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Let's gain some intuition for 
"measures of information"

The following numeric examples with hats and 4 balls are based on Chapter 1.1 from [Moser'18] 
Information Theory (lecture notes, 6th ed).https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it

https://northeastern-datalab.github.io/cs7840/
https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
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Let's gain some intuition: What is information?

What is information? Let's look at some sentences with "information":
1. "It will rain tomorrow."
2. "It will snow tomorrow."
3. "The name of the next president of the USA will be...

a. ... Donald."
b. ... Donald Duck."

4. "Our university is called Northeastern University."

?

https://northeastern-datalab.github.io/cs7840/
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Let's gain some intuition: What is information?

What is information? Let's look at some sentences with "information":
1. "It will rain tomorrow."
2. "It will snow tomorrow."
3. "The name of the next president of the USA will be...

a. ... Donald."
b. ... Donald Duck."

4. "Our university is called Northeastern University."

⇒ Information (in a sentence) is linked to surprise (which is the 
delta of knowledge before and after seeing the sentence).

Let's next try to quantify "information" J

https://northeastern-datalab.github.io/cs7840/
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Let's try to quantify "information"

EXAMPLE 1: A gambler throws a fair die with 4 sides {A,  B,  C,  D}. 
- "Side C comes up."
- The "pure" message 𝑈! that we care about in our abstraction is ... ?

https://northeastern-datalab.github.io/cs7840/
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Let's try to quantify "information"

EXAMPLE 1: A gambler throws a fair die with 4 sides {A,  B,  C,  D}. 
- "Side C comes up."
- message 𝑈! = "C"

EXAMPLE 2: A gambler throws a fair die with 6 sides {A,  B,  C,  D,  E,  F}.
- "Side C comes up."
- message 𝑈" = "C"

?What has changed

https://northeastern-datalab.github.io/cs7840/
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Let's try to quantify "information"

EXAMPLE 1: A gambler throws a fair die with 4 sides {A,  B,  C,  D}. 
- "Side C comes up."
- message 𝑈! = "C"
- There are 4 possible outcomes, each has a probability of ¼. 

EXAMPLE 2: A gambler throws a fair die with 6 sides {A,  B,  C,  D,  E,  F}.
- "Side C comes up."
- message 𝑈" = "C"
- There are 6 possible outcomes, each has a probability of 1/6.

⇒ 1) The number of possible outcomes should be linked to "information"
(we need more space to encode a message)

https://northeastern-datalab.github.io/cs7840/


9Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Let's try to quantify "information"

EXAMPLE 1: A gambler throws a fair die with 4 sides {A,  B,  C,  D}. 
- "Side C comes up."
- message 𝑈! = "C"
- There are 4 possible outcomes, each has a probability of ¼. 

EXAMPLE 2: A gambler throws a fair die with 6 sides {A,  B,  C,  D,  E,  F}.
- "Side C comes up."
- message 𝑈" = "C"
- There are 6 possible outcomes, each has a probability of 1/6.

⇒ 1) The number of possible outcomes should be linked to "information"

00 01 1110

000 001 011010 101100

, or in above binary encoding 𝑈! = "10"

, or in above binary encoding 𝑈" = "010"

(we need more space to encode a message)

https://northeastern-datalab.github.io/cs7840/
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Let's try to quantify "information"

EXAMPLE 1: A gambler throws a fair die with 4 sides {A,  B,  C,  D}. 
- "Side C comes up."
- message 𝑈! = "C"
- There are 4 possible outcomes, each has a probability of ¼. 

EXAMPLE 3: The gambler throws the 4-sided die three times.
- "The sequence of sides are: (C, B, D)"
- The message 𝑈# = "CBD".

Notice "BCD" is not 
the same as "CBD"How many outcomes do we have now?

https://northeastern-datalab.github.io/cs7840/
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Let's try to quantify "information"

EXAMPLE 1: A gambler throws a fair die with 4 sides {A,  B,  C,  D}. 
- "Side C comes up."
- message 𝑈! = "C"
- There are 4 possible outcomes, each has a probability of ¼. 

EXAMPLE 3: The gambler throws the 4-sided die three times.
- "The sequence of sides are: (C, B, D)"
- The message 𝑈# = "CBD".
- Now we had 64 = 4 ⋅ 4 ⋅ 4 = 4# possible outcomes.

How much more information did we learn in situation 3? ?
16 times more!

https://northeastern-datalab.github.io/cs7840/


12Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Let's try to quantify "information"

EXAMPLE 1: A gambler throws a fair die with 4 sides {A,  B,  C,  D}. 
- "Side C comes up."
- message 𝑈! = "C"
- There are 4 possible outcomes, each has a probability of ¼. 

EXAMPLE 3: The gambler throws the 4-sided die three times.
- "The sequence of sides are: (C, B, D)"
- The message 𝑈# = "CBD".
- Now we had 64 = 4 ⋅ 4 ⋅ 4 = 4# possible outcomes.
We have 3 independent throws, the message 𝑈	is 3 times as long, 
despite 4# possible total outcomes. Our information is 3 times as much.

⇒ 2) Information is additive in some sense

https://northeastern-datalab.github.io/cs7840/
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Hartley's measure of information [1928]

𝐻$ 𝑈 = log% 𝑛
Hartley's measure 
of information

1 roll has 4 outcomes.

3 rolls have 64 = 4 ⋅ 4 ⋅ 4 = 4#outcomes.

Hartley's insight: use the logarithm of the number of possible 
outcomes 𝑟 to measure the amount of information in an outcome.

Ralph Hartley. Transmission of information, The Bell System Technical Journal, 1928. https://doi.org/10.1002/j.1538-7305.1928.tb01236.x

log& 4 = 1

log& 64 = 3

𝑛	= number of outcomes

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1002/j.1538-7305.1928.tb01236.x
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Hartley's measure of information [1928]

𝐻$ 𝑈 = log% 𝑛
Hartley's measure 
of information

The basis 𝑏 of the logarithm is not really important.
(just unit of information, like 1 km = 1000 m)

1 roll has 4 outcomes.

3 rolls have 64 = 4 ⋅ 4 ⋅ 4 = 4#outcomes.

Hartley's insight: use the logarithm of the number of possible 
outcomes 𝑟 to measure the amount of information in an outcome.

Ralph Hartley. Transmission of information, The Bell System Technical Journal, 1928. https://doi.org/10.1002/j.1538-7305.1928.tb01236.x

log& 4 = 1

log& 64 = 3

𝑛	= number of outcomes

log" 𝑐 = 1.443 ⋅ log' 𝑐  

𝑒( = 2!.&&# ( = 2!.&&#⋅( 
1.443 = log" 𝑒2!.&&# = 𝑒 ⇔

We will 
use: lg(𝑐)

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1002/j.1538-7305.1928.tb01236.x
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Hartley's measure of information [1928]

1 roll has 4 outcomes.

3 rolls have 64 = 4 ⋅ 4 ⋅ 4 = 4#outcomes.

Ralph Hartley. Transmission of information, The Bell System Technical Journal, 1928. https://doi.org/10.1002/j.1538-7305.1928.tb01236.x

log& 4 = 1

log& 64 = 3

log% 𝑛+ = ?For 𝑘 independent trials, 
the amount of information is:

Hartley's measure 
of information

Hartley's insight: use the logarithm of the number of possible 
outcomes 𝑟 to measure the amount of information in an outcome.

𝐻$ 𝑈 = log% 𝑛
𝑛	= number of outcomes

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1002/j.1538-7305.1928.tb01236.x
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Hartley's measure of information [1928]

1 roll has 4 outcomes.

3 rolls have 64 = 4 ⋅ 4 ⋅ 4 = 4#outcomes.

Ralph Hartley. Transmission of information, The Bell System Technical Journal, 1928. https://doi.org/10.1002/j.1538-7305.1928.tb01236.x

log& 4 = 1

log& 64 = 3

For 𝑘 independent trials, 
the amount of information is:

Hartley's measure 
of information

Hartley's insight: use the logarithm of the number of possible 
outcomes 𝑟 to measure the amount of information in an outcome.

𝑘 ⋅ log% 𝑛

the power of the logarithm J

log% 𝑛+ = 

𝐻$ 𝑈 = log% 𝑛
𝑛	= number of outcomes

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1002/j.1538-7305.1928.tb01236.x
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Let's practice
EXAMPLE 4: A country has 1 million telephones. How long does the country's 
telephone numbers need to be?

