Updated 9/18/2025

Part 1: Information Theory Basics LO2: Basics of Probability (1/2) [Random experiment, independence, conditional probability, chain rule, Bayes' theorem, random variables]

Wolfgang Gatterbauer

cs7840 Foundations and Applications of Information Theory (fa25)

https://northeastern-datalab.github.io/cs7840/fa25/

9/11/2025

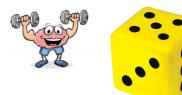
Pre-class conversations

- Last class recapitulation
- Organizational matters: Does every one get Piazza messages?
- First scribe on Piazza. Awesome! I will look over the weekend
- Office hours: Usually right after class, or via email / Teams. Also feel free talk to me regularly during break/ after class about project ideas, or papers/research directions to include towards the end
- New class arrivals

- Today:
 - The basics of probability theory

Basics of probability theory

Following slides are built upon examples by Jay Aslam from earlier editions of this class. For a more extensive cover of the basics, I recommend "Bertsekas, Tsitsiklis. Introduction to Probability, 2008." It's a solid textbook on probability theory and I regularly find myself going back to this book to look up basic concepts. Working by yourself through chapter 1 on "Sample Space and Probability" is a good investment of your time.



PROBABILITY

- A <u>random experiment</u>
- Sample space Ω : set of all possible outcomes

EXAMPLE 1:

roll a fair die with 6 sides

$$\Omega =$$

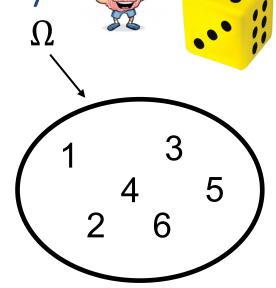
PROBABILITY

- A <u>random experiment</u>
- Sample space Ω : set of all possible outcomes
- An outcome $\omega \in \Omega$ of the exp.

EXAMPLE 1:

roll a fair die with 6 sides

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

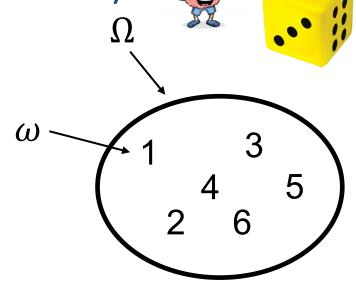


PROBABILITY

- A <u>random experiment</u>
- Sample space Ω : set of all possible outcomes
- An <u>outcome</u> $\omega \in \Omega$ of the exp.
- Event E: a subset of the sample space $E \subseteq \Omega$

EXAMPLE 1:

roll a fair die with 6 sides $\Omega = \{1, 2, 3, 4, 5, 6\}$ Say the outcome is a 1



PROBABILITY

- A <u>random experiment</u>
- Sample space Ω : set of all possible outcomes
- An outcome $\omega \in \Omega$ of the exp.
- Event E: a subset of the sample space $E \subseteq \Omega$

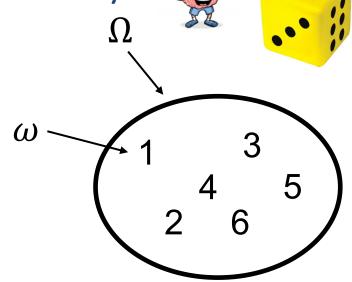
EXAMPLE 1:

roll a fair die with 6 sides

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$E_1 = \text{"even"}$$

 $E_2 = \text{"} \ge 3\text{"}$



PROBABILITY

- A <u>random experiment</u>
- Sample space Ω : set of all possible outcomes
- An outcome $\omega \in \Omega$ of the exp.
- Event E: a subset of the sample space $E \subseteq \Omega$
- Probability measure:

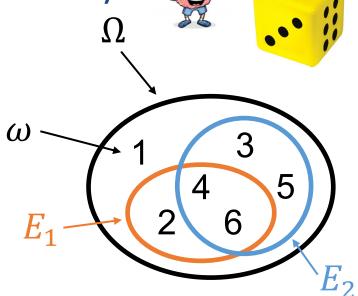
?

EXAMPLE 1:

roll a fair die with 6 sides

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$E_1$$
 = "even" = {2, 4, 6}
 E_2 = " \geq 3" = {3, 4, 5, 6}



PROBABILITY

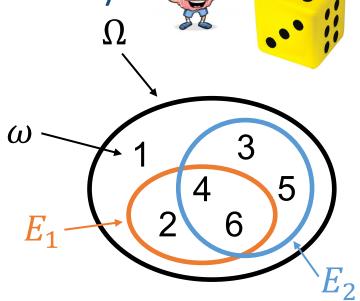
- A <u>random experiment</u>
- Sample space Ω : set of all possible outcomes
- An outcome $\omega \in \Omega$ of the exp.
- Event E: a subset of the sample space $E \subseteq \Omega$
- Probability measure:

EXAMPLE 1:

roll a fair die with 6 sides

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$E_1$$
 = "even" = {2, 4, 6}
 E_2 = " \geq 3" = {3, 4, 5, 6}



PROBABILITY

- A <u>random experiment</u>
- Sample space Ω : set of all possible outcomes
- An outcome $\omega \in \Omega$ of the exp.
- Event E: a subset of the sample space $E \subseteq \Omega$
- Probability measure:

$$\mathbb{P}: \Omega \to [0,1]$$

$$\mathbb{P}: \Sigma \to [0,1]$$

The set Σ of all events $E \in \Sigma$ is a σ -algebra, basically the same as the power set 2^{Ω} , except for some pathological non-measurable sets like the Vitali-Set (https://www.youtube.com/watch?v=hs3eDa3 DzU). See also: https://en.wikipedia.org/wiki/%CE%A3-algebra

Source of figure to the right: https://en.wikipedia.org/wiki/Probability_measure

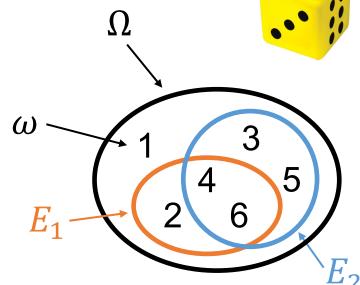
EXAMPLE 1:

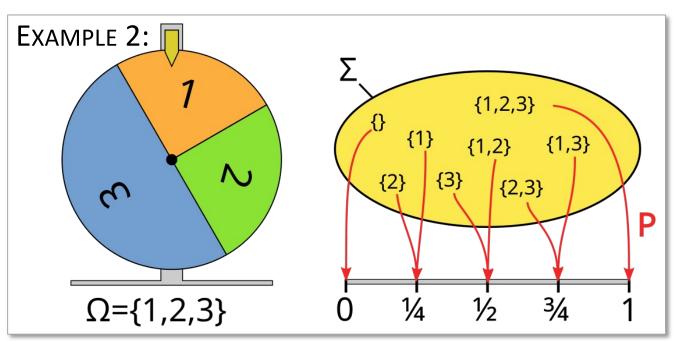
roll a fair die with 6 sides

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$E_1 = \text{"even"} = \{2, 4, 6\}$$

$$E_2 = " \ge 3" = \{3, 4, 5, 6\}$$





PROBABILITY

- A <u>random experiment</u>
- Sample space Ω : set of all possible outcomes
- An outcome $\omega \in \Omega$ of the exp.
- Event E: a subset of the sample space $E \subseteq \Omega$

• Probability measure:

$$\mathbb{P}: \Omega \to [0,1]$$

$$\mathbb{P}: \Sigma \to [0,1]$$
also
$$\sum_{\omega \in \Omega} \mathbb{P}(\{\omega\}) = 1$$

- 1) Nonnegativity: $\mathbb{P}(E) \geq 0, \forall E \in \Sigma$
- 2) Normalization: $\mathbb{P}(\Omega) = 1$
- 3) Additivity: if E_1 and E_2 are disjoint events, then $\mathbb{P}(E_1 \cup E_2) = \mathbb{P}(E_1) + \mathbb{P}(E_2)$,

The set Σ of all events $E \in \Sigma$ is a σ -algebra, basically the same as the power set 2^{Ω} , except for some pathological non-measurable sets like the Vitali-Set (https://www.youtube.com/watch?v=hs3eDa3_DzU). See also: https://en.wikipedia.org/wiki/%CE%A3-algebra

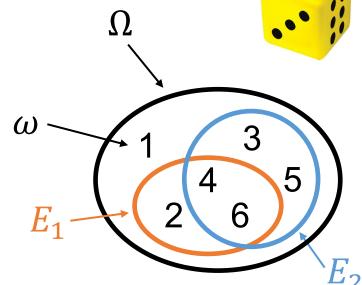
Source of figure to the right: https://en.wikipedia.org/wiki/Probability measure

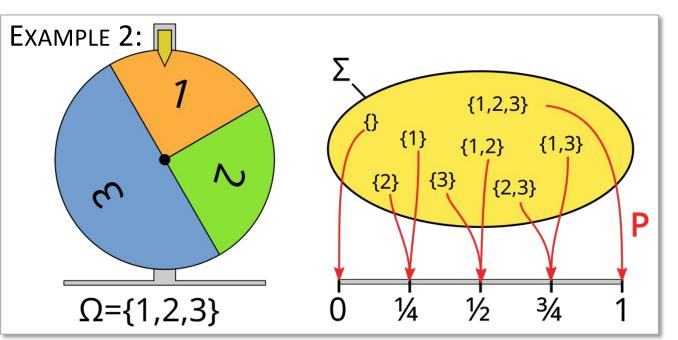
EXAMPLE 1:

roll a fair die with 6 sides

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$E_1$$
 = "even" = {2, 4, 6}
 E_2 = " \geq 3" = {3, 4, 5, 6}





PROBABILITY

- A <u>random experiment</u>
- Sample space Ω : set of all possible outcomes
- An <u>outcome</u> $\omega \in \Omega$ of the exp.
- Event E: a subset of the sample space $E \subseteq \Omega$
- Probability measure:

$$\mathbb{P}: \Omega \to [0,1]$$

$$\mathbb{P}: \Sigma \to [0,1]$$

$$\operatorname{also} \sum_{\omega \in \Omega} \mathbb{P}(\{\omega\}) = 1$$

- 1) Nonnegativity: $\mathbb{P}(E) \geq 0, \forall E \in \Sigma$
- 2) Normalization: $\mathbb{P}(\Omega) = 1$
- 3) Additivity: if E_1 and E_2 are disjoint events, then $\mathbb{P}(E_1 \cup E_2) = \mathbb{P}(E_1) + \mathbb{P}(E_2)$,

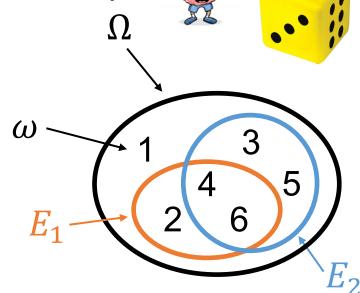
EXAMPLE 1:

roll a fair die with 6 sides

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

Say the outcome is a 1

$$E_1$$
 = "even" = {2, 4, 6}
 E_2 = " \geq 3" = {3, 4, 5, 6}



short for $\mathbb{P}(\{\omega\})$

• If
$$\mathbb{P}(\omega) = \frac{1}{|\Omega|}, \forall \omega \in \Omega$$
, then $\mathbb{P}(E) =$

PROBABILITY

- A <u>random experiment</u>
- Sample space Ω : set of all possible outcomes
- An outcome $\omega \in \Omega$ of the exp.
- Event E: a subset of the sample space $E \subseteq \Omega$
- Probability measure:

$$\mathbb{P}: \Omega \to [0,1]$$

$$\mathbb{P}: \Sigma \to [0,1]$$

also
$$\sum_{\omega \in \Omega} \mathbb{P}(\{\omega\}) = 1$$

- 1) Nonnegativity: $\mathbb{P}(E) \geq 0, \forall E \in \Sigma$
- 2) Normalization: $\mathbb{P}(\Omega) = 1$
- 3) Additivity: if E_1 and E_2 are disjoint events, then $\mathbb{P}(E_1 \cup E_2) = \mathbb{P}(E_1) + \mathbb{P}(E_2)$,

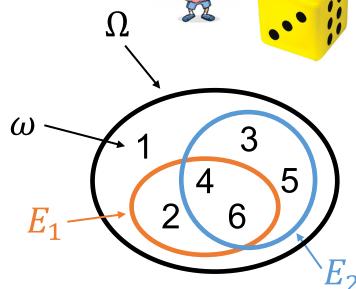
EXAMPLE 1:

roll a fair die with 6 sides

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

Say the outcome is a 1

$$E_1$$
 = "even" = {2, 4, 6}
 E_2 = " \geq 3" = {3, 4, 5, 6}



short for $\mathbb{P}(\{\omega\})$

• If
$$\mathbb{P}(\omega) = \frac{1}{|\Omega|}$$
, $\forall \omega \in \Omega$, then $\mathbb{P}(E) = \frac{|E|}{|\Omega|}$
 $\mathbb{P}(1) = \mathbb{P}(2) = \dots = \mathbb{P}(6) = \frac{1}{6}$

$$\mathbb{P}(E_1) = \mathbb{P}(E_2) = \mathbb{P}(E_2)$$

PROBABILITY

- A <u>random experiment</u>
- Sample space Ω : set of all possible outcomes
- An outcome $\omega \in \Omega$ of the exp.
- Event E: a subset of the sample space $E \subseteq \Omega$
- Probability measure:

$$\mathbb{P}: \Omega \to [0,1]$$

$$\mathbb{P}: \Sigma \to [0,1]$$

also
$$\sum_{\omega \in \Omega} \mathbb{P}(\{\omega\}) = 1$$

- 1) Nonnegativity: $\mathbb{P}(E) \geq 0, \forall E \in \Sigma$
- 2) Normalization: $\mathbb{P}(\Omega) = 1$
- 3) Additivity: if E_1 and E_2 are disjoint events, then $\mathbb{P}(E_1 \cup E_2) = \mathbb{P}(E_1) + \mathbb{P}(E_2)$,

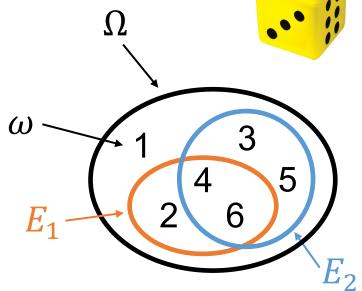
EXAMPLE 1:

roll a fair die with 6 sides

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

Say the outcome is a 1

$$E_1$$
 = "even" = {2, 4, 6}
 E_2 = " \geq 3" = {3, 4, 5, 6}



short for $\mathbb{P}(\{\omega\})$

• If
$$\mathbb{P}(\omega) = \frac{1}{|\Omega|}$$
, $\forall \omega \in \Omega$, then $\mathbb{P}(E) = \frac{|E|}{|\Omega|}$
 $\mathbb{P}(1) = \mathbb{P}(2) = \dots = \mathbb{P}(6) = \frac{1}{6}$

$$\mathbb{P}(E_1) = \mathbb{P}(2) + \mathbb{P}(4) + \mathbb{P}(6) = \frac{3}{6} = \frac{1}{2}$$
$$\mathbb{P}(E_2) = \frac{4}{6} = \frac{2}{3}$$

PROBABILITY

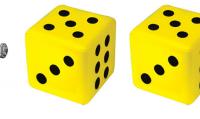
- A <u>random experiment</u>
- Sample space Ω : set of all possible outcomes
- An outcome $\omega \in \Omega$ of the exp.
- Event E: a subset of the sample space $E \subseteq \Omega$
- Probability measure: $\mathbb{P}: \Sigma \to [0, 1]$

EXAMPLE 3:

roll two fair dice with 6 sides

$$\Omega =$$

$$|\Omega| =$$



PROBABILITY

- A <u>random experiment</u>
- Sample space Ω : set of all possible outcomes
- An outcome $\omega \in \Omega$ of the exp.
- Event E: a subset of the sample space $E \subseteq \Omega$
- Probability measure: $\mathbb{P}: \Sigma \to [0, 1]$

