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Pre-class conversations

• Last class recapitulation
• Projects: I added comments for all projects. Please talk to me often (just today 

I cannot meet after class).
• Idea for class contributions: how to find errors in my slides...
• Slide decks are being re-organized (new ideas and connections from our in-

class discussions). Page numbers will likely change. Also new examples in the 
Python workbooks J
- please submit yours too with scribes 

• Today:
- Why Max entropy? Involves just combinatorics, and limits, no "uncertainty"
- Why Occam's razor?

https://northeastern-datalab.github.io/cs7840/fa25/
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A quick primer on
Combinatorics & the

Multinomial Distribution
(in preparation for our discussion

of Wallis' argument for Max Entropy)

https://northeastern-datalab.github.io/cs7840/fa25/
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Permutations, Combinations, Binomial coefficient
Permutations

Given 𝑛 = 4 objects {𝐴, 𝐵, 𝐶, 𝐷}. There are 
how many permutations:
𝐴𝐵𝐶𝐷, 𝐴𝐵𝐷𝐶, 𝐴𝐶𝐵𝐷, 𝐴𝐶𝐵𝐷,… , 𝐷𝐶𝐵𝐴 ?

https://northeastern-datalab.github.io/cs7840/fa25/
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Permutations, Combinations, Binomial coefficient
Permutations

Given 𝑛 = 4 objects {𝐴, 𝐵, 𝐶, 𝐷}. There are 
𝑛! = 24 different permutations:
𝐴𝐵𝐶𝐷, 𝐴𝐵𝐷𝐶, 𝐴𝐶𝐵𝐷, 𝐴𝐶𝐵𝐷,… , 𝐷𝐶𝐵𝐴 

There are how may different permutations of 
size 𝑘 = 2:
𝐴𝐵, 𝐴𝐶, 𝐴𝐷, 𝐵𝐴,…𝐷𝐶 

𝑘-permutations (partial permutations)

?

https://northeastern-datalab.github.io/cs7840/fa25/
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Permutations, Combinations, Binomial coefficient
Permutations 𝑘-combinations

Given 𝑛 = 4 objects {𝐴, 𝐵, 𝐶, 𝐷}. There are 
𝑛! = 24 different permutations:
𝐴𝐵𝐶𝐷, 𝐴𝐵𝐷𝐶, 𝐴𝐶𝐵𝐷, 𝐴𝐶𝐵𝐷,… , 𝐷𝐶𝐵𝐴 

There are 𝑃(𝑛, 𝑘) = !!
!#$ !

= 𝑛$ = 12 

different permutations of size 𝑘 = 2	:
𝐴𝐵, 𝐴𝐶, 𝐴𝐷, 𝐵𝐴,…𝐷𝐶 

INTUITION 2: We don't distinguish between 
permutations of the items not shown: 
𝐴𝐵 𝐶𝐷 = 𝐴𝐵(𝐷𝐶). Thus we divide by the 
number of such permutations 𝑛 − 𝑘 ! = 2

𝑘-permutations (partial permutations)

There are how many different combinations 
(subsets) of size 𝑘 = 2	:
𝐴, 𝐵 , 𝐴, 𝐶 , 𝐴, 𝐷 , 𝐵, 𝐶 , 𝐵, 𝐷 , {𝐶, 𝐷} 

INTUITION 1: We have 𝑛 choices for the 1st, 𝑛 − 1 
for the 2nd, ..., (𝑛 − 𝑘 + 1) for the 𝑘th. Thus 𝑛!.
(𝑛! 	is called the "falling factorial")

?

https://northeastern-datalab.github.io/cs7840/fa25/
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Permutations, Combinations, Binomial coefficient
Permutations 𝑘-combinations

Given 𝑛 = 4 objects {𝐴, 𝐵, 𝐶, 𝐷}. There are 
𝑛! = 24 different permutations:
𝐴𝐵𝐶𝐷, 𝐴𝐵𝐷𝐶, 𝐴𝐶𝐵𝐷, 𝐴𝐶𝐵𝐷,… , 𝐷𝐶𝐵𝐴 

There are 𝑃(𝑛, 𝑘) = !!
!#$ !

= 𝑛$ = 12 

different permutations of size 𝑘 = 2	:
𝐴𝐵, 𝐴𝐶, 𝐴𝐷, 𝐵𝐴,…𝐷𝐶 

𝑘-permutations (partial permutations)

There are 𝐶 𝑛, 𝑘 = % !,$
% $,$

= !!

$!
= !!

$! !#$ !
= !

