
1

Part 3: Applications
L17: Channel Capacity, Distortion Theory, 
Information Bottleneck
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Wolfgang Gatterbauer
cs7840 Foundations and Applications of Information Theory (fa25)
https://northeastern-datalab.github.io/cs7840/fa25/
11/6/2025

Updated 11/8/2025

https://northeastern-datalab.github.io/cs7840/fa25/


2

Pre-class conversations

• Last class recapitulation
• Projects: I can talk today after class

• Last time:
- Why Max entropy? Involves just combinatorics, and limits, no "uncertainty"
- Why Occam's razor? Again: a simple (convincing ?) argument
- Kolmogorov complexity: the answer to all questions ?

• Today:
- Channel capacity (communication)
- Distortion theory 
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Channel
Capacity

Largely based on chapter 7 of
[Cover, Thomas'06] Elements of Information Theory, 2006. https://www.doi.org/10.1002/047174882X 

https://northeastern-datalab.github.io/cs7840/fa25/
https://www.doi.org/10.1002/047174882X
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From: Shannon. A Mathematical Theory of Communication, The Bell System Technical Journal, 1948. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x 

Shannon [1948]: Communicating over a noisy channel

https://northeastern-datalab.github.io/cs7840/fa25/
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
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Channel Capacity 𝐶	= highest rate 𝑅

Theorem 7.7.1 taken from: [Cover, Thomas'06] Elements of Information Theory, 2006. Chapter 7 channel capacity, https://www.doi.org/10.1002/047174882X  

Encoder Channel
𝐩 𝑦|𝑥 Decoder

𝑚 "𝑚𝑋% 𝑌%

message message estimate

source 
symbols

sequence of channel symbols
from input (encoding) alphabet 𝒳

(1) "Information" channel capacity   𝐶 = max
𝐩(')

𝐼(𝑋; 𝑌)

(2) "Operational" channel capacity: the highest communication rate 𝑅 (in bits) per channel use

SHANNON'S CHANNEL CODING THEOREM: 
both are identical, i.e. the channel 
capacity can be achieved in the limit by 
using codes with a long block length.

data compression data transmission

from output 
(encoding) alphabet 𝒴

intuition: capacity = lg[# of distinguishable inputs]

https://northeastern-datalab.github.io/cs7840/fa25/
https://www.doi.org/10.1002/047174882X
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Capacity of binary symmetric channel

0 0  !𝑞 = 1 − 𝑞  

!𝑞1 1  

𝑞

𝑞

𝑌𝑋

channel capacity 𝐶 = max
𝐩(')

𝐼(𝑋; 𝑌)

Encoder Channel
𝐩 𝑦|𝑥 Decoder

𝑚 -𝑚𝑌%

message message estimate

How do we calculate 
the channel capacity 𝐶 ?

𝑋%

𝑝

𝑝̅=1 − 𝑝

https://northeastern-datalab.github.io/cs7840/fa25/
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Capacity of binary symmetric channel

𝐼 𝑋; 𝑌 =

0 0  

1 1  

𝑞

𝑞

channel capacity 𝐶 = max
𝐩(')

𝐼(𝑋; 𝑌)

Encoder Channel
𝐩 𝑦|𝑥 Decoder

𝑚 -𝑚𝑌%

message message estimate

?

𝑋%

𝑌𝑋

!𝑞 = 1 − 𝑞  

!𝑞

𝑝

𝑝̅=1 − 𝑝

https://northeastern-datalab.github.io/cs7840/fa25/
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Capacity of binary symmetric channel

𝐼 𝑋; 𝑌 = 𝐻 𝑌 − 𝐻(𝑌|𝑋)

0 0  

1 1  

𝑞

𝑞

channel capacity 𝐶 = max
𝐩(')

𝐼(𝑋; 𝑌)

Encoder Channel
𝐩 𝑦|𝑥 Decoder

𝑚 -𝑚𝑌%

message message estimate

𝑋%

?
𝑌𝑋

!𝑞 = 1 − 𝑞  

!𝑞

𝑝

𝑝̅=1 − 𝑝

https://northeastern-datalab.github.io/cs7840/fa25/
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Capacity of binary symmetric channel

𝐼 𝑋; 𝑌 = 𝐻 𝑌 − 𝐻(𝑌|𝑋)

0 0  

1 1  

𝑞

𝑞

channel capacity 𝐶 = max
𝐩(')

𝐼(𝑋; 𝑌)

Encoder Channel
𝐩 𝑦|𝑥 Decoder

𝑚 -𝑚𝑌%

message message estimate

𝑋%

?
∑! 𝑝 𝑥 𝐻(𝑌|𝑋 = 𝑥) 
∑! 𝑝 𝑥 𝐻(𝑞) = 𝐻(𝑞) = 𝐻 𝑌 − 𝐻(𝑞) 

𝑌𝑋

!𝑞 = 1 − 𝑞  

!𝑞

𝑝

𝑝̅=1 − 𝑝

https://northeastern-datalab.github.io/cs7840/fa25/
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Capacity of binary symmetric channel

𝐼 𝑋; 𝑌 = 𝐻 𝑌 − 𝐻(𝑌|𝑋)

0 0  

1 1  

𝑞

𝑞

𝑝

𝑝̅=1 − 𝑝

∑! 𝑝 𝑥 𝐻(𝑌|𝑋 = 𝑥) 
∑! 𝑝 𝑥 𝐻(𝑞) = 𝐻(𝑞) 

≤ 1 − 𝐻(𝑞) 

Hence, capacity for binary symmetric channel is   𝐶 = 1 − 𝐻(𝑞) 

channel capacity 𝐶 = max
𝐩(')

𝐼(𝑋; 𝑌)

Encoder Channel
𝐩 𝑦|𝑥 Decoder

𝑚 -𝑚𝑌%

message message estimate

= 𝐻 𝑌 − 𝐻(𝑞) 
Max of 𝐻 𝑌 = 1 (thus also max of 𝐼 𝑋; 𝑌 )

𝑋%

This is achieved for uniform 𝑝 𝑌=0 = 0.5. 
Thus also 𝑝 = 0.5 has uniform input distribution
(solve for 𝑝!𝑞 + 𝑝̅𝑞 = 𝑝 𝑌=0 = 0.5) 

𝑌𝑋

!𝑞 = 1 − 𝑞  

!𝑞

https://northeastern-datalab.github.io/cs7840/fa25/
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Capacity of binary symmetric channel

𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 𝐻(𝑋|𝑌)

0 0  

1 1  

𝑞

𝑞

channel capacity 𝐶 = max
𝐩(')

𝐼(𝑋; 𝑌)

Encoder Channel
𝐩 𝑦|𝑥 Decoder

𝑚 -𝑚𝑌%

message message estimate

𝑋%

What about the 
other way around

𝑌𝑋
?

!𝑞 = 1 − 𝑞  

!𝑞

𝑝

𝑝̅=1 − 𝑝

https://northeastern-datalab.github.io/cs7840/fa25/
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Capacity of binary symmetric channel

𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 𝐻(𝑋|𝑌)

𝐻 𝑋|𝑌=0 ⋅ 𝑝 𝑌=0 + 𝐻 𝑋|𝑌=1 ⋅ 𝑝(𝑌=1)0 0  

1 1  

𝑞

𝑞 𝑝*𝑞 + 𝑝̅𝑞 𝑝𝑞 + 𝑝̅*𝑞

𝐻 𝑝

𝑝 𝑋=0|𝑌=0 = = "#$
"#$%"̅$

 

𝑝 𝑋=0|𝑌=1 = " '=(|*=+ ⋅" *=+
" '=(  = "$

"$%"̅#$ 

𝐼 𝑋; 𝑌 = 𝐻 𝑝 − 𝐻 "#$
"#$%"̅$

𝑝!𝑞 + 𝑝̅𝑞  

−𝐻 "$
"$%"̅#$ 𝑝𝑞 + 𝑝̅!𝑞  

" '=+|*=+ ⋅" *=+
" '=+  

channel capacity 𝐶 = max
𝐩(')

𝐼(𝑋; 𝑌)

Encoder Channel
𝐩 𝑦|𝑥 Decoder

𝑚 -𝑚𝑌%

message message estimate

𝑋%

Trying to do it the other way 
around should work but becomes 
far more complicated L

while 𝑞 is fixed

max
𝐩(!)

𝑌𝑋

!𝑞 = 1 − 𝑞  

!𝑞

𝑝

𝑝̅=1 − 𝑝

Let's check for 𝑝=(
0

... gets messy

https://northeastern-datalab.github.io/cs7840/fa25/
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Capacity of binary symmetric channel

𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 𝐻(𝑋|𝑌)

0 0  

1 1  

𝑞

𝑞

𝐼 𝑋; 𝑌 = 𝐻 𝑝 − 𝐻 "#$
"#$%"̅$

𝑝!𝑞 + 𝑝̅𝑞  

−𝐻 "$
"$%"̅#$ 𝑝𝑞 + 𝑝̅!𝑞  

channel capacity 𝐶 = max
𝐩(')

𝐼(𝑋; 𝑌)

Encoder Channel
𝐩 𝑦|𝑥 Decoder

𝑚 -𝑚𝑌%

message message estimate

𝑋%

Trying to do it the other way 
around should work but becomes 
far more complicated L

𝑌𝑋

!𝑞 = 1 − 𝑞  

!𝑞

𝑝=(
0

𝑝̅=(
0

... gets messy

= 𝐻 (
0
− 𝐻 !𝑞 (

0
− 𝐻 !𝑞 (

0
 

𝑝=(
0

= 1 − 𝐻 𝑞 ✓

https://northeastern-datalab.github.io/cs7840/fa25/
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Channel Capacity: Binary Channel

0 0  

1 1  

Binary noiseless channel

𝑌𝑋

EXAMPLE

channel capacity:

𝐶 = ?
𝑝

𝑝̅

https://northeastern-datalab.github.io/cs7840/fa25/
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Channel Capacity: Binary Channel

0 0  

1 1  

Binary noiseless channel

𝑌𝑋

EXAMPLE

channel capacity:

𝐶 = lg 2 = 1 bit

1/2 

1/2 

https://northeastern-datalab.github.io/cs7840/fa25/
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Channel Capacity: Non-overlapping Outputs

0
1  

1
3  

Noisy channel with non-overlapping outputs
EXAMPLE

2  

4  

1/2 

1/2 

1/3 

2/3 

𝑌𝑋

channel capacity:

𝐶 = ?

https://northeastern-datalab.github.io/cs7840/fa25/


18Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/

Channel Capacity: Non-overlapping Outputs

0
1  

1
3  

Noisy channel with non-overlapping outputs
EXAMPLE

2  

4  

1/2 

1/2 

1/3 

2/3 

𝑌𝑋

channel capacity:

𝐶 = lg 2 = 1 bit

1/2 

1/2 

decoding

0

1

channelencoding
frequency

https://northeastern-datalab.github.io/cs7840/fa25/
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Channel Capacity: Noisy typewriter

1 1  

3 3  

Noisy typewriter
EXAMPLE

2  

4  

𝑌𝑋
2

4

Noisy channel

channel capacity:

𝐶 = ?
1/2 

1/2 

https://northeastern-datalab.github.io/cs7840/fa25/
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Channel Capacity: Noisy typewriter

1 1  

3 3  

channel capacity:

Noisy typewriter
EXAMPLE

2  

4  

𝑌𝑋
2

4

1 1  

3 3  

2  

4  

Noisy channel Noiseless subset of inputs

lg 2 = 1 bit𝐶 = 

1/2 

1/2 
1/2 

1/2 

https://northeastern-datalab.github.io/cs7840/fa25/
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Channel Capacity: Binary erasure channel

0 0  

Binary erasure channel
EXAMPLE

𝑒  

1  

𝑌𝑋

1

!𝑞 = 1 − 𝑞  

!𝑞

𝑞

𝑞

A fraction of 𝑞 bits are erased (rather than 
corrupted as in the binary symmetric channel).
The receiver knows which bits are lost.
𝐶 = max

𝐩(')
𝐼 𝑋; 𝑌

𝑝

𝑝̅

?

https://northeastern-datalab.github.io/cs7840/fa25/
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Channel Capacity: Binary erasure channel

0 0  

Binary erasure channel
EXAMPLE

𝑒  

1  

𝑌𝑋

1

𝑞

𝑞

A fraction of 𝑞 bits are erased (rather than 
corrupted as in the binary symmetric channel).
The receiver knows which bits are lost.
𝐶 = max

𝐩(')
𝐼 𝑋; 𝑌

= max
𝐩(')

𝐻 𝑌 − 𝐻(𝑌|𝑋)  
𝑝

𝑝̅

?
!𝑞 = 1 − 𝑞  

!𝑞

https://northeastern-datalab.github.io/cs7840/fa25/
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Channel Capacity: Binary erasure channel

0 0  

Binary erasure channel
EXAMPLE

𝑒  

1  

𝑌𝑋

1

𝑞

𝑞

A fraction of 𝑞 bits are erased (rather than 
corrupted as in the binary symmetric channel).
The receiver knows which bits are lost.