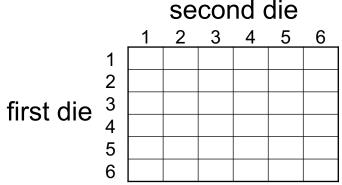
EXAMPLE 3:

roll two fair dice with 6 sides

$$\Omega = \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}$$

$$= \{(1,1), (1,2), (1,3) \dots (1,6), (2,1), (2,2), \dots (6,6)\}$$

$$|\Omega| = 36$$
second die



PROBABILITY

- A <u>random experiment</u>
- Sample space Ω : set of all possible outcomes
- An outcome $\omega \in \Omega$ of the exp.
- Event E: a subset of the sample space $E \subseteq \Omega$
- Probability measure: $\mathbb{P}: \Sigma \to [0, 1]$

EXAMPLE 3:

roll two fair dice with 6 sides

$$\Omega = \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}$$

$$= \{(1,1), (1,2), (1,3) \dots (1,6), (2,1), (2,2), \dots (6,6)\}$$

$$|\Omega| = 36$$
second die

first die 1 2 3 4 5 6 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6) 2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

$$E_1 = \text{"sum is 7"}$$

$$|E_1| =$$

$$\mathbb{P}(E_1) =$$

PROBABILITY

- A <u>random experiment</u>
- Sample space Ω : set of all possible outcomes
- An outcome $\omega \in \Omega$ of the exp.
- Event E: a subset of the sample space $E \subseteq \Omega$
- Probability measure: $\mathbb{P}: \Sigma \to [0, 1]$

EXAMPLE 3:

roll two fair dice with 6 sides

$$\Omega = \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}$$

$$= \{(1,1), (1,2), (1,3) \dots (1,6), (2,1), (2,2), \dots (6,6)\}$$

$$|\Omega| = 36$$
second die

first die

1 2 3 4 5 6

1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

$$E_1$$
 = "sum is 7"
= {(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}
 $|E_1|$ = 6

$$\mathbb{P}(\underline{E_1}) = \frac{|E_1|}{|\Omega|} = \frac{6}{36} = \frac{1}{6}$$

- A <u>random experiment</u>
- Sample space Ω : set of all possible outcomes
- An outcome $\omega \in \Omega$ of the exp.
- Event E: a subset of the sample space $E \subseteq \Omega$
- Probability measure: $\mathbb{P}: \Sigma \to [0, 1]$

EXAMPLE 3:

roll two fair dice with 6 sides

$$\Omega = \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}$$

$$= \{(1,1), (1,2), (1,3) \dots (1,6), (2,1), (2,2), \dots (6,6)\}$$

$$|\Omega| = 36$$
second die

first die 1 2 3 4 5 6 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6) 2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

$$E_2$$
 = "total is greater than 8"

$$|E_2| =$$

$$\mathbb{P}(E_2) = \frac{|E_2|}{|\Omega|}$$

- A <u>random experiment</u>
- Sample space Ω : set of all possible outcomes
- An outcome $\omega \in \Omega$ of the exp.
- Event E: a subset of the sample space $E \subseteq \Omega$
- Probability measure: $\mathbb{P}: \Sigma \to [0, 1]$

EXAMPLE 3:

roll two fair dice with 6 sides

$$\Omega = \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}$$

$$= \{(1,1), (1,2), (1,3) \dots (1,6), (2,1), (2,2), \dots (6,6)\}$$

$$|\Omega| = 36$$
second die

first die 1 2 3 4 5 6 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6) 2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

$$E_2$$
 = "total is greater than 8"
= "total is 9 or 10 or 11 or 12"

$$|E_2| =$$

$$(E_2) = \frac{|E_2|}{|\Omega|}$$

- A <u>random experiment</u>
- Sample space Ω : set of all possible outcomes
- An outcome $\omega \in \Omega$ of the exp.
- Event E: a subset of the sample space $E \subseteq \Omega$
- Probability measure: $\mathbb{P}: \Sigma \to [0, 1]$

EXAMPLE 3:

roll two fair dice with 6 sides

$$\Omega = \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}$$

$$= \{(1,1), (1,2), (1,3) \dots (1,6), (2,1), (2,2), \dots (6,6)\}$$

$$|\Omega| = 36$$
second die

first die 1 2 3 4 5 6 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6) (2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (5,6) (6,6) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) (6,6)

$$E_2$$
 = "total is greater than 8"
= "total is 9 or 10 or 11 or 12"
 $|E_2|$ = 4
 (E_2) = $\frac{|E_2|}{|\Omega|}$

- A <u>random experiment</u>
- Sample space Ω : set of all possible outcomes
- An outcome $\omega \in \Omega$ of the exp.
- Event E: a subset of the sample space $E \subseteq \Omega$
- Probability measure: $\mathbb{P}: \Sigma \to [0, 1]$

EXAMPLE 3:

roll two fair dice with 6 sides

$$\Omega = \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}$$

$$= \{(1,1), (1,2), (1,3) \dots (1,6), (2,1), (2,2), \dots (6,6)\}$$

$$|\Omega| = 36$$
second die

first die 1 2 3 4 5 6 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6) (2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

$$E_2$$
 = "total is greater than 8"
= "total is 9 or 10 or 11 or 12"
 $|E_2|$ = 4 + 3
 (E_2) = $\frac{|E_2|}{|\Omega|}$

- A <u>random experiment</u>
- Sample space Ω : set of all possible outcomes
- An outcome $\omega \in \Omega$ of the exp.
- Event E: a subset of the sample space $E \subseteq \Omega$
- Probability measure: $\mathbb{P}: \Sigma \to [0, 1]$

EXAMPLE 3:

roll two fair dice with 6 sides

$$\Omega = \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}$$

$$= \{(1,1), (1,2), (1,3) \dots (1,6), (2,1), (2,2), \dots (6,6)\}$$

$$|\Omega| = 36$$
second die

first die 1 2 3 4 5 6 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6) (2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

$$E_2$$
 = "total is greater than 8"
= "total is 9 or 10 or 11 or 12"
 $|E_2|$ = $4 + 3 + 2$
 (E_2) = $\frac{|E_2|}{|\Omega|}$

- A <u>random experiment</u>
- Sample space Ω : set of all possible outcomes
- An outcome $\omega \in \Omega$ of the exp.
- Event E: a subset of the sample space $E \subseteq \Omega$
- Probability measure: $\mathbb{P}: \Sigma \to [0, 1]$

EXAMPLE 3:

roll two fair dice with 6 sides

$$\Omega = \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}$$

$$= \{(1,1), (1,2), (1,3) \dots (1,6), (2,1), (2,2), \dots (6,6)\}$$

$$|\Omega| = 36$$
second die

first die 1 2 3 4 5 6 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6) (2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

$$E_2$$
 = "total is greater than 8"
= "total is 9 or 10 or 11 or 12"
 $|E_2|$ = $|E_2|$ $|E_2|$

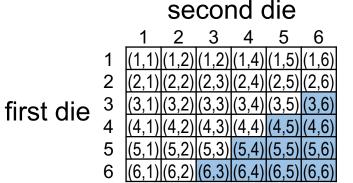
- A <u>random experiment</u>
- Sample space Ω : set of all possible outcomes
- An outcome $\omega \in \Omega$ of the exp.
- Event E: a subset of the sample space $E \subseteq \Omega$
- Probability measure: $\mathbb{P}: \Sigma \to [0, 1]$

EXAMPLE 3:

roll two fair dice with 6 sides

$$\Omega = \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}$$
$$= \{(1,1), (1,2), (1,3) \dots (1,6), (2,1), (2,2), \dots (6,6)\}$$

$$|\Omega| = 36$$



additivity of

disjoint events

$$E_2$$
 = "total is greater than 8"
= "total is 9 or 10 or 11 or 12"

$$|E_2| = 4 + 3 + 2 + 1 = 10$$

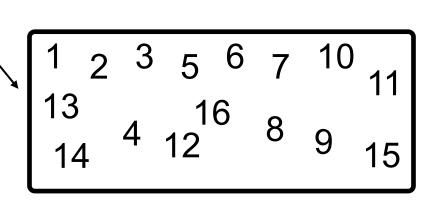
$$\mathbb{P}(E_2) = \frac{|E_2|}{|\Omega|} = \frac{10}{36} = \frac{5}{18}$$

Conditional Probabilities / Independence

DEFINITION

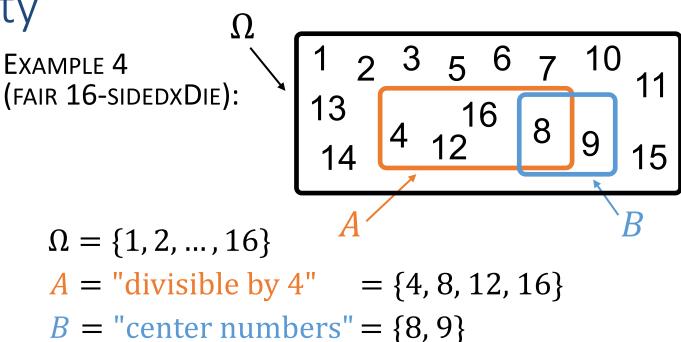
Conditional probability $\mathbb{P}(A|B)$ is the probability that event A occurred, given that event B occurred

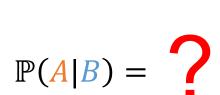
EXAMPLE 4 (FAIR 16-SIDEDXDIE):



DEFINITION

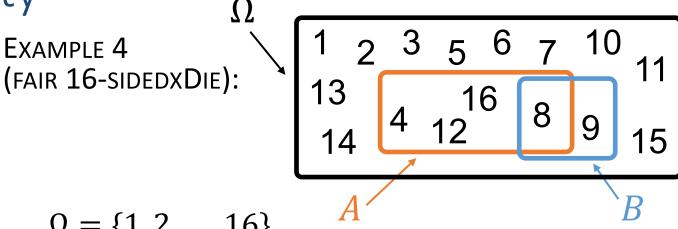
Conditional probability $\mathbb{P}(A|B)$ is the probability that event A occurred, given that event B occurred

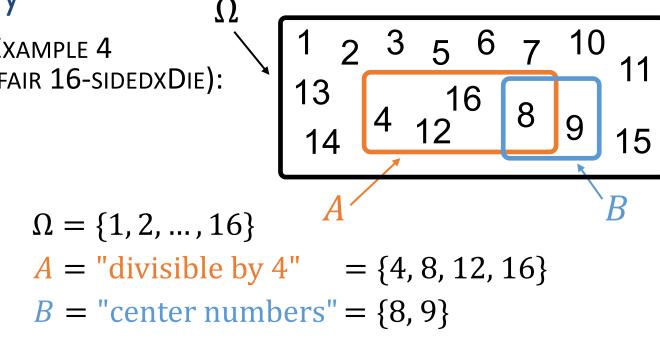




DEFINITION

Conditional probability $\mathbb{P}(A|B)$ is the probability that event A occurred, given that event B occurred

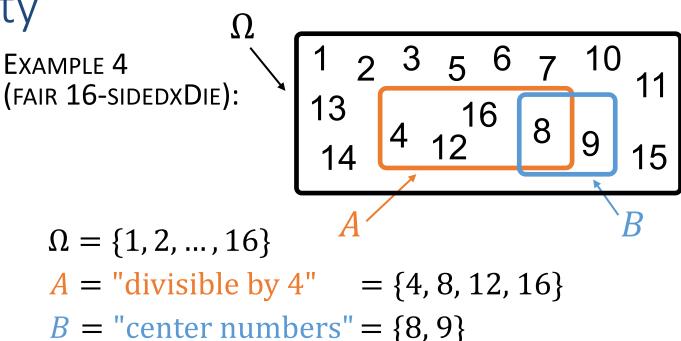


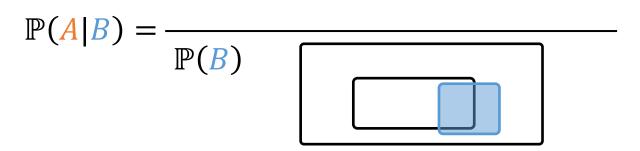


$$\mathbb{P}(A|B) = \frac{1}{2}$$

DEFINITION

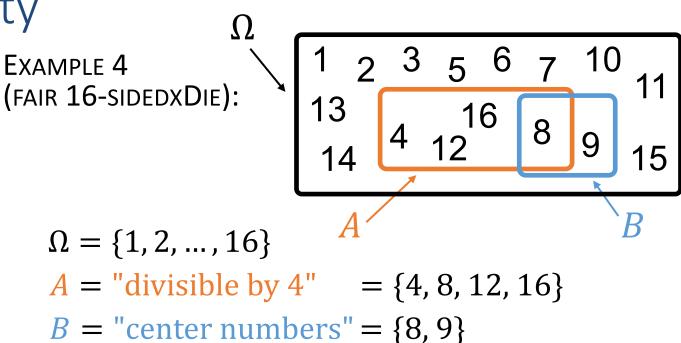
Conditional probability $\mathbb{P}(A|B)$ is the probability that event A occurred, given that event B occurred

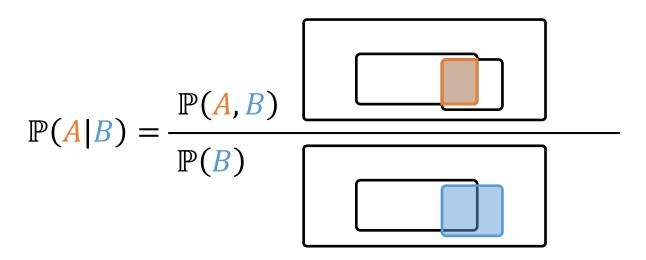




DEFINITION

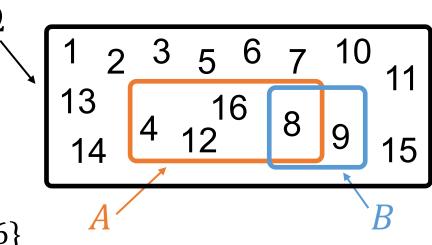
Conditional probability $\mathbb{P}(A|B)$ is the probability that event A occurred, given that event B occurred





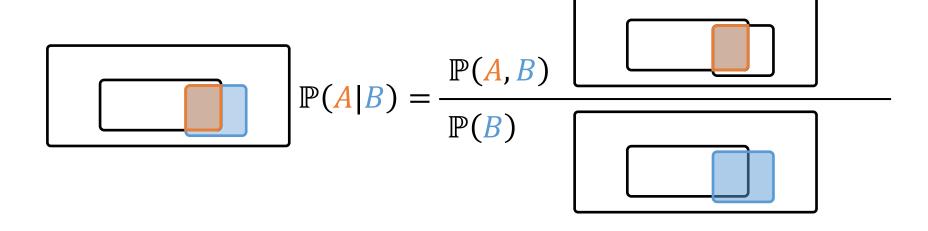
Conditional probability $\mathbb{P}(A|B)$ is the probability that event A occurred, given that event B occurred

EXAMPLE 4 (FAIR 16-SIDEDXDIE):



$$\Omega = \{1, 2, ..., 16\}$$
 $A = \text{"divisible by 4"} = \{4, 8, 12, 16\}$

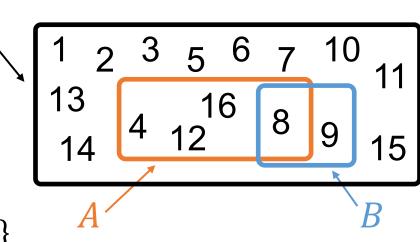
$$B = "center numbers" = \{8, 9\}$$



Conditional probability $\mathbb{P}(A|B)$ is the probability that event A occurred, given that event B occurred

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

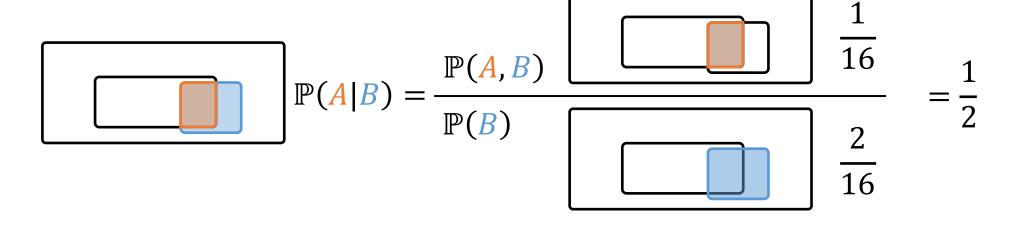
EXAMPLE 4 (FAIR 16-SIDEDXDIE):



$$\Omega = \{1, 2, ..., 16\}$$

$$A =$$
"divisible by 4" $= \{4, 8, 12, 16\}$

$$B = "center numbers" = \{8, 9\}$$



Independence

DEFINITION:

Two events are <u>independent</u> if the probability that one occurred is not affected by knowledge that the other occurred.

$$\mathbb{P}(A|B) = \mathbb{P}(A) \quad (\text{if } \mathbb{P}(B) \neq 0)$$

$$\mathbb{P}(B|A) = \mathbb{P}(B) \quad (\text{if } \mathbb{P}(A) \neq 0)$$

Independence

DEFINITION:

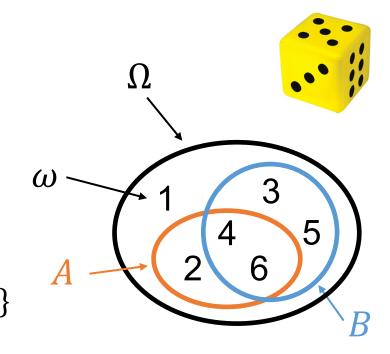
Two events are <u>independent</u> if the probability that one occurred is not affected by knowledge that the other occurred.

$$\mathbb{P}(A|B) = \mathbb{P}(A) \quad (\text{if } \mathbb{P}(B) \neq 0)$$

$$\mathbb{P}(B|A) = \mathbb{P}(B) \quad (\text{if } \mathbb{P}(A) \neq 0)$$

EXAMPLE 1 (CONTINUED): roll a fair die with 6 sides the outcome is a 1

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$
 $A = "even" = \{2, 4, 6\}$
 $B = "\geq 3" = \{3, 4, 5, 6\}$



Are A and B independent ?

