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Pre-class conversations

« Last class recapitulation

o Projects: | added comments for all projects. Please talk to me often (just today
| cannot meet after class).

« |dea for class contributions: how to find errors in my slides...

« Slide decks are being re-organized (new ideas and connections from our in-
class discussions). Page numbers will likely change. Also new examples in the

Python workbooks ©

— please submit yours too with scribes

« Today:
— Why Max entropy? Involves just combinatorics, and limits, no "uncertainty”

— Why Occam's razor?

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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A quick primer on
Combinatorics & the

Multinomial Distribution

(in preparation for our discussion
of Wallis" argument for Max Entropy)

https://northeastern-datalab.github.io/cs7840/fa25/



https://northeastern-datalab.github.io/cs7840/fa25/

Permutations, Combinations, Binomial coefficient

Permutations

Given n = 4 objects {A, B, C, D}. There are
how many permutations:
ABCD,ABDC,ACBD,ACBD, ..., DCBA =

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Permutations, Combinations, Binomial coefficient

Permutations

Given n = 4 objects {A, B, C, D}. There are
n! = 24 different permutations:
ABCD,ABDC,ACBD,ACBD, ..., DCBA

k-permutations (partial permutations)

There are how may different permutations of ?
size k = 2:
AB,AC,AD,BA,..DC

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Permutations, Combinations, Binomial coefficient

Permutations k-combinations
Given n = 4 objects {A, B, C, D}. There are There are how many different combinations
n! = 24 different permutations: (subsets) of size k = 2 :
ABCD,ABDC,ACBD,ACBD, ..., DCBA {A,B},{A,C},{A,D},{B,C},{B,D},{C,D}

k-permutations (partial permutations)
__n ok _
There are P(n, k) = el 12

different permutations of size k = 2 :
AB,AC,AD,BA,..DC

INTUITION 1: We have n choices forthe 1st, n — 1

for the 29, ..., (n — k + 1) for the kth. Thus nk.

(n% is called the "falling factorial")

INTUITION 2: We don't distinguish between
permutations of the items not shown:
AB(CD) = AB(DC). Thus we divide by the

number of such permutations (n — k)! = 2

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Permutations, Combinations, Binomial coefficient

Permutations k-combinations

Given n = 4 objects {4, B, C,D}. There are There are C(n, k) =
n! = 24 different permutations:
ABCD,ABDC,ACBD,ACBD, ..., DCBA

P(nk) _ nk _ n! _ (n) _
P(kk) k!  Kk!(n—k)! k

6 different combinations (subsets) of size k = 2 :
{A,B},{A,C},{A,D},{B,C},{B,D},{C,D}

_ . . INTUITION: We don't distinguish between permutations of the
k-perm utations (pa rtial perm utatlons) items shown: AB = BA. Thus we divide by the number of
n!

K such permutations k! This leads to the binomial coefficient.
There are P(n, k) = el 12

different permutations of size k = 2 : multinomial outcomes
AB,AC,AD,BA,..DC

INTUITION 1: We have n choices forthe 1st, n — 1

for the 29, ..., (n — k + 1) for the kth. Thus nk.

(n% is called the "falling factorial")

There are how many ways to partition the set into
disjoint subsets of sizes k;y = 2, k, =1, k3 = 1 with
ik =n. -
{AB|C|D},{AB|D|C}, {AC|BIC}, ... {CD|B|A}

INTUITION 2: We don't distinguish between
permutations of the items not shown:
AB(CD) = AB(DC). Thus we divide by the
number of such permutations (n — k)! = 2

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 7
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Permutations, Combinations, Binomial coefficient

Permutations k-combinations

. : P(nk) _ nk _ n
Given n = 4 objects {4, B, C,D}. There are There are C(n, k) = P(kk) _ K k'(n K)! ( )=
n! = 24 different permutations: ’ .

6 different combinations (subsets) of size k = 2 :
ABCD,ABDC,ACBD,ACBD, ..., DCBA {4,B},{4,C},{4,D},{B,C},{B,D},{C, D}

_ . . INTUITION: We don't distinguish between permutations of the
k—perm utations (pa rtial perm utatlons) items shown: AB = BA. Thus we divide by the number of

such permutations k! This leads to the binomial coefficient.

n!
There are P(n, k) = =, = =nk =12
different permutations of size k = 2 : multinomial outcomes
AB,AC,AD,BA,..DC !