Sources: https://www.worldometers.info/world-population/ 

?

https://northeastern-datalab.github.io/cs7840/
https://www.worldometers.info/world-population/
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Let's practice

log!$ 1,000,000 = 6 
With 6 digits (like "123 456") we can represent 10, different telephones. 

EXAMPLE 4: A country has 1 million telephones. How long does the country's 
telephone numbers need to be?

EXAMPLE 5: The current world population is 8,174,891,806 (as of Sat, 
September 7, 2024). How long must a binary telephone number be to 
connect to every person?

Sources: https://www.worldometers.info/world-population/ 

A tip: 2#" = 4,294,… ,…

?

https://northeastern-datalab.github.io/cs7840/
https://www.worldometers.info/world-population/
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Let's practice

log!$ 1,000,000 = 6 
With 6 digits (like "123 456") we can represent 10, different telephones. 

EXAMPLE 4: A country has 1 million telephones. How long does the country's 
telephone numbers need to be?

EXAMPLE 5: The current world population is 8,174,891,806 (as of Sat, 
September 7, 2024). How long must a binary telephone number be to 
connect to every person?

Sources: https://www.worldometers.info/world-population/ 

log" 8,174,891,806 ≈ 32.93 

A tip: 2#" = 4,294,… ,…

With 33 bits we can uniquely identify every person on the planet (today).

https://northeastern-datalab.github.io/cs7840/
https://www.worldometers.info/world-population/
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A problem with Hartley's information measure
EXAMPLE 6: we have two hats with 
indistinguishable black and white balls. 
There are 4 balls total in each hat. 

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it 

We randomly draw a ball from both hats. Let 𝑈-, 𝑈.  be the color of the ball.

What does Hartley's information measure tell us ?

BA

(maybe let's start with 𝑈-) 

https://northeastern-datalab.github.io/cs7840/
https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
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A problem with Hartley's information measure

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it 

𝐻$ 𝑈- = lg 2 = 1	bit
𝐻$ 𝑈. =

B

?

AEXAMPLE 6: we have two hats with 
indistinguishable black and white balls. 
There are 4 balls total in each hat. 

(we have 2 equally likely colors)
We randomly draw a ball from both hats. Let 𝑈-, 𝑈.  be the color of the ball.

https://northeastern-datalab.github.io/cs7840/
https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
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A problem with Hartley's information measure

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it 

We randomly draw a ball from both hats. Let 𝑈-, 𝑈.  be the color of the ball.

𝐻$ 𝑈. = lg 2 = 1	bit

⇒ 3) A proper measure of information should take into account 
the (possibly different) probabilities of the various outcomes.

This was the key insight of Claude Shannon [1948]

Problem: if 𝑈 = black, then we get less 
information from 𝑈. than from 𝑈- 
(since we somehow expected that outcome)

BAEXAMPLE 6: we have two hats with 
indistinguishable black and white balls. 
There are 4 balls total in each hat. 

𝐻$ 𝑈- = lg 2 = 1	bit

https://northeastern-datalab.github.io/cs7840/
https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
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"Fixing" Hartley's information measure

?

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it 

B

𝑈. = white:
What does Hartley tell us about the information 
we get after learning 𝑈B=white 

Let's analyze the possible outcomes for 𝑈/:

https://northeastern-datalab.github.io/cs7840/
https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
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"Fixing" Hartley's information measure

That's the result of 1 out of 𝑛 = 4 possible outcomes.

?

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it 

There is a 𝑝 = ¼ chance to draw a white ball. 

B

𝐻$ 𝑈/ = ???

Let's analyze the possible outcomes for 𝑈/:

𝑈. = white:

1 out of 4

https://northeastern-datalab.github.io/cs7840/
https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
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𝑈. = black:

𝑈. = white:

"Fixing" Hartley's information measure
Let's analyze the possible outcomes for 𝑈/:

That's the result of 1 out of 𝑛 = 4 possible outcomes.

Hartley does not work directly. 
What can we do? ?

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it 

There is a 𝑝 = ¼ chance to draw a white ball. 

B

𝐻$ 𝑈/ = lg 4 = 2	bits 1 out of 4

lg !
"

 

https://northeastern-datalab.github.io/cs7840/
https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
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"Fixing" Hartley's information measure

What is our chance 𝑝 to draw a black ball?

That's the result of 1 out of 𝑛 = 4 possible outcomes.

?

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it 

There is a 𝑝 = ¼ chance to draw a white ball. 

BLet's analyze the possible outcomes for 𝑈/:

𝑈. = white:

𝑈. = black:

? out of ?𝐻$ 𝑈/ = lg 4 = 2	bits 
lg !

"
 

https://northeastern-datalab.github.io/cs7840/
https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
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"Fixing" Hartley's information measure

There is a 𝑝 = ¾ chance to draw a black ball. 

That's the result of 1 out of 𝑛 = 4 possible outcomes.

?What do we do with the ¾ ?

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it 

There is a 𝑝 = ¼ chance to draw a white ball. 

BLet's analyze the possible outcomes for 𝑈/:

𝑈. = white:

𝑈. = black:

3 out of 4𝐻$ 𝑈/ = lg 4 = 2	bits 
lg !

"
 

https://northeastern-datalab.github.io/cs7840/
https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
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"Fixing" Hartley's information measure

There is a 𝑝 = ¾ chance to draw a black ball. 

That's the result of 1 out of 𝑛 = 4 possible outcomes.

For Hartley, we need to 
have 1 black ball (and have 
"1 out of r outcomes"). We 
get this by normalizing, i.e. 
dividing by 3...?

That's the result of 1	out of 𝑛 = 4/3 possible outcomes. 

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it 

There is a 𝑝 = ¼ chance to draw a white ball. 

B

𝐻$ 𝑈/ = 

Let's analyze the possible outcomes for 𝑈/:

𝑈. = white:

𝑈. = black:

3 out of 4
= 1 out of 4/3

𝐻$ 𝑈/ = lg 4 = 2	bits 
lg !

"
 

https://northeastern-datalab.github.io/cs7840/
https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
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"Fixing" Hartley's information measure

There is a 𝑝 = ¾ chance to draw a black ball. 

How do we combine these two possible 
outcomes to get one measure ?
Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it 

There is a 𝑝 = ¼ chance to draw a white ball. 

BLet's analyze the possible outcomes for 𝑈/:

𝑈. = white:

𝑈. = black:

𝐻$ 𝑈/ = lg &
#
= 0.415	bits 

3 out of 4
= 1 out of 4/3#total balls /

#black balls

𝐻$ 𝑈/ = lg 4 = 2	bits 
lg !

"
 

That's the result of 1 out of 𝑛 = 4 possible outcomes.

That's the result of 1	out of 𝑛 = 4/3 possible outcomes. 

https://northeastern-datalab.github.io/cs7840/
https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
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"Fixing" Hartley's information measure

There is a 𝑝 = ¾ chance to draw a black ball. 

Let's do "in expectation" J

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it 

There is a 𝑝 = ¼ chance to draw a white ball. 

B

𝔼 𝐻$ 𝑈/ = !
&
⋅ 	 …	 + #

&
⋅ 	 … 

𝐻$ 𝑈/ = lg &
#
= 0.415	bits 

Let's analyze the possible outcomes for 𝑈/:

𝑈. = white:

𝑈. = black:

3 out of 4
= 1 out of 4/3

𝐻$ 𝑈/ = lg 4 = 2	bits 
That's the result of 1 out of 𝑛 = 4 possible outcomes.

That's the result of 1	out of 𝑛 = 4/3 possible outcomes. 

lg !
"

 

https://northeastern-datalab.github.io/cs7840/
https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
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"Fixing" Hartley's information measure

There is a 𝑝 = ¾ chance to draw a black ball. 

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it 

There is a 𝑝 = ¼ chance to draw a white ball. 

B

= 0.811	bits 𝔼 𝐻$ 𝑈/ = !
&
⋅ 2	bits + #

&
⋅ 0.415	bits 

Let's analyze the possible outcomes for 𝑈/:

That's our expected amount 
of information we learn.

𝑈. = white:

𝑈. = black:

Let's do "in expectation":

𝐻$ 𝑈/ = lg &
#
= 0.415	bits 

𝐻$ 𝑈/ = lg 4 = 2	bits 
That's the result of 1 out of 𝑛 = 4 possible outcomes.

That's the result of 1	out of 𝑛 = 4/3 possible outcomes. 

lg !
"

 

https://northeastern-datalab.github.io/cs7840/
https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
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"Fixing" Hartley's information measure

There is a 𝑝 = ¾ chance to draw a black ball. 

