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Abstract. We consider data analytics workloads on distributed archi-
tectures, in particular clusters of commodity machines. To find a job
partitioning that minimizes running time, a cost model, which we more
accurately refer to as makespan model, is needed. In attempting to find
the simplest possible, but sufficiently accurate, such model, we explore
piecewise linear functions of input, output, and computational complex-
ity. They are abstract in the sense that they capture fundamental algo-
rithm properties, but do not require explicit modeling of system and
implementation details such as the number of disk accesses. We show
how the simplified functional structure can be exploited by directly inte-
grating the model into the makespan optimization process, reducing com-
plexity by orders of magnitude. Experimental results provide evidence
of good prediction quality and successful makespan optimization across
a variety of cluster architectures.

1 Introduction

With the ubiquitous availability of clusters of commodity machines and the ease
of configuring them in the Cloud, there is growing interest in executing data
analytics workloads in distributed environments such as Hadoop MapReduce
and Spark. For effective use of resources, a job needs to be partitioned into tasks
running in parallel on different workers. We will use the term worker to refer
to a single processing unit, i.e., a single physical or virtual core. Hence a k-core
machine would support up to k concurrent workers.

Given an analytics operator, our goal is to find a partitioning and degree of
parallelism that minimizes total running time of the computation, also referred
to as makespan of the corresponding set of tasks. Furthermore, we want to
quantify the tradeoff between makespan and degree of parallelism. This is useful
for identifying cases where a “good” makespan can be achieved with significantly
fewer resources. For example, knowing that 36 concurrent workers achieve a
makespan of 29.0 min, but 18 achieve 29.2 minutes, the user might decide to
accept the small delay for the benefit of having 18 workers available for another
application.
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To analytically derive optimal parameter settings, the makespan model
should have simple functional structure. Arguably the simplest approach with
any hope for being practically useful is to estimate running time T of a task as a
linear combination of input size (I), output size (O), and (asymptotic) number
of computation steps (C):

T = c0 + c1I + c2O + c3C. (1)

This model is abstract in the sense that it reflects algorithm properties, not
implementation or system aspects. The latter are captured by the parameters—
representing fixcosts (c0), data transfer rates (c1, c2), and processing speed (c3)—
learned through linear regression from a training set of workloads executed on
the same system in advance. By learning from training runs, the parameters
represent averages over a large number of low-level processing steps. Hence they
automatically account for underlying processing complexities [5]. To apply Eq. 1,
I, O, and C need to be expressed as functions of the partitioning parameters,
e.g., number of tasks. (Note that the resulting function might not be linear in
those parameters!) This requires human expertise, but is strictly easier than for
traditional DBMS cost models. Consider the map phase of the MapReduce sort
implementation, for which in Sect. 3 we derive task duration as cm0+cm1(N/m)+
cm2(N/m) log(N/m). All that was needed to obtain this formula were (1) input
and output size per task (N/m) and (2) complexity of sorting.

DBMS cost models are also linear in the sense that they are based on the
sum of the number of operations, weighted by per-operation cost. However, they
are significantly more complex than our approach, because they express cost at
a lower level of abstraction. Beyond input size, output size, and asymptotic com-
putation cost, the DBMS approach estimates the actual number of system-level
operations such as random and sequential I/O. Those depend on implementa-
tion details of the underlying system. For example, a map task for sorting might
perform sorting and partitioning completely in memory, or write multiple temp
files that are merged on disk in one or more passes. Moreover, since DBMS cost
models are concerned with resource usage, not running time or makespan, they
do not take resource bottlenecks into account.

Machine learning models [2] could be trained directly for makespan predic-
tion, but behave as “blackboxes”, i.e., makespan optimization cannot exploit
model structure. Intuitively, with all existing cost models, finding the job par-
titioning that minimizes makespan requires trial-and-error style exploration of
parameter combinations. The search space can be very large, as it includes para-
meters controlling (i) number of tasks, (ii) degree of parallelism during execution,
and (iii) problem-specific partitioning parameters. For matrix multiplication,
there are 10 important such parameters (Sect. 4), requiring exploration of a 10-
dimensional space of combinations. Our approach reduces complexity to three
dimensions, because for the other seven we can derive optimal settings analyt-
ically. Assuming 4 values explored in each of those 7 dimensions, our approach
reduces optimization cost by a factor of 47 ≈ 16, 000.

