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Pre-class conversations

« Last class recapitulation
o Projects: | can talk today after class

e Lasttime:
- Why Max entropy? Involves just combinatorics, and limits, no "uncertainty”

— Why Occam's razor? Again: a simple (convincing ?) argument
— Kolmogorov complexity: the answer to all questions ?

« Today:
— Channel capacity (communication)

— Distortion theory



Channel
Caopacity

Largely based on chapter 7 of
[Cover, Thomas'06] Elements of Information Theory, 2006. https://www.doi.org/10.1002/047174882X

https://northeastern-datalab.github.io/cs7840/fa25/
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Shannon [1948]: Communicating over a noisy channel

The B ell S YSte m T € Chn i Cal JOUI‘I] al The entropy in the case of two possibilities with probabilities  and ¢ =
1 — p, namely

Vol. XXVII July, 1948 No. 3 H=—(plogp+qlogyq)
is plotted in Fig. 7 as a function of p.

The quantity H has a number of interesting properties which further sub-
stantiate it as a reasonable measure of choice or information.

A Mathematical Theory of Communication

By C. E. SHANNON o
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Fig. 1—Schematic diagram oi a general communication system. o S .
Fig. 7—Entropy in the case of two possibilities with probabilities p and (1 — ).

From: Shannon. A Mathematical Theory of Communication, The Bell System Technical Journal, 1948. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Channel Capacity C = highest rate R

m n n m
> Encoder > Channel > Decoder >
message p(y[x) message estimate
source sequence of from output
symbols  from input (encoding) alphabet X (encoding) alphabet Y
\ ) \ )
Y Y
data compression data transmission

intuition: capacity = lg[# of distinguishable inputs]

(1) "Information" channel capacity | C = Hl(éi%(l(X; Y)
pX

(2) "Operational"” channel capacity: the highest communication rate R (in bits) per channel use

SHANNON'S CHANNEL CODING THEOREM: Theorem 7.7.1 (Channel coding theorem) For a discrete memory-
] ] ] less channel, all rates below capacity C are achievable. Specifically, for
both are |dent|ca|; i.e. the channel every rate R < C, there exists a sequence of (2"%, n) codes with maximum

. . . o . g (n)
capacity can be achieved in the limit by | Probability of error 27" — 0.

Conversely, any sequence of (2"%, n) codes with A" — 0 must have

using codes with a long block length. R<C.

Theorem 7.7.1 taken from: [Cover, Thomas'06] Elements of Information Theory, 2006. Chapter 7 channel capacity, https://www.doi.org/10.1002/047174882X
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Capacity of binary symmetric channel

n n A
m X Channel Y m
> Encoder > > Decoder >
message p(y[x) message estimate

channel capacity C = maxI(X;V
p(x)

How do we calculate f?
the chawvel capacity C .

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 7
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Capacity of binary symmetric channel
n yn ~
m > Encoder L) Channel > Decoder m >
message p(y[x) message estimate
channel capacity C = maxI(X;Y)
p(x)
I(X;Y) = ?
p 0 =129 .
q
X Y
q
p=1—-p 1 7 1

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Capacity of binary symmetric channel

n n ﬁ’l
m > Encoder > Channel > Decoder >
message p(y[x) message estimate
channel capacity C = maxI(X;Y)
p(x)
[(X;Y)=H(Y) — H(Y|X)\ ?
O C_I =1- q O m
p
q
q
p=1—-p 1 7 1

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Capacity of binary symmetric channel

n n m
m > Encoder > Channel > Decoder >
message p(y[x) message estimate
channel capacity C = maxI(X;Y)
p(x)
I(X;Y)=HY)—-HY|X)
G=1—gq pr(x)H(Y|X=x)
p 0 0 = H(Y) — H(q) 2xp(x) H(q) = H(q)

q ™ o

q |

p=1—-p 1 — 1

10

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Capacity of binary symmetric channel

n n m
m > Encoder ——> Channel > Decoder >
message p(ylx) message estimate
channel capacity C = maxI(X;Y)
p(x)
I(X;Y)=HY)—-HY|X)
G=1—gq 2xp()H(Y|X = x)
p 0 0 = H(Y) — H(q) 2xp(x) H(q) = H(q)
q ™ Max of H(Y) = 1 (thus also max of I(X;Y))
This is achieved for uniform p(Y=0) = 0.5.
q Thus also p = 0.5 has uniform input distribution
(solve for pg + pq = p(Y=0) = 0.5)
p=1—-p 1 = 1
1 <1-H(q)

Hence, capacity for binary symmetric channelis |C =1 — H(q)

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/

11
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AN\

m
>

Capacity of binary symmetric channel
m > Encoder —n> Channel > Decoder
message p(y[x)
channel capacity C = rgl(zgl(X; Y)
I(X;Y)=H(X)—-HX|Y)
q=1-gq
p O 0 wWhat about +he
q other way around =
q
p=1—-p 1 7 1

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/

message estimate

12
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Capacity of binary symmetric channel
m n n m
> Encoder ——> Channel > Decoder >
message p(y[x) message estimate
channel capacity C = maxI(X;Y)
P(x) Trying to do it the other way
aronnd should work but becomes
I(X;Y) = HX) — HX|Y) far wmore complicated ®
» 0 q=1-gq 0 H(p) H(X|Y=0) - p(Y=0) + H(X|Y=1) - p(Y=1)
q — /j [
rq +pq pq +pq
p(Y=0|X=0)-p(X=0) / Pq
q PX=0IY=0) ==— 00y " parsd
D _ p(Y=1|X=0)-p(X=0) _ _ pq
p=1-p 1 q 1 p(X=0]Y=1) = p(Y=1)  pq+pg
rgl(?cx I(X Y) — H(p) _ (pq+pq) (pq pCI) @6‘|‘5 messy
while q is fixed —H (pq+pq) Pq+PD | ope pheck for p:%

13

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Capacity of binary symmetric channel

m n n m
> Encoder ——> Channel > Decoder >
message p(y[x) message estimate
channel capacity C = maxI(X;Y)
P(x) Trying to do it the other way
aronnd should work but becomes
I(X;Y) = HX) — HX|Y) far wmore complicated ®
A1
p=- 0 1 T 0
q
q
p= 1 - 1
I(X;Y) =H() - H (pqu_q) (pq +pq)
pq __
—H (pq+ﬁq) (pg + pq) w 9ets messy

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Channel Capacity: Binary Channel

EXAMPLE
Binary noiseless channel

p O -0 channel capacity:

c- 9

X Y o

S|
—
y
p—

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 15
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Channel Capacity: Binary Channel

EXAMPLE
Binary noiseless channel

1/2 0 -0 channel capacity:
C =1g(2) =1 bit

1/2 1 -1

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 16
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Channel Capacity: Non-overlapping Outputs

EXAMPLE
Noisy channel with non-overlapping outputs

1/2 1
0 < channel capacity:
1/2 2

c- 9

X Y o

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 17
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Channel Capacity: Non-overlapping Outputs

EXAMPLE
Noisy channel with non-overlapping outputs

encoding
frequency

1/2 1

172 0 < > 0
1/2 2
1/3 3

172 1 < > 1
2/3 4

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/

channel decoding

channel capacity:
C =1g(2) =1 bit

18
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Channel Capacity: Noisy typewriter

EXAMPLE
Noisy typewriter

Noisy channel

1/2

1 1
1/2
2 2
X X Y
37\3
4 4

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/

channel capacity:

c= 9

19
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Channel Capacity: Noisy typewriter

EXAMPLE
Noisy typewriter

Noisy channel Noiseless subset of inputs

1 1/2 1 1/2 1 -1
1/2 \
2 2 2

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/

channel capacity:
C =1g(2) =1 bit

20
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Channel Capacity: Binary erasure channel

A fraction of g bits are erased (rather than

EXAMPLE corrupted as in the binary symmetric channel).
Binary erasure channel The receiver knows which bits are lost.
C = max[/(X;Y)]
p(x)
21—
) 0~ AT g 2
q
e
q
— 1 — -
p 7 1

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Channel Capacity: Binary erasure channel

A fraction of g bits are erased (rather than

EXAMPLE corrupted as in the binary symmetric channel).
Binary erasure channel The receiver knows which bits are lost.
C = max[/(X;Y)]
p(x)
g=1-— =max|H(Y) — H(Y|X
p 015170 . nax(H () (ll]\?
q
e
q
— 1 — -
p 7 1

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 22
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Channel Capacity: Binary erasure channel

EXAMPLE
Binary erasure channel

q
e
q
| - -1
’ q

A fraction of g bits are erased (rather than
corrupted as in the binary symmetric channel).
The receiver knows which bits are lost.

C = max|I(X;Y)]
p(x)
= max|H(Y) — H(Y|X)]
P T = H(q)
= max[H(Y)] — H(q)
p(x) A . erasure happens yes/no

H(Y) = H(Y,E) = .

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 23
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Channel Capacity: Binary erasure channel

EXAMPLE
Binary erasure channel

q

e
q

— 1 — »1
Y q

A fraction of g bits are erased (rather than
corrupted as in the binary symmetric channel).
The receiver knows which bits are lost.

C = max|I(X;Y)]
p(x)
= max|H(Y) — H(Y|X)]
P T = H(q)
= max[H(Y)] — H(q)
p(x) A . erasure happens yes/no

H(Y) = H(Y,E)= H(E) + H(Y|E)

H(q) q-0+(1—-q)H(p)

max[Hq) + (1 = )H (p) — BeQ)]

=(1-q) max[H(p)]= (1 —q)
p(x)

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 24
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Channel Capacity: Binary erasure channel

A fraction of g bits are erased (rather than

EXAMPLE corrupted as in the binary symmetric channel).
Binary erasure channel The receiver knows which bits are lost.
C = max[/(X;Y)]
p(x)
p=1/2 0 . ?
q=1/3
e
1/3
1/2 1 2/3 -1

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 25
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Channel Capacity: Binary erasure channel

A fraction of g bits are erased (rather than

EXAMPLE corrupted as in the binary symmetric channel).
Binary erasure channel The receiver knows which bits are lost.
C = m(a3<[I(X; Y)]|= I(X;Y) under the given p(x)
p(x
=H(Y)—-H(Y|X
p=1/2 0 2/ -0 \(\ )1 N 1,1 1
o H(G)+3H(G)=4()
8 1, (1 2. (2
=1/3 — 2o (=) 210(2
=Y —Blg(3)+31g(3)
° = —-] 21g(2) — 21
1/3 = —318(3) +:18(2) —31g8(3)
2
=3~ 18(3)
1/2 1 2/3 -1

= 1 — g (as predicated)

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 26
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Channel Capacity: Symmetric Channel

Symmetric channel: The state transition matrix
EXAMPLE P is symmetric if all the rows are permutations
Symmetric channel of each other (and so are the columns)

6 3 .1
P = (.1 .6 .3)
3 .1 .6
A symmetric P guarantees that a uniform input

distribution leads to a uniform output distribution
(the uniform distribution is an eigenvector)

p() = ZxpYINp() = s Txp(ylx) =

That guarantees that the capacity-achieving input
distribution is uniform (which simplifies the math
quite a bit and allows a closed form solution)

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/

27


https://northeastern-datalab.github.io/cs7840/fa25/

Channel Capacity: Symmetric Channel

Symmetric channel: The state transition matrix P

EXAMPLE (also channel matrix) is symmetric if all the rows are
Symmetric channel permutations of each other (and so are the columns)
6 3 .1 1/3 1/3
P= (.1 6 .3) p(x)=:p= (1/3> p(y)=:q= (1/3)
3 .1 .6 1/3 1/3