𝐻 𝑌 = 𝐻(𝑌, 𝐸)
erasure happens yes/no

𝐶 = max
𝐩(')

𝐼 𝑋; 𝑌

= max
𝐩(')

𝐻 𝑌 − 𝐻(𝑌|𝑋)  
= 𝐻(𝑞) 

= max
𝐩(')

𝐻 𝑌 − 𝐻(𝑞) 

=

𝑝

𝑝̅

?

!𝑞 = 1 − 𝑞  

!𝑞

https://northeastern-datalab.github.io/cs7840/fa25/
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Channel Capacity: Binary erasure channel

0 0  

Binary erasure channel
EXAMPLE

𝑒  

1  

𝑌𝑋

1

𝑞

𝑞

A fraction of 𝑞 bits are erased (rather than 
corrupted as in the binary symmetric channel).
The receiver knows which bits are lost.

𝐻 𝑌 = 𝐻(𝑌, 𝐸)
erasure happens yes/no

𝐶 = max
𝐩(')

𝐼 𝑋; 𝑌

= max
𝐩(')

𝐻 𝑌 − 𝐻(𝑌|𝑋)  
= 𝐻(𝑞) 

= max
𝐩(')

𝐻 𝑌 − 𝐻(𝑞) 

= 𝐻 𝐸 + 𝐻 𝑌 𝐸

𝐻 𝑞 𝑞 ⋅ 0 + 1 − 𝑞 𝐻(𝑝) 

𝑝

𝑝̅
= max

𝐩(')
𝐻 𝑞 + 1 − 𝑞 𝐻 𝑝 − 𝐻 𝑞  

= 1 − 𝑞 ⋅ max
𝐩(')

𝐻 𝑝  = 1 − 𝑞

!𝑞 = 1 − 𝑞  

!𝑞

https://northeastern-datalab.github.io/cs7840/fa25/
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Channel Capacity: Binary erasure channel

0 0  

Binary erasure channel
EXAMPLE

𝑒  

1  

𝑌𝑋

1

A fraction of 𝑞 bits are erased (rather than 
corrupted as in the binary symmetric channel).
The receiver knows which bits are lost.

2/3 

2/3 

1/3 

𝑞 = 1/3 

𝐶 = max
𝐩(')

𝐼 𝑋; 𝑌

?𝑝 = 1/2 

1/2 

https://northeastern-datalab.github.io/cs7840/fa25/
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Channel Capacity: Binary erasure channel

0 0  

Binary erasure channel
EXAMPLE

𝑒  

1  

𝑌𝑋

1

A fraction of 𝑞 bits are erased (rather than 
corrupted as in the binary symmetric channel).
The receiver knows which bits are lost.

2/3 

2/3 

1/3 

𝑞 = 1/3 

𝐶 = max
𝐩(')

𝐼 𝑋; 𝑌

= 𝐻 𝑌 − 𝐻(𝑌|𝑋) 

lg(3) 
= 3

4𝐻
3
5 + 3

4𝐻
3
5  = 𝐻 3

5
 

= 𝐼 𝑋; 𝑌  under the given 𝐩(𝑥)

= 4
5 

= 3
5 lg

3
5 + 4

5 lg
4
5  

= − 3
5 lg 3 + 4

5 lg 2 − 4
5 lg 3  

= 4
5− lg 3  

= 1 − 𝑞 (as predicated) 

𝑝 = 1/2 

1/2 

https://northeastern-datalab.github.io/cs7840/fa25/
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Channel Capacity: Symmetric Channel

Symmetric channel
EXAMPLE

Symmetric channel: The state transition matrix 
𝐏 is symmetric if all the rows are permutations 
of each other (and so are the columns)

That guarantees that the capacity-achieving input 
distribution is uniform (which simplifies the math 
quite a bit and allows a closed form solution)

𝐏 =

A symmetric 𝐏 guarantees that a uniform input 
distribution leads to a uniform output distribution 
(the uniform distribution is an eigenvector)

𝑝 𝑦 = ∑' 𝑝 𝑦 𝑥 𝑝 𝑥  = 3
5
∑' 𝑝 𝑦 𝑥  = 3

5
 

1 1  

2  

3  

𝑌𝑋

3

.6

2

.3
.1
.1
.6

.3

.6

.1.3

.6 .3 .1

.1 .6 .3

.3 .1 .6

https://northeastern-datalab.github.io/cs7840/fa25/
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Channel Capacity: Symmetric Channel

1 1  

Symmetric channel
EXAMPLE

2  

3  

𝑌𝑋

3

.6

2

.6 .3 .1

.1 .6 .3

.3 .1 .6
𝐏 =

.3
.1
.1
.6

.3

.6

.1.3

𝐩 𝑥 =:𝐩=
1/3
1/3
1/3

𝐩 𝑦 =:𝐪=
1/3
1/3
1/3

𝐶 = max
𝐩

𝐼 𝑋; 𝑌

= 𝐻 𝑌 − 𝐻(𝑌|𝑋) 

= 𝐼 𝑋; 𝑌  under uniform

= lg(3) − 𝐻(0.6,0.3,0.1) 

≈ 1.585 − 1.295 ≈ 0.290

Symmetric channel: The state transition matrix 𝐏 
(also channel matrix) is symmetric if all the rows are 
permutations of each other (and so are the columns)

https://northeastern-datalab.github.io/cs7840/fa25/
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Part 3: Applications
L18: Channel Capacity, Distortion Theory, 
Information Bottleneck
[Channel Capacity: Blahut-Arimoto Algorithm, Distortion Theory]

Wolfgang Gatterbauer
cs7840 Foundations and Applications of Information Theory (fa25)
https://northeastern-datalab.github.io/cs7840/fa25/  
11/13/2025

Updated 11/13/2025

https://northeastern-datalab.github.io/cs7840/fa25/
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communication complexity

more on compression

papers: Hinton on
knowledge distillation

papers: information 
bottleneck

Shapley?
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Blahut-Arimoto algorithm
(for non-symmetric channels)
Published in two independent papers (Arimoto was first, Blahut is more general). Arimoto. An algorithm for 
computing the capacity of arbitrary discrete memoryless channels. TIT 1972. 
https://doi.org/10.1109/TIT.1972.1054753 , Blahut. Computation of channel capacity and rate-distortion 
functions. TIT 1972. https://doi.org/10.1109/TIT.1972.1054855  

https://northeastern-datalab.github.io/cs7840/fa25/
https://doi.org/10.1109/TIT.1972.1054753
https://doi.org/10.1109/TIT.1972.1054855
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Channel Capacity: Non-Symmetric Channel

1 1  

Non-symmetric discrete
memoryless channel

EXAMPLE

2  

3  

𝑌𝑋

3

.7

2

𝐏 =

.2
.1
.3
.6

.1

.5

.2.3

𝐶 = max
𝐩

𝐼 𝑋; 𝑌

.7 .2 .1

.3 .6 .1

.3 .2 .5

This is not a symmetric matrix anymore...

?What we do now

𝐩 𝑥 =:𝐩=
?
?
?

𝐩 𝑦 =:𝐪=
?
?
?

𝑥

𝑦row-stochastic

https://northeastern-datalab.github.io/cs7840/fa25/
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Channel Capacity: Non-Symmetric Channel

1 1  

Non-symmetric discrete
memoryless channel

EXAMPLE

2  

3  

𝑌𝑋

3

.7

2

𝐏 =

.2
.1
.3
.6

.1

.5

.2.3

= 𝐻 𝑌 − 𝐻(𝑌|𝑋) 

≈ 1.554 − 1.313 ≈ 0.2289

This is a concave optimization problem in 𝐩	over the 
simplex, can be solved with an iterative algorithm, such 
as the the BLAHUT–ARIMOTO algorithm

.7 .2 .1

.3 .6 .1

.3 .2 .5
𝐩 𝑥 =:𝐩=

0.313
0.336
0.351

𝐩 𝑦 =:𝐪=
0.425
0.334
0.241

𝐶 = max
𝐩

𝐼 𝑋; 𝑌

Python activities file 231: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/231_Blahut-Arimato.ipynb 

This is the solution.
How do we get 
there? ?

𝑥

𝑦row-stochastic

https://northeastern-datalab.github.io/cs7840/fa25/
https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/231_Blahut-Arimato.ipynb


34Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/

Blahut-Arimoto algorithm (forward interpretation)

𝐷!	tells us how informative (or recognizable) 𝑥 is:

• if sending 𝑥 produces an output that looks similar to 
the usual channel output (𝐩(: |𝑥)≈𝐪), then seeing 
the output does not help you infer that 𝑥 was sent.
→ if 𝐷! is small, then 𝑥 is not recognizable

• If sending 𝑥 produces a distinctive output footprint, 
very unlike the average output 𝐪, then the receiver 
can recognize that 𝑥 was the one sent.

Python activities file 231: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/231_Blahut-Arimato.ipynb 

→ if 𝐷! is large, then 𝑥 is highly recognizable

=5
1

	

𝑝(𝑦|𝑥) ⋅ lg
𝑝(𝑦|𝑥)
𝑞(𝑦)

𝑃!1

𝐷! = 𝐷KL 𝐩(: |𝑥)||𝐪

row 𝐏!:

For each input 𝑥, define the scalar 𝐷!(𝐪) that 
measures how different (= informative) the output 
distribution 𝐩(: |𝑥) is from the average output 
distribution 𝐪. Collect these in vector 𝐃(𝐪)

Start with an arbitrary input probability 𝐩
and repeat until convergence:

Calculate 𝐪 ← 𝐏4𝐩

𝐶 = 𝔼"[𝐷!] 

•

•

•

https://northeastern-datalab.github.io/cs7840/fa25/
https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/231_Blahut-Arimato.ipynb
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Blahut-Arimoto algorithm (forward interpretation)

For each input 𝑥, define the scalar 𝐷!(𝐪) that 
measures how different (= informative) the output 
distribution 𝐩(: |𝑥) is from the average output 
distribution 𝐪. Collect these in vector 𝐃(𝐪)

𝑝! ∝ 𝑝!25! 

𝐩 ← softmax0(𝐩⊙ 𝐃)
using 2 as base of the softmax instead of 𝑒

Start with an arbitrary input probability 𝐩
and repeat until convergence:

Calculate 𝐪 ← 𝐏4𝐩

𝐶 = 𝔼"[𝐷!] 

Push probability mass towards 𝑥	with high 𝐷! 
with multiplicative-weights update:

entrywise multiplication

When converged: 𝐷( = 𝐷0 = ⋯ = 𝐶
Python activities file 231: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/231_Blahut-Arimato.ipynb 

•

•

•

=5
1

	

𝑝(𝑦|𝑥) ⋅ lg
𝑝(𝑦|𝑥)
𝑞(𝑦)

row 𝐏!: 𝑃!1

𝐷! = 𝐷KL 𝐩(: |𝑥)||𝐪

Optimality (convergence) is achieved when all 𝐷! = 𝐶 
for all used 𝑥 (with 𝑝 𝑥 >0) and is thus equally 
distinguishable at the receiver.

Shifts the input distribution so that all used inputs end 
up having the same 𝐷! value, i.e., they are equally 
distinguishable. 

We multiply each weight 𝑝#	by an exponential factor, then renormalize.

https://northeastern-datalab.github.io/cs7840/fa25/
https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/231_Blahut-Arimato.ipynb
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Blahut-Arimoto algorithm (reverse form)

maximize 𝐼 𝑋; 𝑌 	by choosing 𝐩, while fixing 𝐐:

Start with an arbitrary input probability 𝐩 and alternate 
between updating 𝐐 and updating 𝐩.

maximize 𝐼 𝑋; 𝑌 	by choosing posterior 𝐐, while fixing 𝐩:•

•

Python activities file 231: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/231_Blahut-Arimato.ipynb 
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Blahut-Arimoto algorithm (reverse form)

Calculate posterior matrix 𝐐 with 𝑄1: = 𝑝(𝑋|𝑌 = 𝑦)

𝑝! ∝ 26! 

maximize 𝐼 𝑋; 𝑌 	by choosing 𝐩, while fixing 𝐐:

𝑆! ← ∑1	 𝑃!1 ⋅ lg(𝑄1!) 

Collect these in 𝐒

𝑄1! ←
"!⋅7!"
$"

 

𝐩 ← softmax2(𝐒) 

Calculate 𝐪 ← 𝐏4𝐩

Start with an arbitrary input probability 𝐩 and alternate 
between updating 𝐐 and updating 𝐩.

maximize 𝐼 𝑋; 𝑌 	by choosing posterior 𝐐, while fixing 𝐩:•

𝑆! = ∑1	 𝑝 𝑦 𝑥 ⋅ lg 𝑝 𝑥 𝑦

𝐩 ← softmax(𝐒 ⋅ ln(2))

•

Python activities file 231: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/231_Blahut-Arimato.ipynb 

If sending 𝑥 leads the decoder (using 
current model 𝐐) to strongly conclude that 
𝑥 was indeed sent, then 𝑝 𝑥 𝑌 = 𝑄(𝑥|𝑌) 
is large → 𝑆! is large → Softmax assigns 
more probability to 𝑥

𝑆! = 𝔼1~"(.|!) lg 𝑝(𝑥|𝑦)

𝑆! is intuitively a "recognizability score". 

