Updated 10/31/2025

Part 3: Applications
L15: Maximum Entropy Principle
[Deriving the Maximum entropy principle]

Wolfgang Gatterbauer cs7840 Foundations and Applications of Information Theory (fa25)

https://northeastern-datalab.github.io/cs7840/fa25/

10/30/2025

Pre-class conversations

- Last class recapitulation
- Projects: I added comments for all projects. Please talk to me often (just today I cannot meet after class).
- Idea for class contributions: how to find errors in my slides...
- Slide decks are being re-organized (new ideas and connections from our inclass discussions). Page numbers will likely change. Also new examples in the Python workbooks ©
 - please submit yours too with scribes
- Today:
 - Why Max entropy? Involves just combinatorics, and limits, no "uncertainty"
 - Why Occam's razor?

A quick primer on Combinatorics & the Multinomial Distribution (in preparation for our discussion of Wallis' argument for Max Entropy)

Permutations

Given n = 4 objects $\{A, B, C, D\}$. There are how many permutations: ABCD, ABDC, ACBD, ACBD, ..., DCBA

Permutations

```
Given n = 4 objects \{A, B, C, D\}. There are n! = 24 different permutations: ABCD, ABDC, ACBD, ACBD, ..., DCBA
```

k-permutations (partial permutations)

There are how may different permutations of size k=2: AB, AC, AD, BA, ... DC

Permutations

Given n = 4 objects $\{A, B, C, D\}$. There are n! = 24 different permutations: ABCD, ABDC, ACBD, ACBD, ..., DCBA

k-combinations

There are how many different combinations (subsets) of size k=2: $\{A,B\},\{A,C\},\{A,D\},\{B,C\},\{B,D\},\{C,D\}$

k-permutations (partial permutations)

There are $P(n,k) = \frac{n!}{(n-k)!} = n^{\underline{k}} = 12$ different permutations of size k=2:

 $AB, AC, AD, BA, \dots DC$

Intuition 1: We have n choices for the 1st, n-1 for the 2nd, ..., (n-k+1) for the kth. Thus $n^{\underline{k}}$. $(n^{\underline{k}}$ is called the "falling factorial")

INTUITION 2: We don't distinguish between permutations of the items not shown: AB(CD) = AB(DC). Thus we divide by the number of such permutations (n - k)! = 2

Permutations

Given n = 4 objects $\{A, B, C, D\}$. There are n! = 24 different permutations: ABCD, ABDC, ACBD, ACBD, ..., DCBA

k-permutations (partial permutations)

There are $P(n,k) = \frac{n!}{(n-k)!} = n^{\underline{k}} = 12$ different permutations of size k = 2: $AB, AC, AD, BA, \dots DC$

INTUITION 1: We have n choices for the 1st, n-1 for the 2nd, ..., (n-k+1) for the kth. Thus $n^{\underline{k}}$. $(n^{\underline{k}}$ is called the "falling factorial")

INTUITION 2: We don't distinguish between permutations of the items not shown: AB(CD) = AB(DC). Thus we divide by the number of such permutations (n - k)! = 2

k-combinations

There are $C(n,k) = \frac{P(n,k)}{P(k,k)} = \frac{n^{\underline{k}}}{k!} = \frac{n!}{k!(n-k)!} = \binom{n}{k} = 6$ different combinations (subsets) of size k = 2: $\{A,B\},\{A,C\},\{A,D\},\{B,C\},\{B,D\},\{C,D\}$

INTUITION: We don't distinguish between permutations of the items shown: AB = BA. Thus we divide by the number of such permutations k! This leads to the <u>binomial coefficient</u>.

multinomial outcomes

There are how many ways to partition the set into disjoint subsets of sizes $k_1=2$, $k_2=1$, $k_3=1$ with $\sum_i k_i=n$. $\{AB|C|D\}, \{AB|D|C\}, \{AC|B|C\}, \dots \{CD|B|A\}$

Permutations

Given n = 4 objects $\{A, B, C, D\}$. There are n! = 24 different permutations: ABCD, ABDC, ACBD, ACBD, ..., DCBA

k-permutations (partial permutations)

There are $P(n,k) = \frac{n!}{(n-k)!} = n^{\underline{k}} = 12$ different permutations of size k=2: $AB, AC, AD, BA, \dots DC$

INTUITION 1: We have n choices for the 1st, n-1 for the 2nd, ..., (n-k+1) for the k^{th} . Thus $n^{\underline{k}}$. $(n^{\underline{k}}$ is called the "falling factorial")

INTUITION 2: We don't distinguish between permutations of the items not shown: AB(CD) = AB(DC). Thus we divide by the number of such permutations (n - k)! = 2

k-combinations

There are $C(n,k) = \frac{P(n,k)}{P(k,k)} = \frac{n^{\underline{k}}}{k!} = \frac{n!}{k!(n-k)!} = \binom{n}{k} = 6$ different combinations (subsets) of size k = 2: $\{A,B\},\{A,C\},\{A,D\},\{B,C\},\{B,D\},\{C,D\}$

INTUITION: We don't distinguish between permutations of the items shown: AB = BA. Thus we divide by the number of such permutations k! This leads to the <u>binomial coefficient</u>.

multinomial outcomes

There are $\binom{n}{k_1,k_2,k_3}=\frac{n!}{k_1!k_2!k_3!}=12$ different ways to partition the set into disjoint subsets of sizes $k_1=2$, $k_2=1$, $k_3=1$ with $\sum_i k_i=n$. $\{AB|C|D\}, \{AB|D|C\}, \{AC|B|C\}, \dots \{CD|B|A\}$

INTUITION: We don't distinguish between permutations within each group. Thus we divide by the size of the equivalence class, i.e. $k_i!$ permutations for each group. That leads to the multinomial coefficient.

BINOMIAL COEFFICIENT:

The number of distinct subsets of size k that can be chosen from a set of n elements.

Special case of multinomial coefficient: We partition the set into 2 groups, those that are <u>in</u>, and those that are <u>not in</u> the selection.