What would we get for 
hat A instead of hat B ?Let's do "in expectation":

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it 

There is a 𝑝 = ¼ chance to draw a white ball. 

B

𝔼 𝐻$ 𝑈/ = !
&
⋅ 2	bits + #

&
⋅ 0.415	bits = 0.811	bits 

ALet's analyze the possible outcomes:

𝑈. = white:

𝑈. = black:

𝐻$ 𝑈/ = lg &
#
= 0.415	bits 

𝐻$ 𝑈/ = lg 4 = 2	bits 
That's the result of 1 out of 𝑛 = 4 possible outcomes.

That's the result of 1	out of 𝑛 = 4/3 possible outcomes. 

lg !
"

 

https://northeastern-datalab.github.io/cs7840/
https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
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"Fixing" Hartley's information measure

There is a 𝑝 = ¾ chance to draw a black ball. 

𝔼 𝐻$ 𝑈/ = !
&
⋅ 2	bits + #

&
⋅ 0.415	bits 

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it 

There is a 𝑝 = ¼ chance to draw a white ball. 

BA

hat B
1	bit for hat A

Notice that 1 bit was the min unit of 
information for the Hartley measure. 
Expectation allowed us to go lower!

= 0.811	bits 

Let's analyze the possible outcomes:

Let's do "in expectation":

𝑈. = white:

𝑈. = black:

𝐻$ 𝑈/ = lg &
#
= 0.415	bits 

𝐻$ 𝑈/ = lg 4 = 2	bits 
That's the result of 1 out of 𝑛 = 4 possible outcomes.

That's the result of 1	out of 𝑛 = 4/3 possible outcomes. 

lg !
"

 

https://northeastern-datalab.github.io/cs7840/
https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
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𝔼 𝐻$ 𝑈/ = !
&
⋅ lg 4 	+ #

&
⋅ lg &

#
 

"Fixing" Hartley's information measure

There is a 𝑝 = ¾ chance to draw a black ball. 

That's the result of 1 out of 𝑛 = 4 possible outcomes.

That's the result of 1	out of 𝑛 = 4/3 possible outcomes. 

Let's do "in expectation":

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it 

There is a 𝑝 = ¼ chance to draw a white ball. 

B

𝑈. = white:

𝑈. = black:

This is Claude Shannon's 
measure of information

ALet's analyze the possible outcomes:

𝐻$ 𝑈/ = lg &
#
= 0.415	bits 

𝐻$ 𝑈/ = lg 4 = 2	bits 

hat B
1	bit for hat A

= 0.811	bits 

lg !
"

 

https://northeastern-datalab.github.io/cs7840/
https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
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Shannon's entropy

Claude Shannon. A Mathematical Theory of Communication, The Bell System Technical Journal, 1948. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x 

1948:

Shannon's measure of information as expected Hartley information (averaged

𝑝0  = probability of the 𝑖-th possible outcome

Uncertainty: Normalized number of outcomes, 
for option 𝑖 to be "1 out of ... outcomes"

𝐻$(𝑈)

𝐻 𝒑 = 

over all possible outcomes)

= −S
01!

2

𝑝0 ⋅ lg 𝑝0 = 𝔼 lg
1
𝑝0

S
01!

2

𝑝0 ⋅ lg
1
𝑝0

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
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Shannon's entropy

Ralph Hartley. Transmission of information, The Bell System Technical Journal, 1928. https://doi.org/10.1002/j.1538-7305.1928.tb01236.x
Claude Shannon. A Mathematical Theory of Communication, The Bell System Technical Journal, 1948. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x 

1928:

1948:

𝑝0  = probability of the 𝑖-th possible outcome

Uncertainty: Normalized number of outcomes, 
for option 𝑖 to be "1 out of ... outcomes"

𝐻$(𝑈)

Shannon's measure of information as expected Hartley information (averaged

𝐻 𝒑 = 

over all possible outcomes)

= −S
01!

2

𝑝0 ⋅ lg 𝑝0 = 𝔼 lg
1
𝑝0

S
01!

2

𝑝0 ⋅ lg
1
𝑝0

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1002/j.1538-7305.1928.tb01236.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
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Shannon's entropy

𝑝0  = probability of the 𝑖-th possible outcome

= −S
01!

2

𝑝0 ⋅ lg 𝑝0

Uncertainty: Normalized number of outcomes, 
for option 𝑖 to be "1 out of ... outcomes"

𝐻$(𝑈)

2) Information is additive in some sense

1) The number of possible outcomes should be 
linked to "information"

3) A proper measure of information should take into 
account the different probabilities of the outcomes.

𝐻$

𝐻
Ralph Hartley. Transmission of information, The Bell System Technical Journal, 1928. https://doi.org/10.1002/j.1538-7305.1928.tb01236.x
Claude Shannon. A Mathematical Theory of Communication, The Bell System Technical Journal, 1948. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x 

= 𝔼 lg
1
𝑝0

Shannon's measure of information as expected Hartley information (averaged

𝐻 𝒑 = S
01!

2

𝑝0 ⋅ lg
1
𝑝0

over all possible outcomes)

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1002/j.1538-7305.1928.tb01236.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
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Pre-class conversations

• Last class recapitulation (incl. grouping rule)
• To be posted: Online Python notebook (feedback *very* welcome, 

also possibly useful for your own scribes)
• Any feedback on organization on course website (Canvas, Piazza)?

• Today: 
- Keep pen & paper ready for hands-on calculus, logarithm

• also see Schneider's "Information Theory Primer, With an Appendix on Logarithms"
- Intuition behind entropy (and variants)

https://northeastern-datalab.github.io/cs7840/
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The value of both experimenting and formal training

See also: https://www.americanscientist.org/article/thats-funny 

See also: https://www.goodreads.com/quotes/827857-in-the-fields-of-observation-chance-favors-only-the-prepared 

https://northeastern-datalab.github.io/cs7840/
https://www.americanscientist.org/article/thats-funny
https://www.goodreads.com/quotes/827857-in-the-fields-of-observation-chance-favors-only-the-prepared
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Properties
of information (entropy)

by example

https://northeastern-datalab.github.io/cs7840/
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Shannon entropy for unbiased outcomes

?EXAMPLE 1: What is the entropy in a roll of an unbiased 8-sided die?

S
01!

2

𝑝0 ⋅ lg
1
𝑝0

𝐻 𝒑 =

https://northeastern-datalab.github.io/cs7840/
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Shannon entropy for unbiased outcomes
EXAMPLE 1: What is the entropy in a roll of an unbiased 8-sided die?

?= S
01!

2

𝑝0 ⋅ lg
1
𝑝0

= lg
1
𝑝0

1

S
01!

2

𝑝0 ⋅ lg
1
𝑝0

𝐻 𝒑 =

https://northeastern-datalab.github.io/cs7840/


48Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Shannon entropy for unbiased outcomes = Hartley measure

=	

Entropy is exactly the Hartley information measure for unbiased outcomes J

EXAMPLE 1: What is the entropy in a roll of an unbiased 8-sided die?

?
= S

01!

2

𝑝0 ⋅ lg
1
𝑝0

= lg
1
𝑝0

1

S
01!

2

𝑝0 ⋅ lg
1
𝑝0

𝐻 𝒑 = = 𝐻$
1
𝑝0

	

number of outcomes

https://northeastern-datalab.github.io/cs7840/
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Shannon entropy for unbiased outcomes = Hartley measure

= S
01!

2

𝑝0 ⋅ lg
1
𝑝0

= lg
1
𝑝0

Entropy is exactly the Hartley information measure for unbiased outcomes J

1

EXAMPLE 1: What is the entropy in a roll of an unbiased 8-sided die?

number of outcomes

S
01!

2

𝑝0 ⋅ lg
1
𝑝0

𝐻 𝒑 = = 𝐻$
1
𝑝0

	

= lg 8 = 3 

https://northeastern-datalab.github.io/cs7840/
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Characterization of the Hartley information measure

= 𝐻$
1
𝑝0

= lg 𝑛

Shannon entropy for uniform sampling from 𝑛 choices.