There are (k N ) 'n' = 12 different ways to

INTUITION 1: We have n choices for the 1, n — 1 - D23 feqlheplies!
for the 2", ..., (n — k + 1) for the k. Thus nk. partition the set into disjoint subsets of sizes k; =
(nX is called the "falling factorial") ky =1, ks =1 with Zi ki =n.
INTUITION 2: We don't distinguish between (AB[C|D}{AB|D|C}, {AC|B|C}, ... {CD|B|A]}
permutations of the items not shown: INTUITION: We don't distinguish between permutations within
AB(CD) = AB(DC). Thus we divide by the each group. Thus we divide by the size of the equivalence
number of such permutations (n — k)! = 2 class, i.e. k;! permutations for each group. That leads to the

multinomial coefficient.

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Permutations, Combinations, Binomial coeff}gi/ent DT

BINOMIAL COEFFICIENT: —

The number of distinct subsets of size k that
can be chosen from a set of n elements.

Special case of multinomial coefficient: We
partition the set into 2 groups, those that are
in, and those that are not in the selection.

MULTINOMIAL COEFFICIENT: /

A generalization of the binomial coefficient
that calculates the number of ways to divide
a set of n distinct elements into m distinct
groups, where each group i contains a
specified number of objects k;, s.t. }.; k; = n.

k-combinations
k
" There are C(n, k) = Pink) _ o

(o) =

6 different combinations (subséts H Ee k=2:

P(kk) k!
{A,B},{A,C},{A,D},{B,C},{B,D},{C,D}

INTUITION: We don't distinguish between permutations of the
items shown: AB = BA. Thus we divide by the number of
such permutations k! This leads to the binomial coefficient.

multinomial outcomes__
/ There are (k1,]?2,k3) % = 12 different ways to

partition the set into disjoint subsets of sizes k; = 2,
kz = 1, k3 = 1W|th2lkl = n.
{AB|C|D},{AB|D|C}, {AC|B|C}, ... {CD|B|A}

INTUITION: We don't distinguish between permutations within
each group. Thus we divide by the size of the equivalence
class, i.e. k;! permutations for each group. That leads to the
multinomial coefficient.

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Binomial & Multinomial distribution

Binomial theorem (or Binomial expansion)

?

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Binomial & Multinomial distribution

Binomial theorem (or Binomial expansion)  Multinomial theorem (here, for m = 3)

n
n
n _ . an—kpk
(a+b)" = z (k) a™"*b ?
k=0 .
. il ffici ny _ n! — nk
Binomial coefficient (k) = K=k K

Number of ways in which you can select k items
from a total of n different items

(a + b)* = a* + 4a3b + 6a?b? + 4ab® + b*

Figure source: https://study.com/academy/lesson/binomial-coefficient-formula-examples.html
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/

BACKUP
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Binomial & Multinomial distribution BACKUP

Binomial theorem (or Binomial expansion)

n

(a+Db)" = z (Z) cakpk

k=0
n! nk
T k(n=k)! k!
Number of ways in which you can select k items
from a total of n different items

(a + b)* = a* + 4a3b + 6a?b? + 4ab® + b*

Figure source: https://study.com/academy/lesson/binomial-coefficient-formula-examples.html

Multinomial theorem (here, for m = 3)

n
(a+b+c)" = 2 ( ) ak1pkzcks
ki, ko, ks
k1+k2+k3=n
_ n!
 kqlkylks!

Number of ways in which to partition an n-element set
into disjoint subsets of sizes k4, k5, k3 w/ )., k; = n.

(a+b+c)*=a*+b*+c*
+4a3b + 4a3c + 4b3a + 4b3c + 4c3a + 4c3b
+6a’b? 4 6a%c? + 6b?c?
+12a’bc + 12ab?*c + 12abc?

12
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Binomial distribution towards Normal distribution

"This animation captures the way a binomial
"Two possible paths leading to the distribution with increasing n will begin to look

same bin within the bean machine." like a normal distribution.”
Likely for p = 0.5, yet cut-off on the right.