But can a simple abstract makespan models capture the complexities of a
distributed system, in particular resource bottlenecks during execution? Our
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Fig. 1. Schematic illustration of
piecewise linear models for a 2-round
computation. The model for round 1
is partitioned on task input size only.
The model for round 2 is partitioned
on both parallelism degree and task
output size.

Fig. 2. Shuffle time vs. Data size (MB)
for round 2 of the matrix product
algorithm

experiments show that for a piecewise linear model (Fig. 1), it only took a small
number of linear pieces to be sufficiently accurate. The reason for this lies in the
way resources are consumed. Consider a network link that can transmit data at
a certain rate. While below capacity, doubling the amount of data transmitted
approximately doubles transfer time. Once link capacity is exceeded, data is held
longer in buffers, effectively decreasing transfer rate. Figure 2 shows a typical
observation for a MapReduce program, where the time for shuffling data across
the network increases more rapidly after about 600 MB.

The model pieces also provide insights about bottlenecks. For example, for
the reduce phase of sorting (Sect. 3), model training for a cluster of quad-core
machines determined that three pieces were needed when all four cores were
used. Input coefficient c1 had value 5.5, 9.9, and 12 for “small”, “medium”,
and “large” input size, respectively. For executions using only two cores per
machine, the model created only two such pieces with c1 equal to 4.4 for “small”,
and 4.9 for “large” inputs. This reflects the I/O-dominated nature of sorting.
With four cores competing for access to the data, larger input size stresses I/O
and memory bus more than when only two cores are used. By discovering this
behavior automatically from training data, our model can predict the effect of
problem partitioning and parallelism degree.

For an initial proof-of-concept, this paper focuses on relatively “regular”
problems—sorting and matrix product. This will be extended in future work
through correction factors for skew.

2 Piecewise Linear Model Structure and Training

Let w denote the number of available workers, p ≤ w the degree of parallelism
of the computation, and n the number of tasks executed during a round of
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computation. This implies that there will be �n/p� waves of tasks in that round.
If each task takes time T , then makespan of the round will be �n/p�T . This
represents an idealized execution, which we show in experiments to be sufficiently
accurate, as long as task interactions and bottlenecks are taken into account.

Interaction effects occur when tasks executed in parallel on a multicore
processor compete for resources, e.g., memory bus and local disk(s). This com-
petition for scarce resources in effect causes lower rate of data transfer and local
computation experienced by the tasks. It can be represented by partitioning the
model into k ≥ 1 ranges (p0 = 0, p1], (p1, p2],. . . , (pk−1, pk = w] of degrees of par-
allelism, each with a different linear model. Bottlenecks appear not only when
multiple tasks compete for resources. The local computation of a task might
also get delayed by I/O wait time caused by its own I/O operations, requiring a
different model for different ranges of input and output size.

The result of partitioning the design space is a family of piecewise linear mod-
els, each with its own (c0, c1, c2, c3) combination. We say that this model covers
the corresponding partition defined by a range of parallelism degrees, input, and
output size. The partitioning can be determined in a fully data-driven manner
from the training data, e.g., by minimizing the residual sum of squares [20] or by
using a model tree [15]. For parallelism degree, we propose a simplified approach
where the partitioning is defined by multiples of the number of worker machines:
For a cluster consisting of k-core machines, the interval endpoints defining a piece
based on parallelism degree are a subset of {pi = i · w/k | i = 1, 2, . . . , k}. This
creates ranges that correspond to a degree of parallelism of 1 to k per physical
machine. Figure 1 illustrates the overall structure of the proposed models. For
each round of the computation, there is a separate piecewise linear model. A
piece is a linear model as defined in Eq. 1, which covers a partition identified by
a range of degrees of parallelism, input sizes and output sizes. For illustration
purposes, the models in the figure are shown in 1-dimensional space.