MULTINOMIAL COEFFICIENT:

A generalization of the binomial coefficient that calculates the number of ways to divide a set of n distinct elements into m distinct groups, where each group i contains a specified number of objects k_i , s.t. $\sum_i k_i = n$.

k-combinations

There are
$$C(n, k) = \frac{P(n, k)}{P(k, k)} = \frac{n^k}{k!} = \frac{n!}{k!(n-k)!} = \binom{n}{k} = 6$$
 different combinations (subsets) of size $k = 2$: $\{A, B\}, \{A, C\}, \{A, D\}, \{B, C\}, \{B, D\}, \{C, D\}$

INTUITION: We don't distinguish between permutations of the items shown: AB = BA. Thus we divide by the number of such permutations k! This leads to the <u>binomial coefficient</u>.

multinomial outcomes

There are
$$\binom{n}{k_1,k_2,k_3} = \frac{n!}{k_1!k_2!k_3!} = 12$$
 different ways to partition the set into disjoint subsets of sizes $k_1 = 2$, $k_2 = 1$, $k_3 = 1$ with $\sum_i k_i = n$. $\{AB|C|D\}, \{AB|D|C\}, \{AC|B|C\}, \dots \{CD|B|A\}$

INTUITION: We don't distinguish between permutations within each group. Thus we divide by the size of the equivalence class, i.e. $k_i!$ permutations for each group. That leads to the multinomial coefficient.

Binomial & Multinomial distribution

Binomial theorem (or Binomial expansion)

Binomial & Multinomial distribution

Binomial theorem (or Binomial expansion)

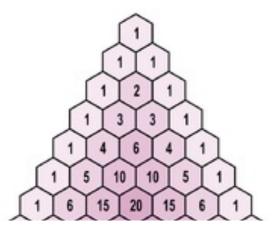
Multinomial theorem (here, for m=3)

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} \cdot a^{n-k} b^k$$

Binomial coefficient
$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n^{\underline{k}}}{k!}$$

Number of ways in which you can select k items from a total of n different items

$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$



Binomial & Multinomial distribution

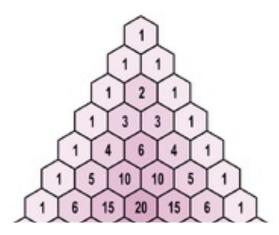
Binomial theorem (or Binomial expansion)

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} \cdot a^{n-k} b^k$$

Binomial coefficient
$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n^{\underline{k}}}{k!}$$

Number of ways in which you can select k items from a total of n different items

$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$



Multinomial theorem (here, for m=3)

$$(a+b+c)^n = \sum_{k_1+k_2+k_3=n} \binom{n}{k_1, k_2, k_3} a^{k_1} b^{k_2} c^{k_3}$$

Multinomial coefficient
$$\binom{n}{k_1, k_2, k_3} = \frac{n!}{k_1! k_2! k_3!}$$

Number of ways in which to partition an n-element set into disjoint subsets of sizes k_1 , k_2 , k_3 w/ $\sum_i k_i = n$.

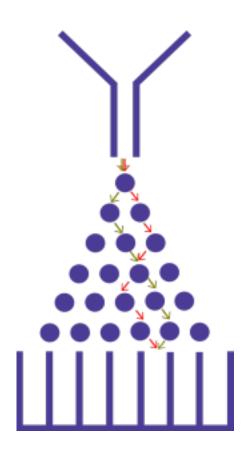
$$(a + b + c)^{4} = a^{4} + b^{4} + c^{4}$$

$$+4a^{3}b + 4a^{3}c + 4b^{3}a + 4b^{3}c + 4c^{3}a + 4c^{3}b$$

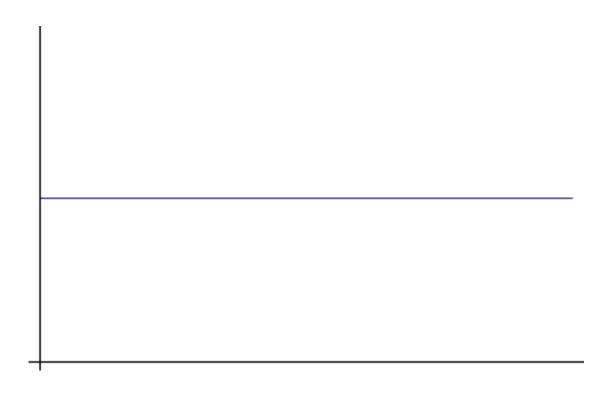
$$+6a^{2}b^{2} + 6a^{2}c^{2} + 6b^{2}c^{2}$$

$$+12a^{2}bc + 12ab^{2}c + 12abc^{2}$$

Binomial distribution towards Normal distribution



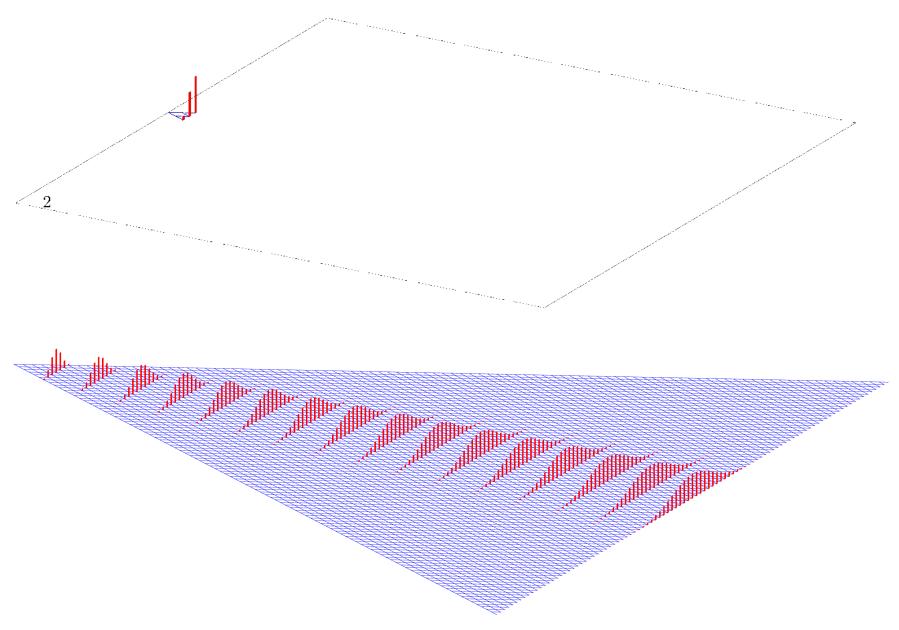
"Two possible paths leading to the same bin within the bean machine."