Figure source: https://www.thephysicsmill.com/2014/04/13/probability-part-2-distributions/
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 13



https://northeastern-datalab.github.io/cs7840/fa25/
https://www.thephysicsmill.com/2014/04/13/probability-part-2-distributions/

. S ‘I""‘ =X T
5+ \_’k}" 58]
= i '.k.“ EuRSNE S
SESESSER HHEEE

S } = ﬂ-lu =X

i .NN'“*‘_‘_,.‘. S

= R

Fie———sit

e ——

Figure Source: https://tex.stackexchange.com/questions/471912/binomial-tree-converging-to-a-normal-distribution-3d
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Binomial distribution towards Normal distribution

Binomial distribution, n=151, p=0.241
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Figure Source: https://stackoverflow.com/questions/60546225/plotting-the-normal-and-binomial-distribution-in-same-plot
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Binomial / Normal / Poisson d

P(X = k)

Probability / Density

Binomial = Poisson (rare event limit)
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Python file 206: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/206 _maxEntropy.ipynb
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Conditioned Multinomial Distribution

EXAMPLE:
Suppose a lucky wheel has three numbers 1, 2, and 3 with areas covering 25%, 25%,

and 50% of the wheel, respectively. If we spin the wheel 6 times independently,
what is the probability of getting exactly one “1”, two “2”s, and three “3”s? ?

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Conditioned Multinomial Distribution

EXAMPLE:
Suppose a lucky wheel has three numbers 1, 2, and 3 with areas covering 25%, 25%,
and 50% of the wheel, respectively. If we spin the wheel 6 times independently,

what is the probability of getting exactly one “1”, two “2”s, and three “3”s?

This is exactly the multinomial distribution:

6!
P(A=1,B=2,C=3) = THETR (0.25)1(0.25)2(0.5)3 ~ 0.1172

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Conditioned Multinomial Distribution

EXAMPLE:
Suppose a lucky wheel has three numbers 1, 2, and 3 with areas covering 25%, 25%,

and 50% of the wheel, respectively. If we spin the wheel 6 times independently,
what is the probability of getting exactly x “1”s, y “2”s, and z “3”s? ?

This is exactly the multinomial distribution:

6!
P(A=1,B=2,C=3) = THETR (0.25)1(0.25)2(0.5)3 ~ 0.1172

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Conditioned Multinomial Distribution

EXAMPLE:
Suppose a lucky wheel has three numbers 1, 2, and 3 with areas covering 25%, 25%,

and 50% of the wheel, respectively. If we spin the wheel 6 times independently,
what is the probability of getting exactly x “1”s, y “2”s, and z “3”s?

Areas of blue markers are

A
0,0,6 .
( ) proportional to P(x, y, z)

This is exactly the multinomial distribution:

o (0.25)*(0.25)¥(0.5)”

P(A=x,B=y,C=2) =
X!yl z!

(
Notice that the highest oves are close (1 -
o (25, 25%0, 50%0). But (1.5,1.5, 3)

i1s not av intearal solutiow. O [] []
2 411) Gool) (251)

(6,0,0) TG0 (240 (0,6,0)

Python file 206: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/206 _maxEntropy.ipynb
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Conditioned Multinomial Distribution

EXAMPLE:
Suppose a lucky wheel has three numbers 1, 2, and 3 with areas covering 25%, 25%,

and 50% of the wheel, respectively. If we spin the wheel 6 times independently,
what is the probability of getting exactly x “1”s, y “2”s, and z “3"s if we know
additionally that condition COND holds, namely the sum of the draws is equal to 10?

; (0% 6) Areas of blue markers are

= proportional to P(x, y, z)
This is exactly the multinomial distribution:
6!
P(A=x,B=y,C=2z)= ———.(0.25)*(0.25)Y(0.5)%
X!yl 7! B
-
m
CL0.2) 220) 22,2
L]
(4,1,1) (3,.2,1) (251)
(6,0,0) T (33.0) (240 (0,6,0)

Python file 206: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/206 _maxEntropy.ipynb
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Conditioned Multinomial Distribution

EXAMPLE:
Suppose a lucky wheel has three numbers 1, 2, and 3 with areas covering 25%, 25%,

and 50% of the wheel, respectively. If we spin the wheel 6 times independently,
what is the probability of getting exactly x “1”s, y “2”s, and z “3"s if we know
additionally that condition COND holds, namely the sum of the draws is equal to 10?