C = max[/(X;Y)]=I(X;Y) under uniform
p

= H(Y) — H(Y|X)
= 1g(3) — H(0.6,0.3,0.1)
~ 1.585 — 1.295 =~ 0.290

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 28
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Updated 11/13/2025

Part 3: Applications
L18: Channel Capacity, Distortion Theory,

Information Bottleneck
[Channel Capacity: Blahut-Arimoto Algorithm, Distortion Theory]

Wolfgang Gatterbauer
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11/13/2025
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e Lecture 15 (Thu, Oct 30)
Maximum Entropy

(Deriving the Maximum Entropy Principle) ol .

e Lecture 16 (Mon, Nov 3) - é PﬂP@l"S\ lVI'FOV'VV\ﬂ'hOVI
MDL, Occam, Kolmogorov (2/2)
(Occam, Kolmogorov, Minimum Description Length (MDL)) bo-"+ l 6 V] 6 Ok

e Lecture 17 (Thu, Nov 6)
Channel capacity [Cover Thomas'06: Ch 7], Distortion Theory (1/2) [Cover Thomas'06: Ch 10]

e Lecture 18 (Mon, Nov 10)
Distortion Theory (2/2) [Cover Thomas'06: Ch 10]

Python notebooks: 232 PﬂP@ s. H | V|+OV] ov
¢ Lecture 19 (Thu, Nov 13) / P3 Intermediate report . . .
30min remote guest lecture by Zsolt Zombori on [Zombori+'23] Towards Unbiased Exploration in Partial Label Learning, le Ow l@ d 6 € d l S+l l la+l ov

Information Bottleneck Theory

PART 4: The axiomatic approach (deriving formulations from first principles)

Covers the axiomatic approach from multiple angles: a few simple principles (axioms) leading to entropy or the laws of probability up
to factors. Starting from a list of postulates leading to particular solution is a powerful approach that has been used across different
areas of computer science (e.g. how to define the right scoring function for achieving a desired outcome) I

e Lecture 20 (Mon, Nov 17)
Derivation of Hartley measure and entropy function from first principles

e Lecture 21 (Thu, Nov 20)
Cox's theorem: a derivation of the laws of probability theory from a certain set of postulates. Contrast with Kolmogorov’s

iy miomS, g communication complexity

more on compression

e TBD
Shapley value

e (Thu 11/27): no class (F

PART 5: Project presentations

e Lecture 24 (Thu 12/4): P4 Project presentations / P5 Final report
e Lecture 25 (Mon 12/8): P4 Project presentations / P5 Final report
e Lecture 26 (Thu 12/11): P4 Project presentations / P5 Final report

30



Blahut-Arimoto algorithm
for non-symmetric channels

Published in two independent papers (Arimoto was first, Blahut is more general). Arimoto. An algorithm for
computing the capacity of arbitrary discrete memoryless channels. TIT 1972.
https://doi.org/10.1109/TIT.1972.1054753 , Blahut. Computation of channel capacity and rate-distortion
functions. TIT 1972. https://doi.org/10.1109/TIT.1972.1054855

https://northeastern-datalab.github.io/cs7840/fa25/
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Channel Capacity: Non-Symmetric Channel

This is not a symmetric matrix anymore...
EXAMPLE

Non-symmetric discrete
memoryless channel

row-stochastic

7 2 1\ ?
P=\<.3 6 .1) p(x)=:p= (?)

3 2 5 ?
C = ml?X[I(X; Y)] /

what we do now ?

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/

p(y)=:q= (

?
)

)

32
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Channel Capacity: Non-Symmetric Channel

This is a concave optimization problem in p over the
EXAMPLE simplex, can be solved with an iterative algorithm, such
Non-symmetric discrete as the the BLAHUT—ARIMOTO algorithm
row-stochastic
memoryless channel >

7 2 1\ 0313 0.425
P=<.3 6 .1) p(x)=:p= (0.336) p(y)=:q= <0.334>
3 .2 .5 0.351 0.241
X /
C = max[/(X;Y)]
p

This is the solutiow.
HY)—-H|X)  How do we get ?

+here? 0

~ 1.554 — 1.313 = 0.2289

Python activities file 231: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/231 Blahut-Arimato.ipynb
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 33
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Blahut-Arimoto algorithm (forward interpretation)

Start with an arbitrary input probability p
and repeat until convergence:

e Calculate q « PTp "’/"W Py. Pry .
* For each input x, define the scalar D,.(q) that D.=D p _ 2 ) -1 (P(}’lx))
measures how different (= informative) the output « (PG POlla) . pOIx) 18 q(y)

distribution p(: [x) is from the average output

distribution q. Collect these in vector D(q)
C=E, [Dx]

D, tells us how informative (or recognizable) x is:

 if sending x produces an output that looks similar to
. the usual channel output (p(: [x)=q), then seeing
the output does not help you infer that x was sent.

— if D, is small, then x is not recognizable

* If sending x produces a distinctive output footprint,
very unlike the average output q, then the receiver
can recognize that x was the one sent.

— if D, is large, then x is highly recognizable

Python activities file 231: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/231 Blahut-Arimato.ipynb
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Blahut-Arimoto algorithm (forward interpretation)

Start with an arbitrary input probability p
and repeat until convergence:

e Calculate q « PTp ”’/"W Py. Pry .
* For each input x, define the scalar D,.(q) that D.=D p _ 2 ) -1 (P(}’lx))
measures how different (= informative) the output « (PG POlla) . pOIx) 18 q(y)

distribution p(: [x) is from the average output
distribution q. Collect these in vector D(q)

C =E, [D,] We multiply each weight p, by an exponential factor, then revormalize.

* Push probability/mass towards x with high D,

Shifts the input distribution so that all used inputs end
with multiplicative-weights update:

up having the same D, value, i.e., they are equally
Dy X D, 20x entrywise multiplication distinguishable.

p < softmax,(p @/D)
Optimality (convergence) is achieved when all D,, = C
for all used x (with p(x)>0) and is thus equally
distinguishable at the receiver.

/
using 2 as base of the softmax instead of e

When converged: Dy = Dy, = -+ =C

Python activities file 231: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/231 Blahut-Arimato.ipynb
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Blahut-Arimoto algorithm (reverse form)

Start with an arbitrary input probability p and alternate
between updating Q and updating p.

e maximize I(X;Y) by choosing posterior Q, while fixing p:

e maximize I(X;Y) by choosing p, while fixing Q:

Python activities file 231: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/231 Blahut-Arimato.ipynb

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Blahut-Arimoto algorithm (reverse form)

Start with an arbitrary input probability p and alternate
between updating Q and updating p.

e maximize I(X;Y) by choosing posterior Q, while fixing p:
Calculate q < PTp
Calculate posterior matrix Q with Q,,. = p(X|Y = y)

DxPxy
dy

Qyx <

e maximize I(X;Y) by choosing p, while fixing Q:
Sx < 2y Py 18(Qyx) Sy =X, p(Ix) - 1g(p(xly))

Collect these in S
Dy X 25x

p < softmax,(S) p < softmax(S - In(2))

S, is an expected log-posterior score:
Sx = Eyp(i) [lg(p(x|y))]

S, is intuitively a "recognizability score".

If sending x leads the decoder (using
current model Q) to strongly conclude that
x was indeed sent, then p(x|Y) = Q(x|Y)
is large - S, is large - Softmax assigns
more probability to x

If the channel behavior under x is
ambiguous, then Q(x|Y) is small = S, is
small = in the the next iteration, p(x) is
reduced.

Thus, the update pushes probability mass
toward inputs that are easier to decode.

Python activities file 231: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/231 Blahut-Arimato.ipynb
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Blahut-Arimoto algorithm (reverse form)

Start with an arbitrary input probability p and alternate Connection forward / backward:
between updating Q and updating p.

e maximize I(X;Y) by choosing posterior Q, while fixing p: Sx = Xy Py - 18(Qyx)
Calculate q « PTp

Se = 2y p(y1) - 1g (Z220)

Calculate posterior matrix Q with Q.. = p(X|Y = y) a(y)
DxPxy _ ) p(y[x)
Oy = 7 =%, p010) - (lg(p o) +1g (B22))
_ e (POX)
e maximize I(X;Y) by choosing p, while fixing Q: N lg(p(x)) + 2y p(yIx) lg( q(y) )
Sx < Xy Py 18(Qyx) Sy =Xy p(yIx) - Ig(p(x1y)) =lg(p(x)) + Dy

Collect these in S 25 = p(x) - 2Px

Dy X 2%

p < softmax,(S) p < softmax(S - In(2))

Python activities file 231: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/231 Blahut-Arimato.ipynb
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Details on the reverse interpretation

Goal: maximize I(X;Y). Given: p(x|y) (written as P = [p(x]y)]). We can choose p = [p(x)].

10GY) =) pn) T (s ) = Dia (PG Y IPGX) - P(3))

X,y
=2 ren ()

_ . L (plx)
—ZP(X) ;p(ylx) 1g(/pv(y) )
Y P(XDp(y|x")
(via q = P'p)

Dy

This leads to the interpretation of the
forward variant with multiplicative weights
updates from the previous pages.

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Details on the reverse interpretation

Goal: maximize I(X;Y). Given: p(x|y) (written as P = [p(x]y)]). We can choose p = [p(x)].

V) = e (P _ | (1Y)
1(X;Y) ;mx,y) 8( -t arr) - ;pm po10) - 18(% o)
= Z p(x,y) - lg (p(ylx)) LEMMA 1: If p(x) and p(y|x) are given (then q = [p(y)]
P p(y) follows), then p(x|y) that maximizes I(X;Y) is the posterior
p(y]x) matrix Q with Q., = p(X|Y = y)
= zp(x) -Ep(ylx) ' lg( >0 ) Thus Qyy = PxPey (vig q = PTp)
X X,y P ay
2o P(xXDp(ylx’) _p() -p(ylx)
(via q = P'p) pxly) = p(y)
D,

This leads to the interpretation of the
forward variant with multiplicative weights
updates from the previous pages.

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/



https://northeastern-datalab.github.io/cs7840/fa25/

Details on the reverse interpretation

Goal: maximize I(X;Y). Given: p(x|y) (written as P = [p(x]y)]). We can choose p = [p(x)].

(x,¥) p(x|y)
106) = 2 peeon 18 (5 5) = 2 p@ 2010 18 ()
(X;Y) xyp( RN by copurons xyp(x) PO -18(= 5
’ ’ Step 1: max p(x|y)
3 p(y|x) Qyx
—Zp(x,y)-lg<p(y) ) =2p(x)-p(y|x)-lg( - )
Y P p(x) SUMS Up +o ’\\f\/cr y
X
= Z p@) xZ por) - 1g(22) =Y G- Y PO 18(0) ~ ) P 18(p()) PG
Yy 7 x U EZS )
%0 PP (1) AP — +H(p)
(via q = PTp) g
> 5 g LEMMA 2: The softmax is the solution to
X
This leads to the interpretation of the a;ggleix [(Z p(x)5x> + H(p)
forward variant with multiplicative weights x S
updates from the previous pages. p = softmax,(S) p; = Zzzlsj
J

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Detail: Posterior matrix Q (X|Y)

Given fixed p = p(X) and P = [p(Y[X)].