Independence

DEFINITION:

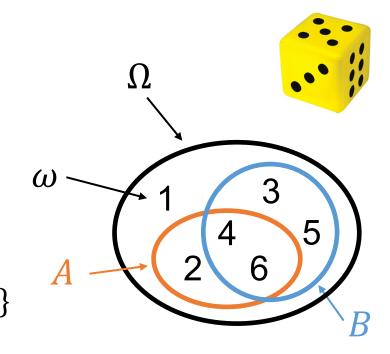
Two events are <u>independent</u> if the probability that one occurred is not affected by knowledge that the other occurred.

$$\mathbb{P}(A|B) = \mathbb{P}(A) \quad (\text{if } \mathbb{P}(B) \neq 0)$$

$$\mathbb{P}(B|A) = \mathbb{P}(B) \quad (\text{if } \mathbb{P}(A) \neq 0)$$

EXAMPLE 1 (CONTINUED): roll a fair die with 6 sides the outcome is a 1

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$
 $A = "even" = \{2, 4, 6\}$
 $B = "\geq 3" = \{3, 4, 5, 6\}$



A and B are independent

$$\mathbb{P}(A) = \frac{1}{2}$$

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A,B)}{\mathbb{P}(B)} = \frac{2}{2}$$

1 3 5 2 4 6

DEFINITION:

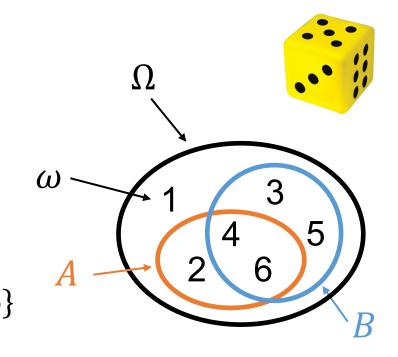
Two events are <u>independent</u> if the probability that one occurred is not affected by knowledge that the other occurred.

$$\mathbb{P}(A|B) = \mathbb{P}(A) \quad (\text{if } \mathbb{P}(B) \neq 0)$$

$$\mathbb{P}(B|A) = \mathbb{P}(B) \quad (\text{if } \mathbb{P}(A) \neq 0)$$

EXAMPLE 1 (CONTINUED): roll a fair die with 6 sides the outcome is a 1

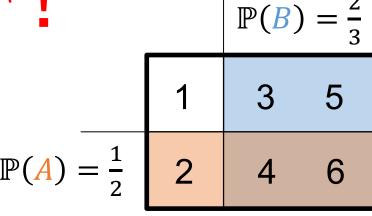
$$\Omega = \{1, 2, 3, 4, 5, 6\}$$
 $A = "even" = \{2, 4, 6\}$
 $B = "\geq 3" = \{3, 4, 5, 6\}$



A and B are independent

$$\mathbb{P}(A) = \frac{1}{2}$$

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A,B)}{\mathbb{P}(B)} = \frac{2}{2}$$



Think about a coordinate system: x and y are independent

DEFINITION:

Two events are <u>independent</u> if the probability that one occurred is not affected by knowledge that the other occurred.

$$\mathbb{P}(A|B) = \mathbb{P}(A) \quad (\text{if } \mathbb{P}(B) \neq 0)$$

$$\mathbb{P}(B|A) = \mathbb{P}(B) \quad (\text{if } \mathbb{P}(A) \neq 0)$$

CLAIM

Two events A and B are independent if and only if $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$

PROOF (assuming $\mathbb{P}(A) \neq 0$, $\mathbb{P}(B) \neq 0$)

Recall the definition of cond. prob.:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A,B)}{\mathbb{P}(B)}$$

DEFINITION:

Two events are <u>independent</u> if the probability that one occurred is not affected by knowledge that the other occurred.

$$\mathbb{P}(A|B) = \mathbb{P}(A) \quad (\text{if } \mathbb{P}(B) \neq 0)$$

$$\mathbb{P}(B|A) = \mathbb{P}(B) \quad (\text{if } \mathbb{P}(A) \neq 0)$$

Recall the definition of cond. prob.:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A,B)}{\mathbb{P}(B)}$$

CLAIM

Two events A and B are independent if and only if $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$

PROOF (assuming $\mathbb{P}(A) \neq 0$, $\mathbb{P}(B) \neq 0$)

$$(\Rightarrow)$$
 If $\mathbb{P}(A|B) = \mathbb{P}(A)$:

$$(\Leftarrow)$$
 If $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$:

DEFINITION:

Two events are <u>independent</u> if the probability that one occurred is not affected by knowledge that the other occurred.

$$\mathbb{P}(A|B) = \mathbb{P}(A) \quad (\text{if } \mathbb{P}(B) \neq 0)$$

$$\mathbb{P}(B|A) = \mathbb{P}(B) \quad (\text{if } \mathbb{P}(A) \neq 0)$$

Recall the definition of cond. prob.:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A,B)}{\mathbb{P}(B)}$$

CLAIM

Two events A and B are independent if and only if $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$

PROOF (assuming $\mathbb{P}(A) \neq 0$, $\mathbb{P}(B) \neq 0$)

$$(\Rightarrow)$$
 If $\mathbb{P}(A|B) = \mathbb{P}(A)$:

Then
$$\mathbb{P}(A,B) = \mathbb{P}(A|B) \cdot \mathbb{P}(B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$$

$$(\Leftarrow) \text{ If } \mathbb{P}(A,B) = \mathbb{P}(A) \cdot \mathbb{P}(B) :$$

$$(\Leftarrow) \text{ If } \mathbb{P}(A,B) = \mathbb{P}(A) \cdot \mathbb{P}(B) :$$

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A,B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A) \cdot \mathbb{P}(B)}{\mathbb{P}(B)} = \mathbb{P}(A)$$

$$\neq 0$$

DEFINITION:

Two events are <u>independent</u> if the probability that one occurred is not affected by knowledge that the other occurred.

$$\mathbb{P}(A|B) = \mathbb{P}(A) \quad (\text{if } \mathbb{P}(B) \neq 0)$$

$$\mathbb{P}(B|A) = \mathbb{P}(B) \quad (\text{if } \mathbb{P}(A) \neq 0)$$

Recall the definition of <u>cond. prob.</u>:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A,B)}{\mathbb{P}(B)}$$

Commonly used as definition of independence because it is slightly more general: if one event has probability 0 then the statement holds vacuously (while one conditional probability is undefined). And if both are not 0, then we just proved DEFINITION: that to be equivalent to the earlier definition.

Two events A and B are independent \Leftrightarrow $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$

PROOF (assuming $\mathbb{P}(A) \neq 0$, $\mathbb{P}(B) \neq 0$)

$$(\Rightarrow)$$
 If $\mathbb{P}(A|B) = \mathbb{P}(A)$:

Then
$$\mathbb{P}(A,B) = \mathbb{P}(A|B) \cdot \mathbb{P}(B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$$

$$(\Leftarrow) \text{ If } \mathbb{P}(A,B) = \mathbb{P}(A) \cdot \mathbb{P}(B) :$$

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A,B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A) \cdot \mathbb{P}(B)}{\mathbb{P}(B)} = \mathbb{P}(A)$$

$$\neq 0$$

Two events \underline{A} and \underline{B} are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$

EXAMPLE 3 (CONTINUED):

roll two fair dice with 6 sides

$$\Omega = \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}$$

$$A = "1^{st} \text{ roll is } 1"$$

$$B =$$
"sum is 7"

Two events \underline{A} and \underline{B} are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$

Example 3 (continued):

roll two fair dice with 6 sides

$$\Omega = \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}$$

$$A = "1$$
st roll is 1"

$$B =$$
"sum is 7"

$$\mathbb{P}(A) =$$

$$\mathbb{P}(B) = ?$$

$$\mathbb{P}(A,B) = ?$$

Two events A and B are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$

EXAMPLE 3 (CONTINUED):

roll two fair dice with 6 sides

$$\Omega = \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}$$

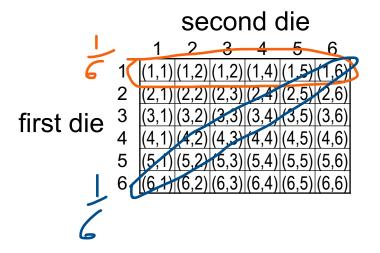
$$A = "1^{st} \text{ roll is } 1"$$

$$B =$$
"sum is 7"

$$\mathbb{P}(A) = \frac{1}{6}$$

$$\mathbb{P}(\underline{B}) = \frac{1}{6}$$

$$\mathbb{P}(A,B) =$$



Two events \underline{A} and \underline{B} are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$

EXAMPLE 3 (CONTINUED):

roll two fair dice with 6 sides

$$\Omega = \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}$$

$$A = "1$$
st roll is 1"

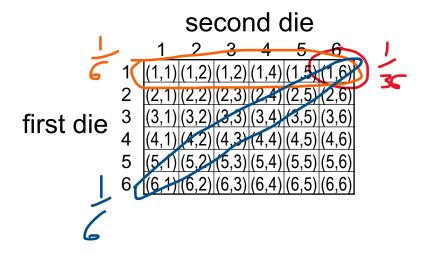
$$B =$$
"sum is 7"

$$\mathbb{P}(A) = \frac{1}{6}$$

$$\mathbb{P}(B) = \frac{1}{6}$$

$$\mathbb{P}(A,B) = \frac{1}{36}$$

$$Yes: \mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$$



Chain rules

Chain Rule

DEFINITION:

$$\mathbb{P}(A,B) = \mathbb{P}(A) \cdot \mathbb{P}(B|A)$$

$$\mathbb{P}(A,B,C) =$$

Recall the definition of cond. prob.:

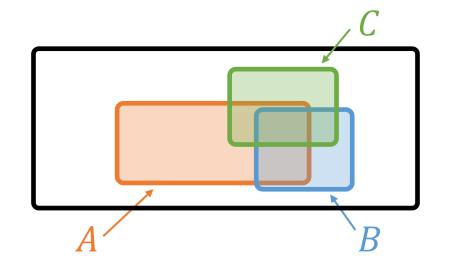
$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A,B)}{\mathbb{P}(B)}$$

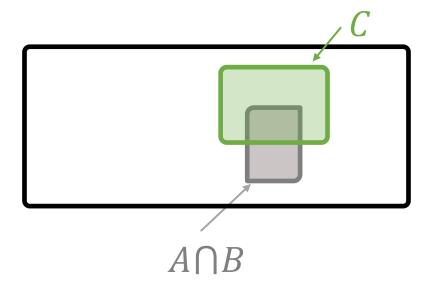
Chain Rule

DEFINITION:

$$\mathbb{P}(A,B,C) = \mathbb{P}(A) \cdot \mathbb{P}(B|A) \cdot \mathbb{P}(C|A,B)$$

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A,B)}{\mathbb{P}(B)}$$





Bayes law

Bayes Law

DEFINITION

Conditional probability $\mathbb{P}(A|B)$ is the probability that event A occurred, given that event B occurred (defined if $\mathbb{P}(B) \neq 0$)

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A,B)}{\mathbb{P}(B)}$$

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A,B)}{\mathbb{P}(A)}$$

$$\mathbb{P}(A,B) = \mathbb{P}(B|A) \cdot \mathbb{P}(A)$$
$$= \mathbb{P}(A|B) \cdot \mathbb{P}(B)$$

BAYES LAW

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A) \cdot \mathbb{P}(A)}{\mathbb{P}(B)}$$

Bayes Law

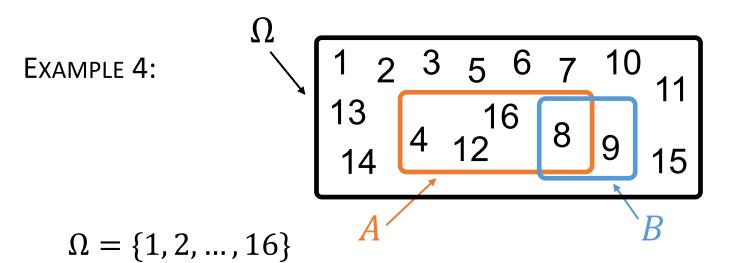
DEFINITION

Conditional probability $\mathbb{P}(A|B)$ is the probability that event A occurred, given that event B occurred (defined if $\mathbb{P}(B) \neq 0$)

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A,B)}{\mathbb{P}(B)}$$

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A,B)}{\mathbb{P}(A)}$$

$$\mathbb{P}(A,B) = \mathbb{P}(B|A) \cdot \mathbb{P}(A)$$
$$= \mathbb{P}(A|B) \cdot \mathbb{P}(B)$$



Bayes Law
$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A) \cdot \mathbb{P}(A)}{\mathbb{P}(B)}$$

Bayes Law

DEFINITION

Conditional probability $\mathbb{P}(A|B)$ is the probability that event A occurred, given that event B occurred (defined if $\mathbb{P}(B) \neq 0$)

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A,B)}{\mathbb{P}(B)}$$

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A,B)}{\mathbb{P}(A)}$$

$$\mathbb{P}(A,B) = \mathbb{P}(B|A) \cdot \mathbb{P}(A) = \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{16}$$
$$= \mathbb{P}(A|B) \cdot \mathbb{P}(B) = \frac{1}{2} \cdot \frac{1}{8} = \frac{1}{16}$$

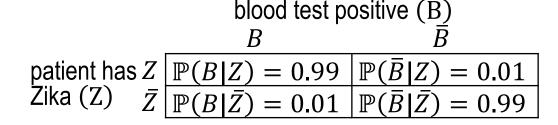
EXAMPLE 4: $\Omega = \{1, 2, ..., 16\}$ $\Omega = \{1, 2, ..., 16\}$ $\Omega = \{1, 2, ..., 16\}$

BAYES LAW

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A) \cdot \mathbb{P}(A)}{\mathbb{P}(B)}$$

EXAMPLE 5: Zika in Florida in 2016

- prevalence of Zika (Z) in Florida is 10^{-5} (1 in 100k)
- accuracy of blood test is 99%
- A patient has a positive test.
 What is the chance they have Zika?



