Rg,
Edui-join conditions 112 213 314
Q (1’T3) o Rl(ll 2)) RZ (2) 3); R3 (31 4)

Towg%@segéiﬂg(r\g‘&\\/g%EMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

12

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Aggregates

« Task: perform aggregate operations over the join output
o Examples:

- Count (exactly) the number of query answers

- Find the lightest 4-path in a graph

- Find the answer with the highest probability of being true
- Does the query have any answer at all?

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

13

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Aggregates

e Task: perform aggregate operations over the join output
o Apply a (binary) operator €5 on some attribute of the join result

e Can be SUM (+), MIN (min), MAX (max), BOOLEAN OR (V)
« More complex:
- Group-bys

>
Q
"

~

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

14

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Speeding up Aggregates

jein

{g//////————————-\\\\\\\ j; -— Query 1
A | B |w B | C |w SELECT min(R.W + S.W) as weight
INTO recordl
1 0 1 0 1 1 FROM R, S
WHERE R.B=S.B;
2 0 2 0 2 | 2
3 0| 3 0| 3 3
0 0
n| O | mn O | n|n
DB materializes the join
nw= 1,000: to= 04 sec
n=10,000: to= A4 sec

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

SELECT min(W1+W2) as weight
INTO record2
FROM
(SELECT B, MIN(W) W1l
FROM R
GROUP BY B) T1,
(SELECT B, MIN(W) W2
FROM S
GROUP BY B) T2
WHERE T1.B = T2.B;

Force DB to
not materialize the join

tqa<1 msec

tq,=2 Isec

15

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Unranked Enumeration

e Task: enumerate one-by-one the join output (in arbitrary order)
e Why?
- The join output can be extremely large

- Computing it all at once may be hopelessly slow because of its size
- Enumeration alleviates this by returning some answers quickly

>
Q
"

~

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

16

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Unranked Enumeration in Practice

leg 4-Path Query, n=10%

1.0 X117

I

0.81 N
Batch | I

n I

@ 0.6 4
= I
n |
Z04 Sk
|
0.2 >,k
9.7!
0.0 K

0 10 20 30
Time (sec)

Starts returning answers with minimal preprocessing
(only after 0.2 seconds)

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

17

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Ranking: Ranked Enumeration

e Task: enumerate the join output in ranked order

(according to a ranking function)

3
Q
”
5 4

~

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

7 2 1 3

Ranking function w()

6

9

8

18

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Ranking: Ranked Enumeration

e Task: enumerate the join output in ranked order
(according to a ranking function)

e This prioritizes enumeration with some measure of importance
- This can be freshness (date), quality, trust, or other application-dependent

e The join result is sorted incrementally

>
Q
"

~

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

19

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Ranked Enumeration in Practice

1e7 4-Path Query, n=10%

1.091 3% 49%6.6 11.09
0.8 1 ¥
Batch PSQLO

()]
o 0.6 X Ranked)
5 Enum BatchHSort
<041 ik 0
< 0.

0.2 P

5.9
0.0 &S

0 2 4 6 8 10
Time (sec)
Top results returned very fast by Ranked Enumeration
Only slower than unranked by a factor of 3

Returns the last answer faster than sorting!

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

20

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Ranking: Top-k

o Task: top-k join answers
(according to a ranking function)

e A special case of ranked enumeration
- We stop at LIMIT k
- The k answers don’t need to be enumerated

>
Q
"

~

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

21

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Selection

e Task: return the kt'-ranked answer
(according to a ranking function)

« Median, quantiles, etc.
« Not to be confused with relational-algebra selection!

>
Q
"

~

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

22

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Direct Access

o Task: handle multiple selection tasks
(according to a ranking function)

 |deally, a data structure handles multiple accesses more efficiently
than performing selection multiple times

>
Q
"

~

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

23

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Tractable and Non-Tractable Queries

- Tractable selection: in time close to the DB size (not the join output size)

- Tractable direct access: data structure construction time close to the DB size and allows
accesses much more efficiently

Q(A,B,C) :- R(A,B), S(B,C)

Join
N
A | B |w B |C |w
110 |1 O] 1|1
2 | 0| 2 0| 2|2
3103 O 3| 3
0 0
n| O |mn O| n|n

(LEX) A = B — C, Direct Access

(LEX) A = C — B, Direct Access X

(LEX) A — C — B, Selection

(SUM)A + B + C, Direct Access X

(SUM) A + B + C, Selection

Carmeli, Tziavelis, Gatterbauer, Kimelfeld, Riedewald. Tractable Orders for Direct Access to Ranked Answers of Conjunctive Queries. PODS'21 https://doi.org/10.1145/3452021.3458331
Extended version: https://arxiv.org/abs/1911.05582

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

24

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://doi.org/10.1145/3452021.3458331
https://arxiv.org/abs/1911.05582