𝐻$ 𝑟  

𝟎 𝟎 𝟎
𝟎 𝟎
𝟎

lg 𝑚 ⋅ 𝑛 = lg 𝑚 + lg 𝑛  

two independent uniformly distributed RVs,
with alphabet size 𝑚 and 𝑛 

Screenshot source: https://en.wikipedia.org/wiki/Hartley_function . For a derivation, see Sect 2.2.2 of 
"Klir. Uncertainty and Information: Foundations of Generalized Information Theory", 2006. https://onlinelibrary.wiley.com/doi/book/10.1002/0471755575 

https://northeastern-datalab.github.io/cs7840/
https://en.wikipedia.org/wiki/Hartley_function
https://onlinelibrary.wiley.com/doi/book/10.1002/0471755575
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Learning partial information

?
EXAMPLE 2: We roll an unbiased 8-sided die with sides {1,2, ...,8} .

We then get a message with the information that the outcome of a roll is even.
How much information did we learn?

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

• Before the message:

We then get a message with the information that the outcome of a roll is even.

• After the message:

EXAMPLE 2: We roll an unbiased 8-sided die with sides {1,2, ...,8} .

How much information did we learn?

?

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

There are 8 choices: {1,2,3,4,5,6,7,8}
There are 4 choices: {2,4,6,8}

• Before the message:

We then get a message with the information that the outcome of a roll is even.

• After the message:

EXAMPLE 2: We roll an unbiased 8-sided die with sides {1,2, ...,8} .

How much information did we learn?

?How much uncertainty did we have before?
How much uncertainty did we have after

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

Let's think about encodings

000 001 011010 101100

{ 1,   2,   3,   4,   5,   6,   7,   8 }

111110

000 001 011010 101100

{ 1,   2,   3,   4,   5,   6,   7,   8 }
111110

After:

Before: Do you notice something

?

(binary encoding with 
atypical 1-indexing)

• Before the message:
• After the message:

EXAMPLE 2: We roll an unbiased 8-sided die with sides {1,2, ...,8} .

We then get a message with the information that the outcome of a roll is even.
How much information did we learn?

𝐻$ 8 = 3 bits
𝐻$ 4 = 2 bits

There are 8 choices: {1,2,3,4,5,6,7,8}
There are 4 choices: {2,4,6,8}

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

Let's think about encodings

000 001 011010 101100

{ 1,   2,   3,   4,   5,   6,   7,   8 }

111110

000 001 011010 101100

{ 1,   2,   3,   4,   5,   6,   7,   8 }
111110

After:

Before:
We have learned 1 bit! ??1

• Before the message:
• After the message:

EXAMPLE 2: We roll an unbiased 8-sided die with sides {1,2, ...,8} .

We then get a message with the information that the outcome of a roll is even.
How much information did we learn?

"Grouping rule": Dividing the outcomes into 
two (last bit), randomly choose one group 
(e.g. 1), and then randomly pick an element 
from that group (e.g. 111), gives same 
entropy as picking 111 from the start.

𝐻$ 8 = 3 bits
𝐻$ 4 = 2 bits

There are 8 choices: {1,2,3,4,5,6,7,8}
There are 4 choices: {2,4,6,8}

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

Recall: information is additive:

1 flip of a 2-sided coin has 2 outcomes.

2 flips have 2" = 4 outcomes.

lg 2 = 1

lg 4 = 2

• Before the message:
• After the message:

EXAMPLE 2: We roll an unbiased 8-sided die with sides {1,2, ...,8} .

We then get a message with the information that the outcome of a roll is even.
How much information did we learn?

3 flips have 2# = 8 outcomes. lg 8 = 3

+1 bit

+1 bit 

𝐻$ 8 = 3 bits
𝐻$ 4 = 2 bits

There are 8 choices: {1,2,3,4,5,6,7,8}
There are 4 choices: {2,4,6,8}

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

• Before the message:

The power of the logarithm: transform multiplication into addition

• After the message:

Uncertainty before −	Uncertainty after

lg 8 	−	 lg 4

lg 4
&
= lg 2 = 1 bit

Information content in a message 
𝑈	that reduces the number of 
unbiased outcomes from 𝑛 to 𝑚

lg 5
6

 𝐻 𝑈 =

EXAMPLE 2: We roll an unbiased 8-sided die with sides {1,2, ...,8} .

We then get a message with the information that the outcome of a roll is even.
How much information did we learn?

𝐻$ 8 = 3 bits
𝐻$ 4 = 2 bits

There are 8 choices: {1,2,3,4,5,6,7,8}
There are 4 choices: {2,4,6,8}

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

?
We then get 4 messages, one after the other: 𝑈! =	"The outcome of the roll is 
not 1", 𝑈" =	"... not 3", 𝑈# =	"... not 5", 𝑈& =	"... not 7".

EXAMPLE 3: We roll an unbiased 8-sided die with sides {1,2, ...,8} .

How much information do we learn from each individual message?

?
?
?
?

𝐻 𝑈! = 

𝐻 𝑈#|𝑈! = 

𝐻 𝑈$|𝑈!,# = 

𝐻 𝑈&|𝑈!'$ = 

These are called "conditional entropies"!

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

𝐻 𝑈! = 

𝐻 𝑈#|𝑈! = 

𝐻 𝑈$|𝑈!,# = 

𝐻 𝑈&|𝑈!'$ = 

EXAMPLE 3: We roll an unbiased 8-sided die with sides {1,2, ...,8} .

We then get 4 messages, one after the other: 𝑈! =	"The outcome of the roll is 
not 1", 𝑈" =	"... not 3", 𝑈# =	"... not 5", 𝑈& =	"... not 7".
How much information do we learn from each individual message?

?
?
?

lg (
)

 = 0.193 bits

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

𝐻 𝑈! = 

𝐻 𝑈#|𝑈! = 

𝐻 𝑈$|𝑈!,# = 

𝐻 𝑈&|𝑈!'$ = 

EXAMPLE 3: We roll an unbiased 8-sided die with sides {1,2, ...,8} .

We then get 4 messages, one after the other: 𝑈! =	"The outcome of the roll is 
not 1", 𝑈" =	"... not 3", 𝑈# =	"... not 5", 𝑈& =	"... not 7".
How much information do we learn from each individual message?

lg (
)

 

lg )
*

 

lg *
+

 

lg +
&

 

= 0.193 bits

= 0.222 bits

= 0.263 bits

= 0.322 bits

?... and all of them together?

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

𝐻 𝑈! = 

𝐻 𝑈#|𝑈! = 

𝐻 𝑈$|𝑈!,# = 

𝐻 𝑈&|𝑈!'$ = 

𝐻 {𝑈!, 𝑈#, 𝑈$, 𝑈&}  

EXAMPLE 3: We roll an unbiased 8-sided die with sides {1,2, ...,8} .

We then get 4 messages, one after the other: 𝑈! =	"The outcome of the roll is 
not 1", 𝑈" =	"... not 3", 𝑈# =	"... not 5", 𝑈& =	"... not 7".
How much information do we learn from each individual message?

... and all of them together?

= 1 bit

How come that the SUM of these numbers 
turns out to be soooo nice?

?

lg (
)

 

lg )
*

 

lg *
+

 

lg +
&

 

= 0.193 bits

= 0.222 bits

= 0.263 bits

= 0.322 bits

https://northeastern-datalab.github.io/cs7840/


63Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Learning partial information

𝐻 𝑈! = 

𝐻 𝑈#|𝑈! = 

𝐻 𝑈$|𝑈!,# = 

𝐻 𝑈&|𝑈!'$ = 

𝐻 {𝑈!, 𝑈#, 𝑈$, 𝑈&}  

= 𝐻 𝑈! +𝐻 𝑈#|𝑈! +𝐻 𝑈$|𝑈!,# +𝐻 𝑈&|𝑈!'$  

𝐻 {𝑈!, 𝑈#, 𝑈$, 𝑈&}  

EXAMPLE 3: We roll an unbiased 8-sided die with sides {1,2, ...,8} .

We then get 4 messages, one after the other: 𝑈! =	"The outcome of the roll is 
not 1", 𝑈" =	"... not 3", 𝑈# =	"... not 5", 𝑈& =	"... not 7".
How much information do we learn from each individual message?

... and all of them together?

= 1 bit

This is called the "chain rule"

lg (
)

 

lg )
*

 

lg *
+

 

lg +
&

 

= 0.193 bits

= 0.222 bits

= 0.263 bits

= 0.322 bits

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

𝐻 𝑈! = 

𝐻 𝑈#|𝑈! = 

𝐻 𝑈$|𝑈!,# = 

𝐻 𝑈&|𝑈!'$ = 

𝐻 {𝑈!, 𝑈#, 𝑈$, 𝑈&}  

= 𝐻 𝑈! +𝐻 𝑈#|𝑈! +𝐻 𝑈$|𝑈!,# +𝐻 𝑈&|𝑈!'$  

= lg (
) + lg )

* + lg *
+ + lg +

&
 

𝐻 {𝑈!, 𝑈#, 𝑈$, 𝑈&}  

EXAMPLE 3: We roll an unbiased 8-sided die with sides {1,2, ...,8} .