EXAMPLE 5: Zika in Florida in 2016

- prevalence of Zika (Z) in Florida is 10^{-5} (1 in 100k) = base rate = $\mathbb{P}(Z)$
- accuracy of blood test is 99%
- A patient has a positive test.
 What is the chance they have Zika?


```
patient has Z \boxed{\mathbb{P}(B|Z)=0.99} \boxed{\mathbb{P}(\bar{B}|Z)=0.01} \boxed{\mathbb{P}(B|\bar{Z})=0.01} \boxed{\mathbb{P}(B|\bar{Z})=0.01} \boxed{\mathbb{P}(\bar{B}|\bar{Z})=0.99}
```

blood test positive (B)

We don't want $\mathbb{P}(B|Z) = 0.99$, but rather $\mathbb{P}(Z|B)$

false positive

EXAMPLE 5: Zika in Florida in 2016

- prevalence of Zika (Z) in Florida is 10^{-5} (1 in 100k) = base rate = $\mathbb{P}(Z)$
- accuracy of blood test is 99%
- A patient has a positive test.
 What is the chance they have Zika?

blood test positive (B)
$$B$$
 B patient has Z $\mathbb{P}(B|Z) = 0.99$ $\mathbb{P}(\bar{B}|Z) = 0.01$

We don't want $\mathbb{P}(B|Z) = 0.99$, but rather $\mathbb{P}(Z|B)$

$$\mathbb{P}(Z|B) = \frac{\mathbb{P}(B,Z)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B|Z) \cdot \mathbb{P}(Z)}{?}$$

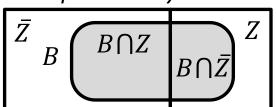
EXAMPLE 5: Zika in Florida in 2016

- prevalence of Zika (Z) in Florida is 10^{-5} (1 in 100k) = base rate = $\mathbb{P}(Z)$
- accuracy of blood test is 99%
- A patient has a positive test.
 What is the chance they have Zika?

patient has
$$Z$$
 $\mathbb{P}(B|Z) = 0.99$ $\mathbb{P}(\bar{B}|Z) = 0.01$

We don't want $\mathbb{P}(B|Z) = 0.99$, but rather $\mathbb{P}(Z|B)$

$$\mathbb{P}(Z|B) = \frac{\mathbb{P}(B,Z)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B|Z) \cdot \mathbb{P}(Z)}{\mathbb{P}(B,Z) + \mathbb{P}(B,\bar{Z})}$$
total probability theorem
$$\mathbb{P}(B|Z) \cdot \mathbb{P}(Z)$$



EXAMPLE 5: Zika in Florida in 2016

- prevalence of Zika (Z) in Florida is 10^{-5} (1 in 100k) = base rate = $\mathbb{P}(Z)$
- accuracy of blood test is 99%
- A patient has a positive test.
 What is the chance they have Zika?

blood test positive (B)
$$\bar{B}$$
 patient has Z $\mathbb{P}(B|Z) = 0.99$ $\mathbb{P}(\bar{B}|Z) = 0.01$ $\mathbb{P}(\bar{B}|\bar{Z}) = 0.99$

We don't want $\mathbb{P}(B|Z) = 0.99$, but rather $\mathbb{P}(Z|B)$

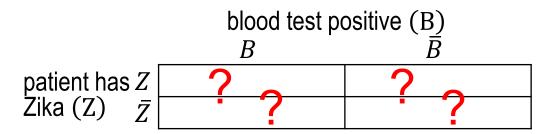
$$\mathbb{P}(Z|B) = \frac{\mathbb{P}(B,Z)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B|Z) \cdot \mathbb{P}(Z)}{\mathbb{P}(B,Z) + \mathbb{P}(B,\bar{Z})} = \frac{0.99 \cdot 10^{-5}}{0.99 \cdot 10^{-5} + 0.01 \cdot (1 - 10^{-5})}$$

$$total probability theorem$$

$$\bar{Z}_{B} = \frac{\mathbb{P}(B|Z) \cdot \mathbb{P}(Z)}{\mathbb{P}(B|\bar{Z}) \cdot \mathbb{P}(\bar{Z})} \approx \frac{10^{-5}}{10^{-5} + 0.01} \approx \frac{10^{-5}}{10^{-2}} = 10^{-3} = 0.1\%$$

EXAMPLE 5: Zika in Florida in 2016

- prevalence of Zika (Z) in Florida is 10^{-5} (1 in 100k) = base rate = $\mathbb{P}(Z)$
- accuracy of blood test is 99%
- Assume 10M people in FL. ? Complete the numbers!



EXAMPLE 5: Zika in Florida in 2016

- prevalence of Zika (Z) in Florida is 10^{-5} (1 in 100k) = base rate = $\mathbb{P}(Z)$
- accuracy of blood test is 99%
- Assume 10M people in FL.
 Complete the numbers!

·	blood test po	ositive (B) \bar{B}	
patient has Z			100
Żika (Z) \bar{Z}			9,999,900

100

9,999,900

EXAMPLE 5: Zika in Florida in 2016

- prevalence of Zika (Z) in Florida is 10^{-5} (1 in 100k) = base rate = $\mathbb{P}(Z)$
- accuracy of blood test is 99%

• Assume 10M people in FL. Complete the numbers!

$$\mathbb{P}(B|Z) = 99\% \text{ patient has } Z \boxed{99} \boxed{1}$$

$$\mathbb{P}(\bar{B}|\bar{Z}) = 99\% \text{ Zika } (Z) \ \bar{Z} \boxed{}$$

blood test positive (B)

100

9,999,900

EXAMPLE 5: Zika in Florida in 2016

- prevalence of Zika (Z) in Florida is 10^{-5} (1 in 100k) = base rate = $\mathbb{P}(Z)$
- accuracy of blood test is 99%

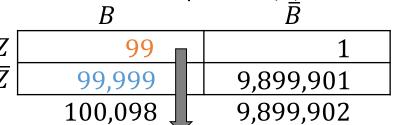
Assume 10M people in FL.
 Complete the numbers!

blood test positive (B)

EXAMPLE 5: Zika in Florida in 2016

- prevalence of Zika (Z) in Florida is 10^{-5} (1 in 100k) = base rate = $\mathbb{P}(Z)$
- accuracy of blood test is 99%
- Assume 10M people in FL.
 Complete the numbers!

 $\mathbb{P}(B|Z) = 99\%$ patient has Z $\mathbb{P}(\bar{B}|\bar{Z}) = 99\%$ Zika (Z) \bar{Z}



blood test positive (B)

100 9,999,900

EXAMPLE 5: Zika in Florida in 2016

- prevalence of Zika (Z) in Florida is 10^{-5} (1 in 100k) = base rate = $\mathbb{P}(Z)$
- accuracy of blood test is 99%
- Assume 10M people in FL. Complete the numbers!

 $\mathbb{P}(B|Z) = 99\%$ patient has Z $\mathbb{P}(\bar{B}|\bar{Z}) = 99\%$ Zika (Z) \bar{Z}

blood test positive (B) \overline{B} \overline{B}

100 9,999,900

$$\mathbb{P}(B|Z) \cdot \mathbb{P}(Z) + \mathbb{P}(\bar{B}|\bar{Z}) \cdot \mathbb{P}(\bar{Z}) = 99\%$$

probability that a random
test is correct

EXAMPLE 5: Zika in Florida in 2016

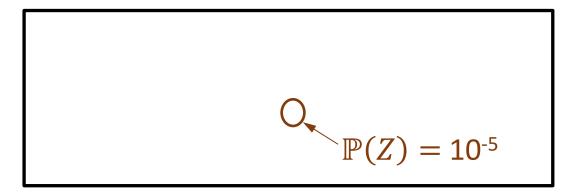
- prevalence of Zika (Z) in Florida is 10^{-5} (1 in 100k) = base rate = $\mathbb{P}(Z)$
- accuracy of blood test is 99%
- Assume 10M people in FL. Complete the numbers!

 $\mathbb{P}(B|Z) = 99\%$ patient has Z $\mathbb{P}(\bar{B}|\bar{Z}) = 99\%$ Zika (Z) \bar{Z}

100 9,999,900

$$\mathbb{P}(B|Z) \cdot \mathbb{P}(Z) + \mathbb{P}(\overline{B}|\overline{Z}) \cdot \mathbb{P}(\overline{Z}) = 99\%$$

probability that a random
test is correct



EXAMPLE 5: Zika in Florida in 2016

- prevalence of Zika (Z) in Florida is 10^{-5} (1 in 100k) = base rate = $\mathbb{P}(Z)$
- accuracy of blood test is 99%
- Assume 10M people in FL. Complete the numbers!

 $\mathbb{P}(B|Z) = 99\%$ patient has Z $\mathbb{P}(\bar{B}|\bar{Z}) = 99\%$ Zika (Z) \bar{Z}

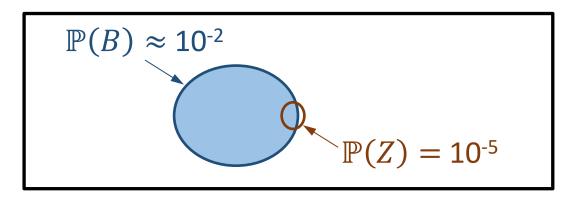
9,899,902

100,098

100 9,999,900

$$\mathbb{P}(B|Z) \cdot \mathbb{P}(Z) + \mathbb{P}(\bar{B}|\bar{Z}) \cdot \mathbb{P}(\bar{Z}) = 99\%$$

probability that a random
test is correct

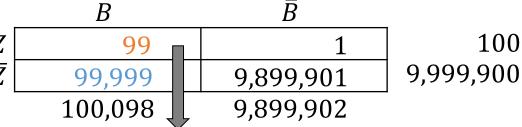


100

EXAMPLE 5: Zika in Florida in 2016

- prevalence of Zika (Z) in Florida is 10^{-5} (1 in 100k) = base rate = $\mathbb{P}(Z)$
- accuracy of blood test is 99%
- Assume 10M people in F/L. Complete the numbers/

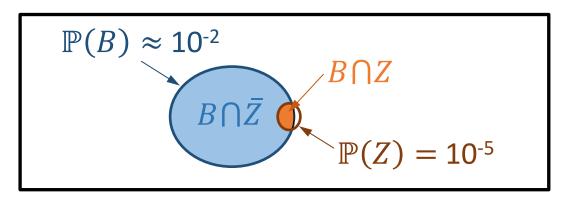
$$\mathbb{P}(B|Z) = 99\%$$
 patient has Z $\mathbb{P}(\bar{B}|\bar{Z}) = 99\%$ Zika (Z) \bar{Z}



 $\mathbb{P}(B|Z) \cdot \mathbb{P}(Z) + \mathbb{P}(\bar{B}|\bar{Z}) \cdot \mathbb{P}(\bar{Z}) = 99\%$ probability that a random test is correct

 $\mathbb{P}(Z|B) = 0.1\%$ Probability that: a positive test is correct

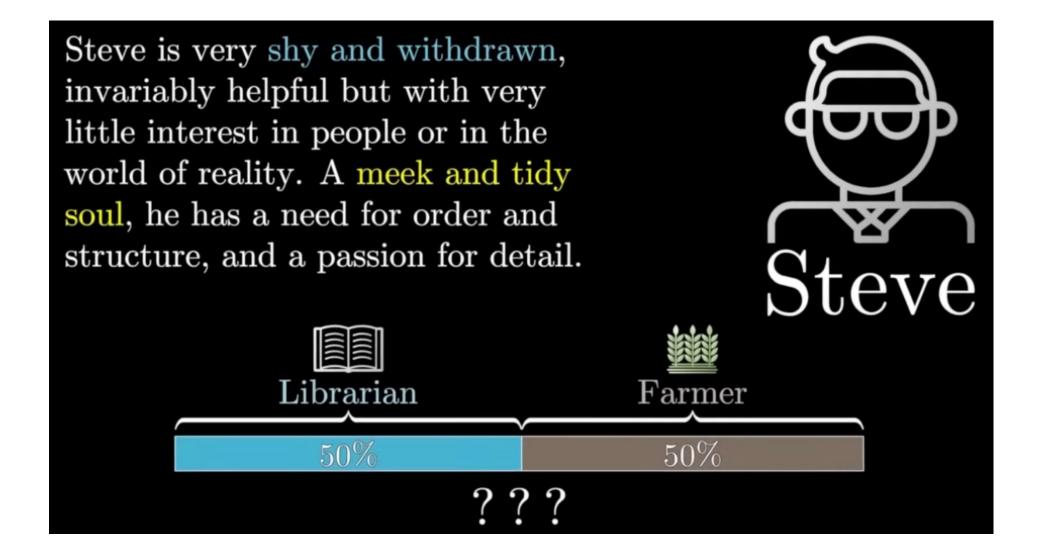
blood test positive (B)

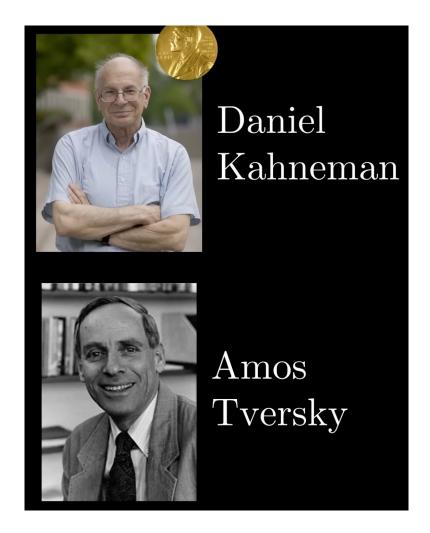


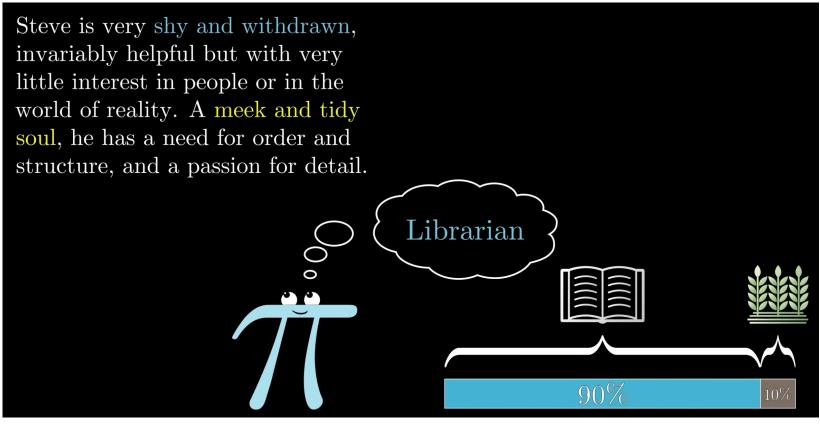
An unrelated (?) question:

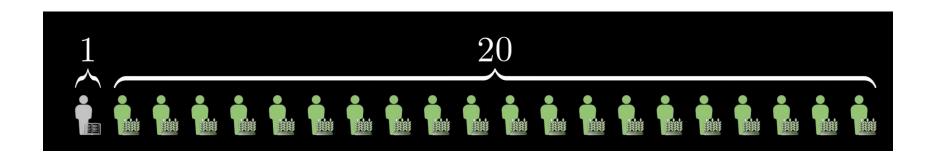
Steve is very shy and withdrawn, invariably helpful but with very little interest in people or in the world of reality. A meek and tidy soul, he has a need for order and structure, and a passion for detail.