) ) ) . . Px - ny
Calculate posterior matrix Q with Q,,. = p(X|Y = y) Qyx =

dy

row-stochastic

7 2 1N 0.5 0.5
P =\<.3 .6 .1) p(x)=:p= (0.25) p(y)=:q= (0.3)
3 .2 5 0.25 0.2

X

05 1 7
p(X) \K q(¥) Qyxy stead of row-stochastic Qyy

Notice some textbooks write column-stochastic

2 0.3 row-stochastic .y
Vi .15
Q =\<3 5 .16 ) = pzq'z“ =222 = 0.15
25 1.125 .625

y

025 3 2 0.2

is P(X|Y = 1)
each row Q,,. is a posterior P(X|Y = y)

Python activities file 231: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/231 Blahut-Arimato.ipynb
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Detail: Posterior matrix Q (X|Y)

Given fixed p = p(X) and P = [p(Y[X)].

) ) ) . . Px - ny
Calculate posterior matrix Q with @, = p(X|Y = y) Qyx =

dy

row-stochastic

7 2 1 0313 0.425
P=3 6 .1 p(x)=:p= (0.336) p(y)=:q= <0.334>
3 2 5 0.351 0.241

0313 1 M
Notice some textbooks write column-stochastic
p(X) q(¥) Qyxy stead of row-stochastic Qyy
2 0.334 row-stochastic .y
515 248
Q= (.187 603 .210) = P2l _ 033603 _ 937
130 .140 .730
Yy
0.351 3 2 0.241

is P(X|Y = 1)
each row Q,,. is a posterior P(X|Y = y)

Python activities file 231: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/231 Blahut-Arimato.ipynb
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 43



https://northeastern-datalab.github.io/cs7840/fa25/
https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/231_Blahut-Arimato.ipynb

Detail: Softmax maximizes linear reward + entropy

log (Z al-) > Z p; - log (%)

Si
CLAIM  p = softmax,(S) p; = ;Zsj
J

) ]Ei~p [Si]
s the §olgt|on to the argmax z p:S: | + H(p)
optimization problem  pea l

Entropy regularization adds a “keep it uncertain” bias +o optimization. The uvique
optimizer of a livear objective plus entropy regularization is the softmax distribution.

PROOF Jensen's inequality for concave f:

fELX]D = E[f(X)]
log(E[X]) = E[log(X)]

log (Z pi - ) Zpl log(X;)
log(Zpl Pl> Zpl log Pl)

log(X) is concave

. a;
equality for: = = -2
bi pj

equality for: X; = X;

lg (Z 25i

i

Equality holds for —
Hence, p; =
From from ; p; = 1, we get C = ;; 257,

Hence, p; =

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/

set a; = 2% and use Ig =

) > 2 pi - (Si —lg(py))

= Z(PiSi

251

bi

25i

5 2%

— pilg(p)

log,
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Maximizing mutual information (capacity). We have a fixed Pyx and the optimization

problem

C= maxI(XY) max max Ep, ,
Px  QOxy

llog Qx|y]

Px

where in the second equality we invoked (4.7). This results.in the iterations:

Oxy(x[y) < Px(x)Pyx(y|x)

1
Z(y)

IfI(X;Y) < oo then

where the supremum is over Markov kernels Qx\y as in the first sentence.

I(X; Y) = Sup EPX,Y
Ox|y

4.7)

llog dQx, Y:| ,

dPx

Px(x) < Q'(x) . 7 eXp {ZPY|X(y|x) log Oxy(x]y)

where Z(y) and Z are normalization constants. To derive this, notice that for a fixed Py the optimal
QOx|y = Pxjy- For a fixed Qyjy, we can see that

pry{logQP—;} logZ — D(Px||Q),

and thus the optimal Px = Q’.
Denoting P, to be the value of Py at the nth iteration, we observe that

I(Pn,Py|X) < C < SupD(Py|X:x||Py|X o Pn) . (529)
This is useful since at every iteration not only we get an estimate of the optimizer P, but also the
gap to optimality C — I(P,, Py, x) < C — RHS. It can be shown, furthermore, that both RHS and
LHS in (5.29) monotonically converge to C as n — oo, see [113] for details.

RN

There are two mathematically equivalent forms of
the Blahut-Arimoto (BA) algorithm:

1. we started with the forward form that optimizes
for p, using travsition matrix P or p(y|x).

2. Here and ov Wikipedia, you find the reverse form
that optimizes for p(x|y) = Qyx using Bayes' law.

Polyanskiy, Wu. Information Theory: From Coding to Learning. Cambridge University Press 2025. https://doi.org/10.1017/9781108966351

See also Wikipedia: https://en.wikipedia.org/wiki/Blahut%E2%80%93Arimoto_algorithm#Algorithm for Channel Capacity

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Error Correcting Codes
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Efficient error correcting codes are quite complicated

Chapter 14

Polar Codes

In contrast to source coding where soon after the fundamental result (Theo-

rem 5.2) was published by §hannon, an optimal scheme was found (Huffman

coding), channel coding proved to be a much harder nut to crack. For years
engineers tried to find a practical system (i.e., one with manageable complex-
ity) that would approach the performance of an optimal coding scheme. The
irony is that a randomly picked system will quite likely work very well (as can
be seen from the random coding proof of Shannon!), but any such system is
impossible in practice as there is no structure in the code that would allow
efficient encoding and decoding. All investigated structured codes like, e.g.,
algebraic codes that use the structure of vector spaces and subspaces, turned
out to be far from optimal.

Moser. Information Theory (lecture Notes, 6th ed), 2018. https://moser-isi.ethz.ch/scripts.html

The first real breakthrough was the discovery of turbo codes [BGT93] in
1993 (see the end of Chapter 17 for a more detailed discussion). Neverthe-
less, turbo codes (and also the even more efficient low-density parity-check
(LDPC) codes [MN96], [DM98]) are not proven to be good (or even optimal),
but are known to perform well simply from experience.

The first provably capacity-achieving coding scheme that at the same time
also has decent complexity is polar coding introduced by Erdal Arikan in 2007
[Ar109]. In this chapter we are going to study Arikan’s idea in its original form
that was restricted to binary-input DMCs (with an arbitrary finite output
alphabet).

The discovery of a first deterministic construction of a capacity-achieving cod-
ing scheme is one of the chief breakthroughs in information theory of the first
decade of the 215t century. Polar coding still suffers from some drawbacks that
at the moment still hampers its widespread use, but there is a lot of research
effort put into these issues.

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Efficient error correcting codes are quite complicated

7.11 HAMMING CODES

The channel coding theorem promises the existence of block codes that
will allow us to transmit information at rates below capacity with an
arbitrarily small probability of error if the block length is large enough.
Ever since the appearance of Shannon’s original paper [471], people have
searched for such codes. In addition to achieving low probabilities of
error, useful codes should be “simple,” so that they can be encoded and
decoded efficiently.

The search for simple good codes has come a long way since the pub-
lication of Shannon’s original paper in 1948. The entire field of coding
theory has been developed during this search. We will not be able to
describe the many elegant and intricate coding schemes that have been
developed since 1948. We will only describe the simplest such scheme
developed by Hamming [266]. It illustrates some of the-basio'd*as under-

lying most codes.

we may still +ry +o gaiv intuition on those towards
the end of the class (if we have +ime)

Moser. Information Theory (lecture Notes, 6th ed), 2018. https://moser-isi.ethz.ch/scripts.html
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Duality (max / min perspectives on mutual information)

 Data compression:

— we remove all the redundancy in the data to form the most compressed
version possible

e Data transmission:
— we add redundancy in a controlled manner to combat errors in the channel

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Arithmetic Circuits, Structured Matrices and (not so) Deep
Learning

ATRI RUDRA

Department of Computer Science and Engineering
University at Buffalo
atri@buffalo.edu

5.1 Fast Fourier Transform (FFT)

As mentioned earlier, a vast majority of efficient matrix vector multiplication algorithms are equivalent
to small (both in size and depth) linear arithmetic circuit. For example the FFT can be thought of as an
efficient arithmetic circuit to compute the Discrete Fourier Transform (indeed when one converts the
linear arithmetic circuit for FFT into a matrix decomposition, then each matrix in the decomposition is
so called Butterfly matrix, with each block matrix in each factor being the same). For an illustration of

this consider the DFT with n = 4 as illustrated in Figure 1.

FLASHATTENTION: Fast and

SiE Memory-Efficient Exact Attention with I0-Awareness

Figure 1: DFT of order 4.

Figure 2 represent the arithmetic circuit corresponding to FFT with n = 4. Tri Dao’f, Daniel Y. Fu T, Stefano Ermon T, Atri Rudra i, Chl‘iStOphel‘ Ré T
- i i i T Department of Computer Science, Stanford University
: $ i i * Department of Computer Science and Engineering, University at Buffalo, SUNY
{trid,danfu}@stanford.edu, ermon@stanford. edu, atri@buffalo.edu, chrismre@cs.stanford.edu
RO
b \ 3 i ax+by
l @ a b
-1
3 x y

Figure 2: Arithmetic circuit for 4-DFT from Figure 1.

Finally, Figure 3 is representation of the arithmetic circuit of Figure 2 as a product of a butterfly matrix
and (the bit-reversal) permutation.

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Updated 11/17/2025

Part 3: Applications
L19: Channel Capacity, Distortion Theory,

Information Bottleneck
[Distortion Theory]

Wolfgang Gatterbauer

cs7840 Foundations and Applications of Information Theory (fa25)
https://northeastern-datalab.github.io/cs7840/fa25/

11/17/2025
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Pre-class conversations

« Last class recapitulation

 Projects: commented on 5/9 projects so far

— Figures, Python notebook outputs (ideally in the appendix) are *highly* encourage and
do not count against page count for projects

e Lasttime:
— Zsolt on a softmax variant

— Channel capacity with Blahut-Arimato
— Intro to distortion (I move the slides to after this intro)

« Today:
— Distortion theory
— information bottleneck theory

63



e Lecture 18 (Thu, Nov 13) / P3 Intermediate report
30min remote guest lecture by Zsolt Zombori on [Zombori+23] Towards Unbiased Exploration in Partial Label Learning,
@ Channel capacity, Distortion Theory, Information Bottleneck (2/4)
[Cover Thomas'06: Ch 10 Distortion Theory]

¢ Lecture 19 (Mon, Nov 17)
@ Channel capacity, Distortion Theory, Information Bottleneck (3/4)
[Cover Thomas'06: Ch 10 Distortion Theory]
Python notebooks on Rate Distortion and Quantization: 232
Information bottleneck theory: [Zaslavsky+'18], [Webb+'24]

e Lecture 20 (Thu, Nov 20)
Channel capacity, Distortion Theory, Information Bottleneck (4/4)
Khowledge distillation [Hinton+'15]

PART 4: The axiomatic approach (deriving formulations from first principles)

Covers the axiomatic approach from multiple angles: a few simple principles (axioms) leading to entropy or the laws of probability up
to factors. Starting from a list of postulates leading to particular solution is a powerful approach that has been used across different
areas of computer science (e.g. how to define the right scoring function for achieving a desired outcome)

e Lecture 21 (Mon, Nov 24)
Shapley values, Communication Complexity, Coding with errors

e (Thu 11/27): no class (Fall break)

e skipped
Derivation of Hartley measure and entropy function from first principles

e skipped
Cox's theorem: a derivation of the laws of probability theory from a certain set of postulates. Contrast with Kolmogorov’s
“probability axioms”

PART 5: Project presentations

e Lecture 24 (Thu 12/4): P4 Project presentations / P5 Final report
e Lecture 25 (Mon 12/8): P4 Project presentations / P5 Final report
e Lecture 26 (Thu 12/11): P4 Project presentations / P5 Final report

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Examples for "The axiomatic approach" across CS

Title: Quantifying Inefficiency

When: Wednesday, Nov 12 @ 12:00-1:25 p.m.