We then get 4 messages, one after the other: 𝑈! =	"The outcome of the roll is 
not 1", 𝑈" =	"... not 3", 𝑈# =	"... not 5", 𝑈& =	"... not 7".
How much information do we learn from each individual message?

... and all of them together?

= 1 bit
?= 

lg (
)

 

lg )
*

 

lg *
+

 

lg +
&

 

= 0.193 bits

= 0.222 bits

= 0.263 bits

= 0.322 bits

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

𝐻 𝑈! = 

𝐻 𝑈#|𝑈! = 

𝐻 𝑈$|𝑈!,# = 

𝐻 𝑈&|𝑈!'$ = = 1 bit

𝐻 {𝑈!, 𝑈#, 𝑈$, 𝑈&}  

= 𝐻 𝑈! +𝐻 𝑈#|𝑈! +𝐻 𝑈$|𝑈!,# +𝐻 𝑈&|𝑈!'$  

= lg (
) + lg )

* + lg *
+ + lg +

&
 

= lg (
) ⋅

)
* ⋅

*
+ ⋅

+
&

 

𝐻 {𝑈!, 𝑈#, 𝑈$, 𝑈&}  

= lg (
&

 

EXAMPLE 3: We roll an unbiased 8-sided die with sides {1,2, ...,8} .

We then get 4 messages, one after the other: 𝑈! =	"The outcome of the roll is 
not 1", 𝑈" =	"... not 3", 𝑈# =	"... not 5", 𝑈& =	"... not 7".
How much information do we learn from each individual message?

... and all of them together?

Again, the logarithm J= 1 bit

lg (
)

 

lg )
*

 

lg *
+

 

lg +
&

 

= 0.193 bits

= 0.222 bits

= 0.263 bits

= 0.322 bits

https://northeastern-datalab.github.io/cs7840/
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Maximum Entropy
distributions

(with a bit of Calculus)

https://northeastern-datalab.github.io/cs7840/
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𝐻/ 𝑝 =	

Binary Entropy Function

?

Biased coin flip:

𝑋	is a Bernoulli RV with 𝑝 𝑥 = W𝑝, if	𝑥 = 1
1 − 𝑝, if	𝑥 = 0

https://northeastern-datalab.github.io/cs7840/
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𝐻/ 𝑝 = −𝑝 ⋅ lg 𝑝 − 1 − 𝑝 ⋅ lg(1 − 𝑝) 

Binary Entropy Function

How to choose 𝑝 in order to maximize entropy?

Binary entropy function

𝑋	is a Bernoulli RV with 𝑝 𝑥 = W𝑝, if	𝑥 = 1
1 − 𝑝, if	𝑥 = 0

𝐻! 𝑝

−𝑝 ⋅ lg 𝑝

− lg 𝑝

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb
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𝐻/ 𝑝 = −𝑝 ⋅ lg 𝑝 − 1 − 𝑝 ⋅ lg(1 − 𝑝) 

Binary Entropy Function

How to choose 𝑝 in order to maximize entropy?

78
79
= ?

lg 𝑥 ′ =

lg(1 − 𝑥)! =

𝑥 ⋅ lg 𝑥 ! =

(1 − 𝑥) ⋅ lg 1 − 𝑥 ! =

"# $
"# %

!
= 

ln 𝑥 ′ =

lg 𝑥 = log%(𝑥) =
"# $
"# %

 

Understanding "change of basis"

? ?

Calculus 
cheat 
sheet

Binary entropy function

𝑋	is a Bernoulli RV with 𝑝 𝑥 = W𝑝, if	𝑥 = 1
1 − 𝑝, if	𝑥 = 0

𝐻! 𝑝

−𝑝 ⋅ lg 𝑝

− lg 𝑝

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

How do you derive that

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb
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Binary entropy function

𝐻/ 𝑝 = −𝑝 ⋅ lg 𝑝 − 1 − 𝑝 ⋅ lg(1 − 𝑝) 

Binary Entropy Function

How to choose 𝑝 in order to maximize entropy?

78
79
= ?

lg 𝑥 ′ =

lg(1 − 𝑥)! =

𝑥 ⋅ lg 𝑥 ! =

(1 − 𝑥) ⋅ lg 1 − 𝑥 ! =

"# $
"# %

!
= 

ln 𝑥 ′ =

lg 𝑥 = log%(𝑥) =
"# $
"# %

 

2"&'!($) =

log%(𝑥) ⋅ ln 2 = ln(𝑥) 

definition

apply ln(...) 
on both sides

Understanding "change of basis"

𝑥
ln 2"&'!($) = ln(𝑥) log(ab) = b	⋅	log(a) 

Calculus 
cheat 
sheet

?

𝑋	is a Bernoulli RV with 𝑝 𝑥 = W𝑝, if	𝑥 = 1
1 − 𝑝, if	𝑥 = 0

𝐻! 𝑝

−𝑝 ⋅ lg 𝑝

− lg 𝑝

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb
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𝐻/ 𝑝 = −𝑝 ⋅ lg 𝑝 − 1 − 𝑝 ⋅ lg(1 − 𝑝) 

Binary Entropy Function

How to choose 𝑝 in order to maximize entropy?

78
79
= ?

lg 𝑥 ′ =

lg(1 − 𝑥)! =

𝑥 ⋅ lg 𝑥 ! =

(1 − 𝑥) ⋅ lg 1 − 𝑥 ! =

*
$⋅"#(%)

 

− *
(*,$)⋅"#(%)

 

𝑥 *
$ "# %

+ 

− *
"# %

− lg 1 − 𝑥  

"# $
"# %

!
= 

ln 𝑥 ′ = *
$
 Calculus 

cheat 
sheet

lg 𝑥  

Binary entropy function

𝑋	is a Bernoulli RV with 𝑝 𝑥 = W𝑝, if	𝑥 = 1
1 − 𝑝, if	𝑥 = 0

𝐻! 𝑝

−𝑝 ⋅ lg 𝑝

− lg 𝑝

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb
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𝐻/ 𝑝 = −𝑝 ⋅ lg 𝑝 − 1 − 𝑝 ⋅ lg(1 − 𝑝) 

Binary Entropy Function

𝑋	is a Bernoulli RV with 𝑝 𝑥 = W𝑝, if	𝑥 = 1
1 − 𝑝, if	𝑥 = 0

How to choose 𝑝 in order to maximize entropy?

78
79
= 

lg 𝑥 ′ =

lg(1 − 𝑥)! =

𝑥 ⋅ lg 𝑥 ! =

(1 − 𝑥) ⋅ lg 1 − 𝑥 ! =

Calculus 
cheat 
sheet *

$⋅"#(%)
 

− *
(*,$)⋅"#(%)

 

𝑥 *
$ "# %

+ lg 𝑥  

− *
"# %

− lg 1 − 𝑥  

"# $
"# %

!
= 

ln 𝑥 ′ = *
$
 

− !
GH "

− lg 𝑝 +	 !
GH "

+ lg 1 − 𝑝  

Binary entropy function

𝐻! 𝑝

−𝑝 ⋅ lg 𝑝

− lg 𝑝

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb
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𝐻/ 𝑝 = −𝑝 ⋅ lg 𝑝 − 1 − 𝑝 ⋅ lg(1 − 𝑝) 

Binary Entropy Function

How to choose 𝑝 in order to maximize entropy?

78
79
= 

lg 𝑥 ′ =

lg(1 − 𝑥)! =

𝑥 ⋅ lg 𝑥 ! =

(1 − 𝑥) ⋅ lg 1 − 𝑥 ! =

*
$⋅"#(%)

 

− *
(*,$)⋅"#(%)

 

𝑥 *
$ "# %

+ lg 𝑥  

− *
"# %

− lg 1 − 𝑥  

"# $
"# %

!
= 

ln 𝑥 ′ = *
$
 

− !
GH "

− lg 𝑝 +	 !
GH "

+ lg 1 − 𝑝  = 0  

7!8
79!

= 

lg !I9
9

= 0 ⇔ !I9
9

= 1 ⇔ 𝑝 = !
"
  ⇔

?