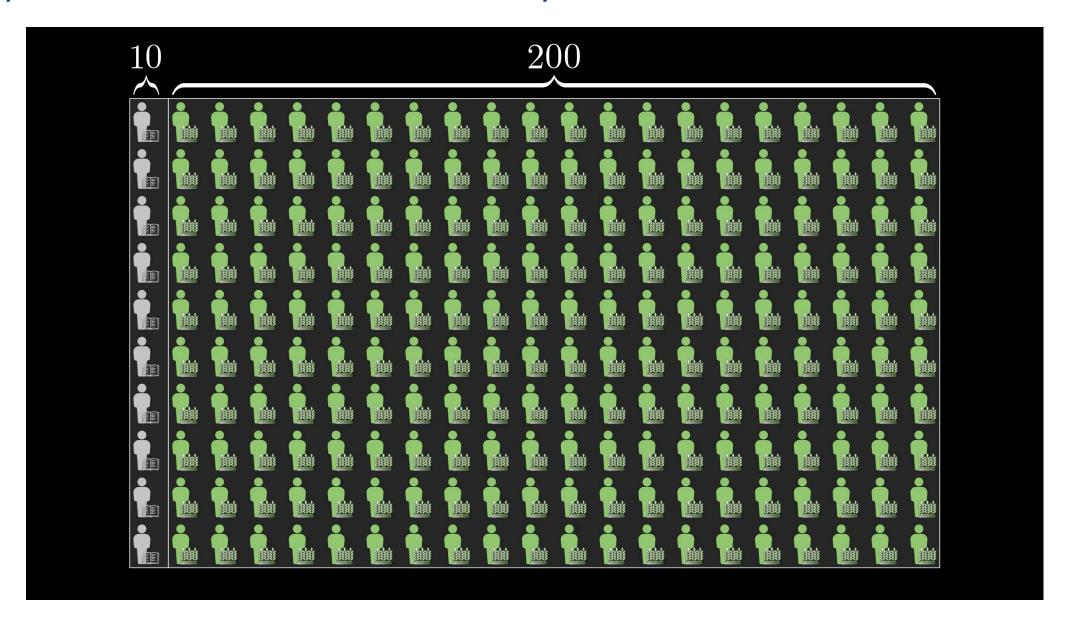
An unrelated (?) question:

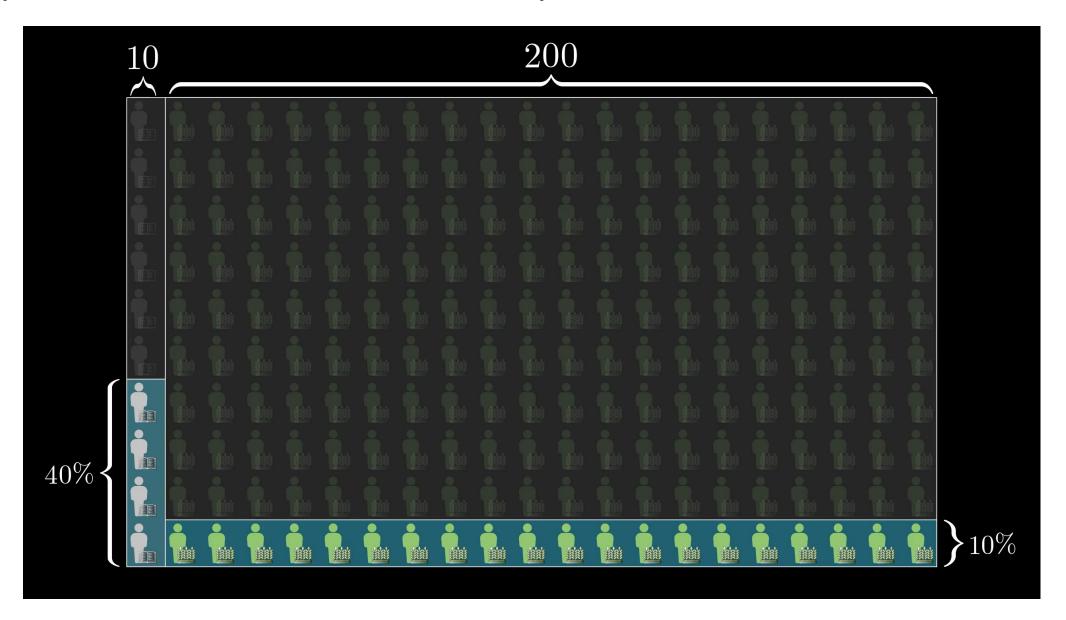


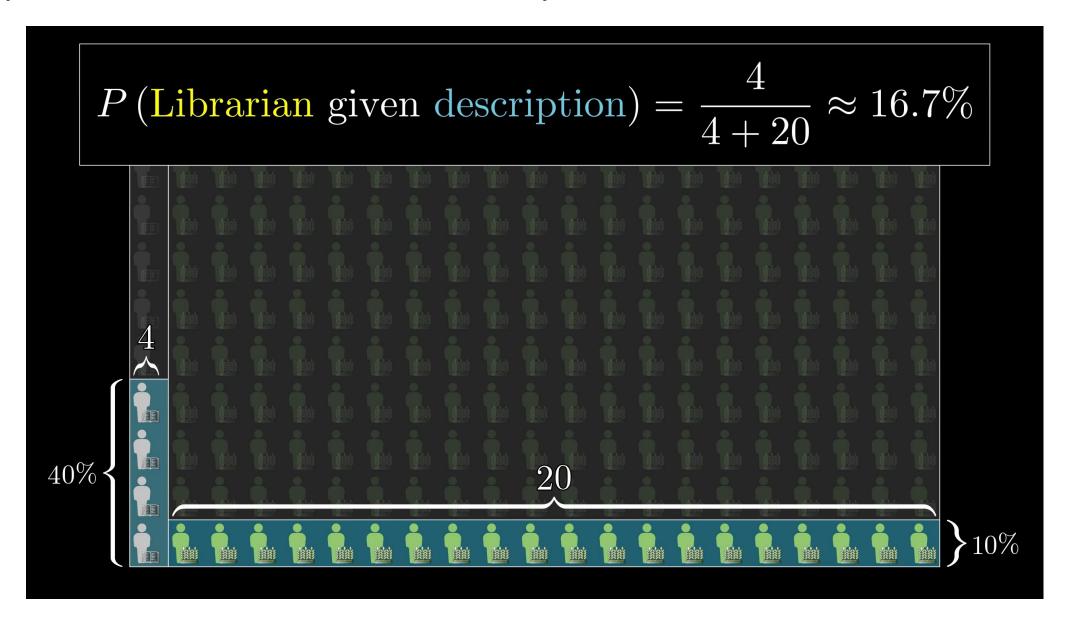


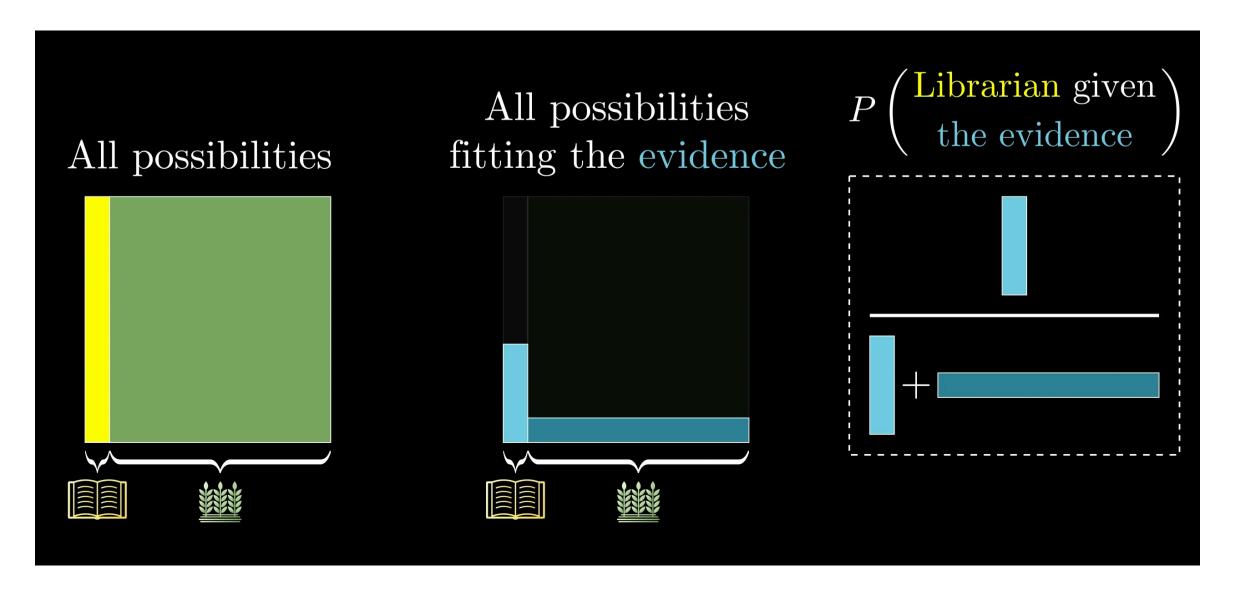


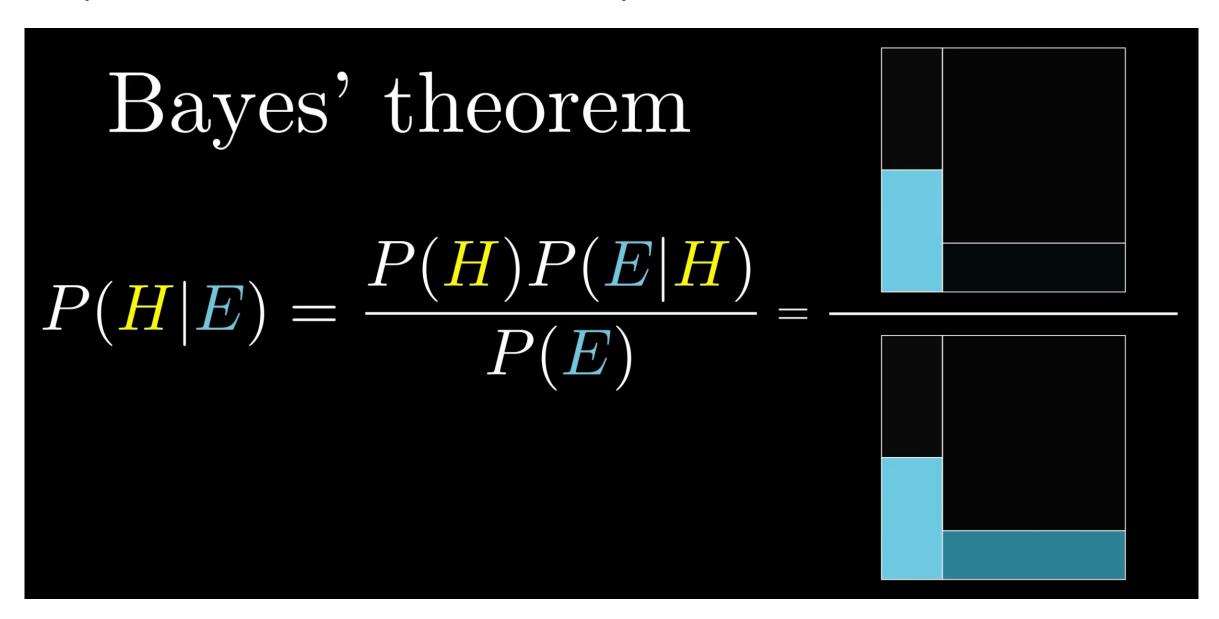




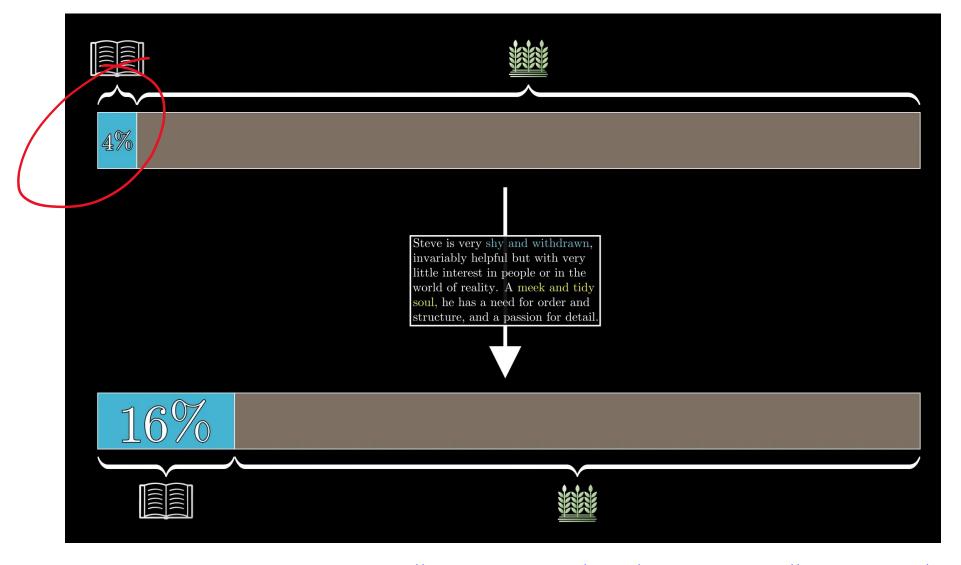








New evidence updates prior beliefs! Evidence does not exist in a vaccum



Updated 9/18/2025

Part 1: Information Theory Basics LO3: Basics of Probability (2/2) [Random experiment, independence, conditional probability, chain rule, Bayes' theorem, random variables]

Wolfgang Gatterbauer

cs7840 Foundations and Applications of Information Theory (fa25)

https://northeastern-datalab.github.io/cs7840/fa25/

9/15/2025

Pre-class conversations

- Last class recapitulation
- Suggestions on small class projects = "scribes" (e.g. parallelizing compression)
- New class arrivals
- Questions

- Today:
 - The basics of probability theory
 - Start of information theory basics

Random variable: pmf $p_X(x)$

Random variable (RV)

 $X: \Omega \to \mathbb{R}$

Two types:

1. numerical e.g. $X(\omega)$ lottery win

2. indicator e.g.
$$X(\omega) = \begin{cases} 1 & \text{if win} \\ 0 & \text{if not} \end{cases}$$

X is called a "random variable" (RV) because it depends on the outcome of a <u>random experiment</u>. But the mapping $X: \Omega \to \mathbb{R}$ is deterministic.

The underlying probability measure $\mathbb{P}: \Sigma \to [0,1]$ induces a pmf p_X (probability mass function) over the range of the RV $X: p_X: \mathbb{R} \to [0,1]$

$$p_X(x) = \mathbb{P}(\{X = x\})$$

also written as $p(x) = \mathbb{P}(X = x)$

EXAMPLE 3 (CONT.):

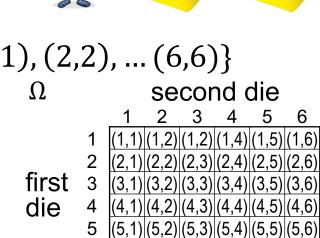
roll two fair dice with 6 sides

$$\Omega = \{(1,1), (1,2), (1,3), \dots (1,6), (2,1), (2,2), \dots (6,6)\}$$

Let *X* be the sum of the rolls.

Then *X* is a RV.

What is the pmf



|(6,1)|(6,2)|(6,3)|(6,4)|(6,5)|(6,6)|

Random variable: pmf $p_X(x)$

Random variable (RV)

 $X: \Omega \to \mathbb{R}$

Two types:

1. numerical e.g. $X(\omega)$ lottery win

2. indicator e.g.
$$X(\omega) = \begin{cases} 1 & \text{if win} \\ 0 & \text{if not} \end{cases}$$

X is called a "random variable" (RV) because it depends on the outcome of a <u>random experiment</u>. But the mapping $X: \Omega \to \mathbb{R}$ is deterministic.

The underlying probability measure $\mathbb{P}: \Sigma \to [0,1]$ induces a pmf p_X (probability mass function) over the range of the RV $X: p_X: \mathbb{R} \to [0,1]$

$$p_X(x) = \mathbb{P}(\{X = x\})$$

also written as $p(x) = \mathbb{P}(X = x)$

EXAMPLE 3 (CONT.):

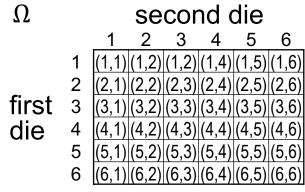
roll two fair dice with 6 sides

$$\Omega = \{(1,1), (1,2), (1,3), \dots (1,6), (2,1), (2,2), \dots (6,6)\}$$

Let *X* be the sum of the rolls.

Then *X* is a RV.