Where: West Village H #366 (440 Huntington Avenue, Boston, MA 02115)
Faculty Host: Mahsa Derakhshan

Abstract:

The mainstream view within economic theory is that an individual's cardinal utility values are mere representations of the individual's ordinal preferences (over lotteries over
alternative outcomes). As such, each individual's cardinal utilities are only unique up to monotone affine transformations. This poses challenges for the social aggregation of
utilities, and furthermore for forming a foundation for approximation theorems for social efficiency. We axiomatically define a cardinal social inefficiency function, which, given
a set of alternative outcomes and individuals' preferences over these alternatives, assigns a unique number—the social inefficiency—to each alternative. These numbers—
and not only their order—are uniquely defined by our axioms despite no exogenously given interpersonal comparison, outside option, or disagreement point. We interpret
these numbers as per capita losses in endogenously normalized utility. We apply our social inefficiency function to a setting in which interpersonal comparison is notoriously
hard to justify—object allocation without money—Ieveraging techniques from the Price-of-Anarchy literature to prove an approximate-efficiency result for the widely used
Random Serial Dictatorship mechanism.

Joint work with Ella Segev.

Bio:

Yannai A. Gonczarowski is an Assistant Professor of Economics and of Computer Science at Harvard University—the first faculty member at Harvard to have been appointed
to both of these departments. Interested in both economic theory and theoretical computer science, Yannai explores computer-science-inspired economics: he harnesses
approaches, aesthetics, and techniques traditionally originating in computer science to derive economically meaningful insights. Yannai received his PhD from the
Departments of Mathematics and Computer Science, and the Center for the Study of Rationality, at the Hebrew University of Jerusalem. Yannai is also a professionally-
trained opera singer, having acquired a bachelor’s degree and a master’s degree in Classical Singing at the Jerusalem Academy of Music and Dance. Yannai's doctoral
dissertation was recognized with several awards, including the Michael B. Maschler Prize of the Israeli Chapter of the Game Theory Society and the ACM SIGecom Doctoral
Dissertation Award. For the design and implementation of the National Matching System for Gap-Year Programs in Israel, he was awarded the inaugural INFORMS AMD
Michael H. Rothkopf Junior Researcher Paper Prize (first place). Yannai was also the recipient of the inaugural ACM SIGecom Award for Best Presentation by a Student or
Postdoctoral Researcher. His first textbook, "Mathematical Logic through Python" (Gonczarowski and Nisan), which introduces a new approach to teaching the material of a
basic Logic course to Computer Science students, tailored to the unique intuitions and strengths of this cohort of students, was published by Cambridge University Press.

NU theory seminar: https://theory.khoury.northeastern.edu/seminar.html, Gonczarowski, Segev. Quantifying Inefficiency, 2024. https://arxiv.org/abs/2412.11984
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 65
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KAN: Kolmogorov— Arnold Networks Dissociation and Propagation for Approximate Lifted Inference with

Standard Relational Database Management Systems
Ziming Liu’** Yixuan Wang? Sachin Vaidya'! Fabian Ruehle®*

James Halverson®* Marin Solja¢i¢’** Thomas Y. Hou? Max Tegmark'* Wolfgang Gatterbauer - Dan Suciu
1 Massachusetts Institute of Technology
2 California Institute of Technology

3 Northeastern University Messages Relevance
4 . i s . . across edge e of node n
The NSF Institute for Artificial Intelligence and Fundamental Interactions &l sl e}
m(e, m(e,
Model | Multi-Layer Perceptron (MLP) | Kolmogorov-Arnold Network (KAN) %<2 ) ©) >%
e2 “m(e m(e
Theorem Universal Approximation Theorem Kolmogorov-Arnold Representation Theorem ‘ :
Forml NE) 2"z+:1 n Pseudo- m(e;) < pe, - p(n) p(n) « Qmle;)
ormula
~ " .o b f(x) = L) ¢ (x ) R e
(Shallow) f® E a0(W;- X +b) = g o o probabilistic product independent-or
(@) fixed activation functions (b) /T\ learnable activation functions , 1, A
vation | R pipieies PageRank m(e;) « 5 p(n) p(n.) '<— ;m(e,)
Model / product addition
(Shallow) VAVAVAVAY/ S~ sum operation on nodes 1
learnable weights A 7N Belief m(e,-) — ‘ll)ei . p\e‘,(n) p(n) — 7z @m(ei)
T onedges propagation : €
matrix-vector product component-wise prod.
Formula _ o n o o r o
(Deep) MLP(x) = (W3 25, W, 0 6, e W))(x) Linearized m(e,-) — Il)e,- . p\ei(n) p(n) « Zm(ei)
belief prop. matrix-vector product addition ¢
MLP(x)
Fig. 2 “Relevance propagation” in graphs works by iteratively cal-
Model nonlinear; culating messages m(e) across edges e and relevance scores p(n) of
(Deep) fixed nonlinear, nodes n. The propagation method we consider is pseudoprobabilis-
learnable tic in that the two operators are “independent-and” or product (),
linear; and “independent-or” (®). PageRank and related methods from semi-
learnable supervised learning replace the probability p. of an edge with a weight
X (here d, stands for the out-degree of node n) and the independent-or

with addition or sum (}). Belief Propagation propagates not just one
message across an edge but a vector m(e) of messages, scales this
message vector with a matrix 1, (also called “edge potential”), and

Figure 0.1: Multi-Layer Perceptrons (MLPs) vs. Kolmogorov-Arnold Networks (KANs)

Kan: Kolmogorov-arnold networks replaces the independent-or with a component-wise product (®), fol-
ZLiu, Y Wang, S Vaidya, F Ruehle, J Halverson... - arXiv preprint arXiv ..., 2024 - arxiv.org lowed by a normalization (here Z stands for a normalizer). Linearized
... We instead focus on the Kolmogorov-Arnold representation theorem, which can be Belief Propagation uses again addition as SCCOl'ld operator and requires

realized ... network called Kolmogorov-Arnold networks (KAN). We review the Kolmogorov-Arnold ...

¢ Save 99 Cite Cited by 2548 Related articles All 13 versions 55 no normalization. Intuitively, the method developed in this paper gen-

eralizes pseudoprobabilistic relevance propagation to hypergraphs.
Liu, Wang, Vaidya, Ruehle, Halverson, Soljaci¢, Hou, Tegmark. KAN: Kolmogorov-Arnold Networks, ICLR 2025. https://arxiv.org/abs/2404.19756 ,

Gatterbauer, Suciu. Dissociation and propagation for approximate lifted inference with standard relational database management systems, VLDBJ 2017. https://arxiv.org/abs/1310.6257
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 66
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Distortion
Theory

Largely based on chapter 10 of
[Cover, Thomas'06] Elements of Information Theory, 2006. https://www.doi.org/10.1002/047174882X

https://northeastern-datalab.github.io/cs7840/fa25/
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Rate distortion theory

A finite representation of a continuous RV can never be perfect

How well can we represent it?

Requires a notion of "goodness" of a representation

. distance between RV and its representation

Rate distortion theory:
— Given: source distribution p and a distortion measure d
— Describes: trade-off between and

— Lossy compression framework with zero-error data compression (earlier topics in class,
to be seen if we revisit later again) a special case

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 68
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Quantization

e Let X be a continuous RV (e.g. from a Gaussian distribution)
« We approximate X by X
e Using R bits to represent X, then X(X) has 2R possible values

— Example R = 8 bits, then then X has how many possible values?

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Quantization

e Let X be a continuous RV (e.g. from a Gaussian distribution)
« We approximate X by X

e Using R bits to represent X, then X(X) has 2R possible values
- Example R = 8 bits, then then X has 28 = 256 possible values

. Goal: find the optimal set of values ("representatives") for X and
associated regions ("assignment regions") for each value

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 71
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Original and

Quantized 0
Signal
-1
0.5
Quantization ]
Error
-0.5

Source: Bernd Girod, 2012: https://web.stanford.edu/class/ee398a/handouts/lectures/05-Quantization.pdf
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Source: Bernd Girod, 2012: https://web.stanford.edu/class/ee398a/handouts/lectures/05-Quantization.pdf
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Quantization of a Gaussian

0.4
Assume you have R = 1 bit
0.35 (2 values). What is +he best
0.3 way to dquantize a Ganssiav .
0.95 distribution
S 02 What is an appropriate ?
0.15 measure of distortion -
0.1
0.05
0

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 74
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Quantization of a Gaussian va W
0.4 .
Assume you have R = 1 bit
0.35 (2 values). What is +he best
0.3 way to duantize a (anssiaw -
0.95 distribution
S 02 Assume we like to minimize the
0.15 meav of sdquared errors (MSE)
0.1
Recall from our probability primer:
0.05 The mean minimizes the sum of
02 - squared errors, and thus also the

MSE (while the median minimizes
the sum of absolute errors).

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 75
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Quantization of a Gaussian

0.4
Assume you have R = 1 bit
0.35 (2 values). what is the best
0.3 way to quantize a Ganssian -
0.25 distribution
= 02 Assume we like +o minimize the
0.15 meav of squared errors (MSE)
0.1
0.05
0
25

If we have 2 values. Tt makes sense to choose = 0
and < 0. But what should be +he representatives?

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 76
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Quantization of a Gaussian "

0.4
| Assume you have R = 1 bit
0.35 7 (2 values). what is the best
0.3 - way to quantize a Ganssian
0.95 i distribution
= 02 - Assume we like +o minimize the
0.15 _ _ meav of squared errors (MSE)
0.1 >0
0.05 wWhat should be +he representative
0 Lyl 1 of the region = 0
25 2 -15 -1 05 0 05°°'1 15 2 25
x P

If we have 2 values. Tt makes sense to choose = 0
and < 0. But what should be +he representatives?

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 77
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Quantization of a Gaussian

0.4

0.35 |-

0.3

0.25 |

f(x)

0.2

0.15 |-

0.1

0.05

0 | | ')('

25 2 -15 -17°-05 .
—-0.80 x 0.80

Assume you have R = 1 bit
(2 values). Wwhat is the best
way to duantize a anssiav
distribution

Assume we like to minimize the
meav of sdquared errors (MSE)

The (conditional) mean (centroid) of
a region minimizes +the MSE!

If we have 2 values. Tt makes sense to choose = 0
and < 0. But what should be +he representatives?

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Quantization of a Gaussian

0.4

Assume you have R = 2 bits
(4 values). What is the best
way to duantize a anssiav
distribution under MSE?

0.35
0.3

0.25

0.15 Now we need to determine 3

boundaries {t;}
and 4 reconstruction points
{56\1'}\ But how?

N\

t; X;i litq

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 79
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Two properties of optimal boundaries and construction points

{ti} = {Xiv1}
Given two thresholds t;, t;; 4 marking the boundaries of a
region. What is the best representative X;,, of the region?

?

0 .
=25 2 15 -1 05 O 0|5 1 1|5 2 25
X

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Two properties of optimal boundaries and construction points

. {ti} = {Xis1}
Given two thresholds t;, t;, 1 marking the boundaries of a
region. What is the best representative X;,, of the region?

I I I I I I I I

The conditional means (conditioned on the region
= centroids) minimize the MSE and should thus be
the reconstruction points.

%} = {t:}
Given a set of representative values {X;, 1}, which
representative should we choose for any given x?

?

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Two properties of optimal boundaries and construction points

{ti} = {Xi11}
Given two thresholds t;, t;, 1 marking the boundaries of a
region. What is the best representative X;,, of the region?
The conditional means (conditioned on the region
= centroids) minimize the MSE and should thus be
the reconstruction points.