"This animation captures the way a binomial distribution with increasing n will begin to look like a normal distribution."

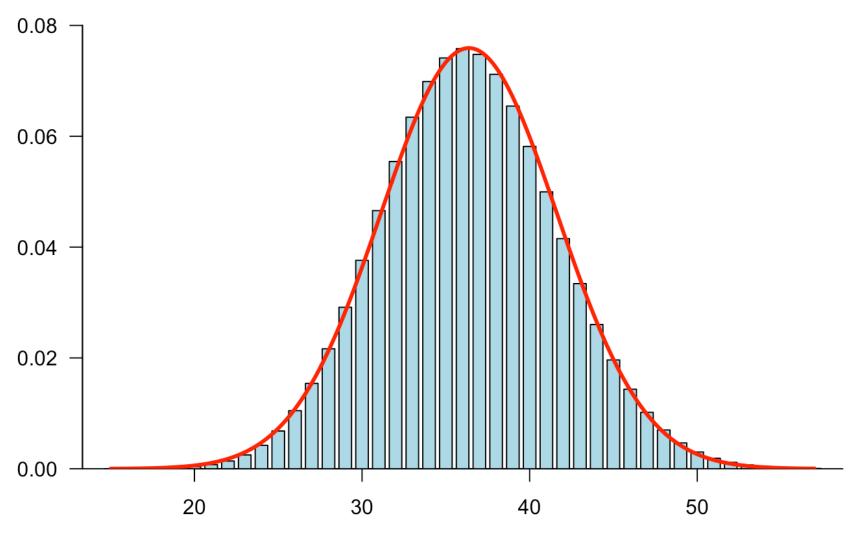
Likely for $p \approx 0.5$, yet cut-off on the right.

Binomial distribution towards Normal distribution

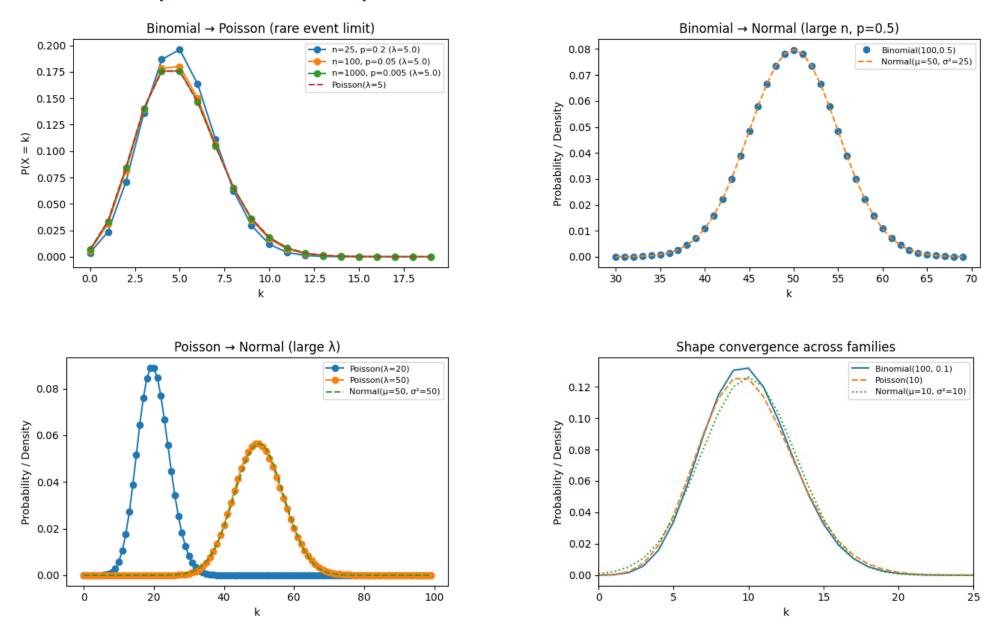


Binomial distribution towards Normal distribution

Binomial distribution, n=151, p=0.241



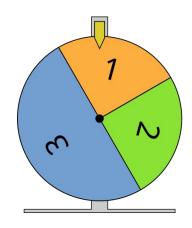
Binomial / Normal / Poisson distribution



Python file 206: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/206 maxEntropy.ipynb Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/

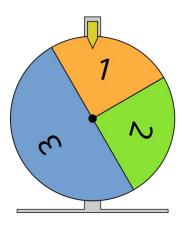
EXAMPLE:

Suppose a lucky wheel has three numbers 1, 2, and 3 with areas covering 25%, 25%, and 50% of the wheel, respectively. If we spin the wheel 6 times independently, what is the probability of getting exactly one "1", two "2"s, and three "3"s?



EXAMPLE:

Suppose a lucky wheel has three numbers 1, 2, and 3 with areas covering 25%, 25%, and 50% of the wheel, respectively. If we spin the wheel 6 times independently, what is the probability of getting exactly one "1", two "2"s, and three "3"s?

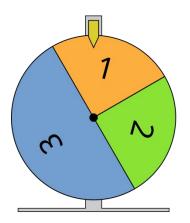


This is exactly the multinomial distribution:

$$\mathbb{P}(A = 1, B = 2, C = 3) = \frac{6!}{1! \, 2! \, 3!} \cdot (0.25)^1 (0.25)^2 (0.5)^3 \approx 0.1172$$

EXAMPLE:

Suppose a lucky wheel has three numbers 1, 2, and 3 with areas covering 25%, 25%, and 50% of the wheel, respectively. If we spin the wheel 6 times independently, what is the probability of getting exactly x "1"s, y "2"s, and z "3"s?