$ =
6 different combinations (subsets) of size 𝑘 = 2	:
𝐴, 𝐵 , 𝐴, 𝐶 , 𝐴, 𝐷 , 𝐵, 𝐶 , 𝐵, 𝐷 , {𝐶, 𝐷} 

INTUITION: We don't distinguish between permutations of the 
items shown: 𝐴𝐵 = 𝐵𝐴. Thus we divide by the number of 
such permutations 𝑘! This leads to the binomial coefficient.

multinomial outcomes
There are how many ways to partition the set into 
disjoint subsets of sizes 𝑘' = 2, 𝑘( = 1, 𝑘) = 1 with 
∑* 𝑘* = 𝑛. 
𝐴𝐵|𝐶|𝐷 , 𝐴𝐵|𝐷|𝐶 , 𝐴𝐶|𝐵|𝐶 , ... 𝐶𝐷|𝐵|𝐴  

?
INTUITION 2: We don't distinguish between 
permutations of the items not shown: 
𝐴𝐵 𝐶𝐷 = 𝐴𝐵(𝐷𝐶). Thus we divide by the 
number of such permutations 𝑛 − 𝑘 ! = 2

INTUITION 1: We have 𝑛 choices for the 1st, 𝑛 − 1 
for the 2nd, ..., (𝑛 − 𝑘 + 1) for the 𝑘th. Thus 𝑛!.
(𝑛! 	is called the "falling factorial")

https://northeastern-datalab.github.io/cs7840/fa25/
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Permutations, Combinations, Binomial coefficient
Permutations 𝑘-combinations

Given 𝑛 = 4 objects {𝐴, 𝐵, 𝐶, 𝐷}. There are 
𝑛! = 24 different permutations:
𝐴𝐵𝐶𝐷, 𝐴𝐵𝐷𝐶, 𝐴𝐶𝐵𝐷, 𝐴𝐶𝐵𝐷,… , 𝐷𝐶𝐵𝐴 

There are 𝑃(𝑛, 𝑘) = !!
!#$ !

= 𝑛$ = 12 

different permutations of size 𝑘 = 2	:
𝐴𝐵, 𝐴𝐶, 𝐴𝐷, 𝐵𝐴,…𝐷𝐶 

𝑘-permutations (partial permutations)
INTUITION: We don't distinguish between permutations of the 
items shown: 𝐴𝐵 = 𝐵𝐴. Thus we divide by the number of 
such permutations 𝑘! This leads to the binomial coefficient.

multinomial outcomes
There are !

$",$#,$$
= !!

$"!$#!$$!
= 12 different ways to 

partition the set into disjoint subsets of sizes 𝑘' = 2, 
𝑘( = 1, 𝑘) = 1 with ∑* 𝑘* = 𝑛. 
𝐴𝐵|𝐶|𝐷 , 𝐴𝐵|𝐷|𝐶 , 𝐴𝐶|𝐵|𝐶 , ... 𝐶𝐷|𝐵|𝐴  

INTUITION: We don't distinguish between permutations within 
each group. Thus we divide by the size of the equivalence 
class, i.e. 𝑘"! permutations for each group. That leads to the 
multinomial coefficient.

INTUITION 2: We don't distinguish between 
permutations of the items not shown: 
𝐴𝐵 𝐶𝐷 = 𝐴𝐵(𝐷𝐶). Thus we divide by the 
number of such permutations 𝑛 − 𝑘 ! = 2

INTUITION 1: We have 𝑛 choices for the 1st, 𝑛 − 1 
for the 2nd, ..., (𝑛 − 𝑘 + 1) for the 𝑘th. Thus 𝑛!.
(𝑛! 	is called the "falling factorial")

There are 𝐶 𝑛, 𝑘 = % !,$
% $,$

= !!

$!
= !!

$! !#$ !
= !

$ =
6 different combinations (subsets) of size 𝑘 = 2	:
𝐴, 𝐵 , 𝐴, 𝐶 , 𝐴, 𝐷 , 𝐵, 𝐶 , 𝐵, 𝐷 , {𝐶, 𝐷} 

https://northeastern-datalab.github.io/cs7840/fa25/
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Permutations, Combinations, Binomial coefficient
𝑘-combinations

INTUITION: We don't distinguish between permutations of the 
items shown: 𝐴𝐵 = 𝐵𝐴. Thus we divide by the number of 
such permutations 𝑘! This leads to the binomial coefficient.

multinomial outcomes
There are !

$",$#,$$
= !!

$"!$#!$$!
= 12 different ways to 

partition the set into disjoint subsets of sizes 𝑘' = 2, 
𝑘( = 1, 𝑘) = 1 with ∑* 𝑘* = 𝑛. 
𝐴𝐵|𝐶|𝐷 , 𝐴𝐵|𝐷|𝐶 , 𝐴𝐶|𝐵|𝐶 , ... 𝐶𝐷|𝐵|𝐴  

INTUITION: We don't distinguish between permutations within 
each group. Thus we divide by the size of the equivalence 
class, i.e. 𝑘"! permutations for each group. That leads to the 
multinomial coefficient.

MULTINOMIAL COEFFICIENT:
A generalization of the binomial coefficient 
that calculates the number of ways to divide 
a set of 𝑛 distinct elements into 𝑚 distinct 
groups, where each group 𝑖 contains a 
specified number of objects 𝑘", s.t. ∑" 𝑘" = 𝑛.