What is the pmf



X		1	2	3	4	5	6
	1	2	3	4	5	6	7
	2	3	4	5	6	7	8
first	3	4	5	6	7	8	9
die	4	5	6	7	8	9	10
	5	6	7	8	9	10	11
	6	7	8	9	10	11	12

Random variable: pmf $p_X(x)$

Random variable (RV)

 $X: \Omega \to \mathbb{R}$

Two types:

1. numerical e.g. $X(\omega)$ lottery win

2. indicator e.g.
$$X(\omega) = \begin{cases} 1 & \text{if win} \\ 0 & \text{if not} \end{cases}$$

X is called a "random variable" (RV) because it depends on the outcome of a <u>random experiment</u>. But the mapping $X: \Omega \to \mathbb{R}$ is deterministic.

The underlying probability measure $\mathbb{P}: \Sigma \to [0,1]$ induces a pmf p_X (probability mass function) over the range of the RV $X: p_X: \mathbb{R} \to [0,1]$

$$p_X(x) = \mathbb{P}(\{X = x\})$$

also written as $p(x) = \mathbb{P}(X = x)$

EXAMPLE 3 (CONT.):

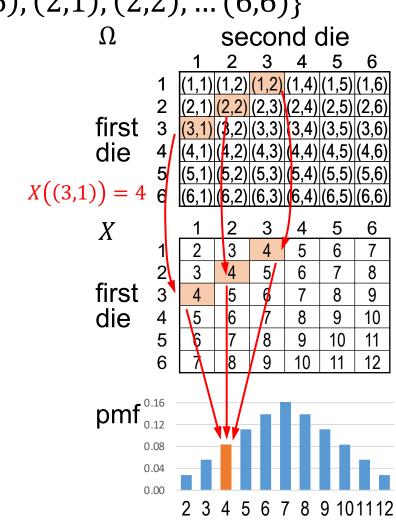
roll two fair dice with 6 sides

$$\Omega = \{(1,1), (1,2), (1,3), \dots (1,6), (2,1), (2,2), \dots (6,6)\}$$

Let *X* be the sum of the rolls.

Then *X* is a RV.

What is the pmf



Random variable (RV) $X: \Omega \to \mathbb{R}$

Expectation: a weighted average (in proportion to the probabilities) of the possible values of X

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot \mathbb{P}(\{\omega\})$$

$$\mathbb{E}[X] = \sum_{x} x \cdot p_X(x)$$

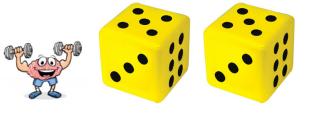
EXAMPLE 3 (CONT.):

roll two fair dice with 6 sides

$$\Omega = \{(1,1), (1,2), (1,3), \dots (1,6), (2,1), (2,2), \dots (6,6)\}$$

Let *X* be the sum of the rolls.

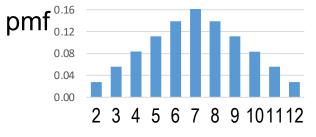
What is $\mathbb{E}[X]$



second die

|(2,1)|(2,2)|(2,3)|(2,4)|(2,5)|(2,6)first 3 |(3,1)|(3,2)|(3,3)|(3,4)|(3,5)|(3,6)|(4,1)|(4,2)|(4,3)|(4,4)|(4,5)|(4,6)|[(5,1)|(5,2)|(5,3)|(5,4)|(5,5)|(5,6)| |(6,1)|(6,2)|(6,3)|(6,4)|(6,5)|(6,6)|

X		1	2	3	4	5	6
	1	2	თ	4	5	6	7
	2	3	4	5	6	7	8
first	3	4	5	6	7	8	9
die	4	5	6	7	8	9	10
	5	6	7	8	9	10	11
	6	7	8	9	10	11	12



Random variable (RV) $X: \Omega \to \mathbb{R}$

Expectation: a weighted average (in proportion to the probabilities) of the possible values of X

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot \mathbb{P}(\{\omega\})$$

$$\mathbb{E}[X] = \sum_{x} x \cdot p_X(x)$$

EXAMPLE 3 (CONT.):

roll two fair dice with 6 sides

$$\Omega = \{(1,1), (1,2), (1,3) \dots (1,6), (2,1), (2,2), \dots (6,6)\}$$

Let *X* be the sum of the rolls.

What is $\mathbb{E}[X]$?

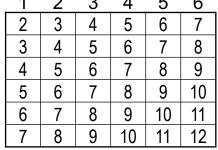
Variant 1:

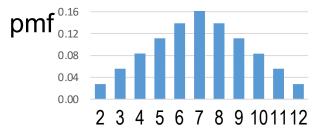
$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot \mathbb{P}(\{\omega\})$$

?

first 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (5,1) (5,2) (5,3) (5,4) (6,5) (6,6) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

X		1
	1	2
	2	3
first	3	4
die	4	5
	5	6
	_	-





Random variable (RV)

 $X: \Omega \to \mathbb{R}$

Expectation: a weighted average (in proportion to the probabilities) of the possible values of *X*

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot \mathbb{P}(\{\omega\})$$

$$\mathbb{E}[X] = \sum_{x} x \cdot p_X(x)$$

EXAMPLE 3 (CONT.):

roll two fair dice with 6 sides

$$\Omega = \{(1,1), (1,2), (1,3), \dots (1,6), (2,1), (2,2), \dots (6,6)\}$$

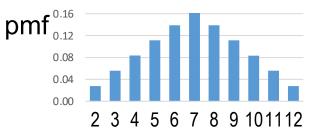
Let *X* be the sum of the rolls.

What is $\mathbb{E}[X]$?

Variant 1: $\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot \mathbb{P}(\{\omega\})^{\frac{1}{36}}$ $= \frac{1}{36} \cdot \sum_{\omega \in \Omega} X(\omega)$ $= \frac{1}{36} \cdot (\text{"sum of table"})$ = 7

		1	2	3	4	5	6
	1	(1,1)	(1,2)	(1,2)	(1,4)	(1,5)	(1,6)
	2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
first	3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
die	4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
	5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
	6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

1	2	3	4	5	6
2	3	4	5	6	7
3	4	5	6	7	8
4	5	6	7	8	9
5	6	7	8	9	10
6	7	8	9	10	11
7	8	9	10	11	12
	3 4 5	3 4 4 5 5 6 6 7	2 3 4 3 4 5 4 5 6 5 6 7 6 7 8	2 3 4 5 3 4 5 6 4 5 6 7 5 6 7 8 6 7 8 9	2 3 4 5 6 3 4 5 6 7 4 5 6 7 8 5 6 7 8 9 6 7 8 9 10



Random variable (RV) $X: \Omega \to \mathbb{R}$

Expectation: a weighted average (in proportion to the probabilities) of the possible values of *X*

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot \mathbb{P}(\{\omega\})$$

$$\mathbb{E}[X] = \sum_{x} x \cdot p_X(x)$$

EXAMPLE 3 (CONT.):

roll two fair dice with 6 sides

$$\Omega = \{(1,1), (1,2), (1,3), \dots (1,6), (2,1), (2,2), \dots (6,6)\}$$

Let *X* be the sum of the rolls.

What is $\mathbb{E}[X]$?

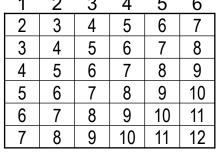
Variant 2:

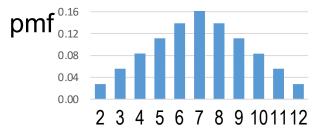
$$\mathbb{E}[X] = \sum_{x} x \cdot \mathbb{P}(X = x)$$

?

first 3 (3,1) (3,2) (3,3) (3,4) (4,5) (4,6) (5,1) (5,2) (5,3) (5,4) (6,5) (6,6) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

X		
-	1	
	2	
irst	3	
die	4	
	5	





Random variable (RV)

 $X: \Omega \to \mathbb{R}$

Expectation: a weighted average (in proportion to the probabilities) of the possible values of *X*

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot \mathbb{P}(\{\omega\})$$

$$\mathbb{E}[X] = \sum_{x} x \cdot p_X(x)$$

EXAMPLE 3 (CONT.):

roll two fair dice with 6 sides

$$\Omega = \{(1,1), (1,2), (1,3), \dots (1,6), (2,1), (2,2), \dots (6,6)\}$$

Let *X* be the sum of the rolls.

What is $\mathbb{E}[X]$?

Variant 2:

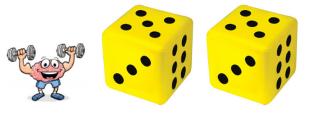
$$\mathbb{E}[X] = \sum_{x} x \cdot \mathbb{P}(X = x)$$

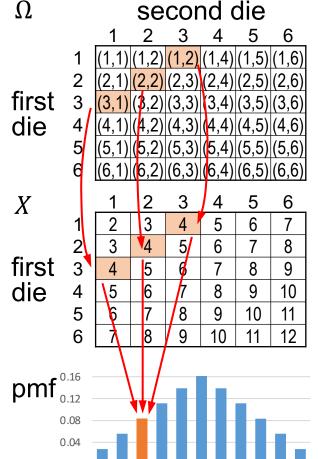
$$X = 2$$
 $p_X(2) = \frac{1}{36}$

$$X = 3$$
 $p_X(3) = \frac{2}{36}$

$$X = 12$$
 $p_X(12) = \frac{1}{36}$

$$\mathbb{E}[X] = 2 \cdot \frac{1}{36} + 3 \cdot \frac{2}{36} + \dots + 12 \cdot \frac{1}{36} = 7$$





2 3 4 5 6 7 8 9 101112

Random variable (RV) $X: \Omega \to \mathbb{R}$

Expectation: a weighted average (in proportion to the probabilities) of the possible values of X

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot \mathbb{P}(\{\omega\})$$

$$\mathbb{E}[X] = \sum_{x} x \cdot p_X(x)$$

EXAMPLE 3 (CONT.):

roll two fair dice with 6 sides

$$\Omega = \{(1,1), (1,2), (1,3), \dots (1,6), (2,1), (2,2), \dots (6,6)\}$$

Let X be the sum of the rolls.

What is $\mathbb{E}[X]$?

Variant 3: Rvs for the outcome of the first and second die rolls $\mathbb{E}[X] = \mathbb{E}[X_1 + X_2] =$

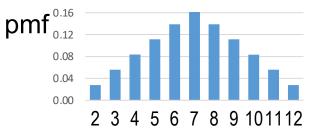
$$\mathbb{E}[X] = \mathbb{E}[X_1 + X_2] =$$

die

first die

|(2,1)|(2,2)|(2,3)|(2,4)|(2,5)|(2,6)first 3 |(3,1)|(3,2)|(3,3)|(3,4)|(3,5)|(3,6)4 |(4,1)|(4,2)|(4,3)|(4,4)|(4,5)|(4,6)| |(5,1)|(5,2)|(5,3)|(5,4)|(5,5)|(5,6)||(6,1)|(6,2)|(6,3)|(6,4)|(6,5)|(6,6)|

1	2	3	4	5	6
2	3	4	5	6	7
3	4	5	6	7	8
4	5	6	7	8	9
5	6	7	8	9	10
6	7	8	9	10	11
7	8	9	10	11	12



Random variable (RV)

 $X: \Omega \to \mathbb{R}$

Expectation: a weighted average (in proportion to the probabilities) of the possible values of *X*

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot \mathbb{P}(\{\omega\})$$

$$\mathbb{E}[X] = \sum_{x} x \cdot p_X(x)$$

EXAMPLE 3 (CONT.):

roll two fair dice with 6 sides

$$\Omega = \{(1,1), (1,2), (1,3), \dots (1,6), (2,1), (2,2), \dots (6,6)\}$$

Let *X* be the sum of the rolls.

What is $\mathbb{E}[X]$?

Variant 3: RVs for the outcome of the first and second die rolls

$$\mathbb{E}[X] = \mathbb{E}[X_1 + X_2] = \mathbb{E}[X_1] + \mathbb{E}[X_2]$$

linearity of expectation!

$$\mathbb{E}[X_1] = \mathbb{E}[X_2] = 3.5$$

$$\mathbb{E}[X] = 3.5 + 3.5 = 7$$

first

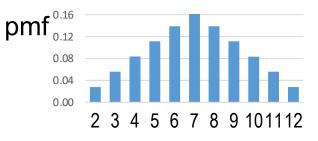
die

X

first die

1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6 2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6 4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6 5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6	
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)	3)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6	3)
	3)
5 (5 1)(5 2)(5 3)(5 4)(5 5)(5 6	3)
) [(\o,	3)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)	3)

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
1	5	6	7	8	9	10
5	6	7	8	9	10	11
3	7	8	9	10	11	12



Random variable (RV)

 $X: \Omega \to \mathbb{R}$

Expectation: a weighted average (in proportion to the probabilities) of the possible values of X

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot \mathbb{P}(\{\omega\})$$

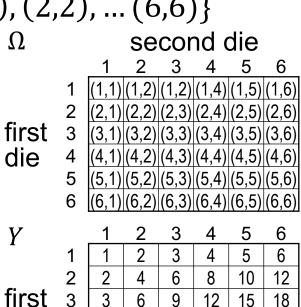
$$\mathbb{E}[X] = \sum_{x} x \cdot p_X(x)$$

EXAMPLE 3 (CONT.):

roll two fair dice with 6 sides

$$\Omega = \{(1,1), (1,2), (1,3) \dots (1,6), (2,1), (2,2), \dots (6,6)\}$$

Let *Y* be the <u>product</u> of the rolls.



Y		1	2	3	4	5	6
•	1	1	2	3	4	5	6
	2	2	4	6	8	10	12
first	3	3	6	9	12	15	18
die	4	4	8	12	16	20	24
	5	5	10	15	20	25	30
	6	6	12	18	24	30	36

Random variable (RV) $X: \Omega \to \mathbb{R}$

Expectation: a weighted average (in proportion to the probabilities) of the possible values of *X*

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot \mathbb{P}(\{\omega\})$$

$$\mathbb{E}[X] = \sum_{x} x \cdot p_X(x)$$

EXAMPLE 3 (CONT.):

roll two fair dice with 6 sides

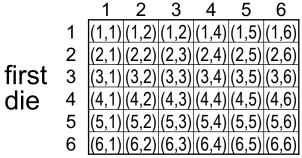
$$\Omega = \{(1,1), (1,2), (1,3) \dots (1,6), (2,1), (2,2), \dots (6,6)\}$$

 Ω

Let *Y* be the <u>product</u> of the rolls.

What is
$$\mathbb{E}[Y]$$
?

$$\mathbb{E}[Y] = \mathbb{E}[X_1 \cdot X_2] = \mathbb{E}[X_1] \cdot \mathbb{E}[X_2]$$



1	2	3	4	5	6
1	2	3	4	5	6
2	4	6	8	10	12
3	6	9	12	15	18
4	8	12	16	20	24
5	10	15	20	25	30
6	12	18	24	30	36

Random variable (RV)

 $X: \Omega \to \mathbb{R}$

Expectation: a weighted average (in proportion to the probabilities) of the possible values of *X*

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot \mathbb{P}(\{\omega\})$$

$$\mathbb{E}[X] = \sum_{x} x \cdot p_X(x)$$

EXAMPLE 3 (CONT.):

roll two fair dice with 6 sides

$$\Omega = \{(1,1), (1,2), (1,3) \dots (1,6), (2,1), (2,2), \dots (6,6)\}$$

Let *Y* be the <u>product</u> of the rolls.