Following common practice in machine learning, models are trained based on
a set of representative instances of the given problem. As a training instance is
executed, task running times for each round are measured. To train the models
for a round, we use the average task running time, input size (I), and output size
(O) for this round. Given these values, computation cost (C) is derived based
on the formula expressing computation cost in terms of input and output size.

3 Makespan Model for Sorting

Sorting plays a central role in data analysis, therefore we first demonstrate how
to apply abstract piecewise linear makespan models to the classic sort algorithm
in Hadoop MapReduce.

3.1 Round-Time Estimation for Map and Reduce Phase

To apply Eq. 1, I, O, and C need to be expressed in terms of parameters control-
ling the problem partitioning in each round of computation. In the first round,
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the map phase, each map task reads records and emits them. The record sets are
partitioned and sorted by key, then transferred to the reduce tasks. Each reduce
task merges the pre-sorted runs it receives from different map tasks, then emits
the records. Our goal is to set number of map tasks, m, number of reduce tasks,
r, and parallelism degrees pm and pr for map and reduce phase, respectively, to
minimize makespan.

With N denoting input size, each map task receives I = N/m input and
writes it all out. Since I = O, the two separate terms c1I and c2O collapse to a
single term cm1(N/m), i.e., there is a single coefficient capturing the aggregate of
data reading and writing time. (As a by-product, fewer model coefficients allow
for smaller training data.) Computational complexity is (N/m) log(N/m) for
sorting. (Note how this abstracts away system details such as the number of disk
page accesses.) Hence map task time is modeled as Tmap = cm0 + cm1(N/m) +
cm2(N/m) log(N/m). Given a degree of parallelism pm, the map phase requires
�m/pm� waves, resulting in round time

RTmap = Tmap · �m/pm� = (cm0 + cm1(N/m) + cm2(N/m) log(N/m))�m/pm�.
Since a reduce task pulls and merges pre-sorted files, then simply reads and

emits all its records in order, it follows that all costs are linear in the reduce task’s
input size, i.e., I = O = C = N/r. (Again, system details such as the number
of passes for merging of files are abstracted away.) Hence the corresponding
terms in Eq. 1 collapse. Analogous to the map phase, there will be �r/pr� waves,
resulting in round time

RTreduce = (cr0 + cr1(N/r)) · �r/pr�.

3.2 Exploiting Model Structure for Optimization

Consider finding optimal number of reduce tasks, r, and parallelism degree pr:

argmin
r,pr

RTreduce = (cr0 + cr1(N/r)) · �r/pr�. (2)

Lemma 1. Model (cr0 + cr1(N/r)) · �r/p� covering parallelism-degree range
(pl, ph] and task input range (sl, sh] is minimized by setting p = ph and
r = min{�rl/ph� · ph; rh}, where rl = �N/sh� and rh = �N/(sl + 1)�.
Proof. For task input size N/r, range (sl, sh] of input sizes implies that the
model is valid for reduce task number r in range rl ≤ r ≤ rh with rl = �N/sh�
and rh = �N/(sl + 1)�. Consider any (r, p) in the valid range, i.e., rl ≤ r ≤ rh
and pl < p ≤ ph. For any r, (cr0 + cr1(N/r)) · �r/p� is minimized by selecting
the greatest possible value for p, i.e., p = ph. Hence we need to find the value of
r that minimizes (cr0 + cr1(N/r)) · �r/ph�.
Case 1: the range of possible values for r contains a multiple of ph. We show
that the smallest such multiple minimizes time. Formally, the case condition
states that there exists an integer k ≥ 1 such that rl ≤ kph ≤ rh. For any such
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Algorithm 1. Find pr and r that minimize RTreduce of sort
Input: N ; M = set of models (cr0 + cr1(N/r)) · �r/pr�, each covering some range