I I I I I I I I

%} = {t:}

Given a set of representative values {X;, 1}, which

representative should we choose for any given x?
Distortion (MSE) is minimized by assigning values to
their closest points. Thus a Voronoi partition gives
use the optimal thresholds.

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 82
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Two properties of optimal boundaries and construction points

{ti} = {Xis1}
Given two thresholds t;, t;, 1 marking the boundaries of a
region. What is the best representative X;,, of the region?
The conditional means (conditioned on the region
= centroids) minimize the MSE and should thus be

the reconstruction points.

corresponds to the M-step in EM algorithm: optimize the model parameters
(the codewords) given the currewt assiguments

%} = {t:}
Given a set of representative values {X;, 1}, which
representative should we choose for any given x?

Distortion (MSE) is minimized by assigning values to
their closest points. Thus a Voronoi partition gives

use the optimal thresholds.
corresponds to E-step in EM: for each input, compute an assigument to a cluster

X (here it is a determivistic version of computing expected cluster responsibilities)
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 83
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Lloyd-Max scalar quantizer

Problem: For a signal x with given PDF fy(x) find a quantizer with m representative

levels (or "codes" that minimizes N2
d=MSE =E[(X-X)]

Lloyd-Max quantizer

Input: initial vector X of m representative levels
Repeat {
* Create m — 1 decision thresholds t exactly pom Xt 4 g
half-way between representative levels l ' Y
* Create m representative levels X as the [l fy () dx
centroids of PDF between two successive X; = — T , 1=0,....m—1
decision thresholds fti fx(x)dx
until (likely) convergence}

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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0: representatives: [1 2], d: 1.9414
0.4 1: representatives: [-0.1388 1.9387], d: 0.6019
2: representatives: [-0.3261 1.4456], d: 0.4686
3: representatives: [-0.479 1.1851], d: 0.4073
0.35 4: representatives: [-0.5875 1.0354], d: 0.3814
5: representatives: [-0.661 0.9457], d: 0.3707
0.3 6: representatives: [-0.7095 0.8907], d: 0.3664
7: representatives: [-0.7411 0.8564], d: 0.3646
8: representatives: [-0.7616 0.8349], d: 0.3639
0.25 9: representatives: [-0.7747 0.8214], d: 0.3636
10: representatives: [-0.7831 0.8128], d: 0.3635
< 0.2 11: representatives: [-0.7884 0.8074], d: 0.3634
= Vv 12: representatives: [-0.7919 0.8039], d: 0.3634
13: representatives: [-0.7941 0.8017], d: 0.3634
0.15 14: representatives: [-0.7954 0.8003], d: 0.3634
15: representatives: [-0.7963 0.7994], d: 0.3634
16: representatives: [-0.7969 0.7989], d: 0.3634
0.1 17: representatives: [-0.7973 0.7985], d: 0.3634
18: representatives: [-0.7975 0.7983], d: 0.3634
19: representatives: [-0.7976 0.7981], d: 0.3634
0.05 20: representatives: [-0.7977 0.798 ], d: 0.3634
21: representatives: [-0.7978 0.798 ], d: 0.3634
0 22: representatives: [-0.7978 0.798 ], d: 0.3634
25 23: representatives: [-0.7978 0.7979], d: 0.3634
24: representatives: [-0.7979 0.7979], d: 0.3634
25: representatives: [-0.7979 0.7979], d: 0.3634
26: representatives: [-0.7979 0.7979], d: 0.3634
27: representatives: [-0.7979 0.7979], d: 0.3634
28: representatives: [-0.7979 0.7979], d: 0.3634
29: representatives: [-0.7979 0.7979], d: 0.3634

Python file 232: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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0: representatives: [2 3],)d: 4.9960
04 1: representatives: [-0.0¥76 2.8227], d: 0.7932
2: representatives: [-071622 1.8562], d: 0.5800
3: representatives: [-0.3477 1.404 ], d: 0.4579
0.35 4: representatives: [-0.4948 1.1617], d: 0.4027
5: representatives: [-0.5984 1.0216], d: 0.3795
0.3 6: representatives: [-0.6682 0.9373], d: 0.3699
7: representatives: [-0.7143 0.8854], d: 0.3660
8: representatives: [-0.7442 0.8532], d: 0.3645
0.25 9: representatives: [-8.7635 0.8329], d: 0.3638
10: representatives: [-0.7759 0.8201], d: 0.3636
< 0.2 11: representatives: [-0.7839 0.812 ], d: 0.3635
= . 12: representatives: [-0.789 0.8069], d: 0.3634
13: representatives: [-0.7922 0.8036], d: 0.3634
0.15 14: representatives: [-0.7943 0.8015], d: 0.3634
15: representatives: [-0.7956 0.8002], d: 0.3634
16: representatives: [-0.7964 0.7994], d: 0.3634
0.1 17: representatives: [-0.7969 0.7988], d: 0.3634
18: representatives: [-0.7973 0.7985], d: 0.3634
19: representatives: [-0.7975 0.7983], d: 0.3634
0.05 20: representatives: [-0.7976 0.7981], d: 0.3634
21: representatives: [-0.7977 0.798 ], d: 0.3634
0 22: representatives: [-0.7978 0.798 ], d: 0.3634
-25 23: representatives: [-0.7978 0.7979], d: 0.3634
24: representatives: [-0.7978 0.7979], d: 0.3634
25: representatives: [-0.7979 0.7979], d: 0.3634
26: representatives: [-0.7979 0.7979], d: 0.3634
27: representatives: [-0.7979 0.7979], d: 0.3634
28: representatives: [-0.7979 0.7979], d: 0.3634
29: representatives: [-0.7979 0.7979], d: 0.3634

Python file 232: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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0: representatives: [-2.5 -1.5 -68.5 0.5 1.5 2.5], d: 0.0849
1: representatives: [-2.3732 -1.3832 -0.4599 0.4599 1.3832 2.3732], d: 0.0748
0.4 2: representatives: [-2.2658 -1.2991 -0.4292 0.4292 1.2991 2.2658], d: 0.0686
3: representatives: [-2.182 -1.2349 -0.4059 0.4059 1.2349 2.182 ], d: 0.0647
4: representatives: [-2.1177 -1.1851 -0.3878 0.3878 1.1851 2.1177], d: 0.0622
5: representatives: [-2.0683 -1.1461 -0.3734 0.3734 1.1461 2.0683], d: 0.0607
0.35 6: representatives: [-2.0303 -1.1154 -0.362 0.362 1.1154 2.0303], d: 0.0597
7: representatives: [-2.0009 -1.0912 -0.3529 0.3529 1.0912 2.0009], d: 0.0590
8: representatives: [-1.9779 -1.0722 -0.3456 0.3456 1.0722 1.9779], d: 0.0586
9: representatives: [-1.96 -1.0571 -0.3399 0.3399 1.0571 1.96 ], d: 0.0584
0_3 10: representatives: [-1.946 -1.0452 -0.3353 0.3353 1.0452 1.946 ], d: 0.0582
11: representatives: [-1.9349 -1.0358 -0.3317 0.3317 1.0358 1.9349], d: 0.0581
12: representatives: [-1.9263 -1.0284 -0.3288 0.3288 1.0284 1.9263], d: 0.0581
13: representatives: [-1.9194 -1.0225 -0.3265 0.3265 1.0225 1.9194], d: 0.0580
0_25 14: representatives: [-1.914 -1.0179 -0.3247 0.3247 1.0179 1.914 ], d: 0.0580
15: representatives: [-1.9098 -1.0142 -0.3232 0.3232 1.0142 1.9098], d: 0.0580
16: representatives: [-1.9064 -1.0112 -0.3221 0.3221 1.0112 1.9064], d: 0.0580
— 17: representatives: [-1.9037 -1.0089 -0.3212 0.3212 1.0089 1.9037], d: 0.0580
x 0.2 18: representatives: [-1.9016 -1.8071 -0.3205 0.3205 1.8071 1.9016], d: 6.8580
t::’ - 19: representatives: [-1.8999 -1.0056 -0.3199 0.3199 1.0056 1.8999], d: 0.0580
20: representatives: [-1.8986 -1.0045 -0.3194 0.3194 1.0045 1.8986], d: 0.08580
21: representatives: [-1.8976 -1.0036 -0.3191 0.3191 1.0036 1.8976], d: 0.0580
O 15 22: representatives: [-1.8968 -1.0029 -0.3188 0.3188 1.0029 1.8968], d: 0.0580
" 23: representatives: [-1.8961 -1.0023 -0.3186 0.3186 1.0023 1.8961], d: 0.0580
24: representatives: [-1.8956 -1.0018 -0.3184 0.3184 1.0018 1.8956], d: 0.0580
25: representatives: [-1.8952 -1.0015 -0.3183 0.3183 1.0015 1.8952], d: 0.8580
() 1 26: representatives: [-1.8948 -1.0012 -0.3181 0.3181 1.0012 1.8948], d: 0.0580
" 27: representatives: [-1.8946 -1.001 -0.3181 0.3181 1.001 1.8946], d: 0.0580
28: representatives: [-1.8944 -1.0008 -0.318 0.318 1.0008 1.8944], d: 0.0580
29: representatives: [-1.8942 -1.0006 -0.3179 0.3179 1.0006 1.8942], d: 0.8580
() ()ES 30: representatives: [-1.8941 -1.0005 -0.3179 0.3179 1.0005 1.8941], d: 0.0580
" 31: representatives: [-1.894 -1.0004 -0.3178 0.3178 1.0004 1.894 ], d: 0.0580
32: representatives: [-1.8939 -1.0004 -0.3178 0.3178 1.0004 1.8939], d: 0.0580
33: representatives: [-1.8938 -1.0003 -0.3178 0.3178 1.0003 1.8938], d: 0.0580
() 34: representatives: [-1.8938 -1.0003 -0.3178 0.3178 1.0003 1.8938], d: 0.0580
35: representatives: [-1.8937 -1.0002 -0.3178 0.3178 1.0002 1.8937], d: 0.0580
__22.55 36: representatives: [-1.8937 -1.0002 -0.3178 0.3178 1.0002 1.8937], d: 0.0580
37: representatives: [-1.8937 -1.0002 -0.3177 0.3177 1.0002 1.8937], d: 0.0580
38: representatives: [-1.8937 -1.0002 -0.3177 0.3177 1.0002 1.8937], d: 0.8580
39: representatives: [-1.8937 -1.0002 -0.3177 0.3177 1.6002 1.8937], d: 0.8580
40: representatives: [-1.8936 -1.0001 -0.3177 0.3177 1.0001 1.8936], d: 0.0580
41: representatives: [-1.8936 -1.0001 -0.3177 0.3177 1.0001 1.8936], d: 0.0580
42: representatives: [-1.8936 -1.0001 -0.3177 0.3177 1.0001 1.8936], d: 0.0580
43: representatives: [-1.8936 -1.0001 -0.3177 0.3177 1.0001 1.8936], d: 0.8580
44: representatives: [-1.8936 -1.0001 -0.3177 0.3177 1.0001 1.8936], d: 0.0580
45: representatives: [-1.8936 -1.0001 -0.3177 0.3177 1.0001 1.8936], d: 0.0580
46: representatives: [-1.8936 -1.0001 -0.3177 0.3177 1.0001 1.8936], d: 0.0580
47: representatives: [-1.8936 -1.0001 -0.3177 0.3177 1.0001 1.8936], d: 0.8580
48: representatives: [-1.8936 -1.0001 -0.3177 0.3177 1.6001 1.8936], d: 0.8580
49: representatives: [-1.8936 -1.0001 -0.3177 0.3177 1.0001 1.8936], d: 0.0580

Python file 232: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Example: Lloyd-Max quantizers for Gaussian PDF

index quantized value, representation Expected Distortion
L / D = E[d]
Data Code  Recon- Reconstruction : 0.3634
point name struction errord o |
x f) 9@y (9(f(0)—x) o
I
0.1 1 0.80 0.490=(0.8-0.1)?