𝑆! is an expected log-posterior score:

Thus, the update pushes probability mass 
toward inputs that are easier to decode.

If the channel behavior under 𝑥 is 
ambiguous, then 𝑄(𝑥|𝑌) is small → 𝑆! is 
small → in the the next iteration, 𝑝(𝑥) is 
reduced.

https://northeastern-datalab.github.io/cs7840/fa25/
https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/231_Blahut-Arimato.ipynb


38Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/

Blahut-Arimoto algorithm (reverse form)

Calculate posterior matrix 𝐐 with 𝑄1: = 𝑝(𝑋|𝑌 = 𝑦)

𝑝! ∝ 26! 

maximize 𝐼 𝑋; 𝑌 	by choosing 𝐩, while fixing 𝐐:

𝑆! ← ∑1	 𝑃!1 ⋅ lg(𝑄1!) 

Collect these in 𝐒

𝑄1! ←
"!⋅7!"
$"

 

𝐩 ← softmax2(𝐒) 

Calculate 𝐪 ← 𝐏4𝐩

Start with an arbitrary input probability 𝐩 and alternate 
between updating 𝐐 and updating 𝐩.

maximize 𝐼 𝑋; 𝑌 	by choosing posterior 𝐐, while fixing 𝐩:•

𝑆! = ∑1	 𝑝 𝑦 𝑥 ⋅ lg 𝑝 𝑥 𝑦

𝐩 ← softmax(𝐒 ⋅ ln(2))

•

Python activities file 231: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/231_Blahut-Arimato.ipynb 

𝑆! = ∑1	 𝑃!1 ⋅ lg(𝑄1!)

𝑆! = ∑1	 𝑝(𝑦|𝑥) ⋅ lg
"(!)⋅"(1|!)

$(1)	

= ∑1	 𝑝(𝑦|𝑥) ⋅ lg 𝑝 𝑥 + lg "(1|!)
$ 1

	

= lg 𝑝 𝑥 + ∑1	 𝑝(𝑦|𝑥) ⋅ lg
"(1|!)
$ 1

 

= lg 𝑝 𝑥 + 𝐷!

26! = 𝑝 𝑥 ⋅ 25!

Connection forward / backward:

https://northeastern-datalab.github.io/cs7840/fa25/
https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/231_Blahut-Arimato.ipynb
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Details on the reverse interpretation

𝐼 𝑋; 𝑌 = 

=5
!,1

	

𝑝(𝑥, 𝑦) ⋅ lg
𝑝(𝑦|𝑥)
𝑝 𝑦

∑!;	 𝑝 𝑥; 𝑝(𝑦|𝑥′) 
(via 𝐪 = 𝐏4𝐩)

Goal: maximize 𝐼 𝑋; 𝑌 . Given: 𝑝(𝑥|𝑦) (written as 𝐏 = [𝑝(𝑥|𝑦)]). We can choose 𝐩 = [𝑝(𝑥)].

=5
!

	

𝑝(𝑥) ⋅5
!,1

	

𝑝(𝑦|𝑥) ⋅ lg
𝑝(𝑦|𝑥)
𝑝 𝑦

𝐷!
This leads to the interpretation of the 
forward variant with multiplicative weights 
updates from the previous pages.

5
!,1

	

𝑝(𝑥, 𝑦) ⋅ lg
𝑝(𝑥, 𝑦)

𝑝 𝑥 ⋅ 𝑝(𝑦)
= 𝐷KL 𝑝(𝑥, 𝑦)||𝑝(𝑥) ⋅ 𝑝(𝑦)

https://northeastern-datalab.github.io/cs7840/fa25/
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Details on the reverse interpretation

𝐼 𝑋; 𝑌 = 

=5
!,1

	

𝑝(𝑥, 𝑦) ⋅ lg
𝑝(𝑦|𝑥)
𝑝 𝑦

∑!;	 𝑝 𝑥; 𝑝(𝑦|𝑥′) 
(via 𝐪 = 𝐏4𝐩)

Goal: maximize 𝐼 𝑋; 𝑌 . Given: 𝑝(𝑥|𝑦) (written as 𝐏 = [𝑝(𝑥|𝑦)]). We can choose 𝐩 = [𝑝(𝑥)].

=5
!

	

𝑝(𝑥) ⋅5
!,1

	

𝑝(𝑦|𝑥) ⋅ lg
𝑝(𝑦|𝑥)
𝑝 𝑦

𝐷!
This leads to the interpretation of the 
forward variant with multiplicative weights 
updates from the previous pages.

5
!,1

	

𝑝(𝑥, 𝑦) ⋅ lg
𝑝(𝑥, 𝑦)

𝑝 𝑥 ⋅ 𝑝(𝑦) =5
!,1

	

𝑝 𝑥 ⋅ 𝑝(𝑦|𝑥) ⋅ lg
𝑝(𝑥|𝑦)
𝑝 𝑥

LEMMA 1: If 𝑝 𝑥  and 𝑝(𝑦|𝑥)	are given (then 𝐪 = [𝑝(𝑦)] 
follows), then 𝑝(𝑥|𝑦) that maximizes 𝐼 𝑋; 𝑌  is the posterior 
matrix 𝐐 with 𝑄:1 = 𝑝(𝑋|𝑌 = 𝑦)

𝑝(𝑥|𝑦) =
𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥)

𝑝(𝑦)

Thus 𝑄!1 =
"!⋅7!"
$"

 (via 𝐪 = 𝐏4𝐩) 

https://northeastern-datalab.github.io/cs7840/fa25/
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Details on the reverse interpretation

𝐼 𝑋; 𝑌 = =5
!,1

	

𝑝 𝑥 ⋅ 𝑝(𝑦|𝑥) ⋅ lg
𝑝(𝑥|𝑦)
𝑝 𝑥

=5
!,1

	

𝑝(𝑥, 𝑦) ⋅ lg
𝑝(𝑦|𝑥)
𝑝 𝑦

5
!,1

	

𝑝(𝑥, 𝑦) ⋅ lg
𝑝(𝑥, 𝑦)

𝑝 𝑥 ⋅ 𝑝(𝑦)

=5
!,1

	

𝑝 𝑥 ⋅ 𝑝(𝑦|𝑥) ⋅ lg
𝑄1!
𝑝 𝑥

∑!;	 𝑝 𝑥; 𝑝(𝑦|𝑥′) 
(via 𝐪 = 𝐏4𝐩)

Goal: maximize 𝐼 𝑋; 𝑌 . Given: 𝑝(𝑥|𝑦) (written as 𝐏 = [𝑝(𝑥|𝑦)]). We can choose 𝐩 = [𝑝(𝑥)].

=5
!

	

𝑝(𝑥) ⋅5
!,1

	

𝑝(𝑦|𝑥) ⋅ lg
𝑝(𝑦|𝑥)
𝑝 𝑦

𝐷!
This leads to the interpretation of the 
forward variant with multiplicative weights 
updates from the previous pages.

=>
#

	

𝑝 𝑥 ⋅>
&

	

𝑝(𝑦|𝑥) ⋅ lg 𝑄&#

Step 1: max 𝑝(𝑥|𝑦)

−>
#,&

	

𝑝 𝑥 ⋅ lg 𝑝 𝑥 ⋅ 𝑝(𝑦|𝑥)

≔ 𝑆! = +𝐻(𝐩)

sums up to 1 over 𝑦

LEMMA 2: The softmax is the solution to

𝑝< =
0#$

∑%
	 0#%

 

argmax
𝐩(!)∊∆

5
!

	

𝑝 𝑥 𝑆! + 𝐻 𝐩

𝐩 = softmax0(𝐒)

https://northeastern-datalab.github.io/cs7840/fa25/
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Detail: Posterior matrix 𝑄(𝑋|𝑌)

𝐏 =
.7 .2 .1
.3 .6 .1
.3 .2 .5

𝐩 𝑥 =:𝐩=
0.5	
0.25
0.25

𝐩 𝑦 =:𝐪=
0.5
0.3
0.2

Python activities file 231: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/231_Blahut-Arimato.ipynb 

1 1  

2  

2  3

.7

2

.2
.1
.3
.6

.1

.5

.2.3

0.5

0.25

0.25

0.5

0.3

0.2

𝐩(𝑋) 𝐪(𝑌)

𝐐 =
.7	 .15	 .15	
. 3̇	 . 5	 .16̇	
.25 . 125 .625

each row 𝐐1: is a posterior ℙ(𝑋|𝑌 = 𝑦)
𝐐(: is ℙ(𝑋|𝑌 = 1)

𝑄(0 =
"'7'(
$(

= +.0@⋅+.A
+.@

= 0.15 

Calculate posterior matrix 𝐐 with 𝑄1: = 𝑝(𝑋|𝑌 = 𝑦) 𝑄1! =
𝑝! ⋅ 𝑃!1
𝑞1

Given fixed 𝐩 = 𝑝(𝑋) and 𝐏 = 𝑝 𝑌 𝑋 .

Notice some textbooks write column-stochastic 
𝑄!1 instead of row-stochastic 𝑄1!

𝑥

𝑦

𝑦

𝑥

row-stochastic

row-stochastic

https://northeastern-datalab.github.io/cs7840/fa25/
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Detail: Posterior matrix 𝑄(𝑋|𝑌)

𝐩 𝑥 =:𝐩=
0.313
0.336
0.351

𝐩 𝑦 =:𝐪=
0.425
0.334
0.241

Python activities file 231: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/231_Blahut-Arimato.ipynb 

1 1  

2  

2  3

.7

2

.2
.1
.3
.6

.1

.5

.2.3

0.313

0.336

0.351

0.425

0.334

0.241

𝐩(𝑋) 𝐪(𝑌)

𝐐 =
.515 .237 .248
.187 . 603 .210
.130 . 140 .730

𝑄(0 =
"'7'(
$(

= +.AAB⋅+.A
+.C0@

= 0.237 

Calculate posterior matrix 𝐐 with 𝑄:1 = 𝑝(𝑋|𝑌 = 𝑦)
Given fixed 𝐩 = 𝑝(𝑋) and 𝐏 = 𝑝 𝑌 𝑋 .

𝐏 =
.7 .2 .1
.3 .6 .1
.3 .2 .5

𝑄1! =
𝑝! ⋅ 𝑃!1
𝑞1

𝑥

𝑦

𝑦

𝑥

each row 𝐐1: is a posterior ℙ(𝑋|𝑌 = 𝑦)
𝐐(: is ℙ(𝑋|𝑌 = 1)

row-stochastic

row-stochastic

Notice some textbooks write column-stochastic 
𝑄!1 instead of row-stochastic 𝑄1!

https://northeastern-datalab.github.io/cs7840/fa25/
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Detail: Softmax maximizes linear reward + entropy
log 5

<

	

𝑎< ≥5
<

	

𝑝< ⋅ log
𝑎<
𝑝<

set 𝑎< = 26$  and use lg = log0 

lg 5
<

	

26$ ≥5
<

	

𝑝< ⋅ 𝑆< − lg 𝑝<

=5
<

	

𝑝<𝑆< − 𝑝<lg 𝑝<

= 5
<

	

𝑝<𝑆< + 𝐻 𝑝

𝑝< =
0#$

∑%
	 0#%

 

equality for: D$
"$
= D%

"%

argmax
𝐩∊∆

5
<

	

𝑝<𝑆< + 𝐻 𝐩

𝐩 = softmax0(𝐒)

𝑓 𝔼 𝑋 ≥ 𝔼 𝑓(𝑋)

Jensen's inequality for concave 𝑓:

log 𝑋  is concave

PROOF

log 𝔼 𝑋 ≥ 𝔼 log(𝑋)

log 5
<

	

𝑝< ⋅ 𝑋< ≥5
<

	

𝑝< ⋅ log 𝑋<

log 5
<

	

𝑝< ⋅
𝑎<
𝑝<

≥5
<

	

𝑝< ⋅ log
𝑎<
𝑝<

equality for: 𝑋< = 𝑋E
Hence, 𝑝< =

0#$
F

.

Equality holds for 0
#$

"$
= 0#%

"%
= 𝐶.

Hence, 𝑝< =
0#$

∑%
	 0#%

.

CLAIM

Is the solution to the 
optimization problem

From from ∑<	 𝑝< = 1, we get 𝐶 = ∑E	 26%.

Entropy regularization adds a “keep it uncertain” bias to optimization. The unique 
optimizer of a linear objective plus entropy regularization is the softmax distribution.