Dichotomies for Direct Access and Selection

Direct Access Selection

SJ-free
CQs

Acyclic Acyclic

Free-connex Free-connex

L-connex Both intractable
and no

disruptive trio

Not L-connex
or
disruptive trio

LEX tractable,
SUM intractable

I Both tractable

Maximal free
hyperdges < 2

(hardness results conditional on fine-grained complexity hypotheses)

Carmeli, Tziavelis, Gatterbauer, Kimelfeld, Riedewald. Tractable Orders for Direct Access to Ranked Answers of Conjunctive Queries. PODS'21 https://doi.org/10.1145/3452021.3458331
Extended version: https://arxiv.org/abs/1911.05582
Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial 25

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://doi.org/10.1145/3452021.3458331
https://arxiv.org/abs/1911.05582

Batch

o Task: Simply produce the join output (no task on top of join)

e This is also part of the tasks that we consider (f is the identity
function), but there is obviously no way to avoid the join
materializing cost

o Still, the goal is to avoid unnecessary intermediate results

>
Q
"

~

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

26

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Avoiding Intermediate Results in Practice

joi ¢ joiv
OON N

A | B B | C C |D

n | -1 -1 1 0

2 | -1 -1 2 2|1

1] -1 -1 3 2| 2

0|0 0|0 -2 | n
1y\-2
9) -— Query 1
n | 2 stect «

into recordl
from R natural join S natural join T;

n=1,000: +o=14 sec
n=2,000: +tg=061sec O(n%) ®

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

With S2 as
(SELECT *
FROM S
WHERE S.B 1in
(SELECT R.B
FROM R)),
S3 as
(SELECT *
FROM S2
WHERE S2.C 1in
(SELECT T.C
FROM T))
select a, b, c, d
into record2

from R natural join S3 natural join T;

=2 msec
to,=0 msec

On) ©

27

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Outline Part 1

Part 1: Introduction

— Measures of Success

28

Complexity Notation

« Standard O and () notation for time and memory complexity in the RAM
model of computation

- Database sizen
- Query size ¢
- Outputsizer
« We present most results using
- Scalability in data size
- Treat query size £ as a constant

- E.g., O -1/ +(logn)”) - r) simplifies to O(n/® + (logn)™® - r)
. O-notation (soft-O): abstracts away that clutter formulas
- E.g,, O(nf({)) + - r) further simplifies to a(nf({)) + r)

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

29

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Measures of Success

. A join of £ relations can have an 0(n*) output
« Ideally, we want running times close to O(n)

Assumptions:

- No pre-computed data structures such as indexes, sorted representation, materialized
views

- In-memory computation, no /O cost
- Hash tables support O(1) lookups, otherwise additional log factor in analysis

Linear time O (n) is basically “for free” since we must look at each input tuple
at least once for all the problems we discuss

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Enumeration: TT(k) vs Delay

« Two ways to measure success for an
enumeration algorithm

- TT(k): Time-to-the-k™ answer
- Preprocessing time and delay between answers

« Why delay?
- Can be useful for bounding TT (k)
- Ifdelay < c then TT(k) < |Prep| + ck

« Low delay is sufficient but not necessary for
low TT (k)

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

Algorithm A

Time

Lower max delay does not
necessarily give a faster
algorithm!

31

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Enumeration: TT(k) vs Delay

e Given alow-TT(k) algorithm, can we lower its
delay?

- Yes! By buffering the answers and returning them at
regular intervals

- But this slows down the algorithm...

« When is a low-delay algorithm desirable?

- A downstream application requires regular
interarrival times

- Additionally, there is not enough buffer space

Delay is a more restrictive requirement than TT (k)
but with limited practical applications

Capelli, Strozecki. Incremental delay enumeration: space and time. Discrete Applied Mathematics 2019. https://doi.org/10.1016/j.dam.2018.06.038

Time
produced

Time
returned

Time

v

Deep, Hu, Koutris. Enumeration Algorithms for Conjunctive Queries with Projection. ICDT’21. https://doi.org/10.4230/LIPlcs.ICDT.2021.14

Carmeli, Kroll. On the enumeration complexity of unions of conjunctive queries. TODS 2021. https://doi.org/10.1145/3450263

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://doi.org/10.1016/j.dam.2018.06.038
https://doi.org/10.1145/3450263
https://doi.org/10.4230/LIPIcs.ICDT.2021.14

Outline Part 1

Part 1: Introduction

— Overview of Techniques

33

Factorized Representations b ek

Part 4&7
« What is the key idea?

- Represent the query answers compactly in a lossless way

- Allow other tasks directly on this representation
- Forms the basis for all the tasks that we discuss (enumeration, direct access, etc.)

« Why “factorized”?