(pl, ph] of parallelism degrees and some range (sl, sh] of reduce-task input sizes
1: for all model m ∈ M do // m covers (pl, ph] and (sl, sh]
2: t ← time returned by model m when setting pr = ph and r = min{�� N

sh
�/ph� ·

ph; � N
sl+1

�}
3: Keep track of smallest t
4: Return minimal time t and its (pr, r) combination

k, consider all r ∈ [rl, rh] that satisfy (k − 1)ph < r ≤ kph. The latter implies
�r/ph� = k and therefore (cr0 + cr1(N/r)) · �r/ph� = k(cr0 + cr1(N/r)). This
formula is minimized by selecting the greatest possible r in (k −1)ph ≤ r ≤ kph,
i.e., r = kph. Then (cr0 + cr1(N/r)) · �r/ph� = k(cr0 + cr1

N
kph

) = kcr0 + cr1N/ph.
This formula is minimized by setting k to the smallest possible value that satisfies
the case condition rl ≤ kph ≤ rh, i.e., k = �rl/ph�ph.

Case 2: the range of possible values for r does not contain a multiple of ph. Then
there exists an integer k′ ≥ 1 such that (k′ −1)ph < rl ≤ rh < k′ph. This implies
�r/ph� = k′ for all values of r in (rl, rh], and hence (cr0 + cr1(N/r)) · �r/ph� =
k′(cr0 + cr1(N/r)). This formula is minimized by selecting the greatest possible
r, i.e., r = rh.

To put the solutions for both cases together, notice that for case 1
�rl/ph�ph ≤ rh and for case 2 rh ≤ �rl/ph�ph. Hence, in general, (cr0+cr1(N/r))·
�r/ph� is minimized by r = min{�rl/ph� · ph; rh}, completing the proof.

Lemma 1 forms the foundation for Algorithm1. Instead of exhaustively
exploring (r, pr) combinations, optimization cost is linear in the number of model
pieces. Using more linear pieces improves model accuracy, but increases optimiza-
tion cost—a directly tunable tradeoff.

To understand how the optimization process takes task interactions and bot-
tlenecks into account, consider first the special case where a single makespan
model M covers all parallelism degree values pr ∈ (0, w], and all reduce-task
input sizes s ∈ (0, sh], where sh > N . The for-loop in Algorithm1 would be
executed once, returning pr = w and r = min{w;N} = w. (Note that N/sh < 1
and we assume N ≥ w, i.e., the number of workers does not exceed the number
of input records.) Stated differently, the algorithm determines that the problem
should be partitioned into w tasks—one per worker—and all tasks should be
executed in a single wave in parallel.

Now consider a cluster of w/2 dual-core machines and assume that when
using both cores on a worker, the memory bus on the worker slows down data
transfer rate from memory to core, causing the cores to wait for data. During
model construction, our approach would automatically determine from the train-
ing data that two different linear models are needed: one covering parallelism
degree pr ∈ (0, w/2], and the other pr ∈ (w/2, w]. The for-loop in Algorithm 1
now compares predicted makespan for two configurations (pr, r): (w/2, w/2) for
the model covering pr ∈ (0, w/2] and (w,w) for the model covering pr ∈ (w/2, w].
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Stated differently, if the memory-bus bottleneck leads to a severe slowdown, the
optimal solution may be to use only half of the cores—one per machine—and
execute the reduce phase in a single wave of w/2 concurrently executed tasks.
This perfectly captures the intuition that if the memory bus is the bottleneck
(and not the CPU), then it may be better to only use one of the two cores per
machine.

4 Dense Matrix Product

The second test case for our approach, dense matrix multiplication, represents
a more challenging workload with high data transfer costs, but also signifi-
cant CPU load in some rounds due to the large number of multiplications
and additions. Furthermore, matrix partitioning increases total cost due to data
replication. Dense matrix multiplication was identified as an important compu-
tation problem in a recent UC Berkeley survey on the parallel computing land-
scape [3]. Also note that the closed-form solution to the linear regression problem
y = Xβ + ε, given by the ordinary least squares estimator β̂ = (XTX)−1XT y,
involves the product of matrices that are often dense.