𝔼(~* 𝑆(  

https://northeastern-datalab.github.io/cs7840/fa25/
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Polyanskiy, Wu. Information Theory: From Coding to Learning. Cambridge University Press 2025. https://doi.org/10.1017/9781108966351   
See also Wikipedia: https://en.wikipedia.org/wiki/Blahut%E2%80%93Arimoto_algorithm#Algorithm_for_Channel_Capacity 

There are two mathematically equivalent forms of 
the Blahut–Arimoto (BA) algorithm:
1. we started with the forward form that optimizes 
for 𝐩, using transition matrix 𝐏 or 𝐩(𝑦|𝑥).
2. Here and on Wikipedia, you find the reverse form 
that optimizes for 𝐩 𝑥 𝑦 = 𝐐)* using Bayes' law.

https://northeastern-datalab.github.io/cs7840/fa25/
https://doi.org/10.1017/9781108966351
https://en.wikipedia.org/wiki/Blahut%E2%80%93Arimoto_algorithm
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Error Correcting Codes

https://northeastern-datalab.github.io/cs7840/fa25/


52Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/

Efficient error correcting codes are quite complicated

Moser. Information Theory (lecture Notes, 6th ed), 2018. https://moser-isi.ethz.ch/scripts.html 

https://northeastern-datalab.github.io/cs7840/fa25/
https://moser-isi.ethz.ch/scripts.html


53Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/

Efficient error correcting codes are quite complicated

Moser. Information Theory (lecture Notes, 6th ed), 2018. https://moser-isi.ethz.ch/scripts.html 

We may still try to gain intuition on those towards 
the end of the class (if we have time)

https://northeastern-datalab.github.io/cs7840/fa25/
https://moser-isi.ethz.ch/scripts.html
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Duality (max / min perspectives on mutual information)

• Data compression: 
- we remove all the redundancy in the data to form the most compressed 

version possible

• Data transmission: 
- we add redundancy in a controlled manner to combat errors in the channel

https://northeastern-datalab.github.io/cs7840/fa25/
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Part 3: Applications
L19: Channel Capacity, Distortion Theory, 
Information Bottleneck
[Distortion Theory]

Wolfgang Gatterbauer
cs7840 Foundations and Applications of Information Theory (fa25)
https://northeastern-datalab.github.io/cs7840/fa25/  
11/17/2025

Updated 11/17/2025

https://northeastern-datalab.github.io/cs7840/fa25/
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Pre-class conversations

• Last class recapitulation
• Projects: commented on 5/9 projects so far
- Figures, Python notebook outputs (ideally in the appendix) are *highly* encourage and 

do not count against page count for projects

• Last time:
- Zsolt on a softmax variant
- Channel capacity with Blahut-Arimato 
- Intro to distortion (I move the slides to after this intro) 

• Today:
- Distortion theory
- information bottleneck theory
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https://northeastern-datalab.github.io/cs7840/fa25/
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Examples for "The axiomatic approach" across CS

NU theory seminar: https://theory.khoury.northeastern.edu/seminar.html, Gonczarowski, Segev. Quantifying Inefficiency, 2024. https://arxiv.org/abs/2412.11984 

Title: Quantifying Inefficiency
When: Wednesday, Nov 12 @ 12:00–1:25 p.m.
Where: West Village H #366 (440 Huntington Avenue, Boston, MA 02115)
Faculty Host: Mahsa Derakhshan

Abstract:
The mainstream view within economic theory is that an individual's cardinal utility values are mere representations of the individual's ordinal preferences (over lotteries over 
alternative outcomes). As such, each individual's cardinal utilities are only unique up to monotone affine transformations. This poses challenges for the social aggregation of 
utilities, and furthermore for forming a foundation for approximation theorems for social efficiency. We axiomatically define a cardinal social inefficiency function, which, given 
a set of alternative outcomes and individuals' preferences over these alternatives, assigns a unique number—the social inefficiency—to each alternative. These numbers—
and not only their order—are uniquely defined by our axioms despite no exogenously given interpersonal comparison, outside option, or disagreement point. We interpret 
these numbers as per capita losses in endogenously normalized utility. We apply our social inefficiency function to a setting in which interpersonal comparison is notoriously 
hard to justify—object allocation without money—leveraging techniques from the Price-of-Anarchy literature to prove an approximate-efficiency result for the widely used 
Random Serial Dictatorship mechanism.

Joint work with Ella Segev.

Bio:
Yannai A. Gonczarowski is an Assistant Professor of Economics and of Computer Science at Harvard University—the first faculty member at Harvard to have been appointed 
to both of these departments. Interested in both economic theory and theoretical computer science, Yannai explores computer-science-inspired economics: he harnesses 
approaches, aesthetics, and techniques traditionally originating in computer science to derive economically meaningful insights. Yannai received his PhD from the 
Departments of Mathematics and Computer Science, and the Center for the Study of Rationality, at the Hebrew University of Jerusalem. Yannai is also a professionally-
trained opera singer, having acquired a bachelor’s degree and a master’s degree in Classical Singing at the Jerusalem Academy of Music and Dance. Yannai's doctoral 
dissertation was recognized with several awards, including the Michael B. Maschler Prize of the Israeli Chapter of the Game Theory Society and the ACM SIGecom Doctoral 
Dissertation Award. For the design and implementation of the National Matching System for Gap-Year Programs in Israel, he was awarded the inaugural INFORMS AMD 
Michael H. Rothkopf Junior Researcher Paper Prize (first place). Yannai was also the recipient of the inaugural ACM SIGecom Award for Best Presentation by a Student or 
Postdoctoral Researcher. His first textbook, "Mathematical Logic through Python" (Gonczarowski and Nisan), which introduces a new approach to teaching the material of a 
basic Logic course to Computer Science students, tailored to the unique intuitions and strengths of this cohort of students, was published by Cambridge University Press.

https://northeastern-datalab.github.io/cs7840/fa25/
https://theory.khoury.northeastern.edu/seminar.html
https://arxiv.org/abs/2412.11984
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Liu, Wang, Vaidya, Ruehle, Halverson, Soljačić, Hou, Tegmark. KAN: Kolmogorov-Arnold Networks, ICLR 2025. https://arxiv.org/abs/2404.19756 , 
Gatterbauer, Suciu. Dissociation and propagation for approximate lifted inference with standard relational database management systems, VLDBJ 2017. https://arxiv.org/abs/1310.6257   

https://northeastern-datalab.github.io/cs7840/fa25/
https://arxiv.org/abs/2404.19756
https://arxiv.org/abs/1310.6257
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Distortion
Theory

Largely based on chapter 10 of
[Cover, Thomas'06] Elements of Information Theory, 2006. https://www.doi.org/10.1002/047174882X 

https://northeastern-datalab.github.io/cs7840/fa25/
https://www.doi.org/10.1002/047174882X
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Rate distortion theory

• A finite representation of a continuous RV can never be perfect
• How well can we represent it?
• Requires a notion of "goodness" of a representation
- Distortion measure: distance between RV and its representation

• Rate distortion theory:
- Given: source distribution 𝑝 and a distortion measure 𝑑
- Describes: trade-off between communication rate 𝑅 and distortion 𝑑
- Lossy compression framework with zero-error data compression (earlier topics in class, 

to be seen if we revisit later again) a special case

https://northeastern-datalab.github.io/cs7840/fa25/
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Quantization

• Let 𝑋 be a continuous RV (e.g. from a Gaussian distribution)
• We approximate 𝑋 by "𝑋
• Using 𝑅 bits to represent 𝑋, then "𝑋 𝑋  has 2!  possible values
- Example 𝑅 = 8 bits, then then $𝑋 has how many possible values?

https://northeastern-datalab.github.io/cs7840/fa25/
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Quantization

• Let 𝑋 be a continuous RV (e.g. from a Gaussian distribution)
• We approximate 𝑋 by "𝑋
• Using 𝑅 bits to represent 𝑋, then "𝑋 𝑋  has 2!  possible values
- Example 𝑅 = 8 bits, then then $𝑋 has 2e = 256 possible values

• Goal: find the optimal set of values ("representatives") for "𝑋	and 
associated regions ("assignment regions") for each value

https://northeastern-datalab.github.io/cs7840/fa25/
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Source: Bernd Girod, 2012: https://web.stanford.edu/class/ee398a/handouts/lectures/05-Quantization.pdf 

Quantization 
Error

Original and 
Quantized 
Signal

https://northeastern-datalab.github.io/cs7840/fa25/
https://web.stanford.edu/class/ee398a/handouts/lectures/05-Quantization.pdf
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Source: Bernd Girod, 2012: https://web.stanford.edu/class/ee398a/handouts/lectures/05-Quantization.pdf 

Quantization 
Error

Original and 
Quantized 
Signal

https://northeastern-datalab.github.io/cs7840/fa25/
https://web.stanford.edu/class/ee398a/handouts/lectures/05-Quantization.pdf
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Quantization of a Gaussian 

?

Assume you have 𝑅 = 1 bit 
(2 values). What is the best 
way to quantize a Gaussian 
distribution 

What is an appropriate 
measure of distortion

?

https://northeastern-datalab.github.io/cs7840/fa25/
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Quantization of a Gaussian 

Assume you have 𝑅 = 1 bit 
(2 values). What is the best 
way to quantize a Gaussian 
distribution 

Assume we like to minimize the 
mean of squared errors (MSE)

?

Recall from our probability primer: 
The mean minimizes the sum of 
squared errors, and thus also the 
MSE (while the median minimizes 
the sum of absolute errors). 

https://northeastern-datalab.github.io/cs7840/fa25/
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Quantization of a Gaussian 

If we have 2 values. It makes sense to choose ≥ 0 
and ≤ 0. But what should be the representatives?

Assume you have 𝑅 = 1 bit 
(2 values). What is the best 
way to quantize a Gaussian 
distribution 

Assume we like to minimize the 
mean of squared errors (MSE)

?

≥ 0 ≤ 0 

https://northeastern-datalab.github.io/cs7840/fa25/
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Quantization of a Gaussian 

Assume you have 𝑅 = 1 bit 
(2 values). What is the best 
way to quantize a Gaussian 
distribution 

Assume we like to minimize the 
mean of squared errors (MSE)

If we have 2 values. It makes sense to choose ≥ 0 
and ≤ 0. But what should be the representatives?

≥ 0 

What should be the representative 
of the region ≥ 0 

?

https://northeastern-datalab.github.io/cs7840/fa25/
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Quantization of a Gaussian 

Assume you have 𝑅 = 1 bit 
(2 values). What is the best 
way to quantize a Gaussian 
distribution 

Assume we like to minimize the 
mean of squared errors (MSE)

If we have 2 values. It makes sense to choose ≥ 0 
and ≤ 0. But what should be the representatives?

≥ 0 ≤ 0 

The (conditional) mean (centroid) of 
a region minimizes the MSE!

−0.80 0.80 

https://northeastern-datalab.github.io/cs7840/fa25/
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Quantization of a Gaussian 

Assume you have 𝑅 = 2 bits 
(4 values). What is the best 
way to quantize a Gaussian 
distribution under MSE? 

𝑡F 𝑡FG3P𝑥F

Now we need to determine 3  
boundaries {𝑡F}
and 4 reconstruction points 
{ P𝑥F}. But how?

https://northeastern-datalab.github.io/cs7840/fa25/
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Two properties of optimal boundaries and construction points

P𝑥FG3
𝑡F ⇒ {P𝑥FG3} 

?
Given two thresholds 𝑡F, 𝑡FG3 marking the boundaries of a 
region. What is the best representative P𝑥FG3 of the region?

https://northeastern-datalab.github.io/cs7840/fa25/
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Two properties of optimal boundaries and construction points

𝑡F 𝑡FG3

P𝑥FG3

𝑥

P𝑥FG3P𝑥F

𝑡F ⇒ {P𝑥FG3} 

{ P𝑥F} ⇒ 𝑡F  

?

The conditional means (conditioned on the region 
= centroids) minimize the MSE and should thus be 
the reconstruction points.

Given two thresholds 𝑡F, 𝑡FG3 marking the boundaries of a 
region. What is the best representative P𝑥FG3 of the region?

Given a set of representative values { P𝑥FG3}, which 
representative should we choose for any given 𝑥?

https://northeastern-datalab.github.io/cs7840/fa25/
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Two properties of optimal boundaries and construction points

𝑡F 𝑡FG3

𝑥

P𝑥FG3

P𝑥FG3P𝑥F

𝑡F ⇒ {P𝑥FG3} 

{ P𝑥F} ⇒ 𝑡F  

The conditional means (conditioned on the region 
= centroids) minimize the MSE and should thus be 
the reconstruction points.

Distortion (MSE) is minimized by assigning values to 
their closest points. Thus a Voronoi partition gives 
use the optimal thresholds.

Given two thresholds 𝑡F, 𝑡FG3 marking the boundaries of a 
region. What is the best representative P𝑥FG3 of the region?

Given a set of representative values { P𝑥FG3}, which 
representative should we choose for any given 𝑥?

https://northeastern-datalab.github.io/cs7840/fa25/
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Two properties of optimal boundaries and construction points

𝑡F 𝑡FG3

𝑥

Given two thresholds 𝑡F, 𝑡FG3 marking the boundaries of a 
region. What is the best representative P𝑥FG3 of the region?

P𝑥FG3

Given a set of representative values { P𝑥FG3}, which 
representative should we choose for any given 𝑥?

Distortion (MSE) is minimized by assigning values to 
their closest points. Thus a Voronoi partition gives 
use the optimal thresholds.