BINOMIAL COEFFICIENT: 
The number of distinct subsets of size 𝑘 that 
can be chosen from a set of 𝑛 elements.

There are 𝐶 𝑛, 𝑘 = % !,$
% $,$

= !!

$!
= !!

$! !#$ !
= !

$ =
6 different combinations (subsets) of size 𝑘 = 2	:
𝐴, 𝐵 , 𝐴, 𝐶 , 𝐴, 𝐷 , 𝐵, 𝐶 , 𝐵, 𝐷 , {𝐶, 𝐷} 

Special case of multinomial coefficient: We 
partition the set into 2 groups, those that are 
in, and those that are not in the selection.

https://northeastern-datalab.github.io/cs7840/fa25/
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Binomial & Multinomial distribution
Binomial theorem (or Binomial expansion)

?

https://northeastern-datalab.github.io/cs7840/fa25/
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Binomial & Multinomial distribution
Binomial theorem (or Binomial expansion) Multinomial theorem (here, for 𝑚 = 3)

𝑎 + 𝑏 ! = :
$+,

!
𝑛
𝑘
⋅ 𝑎!#$𝑏$

Figure source: https://study.com/academy/lesson/binomial-coefficient-formula-examples.html 

Binomial coefficient !
$ = !!

$!⋅ !#$ !
= !!

$!
Number of ways in which you can select 𝑘 items 
from a total of 𝑛 different items

𝑎 + 𝑏 . = 𝑎. + 4𝑎)𝑏 + 6𝑎(𝑏( + 4𝑎𝑏) + 𝑏.

BACKUP

?

https://northeastern-datalab.github.io/cs7840/fa25/
https://study.com/academy/lesson/binomial-coefficient-formula-examples.html
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Binomial & Multinomial distribution
Binomial theorem (or Binomial expansion) Multinomial theorem (here, for 𝑚 = 3)

𝑎 + 𝑏 ! = :
$+,

!
𝑛
𝑘
⋅ 𝑎!#$𝑏$

Figure source: https://study.com/academy/lesson/binomial-coefficient-formula-examples.html 

Binomial coefficient !
$ = !!

$!⋅ !#$ !
= !!

$!
Number of ways in which you can select 𝑘 items 
from a total of 𝑛 different items

𝑎 + 𝑏 . = 𝑎. + 4𝑎)𝑏 + 6𝑎(𝑏( + 4𝑎𝑏) + 𝑏.

𝑎 + 𝑏 + 𝑐 ! = :
$"/$#/$$+!

𝑛
𝑘', 𝑘(, 𝑘)

𝑎$"𝑏$#𝑐$$

Multinomial coefficient !
$",$#,$$

= !!
$"!$#!$$!

Number of ways in which to partition an 𝑛-element set 
into disjoint subsets of sizes 𝑘', 𝑘(, 𝑘) w/ ∑* 𝑘* = 𝑛. 

𝑎 + 𝑏 + 𝑐 . = 𝑎. + 𝑏. + 𝑐.	
 +4𝑎)𝑏 + 4𝑎)𝑐 + 4𝑏)𝑎 + 4𝑏)𝑐 + 4𝑐)𝑎 + 4𝑐)𝑏	
 +6𝑎(𝑏( + 6𝑎(𝑐( + 6𝑏(𝑐(	
 +12𝑎(𝑏𝑐 + 12𝑎𝑏(𝑐 + 12𝑎𝑏𝑐( 

BACKUP

https://northeastern-datalab.github.io/cs7840/fa25/
https://study.com/academy/lesson/binomial-coefficient-formula-examples.html
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Figure source: https://www.thephysicsmill.com/2014/04/13/probability-part-2-distributions/ 

"Two possible paths leading to the 
same bin within the bean machine."

"This animation captures the way a binomial 
distribution with increasing 𝑛 will begin to look 
like a normal distribution." 
Likely for 𝑝 ≈ 0.5, yet cut-off on the right.

Binomial distribution towards Normal distribution

https://northeastern-datalab.github.io/cs7840/fa25/
https://www.thephysicsmill.com/2014/04/13/probability-part-2-distributions/
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Figure Source: https://tex.stackexchange.com/questions/471912/binomial-tree-converging-to-a-normal-distribution-3d 

Binomial distribution towards Normal distribution

https://northeastern-datalab.github.io/cs7840/fa25/
https://tex.stackexchange.com/questions/471912/binomial-tree-converging-to-a-normal-distribution-3d
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Binomial distribution towards Normal distribution

Figure Source: https://stackoverflow.com/questions/60546225/plotting-the-normal-and-binomial-distribution-in-same-plot 

https://northeastern-datalab.github.io/cs7840/fa25/
https://stackoverflow.com/questions/60546225/plotting-the-normal-and-binomial-distribution-in-same-plot
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Binomial / Normal / Poisson distribution