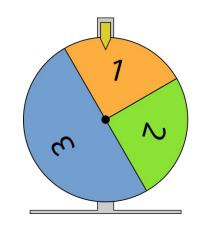


This is exactly the multinomial distribution:

$$\mathbb{P}(A = 1, B = 2, C = 3) = \frac{6!}{1! \, 2! \, 3!} \cdot (0.25)^1 (0.25)^2 (0.5)^3 \approx 0.1172$$

EXAMPLE:

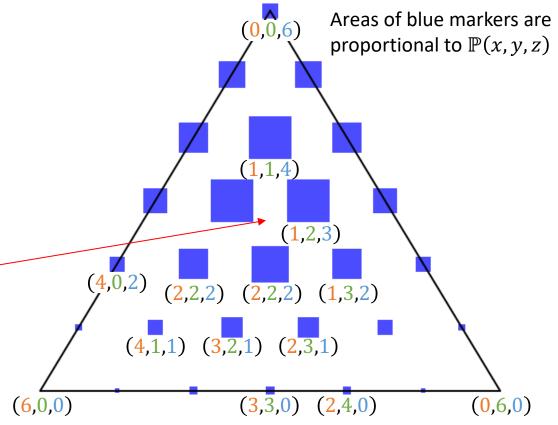
Suppose a lucky wheel has three numbers 1, 2, and 3 with areas covering 25%, 25%, and 50% of the wheel, respectively. If we spin the wheel 6 times independently, what is the probability of getting exactly x "1"s, y "2"s, and z "3"s?



This is exactly the multinomial distribution:

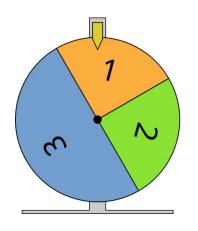
$$\mathbb{P}(A = x, B = y, C = z) = \frac{6!}{x! \, y! \, z!} \cdot (0.25)^{x} (0.25)^{y} (0.5)^{z}$$

Notice that the highest ones are close to (25%, 25%, 50%). But (1.5, 1.5, 3) is not an integral solution.



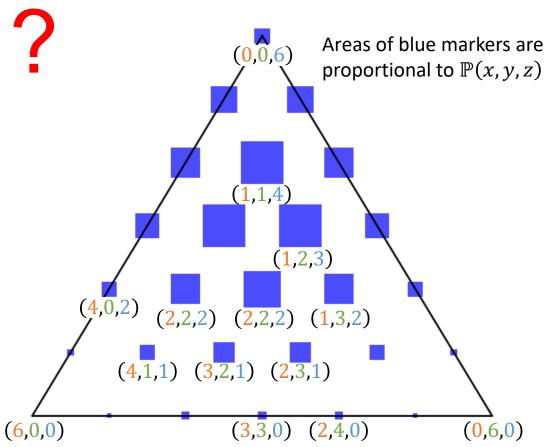
EXAMPLE:

Suppose a lucky wheel has three numbers 1, 2, and 3 with areas covering 25%, 25%, and 50% of the wheel, respectively. If we spin the wheel 6 times independently, what is the probability of getting exactly x "1"s, y "2"s, and z "3"s if we know additionally that condition COND holds, namely the sum of the draws is equal to 10?



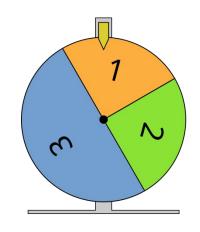
This is exactly the multinomial distribution:

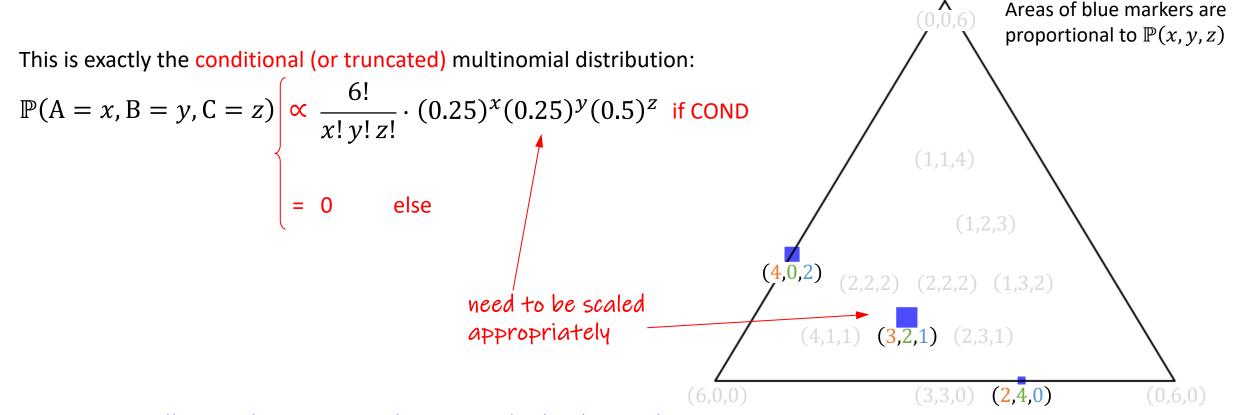
$$\mathbb{P}(A = x, B = y, C = z) = \frac{6!}{x! \, y! \, z!} \cdot (0.25)^{x} (0.25)^{y} (0.5)^{z}$$



EXAMPLE:

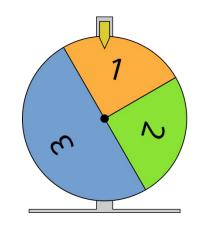
Suppose a lucky wheel has three numbers 1, 2, and 3 with areas covering 25%, 25%, and 50% of the wheel, respectively. If we spin the wheel 6 times independently, what is the probability of getting exactly x "1"s, y "2"s, and z "3"s if we know additionally that condition COND holds, namely the sum of the draws is equal to 10?