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 88
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Example: Lloyd-Max quantizers for Gaussian PDF

index quantized value, representation Expected Distortion
/ D = E[d]
Data Code Code  Recon- Reconstruction 0.3634
point length name struction errord 0
x  bits  f(x) gUf) (9(f()—x) omlio
I
0.1 1 1 0.80 0.490
2 10 0.45 0.123 /
0 VO [E1N1 0.1175
100 0.25 0.023 o/ 1 0 |\
51| 045 i 045 |15
098 0 098
0 |o 06?1 11 §0345
0 |0 / 1 go\\i 1 |
0 O11}:0]1 1
)/ : 0.76 1.342.15¥

-__-—2.1y-1.3 -0.76IO.25|0:.25 .
1 :

-1.75 -1.05-0.500 0.50 1.05 1.75

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 89
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Example: Lloyd-Max quantizers for Gaussian PDF

index quantized value, representation Expected Distortion

/ D = E[d]

Data Code Code  Recon- Reconstruction 0.3634
point length name struction error d 5 0
x bits f) g(f)  (9(Fx) —x) o
0
01 1 1 0.80 0.490
2 10 0.45 0.123 /
3 100 0.25 0.023 8 ‘1) (1) 0.1175
1.51| -0.45 5045 1.51
-0.98 0
1.0 1 ? ? ?
2 ? ? ? 0 |0 0651\ 1
/ : 0.0345
; 5 5 5 0 |o|A|1]io 1
- : - 0 )/o 1[0| 10 | 1
s

___-—2.1y-1.3 -0.76IO.25|0;.25 .
1

1.75 -1.05-0.500 0.50 1.05 1.75

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 90
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Example: Lloyd-Max quantizers for Gaussian PDF

index

|

Data Code Code
point length name

X bits  f(x)

0.1 1 1
2 10

100

1.0 1 1
2 11

3 101

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/

Recon-
struction

g(f (x))

0.80
0.45
0.25

0.80
1.51
0.76

guantized value, representation

Reconstruction
error d

(9(f () —x)°

0.490
0.123
0.023

0.040
0.260
0.058

-0.76IO.25|0:.25 :
1.05-0500 0.50 1.05 1.75

2

Expected Distortion
D = E[d]

0.3634

1 0.1175
0 I

0.45 ;151
AVIE

K 1 0.0345
O 1

£2 e 1K) AR
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Vector quantization:

the geometry of longer block length
(higher dimensions). Voronoi tessellations
and connection to k-means

https://northeastern-datalab.github.io/cs7840/fa25/
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The geometry of vector quantization

Independent 4-bit quantization (16 representatives) |
for n = 2 independent Gaussians: X, "

Joint encoding of n = 2 independent Gaussians:

Figure source: https://ieeexplore.ieee.org/document/7767821/
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 98
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The geometry of vector quantization

Independent 4-bit quantization (16 representatives) S 0200220 £ E—
forn = 2 independent Gaussians: X, el RS
X1

Joint encoding of n = 2 independent Gaussians:
2D vector quantization, i.e. block lengthn = 2

and 4-bit per sample, or 8-bit (and 256
representatives) for two samples together

Figure source: https://ieeexplore.ieee.org/document/7767821/
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Figure source: https://speechprocessingbook.aalto.fi/Modelling/Vector _guantization VQ.html
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 100
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Figure source: https://speechprocessingbook.aalto.fi/Modelling/Vector _guantization VQ.html
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Lloyd's algorithm = k-means

(

Figure source: https://en.wikipedia.org/wiki/Lloyd's algorithm
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 102
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Optimal tessellations

?

Figure source: https://link.springer.com/article/10.1007/s41651-024-00200-5
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 103
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Optimal tessellations

SR
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Three types of spatial grids: hexagonal, square, and triangular.

Only the hexagonal grid provides an equal distance between the centers of neighboring cells.
There are at least two different distance categories for other kinds of grids.

Source: https://www.kontur.io/blog/why-we-use-h3/
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 104
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Optimal tessellations

"Early natural philosophers, like Marcus Terentius Varro [37 BC], based on the
observation that hexagons possess the highest surface/perimeter ratio, compared to
other polygons that can be used for tiling the plane, suggested that honey bees build
their hexagonal cells in order to achieve the best economy of material."

Source: Nazzi, "The hexagonal shape of the honeycomb cells depends on the construction behavior of bees", Nature, 2016. https://www.nature.com/articles/srep28341
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 105
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't even gets better *with™® correlations

250 A

200 -

150 -

100 A

0 50 100 150 200 250

Correlation of neighboring pixels Vector space partitioning in
scalar quantization (approximate)

Figure source: https://link.springer.com/chapter/10.1007/978-3-031-57840-3 40
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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't even gets better *with™® correlations

250 A

200 -

150 -

100 A

0 50 100 150 200 250

Correlation of neighboring pixels

250 A

200 -

150 4

100 -

0 50 100 150 200 250

Vector space partitioning in
scalar quantization (approximate)

Figure source: https://link.springer.com/chapter/10.1007/978-3-031-57840-3 40

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/

Arrangement of cells with the
smallest average quantization
error in vector guantization
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't even gets better *with™® correlations

250 - . 250
200 - 200 -
150 - 150 -
> >
100 4 100 4
50 - 50 4
0 T T T T T 0 T T T T T 0 T T T t T
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
X X X
Correlation of neighboring pixels Vector space partitioning in Arrangement of cells with the
scalar quantization (approximate) smallest average quantization

error in vector quantization

Figure source: https://link.springer.com/chapter/10.1007/978-3-031-57840-3 40
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Rate-distortion code vs. k-means

X = {0,1, ...,255} thus 8 bit resolution (=256 levels) per color channel
n = 2 channels per pixel (will be encoded together); thus 16 bits per source sequence X2

nR = 4 bits (per channel sequence), thus only 16 representatives per X 2 instead of 65536 = 2562
R = 2 bits per channel (instead of 8)

Green level

50 100 150 200 250

. Red level
Example image with only red and Vector quantization of colors present in the
green channel (for illustration) image into Voronoi cells using k-means

Source: https://en.wikipedia.org/wiki/K-means_clustering
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 109
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Rate-distortion code vs. k-means

X = {0,1, ...,255} thus 8 bit resolution (=256 levels) per color channel
n = 2 channels per pixel (will be encoded together); thus 16 bits per source sequence X2
nR = 4 bits (per channel sequence), thus only 16 representatives per X 2 instead of 65536 = 2562

R = 2 bits per channel (instead of 8)
N6="1111"

250

200 |

150

%
- index 10 (="1001" in bits)
& 100\ represents the pair (135,105)
20 Pairs inside this cell ("assignment
region") get assigned to index 10
1="0000" 50 100 150 200 250
. Red level
Example image with only red and Vector quantization of colors present in the
green channel (for illustration) image into Voronoi cells using k-means

Source of images: https://en.wikipedia.org/wiki/K-means_clustering
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 110
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The magic of vector quantization

e Given a set of n samples (e.g. iid from Gaussian distribution)
« We want to jointly quantize the vector (X4, ..., X,,)
e Represent these vectors using nR bits

 Represent the entire sequence by a single index taking 2% values
("representatives")

achieves a lower distortion than linear
(independent, scalar) quantization

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 111
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Uniform quantization Non uniform quant. (1D VQ) 2D vector quantization Llama-v2 7B weights SQNR

L] ® © 0 0 0 o L] 16
[ ] [ ] 12
© L]
° ° o 10
° ° = 8
[ ] L] g
L] ® © 00 0 o L] 6
4
, Llamav2-70B WikiText2 test set perplexity 2
® —#— Uniform (OmniQuant) 0 Uniform Non uniform vQ 2D VQ 4D
#— Uniform (GPTQ) quant. scalar quant.
B ) —e— 1D VQ (Ours)
B ~&~- 2D VQ (Ours)
Y5 LI hasee Figure 2. Quantization SQNR depending on the dimensionality
w . . . . . .
5 for Llama-v2 7B weights. Signal-to-noise ratio increases with
* 4 quantization dimensionality due to additional flexibility in the
------------------------------------------------------------------- -- quantization grid.
3 2125 3.125 4125

Bits per value
Figure 1. Top: An example of how vector quantization can better
represent 2D normally distributed data compared to uniform quan-
tization, non-uniform quantization. Bottom: Comparing GPTVQ
to state-of-the-art uniform quantization on Llama 70B.

Source: Van Baalen et al. GPTVQ: The Blessing of Dimensionality for LLM Quantization. ICML Workshop ES-FoMo-Il, 2024. https://arxiv.org/abs/2402.15319
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 113
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An animation
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0.3 1

0.2 +

0.1

of k-means

Iteration #0

0

01 02 03 04 05 06 07 08 09 1

Source of animation figure: https://en.wikipedia.org/wiki/K-means_clustering

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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k-means in higher dimensions

Coordination

11 15

Source: https://www.ovito.org/docs/current/reference/pipelines/modifiers/voronoi analysis.html
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An animation of Voronoi tessellation

Delaunay triangulation and Voronoi diagram

Source: https://cartography-playground.gitlab.io/playgrounds/triangulation-delaunay-voronoi-diagram/
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 116
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Logistic regression vs. (soft) k-means
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Logistic regression vs. (soft) k-means
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Let's make this more formal
(Definitions)

Largely based on chapter 10 of
[Cover, Thomas'06] Elements of Information Theory, 2006. https://www.doi.org/10.1002/047174882X

https://northeastern-datalab.github.io/cs7840/fa25/
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Distortion theory

 Given: source distribution p, distortion measure d. What is the minimum

expected achievable at a particular transmission (in bits)?
— In particular: What is the fundamental lower-bound on for a given ?
— Intuition: more bits available (higher ), then fewer errors (smaller )

« Equivalently: what is the min required to achieve a given ?

« An intriguing aspect of this theory is that joint descriptions (think block codes)
are more efficient than individual descriptions, even for independent RVs

— The reason is found in the geometry: rectangular grid points (arising from independent
descriptions) do not fill up the space efficiently (recall the earlier Voronoi diagrams)

— Instead of representing each RV using , We represent a sequence of by a
single index taking . Encoding entire sequences at once achieves a lower
for the same rate than independent quantization of the individual samples

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 135
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Distortion function d

Distortion function (measure) d:
cost of representing a symbol by its
guantized version

d: XxX - Rt

e

source alphabet
reproduction alphabet Usually, X = X

We assume the distortion to be bounded:

= max _d(x,X) <o

d
max .
XEX,XEX

What is then the distortion between sequences ?

136
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Distortion function d Hamming distortion:

Distortion function (measure) d: d(x, %) = 0 ifx=%Xx

cost of representing a symbol by its ' 1 itx+xXx

quantized version same as "probability of error” distortion ?
d: XXX - R* -

e

source alphabet
reproduction alphabet Usually, X = X

We assume the distortion to be bounded:

= max _d(x,X) <o

d
max .
XEX,XEX

Distortion between sequences is the
average per symbol distortion:

d(x™ 2") =~ d(x;, £)

137
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Distortion function d

Distortion function (measure) d:
cost of representing a symbol by its
guantized version

d: XxX - Rt

e

source alphabet
reproduction alphabet Usually, X = X

We assume the distortion to be bounded:

= max _d(x,X) <o

d
max .
XEX,XEX

Distortion between sequences is the
average per symbol distortion:

d(x™ 2") =~ d(x;, £)

Hamming distortion:

~ )0 ifx=Xx
d(x,x)—{l if x #%

same as "probability of error" distortion

Eld(X,X)| = P[X = X]

d(x, %) = (x — &)?