Python file 206: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/206_maxEntropy.ipynb

https://northeastern-datalab.github.io/cs7840/fa25/
https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/206_maxEntropy.ipynb
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Conditioned Multinomial Distribution
EXAMPLE: 
Suppose a lucky wheel has three numbers 1, 2, and 3 with areas covering 25%, 25%, 
and 50% of the wheel, respectively. If we spin the wheel 6 times independently, 
what is the probability of getting exactly one “1”, two “2”s, and three “3”s? ?

https://northeastern-datalab.github.io/cs7840/fa25/
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Conditioned Multinomial Distribution
EXAMPLE: 
Suppose a lucky wheel has three numbers 1, 2, and 3 with areas covering 25%, 25%, 
and 50% of the wheel, respectively. If we spin the wheel 6 times independently, 
what is the probability of getting exactly one “1”, two “2”s, and three “3”s?

6!
1! 2! 3!

⋅ℙ A = 1, B = 2, C = 3 =	 0.25 ' 0.25 ( 0.5 )

This is exactly the multinomial distribution:

≈ 0.1172

https://northeastern-datalab.github.io/cs7840/fa25/


19Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/  

Conditioned Multinomial Distribution
EXAMPLE: 
Suppose a lucky wheel has three numbers 1, 2, and 3 with areas covering 25%, 25%, 
and 50% of the wheel, respectively. If we spin the wheel 6 times independently, 
what is the probability of getting exactly 𝑥 “1”s, 𝑦 “2”s, and 𝑧 “3”s?

6!
1! 2! 3!

⋅ℙ A = 1, B = 2, C = 3 =	 0.25 ' 0.25 ( 0.5 )

This is exactly the multinomial distribution:

≈ 0.1172

?

https://northeastern-datalab.github.io/cs7840/fa25/
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Conditioned Multinomial Distribution
EXAMPLE: 
Suppose a lucky wheel has three numbers 1, 2, and 3 with areas covering 25%, 25%, 
and 50% of the wheel, respectively. If we spin the wheel 6 times independently, 
what is the probability of getting exactly 𝑥 “1”s, 𝑦 “2”s, and 𝑧	“3”s?

6,0,0 0,6,0

1,1,4

1,2,3

2,2,2 1,3,2

2,4,0

3,2,14,1,1 2,3,1

2,2,2

0,0,6

4,0,2

3,3,0

Areas of blue markers are 
proportional to ℙ 𝑥, 𝑦, 𝑧

6!
𝑥! 𝑦! 𝑧!

⋅ℙ A = 𝑥, B = 𝑦, C = 𝑧 =	 0.25 0 0.25 1 0.5 2

This is exactly the multinomial distribution:

Notice that the highest ones are close 
to (25%, 25%, 50%). But (1.5, 1.5, 3) 
is not an integral solution.

Python file 206: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/206_maxEntropy.ipynb

https://northeastern-datalab.github.io/cs7840/fa25/
https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/206_maxEntropy.ipynb
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Conditioned Multinomial Distribution

6,0,0 0,6,0

1,1,4

1,2,3

2,2,2 1,3,2

2,4,0

3,2,14,1,1 2,3,1

2,2,2

0,0,6

4,0,2

3,3,0

Areas of blue markers are 
proportional to ℙ 𝑥, 𝑦, 𝑧

6!
𝑥! 𝑦! 𝑧!

⋅ℙ A = 𝑥, B = 𝑦, C = 𝑧 =	 0.25 0 0.25 1 0.5 2

This is exactly the multinomial distribution:

EXAMPLE: 
Suppose a lucky wheel has three numbers 1, 2, and 3 with areas covering 25%, 25%, 
and 50% of the wheel, respectively. If we spin the wheel 6 times independently, 
what is the probability of getting exactly 𝑥 “1”s, 𝑦 “2”s, and 𝑧	“3”s 
additionally that condition COND holds, namely the sum of the draws is equal to 10?

if we know

?

Python file 206: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/206_maxEntropy.ipynb

https://northeastern-datalab.github.io/cs7840/fa25/
https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/206_maxEntropy.ipynb
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Conditioned Multinomial Distribution
EXAMPLE: 
Suppose a lucky wheel has three numbers 1, 2, and 3 with areas covering 25%, 25%, 
and 50% of the wheel, respectively. If we spin the wheel 6 times independently, 
what is the probability of getting exactly 𝑥 “1”s, 𝑦 “2”s, and 𝑧	“3”s 

6!
𝑥! 𝑦! 𝑧!