What is $\mathbb{E}[Y]$?

$$\mathbb{E}[Y] = \mathbb{E}[X_1 \cdot X_2] = \mathbb{E}[X_1] \cdot \mathbb{E}[X_2]$$
because the $X_1 \perp X_2$

$$\mathbb{E}[X_1] = \mathbb{E}[X_2] = 3.5$$

$$\mathbb{E}[X] = 3.5 \cdot 3.5 = 12.25$$

Y

first die

Ω			se	cor	nd (die	
		_1	2	3	4	5	6
	1	(1,1)	(1,2)	(1,2)	(1,4)	(1,5)	(1,6)
	2	(2,1)					
first	3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
die	4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
	5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
	6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	8	10	12
3	3	6	9	12	15	18
4	4	8	12	16	20	24
5	5	10	15	20	25	30
6	6	12	18	24	30	36

Random variable (RV) $X: \Omega \to \mathbb{R}$

Expectation: a weighted average (in proportion to the probabilities) of the possible values of X

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot \mathbb{P}(\{\omega\})$$

$$\mathbb{E}[X] = \sum_{x} x \cdot p_X(x)$$

EXAMPLE 3 (CONT.):

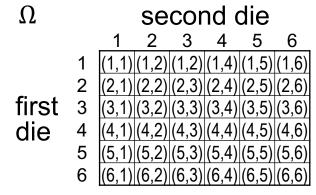
roll two fair dice with 6 sides

$$\Omega = \{(1,1), (1,2), (1,3) \dots (1,6), (2,1), (2,2), \dots (6,6)\}$$

Let *Y* be the <u>product</u> of the rolls.

Let *X* be the <u>sum</u> of the rolls.

What is $\mathbb{E}[X+Y]$



Y		1	2	3	4	5	6
•	1	1	2	3	4	5	6
	2	2	4	6	8	10	12
first	3	3	6	9	12	15	18
die	4	4	8	12	16	20	24
	5	5	10	15	20	25	30
	6	6	12	18	24	30	36

X		1	2	3	4	5	6
_	1	2	3	4	5	6	7
	2	3	4	5	6	7	8
irst	3	4	5	6	7	8	9
aib	4	5	6	7	8	9	10
	5	6	7	8	9	10	11
	6	7	8	9	10	11	12

Random variable (RV)

 $X: \Omega \to \mathbb{R}$

Expectation: a weighted average (in proportion to the probabilities) of the possible values of *X*

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot \mathbb{P}(\{\omega\})$$

$$\mathbb{E}[X] = \sum_{x} x \cdot p_X(x)$$

EXAMPLE 3 (CONT.):

roll two fair dice with 6 sides

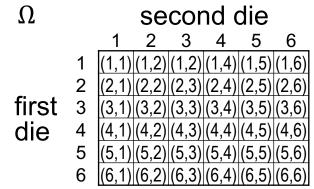
$$\Omega = \{(1,1), (1,2), (1,3) \dots (1,6), (2,1), (2,2), \dots (6,6)\}$$

Let *Y* be the <u>product</u> of the rolls.

Let *X* be the <u>sum</u> of the rolls.

What is $\mathbb{E}[X + Y]$?

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$



Y		1	2	3	4	5	6
-	1	1	2	3	4	5	6
	2	2	4	6	8	10	12
first	3	3	6	9	12	15	18
die	4	4	8	12	16	20	24
	5	5	10	15	20	25	30
	6	6	12	18	24	30	36
		·					

X		1	2	3	4	5	6
	1	2	3	4	5	6	7
	2	3	4	5	6	7	8
first	3	4	5	6	7	8	9
die	4	5	6	7	8	9	10
	5	6	7	8	9	10	11
	6	7	8	9	10	11	12 .

Random variable (RV) $X: \Omega \to \mathbb{R}$

Expectation: a weighted average
(in proportion to the probabilities)

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot \mathbb{P}(\{\omega\})$$

of the possible values of X

$$\mathbb{E}[X] = \sum_{x} x \cdot p_X(x)$$

EXAMPLE 3 (CONT.):

roll two fair dice with 6 sides

$$\Omega = \{(1,1), (1,2), (1,3), \dots (1,6), (2,1), (2,2), \dots (6,6)\}$$

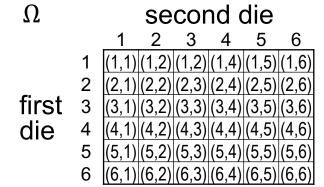
Let *Y* be the <u>product</u> of the rolls.

Let *X* be the <u>sum</u> of the rolls.

What is $\mathbb{E}[X + Y]$?

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

Xand Y are clearly dependent ⊗



first

die

	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	8	10	12
3	3	6	9	12	15	18
1	4	8	12	16	20	24
5	5	10	15	20	25	30
3	6	12	18	24	30	36

X		1	2	3	4	5	6
	1	2	3	4	5	6	7
_	2	3	4	5	6	7	8
first	3	4	5	6	7	8	9
die	4	5	6	7	8	9	10
	5	6	7	8	9	10	11
	6	7	8	9	10	11	12
		6 7	7 8	8	_		11 12

Random variable (RV)

 $X: \Omega \to \mathbb{R}$

Expectation: a weighted average (in proportion to the probabilities) of the possible values of X

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot \mathbb{P}(\{\omega\})$$

$$\mathbb{E}[X] = \sum_{x} x \cdot p_X(x)$$

EXAMPLE 3 (CONT.):

roll two fair dice with 6 sides

$$\Omega = \{(1,1), (1,2), (1,3) \dots (1,6), (2,1), (2,2), \dots (6,6)\}$$

Let *Y* be the <u>product</u> of the rolls.

Let *X* be the <u>sum</u> of the rolls.

What is
$$\mathbb{E}[X + Y]$$
?

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

Xand Y are clearly dependent ⊗

But linearity of expectation still holds even if the RVs are dependent 19

$$\mathbb{E}[X] = 7 + 12.25 = 19.25$$

Y

first

die

X

first

die

Ω		second die					
		_ 1	2	3	4	5	6
	1	(1,1)	(1,2)	(1,2)	(1,4)	(1,5)	(1,6)
	2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
first	3			(3,3)			(3,6)
die	4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
	5	(5,1)	(5,2)	(5,3)		(5,5)	(5,6)
	6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

		_	•		_	•
	<u> </u>	_2_	_3_	4	_5_	6
1	1	2	3	4	5	6
2	2	4	6	8	10	12
3	3	6	9	12	15	18
1	4	8	12	16	20	24
5	5	10	15	20	25	30
3	6	12	18	24	30	36

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

$\mathbb{E}[X+Y]$ vs. $\mathbb{E}[X\cdot Y]$

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$
 (linearity of expectation)

holds even if X and Y are not independent

PROOF

$$\mathbb{E}[X+Y] = \sum_{x} \sum_{y} (x+y) \cdot p(x,y)$$

$$= \mathbb{E}[X] + \mathbb{E}[Y]$$

$$\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$$
, only if $X \perp Y$ (independent)

PROOF

$$\mathbb{E}[X \cdot Y] = \sum_{x} \sum_{y} x \cdot y \cdot p(x, y)$$

$$= \mathbb{E}[X] \cdot \mathbb{E}[Y]$$

$\mathbb{E}[X+Y]$ vs. $\mathbb{E}[X\cdot Y]$

$$\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$
 (linearity of expectation)

holds even if X and Y are not independent

PROOF

$$\mathbb{E}[X+Y] = \sum_{x} \sum_{y} (x+y) \cdot p(x,y)$$

$$= \sum_{x} \sum_{y} x \cdot p(x,y) + \sum_{x} \sum_{y} y \cdot p(x,y)$$

$$= \sum_{x} x \cdot \sum_{y} p(x,y) + \sum_{y} y \cdot \sum_{x} p(x,y)$$

$$= \sum_{x} x \cdot p(x) + \sum_{y} y \cdot p(y)$$

$$= \mathbb{E}[X] + \mathbb{E}[Y]$$

 $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$, only if $X \perp Y$ (independent)

PROOF

$$\mathbb{E}[X \cdot Y] = \sum_{x} \sum_{y} x \cdot y \cdot p(x, y)$$

$$= \sum_{x} \sum_{y} x \cdot y \cdot p(x) \cdot p(y)$$

$$= \left(\sum_{x} x \cdot p(x)\right) \cdot \left(\sum_{y} x \cdot p(y)\right)$$

$$= \mathbb{E}[X] \cdot \mathbb{E}[Y]$$

because $X \perp Y$

distributive law of multiplication over addition (each cross-term appears exactly once on both sides)

EXAMPLE 6 (CONT.):

- The digits 1,2,3, and 4 are randomly arranged to form two two-digit numbers, \overline{AB} and \overline{CD} . For example, we could have $\overline{AB}=42$ and $\overline{CD}=13$.
- What is the expected value of $\overline{AB} \cdot \overline{CD}$?

EXAMPLE 6 (CONT.):

- The digits 1,2,3, and 4 are randomly arranged to form two two-digit numbers, \overline{AB} and \overline{CD} . For example, we could have $\overline{AB}=42$ and $\overline{CD}=13$.
- What is the expected value of $\overline{AB} \cdot \overline{CD}$?
- What about $\mathbb{E}[\overline{AB}] \cdot \mathbb{E}[\overline{CD}]$?

EXAMPLE 6 (CONT.):

- The digits 1,2,3, and 4 are randomly arranged to form two two-digit numbers, AB and CD. For example, we could have $\overline{AB}=42$ and $\overline{CD}=13$.
- What is the expected value of $\overline{AB} \cdot \overline{CD}$?
- What about $\mathbb{E}[\overline{AB}] \cdot \mathbb{E}[\overline{CD}]$?
- No! $\mathbb{E}[xy] = \mathbb{E}[x] \cdot \mathbb{E}[y]$ only holds when the RVs are independent.

Clearly, \overline{AB} and \overline{CD} are not independent since each digit can only be used once (e.g., if $\overline{AB}=42$ then we would know that \overline{CD} can only be 13 or 31).

EXAMPLE 6 (CONT.):

- The digits 1,2,3, and 4 are randomly arranged to form two two-digit numbers, AB and CD. For example, we could have $\overline{AB}=42$ and $\overline{CD}=13$.
- What is the expected value of $\overline{AB} \cdot \overline{CD}$?
- What about $\mathbb{E}[\overline{AB}] \cdot \mathbb{E}[\overline{CD}]$?
- Can we instead get some kind of sum?

EXAMPLE 6 (CONT.):

- The digits 1,2,3, and 4 are randomly arranged to form two two-digit numbers, \overline{AB} and \overline{CD} . For example, we could have $\overline{AB}=42$ and $\overline{CD}=13$.
- What is the expected value of $\overline{AB} \cdot \overline{CD}$?
- What about $\mathbb{E}[\overline{AB}] \cdot \mathbb{E}[\overline{CD}]$?
- Can we instead get some kind of sum?

$$\overline{AB} \cdot \overline{CD} = (10 \cdot A + B) \cdot (10 \cdot C + D) = 100 \cdot A \cdot C + 10 \cdot A \cdot D + 10 \cdot B \cdot C + B \cdot D$$

Now by linearity of expectation,

EXAMPLE 6 (CONT.):

- The digits 1,2,3, and 4 are randomly arranged to form two two-digit numbers, AB and CD. For example, we could have $\overline{AB}=42$ and $\overline{CD}=13$.
- What is the expected value of $\overline{AB} \cdot \overline{CD}$?
- What about $\mathbb{E}[\overline{AB}] \cdot \mathbb{E}[\overline{CD}]$?
- Can we instead get some kind of sum?

$$\overline{AB} \cdot \overline{CD} = (10 \cdot A + B) \cdot (10 \cdot C + D) = 100 \cdot A \cdot C + 10 \cdot A \cdot D + 10 \cdot B \cdot C + B \cdot D$$

• Now by linearity of expectation,

$$\mathbb{E}[\overline{AB} \cdot \overline{CD}] = 100 \cdot \mathbb{E}[A \cdot C] + 10 \cdot \mathbb{E}[A \cdot D] + 10 \cdot \mathbb{E}[B \cdot C] + \mathbb{E}[B \cdot D] =$$

EXAMPLE 6 (CONT.):

- The digits 1,2,3, and 4 are randomly arranged to form two two-digit numbers, AB and CD. For example, we could have $\overline{AB}=42$ and $\overline{CD}=13$.
- What is the expected value of $\overline{AB} \cdot \overline{CD}$?
- What about $\mathbb{E}[\overline{AB}] \cdot \mathbb{E}[\overline{CD}]$?
- Can we instead get some kind of sum?

$$\overline{AB} \cdot \overline{CD} = (10 \cdot A + B) \cdot (10 \cdot C + D) = 100 \cdot A \cdot C + 10 \cdot A \cdot D + 10 \cdot B \cdot C + B \cdot D$$

Now by linearity of expectation,

$$\mathbb{E}[\overline{AB} \cdot \overline{CD}] = 100 \cdot \mathbb{E}[A \cdot C] + 10 \cdot \mathbb{E}[A \cdot D] + 10 \cdot \mathbb{E}[B \cdot C] + \mathbb{E}[B \cdot D] = 121 \cdot \mathbb{E}[A \cdot C] = 121 \cdot \mathbb{E}$$

The expected value of all of these products are the same since there is symmetry among A, B, C, D.

EXAMPLE 6 (CONT.):

- The digits 1,2,3, and 4 are randomly arranged to form two two-digit numbers, AB and CD. For example, we could have $\overline{AB}=42$ and $\overline{CD}=13$.
- What is the expected value of $\overline{AB} \cdot \overline{CD}$?
- What about $\mathbb{E}[\overline{AB}] \cdot \mathbb{E}[\overline{CD}]$?
- Can we instead get some kind of sum?

$$\overline{AB} \cdot \overline{CD} = (10 \cdot A + B) \cdot (10 \cdot C + D) = 100 \cdot A \cdot C + 10 \cdot A \cdot D + 10 \cdot B \cdot C + B \cdot D$$

Now by linearity of expectation,

$$\mathbb{E}[\overline{AB}\cdot\overline{CD}] = 100 \cdot \mathbb{E}[A\cdot C] + 10 \cdot \mathbb{E}[A\cdot D] + 10 \cdot \mathbb{E}[B\cdot C] + \mathbb{E}[B\cdot D] = 121 \cdot \mathbb{E}[A\cdot C] = \frac{4235}{6} = 705.83$$

The expected value of all of these products are the same since there is symmetry among A, B, C, D.

$$\mathbb{E}[A \cdot C] = \frac{1 \cdot 2 + 1 \cdot 3 + 1 \cdot 4 + 2 \cdot 3 + 2 \cdot 4 + 3 \cdot 4}{6} = \frac{35}{6}$$

Variance

Measuring variability

EXAMPLE: average size of mice

case 1: {4 cm, 5 cm, 6 cm}	case 2: {9 cm, 10 cm, 11 cm}	case 3: {8 cm, 10 cm, 12 cm}	what is a reasonable measure of centrality?