P𝑥FG3P𝑥F

𝑡F ⇒ {P𝑥FG3} 

{ P𝑥F} ⇒ 𝑡F  

corresponds to E-step in EM: for each input, compute an assignment to a cluster 
(here it is a deterministic version of computing expected cluster responsibilities)

corresponds to the M-step in EM algorithm: optimize the model parameters 
(the codewords) given the current assignments

The conditional means (conditioned on the region 
= centroids) minimize the MSE and should thus be 
the reconstruction points.

https://northeastern-datalab.github.io/cs7840/fa25/
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Lloyd-Max scalar quantizer
Problem: For a signal 𝑥 with given PDF 𝑓H 𝑥  find a quantizer with 𝑚 representative 
levels (or "codes" that minimizes

𝑑 = 𝑀𝑆𝐸 = 𝔼[ 𝑋 − Y𝑋
4
]

Lloyd-Max quantizer

• Create 𝑚	representative levels P𝐱	as the 
centroids of PDF between two successive 
decision thresholds

Input: initial vector P𝐱 of 𝑚 representative levels
Repeat {

until (likely) convergence}

• Create 𝑚 − 1 decision thresholds 𝐭 exactly 
half-way between representative levels

𝑡F =
I'!"#GI'!

4
, 𝑖 = 1,… ,𝑚 − 1 

P𝑥F =
∫$!
$!%# '⋅K& ' L'

	 ∫$!
$!%# K& ' L'

, 𝑖 = 0,… ,𝑚 − 1 

https://northeastern-datalab.github.io/cs7840/fa25/
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−0.80 0.80 

Python file 232: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks

𝑚 = 2

https://northeastern-datalab.github.io/cs7840/fa25/
https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks
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−0.80 0.80 

Python file 232: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks

𝑚 = 2

https://northeastern-datalab.github.io/cs7840/fa25/
https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks
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Python file 232: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks

𝑚 = 6

https://northeastern-datalab.github.io/cs7840/fa25/
https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks
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Example: Lloyd-Max quantizers for Gaussian PDF

Data 
point
𝑥

0.1

Code
name
𝑓(𝑥)

Recon-
struction
𝑔(𝑓(𝑥))

1 0.80

-0.80 0.80
0

0 1

Reconstruction
error 𝑑

𝑔 𝑓 𝑥 − 𝑥 0

0.490=(0.8-0.1)2

index quantized value, representation

0.3634

Expected Distortion
𝐷 = 𝔼[𝑑]

https://northeastern-datalab.github.io/cs7840/fa25/
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Example: Lloyd-Max quantizers for Gaussian PDF

Data 
point
𝑥

0.1

Code
name
𝑓(𝑥)

Recon-
struction
𝑔(𝑓(𝑥))

-0.98 0.98
-1.51 -0.45 0.45 1.51

0

0
0

0
1

1
0

1
1

1 0.80
10 0.45

100 0.25

-0.80 0.80
0

0 1

-1.05 0.50

-1.34 -0.76 0.25 1.34

0

0
0
1

1.05 1.75

0.76 2.15-0.25-2.15

-0.50-1.75

0
0
0

0
1
1

0
1
0

1
0
1

1
0
0

1
1
1

1
1
0

Reconstruction
error 𝑑

𝑔 𝑓 𝑥 − 𝑥 0

0.490

Code
length
bits

1
2
3

0.123
0.023

index quantized value, representation

0.0345

0.3634

0.1175

Expected Distortion
𝐷 = 𝔼[𝑑]

https://northeastern-datalab.github.io/cs7840/fa25/
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Example: Lloyd-Max quantizers for Gaussian PDF

Data 
point
𝑥

0.1

Code
name
𝑓(𝑥)

Recon-
struction
𝑔(𝑓(𝑥))

-0.98 0.98
-1.51 -0.45 0.45 1.51

0

0
0

0
1

1
0

1
1

1 0.80
10 0.45

100 0.25

-0.80 0.80
0

0 1

-1.05 0.50

-1.34 -0.76 0.25 1.34

0

0
0
1

1.05 1.75

0.76 2.15-0.25-2.15

-0.50-1.75

0
0
0

0
1
1

0
1
0

1
0
1

1
0
0

1
1
1

1
1
0

Reconstruction
error 𝑑

𝑔 𝑓 𝑥 − 𝑥 0

0.490

Code
length
bits

1
2
3

0.123
0.023

1.0 ? ?
? ?
? ?

?1
2
3

?
?

index quantized value, representation

0.0345

0.3634

0.1175

Expected Distortion
𝐷 = 𝔼[𝑑]

https://northeastern-datalab.github.io/cs7840/fa25/
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Example: Lloyd-Max quantizers for Gaussian PDF

Data 
point
𝑥

0.1

Code
name
𝑓(𝑥)

Recon-
struction
𝑔(𝑓(𝑥))

-0.98 0.98
-1.51 -0.45 0.45 1.51

0

0
0

0
1

1
0

1
1

1 0.80
10 0.45

100 0.25

-0.80 0.80
0

0 1

-1.05 0.50

-1.34 -0.76 0.25 1.34

0

0
0
1

1.05 1.75

0.76 2.15-0.25-2.15

-0.50-1.75

0
0
0

0
1
1

0
1
0

1
0
1

1
0
0

1
1
1

1
1
0

Reconstruction
error 𝑑

𝑔 𝑓 𝑥 − 𝑥 0

0.490

Code
length
bits

1
2
3

0.123
0.023

1.0 1 0.80
11 1.51

101 0.76

0.0401
2
3

0.260
0.058

index quantized value, representation

0.0345

0.3634

0.1175

Expected Distortion
𝐷 = 𝔼[𝑑]

https://northeastern-datalab.github.io/cs7840/fa25/
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Vector quantization:
the geometry of longer block length 
(higher dimensions): Voronoi tessellations 
and connection to k-means

https://northeastern-datalab.github.io/cs7840/fa25/
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The geometry of vector quantization

Figure source: https://ieeexplore.ieee.org/document/7767821/ 

Independent 4-bit quantization (16 representatives) 
for 𝑛 = 2 independent Gaussians:

Joint encoding of 𝑛 = 2 independent Gaussians:

?

𝑋3

𝑋4

https://northeastern-datalab.github.io/cs7840/fa25/
https://ieeexplore.ieee.org/document/7767821/
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The geometry of vector quantization

Figure source: https://ieeexplore.ieee.org/document/7767821/ 

Independent 4-bit quantization (16 representatives) 
for 𝑛 = 2 independent Gaussians:

Joint encoding of 𝑛 = 2 independent Gaussians: 
2D vector quantization, i.e. block length 𝑛 = 2 
and 4-bit per sample, or 8-bit (and 256 
representatives) for two samples together

𝑋3

𝑋4

𝑋3

𝑋4

https://northeastern-datalab.github.io/cs7840/fa25/
https://ieeexplore.ieee.org/document/7767821/


100Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
Figure source: https://speechprocessingbook.aalto.fi/Modelling/Vector_quantization_VQ.html 

https://northeastern-datalab.github.io/cs7840/fa25/
https://speechprocessingbook.aalto.fi/Modelling/Vector_quantization_VQ.html
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Figure source: https://speechprocessingbook.aalto.fi/Modelling/Vector_quantization_VQ.html 

https://northeastern-datalab.github.io/cs7840/fa25/
https://speechprocessingbook.aalto.fi/Modelling/Vector_quantization_VQ.html
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Lloyd's algorithm = k-means

Figure source: https://en.wikipedia.org/wiki/Lloyd's_algorithm 

https://northeastern-datalab.github.io/cs7840/fa25/
https://en.wikipedia.org/wiki/Lloyd's_algorithm
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Optimal tessellations

Figure source: https://link.springer.com/article/10.1007/s41651-024-00200-5 

?

https://northeastern-datalab.github.io/cs7840/fa25/
https://link.springer.com/article/10.1007/s41651-024-00200-5
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Optimal tessellations

Source: https://www.kontur.io/blog/why-we-use-h3/ 

Three types of spatial grids: hexagonal, square, and triangular.
Only the hexagonal grid provides an equal distance between the centers of neighboring cells.
There are at least two different distance categories for other kinds of grids.

https://northeastern-datalab.github.io/cs7840/fa25/
https://www.kontur.io/blog/why-we-use-h3/


105Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/

Optimal tessellations

Source: Nazzi, "The hexagonal shape of the honeycomb cells depends on the construction behavior of bees", Nature, 2016. https://www.nature.com/articles/srep28341 

"Early natural philosophers, like Marcus Terentius Varro [37 BC], based on the 
observation that hexagons possess the highest surface/perimeter ratio, compared to 
other polygons that can be used for tiling the plane, suggested that honey bees build 
their hexagonal cells in order to achieve the best economy of material."

https://northeastern-datalab.github.io/cs7840/fa25/
https://www.nature.com/articles/srep28341
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It even gets better *with* correlations

Figure source: https://link.springer.com/chapter/10.1007/978-3-031-57840-3_40 

Correlation of neighboring pixels

?

Vector space partitioning in 
scalar quantization (approximate)

https://northeastern-datalab.github.io/cs7840/fa25/
https://link.springer.com/chapter/10.1007/978-3-031-57840-3_40
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It even gets better *with* correlations

Figure source: https://link.springer.com/chapter/10.1007/978-3-031-57840-3_40 

Correlation of neighboring pixels Vector space partitioning in 
scalar quantization (approximate)

Arrangement of cells with the 
smallest average quantization 
error in vector quantization

?

https://northeastern-datalab.github.io/cs7840/fa25/
https://link.springer.com/chapter/10.1007/978-3-031-57840-3_40
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It even gets better *with* correlations

Figure source: https://link.springer.com/chapter/10.1007/978-3-031-57840-3_40 

Correlation of neighboring pixels Arrangement of cells with the 
smallest average quantization 
error in vector quantization

Vector space partitioning in 
scalar quantization (approximate)

https://northeastern-datalab.github.io/cs7840/fa25/
https://link.springer.com/chapter/10.1007/978-3-031-57840-3_40
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Rate-distortion code vs. k-means

Source: https://en.wikipedia.org/wiki/K-means_clustering 

Vector quantization of colors present in the 
image into Voronoi cells using k-means

Example image with only red and 
green channel (for illustration)

𝑛 = 2 channels per pixel (will be encoded together); thus 16 bits per source sequence 𝒳0

𝑛𝑅 = 4 bits (per channel sequence), thus only 16 representatives per 𝒳0 instead of 65536 = 2560

𝒳 =	 {0,1, … , 255} thus 8 bit resolution (=256	levels) per color channel

𝑅 = 2 bits per channel (instead of 8)

https://northeastern-datalab.github.io/cs7840/fa25/
https://en.wikipedia.org/wiki/K-means_clustering
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Rate-distortion code vs. k-means

Source of images: https://en.wikipedia.org/wiki/K-means_clustering 

Vector quantization of colors present in the 
image into Voronoi cells using k-means

Example image with only red and 
green channel (for illustration)

1="0000"

16="1111"

Pairs inside this cell ("assignment 
region") get assigned to index 10 

index 10 (="1001" in bits) 
represents the pair (135, 105)

15
14

13
12

11

10="1001"

9

8

7

6

5

4
32

𝑛 = 2 channels per pixel (will be encoded together); thus 16 bits per source sequence 𝒳0

𝑛𝑅 = 4 bits (per channel sequence), thus only 16 representatives per 𝒳0 instead of 65536 = 2560

𝒳 =	 {0,1, … , 255} thus 8 bit resolution (=256	levels) per color channel

𝑅 = 2 bits per channel (instead of 8)

https://northeastern-datalab.github.io/cs7840/fa25/
https://en.wikipedia.org/wiki/K-means_clustering
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The magic of vector quantization

• Given a set of 𝑛 samples (e.g. iid from Gaussian distribution)
• We want to jointly quantize the vector 𝑋", … , 𝑋#
• Represent these vectors using 𝑛𝑅 bits
• Represent the entire sequence by a single index taking 2#!  values 

("representatives")

• Vector quantization achieves a lower distortion than linear 
(independent, scalar) quantization

https://northeastern-datalab.github.io/cs7840/fa25/
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Source: Van Baalen et al. GPTVQ: The Blessing of Dimensionality for LLM Quantization. ICML Workshop ES-FoMo-II, 2024. https://arxiv.org/abs/2402.15319 

https://northeastern-datalab.github.io/cs7840/fa25/
https://arxiv.org/abs/2402.15319
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An animation of k-means

Source of animation figure: https://en.wikipedia.org/wiki/K-means_clustering

https://northeastern-datalab.github.io/cs7840/fa25/
https://en.wikipedia.org/wiki/K-means_clustering
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k-means in higher dimensions

Source: https://www.ovito.org/docs/current/reference/pipelines/modifiers/voronoi_analysis.html 

https://northeastern-datalab.github.io/cs7840/fa25/
https://www.ovito.org/docs/current/reference/pipelines/modifiers/voronoi_analysis.html
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An animation of Voronoi tessellation

Source: https://cartography-playground.gitlab.io/playgrounds/triangulation-delaunay-voronoi-diagram/ 

5.2 MB

https://northeastern-datalab.github.io/cs7840/fa25/
https://cartography-playground.gitlab.io/playgrounds/triangulation-delaunay-voronoi-diagram/
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Logistic regression vs. (soft) k-means

https://northeastern-datalab.github.io/cs7840/fa25/
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Logistic regression vs. (soft) k-means

?Is this always 
possible

https://northeastern-datalab.github.io/cs7840/fa25/
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Let's make this more formal
(Definitions)

Largely based on chapter 10 of
[Cover, Thomas'06] Elements of Information Theory, 2006. https://www.doi.org/10.1002/047174882X 

https://northeastern-datalab.github.io/cs7840/fa25/
https://www.doi.org/10.1002/047174882X
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Distortion theory

• Given: source distribution 𝑝, distortion measure 𝑑. What is the minimum 
expected distortion 𝐷 achievable at a particular transmission rate 𝑅 (in bits)? 
- In particular: What is the fundamental lower-bound on distortion 𝐷	for a given rate 𝑅?
- Intuition: more bits available (higher rate 𝑅), then fewer errors (smaller distortion 𝐷)

• Equivalently: what is the min rate 𝑅 required to achieve a given distortion 𝐷? 