⋅ℙ A = 𝑥, B = 𝑦, C = 𝑧 	∝	 0.25 0 0.25 1 0.5 2

This is exactly the conditional (or truncated) multinomial distribution:

Areas of blue markers are 
proportional to ℙ 𝑥, 𝑦, 𝑧

6,0,0 0,6,0

1,1,4

1,2,3

2,2,2 1,3,2

2,4,0

3,2,14,1,1 2,3,1

2,2,2

0,0,6

4,0,2

3,3,0

additionally that condition COND holds, namely the sum of the draws is equal to 10?
if we know

if COND

=   0           else

need to be scaled 
appropriately

Python file 206: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/206_maxEntropy.ipynb

https://northeastern-datalab.github.io/cs7840/fa25/
https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/206_maxEntropy.ipynb
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Conditioned Multinomial Distribution

8,0,0 0,8,0

1,2,5

0,0,8

2,0,6

4,4,0

Areas of blue markers are 
proportional to ℙ 𝑥, 𝑦, 𝑧

8!
𝑥! 𝑦! 𝑧!

⋅ℙ A = 𝑥, B = 𝑦, C = 𝑧 =	 0.25 0 0.25 1 0.5 2

This is exactly the multinomial distribution:

EXAMPLE: 
Suppose a lucky wheel has three numbers 1, 2, and 3 with areas covering 25%, 25%, 
and 50% of the wheel, respectively. If we spin the wheel 8 times independently, 
what is the probability of getting exactly 𝑥 “1”s, 𝑦 “2”s, and 𝑧	“3”s? 

0,4,4
2,2,4

Python file 206: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/206_maxEntropy.ipynb

Now with 8 total spins, the highest one 
with (2, 2, 4) fits perfectly what we 
would expect: (25%, 25%, 50%)

https://northeastern-datalab.github.io/cs7840/fa25/
https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks/206_maxEntropy.ipynb
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Conditioned Multinomial Distribution

8,0,0 0,8,0

1,2,5

0,0,8

2,0,6

4,4,0

Areas of blue markers are 
proportional to ℙ 𝑥, 𝑦, 𝑧

EXAMPLE: 
Suppose a lucky wheel has three numbers 1, 2, and 3 with areas covering 25%, 25%, 
and 50% of the wheel, respectively. If we spin the wheel 8 times independently, 
what is the probability of getting exactly 𝑥 “1”s, 𝑦 “2”s, and 𝑧	“3”s 

0,4,4

8!
𝑥! 𝑦! 𝑧!

⋅ℙ A = 𝑥, B = 𝑦, C = 𝑧 	∝	 0.25 0 0.25 1 0.5 2

This is exactly the conditional (or truncated) multinomial distribution:

additionally that condition COND holds, namely the sum of the draws is equal to 20?
if we know

if COND

=   0           else 2,2,4

https://northeastern-datalab.github.io/cs7840/fa25/
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Wallis' argument 
for Max Entropy

The following argument is based on Wallis' argument given in [Jaynes'03] "Probability theory: the logic of science", Cambridge 
press, 2003, Section 11.4 (https://doi.org/10.1017/CBO9780511790423). The argument is also given on 
https://en.wikipedia.org/wiki/Principle_of_maximum_entropy#The_Wallis_derivation

https://northeastern-datalab.github.io/cs7840/fa25/
https://doi.org/10.1017/CBO9780511790423
https://en.wikipedia.org/wiki/Principle_of_maximum_entropy
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Maximum Entropy Principle
Recall: Entropy as a measure of uncertainty

𝐻 𝑋 = −-
678

𝑝6 ⋅ lg 𝑝6 = 𝔼9~; lg
1

𝑝(𝑋)

For discrete RV 𝑋 with distribution ℙ 𝑋 = 𝑥L = 𝑝L:

𝐻 𝑋 = −5
<=

=
𝑝 𝑥 ⋅ lg 𝑝 𝑥 ⋅ 𝑑𝑥	

For continuous RV 𝑋 with PDF 𝑝(𝑥), the "differential entropy"

But why ?
MAXIMUM ENTROPY PRINCIPLE: The probability distribution with largest entropy 
is the one which best represents the current state of knowledge about a system.

https://northeastern-datalab.github.io/cs7840/fa25/
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The Wallis derivation

?

Take an unbiased die 
with 𝑚 = 6 sides and 
throw it 𝑛 = 7 times. Assume we are searching for an outcome probability distribution 

(e.g. the fraction of times that each of the 𝑚 = 6 faces of an 
unbiased die come up if we throw it 𝑛 = 7 times).

We have some other information 𝐼 (some constraint) about 
the distribution (e.g. that the average roll was 𝜇 = 4)

What is the most likely outcome probability distribution

https://northeastern-datalab.github.io/cs7840/fa25/
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The Wallis derivation
Assume we are searching for an outcome probability distribution 
(e.g. the fraction of times that each of the 𝑚 = 6 faces of an 
unbiased die come up if we throw it 𝑛 = 7 times).

We have some other information 𝐼 (some constraint) about 
the distribution (e.g. that the average roll was 𝜇 = 4)

Wallis' thought experiment:

• Repeat this until the resulting outcome probability distribution 
in the bins conforms to our information (constraint) 𝐼 

What is the most likely outcome probability distribution?

• What is the most likely probability 
distribution to result from this game?