A Areas of blue markers are
proportional to P(x, y, z)

This is exactly the conditional (or truncated) multinomial distribution:

p
6!
P(A=xB=yC=z)|« —.(0.25)*(0.25)¥(0.5)? if COND
x!y!z!
{
=0 else
\
(4,0,2)
need to be scaled O
appropriately (3,2,1)
Python file 206: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/206 _maxEntropy.ipynb 29

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Conditioned Multinomial Distribution

EXAMPLE:
Suppose a lucky wheel has three numbers 1, 2, and 3 with areas covering 25%, 25%,

and 50% of the wheel, respectively. If we spin the wheel 8 times independently,
what is the probability of getting exactly x “1”s, y “2”s, and z “3”s?

(06 8) Areas of blue markers are
Y proportional to P(x, y, z)

This is exactly the multinomial distribution:

. (0.25)*(0.25)¥(0.5)”

P(A=x,B=y,C=2) =
X!yl z!

Now with & total spius, the highest one
with (2, 2, 4) fits perfectly what we
would expect: (250, 25%0, 50%0)

(8,0,0) (4,4,0) (0,8,0)

Python file 206: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/206 _maxEntropy.ipynb
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Conditioned Multinomial Distribution

EXAMPLE:
Suppose a lucky wheel has three numbers 1, 2, and 3 with areas covering 25%, 25%,

and 50% of the wheel, respectively. If we spin the wheel 8 times independently,
what is the probability of getting exactly x “1”s, y “2”s, and z “3”s if we know
additionally that condition COND holds, namely the sum of the draws is equal to 207?

A Areas of blue markers are
proportional to P(x, y, z)

This is exactly the conditional (or truncated) multinomial distribution:

( 8! 2,0,6
PA=x,B=y,C=2)|x . (0.25)*(0.25)Y(0.5)# if COND (2,0,6)

x!y! z!
< (!s)

0 else

(0,4,4)

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Wallis' argument
for Max Entropy

The following argument is based on Wallis' argument given in [Jaynes'03] "Probability theory: the logic of science", Cambridge
press, 2003, Section 11.4 (https://doi.org/10.1017/CB09780511790423). The argument is also given on

https://en.wikipedia.org/wiki/Principle of maximum entropy#The Wallis derivation
https://northeastern-datalab.github.io/cs7840/fa25/
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Maximum Entropy Principle

Recall: Entropy as a measure of uncertainty

For discrete RV X with distribution P|X = x;]| = p;:

H(X) = zpl lg(pi) = Exp [lg( (X))]

For continuous RV X with PDF p(x), the "

H(X) = — j p(x) - lg(p(x)) - dx

: The probability distribution with largest entropy
is the one which best represents the current state of knowledge about a system.

But why ?

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 40
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The Wallis derivation e e e

withh m = 6 sides and
Assume we are searching for an outcome probability distribution throw it n =7 times.

(e.g. the fraction of times that each of the m = 6 faces of an
unbiased die come up if we throw it n = 7 times).

We have some other information / (some constraint) about
the distribution (e.g. that the average roll was u = 4)

What is the most likely outcome probability distribution ?

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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The Wallis derivation

Assume we are searching for an outcome probability distribution
(e.g. the fraction of times that each of the m = 6 faces of an
unbiased die come up if we throw it n = 7 times).

We have some other information / (some constraint) about
the distribution (e.g. that the average roll was u = 4)

What is the most likely outcome probability distribution?

Wallis' thought experiment:
* We have n > m balls and throw them randomly into m bins,

each bin is treated the same (like an unbiased die with m sides)

* Repeat this until the resulting outcome probability distribution

in the bins conforms to our information (constraint) [

 What is the most likely probability we will see +his is +he one
distribution to result from this game? +that waximizes entropy © n =

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/

Take an unbiased die\ %4
withh m = 6 sides and o ::
+hrow i+ n = 7 times. M

What is the most likely outcome
distribution (given I)7

o \

42
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The Wallis derivation

What is the PDF of the possible (unconstrained) outcomes ?