• An intriguing aspect of this theory is that joint descriptions (think block codes) 
are more efficient than individual descriptions, even for independent RVs
- The reason is found in the geometry: rectangular grid points (arising from independent 

descriptions) do not fill up the space efficiently (recall the earlier Voronoi diagrams)
- Instead of representing each RV using 𝑅 bits, we represent a sequence of 𝑛 RVs by a 

single index taking 2%M values. Encoding entire sequences at once achieves a lower 
distortion 𝐷 for the same rate than independent quantization of the individual samples

https://northeastern-datalab.github.io/cs7840/fa25/
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Distortion function 𝑑

𝑑:𝒳× c𝒳 → ℝG

Distortion function (measure) 𝑑:

source alphabet
reproduction alphabet

cost of representing a symbol by its 
quantized version

We assume the distortion to be bounded:
𝑑NOP = max

'∈𝒳, I'∈ T𝒳
𝑑 𝑥, P𝑥 < ∞

Usually, 𝒳 = l𝒳

What is then the distortion between sequences ?

https://northeastern-datalab.github.io/cs7840/fa25/
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Distortion function 𝑑

𝑑:𝒳× c𝒳 → ℝG

Distortion function (measure) 𝑑:

source alphabet
reproduction alphabet

𝑑 𝑥, P𝑥 = h0	 if	 𝑥 = P𝑥
1	 if	 𝑥 ≠ P𝑥 

Hamming distortion:

same as "probability of error" distortion

cost of representing a symbol by its 
quantized version

We assume the distortion to be bounded:
𝑑NOP = max

'∈𝒳, I'∈ T𝒳
𝑑 𝑥, P𝑥 < ∞

Usually, 𝒳 = l𝒳

Distortion between sequences is the 
average per symbol distortion:

𝑑 𝑥%, P𝑥% = 3
%
∑F 𝑑 𝑥F, P𝑥F  

?

https://northeastern-datalab.github.io/cs7840/fa25/
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Distortion function 𝑑

𝑑:𝒳× c𝒳 → ℝG

Distortion function (measure) 𝑑:

source alphabet
reproduction alphabet

𝑑 𝑥, P𝑥 = h0	 if	 𝑥 = P𝑥
1	 if	 𝑥 ≠ P𝑥 

Hamming distortion:

𝔼 𝑑 𝑋, Y𝑋 = ℙ[𝑋 ≠ Y𝑋] 

same as "probability of error" distortion

𝑑 𝑥, P𝑥 = 𝑥 − P𝑥 4
Squared-error distortion:

cost of representing a symbol by its 
quantized version

We assume the distortion to be bounded:
𝑑NOP = max

'∈𝒳, I'∈ T𝒳
𝑑 𝑥, P𝑥 < ∞

Usually, 𝒳 = l𝒳

Why are we always so excited about 
squared errors? Think "least squares", 
"sum of squared errors (SSE)", or 
"mean of squared errors (MSE)", in 
linear regression, etc...

Distortion between sequences is the 
average per symbol distortion:

𝑑 𝑥%, P𝑥% = 3
%
∑F 𝑑 𝑥F, P𝑥F  

?

https://northeastern-datalab.github.io/cs7840/fa25/


139Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/

Distortion function 𝑑

𝑑:𝒳× c𝒳 → ℝG

Distortion function (measure) 𝑑:

source alphabet
reproduction alphabet

𝑑 𝑥, P𝑥 = h0	 if	 𝑥 = P𝑥
1	 if	 𝑥 ≠ P𝑥 

Hamming distortion:

𝔼 𝑑 𝑋, Y𝑋 = ℙ[𝑋 ≠ Y𝑋] 

same as "probability of error" distortion

𝑑 𝑥, P𝑥 = 𝑥 − P𝑥 4
Squared-error distortion:

cost of representing a symbol by its 
quantized version

We assume the distortion to be bounded:
𝑑NOP = max

'∈𝒳, I'∈ T𝒳
𝑑 𝑥, P𝑥 < ∞

Usually, 𝒳 = l𝒳

Connection to simple expectations (means):

The squared error distortion penalizes large 
deviations quadratically. The conditional 
mean of 𝑋 (given some available information 
or constraint) minimizes this penalty. 

Distortion between sequences is the 
average per symbol distortion:

𝑑 𝑥%, P𝑥% = 3
%
∑F 𝑑 𝑥F, P𝑥F  

https://northeastern-datalab.github.io/cs7840/fa25/
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Distortion function 𝑑: Squared-error distortion
𝑚( 𝑚0 = 2𝑚(ℓ( ℓ0

𝑑 𝑥, P𝑥 = 𝑥 − P𝑥 4
Squared-error distortion:

?⇒ ℓ!
ℓ"
= 

Connection to simple expectations (means):

The squared error distortion penalizes large 
deviations quadratically. The conditional 
mean of 𝑋 (given some available information 
or constraint) minimizes this penalty. 

https://northeastern-datalab.github.io/cs7840/fa25/
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Distortion function 𝑑: Squared-error distortion
𝑚( 𝑚0 = 2𝑚(ℓ( ℓ0

⇒ ℓ!
ℓ"
= 2 

What does this have to do with 
squared-error distortion?

𝑑 𝑥, P𝑥 = 𝑥 − P𝑥 4
Squared-error distortion:

?

Connection to simple expectations (means):

The squared error distortion penalizes large 
deviations quadratically. The conditional 
mean of 𝑋 (given some available information 
or constraint)  minimizes this penalty. 

https://northeastern-datalab.github.io/cs7840/fa25/
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Distortion function 𝑑: Squared-error distortion

⇒ ℓ!
ℓ"
= 2 

𝑚( 𝑚0 = 2𝑚(ℓ( ℓ0

min[ℓ3
4 + 2ℓ4

4] , s. t. 	to	ℓ3 + ℓ4 = 𝑐 

𝑚( 2𝑚(
ℓ( ℓ0

⇒ ℓ!
ℓ"
= 2 

𝑑 𝑥, P𝑥 = 𝑥 − P𝑥 4
Squared-error distortion:

SSE ℓ3 = 
VWWX
Vℓ!

= 

⇒ ℓ3 =
4Y
5

 

ℓ3
4 + 2(𝑐 − ℓ3)4

2ℓ3 + 2(−2𝑐 + 2ℓ3) = 0 
Connection to simple expectations (means):

The squared error distortion penalizes large 
deviations quadratically. The conditional 
mean of 𝑋 (given some available information 
or constraint)  minimizes this penalty. 

J

The arithmetic mean is the "center" 
("centroid" or center of mass) of the 
distribution that balances the squared error!

https://northeastern-datalab.github.io/cs7840/fa25/
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Distortion function 𝑑: Squared-error distortion

⇒ ℓ!
ℓ"
= 2 

𝑚( 𝑚0 = 2𝑚(ℓ( ℓ0

min[ℓ3
4 + 2ℓ4

4] , s. t. 	to	ℓ3 + ℓ4 = 𝑐 

𝑚( 2𝑚(

min[ℓ3 + 2ℓ4] , s. t. 	to	ℓ3 + ℓ4 = 𝑐 

ℓ( ℓ0

⇒ ℓ!
ℓ"
= 2 

J

𝑑 𝑥, P𝑥 = 𝑥 − P𝑥 4
Squared-error distortion:

?
Connection to simple expectations (means):

The squared error distortion penalizes large 
deviations quadratically. The conditional 
mean of 𝑋 (given some available information 
or constraint)  minimizes this penalty. 

The arithmetic mean is the "center" 
("centroid" or center of mass) of the 
distribution that balances the squared error!

https://northeastern-datalab.github.io/cs7840/fa25/
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Distortion function 𝑑: Squared-error distortion
𝑚( 𝑚0 = 2𝑚(ℓ( ℓ0

min[ℓ3
4 + 2ℓ4

4] , s. t. 	to	ℓ3 + ℓ4 = 𝑐 

⇒ ℓ4 = 0 

𝑚( 2𝑚(

min[ℓ3 + 2ℓ4] , s. t. 	to	ℓ3 + ℓ4 = 𝑐 

𝑚( 2𝑚(

ℓ( ℓ0

⇒ ℓ!
ℓ"
= 2 

L

The arithmetic mean is the "center" 
("centroid" or center of mass) of the 
distribution that balances the squared error!

𝑑 𝑥, P𝑥 = 𝑥 − P𝑥 4
Squared-error distortion:

⇒ ℓ!
ℓ"
= 2 

Connection to simple expectations (means):

The squared error distortion penalizes large 
deviations quadratically. The conditional 
mean of 𝑋 (given some available information 
or constraint)  minimizes this penalty. 

J

https://northeastern-datalab.github.io/cs7840/fa25/
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Rate-distortion code

Encoder Decoder
Y𝑋%𝑋%

A source produces an iid 
sequence 𝑋1, 𝑋0, … , 𝑋2 with 
𝑋3 ∼ 𝑝 𝑋  and 𝑋 taken 
from a source alphabet 𝒳

The representation of 𝑋 is ;𝑋(𝑋). 
The decoder represents 𝑋2	by 
an estimate ;𝑋2 ∈ >𝒳2 with >𝒳 
being the reproduction alphabet

source sequence ?
representation, vector quantization, 
reproduction, reconstruction, ... of 𝑋G

https://northeastern-datalab.github.io/cs7840/fa25/
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Rate-distortion code

Encoder Decoder
Y𝑋%𝑋%

The representation of 𝑋 is ;𝑋(𝑋). 
The decoder represents 𝑋2	by 
an estimate ;𝑋2 ∈ >𝒳2 with >𝒳 
being the reproduction alphabet

source sequence

𝑓%(𝑋%) ∈ {1, 2, … , 2%M}

We are given 𝑅 bits to 
represent 𝑋. Thus the 
function ;𝑋 can take on 
24	different values

index

𝑓2: 𝒳2 → {1, 2, … , 224} 𝑔2: 1, 2, … , 224 → >𝒳2 

The encoder describes the source sequence 𝑋2 via 
an encoding function that maps 𝑋2 to an index

The decoding function maps an 
index to a reconstructed sequence

representation, vector quantization, 
reproduction, reconstruction, ... of 𝑋G

A source produces an iid 
sequence 𝑋1, 𝑋0, … , 𝑋2 with 
𝑋3 ∼ 𝑝 𝑋  and 𝑋 taken 
from a source alphabet 𝒳

https://northeastern-datalab.github.io/cs7840/fa25/
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Rate-distortion code

Encoder Decoder
Y𝑋%𝑋% 𝑓%(𝑋%) ∈ {1, 2, … , 2%M}

We are given 𝑅 bits to 
represent 𝑋. Thus the 
function ;𝑋 can take on 
24	different values

source sequence index

?What is its associated distortion

The representation of 𝑋 is ;𝑋(𝑋). 
The decoder represents 𝑋2	by 
an estimate ;𝑋2 ∈ >𝒳2 with >𝒳 
being the reproduction alphabet

𝑓2: 𝒳2 → {1, 2, … , 224} 𝑔2: 1, 2, … , 224 → >𝒳2 

𝑔2 1 ,… , 𝑔2(224): codebook (contains code points)

𝑓251 1 ,… , 𝑓251(224): assignment regions

The encoder describes the source sequence 𝑋2 via 
an encoding function that maps 𝑋2 to an index

The decoding function maps an 
index to a reconstructed sequence

A (224 , 𝑛)-rate distortion code consists of 𝑓2 and 𝑔2. 

representation, vector quantization, 
reproduction, reconstruction, ... of 𝑋G

A source produces an iid 
sequence 𝑋1, 𝑋0, … , 𝑋2 with 
𝑋3 ∼ 𝑝 𝑋  and 𝑋 taken 
from a source alphabet 𝒳

https://northeastern-datalab.github.io/cs7840/fa25/
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Rate-distortion code

Encoder Decoder
Y𝑋%𝑋% 𝑓%(𝑋%) ∈ {1, 2, … , 2%M}

A (224 , 𝑛)-rate distortion code consists of 𝑓2 and 𝑔2. 