EXAMPLE:

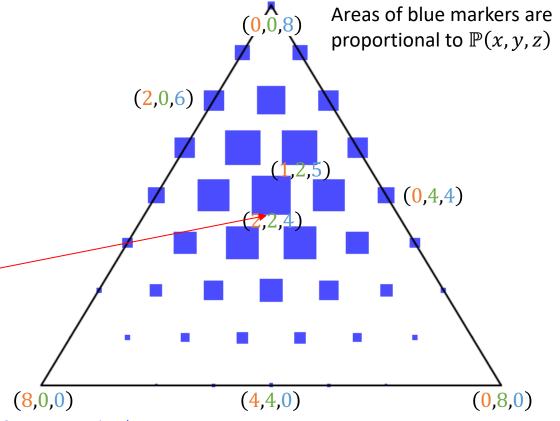
Suppose a lucky wheel has three numbers 1, 2, and 3 with areas covering 25%, 25%, and 50% of the wheel, respectively. If we spin the wheel 8 times independently, what is the probability of getting exactly x "1"s, y "2"s, and z "3"s?



This is exactly the multinomial distribution:

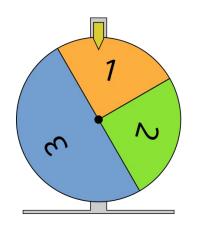
$$\mathbb{P}(A = x, B = y, C = z) = \frac{8!}{x! \, y! \, z!} \cdot (0.25)^{x} (0.25)^{y} (0.5)^{z}$$

Now with 8 total spins, the highest one with (2, 2, 4) fits perfectly what we would expect: (25%, 25%, 50%)



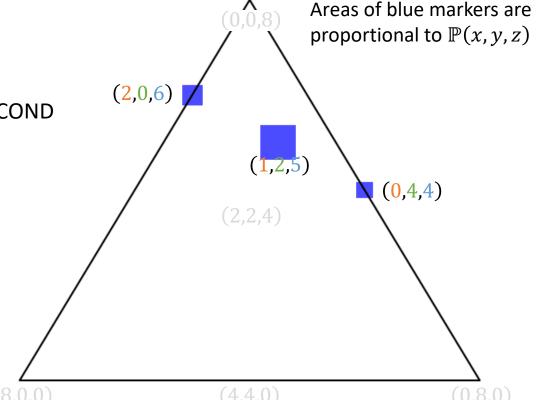
EXAMPLE:

Suppose a lucky wheel has three numbers 1, 2, and 3 with areas covering 25%, 25%, and 50% of the wheel, respectively. If we spin the wheel 8 times independently, what is the probability of getting exactly x "1"s, y "2"s, and z "3"s if we know additionally that condition COND holds, namely the sum of the draws is equal to 20?



This is exactly the conditional (or truncated) multinomial distribution:

$$\mathbb{P}(A = x, B = y, C = z) \begin{cases} \propto \frac{8!}{x! \, y! \, z!} \cdot (0.25)^x (0.25)^y (0.5)^z & \text{if COND} \\ = 0 & \text{else} \end{cases}$$



Wallis' argument for Max Entropy

The following argument is based on Wallis' argument given in [Jaynes'03] "Probability theory: the logic of science", Cambridge press, 2003, Section 11.4 (https://doi.org/10.1017/CBO9780511790423). The argument is also given on

https://en.wikipedia.org/wiki/Principle_of_maximum_entropy#The_Wallis_derivation

Maximum Entropy Principle

Recall: Entropy as a measure of uncertainty

For discrete RV X with distribution $\mathbb{P}[X = x_i] = p_i$:

$$H(X) = -\sum_{i=1}^{\infty} p_i \cdot \lg(p_i) = \mathbb{E}_{X \sim p} \left[\lg \left(\frac{1}{p(X)} \right) \right]$$

For continuous RV X with PDF p(x), the "differential entropy"

$$H(X) = -\int_{-\infty}^{\infty} p(x) \cdot \lg(p(x)) \cdot dx$$

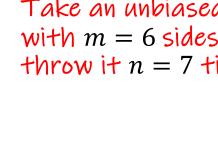
MAXIMUM ENTROPY PRINCIPLE: The probability distribution with largest entropy is the one which best represents the current state of knowledge about a system.

Assume we are searching for an outcome probability distribution (e.g. the fraction of times that each of the m = 6 faces of an unbiased die come up if we throw it n = 7 times).

We have some other information I (some constraint) about the distribution (e.g. that the average roll was $\mu = 4$)

What is the most likely <u>outcome probability distribution</u>

Take an unbiased die with m = 6 sides and throw it n = 7 times.



Assume we are searching for an outcome probability distribution (e.g. the fraction of times that each of the m=6 faces of an unbiased die come up if we throw it n=7 times).

We have some other information I (some constraint) about the distribution (e.g. that the average roll was $\mu = 4$)

What is the most likely <u>outcome probability distribution</u>?

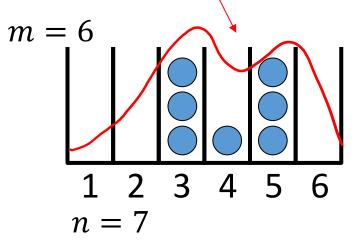
Wallis' thought experiment:

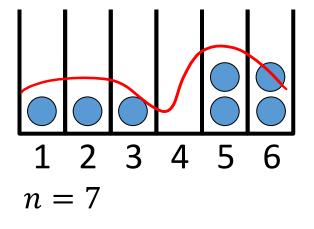
- We have $n\gg m$ balls and throw them randomly into m bins, each bin is treated the same (like an unbiased die with m sides)
- Repeat this until the resulting outcome probability distribution in the bins conforms to our information (constraint) I
- What is the most likely probability distribution to result from this game?

We will see this is the one that maximizes entropy ©

Take an unbiased diewith m = 6 sides and throw it n = 7 times.

What is the most likely outcome distribution (given I)?