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/

Take av unbiased di@\ %4
with m = 6 sides avd o
throw i+ n = 7 +imes. . 4

What is the most likely outcome
distribution (given 1)7?

o \
O
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The Wallis derivation

What is the PDF of the possible (unconstrained) outcomes?
Multinomial distribution

_ n! Number of balls in each bin
pmf=m™" . -
\nl!-nz!---nm!J

H( J N

i

if all balls had a uvique id

Wultinomial coefficient (n1 ”nm) =W

This is the multiplicity = the vamber of ways v which you can partition am
n-element set into disjoint subsets of sizes ny, ny, ..., ny, With Y;n; =n

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/

Take an unbiased di@\ %4
with m = 6 sides awd K
throw i+ n = 7 times. M

What is +he most likely outcome
distribution (given 1)7

m==6 \‘
O
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The Wallis derivation

New goal: Maximize the following expression
s.t. constraint I (not shown):

n! ] we will show that maximizing W can be
achieved by maximizing the entropy

max [C =
nl!-nz!---nm!

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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The Wallis derivation

New goal: Maximize the following expression
s.t. constraint I (not shown):
we will show that maximizing W can be

n!
max [C - nll.nzg...nm!] achieved by maximizing the ewtropy
. 1 n!
n lg(C) n (nll-nz!---nm!)
1 n!
= 2 8 (G )
1
=~ (lg(n) — Z; 1g((np)!))

Now we are stuck. What vext ?

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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The Wallis derivation

New goal: Maximize the following expression
s.t. constraint I (not shown):

max [C =

n! ]
nl!-nz!---nm!

2x10°

lg(n) iz pi-(gn +1gpy) -

10°4 Stirling's Approx. (loose)
m—|g(n!)
== = Stirling's Approx. (@)
104 B
—
5
— 1034 =
= T 10 Ll Lo L
102 = /
o)
bu /
2 I
1014 < I -~
6 10 I Stirling (loose) / Ig(n!)
| == Stirling /Ig(n')
10° - . ! M . ] ,
10° 10! 102 103 104 10! 102 10° 104
) n n
I - . 1.
(npm)! Assume n — oo, then apply Stirling's formula:

lg(("Pi)! )) «—— <In(n!) = n-In(n)
L, -lg(npy)) | 180D 0 (B2 = lg00) — - lg(e)

= ;L%Y lg(n) - S7P; — EiLy pi - 1g(00)

1 . 1 n!
; . lg(C) T n lg (nll-nz!---nm!)
1 n!
=58 ((nm)!'(?’lpz)!”’
= (Ig(n)) - TP
~ = Cn/ lg(n) — Xt
Ag{}o - 1g(C) = —XiZ1pi - 18(p)

—H@p) —

~o
~

All we need to do is to maximize ewtropy
under the constraints of our testable
nformation I. There is no weed for any
mterpretation of H in terms of information
theoretic votiow like "amount of uncertainty”

Python file 224: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/224 Sterling.ipynb , see also: https://en.wikipedia.org/wiki/Stirling%27s approximation
Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Jaynes' die

The following argument is based on Wallis' argument given in [Jaynes'03] "Probability theory: the logic of science", Cambridge
press, 2003, Section 11.4 (https://doi.org/10.1017/CB09780511790423). The argument is also given on

https://en.wikipedia.org/wiki/Principle of maximum entropy#The Wallis derivation
https://northeastern-datalab.github.io/cs7840/fa25/
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Jaynes' die

Example 3: Jaynes' Dice

A die has been tossed a very larg
number of spots per toss was n

face to come up on the next toss.