EXAMPLE: average size of mice

$\mathbb{E}[X] = 5 \qquad 10 \qquad \mathbb{E}[X] = \sum_{x} x \cdot p_X(x)$ $\text{mean} = \text{average} =$		case 1: {4 cm, 5 cm, 6 cm}	case 2: {9 cm, 10 cm, 11 cm}	case 3: {8 cm, 10 cm, 12 cm}	What is a reasonable measure of centrality?
"expected value"	$\mathbb{E}[X] =$	5	10	10	$\mathbb{E}[X] = \sum_{x} x \cdot p_{X}(x)$ mean = average = "expected value"

EXAMPLE: average size of mice

LAAIVIPLE.	PLE. average size of filice						
	case 1: {4 cm, 5 cm, 6 cm}	case 2: {9 cm, 10 cm, 11 cm}	case 3: {8 cm, 10 cm, 12 cm}	l			
$\mathbb{E}[X] =$	5	10	10				

What are possible ways to measure expected "variability" Δ around the mean for each point?

$$\mathbb{E}[Y] = \sum_{y} y \cdot p_{Y}(y)$$

$$\mathbb{E}[X] = \sum_{x} x \cdot p_X(x)$$

	average size of mice		to measure expected "variability" Δ around the	
	case 1: {4 cm, 5 cm, 6 cm}	case 2: {9 cm, 10 cm, 11 cm}	case 3: {8 cm, 10 cm, 12 cm}	mean for each point? $\mathbb{E}[Y] = \sum_{y} y \cdot p_{Y}(y)$
$\mathbb{E}[X] =$	5	10	10	$\mathbb{E}[X] = \sum_{x} x \cdot p_X(x)$
$\mathbb{E}[Y_1] =$	$-1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$ = 0	$-1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$ = 0	$-2 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 2 \cdot \frac{1}{3}$ $= 0 $	$Y_1 = X - \mathbb{E}[X]$
				How can we fix that

	average size of mice	to measure expected "variability" Δ around the		
	case 1: {4 cm, 5 cm, 6 cm}	case 2: {9 cm, 10 cm, 11 cm}	case 3: {8 cm, 10 cm, 12 cm}	mean for each point? $\mathbb{E}[Y] = \sum_{y} y \cdot p_{Y}(y)$
$\mathbb{E}[X] =$	5	10	10	$\mathbb{E}[X] = \sum_{x} x \cdot p_X(x)$
$\mathbb{E}[Y_1] =$	$-1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$ = 0	$-1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$ = 0	$-2 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 2 \cdot \frac{1}{3}$ $= 0 $	$Y_1 = X - \mathbb{E}[X]$
$\mathbb{E}[Y_2] =$	$ -1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$ $= 1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$ $= \frac{2}{3}$	$ -1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$ $= 1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$ $= \frac{2}{3}$	$ -2 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 2 \cdot \frac{1}{3}$ $= 2 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 2 \cdot \frac{1}{3}$ $= \frac{4}{3} \qquad \textcircled{makes more}$	$Y_2 = X - \mathbb{E}[X] $ absolute deviation sense

	average size of mice	verage size of mice		to measure expected "variability" Δ around the
	case 1: {4 cm, 5 cm, 6 cm}	case 2: {9 cm, 10 cm, 11 cm}	case 3: {8 cm, 10 cm, 12 cm}	mean for each point? $\mathbb{E}[Y] = \sum_{y} y \cdot p_{Y}(y)$
$\mathbb{E}[X] =$	5	10	10	$\mathbb{E}[X] = \sum_{x} x \cdot p_X(x)$
$\mathbb{E}[Y_1] =$	$-1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$ = 0	$-1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$ = 0	$-2 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 2 \cdot \frac{1}{3}$ $= 0 $	$Y_1 = X - \mathbb{E}[X]$
$\mathbb{E}[Y_2] =$	$ -1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$ $= 1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$ $= \frac{2}{3}$	$ -1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$ $= 1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$ $= \frac{2}{3}$	$ -2 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 2 \cdot \frac{1}{3}$ = $2 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 2 \cdot \frac{1}{3}$ = $\frac{4}{3}$	$Y_2 = X - \mathbb{E}[X] $ absolute deviation sense
$\mathbb{E}[Y_3] =$	$1^{2} \cdot \frac{1}{3} + 0^{2} \cdot \frac{1}{3} + 1^{2} \cdot \frac{1}{3}$ $1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$ $= \frac{2}{3}$	$1^{2} \cdot \frac{1}{3} + 0^{2} \cdot \frac{1}{3} + 1^{2} \cdot \frac{1}{3}$ $1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$ $= \frac{2}{3}$	$2^{2} \cdot \frac{1}{3} + 0^{2} \cdot \frac{1}{3} + 2^{2} \cdot \frac{1}{3}$ $4 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 4 \cdot \frac{1}{3}$ $= \frac{8}{3}$	$Y_3 = (X - \mathbb{E}[X])^2$ squared error
		What are now the	"units" of variability	7

EXAMPLE: average size of mice

	case 1: {4 cm, 5 cm, 6 cm}	case 2: {9 cm, 10 cm, 11 cm}	case 3: {8 cm, 10 cm, 12 cm}	mean for each point? $\mathbb{E}[Y] = \sum_{y} y \cdot p_{Y}(y)$
$\mathbb{E}[X] =$		10	10	$\mathbb{E}[X] = \sum_{x} x \cdot p_X(x)$
$\mathbb{E}[Y_1] =$	$-1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$ = 0	$-1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$ = 0	$-2 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 2 \cdot \frac{1}{3}$ $= 0 $	$Y_1 = X - \mathbb{E}[X]$
$\mathbb{E}[Y_2] =$	$ -1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$ $= 1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$ $= \frac{2}{3} \text{ cm}$	$ -1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$ $= 1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$ $= \frac{2}{3} \text{ cm}$	$ -2 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 2 \cdot \frac{1}{3}$ $= 2 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 2 \cdot \frac{1}{3}$ $= \frac{4}{3} \text{ cm} \textcircled{o} \text{ makes more}$	$Y_2 = X - \mathbb{E}[X] $ absolute deviation sense
$\mathbb{E}[Y_3] =$	$1^{2} \cdot \frac{1}{3} + 0^{2} \cdot \frac{1}{3} + 1^{2} \cdot \frac{1}{3}$ $1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$ $= \frac{2}{3} \text{ cm}^{2}$	$1^{2} \cdot \frac{1}{3} + 0^{2} \cdot \frac{1}{3} + 1^{2} \cdot \frac{1}{3}$ $1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$ $= \frac{2}{3} \text{ cm}^{2}$	$2^{2} \cdot \frac{1}{3} + 0^{2} \cdot \frac{1}{3} + 2^{2} \cdot \frac{1}{3}$ $4 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 4 \cdot \frac{1}{3}$ $= \frac{8}{3} \text{ cm}^{2} ???$	$Y_3 = (X - \mathbb{E}[X])^2$ squared error
		cm squared is stra	nge. What can we do?	2

What are possible ways

to measure expected "variability" Δ around the

	average size of mice case 1: {4 cm, 5 cm, 6 cm}	to measure expected "Variability" Δ around the mean for each point? $\mathbb{E}[Y] = \sum_y y \cdot p_Y(y)$		
 $\mathbb{E}[X] =$	5	10	10	$\mathbb{E}[X] = \sum_{x} x \cdot p_X(x)$
$\mathbb{E}[Y_1] =$	$-1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$ = 0	$-1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$ = 0	$-2 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 2 \cdot \frac{1}{3}$ $= 0 $	$Y_1 = X - \mathbb{E}[X]$
$\mathbb{E}[Y_2] =$	$ -1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$ $= 1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$ $= \frac{2}{3} \text{ cm}$	$ -1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$ $= 1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$ $= \frac{2}{3} \text{ cm}$	$ -2 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 2 \cdot \frac{1}{3}$ $= 2 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 2 \cdot \frac{1}{3}$ $= \frac{4}{3} \text{ cm} \textcircled{o} \text{ makes more}$	$Y_2 = X - \mathbb{E}[X] $ absolute deviation sense
 $\mathbb{E}[Y_3] =$	$1^{2} \cdot \frac{1}{3} + 0^{2} \cdot \frac{1}{3} + 1^{2} \cdot \frac{1}{3}$ $1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$ $= \frac{2}{3} \text{ cm}^{2}$	$1^{2} \cdot \frac{1}{3} + 0^{2} \cdot \frac{1}{3} + 1^{2} \cdot \frac{1}{3}$ $1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$ $= \frac{2}{3} \text{ cm}^{2}$	$2^{2} \cdot \frac{1}{3} + 0^{2} \cdot \frac{1}{3} + 2^{2} \cdot \frac{1}{3}$ $4 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 4 \cdot \frac{1}{3}$ $= \frac{8}{3} \text{ cm}^{2} \otimes ???$	$Y_3 = (X - \mathbb{E}[X])^2$ squared error cooks prety complicated. So
lust taka t	ha aguara raat.		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	uhu is everyone so excited 🥒

Just take the square root:

$$=\sqrt{\frac{2}{3}}$$
 cm

$$=\sqrt{\frac{2}{3}}$$
 cm

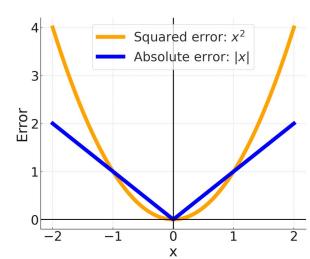
$$=2\sqrt{\frac{2}{3}}$$
 cm ???

 $= 2\sqrt{\frac{2}{3}} \text{ cm} ???$ why is everyone so excited about squared error instead of absolute error?

Why variance, and not absolute deviation?

But what is the most substantial reason?

- Geometric explanation in Euclidean space (distance = square root of squared components): Projection onto a subspace. Variance is literally the "average squared distance" from the mean.
- Variance plays an important role in the <u>Central Limit Theorem</u>. The variance is a natural parameter for the <u>Normal Distribution</u>.
- Algebraic convenience: $f(x) = x^2$ is differentiable, but g(x) = |x| is not.
- Outliers have a bigger influence



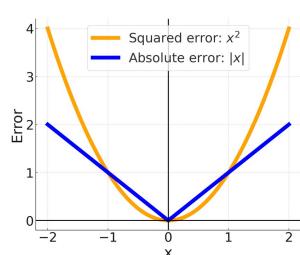
$$\Delta_2 = |X - \mathbb{E}[X]|$$
 absolute deviation

$$\Delta_3 = (X - \mathbb{E}[X])^2$$

squared error

Why variance, and not absolute deviation?

- Statistical properties: The <u>mean minimizes the sum of squared</u> <u>errors</u>, while the median minimizes the sum of absolute errors. (Maximum likelihood estimation leads to minimizing squared errors)
- Geometric explanation in Euclidean space (distance = square root of squared components): Projection onto a subspace. Variance is literally the "average squared distance" from the mean.
- Variance plays an important role in the <u>Central Limit Theorem</u>. The variance is a natural parameter for the <u>Normal Distribution</u>.
- Algebraic convenience: $f(x) = x^2$ is differentiable, but g(x) = |x| is not.
- Outliers have a bigger influence



$$\Delta_2 = |X - \mathbb{E}[X]|$$

absolute deviation

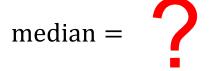
$$\Delta_3 = (X - \mathbb{E}[X])^2$$

squared error

EXAMPLE (MEAN VS. MEDIAN):

data =
$$\{1, 2, 3, 6, 8\}$$

$$mean = ?$$



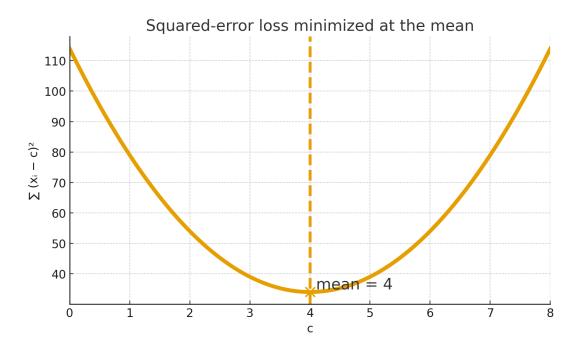
EXAMPLE (MEAN VS. MEDIAN):

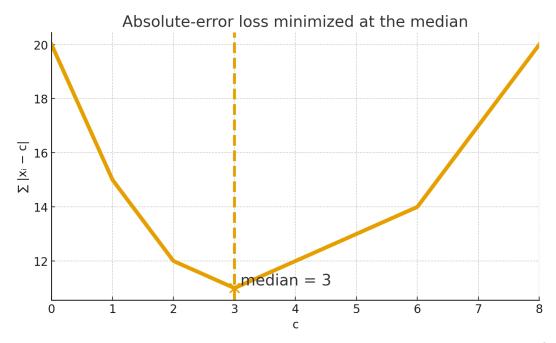
data =
$$\{1, 2, 3, 6, 8\}$$

mean = 4

$$mean = \min_{c} \sum_{i} (x_i - c)^2$$

$$median = \min_{c} \sum_{i} |x_i - c|$$



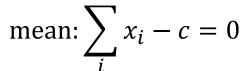


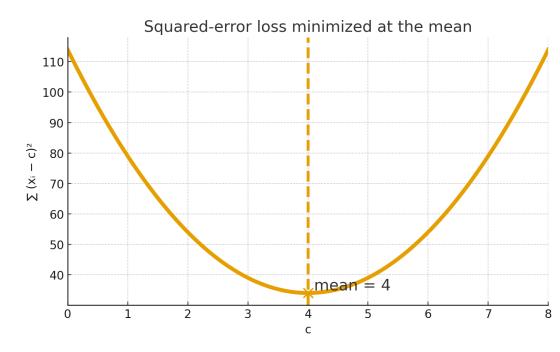
EXAMPLE (MEAN VS. MEDIAN):

data =
$$\{1, 2, 3, 6, 8\}$$

mean = 4

$$mean = \min_{c} \sum_{i} (x_i - c)^2$$





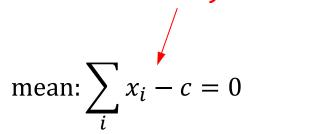
EXAMPLE (MEAN VS. MEDIAN):

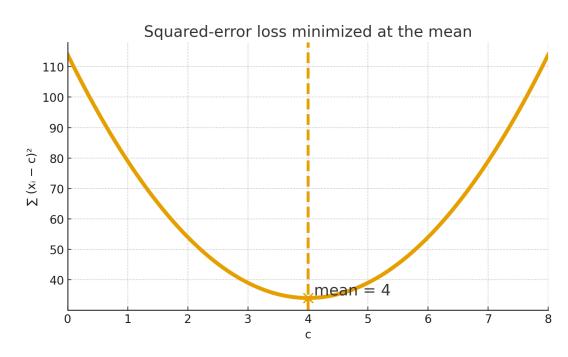
data =
$$\{1, 2, 3, 6, 8\}$$

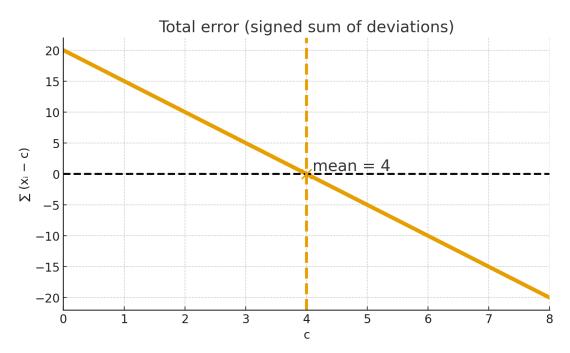
mean = 4

$$mean = \min_{c} \sum_{i} (x_i - c)^2$$

This is not an optimization problem, but a constraint problem: the sum of signed errors = 0.







Alternative formula for variance

$$\sigma^2 = \operatorname{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

variance

$$\sigma = \sqrt{\operatorname{Var}(X)} = \sqrt{\mathbb{E}[(X - \mathbb{E}[X])^2]}$$

standard deviation (back in original units)

ALTERNATIVE FORMULA

$$\mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

PROOF

$$\mathbb{E}[(X - \mathbb{E}[X])^2] =$$

case 3:
{8 cm, 10 cm, 12 cm}

$$\mathbb{E}[X^2] = \frac{8^2 + 10^2 + 12^2}{3} = \frac{308}{3}$$

$$(\mathbb{E}[X])^2 = 100$$

$$\frac{308}{3} - \frac{300}{3} = 8/3$$

Alternative formula for variance

$$\sigma^2 = \text{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$$
 variance
$$\sigma = \sqrt{\text{Var}(X)} = \sqrt{\mathbb{E}[(X - \mathbb{E}[X])^2]}$$
 standard deviation (back in original units)

ALTERNATIVE FORMULA

$$\mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

PROOF

$$\mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2 - 2 \cdot X \cdot \mathbb{E}[X] + (\mathbb{E}[X])^2]$$
by linearity of expectation
$$= \mathbb{E}[X^2] - \mathbb{E}[2 \cdot X \cdot \mathbb{E}[X]] + \mathbb{E}[(\mathbb{E}[X])^2]$$

$$= \mathbb{E}[X^2] - 2 \cdot \mathbb{E}[X] \cdot \mathbb{E}[X] + (\mathbb{E}[X])^2$$

$$= \mathbb{E}[X^2] - 2 \cdot (\mathbb{E}[X])^2 + (\mathbb{E}[X])^2$$

$$= \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

case 3:
{8 cm, 10 cm, 12 cm}

$$\mathbb{E}[X^2] = \frac{8^2 + 10^2 + 12^2}{3} = \frac{308}{3}$$

$$(\mathbb{E}[X])^2 = 100$$

$$\frac{308}{3} - \frac{300}{3} = 8/3$$