Why are we always so excited about

squared errors? Think "least squares”, ?
"sum of squared errors (SSE)", or -
"mean of sduared errors (MSE)", in

linear regressiow, ete...

138

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/



https://northeastern-datalab.github.io/cs7840/fa25/

Distortion function d

Distortion function (measure) d:

cost of representing a symbol by its
guantized version

d: XxX - R*T

e

source alphabet
reproduction alphabet Usually, X = X

We assume the distortion to be bounded:

Apax = Mmax _d(x,X) < o
XEX,XEX

Distortion between sequences is the
average per symbol distortion:

d(x™ 2") =~ d(x;, £)

Hamming distortion:

~ )0 ifx=Xx
d(x,x)—{l if x #%

same as "probability of error" distortion

Eld(X,X)| = P[X = X]

d(x, %) = (x — &)?

Connection to simple expectations (means):

The squared error distortion penalizes large
deviations quadratically. The conditional
mean of X (given some available information
or constraint) minimizes this penalty.

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 139
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Distortion function d: Squared-error distortion

m m, =2m
'@ 2, A ez‘ 2 1
L6
5

Squared-error distortion:
d(x,®) = (x — %)?

Connection to simple expectations (means):

The squared error distortion penalizes large
deviations quadratically. The conditional
mean of X (given some available information
or constraint) minimizes this penalty.

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 140
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Distortion function d: Squared-error distortion

m m-, = 2m
O £, A fz‘ ? .
{’1_2

= = =

what does +his have to do with ’?
sduared-error distortion? .

Squared-error distortion:
d(x,®) = (x — %)?

Connection to simple expectations (means):

The squared error distortion penalizes large
deviations quadratically. The conditional
mean of X (given some available information
or constraint) minimizes this penalty.

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 141
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Distortion function d: Squared-error distortion

=2 ) . . n "
m @ 2, A ¢4 ‘ Mz = A The arithwmetic meaw is the “center
1 — 2

b4 ("centroid" or center of mass) of the
£, distribution that balances the squared error!
ml‘ Ii : 2m1
1 t2 Squared-error distortion:
min[£;° + 2£,°], s.t. tof; + 4, =¢ d(x,%) = (x — )2
SSE(#1) = #1° 4 2(c — 4;)?
dSSE Connection to simple expectations (means):

e, 201+ 2(—2c+2¢,)=0 | | |
The squared error distortion penalizes large
= 2 © deviations quadratically. The conditional
mean of X (given some available information

or constraint) minimizes this penalty.

2C 2
S, =25 =2
£ 3 ?,

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 142
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Distortion function d: Squared-error distortion

=2 ) . . n "
m @ 2, A ¢4 ‘ Mz = A The arithwmetic meaw is the “center

_h_, ("centroid" or center of mass) of +he
£, distribution that balances the squared error!
ml‘ Ii : Zml
1 t2 Squared-error distortion:
min[£;° + 2£,°], s.t. tof; + 4, =¢ d(x,%) = (x — )2
= % = ©
i Connection to simple expectations (means):
min[f; + 2¢,],s.t. tof; + £, = ? The squared error distortion penalizes large

deviations quadratically. The conditional
mean of X (given some available information
or constraint) minimizes this penalty.

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 143
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Distortion function d: Squared-error distortion

=2 ) . . n "
m @ 2, A ¢4 ‘ Mz = A The arithwmetic meaw is the “center
1 — 2

b4 ("centroid" or center of mass) of +he
£, distribution that balances the squared error!
ml‘ Ii : Zml
b1 t2 Squared-error distortion:
min[¢,% + 2¢,°], s.t. tof; +4€, =c¢ d(x, %) = (x — £)2
i Connection to simple expectations (means):
min[f; + 24,],s.t. tof; + ¥, = The squared error distortion penalizes large
=4, =0 deviations quadratically. The conditional

m1‘ om, @ mean of X (given some available information
or constraint) minimizes this penalty.

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 144
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Rate‘d iStO rt | on COd e representation, vector quantization,

source sequence f? reproduction, reconstruction, ... of X"
X" - e
/ > Encoder > Decoder \ >
A source produces an iid The representation of X is X (X).
sequence X1,X5, ..., Xy With

The decoder represents X™ by
~p(X)and X taken

an estimate X™ € X™ with X
from a source alphabet X being the reproduction alphabet

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Rate-distortion code

representation, vector quantization,

source sequence index reproduction, reconstruction, ... of X"
xn X" e{1,2,..,2"k xn
/ > Encoder Jn( \) { ), Decoder \ >
A source produces an iid We are given R bits to The representation of X is X (X).
sequence X1, X5, ..., Xy, with represent X. Thus the The decoder represents X™ by
~p(X)and X taken function X can take on an estimate X™ € X" with X

from a source alphabet X 2R different values being the reproduction alphabet
The encoder describes the source sequence X" via The decoding function maps an
an encoding function that maps X™ to an index index to a reconstructed sequence

f: X" > {1,2,..,2""} gn:{1,2,.., 2"} - X"

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 146



https://northeastern-datalab.github.io/cs7840/fa25/

Rate-distortion code

representation, vector quantization,

source sequence index reproduction, reconstruction, ... of X"
xn X" e{1,2,..,2" xn
/ > Encoder Jn( \) { ), Decoder \ >
A source produces an iid We are given R bits to The representation of X is X (X).
sequence X1, X5, ..., Xy, with represent X. Thus the The decoder represents X™ by
p(X) and X taken function X can take on an estimate X™ € X™ with X

from a source alphabet X 2R different values being the reproduction alphabet
The encoder describes the source sequence X" via The decoding function maps an
an encoding function that maps X™ to an index index to a reconstructed sequence

f: X" > {1,2,..,2""} gn:{1,2,.., 2"} - X"

A (2™, n)-rate distortion code consists of f,, and g,,.

gn(1), ..., g, (2™7): codebook (contains code points) What is its associated distortion ?
1), ..., fin 1(2™F): assignment regions o

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 147
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Rate-distortion code

representation, vector quantization,

source sequence index reproduction, reconstruction, ... of X"
xn X" e{1,2,..,2" xn
/ > Encoder Jn( \) { ), Decoder \ >
A source produces an iid We are given R bits to The representation of X is X (X).
sequence X1, X5, ..., Xy, with represent X. Thus the The decoder represents X™ by
~p(X)and X taken function X can take on an estimate X™ € X" with X

from a source alphabet X 2R different values being the reproduction alphabet
The encoder describes the source sequence X" via The decoding function maps an
an encoding function that maps X™ to an index index to a reconstructed sequence

fr X" > {1,2,..,2") gn:{1,2,...,2"R} > X

A (2™% n)-rate distortion code consists of f;, and g,,.  Its associated distortionis:  gn
A
gn(1), ..., g, (2™7): codebook (contains code points) D =Eyx., [d(X™ g, (f,(X™))]
1), ..., fin 1(2™F): assignment regions =Y ap™) - dx™, gn(fn(x™))

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 148
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Rate-distortion code vs. k-means

X = {0,1, ...,255} thus 8 bit resolution (=256 levels) per color channel
n = 2 channels per pixel (will be encoded together); thus 16 bits per source sequence X2
nR = 4 bits (per channel sequence), thus only 2?7 representatives per X2 instead of 65536 = 2562 ?

Green level

50 100 150 200 250

. Red level
Example image with only red and Vector quantization of colors present in the
green channel (for illustration) image into Voronoi cells using k-means

Source of images: https://en.wikipedia.org/wiki/K-means_clustering
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 149



https://northeastern-datalab.github.io/cs7840/fa25/
https://en.wikipedia.org/wiki/K-means_clustering

Rate-distortion code vs. k-means

X = {0,1, ...,255} thus 8 bit resolution (=256 levels) per color channel
n = 2 channels per pixel (will be encoded together); thus 16 bits per source sequence X2
nR = 4 bits (per channel sequence), thus only 16 representatives per X 2 instead of 65536 = 2562

R = 2 bits per channel (instead of 8)
N6="1111"

250

200 |

150

0

- g,(10) = (135,105):

& 100\ reconstruction of index 10

- O £71(10): assignment region
for index 10
1="0000" 50 100 150 200 250
: Red level

Example image with only red and Vector quantization of colors present in the
green channel (for illustration) image into Voronoi cells using k-means

Source of images: https://en.wikipedia.org/wiki/K-means_clustering
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Main theorem of Rate-distortion theory

A rate distortion pair (R, D) is achievable if there exists a sequence of (2™%, n)-rate
distortion codes (f;;, gn) with

lim Eyp[d(X™, g (f(X™))] < D

n—>0o

A rate distortion region for a source is the closure of
the set of achievable distortion pairs (R, D).

rate distortion function for Bernoulli

The rate distortion R(D) is the infimum of rates R p» = 0.5 with Hamming distortion

s.t. (R, D) is in the rate distortioanegion of the

source for given distortion D. infimam: greatest lower bound (does not 1 T T T T T T T 1
have to be in the set, in contrast to min) 0.9 _

o8 rate distortion region
0.7 |- ]

0.6 - -

0.5 |- -
0.4 | -
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Main theorem of Rate-distortion theory

A rate distortion pair (R, D) is achievable if there exists a sequence of (2™%, n)-rate
distortion codes (f;;, gn) with

lim Eyp[d(X™, g (f(X™))] < D

n—>0o

A rate distortion region for a source is the closure of
the set of achievable distortion pairs (R, D).

rate distortion function for Bernoulli

The rate distortion R(D) is the infimum of rates R p» = 0.5 with Hamming distortion

s.t. (R, D) is in the rate distortion&region of the

1

source for given distortion D. infimam: greatest lower bound (does not — T T T T T T T 1
have +o be in the set, in contrast +o min) 0.9 .
0.8 - : : : N
THEOREM: The rate distortion R(D) for an iid source 07| I CISBRICN (e ]
X~p and bounded distortion d(X, X) is 06 i
§0.5 _ .
reconstruction of X 04 |

. XS '
R(D)=  min  I(X;X) 0.3 |
p(X1X)y E|d(X,X)]'s D 02| |
P ) maximum allowable distortion 01} a
Z(x,a?// p(x, % )&(x, x) 00 04 02 03 04 05 06 07 08 09 1
. D
p(x) - p(X|x
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Rate Distortion function R(D)  Channel capacity C

reconstruction of X
R(D)=  min I1(X; X C =maxI(X;Y
(D) p(X1X): E[d(X,X)] SD( ) p(X) ( )

maximum allowable distortion

RATE-DISTORTION THEORY CHANNEL CODING THEORY

Why is one minimizing, the other maximizing mutual information ?

source sequence index representation message channel symbols message estimate
X" fnX™) xn m X" | channel| Y" m
—>{ Encoder — > Decoder > —> Encoder——> o (y|x) —>{ Decoder ——>

€{1,2,..,2™)
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Rate Distortion function R(D)  Channel capacity C

reconstruction of X
R(D) = min [(X; X C =maxI(X;Y
( ) p(X1X): E[d(X,X)] SD( ) p(X) ( )

maximum allowable distortion

RATE-DISTORTION THEORY CHANNEL CODING THEORY
 compress data X into a small representation X * encode the information (via its input distribution
while satisfying a given distortion constraint < D p(X)) as to maximize the amount of information
(and thus achieve a certain level of fidelity) successfully transmitted through the channel
source sequence index representation message channel symbols message estimate
X" fnX™) xn m X" | channel| Y" m
—> Encoder — > Decoder > —>{ Encoder —> o (y|x) —> Decoder ——>