This problem is similar to the above except for two changes: our supportis {1, ...,6} and the

umber N of times, and we are told that the average
3.5, as we might expect from an honest die, but 4.5.
Translate this information intosé probability assignment p,,n = 1,2, ..., 6, for the n-th

expectation of the die roll is 4.5. We can formulate the problem in a similar way with the following

Lagrangian with an added term for the expected value (B):

6 6 6
L1, ... P> ho, A1) = = ), pilog(pe) — oD, pi = 1) = () kpi — B)
k=1 k=1 k=1

Taking the partial derivatives and setting them to zero, we get:

log(pr) =—-1—4—kA1 =0
log(pr) = =1 — Ao — kA4

Source: https://bjlkeng.io/posts/maximum-entropy-distributions/

(11)

(12)

(13)

(14)

T find this interpretation problematic. Rather use the interpretation we nsed
in the Wallis derivation: what is the most likely distribution on the ontcomes

Define a new quantity Z(4) by substituting Equation 12 into 13:
—1-4 1
Z(A) =e 0= — (15)
26 e~k
k=1

Substituting Equation 12, and dividing Equation 14 by 13

6 —1—Ag—kA;
2k=1 ke

6 L —1-Ag—kA =B
Dpoy € THTkA
6 —kA
_1 ke™*
Zk:l e—kh

Going back to Equation 12 and defining it in terms of Z:

— 1 —ki
= Zoe (17
Unfortunately, now we're at an impasse because there is no closed form

solution. Interesting to note that the solution is just an exponential-like
distribution with parameter A; and Z (A1) as a normalization constant to make
sure the probabilities sum to 1. Equation 16 gives us the desired value of A;.

We can easily find a solution using any root solver, such as the code below:

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Jaynes' die

from numpy import exp
from scipy.optimize import newton

a, b, B=1, 6, 4.5

# Equation 15
def z(lamb):
return 1. / sum(exp(-kxlamb) for k in range(a, b + 1))

# Equation 16

def f(lamb, B=B):
y = sum(k * exp(-kxlamb) for k in range(a, b + 1))
return y x z(lamb) - B

# Equation 17
def p(k, lamb):
return z(lamb) * exp(-k * lamb)

lamb = newton(f, x0=0.5)
print("Lambda = %.4f" % lamb)
for k in range(a, b + 1):
print("p_%d = %.4f" % (k, p(k, lamb)))

# Output:

# Lambda = -0.3710
# p_1=0.0544

# p_2=0.0788

# p_3=0.1142

# p_4 =0.1654

# p5=0.2398

# p_6 =0.3475

Source: https://bjlkeng.io/posts/maximum-entropy-distributions/

Define a new quantity Z(4) by substituting Equation 12 into 13:
—1-4 1
Z(A) =e 0= — (15)
26 e~k
k=1

Substituting Equation 12, and dividing Equation 14 by 13

6 —1—Ag—kA;
2k=1 ke

6 L —1-Ag—kA =B
Dpoy € THTkA
6 —kA
_1 ke™*
Zk:l e—kh

Going back to Equation 12 and defining it in terms of Z:

— 1 —ki
= Zoe (17
Unfortunately, now we're at an impasse because there is no closed form
solution. Interesting to note that the solution is just an exponential-like
distribution with parameter A; and Z (A1) as a normalization constant to make
sure the probabilities sum to 1. Equation 16 gives us the desired value of A;.
We can easily find a solution using any root solver, such as the code below:

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/

50


https://northeastern-datalab.github.io/cs7840/fa25/
https://bjlkeng.io/posts/maximum-entropy-distributions/

Using the Max Entropy
orinciple to derive

the Normal Distribution
and outcomes of dice rolls

https://northeastern-datalab.github.io/cs7840/fa25/
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Maximum Entropy Distributions

EXAMPLE: Suppose a continuous random variable X has given mean (15t moment) u
and variance (2" moment) 2. Which PDF p(x) has the maximum entropy H (x)?

How would you formalize this problewm ?

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/ 53
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Maximum Entropy Distributions

EXAMPLE: Suppose a continuous random variable X has given mean (15t moment) u
and variance (2" moment) 2. Which PDF p(x) has the maximum entropy H (x)?

Differential Entropy

H(X) = — j p(x) - lg(p(x)) - dx

PDF constraint

j_o:op(x) cdx =1

Moment constraint(s)
"Owly ove constraint is veeded,

2 — 2
j_oo(x —W7plx)-dx =0 becanse the defivition of o2
already ivcludes p."