4.1 Makespan Model for Block-Wise Matrix Multiplication

Dense matrix-matrix multiplication can be parallelized by partitioning each
matrix into blocks. We discuss the makespan model for the MapReduce imple-
mentation. (The approach for Spark is analogous.) As illustrated in Fig. 3, input
matrix U with dimensions N0×N1 is partitioned into B0 ·B1 blocks, each of size
N0/B0 by N1/B1; V (with dimensions N1×N2) is partitioned into B1 ·B2 blocks,
each of size N1/B1 by N2/B2. Each block from U will be multiplied with the B2

corresponding blocks from V , for a total of B0 ·B1 ·B2 block-pair multiplication
tasks. Note that each U block is duplicated B2 times, each V block B0 times.
The data duplication (map: round 1) and local multiplication (reduce: round 2)
form the multiplication job (m-job). If B1 > 1, then each block-pair product
represents only a partial result. In that case an aggregation job (a-job) needs
to read and re-shuffle these partial results (map: round 3) and sum them up
(reduce: round 4).

For i ∈ {1, 2, 3, 4}, let pi and ni denote degree of parallelism and number of
tasks, respectively, in round i. From the analysis above follows n2 = B0B1B2.
Similar to the sort program, an analysis of input, output, and computation in
each round results in the following round time estimators: (Note that rounds 3
and 4 are executed if and only if B1 > 1.)

RT1 = (c10 + c11(N0N1 + N1N2)/n1 + c12(N0N1B2 + N1N2B0)/n1) · �n1/p1�,
RT2 = (c20 + c21(

N0N1

B0B1
+

N1N2

B1B2
) + c22

N0N2

B0B2
+ c23

N0N1N2

B0B1B2
) · �B0B1B2/p2�,

RT3 = (c30 + c31N0N2B1/n3) · �n3/p3�,
RT4 = (c40 + c41N0N2B1/n4 + c42N0N2/n4) · �n4/p4�.
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Fig. 3. Block-wise parallel matrix multiplication in 4 rounds. U is partitioned into 2×2
blocks, V into upper and lower half, i.e., (B0, B1, B2) = (2, 2, 1).

4.2 Optimal Partitioning

The problem partitioning that minimizes estimated makespan is defined as
argminB0,B1,B2,p1,p2,p3,p4,n1,n3,n4RT1 + RT2 + RT3 + RT4. With traditional cost
models, this would require trial-and-error based exploration of a 10-dimensional
search space. Using our approach, we can show, like for sorting, that the optimal
setting for parallelism degree is p = ph for a model covering range (pl, ph]. The
optimal task number n is min{� nl

ph
� · ph;nh}. Here nl and nh denote the lower

and upper extreme of the range of possible choices for the corresponding ni so
that task input and output size are in the range covered by the model piece for
round i. Hence the optimization problem simplifies to

argmin
B0,B1,B2

RT1 + RT2 + RT3 + RT4, (3)

where n1, n3, n4, p1, p2, p3, and p4 are all computed directly as discussed above.
This reduces optimization cost by orders of magnitude, from search in 10 dimen-
sions to 3 dimensions. (Note that optimization cost is linear in the total number
of linear pieces, across all rounds.)