• We have 𝑛 ≫ 𝑚 balls and throw them randomly into 𝑚 bins, 
each bin is treated the same (like an unbiased die with 𝑚 sides)

𝑛 = 7
1 2 3 4 5 6

1 2 3 4 5 6
𝑛 = 7

We will see this is the one 
that maximizes entropy J

Take an unbiased die 
with 𝑚 = 6 sides and 
throw it 𝑛 = 7 times. 

What is the most likely outcome 
distribution (given 𝐼)?

𝑚 = 6

https://northeastern-datalab.github.io/cs7840/fa25/
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The Wallis derivation
What is the PDF of the possible (unconstrained) outcomes

𝑛 = 7
1 2 3 4 5 6

𝑛 = 7
1 2 3 4 5 6

?
Take an unbiased die 
with 𝑚 = 6 sides and 
throw it 𝑛 = 7 times. 

What is the most likely outcome 
distribution (given 𝐼)?

𝑚 = 6

https://northeastern-datalab.github.io/cs7840/fa25/
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The Wallis derivation

pmf = 𝑚OP ⋅ P!
P!!⋅P"!⋅⋅⋅P#!

Multinomial distribution

if all balls had a unique id

Multinomial coefficient #
#!,…,#"

=:𝑊 
This is the multiplicity = the number of ways in which you can partition an 
𝑛-element set into disjoint subsets of sizes 𝑛&, 𝑛', … , 𝑛( with ∑" 𝑛" = 𝑛

𝑊 = 1260

𝑊 = 140

What is the PDF of the possible (unconstrained) outcomes?

Number of balls in each bin

𝑛 = 7

𝑛 = 7

1 2 3 4 5 6

1 2 3 4 5 6

Take an unbiased die 
with 𝑚 = 6 sides and 
throw it 𝑛 = 7 times. 

What is the most likely outcome 
distribution (given 𝐼)?

𝑚 = 6

https://northeastern-datalab.github.io/cs7840/fa25/
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The Wallis derivation
Maximize the following expression 
s.t. constraint 𝐼 (not shown):

New goal:

We will show that maximizing W can be 
achieved by maximizing the entropymax 𝐶 = P!

P!!⋅P"!⋅⋅⋅P#!

https://northeastern-datalab.github.io/cs7840/fa25/
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The Wallis derivation
Maximize the following expression 
s.t. constraint 𝐼 (not shown):

New goal:

= .
/
⋅ lg /!

(/2))!⋅(/2*)!⋅⋅⋅(/2+)!
 

= .
/
⋅ lg 𝑛! − ∑56.7 lg 𝑛𝑝5 !	

Now we are stuck. What next?

We will show that maximizing W can be 
achieved by maximizing the entropymax 𝐶 = P!

P!!⋅P"!⋅⋅⋅P#!
.
!
⋅ lg 𝐶 = .

/
⋅ lg /!

/)!⋅/*!⋅⋅⋅/+!
 

https://northeastern-datalab.github.io/cs7840/fa25/
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The Wallis derivation
Maximize the following expression 
s.t. constraint 𝐼 (not shown):

New goal:

max 𝐶 = P!
P!!⋅P"!⋅⋅⋅P#!

ln 𝑛! ≈ 𝑛 ⋅ ln 𝑛  

.
!
⋅ lg 𝐶 = .

/
⋅ lg /!

/)!⋅/*!⋅⋅⋅/+!
 

= .
/
⋅ lg /!

(/2))!⋅(/2*)!⋅⋅⋅(/2+)!
 

= .
/
⋅ lg 𝑛! − ∑56.7 lg 𝑛𝑝5 !	

lg 𝑛! ≈ 𝑛 ⋅ 34 !
34 5

= 𝑛 ⋅ lg 𝑛 − 𝑛 ⋅ lg 𝑒  
≈ 𝑛 ⋅ lg 𝑛  

≈ .
/
⋅ 𝑛 ⋅ lg 𝑛 − ∑56.

7 𝑛𝑝5 ⋅ lg 𝑛𝑝5  

= lg 𝑛 − ∑56.7 𝑝5 ⋅(lg	𝑛 + lg	𝑝5) 

= lg 𝑛 − lg 𝑛 ⋅ ∑56.7 𝑝5 − ∑56.7 𝑝5 ⋅ lg 𝑝5  

= −∑56.7 𝑝5 ⋅ lg 𝑝5  

All we need to do is to maximize entropy 
under the constraints of our testable 
information 𝐼. There is no need for any 
interpretation of 𝐻 in terms of information 
theoretic notion like "amount of uncertainty"

Python file 224: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/224_Sterling.ipynb , see also: https://en.wikipedia.org/wiki/Stirling%27s_approximation

Assume 𝑛 → ∞, then apply Stirling's formula:

= 𝐻(𝒑) .
!
⋅ lg 𝐶  lim

D→=
	

https://northeastern-datalab.github.io/cs7840/fa25/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/224_Sterling.ipynb
https://en.wikipedia.org/wiki/Stirling%27s_approximation
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Jaynes' die