Calculus 
cheat 
sheet

Binary entropy function

𝑋	is a Bernoulli RV with 𝑝 𝑥 = W𝑝, if	𝑥 = 1
1 − 𝑝, if	𝑥 = 0

𝐻! 𝑝

−𝑝 ⋅ lg 𝑝

− lg 𝑝

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb
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𝐻/ 𝑝 = −𝑝 ⋅ lg 𝑝 − 1 − 𝑝 ⋅ lg(1 − 𝑝) 

Binary Entropy Function

How to choose 𝑝 in order to maximize entropy?

78
79
= 

lg 𝑥 ′ =

lg(1 − 𝑥)! =

𝑥 ⋅ lg 𝑥 ! =

(1 − 𝑥) ⋅ lg 1 − 𝑥 ! =

*
$⋅"#(%)

 

− *
(*,$)⋅"#(%)

 

𝑥 *
$ "# %

+ lg 𝑥  

− *
"# %

− lg 1 − 𝑥  

"# $
"# %

!
= 

ln 𝑥 ′ = *
$
 

− !
GH "

− lg 𝑝 +	 !
GH "

+ lg 1 − 𝑝  = 0  

7!8
79!

= − !
9⋅GH "

− !
!I9 ⋅GH "

 < 0 

lg !I9
9

= 0 ⇔ !I9
9

= 1 ⇔ 𝑝 = !
"
  ⇔

concave

Calculus 
cheat 
sheet

Binary entropy function

𝑋	is a Bernoulli RV with 𝑝 𝑥 = W𝑝, if	𝑥 = 1
1 − 𝑝, if	𝑥 = 0

𝐻! 𝑝

−𝑝 ⋅ lg 𝑝

− lg 𝑝

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb
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Interaction with https://chatgpt.com/ (ChatGPT 4o mini, 9/2024)

Asking ChatGPT for help

…

?
ChatGPT made the *same* mistake as me!

https://northeastern-datalab.github.io/cs7840/
https://chatgpt.com/
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Interaction with https://chatgpt.com/ (ChatGPT 4o mini, 9/2024)

Asking ChatGPT for help

…

…

https://northeastern-datalab.github.io/cs7840/
https://chatgpt.com/
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Maximum Entropy distribution for nonbinary discrete RV

Entropy of a discrete distribution with 𝑛 outcomes
Which choice of 𝐩 = (𝑝!, … , 𝑝5) maximizes the entropy?

−8
23!

4

𝑝2 ⋅ lg 𝑝2𝐻 𝐩 =

?

https://northeastern-datalab.github.io/cs7840/
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Maximum Entropy distribution for nonbinary discrete RV

Entropy of a discrete distribution with 𝑛 outcomes
Which choice of 𝐩 = (𝑝!, … , 𝑝5) maximizes the entropy?

−8
23!

4

𝑝2 ⋅ lg 𝑝2𝐻 𝐩 =

8
23!

4

𝑝2 = 1s.t.
Form the Lagrangian:

max
𝐩
	[𝐻 𝐩 ]Can be solved with constrained optimization: 

?

https://northeastern-datalab.github.io/cs7840/
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Maximum Entropy distribution for nonbinary discrete RV

Entropy of a discrete distribution with 𝑛 outcomes
Which choice of 𝐩 = (𝑝!, … , 𝑝5) maximizes the entropy?

−8
23!

4

𝑝2 ⋅ lg 𝑝2𝐻 𝐩 =

8
23!

4

𝑝2 = 1s.t.
Form the Lagrangian:

𝐽 𝐩, 𝜆 = −'
#$%

&

𝑝# ⋅ lg 𝑝# + 𝜆 '
#$%

&

𝑝# − 1

max
𝐩
	[𝐻 𝐩 ]Can be solved with constrained optimization: 

𝜕𝐽
𝜕𝑝#

=

lg 𝑥 ′ =

𝑥 ⋅ lg 𝑥 ! =

Calculus 
exercise *

$⋅"#(%)
 

*
"# %

+ lg 𝑥  

"# $
"# %

!
= 

ln 𝑥 ′ = *
$
 ?

https://northeastern-datalab.github.io/cs7840/
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Maximum Entropy distribution for nonbinary discrete RV

Entropy of a discrete distribution with 𝑛 outcomes
Which choice of 𝐩 = (𝑝!, … , 𝑝5) maximizes the entropy?

−8
23!

4

𝑝2 ⋅ lg 𝑝2𝐻 𝐩 =

8
23!

4

𝑝2 = 1s.t.
Form the Lagrangian:

𝐽 𝐩, 𝜆 = −'
#$%

&

𝑝# ⋅ lg 𝑝# + 𝜆 '
#$%

&

𝑝# − 1

max
𝐩
	[𝐻 𝐩 ]Can be solved with constrained optimization: 

𝜕𝐽
𝜕𝑝#

=

lg 𝑝# = 𝜆 −
1

ln 2 𝑝# = 2'(
%

)* +

What next?

⇔

= 0

⇔

−
1

ln 2 − lg 𝑝# + 𝜆

?
lg 𝑥 ′ =

𝑥 ⋅ lg 𝑥 ! =

Calculus 
exercise *

$⋅"#(%)
 

*
"# %

+ lg 𝑥  

"# $
"# %

!
= 

ln 𝑥 ′ = *
$
 

https://northeastern-datalab.github.io/cs7840/
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Maximum Entropy distribution for nonbinary discrete RV

Entropy of a discrete distribution with 𝑛 outcomes
Which choice of 𝐩 = (𝑝!, … , 𝑝5) maximizes the entropy?

−8
23!

4

𝑝2 ⋅ lg 𝑝2𝐻 𝐩 =

8
23!

4

𝑝2 = 1s.t.
Form the Lagrangian:

𝐽 𝐩, 𝜆 = −'
#$%

&

𝑝# ⋅ lg 𝑝# + 𝜆 '
#$%

&

𝑝# − 1

max
𝐩
	[𝐻 𝐩 ]Can be solved with constrained optimization: 

𝜕𝐽
𝜕𝑝#

=

lg 𝑝# = 𝜆 −
1

ln 2 𝑝# = 2'(
%

)* +

we are done J, all 𝑝2 are identical!

'
#$%

&

𝑝# = 1 '
#$%

&

𝐶 = 1 𝐶 =
1
𝑛

⇔

= 0

⇔ =:𝐶

⇔ ⇔

−
1

ln 2 − lg 𝑝# + 𝜆

lg 𝑥 ′ =

𝑥 ⋅ lg 𝑥 ! =

Calculus 
exercise *

$⋅"#(%)
 

*
"# %

+ lg 𝑥  

"# $
"# %

!
= 

ln 𝑥 ′ = *
$
 

https://northeastern-datalab.github.io/cs7840/
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Nice video on Optimization w/ Lagrangian Multipliers

Serpentine Integral: "Understanding Lagrange Multipliers Visually", https://www.youtube.com/watch?v=5A39Ht9Wcu0 

https://northeastern-datalab.github.io/cs7840/
https://www.youtube.com/watch?v=5A39Ht9Wcu0
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Properties
of information (entropy)
by example (continued)

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

We get two messages: 𝑈! that the outcome of a roll is even, 𝑈" that the outcome 
of the same roll is ≤ 4. How much information did we learn after each message?

EXAMPLE 4: We again roll the unbiased 8-sided die with sides 𝒳={1,2, ...,8} .

𝐻 𝑈! = 

𝐻 𝑈# = 

𝐻 𝑈#|𝑈! = 

?
?
?
?

https://northeastern-datalab.github.io/cs7840/
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Learning partial information
EXAMPLE 4: We again roll the unbiased 8-sided die with sides 𝒳={1,2, ...,8} .

𝐻 𝑈! = 

𝐻 𝑈# = 

𝐻 𝑈#|𝑈! = 

lg (
&

 

lg (
&

 

lg &
#

 

= 1 bit

= 1 bit

= 1 bit

𝐻 𝑈#|𝑈! = 𝐻 𝑈# = 1
?

We get two messages: 𝑈! that the outcome of a roll is even, 𝑈" that the outcome 
of the same roll is ≤ 4. How much information did we learn after each message?

https://northeastern-datalab.github.io/cs7840/
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Learning partial information
EXAMPLE 4: We again roll the unbiased 8-sided die with sides 𝒳={1,2, ...,8} .