We are given 𝑅 bits to 
represent 𝑋. Thus the 
function ;𝑋 can take on 
24	different values

source sequence index

𝑓2: 𝒳2 → {1, 2, … , 224} 𝑔2: 1, 2, … , 224 → >𝒳2 

representation, vector quantization, 
reproduction, reconstruction, ... of 𝑋G

𝐷 = 𝔼6~8 𝑑 𝑋2, 𝑔2(𝑓2(𝑋2))	
= ∑9+ 𝑝 𝑥2 ⋅ 𝑑 𝑥2, 𝑔2(𝑓2(𝑥2))  

𝑔2 1 ,… , 𝑔2(224): codebook (contains code points)

𝑓251 1 ,… , 𝑓251(224): assignment regions

The representation of 𝑋 is ;𝑋(𝑋). 
The decoder represents 𝑋2	by 
an estimate ;𝑋2 ∈ >𝒳2 with >𝒳 
being the reproduction alphabet

The encoder describes the source sequence 𝑋2 via 
an encoding function that maps 𝑋2 to an index

The decoding function maps an 
index to a reconstructed sequence

o𝑋GIts associated distortion is:

A source produces an iid 
sequence 𝑋1, 𝑋0, … , 𝑋2 with 
𝑋3 ∼ 𝑝 𝑋  and 𝑋 taken 
from a source alphabet 𝒳

https://northeastern-datalab.github.io/cs7840/fa25/
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Rate-distortion code vs. k-means

Source of images: https://en.wikipedia.org/wiki/K-means_clustering 

Vector quantization of colors present in the 
image into Voronoi cells using k-means

Example image with only red and 
green channel (for illustration)

𝑛 = 2 channels per pixel (will be encoded together); thus 16 bits per source sequence 𝒳0
𝒳 =	 {0,1, … , 255} thus 8 bit resolution (=256	levels) per color channel

𝑛𝑅 = 4 bits (per channel sequence), thus only ??? representatives per 𝒳0 instead of 65536 = 2560?

https://northeastern-datalab.github.io/cs7840/fa25/
https://en.wikipedia.org/wiki/K-means_clustering
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Rate-distortion code vs. k-means

Source of images: https://en.wikipedia.org/wiki/K-means_clustering 

Vector quantization of colors present in the 
image into Voronoi cells using k-means

Example image with only red and 
green channel (for illustration)

1="0000"

16="1111"

𝑛 = 2 channels per pixel (will be encoded together); thus 16 bits per source sequence 𝒳0

𝑛𝑅 = 4 bits (per channel sequence), thus only 16 representatives per 𝒳0 instead of 65536 = 2560

𝑓GH( 10 : assignment region 
for index 10 

𝑔G 10 = (135, 105): 
reconstruction of index 10 

𝒳 =	 {0,1, … , 255} thus 8 bit resolution (=256	levels) per color channel

15
14

13
12

11

10="1001"

9

8

7

6

5

4
32

𝑅 = 2 bits per channel (instead of 8)

https://northeastern-datalab.github.io/cs7840/fa25/
https://en.wikipedia.org/wiki/K-means_clustering
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Main theorem of Rate-distortion theory 
A rate distortion pair 𝑅,𝐷  is achievable if there exists a sequence of (224 , 𝑛)-rate 
distortion codes (𝑓2, 𝑔2) with 

lim
%→[

𝔼H~] 𝑑 𝑋%, 𝑔%(𝑓%(𝑋%))	 ≤ 𝐷	

A rate distortion region for a source is the closure of 
the set of achievable distortion pairs 𝑅,𝐷 .

The rate distortion 𝑅(𝐷) is the infimum of rates 𝑅 
s.t. 𝑅,𝐷  is in the rate distortion region of the 
source for given distortion 𝐷.

rate distortion function for Bernoulli 
𝑝 = 0.5 with Hamming distortion

rate distortion region

infimum: greatest lower bound (does not 
have to be in the set, in contrast to min)

https://northeastern-datalab.github.io/cs7840/fa25/
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Main theorem of Rate-distortion theory 
A rate distortion pair 𝑅,𝐷  is achievable if there exists a sequence of (224 , 𝑛)-rate 
distortion codes (𝑓2, 𝑔2) with 

lim
%→[

𝔼H~] 𝑑 𝑋%, 𝑔%(𝑓%(𝑋%))	 ≤ 𝐷	

A rate distortion region for a source is the closure of 
the set of achievable distortion pairs 𝑅,𝐷 .

The rate distortion 𝑅(𝐷) is the infimum of rates 𝑅 
s.t. 𝑅,𝐷  is in the rate distortion region of the 
source for given distortion 𝐷.

THEOREM: The rate distortion 𝑅(𝐷) for an iid source 
𝑋~𝑝 and bounded distortion 𝑑 𝑋, ;𝑋 	is

𝑅 𝐷 =	 min	 𝐼(𝑋; Y𝑋)
𝑝 ;𝑋|𝑋 : 	𝔼 𝑑 𝑋, ;𝑋 ≤ 𝐷

maximum allowable distortion

reconstruction of 𝑋

rate distortion function for Bernoulli 
𝑝 = 0.5 with Hamming distortion

rate distortion region

𝑝 𝑥 ⋅ 𝑝 E𝑥|𝑥

∑ *, ,* 𝑝 𝑥, E𝑥 ⋅ 𝑑 𝑥, E𝑥  

infimum: greatest lower bound (does not 
have to be in the set, in contrast to min)

https://northeastern-datalab.github.io/cs7840/fa25/
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Rate Distortion function 𝑅 𝐷 Channel capacity 𝐶

𝑅 𝐷 =	 min	 𝐼(𝑋; Y𝑋)
𝑝 ;𝑋|𝑋 : 	𝔼 𝑑 𝑋, ;𝑋 ≤ 𝐷

𝐶 = max
](H)

𝐼(𝑋; 𝑌)

maximum allowable distortion

reconstruction of 𝑋

RATE-DISTORTION THEORY CHANNEL CODING THEORY

Encoder Channel
𝑝 𝑦|𝑥 Decoder

𝑚 q𝑚𝑋G 𝑌G

message message estimate

Encoder Decoder
o𝑋G𝑋G 𝑓G(𝑋G)

source sequence index

∈ {1, 2, … , 2GI}

representation channel symbols

?Why is one minimizing, the other maximizing mutual information

https://northeastern-datalab.github.io/cs7840/fa25/
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Rate Distortion function 𝑅 𝐷 Channel capacity 𝐶

𝑅 𝐷 =	 min	 𝐼(𝑋; Y𝑋)
𝑝 ;𝑋|𝑋 : 	𝔼 𝑑 𝑋, ;𝑋 ≤ 𝐷

𝐶 = max
](H)

𝐼(𝑋; 𝑌)

maximum allowable distortion

reconstruction of 𝑋

RATE-DISTORTION THEORY CHANNEL CODING THEORY
• compress data 𝑋 into a small representation o𝑋 

while satisfying a given distortion constraint ≤ 𝐷 
(and thus achieve a certain level of fidelity)

• encode the information (via its input distribution 
𝑝(𝑋)) as to maximize the amount of information 
successfully transmitted through the channel

Encoder Decoder
o𝑋G𝑋G 𝑓G(𝑋G)

source sequence index

∈ {1, 2, … , 2GI}

representation

Encoder Channel
𝑝 𝑦|𝑥 Decoder

𝑚 q𝑚𝑋G 𝑌G

message message estimatechannel symbols

https://northeastern-datalab.github.io/cs7840/fa25/
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Rate Distortion function 𝑅 𝐷 Channel capacity 𝐶

𝑅 𝐷 =	 min	 𝐼(𝑋; Y𝑋)
𝑝 ;𝑋|𝑋 : 	𝔼 𝑑 𝑋, ;𝑋 ≤ 𝐷

𝐶 = max
](H)

𝐼(𝑋; 𝑌)

maximum allowable distortion

reconstruction of 𝑋

RATE-DISTORTION THEORY CHANNEL CODING THEORY

• Optimization (Minimization) over 𝑝 o𝑋|𝑋  
reflects the search for the most efficient 
encoding that meets the distortion 𝐷.

• Optimization (Maximization) over 𝑝(𝑋) reflects the 
search for the input distribution that makes best use 
of the channel's capacity to transmit information.

• find the minimum communication rate 𝑅 =
𝐼(𝑋; o𝑋) necessary to satisfy distortion ≤ 𝐷

• find the maximum reliable communication rate 𝑅 =
𝐼(𝑋; 𝑌) that a channel can support (its capacity 𝐶)

• compress data 𝑋 into a small representation o𝑋 
while satisfying a given distortion constraint ≤ 𝐷 
(and thus achieve a certain level of fidelity)

• encode the information (via its input distribution 
𝑝(𝑋)) as to maximize the amount of information 
successfully transmitted through the channel

https://northeastern-datalab.github.io/cs7840/fa25/
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2 Examples

Largely based on Ch10 of [Cover, Thomas'06] Elements of Information Theory, 2006. 
https://doi.org/10.1002/047174882X , and Ch 8 of [Yeung'08] Information Theory and Network Coding. 
https://doi.org/10.1007/978-0-387-79234-7 

https://northeastern-datalab.github.io/cs7840/fa25/
https://doi.org/10.1002/047174882X
https://doi.org/10.1007/978-0-387-79234-7
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Rate Distortion for Bernoulli 𝑝 with Hamming distortion

𝑑 𝑥, P𝑥 = h0	 if	 𝑥 = P𝑥
1	 if	 𝑥 ≠ P𝑥 

Assume a Hamming distortion measure:

WLOG, assume 𝑝 ≤ 0.5.

Consider a binary source 𝑋 ∼ Bernoulli(𝑝):
𝑝 𝑋 = 1 = 𝑝 ?If we had to guess x, should 

we rather guess x=0 or x=1?𝑝 𝑋 = 0 = 1 − 𝑝
ℙ 𝑋 = 0 = 1 − 𝑝 ≥ 0.5 

Our minimum expected 
distortion between X and a 
constant estimate of x=0 is: ?

𝐷NOP = 𝔼[𝑑 𝑋, 0 ] 
= ℙ[𝑋 = 1] 
= 𝑝 

https://northeastern-datalab.github.io/cs7840/fa25/
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Rate Distortion for Bernoulli 𝑝 with Hamming distortion

𝑅 𝐷 = h𝐻 𝑝 − 𝐻 𝐷 , 0 < 𝐷 < 𝑝
0, 	 else	

What is the description rate 𝑅 𝐷  required 
to describe 𝑋	with an expected proportion of 
errors less than or equal to 𝐷?

rate distortion function for 𝑝 = 0.5

Two steps (instead of minimizing 𝐼 𝑋; Y𝑋  directly): We first find a lower bound. We then 
show that this lower bound is achievable.

𝑑 𝑥, P𝑥 = h0	 if	 𝑥 = P𝑥
1	 if	 𝑥 ≠ P𝑥 

Assume a Hamming distortion measure:

WLOG, assume 𝑝 ≤ 0.5. 

𝑝 𝑋 = 1 = 𝑝
𝑝 𝑋 = 0 = 1 − 𝑝

Consider a binary source 𝑋 ∼ Bernoulli(𝑝):

rate distortion region

Python activities file 234: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/234_rate_distortion_Bernoulli.ipynb  

https://northeastern-datalab.github.io/cs7840/fa25/
https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/234_rate_distortion_Bernoulli.ipynb
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Rate Distortion for Bernoulli 𝑝 with Hamming distortion

𝑅 𝐷 = h𝐻 𝑝 − 𝐻 𝐷 , 0 < 𝐷 < 𝑝
0, 	 else	

What is the description rate 𝑅 𝐷  required 
to describe 𝑋	with an expected proportion of 
errors less than or equal to 𝐷?

Two steps (instead of minimizing 𝐼 𝑋; Y𝑋  directly): We first find a lower bound. We then 
show that this lower bound is achievable.

𝑑 𝑥, P𝑥 = h0	 if	 𝑥 = P𝑥
1	 if	 𝑥 ≠ P𝑥 

Assume a Hamming distortion measure:

WLOG, assume 𝑝 ≤ 0.5. 

𝑝 𝑋 = 1 = 𝑝
𝑝 𝑋 = 0 = 1 − 𝑝

Consider a binary source 𝑋 ∼ Bernoulli(𝑝):

Python activities file 234: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/234_rate_distortion_Bernoulli.ipynb  

https://northeastern-datalab.github.io/cs7840/fa25/
https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/234_rate_distortion_Bernoulli.ipynb
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Rate Distortion for Bernoulli 𝑝 with Hamming distortion

𝐼 𝑋; Y𝑋 = 𝐻 𝑋 − 𝐻 𝑋| Y𝑋

= 𝐻 𝑝 − 𝐻 𝑌| Y𝑋

≥ 𝐻 𝑝 − 𝐻 𝑌

≥ 𝐻 𝑝 − 𝐻 𝐷

𝑅(𝐷) ≥ 𝐻 𝑝 − 𝐻 𝐷

Lower bound:
Let 𝑌 denote 𝑑(𝑋, ;𝑋), or 𝑌 = 1 ⇔ 𝑋 ≠ ;𝑋 . 
Then conditioning on ;𝑋, 𝑋 and 𝑌 determine each 
other, and thus the uncertainty (entropy 𝐻) is the 
same if we consider 𝑋 or 𝑌: 𝐻 𝑋| ;𝑋 = 𝐻 𝑌| ;𝑋

since ℙ 𝑌 = ℙ 𝑋 ≠ ;𝑋 = 𝔼[𝑑(𝑋 ≠ ;𝑋)] ≤ 𝐷 
for 𝐷 ≤ 𝑝, and 𝐻(𝑥) increases with 𝑥 ≤ 0.5

𝐻 𝑌| ;𝑋 ≤ 𝐻 𝑌 : our uncertainty can only reduce 
by conditioning (i.e. learning additional information)

For any joint distribution satisfying 
the distortion constraint, we know:

We thus have:

https://northeastern-datalab.github.io/cs7840/fa25/


165Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/

Rate Distortion for Bernoulli 𝑝 with Hamming distortion
We now show that the lower bound is actually the rate distortion function by finding a joint distribution 
𝑋, ;𝑋  that meets the distortion constraint and has 𝑅 𝐷 = 𝐼 𝑋; ;𝑋 .