5 Experiments

The main purpose of the experiments is to provide a proof of concept that
abstract piecewise linear makespan models with a “small” number of pieces
are accurate enough to rank “good” above “bad” data partitionings. Accuracy
comparisons to traditional cost models, in particular DB optimizer cost formulas
and blackbox models, are not included. Our abstract models trade off predic-
tion accuracy (hence will be less accurate than a carefully designed and tuned
traditional model), to gain in terms of two unique properties: (1) Make it easier
to specify the model for a given data analytics operator, and (2) enable more
efficient running-time optimization algorithms by exploiting the simple model
structure. Note that in all experiments, the piecewise linear models had between
1 and 7 pieces per round.
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Table 1. Cluster specifications

Name #Machines #Cores per machine #Workers Memory per
machine

Software

9h36 10 4 36 8GB Hadoop 1.2

2h24 3 12 (virtual) 24 47GB Hadoop 2.4

20h160 21 8 160 64GB Hadoop 2.4

Emr10 11 1 (virtual) 10 3.75 GB Hadoop 2.6

6s12 7 2 12 8 GB Spark 1.6.1

Emr12s 7 2 (virtual) 12 7.5 GB Spark 1.6.1

5.1 Basic Setup

We show representative results on six different systems with diverse properties.
They include in-house clusters (9h36,2h24,6s12), a research cluster (20h160)
provided by CloudLab [22] and two (Emr10,Emr12s) on Amazon Web Services.
For details see Table 1.

For simplicity, in most experiments on Hadoop, the number of map tasks is
left at the Hadoop default value, i.e., total map input size divided by Hadoop
Distributed File System (HDFS) block size. Only for small data sets whose size
is smaller than the product of desired parallelism degree and HDFS block size,
we set the number of map tasks equal to the desired parallelism degree.

5.2 Sorting

We present measurements on clusters 9h36 and Emr10. All piecewise models
for 9h36 are partitioned into ranges (0, 18] and (18, 36] on parallelism degree.
Possible partitioning on task input and output size is determined automatically
as discussed in Sect. 2. We create 15 different data sets with 100 million to 2.7
billion randomly generated records of type Long (8 bytes per record), and for
each data set we use various numbers of waves (up to 10) in the reduce phase. In
total, there are 54 problem instances. A subset of 41 of these is used for model
training, the others for testing.

Fig. 4. Sorting: measured round time
vs. Input size on 9h36 for Map (left)
and Reduce (right) phase

Fig. 5. Sorting: predicted vs. Measured
round time on 9h36 for Map (left) and
Reduce (right) phase
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Figure 4 presents measurements of the relationship between input size and
round time. In particular, the y-axis reports the true value for RTmap and
RTreduce, computed as the product of average measured task running time and
number of waves in the round. Degree of parallelism is set to the number of
workers for all runs. The dotted green line shows a piecewise linear model fitted
to the data.

Figure 5 compares predicted and measured round time of map and reduce
phase for sorting on cluster 9h36, using either all or only half of the available
cores. The red dots are for training cases, while the green triangles are for test
cases. All individual times and the overall trend are captured very accurately,
as the relative errors are mostly around 1%, and never exceed 5%.

Table 2. Degree of parallelism vs. Measured and predicted makespan on 9h36.

Number of records Degree of parallelism = 18 Degree of parallelism = 36

True (sec) Prediction True (sec) Prediction

1.17E + 9 790 601.96 698 564.21

1.26E + 9 835 657.36 723 629.59

1.62E + 9 1056 842.00 1050 833.66

1.80E + 9 1146 928.18 1112 926.13

2.43E + 9 1558 1254.39 1524 1288.04

2.70E + 9 1751 1408.24 1741 1465.02

Table 2 shows that our models significantly underestimate true makespan.
This is caused by tasks starting and/or finishing later than others, delaying job
completion. However, this bias is consistent, allowing the model to capture the
trend correctly, no matter if all cores or only half of them is used per machine.
For large inputs, it identifies the I/O-related bottleneck: doubling the number of
cores used per machine results in virtually no improvement of makespan when
data size reaches 1.6 billion records.

5.3 Matrix Multiplication

All models are partitioned into parallelism-degree ranges based on multiples of
the number of machines in the cluster; partitioning on input and output size
is determined automatically as discussed in Sect. 2. The training set consists of
104 problem instances, covering 12 different matrix-size combinations (square
matrices from 10k × 10k to 30k × 30k and also extreme rectangular ones up to
200×4 ·106), each with 3 to 20 (B0, B1, B2)-combinations. We test the model on
57 independent problem instances, covering 10 different matrix sizes in the same
broad range. As Fig. 6 shows, predicted and true round times are very close.