𝐻 𝑈! = 

𝐻 𝑈# = 

𝐻 𝑈#|𝑈! = 

lg (
&

 

lg (
&

 

lg &
#

 

= 1 bit

= 1 bit

= 1 bit

1 2
3 4
5 6
7 8

𝐻 𝑈#|𝑈! = 𝐻 𝑈# = 1

We get two messages: 𝑈! that the outcome of a roll is even, 𝑈" that the outcome 
of the same roll is ≤ 4. How much information did we learn after each message?

messages are independent How do the messages 
reduce the possible 
outcomes? ?

https://northeastern-datalab.github.io/cs7840/
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Learning partial information
EXAMPLE 4: We again roll the unbiased 8-sided die with sides 𝒳={1,2, ...,8} .

𝐻 𝑈! = 

𝐻 𝑈# = 

𝐻 𝑈#|𝑈! = 

lg (
&

 

lg (
&

 

lg &
#

 

= 1 bit

= 1 bit

= 1 bit

1 2
3 4
5 6
7 8

𝑈!

𝐻 𝑈#|𝑈! = 𝐻 𝑈# = 1

We get two messages: 𝑈! that the outcome of a roll is even, 𝑈" that the outcome 
of the same roll is ≤ 4. How much information did we learn after each message?

messages are independent

https://northeastern-datalab.github.io/cs7840/
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Learning partial information
EXAMPLE 4: We again roll the unbiased 8-sided die with sides 𝒳={1,2, ...,8} .

𝐻 𝑈! = 

𝐻 𝑈# = 

𝐻 𝑈#|𝑈! = 

lg (
&

 

lg (
&

 

lg &
#

 

= 1 bit

= 1 bit

= 1 bit

1 2
3 4
5 6
7 8

𝑈!

𝑈#
𝐻 𝑈#|𝑈! = 𝐻 𝑈# = 1

probability of the event 𝑋 ≤ 4

We get two messages: 𝑈! that the outcome of a roll is even, 𝑈" that the outcome 
of the same roll is ≤ 4. How much information did we learn after each message?

messages are independent

𝑝 𝑈#|𝑈! = 𝑝 𝑈# = !
#
 

the events are independent

https://northeastern-datalab.github.io/cs7840/
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Learning partial information
EXAMPLE 4: We again roll the unbiased 8-sided die with sides 𝒳={1,2, ...,8} .

𝐻 𝑈! = 

𝐻 𝑈# = 

𝐻 𝑈#|𝑈! = 

lg (
&

 

lg (
&

 

lg &
#

 

= 1 bit

= 1 bit

= 1 bit

𝐻 {𝑈!, 𝑈#}  

000 001 011010 101100
{ 1,   2,   3,   4,   5,   6,   7,   8 }

111110

1 2
3 4
5 6
7 8

𝑈!

𝑈#

We learned 2 bits 
independently

0?1

= 𝐻 𝑈! +𝐻 𝑈#|𝑈!
= 𝐻 𝑈! +𝐻 𝑈#

𝐻 𝑈#|𝑈! = 𝐻 𝑈# = 1

probability of the event 𝑋 ≤ 4

We get two messages: 𝑈! that the outcome of a roll is even, 𝑈" that the outcome 
of the same roll is ≤ 4. How much information did we learn after each message?

messages are independent

𝑝 𝑈#|𝑈! = 𝑝 𝑈# = !
#
 

the events are independent

𝑈* and 𝑈% are independent

https://northeastern-datalab.github.io/cs7840/


103Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Joint entropy, 
Conditional entropy,
Mutual information

https://northeastern-datalab.github.io/cs7840/
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Entropy

𝐻 𝑋 = 𝔼 lg
1

𝑝(𝑋)
8
5

	

𝑝(𝑥) ⋅ lg
1

𝑝(𝑥)
=

Given a discrete RV 𝑋 with probability mass function (PMF) 𝑝 𝑥 = ℙ 𝑋 = 𝑥 , 
for 𝑥 ∈ 𝒳. Entropy is defined as:

Entropy is label-invariant, meaning that it depends only on the probability 
distribution and not on the actual values that the random variable 𝑋 can take.

Alternative notation: 𝑝 𝑋 = 𝑝-(𝑥). Also: 
𝔼. …  or 𝔼-[… ] or 𝔼-~.[… ] for the expected 
value operator w.r.t. the distribution 𝑝

𝒳= {1, 2, 3, 4} 

𝒳= {A, T, G, C}

Figure source: https://www.amoebasisters.com/parameciumparlorcomics/dna-alphabet 

https://northeastern-datalab.github.io/cs7840/
https://www.amoebasisters.com/parameciumparlorcomics/dna-alphabet
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Joint Entropy
Given two RVs 𝑋 and 𝑌 with PMF 𝑝 𝑋, 𝑌 , their joint entropy is:

If 𝑋 and 𝑌 are independent:

𝐻 𝑋, 𝑌 = 𝔼 lg
1

𝑝(𝑋, 𝑌)
= 8

5

	

8
7

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝(𝑥, 𝑦)

𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻(𝑌)

How can we prove that??

treat (𝑋, 𝑌) just like a single vector-valued RV 𝑍 = ⟨𝑋, 𝑌⟩

Other notation: 𝑝 𝑋, 𝑌 = 𝑝",$(𝑥, 𝑦). 
Also: 𝔼",$~&[… ] or 𝔼",$~&[… ] or 𝔼&[… ] 

https://northeastern-datalab.github.io/cs7840/
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Joint Entropy
Given two RVs 𝑋 and 𝑌 with PMF 𝑝 𝑋, 𝑌 , their joint entropy is:

𝐻 𝑋, 𝑌 = 𝔼 lg
1

𝑝(𝑋, 𝑌)
= 8

5

	

8
7

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝(𝑥, 𝑦)

𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻(𝑌) = 𝔼 lg
1

𝑝(𝑋, 𝑌)
𝐻 𝑋, 𝑌

= 𝔼 lg
1

𝑝 𝑋 ⋅ 𝑝(𝑌)

= 𝔼 lg
1

𝑝 𝑋
+ 𝔼 lg

1
𝑝 𝑌

= 	 𝐻 𝑋)	 + 	 𝐻(𝑌   

= 𝔼 lg
1

𝑝 𝑋
+ lg

1
𝑝 𝑌

If 𝑋 and 𝑌 are independent:

Other notation: 𝑝 𝑋, 𝑌 = 𝑝",$(𝑥, 𝑦). 
Also: 𝔼",$~&[… ] or 𝔼",$~&[… ] or 𝔼&[… ] 

https://northeastern-datalab.github.io/cs7840/
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Pre-class conversations

• Last class recapitulation
• "Serendipity"
• Why even old slide decks still get updated
• Any questions on organization or projects? Thoughts on 

interactivity?

• Today: 
- Keep pen & paper ready for hands-on calculus, logarithm
- Intuition behind entropy with examples continued 
- Together with the general principles of entropy

https://northeastern-datalab.github.io/cs7840/
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Joint entropy, 
Conditional entropy,
Mutual information

(continued)

https://northeastern-datalab.github.io/cs7840/
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Conditional Entropy, Chain rule of Entropy
Given two RVs 𝑋 and 𝑌 with PMF 𝑝 𝑋, 𝑌 , their joint entropy is:

𝐻 𝑋, 𝑌 = 𝔼 lg
1

𝑝(𝑋, 𝑌)
= 8

5

	

8
7

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝(𝑥, 𝑦)

𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻(𝑌)

If 𝑋 and 𝑌 are not independent, observing 𝑋	might 
contain already some information about 𝑌, so simply 
adding the information from each would overcount.

?What do we 
need to do?