Concretely, for 0 ≤ 𝐷 ≤ 𝑝, we can achieve value 𝐻 𝑝 − 𝐻 𝐷 	for the rate distortion function 𝑅 𝐷  
by choosing 𝑋; ;𝑋  to have the joint distribution given by the following binary symmetric channel:

0 0  1 − 𝐷  

1 − 𝐷  1 1  

𝐷

𝐷
𝑋)𝑋

1 − 𝑝  

𝑝

Here just 𝑝 corresponds to 𝐷 and 𝑌 to 𝑋:
𝐼 𝑋; ;𝑋 = 𝐻 𝑝 − 𝐻(𝐷).

Recall that for a Binary Symmetric Channel 
𝐼 𝑋; 𝑌 = 𝐻 𝑌 − 𝐻(𝑝). 

1 − 𝑟  

𝑟

We need to find an appropriate 𝑟 ;6 of ;𝑋 at 
the input of the channel s.t. the output 
distribution of 𝑋 is the specified 𝑝6.

𝑟 1 − 𝐷 + 1 − 𝑟 𝐷 = 𝑝
Let 𝑟 = ℙ ;𝑋 = 1 . Then choose 𝑟 s.t. 

𝑟 = 85G
150G

  ⇒  

https://northeastern-datalab.github.io/cs7840/fa25/
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Rate Distortion for Bernoulli 𝑝 with Hamming distortion
If 𝐷 ≤ 𝑝 ≤ 0.5, then:

• 𝐼 𝑋; ;𝑋 = 𝐻 𝑋 − 𝐻 𝑋| ;𝑋 = 𝐻 𝑝 − 𝐻(𝐷)

and the expected distortion is ℙ 𝑋 ≠ ;𝑋 = 𝐷.

Indeed, the uncertainty of 𝑋 when ;𝑋 is known is 𝐷, 
hence 𝐻 𝑋| ;𝑋 = 𝐻(𝐷).

• ℙ[ ;𝑋 = 1] ≥ 0 and ℙ[ ;𝑋 = 0] ≥ 0 

If 𝐷 ≥ 𝑝, then:

• We can achieve 𝑅 𝐷 = 0 by letting ;𝑋 = 0 
with probability 1 𝑅 𝐷 = h𝐻 𝑝 − 𝐻 𝐷 , 0 < 𝐷 < 𝑝

0, 	 else	

rate distortion function

https://northeastern-datalab.github.io/cs7840/fa25/
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Rate Distortion for Gaussian source with squared error distortion

Assume a squared error distortion 

WLOG, assume 𝑝 ≤ 0.5 

Consider a Gaussian source 𝑋 ∼ 𝒩(0, 𝜎4).

Then the description rate 𝑅 𝐷  required to 
describe 𝑋	with an expected proportion of 
errors less than or equal to 𝐷 can be shown 
to be as follows:

Proof: see book

𝑑 𝑥, P𝑥 = 𝑥 − P𝑥 4

𝑅 𝐷 = {
3
4 ln

^"

_ , 0 ≤ 𝐷 ≤ 𝜎4

	 0, else	

https://northeastern-datalab.github.io/cs7840/fa25/
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Rate Distortion for Gaussian source with squared error distortion

Each bit of description reduces the expected 
distortion by a factor of 4.

We can rewrite 𝑅 𝐷  to express the distortion 
𝐷 in terms of the rate 𝑅:

𝐷 𝑅 = 𝜎42`4M

With a 1-bit description, the best expected 
square error is 0.25𝜎4.

Our simple 1-bit quantization from earlier
can be calculated to be 0.36𝜎4.

The rate distortion limit 𝑅 𝐷  is achieved by 
considering several distortion problems in 
succession (longer block lengths) instead of 
considering each problem separately.
Figure source: https://ieeexplore.ieee.org/document/7767821/ 

Independent 4-bit 
quantization:

Blocklength 𝑛 = 2 
and 4-bit per sample

Geometry of longer block lengths:

𝑋3

𝑋4

𝑋3

𝑋4

https://northeastern-datalab.github.io/cs7840/fa25/
https://ieeexplore.ieee.org/document/7767821/
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Information
Bottleneck

https://northeastern-datalab.github.io/cs7840/fa25/
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Three-step abstractions
𝑋 𝑌 𝑍 Markov chain ?What do we know?

https://northeastern-datalab.github.io/cs7840/fa25/
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Three-step abstractions
𝑋 𝑌 𝑍 Markov chain

𝑋 𝑌 𝑓(𝑌) Data processing inequality

𝐼 𝑋; 𝑌 ≥ 𝐼(𝑋; 𝑍)
𝑝 𝑥, 𝑦, 𝑧 = 𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑥, 𝑦)

𝑋 ⊥ 𝑍|𝑌 
also: 𝑝(𝑦) ⋅ 𝑝(𝑥|𝑦) ⋅ 𝑝(𝑧|𝑥, 𝑦)

?

https://northeastern-datalab.github.io/cs7840/fa25/
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Three-step abstractions
𝑋 𝑌 𝑍 Markov chain

𝑋 𝑌 𝑓(𝑌) Data processing inequality

𝐼 𝑋; 𝑌 ≥ 𝐼(𝑋; 𝑍)

𝐼 𝑋; 𝑌 ≥ 𝐼 𝑋; 𝑓 𝑌
Sufficient statistics𝜃 𝐗 𝑇(𝐗)

𝑝 𝑥, 𝑦, 𝑧 = 𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑥, 𝑦)
𝑋 ⊥ 𝑍|𝑌 

also: 𝑝(𝑦) ⋅ 𝑝(𝑥|𝑦) ⋅ 𝑝(𝑧|𝑥, 𝑦)

?

https://northeastern-datalab.github.io/cs7840/fa25/
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Three-step abstractions
𝑋 𝑌 𝑍 Markov chain

𝑋 𝑌 𝑓(𝑌) Data processing inequality

𝐼 𝑋; 𝑌 ≥ 𝐼(𝑋; 𝑍)

𝐼 𝑋; 𝑌 ≥ 𝐼 𝑋; 𝑓 𝑌
Sufficient statistics
A statistic 𝑇	is sufficient for 𝜃 if it preserves all the information in 𝐗 about 𝜃:

𝐼 𝜃; 𝑇 𝐗 = 𝐼(𝜃; 𝐗) 𝜃 → 𝑇(𝐗) → 𝐗 also forms a Markov chain

𝜃 𝐗 𝑇(𝐗)

𝜃 ⊥ 𝐗|𝑇(𝐗) ⇔ ⇔

Assume: We want to determine 𝑌 from 𝑋. Goal: find a representation o𝑋 of 𝑋 that 
captures the relevant features, yet compresses 𝑋 by removing irrelevant parts that 
do not contribute to the prediction of 𝑌

𝑝 𝑥, 𝑦, 𝑧 = 𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑥, 𝑦)
𝑋 ⊥ 𝑍|𝑌 

also: 𝑝(𝑦) ⋅ 𝑝(𝑥|𝑦) ⋅ 𝑝(𝑧|𝑥, 𝑦)

minimal sufficient: simplest mapping of 𝐗 that captures all the information in 𝐗 about 𝜃.

Information bottleneck

?

https://northeastern-datalab.github.io/cs7840/fa25/
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Three-step abstractions
𝑋 𝑌 𝑍 Markov chain

𝑋 𝑌 𝑓(𝑌) Data processing inequality

𝐼 𝑋; 𝑌 ≥ 𝐼(𝑋; 𝑍)

𝐼 𝑋; 𝑌 ≥ 𝐼 𝑋; 𝑓 𝑌
Sufficient statistics
A statistic 𝑇	is sufficient for 𝜃 if it preserves all the information in 𝐗 about 𝜃:

𝐼 𝜃; 𝑇 𝐗 = 𝐼(𝜃; 𝐗) 𝜃 → 𝑇(𝐗) → 𝐗 also forms a Markov chain

𝜃 𝐗 𝑇(𝐗)

𝜃 ⊥ 𝐗|𝑇(𝐗) ⇔ ⇔

Assume: We want to determine 𝑌 from 𝑋. Goal: find a representation o𝑋 of 𝑋 that 
captures the relevant features "max 𝐼 𝑌; o𝑋 ", yet compresses 𝑋 by removing 
irrelevant parts that do not contribute to the prediction of 𝑌: "min 𝐼 𝑋; o𝑋 ".

𝑝 𝑥, 𝑦, 𝑧 = 𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑥, 𝑦)
𝑋 ⊥ 𝑍|𝑌 

also: 𝑝(𝑦) ⋅ 𝑝(𝑥|𝑦) ⋅ 𝑝(𝑧|𝑥, 𝑦)

minimal sufficient: simplest mapping of 𝐗 that captures all the information in 𝐗 about 𝜃.

Information bottleneck
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Three-step abstractions
𝑋 𝑌 𝑍 Markov chain

𝑋 𝑌 𝑓(𝑌) Data processing inequality

𝐼 𝑋; 𝑌 ≥ 𝐼(𝑋; 𝑍)

𝐼 𝑋; 𝑌 ≥ 𝐼 𝑋; 𝑓 𝑌
Sufficient statistics
A statistic 𝑇	is sufficient for 𝜃 if it preserves all the information in 𝐗 about 𝜃:

𝐼 𝜃; 𝑇 𝐗 = 𝐼(𝜃; 𝐗) 𝜃 → 𝑇(𝐗) → 𝐗 also forms a Markov chain

𝑋 𝑌
Y𝑋(𝑋) 

𝜃 𝐗 𝑇(𝐗)

𝜃 ⊥ 𝐗|𝑇(𝐗) ⇔

bigger 𝛽 (smaller 𝛽′) allows more 
complex representations

⇔

Assume: We want to determine 𝑌 from 𝑋. Goal: find a representation o𝑋 of 𝑋 that 
captures the relevant features "max 𝐼 𝑌; o𝑋 ", yet compresses 𝑋 by removing 
irrelevant parts that do not contribute to the prediction of 𝑌: "min 𝐼 𝑋; o𝑋 ".𝐼(𝑋; f𝑋)↓

maximally 
informative

𝐼(𝑌; f𝑋)↑

minimal rate
(maximally 
compressed)

"complexity" "relevance"
"accuracy" ℒ Y𝑋 = 𝐼 𝑋; Y𝑋 − 𝛽𝐼(𝑌; Y𝑋) ℒ∗ = min

] fH|H  
[ℒ Y𝑋 ]

ℒ′ Y𝑋 = 𝐼 𝑌; Y𝑋 − 𝛽′𝐼(𝑋; Y𝑋) ℒ′∗ = max
] fH|H  

[ℒ′ Y𝑋 ]

𝑝 𝑥, 𝑦, 𝑧 = 𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑥, 𝑦)
𝑋 ⊥ 𝑍|𝑌 

also: 𝑝(𝑦) ⋅ 𝑝(𝑥|𝑦) ⋅ 𝑝(𝑧|𝑥, 𝑦)

minimal sufficient: simplest mapping of 𝐗 that captures all the information in 𝐗 about 𝜃.

=𝑅, =∆,

Information bottleneck

https://northeastern-datalab.github.io/cs7840/fa25/
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Information Bottleneck (IB)
Consider an information processing system that receives as input the signal 𝑋 and tries to 
predict a target signal 𝑌. We want to process 𝑋 to get a compressed representation of the 
input Y𝑋 = 𝑓(𝑋) (the "bottleneck"), which is then used to predict 𝑌.
Y𝑋is sufficient for predicting 𝑌 if it contains all the information that 𝑋 encodes about 𝑍, i.e.
𝐼 𝑌; Y𝑋 = 𝐼(𝑋; Y𝑋).
Y𝑋 is minimal-sufficient if it is sufficient for 𝑌 and does not contain any extraneous information 
about 𝑋 which does not help in predicting 𝑌, i.e. 𝐼 𝑋; Y𝑋 ≤ 𝐼(𝑋; Y𝑋k) for any other sufficient 
representation Y𝑋k.
The information bottleneck objective tries to strike a balance in achieving max compression 
(small complexity) while retaining as much relevant information (high accuracy) as possible

minimize ℒ Y𝑋 = 𝐼 𝑋; Y𝑋 − 𝛽𝐼(𝑌; Y𝑋) 

bigger 𝛽k = 1/𝛽 penalizes more complex representations
maximize ℒ Y𝑋 = 𝐼(𝑌; Y𝑋) − 𝛽′𝐼 𝑋; Y𝑋

bigger 𝛽 allows more complex representations
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