The following argument is based on Wallis' argument given in [Jaynes'03] "Probability theory: the logic of science", Cambridge 
press, 2003, Section 11.4 (https://doi.org/10.1017/CBO9780511790423). The argument is also given on 
https://en.wikipedia.org/wiki/Principle_of_maximum_entropy#The_Wallis_derivation

https://northeastern-datalab.github.io/cs7840/fa25/
https://doi.org/10.1017/CBO9780511790423
https://en.wikipedia.org/wiki/Principle_of_maximum_entropy
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Jaynes' die

Source: https://bjlkeng.io/posts/maximum-entropy-distributions/ 

I find this interpretation problematic. Rather use the interpretation we used 
in the Wallis derivation: what is the most likely distribution on the outcomes

https://northeastern-datalab.github.io/cs7840/fa25/
https://bjlkeng.io/posts/maximum-entropy-distributions/
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Jaynes' die

Source: https://bjlkeng.io/posts/maximum-entropy-distributions/ 

https://northeastern-datalab.github.io/cs7840/fa25/
https://bjlkeng.io/posts/maximum-entropy-distributions/
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Using the Max Entropy 
principle to derive 

the Normal Distribution
and outcomes of dice rolls

https://northeastern-datalab.github.io/cs7840/fa25/
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Maximum Entropy Distributions
EXAMPLE: Suppose a continuous random variable 𝑋 has given mean (1st moment) 𝜇 
and variance (2nd moment) 𝜎F. Which PDF 𝑝(𝑥) has the maximum entropy 𝐻(𝑥)?

?How would you formalize this problem

https://northeastern-datalab.github.io/cs7840/fa25/
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Maximum Entropy Distributions

"Only one constraint is needed, 
because the definition of 𝜎F
already includes 𝜇."

Differential Entropy

𝐻 𝑋 = −5
<=

=
𝑝 𝑥 ⋅ lg 𝑝 𝑥 ⋅ 𝑑𝑥	

PDF constraint

5
<=

=
𝑝 𝑥 ⋅ 𝑑𝑥	 = 1

5
<=

=
𝑥 − 𝜇 F ⋅ 𝑝 𝑥 ⋅ 𝑑𝑥	 = 𝜎F

Moment constraint(s)

EXAMPLE: Suppose a continuous random variable 𝑋 has given mean (1st moment) 𝜇 
and variance (2nd moment) 𝜎F. Which PDF 𝑝(𝑥) has the maximum entropy 𝐻(𝑥)?

https://northeastern-datalab.github.io/cs7840/fa25/
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Maximum Entropy Distributions

Differential Entropy

𝐻 𝑋 = −5
<=

=
𝑝 𝑥 ⋅ lg 𝑝 𝑥 ⋅ 𝑑𝑥	

PDF constraint

5
<=

=
𝑝 𝑥 ⋅ 𝑑𝑥	 = 1

5
<=

=
𝑥 − 𝜇 F ⋅ 𝑝 𝑥 ⋅ 𝑑𝑥	 = 𝜎F

Moment constraint(s)

Lagrangian

ℒ = ?

EXAMPLE: Suppose a continuous random variable 𝑋 has given mean (1st moment) 𝜇 
and variance (2nd moment) 𝜎F. Which PDF 𝑝(𝑥) has the maximum entropy 𝐻(𝑥)?

https://northeastern-datalab.github.io/cs7840/fa25/
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Maximum Entropy Distributions

Differential Entropy

𝐻 𝑋 = −5
<=

=
𝑝 𝑥 ⋅ lg 𝑝 𝑥 ⋅ 𝑑𝑥	

PDF constraint

5
<=

=
𝑝 𝑥 ⋅ 𝑑𝑥	 = 1

5
<=

=
𝑥 − 𝜇 F ⋅ 𝑝 𝑥 ⋅ 𝑑𝑥	 = 𝜎F

Moment constraint(s)

ℒ = −5
<=

=
𝑝 𝑥 ⋅ lg 𝑝 𝑥 ⋅ 𝑑𝑥	

Lagrangian

EXAMPLE: Suppose a continuous random variable 𝑋 has given mean (1st moment) 𝜇 
and variance (2nd moment) 𝜎F. Which PDF 𝑝(𝑥) has the maximum entropy 𝐻(𝑥)?