€{1,2,..,2"})
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Rate Distortion function R(D)  Channel capacity C

reconstruction of X
R(D)=  min I1(X; X C =maxI(X;Y
( p(X1X): E[d(X,Y)]SD( ) p(X) (X:7)

maximum allowable distortion

RATE-DISTORTION THEORY CHANNEL CODING THEORY

 compress data X into a small representation X * encode the information (via its input distribution
while satisfying a given distortion constraint < D p(X)) as to maximize the amount of information
(and thus achieve a certain level of fidelity) successfully transmitted through the channel

* find the minimum communication rate R = * find the maximum reliable communication rate R =
1(X; X) necessary to satisfy distortion < D 1(X;Y) that a channel can support (its capacity C)

* Optimization (Minimization) over p()?|X) * Optimization (Maximization) over p(X) reflects the
reflects the search for the most efficient search for the input distribution that makes best use
encoding that meets the distortion D. of the channel's capacity to transmit information.
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2 Examples

Largely based on Ch10 of [Cover, Thomas'06] Elements of Information Theory, 2006.
https://doi.org/10.1002/047174882X , and Ch 8 of [Yeung'08] Information Theory and Network Coding.
https://doi.org/10.1007/978-0-387-79234-7
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Rate Distortion for Bernoulli p with Hamming distortion

Consider a binary source X ~ Bernoulli(p):

p(X=1)=p If we had +o guess x, should ’?
p(X=0)=1-0p we rather guess x=0 or x=A7 |

WLOG, assume p < 0.5. PIX=0=1—-p=05

Assume a Hamming distortion measure: Our mivimum expected
0 if x =% distortion betweewn X and a
d(x, &) = {1 ¥f X=X constant estimate of x=D is: =
I X X
Dmax = E[d(X» 0)]
= P[X = 1]

=D
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Rate Distortion for Bernoulli p with Hamming distortion

Consider a binary source X ~ Bernoulli(p): rate distc/)rtion function forp = 0.5

1 | | | | | | | | |
p(X=1)=p 0 ]
pX=0)=1-p 08 - rate distortion region ‘
WLOG, assume p < 0.5. i ]
Sos5| i
Assume a Hamming distortion measure: S sl |
0.3 -

o 0 ifx=x%

d(x, %) = _ - 021 .
( ) {1 if x #X 01L .

0 l I l | | l l ]
0O 01 02 03 04 05 06 07 08 09 1

What is the description rate R(D) required ?
to describe X with an expected proportion of R(D) = {H(P) —HD), 0<D<p
errors less than or equal to D? 0, else

Two steps (instead of minimizing I(X; )?) directly): We first find a lower bound. We then
show that this lower bound is achievable.

Python activities file 234: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/234 rate distortion Bernoulli.ipynb
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Rate Distortion for Bernoulli p with Hamming distortion

Consider a binary source X ~ BernOUHi(p): Rate-Distortion Function for Bernoulli(p)
P ot T
p(X=O)=1—P — p=0.1

WLOG, assume p < 0.5.

Rate R(D)

Assume a Hamming distortion measure:

~ )0 ifx=Xx
d(x,x)—{l if x #%

00 01 02 03 04 05 06 07 08 09 10

What is the description rate R(D) required Distortion D
to describe X with an expected proportion of R(D) = {H(P) —HD), 0<D<p
errors less than or equal to D? 0, else

Two steps (instead of minimizing I(X; )?) directly): We first find a lower bound. We then
show that this lower bound is achievable.

Python activities file 234: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/234 rate distortion Bernoulli.ipynb
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Rate Distortion for Bernoulli p with Hamming distortion

Lower bound:

For any joint distribution satisfying Let Y denote d(X,X),or (Y = 1) & (X = X).
the distortion constraint, we know: Then conditioning on X, X and Y determine each
other, and thus the uncertainty (entropy H) is the
I(X;X) = HX) — H(X|X) same if we consider X or Y: H(X|X) = H(Y|X)

= H(p) — H(Y|X) H(Y|X) < H(Y): our uncertainty can only reduce

by conditioning (i.e. learning additional information)

> H(p) —H(Y)

> H(p) —H(D)

[\

sinceP[Y] =P|X # X| =E[d(X #X)] <D
We thus have: for D < p, and H(x) increases with x < 0.5

R(D) = H(p) —H(D)
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Rate Distortion for Bernoulli p with Hamming distortion

We now show that the lower bound is actually the by finding a joint distribution
(X, )?) that meets the distortion constraint and has R(D) = I(X; )?)

Concretely, for 0 < D < p, we can achieve value H(p) — H(D) for the rate distortion function R(D)
by choosing (X; )?) to have the joint distribution given by the following binary symmetric channel:

Recall that for a Binary Symmetric Channel
I(X;Y)=H(Y) - H(p).

Here just p correspondsto D and Y to X:
I(X;X) = H(p) — H(D).

We need to find an appropriate r¢ of X at
the input of the channel s.t. the output
distribution of X is the specified py.

Letr = IP[)? = 1]. Then choose 1 s.t.

r1l-D)+(1—-r)D=p
p—D

1-2D
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 165
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Rate Distortion for Bernoulli p with Hamming distortion

If D <p < 0.5, then: rate distortion function
« P[X=1]=0andP[X =0]=>0 o.; ]
- I(X;X)=HX)—-H(X|X) =H(p)—H(D) gj: _
and the expected distortion is P|X = X| = D. gz:: _
Indeed, the uncertainty of X when X is known is D, 2: I |
hence H(X|X) = H(D). 02| _
0.1} i
If D = p, then: "0 07 0z 03 o4 0!D5 05 07 08 05 1
. We can achigye R(D) = 0 by letting X = 0 R(D) = {H(p) —H(D), 0<D<p

with probability 1 0, else
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Rate Distortion for Gaussian source with squared error distortion

Consider a Gaussian source X ~ NV'(0,0%). ST T T T T T T 1

Assume a squared error distortion

d(x, %) = (x — &)?

R(D)

WLOG, assumep < 0.5

Then the description rate R(D) required to
describe X with an expected proportion of 002 07 o8 08 1 T2 14 18 18 2

errors less than or equal to D can be shown b
to be as follows: §
1 o’ 2
“In(— <D<
R(D) =+ zln(D)’ O0<Ds=o
\ 0, else

Proof: see book

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 167
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Rate Distortion for Gaussian source with squared error distortion

We can rewrite R(D) to express the distortion
D in terms of the rate R:

D(R) = g%272R
Each bit of description reduces the expected
distortion by a factor of 4.

With a 1-bit description, the best expected
square error is 0.250 2.

Our simple 1-bit quantization from earlier
can be calculated to be 0.360°%.

The rate distortion limit R(D) is achieved by
considering several distortion problems in
succession (longer block lengths) instead of
considering each problem separately.

Figure source: https://ieeexplore.ieee.org/document/7767821/

Geometry of longer block lengths:

Independent 4-bit | |
quantization: e
R
X1
Blocklength n = 2 i, £
and 4-bit per sample 0

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Information
Bottleneck
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Three-step abstractions
X—Y—7 Markov chain what do we know? ?

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 183
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Three-step abstractions

X—Y—Z Markov chain XL1LZIY 1IX;Y)=21(X;2)
p(x,y,2) = p(x) - p(y|x) - p(zly)  also:p(y) - p(x|y) - p(z]%Y)
X—Y—f(Y) Dataprocessinginequality ’?

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 184
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Three-step abstractions

X—Y—Z Markov chain XL1LZIY 1IX;Y)=21(X;2)
p(x,y,z) = p(x) - p(Ix) - p(zly) also:p(y) - p(x]y) - p(zl%y)
X—Y—f(Y) Data processing inequality [(X;7) > I(X;f(Y))

0 —X—T(X) Sufficient statistics

?

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 185
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Three-step abstractions vw W
X—Y—~Z Markov chain XL1Z|IY IX;Y)=2I1(X;2)
p(x,y,2) = p(x) - p(y|x) - p(zly)  also:p(y) - p(x|y) - p(z]%Y)
X—Y—f(Y) Data processing inequality I(X;Y) = 1(X; f(V))
0 —X—T(X) Sufficient statistics
A statistic T is for O if it preserves all the information in X about 6:

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/

0 LX|ITX) © I1(6;T(X)) =1(6;X) & 6 - T(X)— X also forms a Markov chain
: simplest mapping of X that captures all the information in X about 4.

Information bottleneck
Assume: We want to determine Y from X. Goal: find a representation X of X that

captures the relevant features, yet compresses X by removing irrelevant parts that
do not contribute to the prediction of Y

?

186
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Three-step abstractions vw W
X—Y—~Z Markov chain XL1Z|IY IX;Y)=2I1(X;2)
p(x,y,2) = p(x) - p(y|x) - p(zly)  also:p(y) - p(x|y) - p(z]%Y)
X—Y—f(Y) Data processing inequality I(X;Y) = 1(X; f(V))
0 —X—T(X) Sufficient statistics
A statistic T is for O if it preserves all the information in X about 6:

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/

0 LX|ITX) © I1(6;T(X)) =1(6;X) & 6 - T(X)— X also forms a Markov chain
: simplest mapping of X that captures all the information in X about 4.

Information bottleneck
Assume: We want to determine Y from X. Goal: find a representation X of X that

captures the relevant features "max I(Y; )?)", yet compresses X by removing
irrelevant parts that do not contribute to the prediction of Y: "min I(X; )?)".

187
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Three-step abstractions

X—Y—7

X—Y—f()
9—X—T(X)

X Y

|

1(X;X)] 1(Y; X)1
"complexity" "relevance"
minimal rate "accuracy"
(maximally maximally
compressed) informative

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/

XLZIY 1IX;Y)=I1(X;2)
also: p(y) - p(x|y) - p(z|3y)

I(X;Y) = 1(X; f(V))

Markov chain
p(x,y,z) = p(x) - p(y|x) - p(z|%y)

Data processing inequality

Sufficient statistics
A statistic T is for O if it preserves all the information in X about 6:

0 LX|ITX) © I1(6;T(X)) =1(6;X) & 6 - T(X)— X also forms a Markov chain
: simplest mapping of X that captures all the information in X about 4.

Information bottleneck
Assume: We want to determine Y from X. Goal: find a representation X of X that

captures the relevant features "max I(Y; )?)", yet compresses X by removing
irrelevant parts that do not contribute to the prediction of Y: "min I(X; )?)".

L* = pin £(X)] £(X)=1(X;X) = BI(Y; X)
p
L= max £'(X)] £'(X)=1(v;X)-B1X:X)

bigger B (swaller B') allows more

complex representations
188
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Information Bottleneck (IB)

Consider an information processing system that receives as input the signal X and tries to
predict a target signal Y. We want to process X to get

X = f(X) (the "bottleneck"), which is then used to predict Y.

Xis for predicting Y if it contains all the information that X encodes about Z, i.e.
1(Y;X) = 1(X; X).
Xis if it is sufficient for Y and does not contain any extraneous information

about X which does not help in predicting Y, i.e. I(X; )?) < I(X; )?’) for any other sufficient
representation X'.

The information bottleneck objective tries to strike a balance in achieving max compression
(small complexity) while retaining as much relevant information (high accuracy) as possible

bigoer B allows more complex representations
minimize £(X) = I?X; X) - BIY; X)
maximize £L(X) = I(Y; X) — B'I(X; X)

bigger f° = 1/ pevalizes more complex representations
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