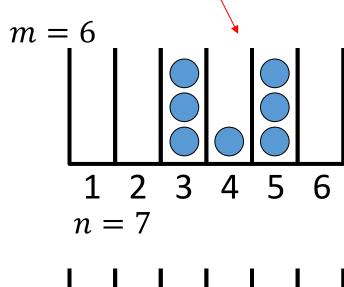


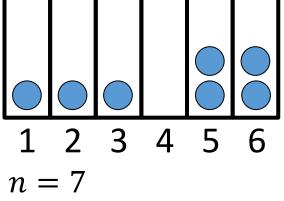


What is the PDF of the possible (unconstrained) outcomes

Take an unbiased die with m = 6 sides and throw it n = 7 times.

What is the most likely outcome distribution (given I)?





What is the PDF of the possible (unconstrained) outcomes?

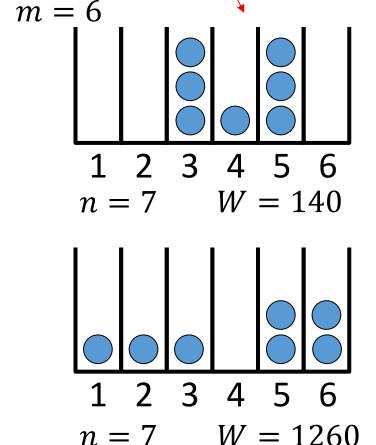
Multinomial distribution

$$\mathsf{pmf} = m^{-n} \cdot \frac{n!}{n_1! \cdot n_2! \cdots n_m!}$$
 Number of balls in each bin if all balls had a unique id
$$\mathsf{Multinomial\ coefficient\ } \binom{n}{n_1,\dots,n_m} =: W$$

This is the multiplicity = the number of ways in which you can partition an n-element set into disjoint subsets of sizes $n_1, n_2, ..., n_m$ with $\sum_i n_i = n$

Take an unbiased diewith m = 6 sides and throw it n = 7 times.

What is the most likely outcome distribution (given I)?



New goal: Maximize the following expression s.t. constraint I (not shown):

$$\max \left[C = \frac{n!}{n_1! \cdot n_2! \cdots n_m!} \right]$$

We will show that maximizing W can be achieved by maximizing the entropy

New goal: Maximize the following expression s.t. constraint *I* (not shown):

$$\max \left[C = \frac{n!}{n_1! \cdot n_2! \cdots n_m!}\right] \qquad \text{We will show that maximizing W can be achieved by maximizing the entropy}$$

$$\frac{1}{n} \cdot \lg(C) = \frac{1}{n} \cdot \lg\left(\frac{n!}{n_1! \cdot n_2! \cdots n_m!}\right)$$

$$= \frac{1}{n} \cdot \lg\left(\frac{n!}{(np_1)! \cdot (np_2)! \cdots (np_m)!}\right)$$

$$= \frac{1}{n} \cdot \left(\lg(n!) - \sum_{i=1}^{m} \lg((np_i)!)\right)$$

Now we are stuck. What next?

New goal: Maximize the following expression

s.t. constraint
$$I$$
 (not shown):
$$\max \left[C = \frac{n!}{n_1! \cdot n_2! \cdots n_m!}\right]$$

$$\frac{1}{n} \cdot \lg(C) = \frac{1}{n} \cdot \lg\left(\frac{n!}{n_1! \cdot n_2! \cdots n_m!}\right)$$

$$= \frac{1}{n} \cdot \lg\left(\frac{n!}{(np_1)! \cdot (np_2)! \cdots (np_m)!}\right)$$

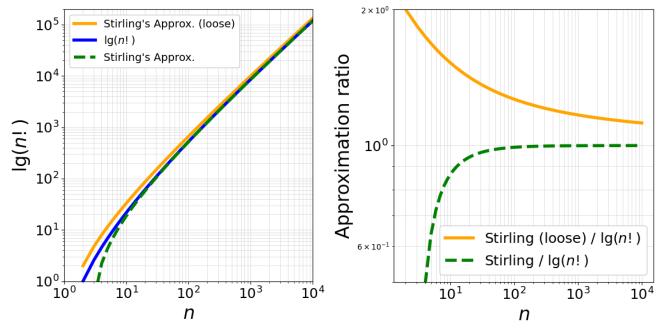
$$= \frac{1}{n} \cdot \left(\lg(n!) - \sum_{i=1}^{m} \lg((np_i)!)\right)$$

$$\approx \frac{1}{n} \cdot (n \cdot \lg(n) - \sum_{i=1}^{m} np_i \cdot \lg(np_i))$$

$$= \lg(n) - \lg(n) \cdot \sum_{i=1}^{m} p_i - \sum_{i=1}^{m} p_i \cdot \lg(p_i)$$

$$= \lg(n) - \lg(n) \cdot \sum_{i=1}^{m} p_i - \sum_{i=1}^{m} p_i \cdot \lg(p_i)$$

$$= \lg(n) - \sum_{i=1}^{m} p_i \cdot \lg(p_i)$$



Assume $n \to \infty$, then apply Stirling's formula:

$$\ln(n!) \approx n \cdot \ln(n)$$

$$\lg(n!) \approx n \cdot \left(\frac{\lg(n)}{\lg(e)}\right) = n \cdot \lg(n) - n \cdot \lg(e) \\
\approx n \cdot \lg(n)$$

All we need to do is to maximize entropy under the constraints of our testable information I. There is no need for any interpretation of H in terms of information theoretic notion like "amount of uncertainty"

Jaynes' die

The following argument is based on Wallis' argument given in [Jaynes'03] "Probability theory: the logic of science", Cambridge press, 2003, Section 11.4 (https://doi.org/10.1017/CBO9780511790423). The argument is also given on

https://en.wikipedia.org/wiki/Principle_of_maximum_entropy#The_Wallis_derivation

Jaynes' die

I find this interpretation problematic. Rather use the interpretation we used in the Wallis derivation: what is the most likely distribution on the outcomes

Example 3: Jaynes' Dice

A die has been tossed a very large number N of times, and we are told that the average number of spots per toss was not 3.5, as we might expect from an honest die, but 4.5. Translate this information into a probability assignment p_n , $n=1,2,\ldots,6$, for the n-th face to come up on the next toss.