Like for sorting, our model significantly underestimates true makespan, but
can still correctly separate “good” from “bad” problem partitionings. In all cases
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(a) M-Job: Map (b) M-Job: Reduce (c) A-Job: Map (d) A-Job: Reduce

Fig. 6. Matrix product: predicted vs. measured round time on 9h36. The test cases
(red dots) are near the perfect-prediction line (blue dotted line). (Color figure online)

Table 3. Ranking quality: predicted vs. true makespan (in sec) for matrix product
(Hadoop MapReduce, (a)∼(c) are synthetic data, (d) and (e) are real data)

(a) 15, 000 × 15, 000 matrices on 9h36

prediction ground truth
B0 B1 B2 makespan rank makespan rank

6 1 6 305.40 1 400.00 1

3 3 4 330.87 2 434.00 2

4 1 4 345.89 5 440.00 3

3 3 3 350.39 7 445.67 4

3 4 3 333.55 3 448.00 5

5 1 5 356.48 9 452.00 6

3 2 3 344.69 4 453.00 7

2 6 3 348.85 6 471.00 8

4 2 4 353.48 8 479.00 9

2 9 2 385.02 11 485.00 10

2 6 2 380.85 10 497.00 11

2 4 2 403.84 13 505.00 12

2 8 2 410.55 14 525.00 13

2 7 2 446.67 15 548.00 14

4 1 8 401.43 12 556.00 15

2 2 2 614.17 16 656.00 16

1 18 1 638.41 17 713.00 17

1 36 1 941.19 18 1,290.00 18

(b) 15, 000 × 15, 000 matrices on 2h24

prediction ground truth
B0 B1 B2 makespan rank makespan rank

4 1 6 247.93 1 325.03 1

2 4 3 267.90 4 366.53 2

2 3 4 257.58 3 384.64 3

3 2 4 248.79 2 388.53 4

2 6 2 290.78 5 408.92 5

1 12 2 356.74 6 455.77 6

1 24 1 765.48 7 574.52 7

(c) 10, 000×60, 000 matrices on 20h160

prediction ground truth
B0 B1 B2 makespan rank makespan rank

4 10 4 124.57 1 186 1

4 8 5 128.14 2 204 2

2 20 4 132.53 3 205 3

4 5 8 134.07 4 205 3

2 8 10 137.51 5 206 5

1 20 8 141.89 6 211 6

12 1 12 171.08 7 238 7

(d) 68 × 2458285 matrices (1990 US
Census data) on 9h36

prediction ground truth
B0 B1 B2 makespan rank makespan rank

1 18 1 30.93 1 95.00 1

1 36 1 37.97 2 107.25 2

3 2 3 59.05 4 127.00 3

2 9 2 51.12 3 128.5 4

3 4 3 64.20 5 132.25 5

6 1 6 85.72 6 145.00 6

(e) 481 × 191779 matrices (KDD Cup
1998 data) on 9h36

prediction ground truth
B0 B1 B2 makespan rank makespan rank

1 18 1 24.12 1 94 1

1 36 1 30.89 2 103 2

3 2 3 39.19 4 109 3

2 9 2 37.43 3 112 4

3 4 3 44.61 5 121 5

6 1 6 48.37 6 144 6
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our approach would find a near-optimal configuration. Table 3 confirms this for
both synthetic and real data sets (from the UCI Machine Learning Reposi-
tory [13]). There our technique is applied to the step where the data matrix
is multiplied with its own transpose during linear regression analysis. Table 4
confirms that this observation also holds for Spark.

Note that for both real data sets (Table 3d, e), our model correctly discovers
that setting (B0, B1, B2) to (1, 18, 1) results in lower makespan than (1, 36, 1).
We confirmed that due to I/O bottlenecks, it is better to only use half of the
available cores per machine, even though round 2 performs a huge number of
arithmetic operations (more than 11 · 109 for the Census data).