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Maximum Entropy Distributions

EXAMPLE: Suppose a continuous random variable X has given mean (15t moment) u
and variance (2" moment) 2. Which PDF p(x) has the maximum entropy H (x)?

Differential Entropy Lagrangian

HOO == [ p() - lg(p() - dx t=

PDF constraint

j_o:op(x) cdx =1

Moment constraint(s)

joo<x—u>2-p<x>-dx _ o

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Maximum Entropy Distributions

EXAMPLE: Suppose a continuous random variable X has given mean (15t moment) u
and variance (2" moment) 2. Which PDF p(x) has the maximum entropy H (x)?

Differential Entropy Lagrangian
HOO == | p() - 1g(p) - dx L== p0) lg(p)- dx

PDF constraint

j_o:op(x) -dx =1 +1, ( J_O:Op(x) cdx — 1)

Moment constraint(s)

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/

j (x —w? -plx)-dx =o° +Al(joo(x—u)2-p(x)-dx—az>
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Maximum Entropy Distributions

EXAMPLE: Suppose a continuous random variable X has given mean (15t moment) u
and variance (2" moment) 2. Which PDF p(x) has the maximum entropy H (x)?

1

p(x) - In(p(x)) )

Partial derivation (calculus of variation) Lagrangian dn@ -
oL (fuvmctional) function of a function =) R .
_ 1 — _ : :
= —ps (14 (@) £=-] 2@ 18(@)-dx
Caleul , n(x)\’
0[’?@0&0}““5 lg(X) = (%) = x-li(z)
sheet )
In(x)) =a-+]1 >
+1, (x - In(x))" =2+ In(x) 1, (J p(x) - dx — 1)
+21 (x — u)* +4 (j (x —mw? px)-dx — 02)
=0

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Maximum Entropy Distributions

EXAMPLE: Suppose a continuous random variable X has given mean (15t moment) u
and variance (2" moment) 2. Which PDF p(x) has the maximum entropy H (x)?

—ﬁ(l +In(p(x))) + g + L1 (x —w)? =0

2 -1
—(1+In(p(x))) + 25 + 21 (x — w)? =0 o
p(x) — 3/16,‘”“1(35_#)2

Constraints

?

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/
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Maximum Entropy Distributions

EXAMPLE: Suppose a continuous random variable X has given mean (15t moment) u
and variance (2" moment) 2. Which PDF p(x) has the maximum entropy H (x)?

__1
In(2)

—(1+1In(p(x))) + Ay + A (x — p)? =

Constraints

f_o:op(x) -dx =1

p(x) =

(1 + ln(p(x))) + Ao+ A (x—w)?=0

0

e Ao +A1 (x—p)?

(0.0]
= f o tA(x—?% | gy =1
— Q00

For details, see next page

\
o _ 1
1 202

® 0 Y 2 C 7 Ay — Ay 1
f (x—w? px)-dx =02 = j (x — u)? - et *hx-" . gy = g2 N N T
— 00 — 00 _/
2
e_(xz_‘;) The maximum entropy privciple
o

Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/

p(x) =

1
o\ 2T

is empirically justified ©
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Maximum Entropy Distribution: DETAILS BACKUP

0 (0]
17 / 2 144 / _ 2
f elo tA (=% . 1y =1 J (x — p)? - etoth(x-w7 . gy = g2
— 00 — 00
1 roo / 2 I > I',2
eto . e gy =1 eto j z2 . eMZ° . dz = g2
J_oo U — J

~

(0 0]
1" 1 T a1
Jr eM=? | gy = e~ -~ / = g2 . e—4o
N —® ) 1
Y
n = e_)lg, = 1 TE/: 0'2 . %
-4 \ 227 | A} A

7 ! 1
eﬂ'o = — h L <7 /1’1 - = o2
T oV2m 20
Caleulns | Calenlus | ]
theat —a(z+b)? 5., _ |7 cheat 2 —az? 5. _ it
Neet / e dr = - (a > 0) heet ze dr = 21 7 (a > 0)
—00 —00

https://en.wikipedia.org/wiki/Gaussian_integral https://en.wikipedia.org/wiki/List of integrals of exponential functions
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