This problem is similar to the above except for two changes: our support is $\{1, ..., 6\}$ and the expectation of the die roll is 4.5. We can formulate the problem in a similar way with the following Lagrangian with an added term for the expected value (B):

$$\mathcal{L}(p_1, \dots, p_6, \lambda_0, \lambda_1) = -\sum_{k=1}^6 p_k \log(p_k) - \lambda_0(\sum_{k=1}^6 p_k - 1) - \lambda_1(\sum_{k=1}^6 kp_k - B)$$
 (11)

Taking the partial derivatives and setting them to zero, we get:

$$\log(p_k) = -1 - \lambda_0 - k\lambda_1 = 0$$

$$\log(p_k) = -1 - \lambda_0 - k\lambda_1$$

$$p_k = e^{-1 - \lambda_0 - k\lambda_1}$$
(12)

$$\sum_{k=1}^{6} p_k = 1 \tag{13}$$

$$\sum_{k=1}^{6} k p_k = B \tag{14}$$

Define a new quantity $Z(\lambda_1)$ by substituting Equation 12 into 13:

$$Z(\lambda_1) := e^{-1-\lambda_0} = \frac{1}{\sum_{k=1}^6 e^{-k\lambda_1}}$$
 (15)

Substituting Equation 12, and dividing Equation 14 by 13

$$\frac{\sum_{k=1}^{6} k e^{-1-\lambda_0 - k\lambda_1}}{\sum_{k=1}^{6} e^{-1-\lambda_0 - k\lambda_1}} = B$$

$$\frac{\sum_{k=1}^{6} k e^{-k\lambda_1}}{\sum_{k=1}^{6} e^{-k\lambda_1}} = B$$
(16)

Going back to Equation 12 and defining it in terms of Z:

$$p_k = \frac{1}{Z(\lambda_1)} e^{-k\lambda_1} \tag{17}$$

Unfortunately, now we're at an impasse because there is no closed form solution. Interesting to note that the solution is just an exponential-like distribution with parameter λ_1 and $Z(\lambda_1)$ as a normalization constant to make sure the probabilities sum to 1. Equation 16 gives us the desired value of λ_1 . We can easily find a solution using any root solver, such as the code below:

Jaynes' die

```
from numpy import exp
from scipy.optimize import newton
a, b, B = 1, 6, 4.5
# Equation 15
def z(lamb):
    return 1. / sum(exp(-k*lamb)) for k in range(a, b + 1))
# Equation 16
def f(lamb, B=B):
    y = sum(k * exp(-k*lamb) for k in range(a, b + 1))
    return y * z(lamb) - B
# Equation 17
def p(k, lamb):
    return z(lamb) * exp(-k * lamb)
lamb = newton(f, x0=0.5)
print("Lambda = %.4f" % lamb)
for k in range(a, b + 1):
    print("p_%d = %.4f" % (k, p(k, lamb)))
# Output:
   Lambda = -0.3710
   p 1 = 0.0544
   p_2 = 0.0788
   p 3 = 0.1142
   p 4 = 0.1654
   p 5 = 0.2398
   p 6 = 0.3475
```

Define a new quantity $Z(\lambda_1)$ by substituting Equation 12 into 13:

$$Z(\lambda_1) := e^{-1-\lambda_0} = \frac{1}{\sum_{k=1}^6 e^{-k\lambda_1}}$$
 (15)

Substituting Equation 12, and dividing Equation 14 by 13

$$\frac{\sum_{k=1}^{6} k e^{-1-\lambda_0 - k\lambda_1}}{\sum_{k=1}^{6} e^{-1-\lambda_0 - k\lambda_1}} = B$$

$$\frac{\sum_{k=1}^{6} k e^{-k\lambda_1}}{\sum_{k=1}^{6} e^{-k\lambda_1}} = B$$
(16)

Going back to Equation 12 and defining it in terms of Z:

$$p_k = \frac{1}{Z(\lambda_1)} e^{-k\lambda_1} \tag{17}$$

Unfortunately, now we're at an impasse because there is no closed form solution. Interesting to note that the solution is just an exponential-like distribution with parameter λ_1 and $Z(\lambda_1)$ as a normalization constant to make sure the probabilities sum to 1. Equation 16 gives us the desired value of λ_1 . We can easily find a solution using any root solver, such as the code below:

Using the Max Entropy principle to derive the Normal Distribution and outcomes of dice rolls

EXAMPLE: Suppose a continuous random variable X has given mean (1st moment) μ and variance (2nd moment) σ^2 . Which PDF p(x) has the maximum entropy H(x)?

How would you formalize this problem?

EXAMPLE: Suppose a continuous random variable X has given mean (1st moment) μ and variance (2nd moment) σ^2 . Which PDF p(x) has the maximum entropy H(x)?

Differential Entropy

$$H(X) = -\int_{-\infty}^{\infty} p(x) \cdot \lg(p(x)) \cdot dx$$

PDF constraint

$$\int_{-\infty}^{\infty} p(x) \cdot dx = 1$$

Moment constraint(s)

$$\int_{-\infty}^{\infty} (x - \mu)^2 \cdot p(x) \cdot dx = \sigma^2$$

"Only one constraint is needed, because the definition of σ^2 already includes μ ."

EXAMPLE: Suppose a continuous random variable X has given mean (1st moment) μ and variance (2nd moment) σ^2 . Which PDF p(x) has the maximum entropy H(x)?