+𝜆G 5
<=

=
𝑝 𝑥 ⋅ 𝑑𝑥	 − 1

+𝜆8 5
<=

=
𝑥 − 𝜇 F ⋅ 𝑝 𝑥 ⋅ 𝑑𝑥	 − 𝜎F

https://northeastern-datalab.github.io/cs7840/fa25/
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Maximum Entropy Distributions

Partial derivation (calculus of variation)

ℒ = −5
<=

=
𝑝 𝑥 ⋅ lg 𝑝 𝑥 ⋅ 𝑑𝑥	

+𝜆G 5
<=

=
𝑝 𝑥 ⋅ 𝑑𝑥	 − 1

+𝜆8 5
<=

=
𝑥 − 𝜇 F ⋅ 𝑝 𝑥 ⋅ 𝑑𝑥	 − 𝜎F

Lagrangian
𝜕ℒ

𝜕𝑝(𝑥)
= − 8

HI F 1 + ln 𝑝 𝑥  

+𝜆G

+𝜆8 𝑥 − 𝜇 F

= 0

EXAMPLE: Suppose a continuous random variable 𝑋 has given mean (1st moment) 𝜇 
and variance (2nd moment) 𝜎F. Which PDF 𝑝(𝑥) has the maximum entropy 𝐻(𝑥)?

𝑥 ⋅ ln 𝑥 , = 𝑥 &
-
+ ln 𝑥  

lg 𝑥 ′ = ./ -
./ '

,
= &

-⋅./(')
 

Calculus 
cheat 
sheet

&
./(')

⋅ 𝑝 𝑥 ⋅ ln 𝑝 𝑥  

(functional) function of a function

https://northeastern-datalab.github.io/cs7840/fa25/


58Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/fa25/  

Maximum Entropy Distributions

?

EXAMPLE: Suppose a continuous random variable 𝑋 has given mean (1st moment) 𝜇 
and variance (2nd moment) 𝜎F. Which PDF 𝑝(𝑥) has the maximum entropy 𝐻(𝑥)?

− 8
HI F 1 + ln 𝑝 𝑥 + 𝜆G + 𝜆8 𝑥 − 𝜇 F = 0 

− 1 + ln 𝑝 𝑥 + 𝜆GP + 𝜆8P 𝑥 − 𝜇 F = 0 

𝑝 𝑥 = 𝑒Q!""RQ#" S<T $
 

Constraints

𝜆3, − 1

https://northeastern-datalab.github.io/cs7840/fa25/
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⇒

Maximum Entropy Distributions

− 8
HI F 1 + ln 𝑝 𝑥 + 𝜆G + 𝜆8 𝑥 − 𝜇 F = 0 

− 1 + ln 𝑝 𝑥 + 𝜆GP + 𝜆8P 𝑥 − 𝜇 F = 0 

Constraints

X
#6

6
𝑝 𝑥 ⋅ 𝑑𝑥	 = 1

X
#6

6
𝑥 − 𝜇 ( ⋅ 𝑝 𝑥 ⋅ 𝑑𝑥	 = 𝜎(

X
#6

6
𝑒7%&&/7"& 0#8 # ⋅ 𝑑𝑥	 = 1

X
#6

6
𝑥 − 𝜇 ( ⋅ 𝑒7%&&/7"& 0#8 # ⋅ 𝑑𝑥	 = 𝜎(

𝜆'9 = − '
(:#

 

𝑒7%&& = − 7"&

;
= '

: (;
 

𝑝 𝑥 = 8
V FW 𝑒

< %&' $

$($  

⇒

⇒

The maximum entropy principle 
is empirically justified J

EXAMPLE: Suppose a continuous random variable 𝑋 has given mean (1st moment) 𝜇 
and variance (2nd moment) 𝜎F. Which PDF 𝑝(𝑥) has the maximum entropy 𝐻(𝑥)?

𝑝 𝑥 = 𝑒Q!""RQ#" S<T $
 

For details, see next page

https://northeastern-datalab.github.io/cs7840/fa25/
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Calculus 
cheat 
sheet

Maximum Entropy Distribution: DETAILS

X
#6

6
𝑒7%&&/7"& 0#8 # ⋅ 𝑑𝑥	 = 1 X

#6

6
𝑥 − 𝜇 ( ⋅ 𝑒7%&&/7"& 0#8 # ⋅ 𝑑𝑥	 = 𝜎(

𝜆'9 = − '
(:#

 𝑒7%&& = − 7"&

;
= '

: (;
  

;
#7"&

= 𝑒#7%&& 

𝑒7%&& ⋅ X
#6

6
𝑒7"& 0#8 # ⋅ 𝑑𝑥	 = 1

X
#6

6
𝑒7"& 0#8 # ⋅ 𝑑𝑥	 = 𝑒#7%&&

https://en.wikipedia.org/wiki/Gaussian_integral 

Calculus 
cheat 
sheet

https://en.wikipedia.org/wiki/List_of_integrals_of_exponential_functions  

𝑒7%&& ⋅ X
#6

6
𝑧( ⋅ 𝑒7"& 2# ⋅ 𝑑𝑧	 = 𝜎(

BACKUP

'
(

;
#7"&

$ = 𝜎( ⋅ 𝑒#7%&& 

'
(7"&

;
#7"&

	 = 𝜎( ⋅ ;
#7"&

 

https://northeastern-datalab.github.io/cs7840/fa25/
https://en.wikipedia.org/wiki/Gaussian_integral
https://en.wikipedia.org/wiki/List_of_integrals_of_exponential_functions