- Fac-torlzz.atlf)n is the process of S|m|gllfy|ng a formula Common factor
by identifying common subexpressions

- Similarly, query answers can have redundancy which ab + ac = a(b + ¢)

can be “factored out”
4 elements, 3 elements,

3 operations 2 operations

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

34

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Factorized Representations b ek

DB size: O(n) Part 447
Constructed directly

R
N~
Q from the DB
Factorized Representation
X

4 N
~N
X
Lossless : i
\)

Size < Join-output size

O (n) size for equi-joins
O (n polylog n) for inequality-joins
0 (n?) for theta-joins

n = #tuples Join-output
¢ = #relations size: O(n*)

Olteanu, Zavodny. Size bounds for factorised representations of query results. TODS 2015 https://doi.org/10.1145/2656335
Tziavelis, Gatterbauer, Riedewald. Beyond Equi-joins: Ranking, Enumeration and Factorization. PVLDB’21 https://doi.org/10.14778/3476249.3476306
Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial 35

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://doi.org/10.1145/2656335
https://doi.org/10.14778/3476249.3476306

Acyclic queries and the Yannakakis Algorithm .

Part 3
« What is the key idea?

- For acyclic queries (that do not require cyclic joins), we can remove in linear time all
dangling tuples: those that are not part of any answer

- This allows us to evaluate them very efficiently

- The Yannakakis algorithm answers acyclic CQs in O(n + r), which is optimal

How do we know whether a CQ o)
does not require cyclic joins? Z,P,W
Compared to query plans:
i only partial join order.
Join Tree
* Nodes: relations T(y,z,p) Here TR and TS
e the nodes containing before ToaU.
the same variable
are connected
R(x,y,2) S(y,p) W(u,p,w)

36

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Acyclic queries and the Yannakakis Algorithm

To be continned in
Part 3
e Yannakakis algorithm: two passes over the database according to the join tree

order

« This removes all dangling tuples

« Consequently, joins (following the tree order) can never produce intermediate
results that are not needed

U(ZI pIW) TOP*dOWV]

On+r)

T(y,z,p)

Pottom-up

R(X,Y,2) S(y,p) W(u,p,w)

Yannakakis. Algorithms for acyclic database schemes. VLDB’81 https://dl.acm.org/doi/10.5555/1286831.1286840
Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial 37

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://dl.acm.org/doi/10.5555/1286831.1286840

Projections and free-connex queries

Part 3
« What is the key idea?

- With projections, it is more difficult to avoid unnecessary intermediate results

- For Yannakakis, as well as enumeration and direct access, there are “easy” and “hard”

projections.
The easy cases are captured by the class of free-connex CQs

- For free-connex CQs, it is possible to eliminate all projections in linear time

Projected-out

Q(y,z,u) :- R(x,y), S(y,2), T(z,u) —_— m(R) ™ S b4 T
Q(z,u) :- Rﬁ,y), S(y,z), T(z,u) e W‘wa Eﬁt@gac(anmz)

\ is veeded for R S

Bagan, Durand, Grandjean. On acyclic conjunctive queries and constant delay enumeration. CSL'07. https://doi.org/10.1007/978-3-540-74915-8 18
Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

To be continued in

38

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://doi.org/10.1007/978-3-540-74915-8_18

Projections and free-connex queries T—

Database D Database D’ RAIEES
size O(n) size 0(n)
o o
~N_ A ~N_
Q Q
ﬁ
X X
~ ~N
() has projections ()’ has no projections
and is free-connex
Free-counex Q(y,z,u) :- R(x,y), S(y,z), T(z,u) —_— m(R) ST
O(n)
Free-conmex Q(z,u) - R(x,y), S(y,z), T(z,u) —_— Q'(z,u) :- T'(z,u)
Not free-comex Q(x,u) = R(x,y), S(y,2), T(z,u) — X complexty hypothesee)

Bagan, Durand, Grandjean. On acyclic conjunctive queries and constant delay enumeration. CSL'07. https://doi.org/10.1007/978-3-540-74915-8 18
Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial 39

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://doi.org/10.1007/978-3-540-74915-8_18

Dynamic Programming

To be continued in
Part 5

e Dynamic Programming (DP) is the archetypical paradigm for solving
problems that exhibit a shared structure

« Bellman-Ford algorithm: shortest path in a DAG G in O(|G|)

Optimal cost +to reach +
F Bottom-up: from target

4 é _ node to source vode

(in reverse topological sort)

SOUrCe

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial 40

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Dynamic Programming

To be continued in
Part 5

« What is the key idea?
- We can use DP to compute different aggregates over the join result
- The factorized representation gives the shared structure!