Differential Entropy

$$H(X) = -\int_{-\infty}^{\infty} p(x) \cdot \lg(p(x)) \cdot dx \qquad \qquad \mathcal{L} =$$

Lagrangian

$$\mathcal{L} =$$

PDF constraint

$$\int_{-\infty}^{\infty} p(x) \cdot dx = 1$$

Moment constraint(s)

$$\int_{-\infty}^{\infty} (x - \mu)^2 \cdot p(x) \cdot dx = \sigma^2$$

EXAMPLE: Suppose a continuous random variable X has given mean (1st moment) μ and variance (2nd moment) σ^2 . Which PDF p(x) has the maximum entropy H(x)?

Differential Entropy

$$H(X) = -\int_{-\infty}^{\infty} p(x) \cdot \lg(p(x)) \cdot dx$$

Lagrangian

$$\mathcal{L} = -\int_{-\infty}^{\infty} p(x) \cdot \lg(p(x)) \cdot dx$$

PDF constraint

$$\int_{-\infty}^{\infty} p(x) \cdot dx = 1$$

$$+\lambda_0 \left(\int_{-\infty}^{\infty} p(x) \cdot dx - 1 \right)$$

Moment constraint(s)

$$\int_{-\infty}^{\infty} (x - \mu)^2 \cdot p(x) \cdot dx = \sigma^2$$

$$+\lambda_1 \left(\int_{-\infty}^{\infty} (x-\mu)^2 \cdot p(x) \cdot dx - \sigma^2 \right)$$

EXAMPLE: Suppose a continuous random variable X has given mean (1st moment) μ and variance (2nd moment) σ^2 . Which PDF p(x) has the maximum entropy H(x)?

$$\frac{\partial \mathcal{L}}{\partial p(x)} =$$

(functional) function of a function
$$-\frac{1}{1+\ln(p(x))}$$

Partial derivation (calculus of variation)
$$\frac{\partial \mathcal{L}}{\partial p(x)} = -\frac{\frac{1}{\ln(2)} \left(1 + \ln(p(x))\right)}{\left(1 + \ln(p(x))\right)}$$
Lagrangian
$$\mathcal{L} = -\int_{-\infty}^{\infty} p(x) \cdot \lg(p(x)) \cdot dx$$

$$\begin{array}{c} \text{Calculus} \\ \text{cheat} \\ \text{sheet} \\ +\lambda_0 \end{array} \log(x)' = \left(\frac{\ln(x)}{\ln(2)}\right)' = \frac{1}{x \cdot \ln(2)} \\ +\lambda_0 \left(\int_{-\infty}^{\infty} p(x) \cdot dx - 1\right) \end{array}$$

$$+\lambda_0 \left(\int_{-\infty}^{\infty} p(x) \cdot dx - 1 \right)$$

$$+\lambda_1(x-\mu)^2$$
$$=0$$

$$+\lambda_1 \left(\int_{-\infty}^{\infty} (x-\mu)^2 \cdot p(x) \cdot dx - \sigma^2 \right)$$

EXAMPLE: Suppose a continuous random variable X has given mean (1st moment) μ and variance (2nd moment) σ^2 . Which PDF p(x) has the maximum entropy H(x)?

$$-\frac{1}{\ln(2)} \left(1 + \ln(p(x)) \right) + \lambda_0 + \lambda_1 (x - \mu)^2 = 0$$

$$-\left(1 + \ln(p(x)) \right) + \lambda'_0 + \lambda'_1 (x - \mu)^2 = 0$$

$$p(x) = e^{\lambda''_0 + \lambda'_1 (x - \mu)^2}$$

Constraints

EXAMPLE: Suppose a continuous random variable X has given mean (1st moment) μ and variance (2nd moment) σ^2 . Which PDF p(x) has the maximum entropy H(x)?

$$-\frac{1}{\ln(2)} (1 + \ln(p(x))) + \lambda_0 + \lambda_1 (x - \mu)^2 = 0$$

$$-(1 + \ln(p(x))) + \lambda'_0 + \lambda'_1 (x - \mu)^2 = 0$$

$$p(x) = e^{\lambda''_0 + \lambda'_1 (x - \mu)^2}$$

Constraints

$$\int_{-\infty}^{\infty} p(x) \cdot dx = 1 \qquad \Rightarrow \qquad \int_{-\infty}^{\infty} e^{\lambda_0'' + \lambda_1'(x - \mu)^2} \cdot dx = 1$$

$$\int_{-\infty}^{\infty} (x - \mu)^2 \cdot p(x) \cdot dx = \sigma^2 \qquad \Rightarrow \qquad \int_{-\infty}^{\infty} (x - \mu)^2 \cdot e^{\lambda_0'' + \lambda_1'(x - \mu)^2} \cdot dx = \sigma^2$$

$$\Rightarrow \qquad e^{\lambda_0''} = \sqrt{-\frac{\lambda_1'}{\pi}} = \frac{1}{\sigma\sqrt{2\pi}}$$

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

The maximum entropy principle is empirically justified ©

For details, see next page

Maximum Entropy Distribution: DETAILS

$$\int_{-\infty}^{\infty} e^{\lambda_0'' + \lambda_1'(x - \mu)^2} \cdot dx = 1$$

$$\int_{-\infty}^{\infty} (x - \mu)^2 \cdot e^{\lambda_0'' + \lambda_1'(x - \mu)^2} \cdot dx = \sigma^2$$

$$e^{\lambda_0''} \cdot \int_{-\infty}^{\infty} e^{\lambda_1'(x - \mu)^2} \cdot dx = 1$$

$$\int_{-\infty}^{\infty} e^{\lambda_1'(x - \mu)^2} \cdot dx = e^{-\lambda_0''}$$

$$\int_{-\infty}^{\pi} e^{\lambda_1'(x$$

Calculus cheat $\int_{-\infty}^{\infty}e^{-a(x+b)^2}~dx=\sqrt{rac{\pi}{a}}~~(a>0)$

https://en.wikipedia.org/wiki/Gaussian integral

Calculus cheat
$$\int_{-\infty}^{\infty}x^2e^{-ax^2}~dx=rac{1}{2}\sqrt{rac{\pi}{a^3}}~~(a>0)$$

https://en.wikipedia.org/wiki/List_of_integrals_of_exponential_functions