Table 4. Ranking quality: predicted vs. true makespan (in sec) for matrix product
(synthetic data, Spark)

(a) 800 × 80, 000 matrices on 6s12

prediction ground truth
B0 B1 B2 makespan rank makespan rank

2 2 3 73.81 1 88.8 1

2 3 2 74.08 3 90.67 2

1 12 1 73.88 2 96 3

1 3 4 87.84 4 101 4

1 6 2 100.10 7 101.4 5

1 4 3 96.79 6 104 6

3 1 4 133.95 9 109.5 7

1 6 1 92.80 5 113 8

2 1 3 154.30 11 134 9

1 2 3 134.22 10 141 10

1 3 2 131.48 8 154 11

(b) 6000 × 6000 matrices on Emr12s

prediction ground truth
B0 B1 B2 makespan rank makespan rank

3 1 4 144.73 1 149.5 1

2 2 3 152.50 2 152 2

2 3 2 156.63 3 162 3

1 2 6 171.79 5 170.5 4

1 3 4 166.27 4 171 5

1 4 3 180.81 6 173.5 6

1 6 2 184.95 7 195 7

2 1 3 251.14 9 254 8

1 2 3 268.33 8 268.5 9

1 3 2 277.20 11 277 10

1 1 6 266.92 10 304 11

1 6 1 365.17 12 362 12

6 Related Work

Structured cost models that capture execution details are essential for query
optimization in relational DBMS [16], and they can be highly accurate when
tuned [23]. This motivated similar approaches for MapReduce and other distrib-
uted data analysis systems [11,14,19,21,24]. As an alternative to structured cost
models, blackbox-style machine learning techniques were explored for a variety
of performance prediction problems [2,5,6,8,10]. For all previous cost models,
the effect of problem-partitioning parameters on makespan is relatively complex,
hence makespan minimization would have to rely on trial-and-error style explo-
ration of possible parameter settings. For dense matrix multiplication, this cor-
responds to a 10-dimensional space of (B0, B1, B2, p0, p1, p2, p3, n1, n3, n4) com-
binations. (Note that Ernest [19] could possibly derive optimal settings for all
pi, i = 0, . . . , 3, reducing complexity to 6 dimensions.) In contrast, our approach
sacrifices some prediction accuracy to simplify model structure. This enables
analytical derivation of optimal settings for most parameters, reducing complex-
ity to 3 dimensions for dense matrix multiplication.
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We use dense matrix multiplication to showcase model design and makespan
optimization for an analytics operator with a demanding I/O and CPU profile.
Previous work explored a variety of performance-related aspects for matrix mul-
tiplication on parallel architectures. This includes load balancing [9], minimizing
communication cost [1,4,12,17], and optimizing for memory hierarchy [7,18].

7 Conclusions

The goal of this work was to find the “simplest possible” realistic model to
predict makespan for distributed execution of data analytics operators. To this
end, we proposed abstract models that are piecewise linear functions depending
only on input, output, and computation complexity. Our approach has two main
benefits. First, it simplifies tying problem-partitioning parameters to model vari-
ables (input, output and computation) for user-defined operators, e.g., programs
written in MapReduce or Spark. Second, we showed that the linear structure can
be exploited for more efficient optimization algorithms. This reduces optimiza-
tion complexity from a search process in ten dimensions to only three for matrix
product; for sorting the optimal solution was directly obtainable in closed form.

Our experiments indicated that a small number of pieces achieves sufficient
prediction quality, enabling us to find near-optimal problem partitionings and to
identify when a lower parallelism degree delivers the same (or better) makespan.

In future work, we will explore how to extend this approach to workloads
that are more heterogeneous in the sense that individual tasks may vary widely
in their cost. Moreover, we will consider tuning partitioning parameters along
with system parameters external to user programs, by integrating our ideas into
optimizers like Starfish [10].
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