SOUrCe

81ty a1

Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

https://northeastern-datalab.github.io/responsive-dbms-tutorial

Semirings and DP

To be continued in
Part 5

« Using DP on acyclic queries we can compute in linear time:

- The exact count of query answers
- The query answer with the minimum sum of weights
- The query answer with the highest probability of being true

 These are computed with the same DP algorithm, simply by

« What do they have in common? Similar algebraic properties,
described by algebraic structures called

Mohri. Semiring frameworks and algorithms for shortest-distance problems. Journal of Automata, Languages and Combinatorics 2002. https://doi.org/10.5555/639508.639512

Abo Khamis, Ngo, Rudra. FAQ: Questions Asked Frequently. PODS'16. https://doi.org/10.1145/2902251.2902280
Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

42

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://doi.org/10.1145/2902251.2902280
https://doi.org/10.5555/639508.639512

Any-k

To be continned in
Part @
o Any-k algorithms perform ranked enumeration (related to top-k)

« Whatis the key idea?
- The top-1 problem is solvable by DP

- For any-k, we want the 2" best, 34 best,... solution to a DP problem
(ranked enumeration for DP)

« There are two incomparable algorithms:
- One is faster for small k

- The other is faster for large k
e Latest result: best-of-both-worlds algorithm
e« They can be used for any DP problem:

- Longest increasing subsequence

- Knapsack

Tziavelis, Ajwani, Gatterbauer, Riedewald, Yang. Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries. PVLDB’20
https://doi.org/10.14778/3397230.3397250 Extended report: https://arxiv.org/abs/1911.05582

Tziavelis, Gatterbauer, Riedewald. Any-k Algorithms for Enumerating Ranked Answers to Conjunctive Queries. arXiv’22 https://arxiv.org/abs/2205.05649
Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://arxiv.org/abs/2205.05649
https://doi.org/10.14778/3397230.3397250
https://arxiv.org/abs/1911.05582

Any-k

To be continned in
Part @
« For appropriate ranking functions, ranked enumeration for CQs is slower than unranked

enumeration only by a logarithmic factor

- Unranked: TT(k) = O(TL + k) (free-connex CQs, data complexity,
- Ranked: TT(k) = 0(n+ klogk) sum-of-weights ranking)

« When the last answer is returned, any-k can be faster than (generic comparison-based)
sorting!

- The query answers are not independent because of their shared (factorized) structurembined complexity)

S1 SSZ
P1 S1
P1tS1=p1tS2
pZ AY) pz‘l‘Slsz‘l‘Sz

Tziavelis, Ajwani, Gatterbauer, Riedewald, Yang. Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries. PVLDB’20
https://doi.org/10.14778/3397230.3397250 Extended report: https://arxiv.org/abs/1911.05582

Tziavelis, Gatterbauer, Riedewald. Any-k Algorithms for Enumerating Ranked Answers to Conjunctive Queries. arXiv’22 https://arxiv.org/abs/2205.05649
Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial

44

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://arxiv.org/abs/2205.05649
https://doi.org/10.14778/3397230.3397250
https://arxiv.org/abs/1911.05582

Worst-case optimal joins

To be continued in
Part 2

« What is the key idea?

- Traditional binary-join plans are suboptimal for cyclic queries because they
can take more time than the worst-case output

- For every query, we can find its worst-case output by solving a linear
program, now known as the AGM bound

- There are WCOJ algorithms that match this bound

— WCOJ
Triangle Query Roda(S™T)
Q(x,y,2) - R(xy), S(v,2), T(z,x) | (RxS)xT = 0 (n%)
(RXT)>S |

Atserias, Grohe, Marx. Size bounds and query plans for relational joins. SIAM Journal on Computing. 2013. https://doi.org/10.1137/110859440

Ngo, Porat, Ré, Rudra. Worst-case optimal join algorithms. JACM 2018. https://doi.org/10.1145/3180143
Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial 45

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://doi.org/10.1145/3180143
https://doi.org/10.1137/110859440

(Hyper)tree decompositions

To be continned in
Part 2
« What is the key idea?

- Tree decompositions allow us to transform a cyclic query to
(potentially a union of) acyclic queries

- The new query is over larger relations that we have to materialize
- Cost of materializing those relations => “width” of the decomposition

- Tree decompositions use WCOJ as a subroutine (for materializing the new relations)

Cyclic Q Acyclic Q'
TN TN
~ A ~_ d: width
!/
Q Q
Database D I Database D!

size O(n)

E’g iq\ size 0(n%)
. .

Gottlob, Greco, Leone, Scarcello. Hypertree decompositions: Questions and answers. PODS’16. https://doi.org/10.1145/2902251.2902309
Towards Responsive DBMS. ICDE 2022 tutorial: https://northeastern-datalab.github.io/responsive-dbms-tutorial 46

https://northeastern-datalab.github.io/responsive-dbms-tutorial
https://doi.org/10.1145/2902251.2902309