If 𝑋 and 𝑌 are not independent:

https://northeastern-datalab.github.io/cs7840/
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Conditional Entropy, Chain rule of Entropy

𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 𝑋

Conditional entropy 𝐻 𝑌 𝑋 : the expected 
amount of information needed to describe 
the outcome of RV 𝑌 given that the value 
of another RV 𝑋 is known

𝐻 𝑋, 𝑌 = 𝔼 lg
1

𝑝(𝑋, 𝑌)
= 8

5

	

8
7

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝(𝑥, 𝑦)

Given two RVs 𝑋 and 𝑌 with PMF 𝑝 𝑋, 𝑌 , their joint entropy is:

If 𝑋 and 𝑌 are not independent:

𝐻 𝑌 𝑋 = ?

https://northeastern-datalab.github.io/cs7840/
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Conditional Entropy, Chain rule of Entropy

𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 𝑋

Conditional entropy 𝐻 𝑌 𝑋 : the expected 
amount of information needed to describe 
the outcome of RV 𝑌 given that the value 
of another RV 𝑋 is known

𝐻 𝑋, 𝑌 = 𝔼 lg
1

𝑝(𝑋, 𝑌)
= 8

5

	

8
7

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝(𝑥, 𝑦)

Given two RVs 𝑋 and 𝑌 with PMF 𝑝 𝑋, 𝑌 , their joint entropy is:

If 𝑋 and 𝑌 are not independent:
𝐻 𝑋, 𝑌 =

𝐻(𝑌|𝑋) ="
!,#

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝(𝑦|𝑥)
DEFINITION of 
conditional entropy

= 𝔼& ' 𝐻 𝑌 𝑋 = 𝑥  𝐻 𝑌 𝑋 = F
'

	

𝑝(𝑥) ⋅ 𝐻 𝑌 𝑋 = 𝑥

?

https://northeastern-datalab.github.io/cs7840/
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Conditional Entropy, Chain rule of Entropy

𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 𝑋

Conditional entropy 𝐻 𝑌 𝑋 : the expected 
amount of information needed to describe 
the outcome of RV 𝑌 given that the value 
of another RV 𝑋 is known

𝐻 𝑋, 𝑌 = 𝔼 lg
1

𝑝(𝑋, 𝑌)
= 8

5

	

8
7

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝(𝑥, 𝑦)

Given two RVs 𝑋 and 𝑌 with PMF 𝑝 𝑋, 𝑌 , their joint entropy is:

If 𝑋 and 𝑌 are not independent:
=6

!

	

6
#

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝(𝑥, 𝑦)
𝐻 𝑋, 𝑌

=6
!

	

6
#

	

𝑝 𝑥 ⋅ 𝑝(𝑦|𝑥) ⋅ lg
1

𝑝 𝑥 ⋅ 𝑝(𝑦|𝑥)

=6
!

	

6
#

	

𝑝 𝑥 ⋅ 𝑝(𝑦|𝑥) ⋅ lg
1

𝑝 𝑥
+6

!

	

6
#

	

𝑝 𝑥 ⋅ 𝑝(𝑦|𝑥) ⋅ lg
1

𝑝(𝑦|𝑥)

=6
!

	

𝑝 𝑥 ⋅ lg
1

𝑝 𝑥
⋅6
#

	

𝑝(𝑦|𝑥) +6
!

	

𝑝 𝑥 ⋅6
#

	

𝑝 𝑦|𝑥 ⋅ lg
1

𝑝(𝑦|𝑥)

𝐻(𝑌|𝑋 = 𝑥)1𝐻(𝑋)

𝐻(𝑌|𝑋) ="
!,#

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝(𝑦|𝑥)
DEFINITION of 
conditional entropy

= 𝔼& ' 𝐻 𝑌 𝑋 = 𝑥  𝐻 𝑌 𝑋 = F
'

	

𝑝(𝑥) ⋅ 𝐻 𝑌 𝑋 = 𝑥

https://northeastern-datalab.github.io/cs7840/
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Chain rule for entropy

𝐻 𝑋, 𝑌, 𝑍 = 𝐻 𝑋) + 𝐻(𝑌|𝑋 + 𝐻(𝑍|𝑋, 𝑌) 

𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 𝑋
conditional entropy

... obvious generalization to 
a chain of (not necessarily 
independent) observations

If 𝑋 and 𝑌 are not independent:

Also notice the similarity to our earlier 
probability factorizations, and Bayes' law:

ℙ 𝐴, 𝐵 = ℙ 𝐵|𝐴 ⋅ ℙ 𝐴  

= ℙ 𝐴|𝐵 ⋅ ℙ 𝐵  

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

We then get a message 𝑈: "The outcome of the roll is even, and by the way, the 
next president of the US will be ...". Assuming two equally likely outcomes for 
the election, how much information did we learn?

EXAMPLE 5: We again roll the unbiased 8-sided die with sides 𝒳={1,2, ...,8} .

?

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

We then get a message 𝑈: "The outcome of the roll is even, and by the way, the 
next president of the US will be ...". Assuming two equally likely outcomes for 
the election, how much information did we learn?

EXAMPLE 5: We again roll the unbiased 8-sided die with sides 𝒳={1,2, ...,8} .

?

We learned 2 bits
(𝑈	contains 2 bits)

How do these numbers add up?

• We still learn 3-2=1 bit about the roll of the die 𝑋.
• We also learn 1 bit about the election outcome.

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

We then get a message 𝑈: "The outcome of the roll is even, and by the way, the 
next president of the US will be ...". Assuming two equally likely outcomes for 
the election, how much information did we learn?

EXAMPLE 5: We again roll the unbiased 8-sided die with sides 𝒳={1,2, ...,8} .

𝐻 𝑋 =3
𝐻 𝑈 =2

Information contained 
in message 𝑈

Uncertainty in the 
outcome of the roll 𝑋

?

We learned 2 bits
(𝑈	contains 2 bits)

How do these numbers add up?

• We still learn 3-2=1 bit about the roll of the die 𝑋.
• We also learn 1 bit about the election outcome.

Uncertainty 𝑋	after 
we see the message 𝑈

Bar diagrams inspired by Fig 8.1 in "MacKay. Information Theory, Inference, and learning Algorithms. Cambridge University Press, 2002." https://www.inference.org.uk/itprnn/book.pdf 

https://northeastern-datalab.github.io/cs7840/
https://www.inference.org.uk/itprnn/book.pdf
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Learning partial information

We then get a message 𝑈: "The outcome of the roll is even, and by the way, the 
next president of the US will be ...". Assuming two equally likely outcomes for 
the election, how much information did we learn?

EXAMPLE 5: We again roll the unbiased 8-sided die with sides 𝒳={1,2, ...,8} .

𝐻 𝑋 =3
𝐻 𝑈 =2𝐻 𝑋|𝑈 =2

Uncertainty 𝑋	after 
we see the message 𝑈

Information contained 
in message 𝑈

Uncertainty in the 
outcome of the roll 𝑋

?

We learned 2 bits
(𝑈	contains 2 bits)

How do these numbers add up?

• We still learn 3-2=1 bit about the roll of the die 𝑋.
• We also learn 1 bit about the election outcome.

Bar diagrams inspired by Fig 8.1 in "MacKay. Information Theory, Inference, and learning Algorithms. Cambridge University Press, 2002." https://www.inference.org.uk/itprnn/book.pdf 

https://northeastern-datalab.github.io/cs7840/
https://www.inference.org.uk/itprnn/book.pdf
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Learning partial information

We then get a message 𝑈: "The outcome of the roll is even, and by the way, the 
next president of the US will be ...". Assuming two equally likely outcomes for 
the election, how much information did we learn?

EXAMPLE 5: We again roll the unbiased 8-sided die with sides 𝒳={1,2, ...,8} .

𝐻 𝑋 =3
𝐻 𝑈 =2𝐻 𝑋|𝑈 =2

?Uncertainty 𝑋	after 
we see the message 𝑈

Information contained 
in message 𝑈

Uncertainty in the 
outcome of the roll 𝑋

Additional information 
in message 𝑈 that is 
unrelated to 𝑋

𝐼 𝑋; 𝑈 =1

We learned 2 bits
(𝑈	contains 2 bits)

How do these numbers add up?

• We still learn 3-2=1 bit about the roll of the die 𝑋.
• We also learn 1 bit about the election outcome.

Mutual information between 𝑋 and 𝑈: what 
we learn about 𝑋 after seeing 𝑈 (or v.v.)

Bar diagrams inspired by Fig 8.1 in "MacKay. Information Theory, Inference, and learning Algorithms. Cambridge University Press, 2002." https://www.inference.org.uk/itprnn/book.pdf 

https://northeastern-datalab.github.io/cs7840/
https://www.inference.org.uk/itprnn/book.pdf
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Learning partial information

We then get a message 𝑈: "The outcome of the roll is even, and by the way, the 
next president of the US will be ...". Assuming two equally likely outcomes for 
the election, how much information did we learn?

EXAMPLE 5: We again roll the unbiased 8-sided die with sides 𝒳={1,2, ...,8} .

We learned 2 bits
(𝑈	contains 2 bits)

How do these numbers add up?

𝐻 𝑋 =3
𝐻 𝑈 =2𝐻 𝑋|𝑈 =2

𝐻 𝑈|𝑋 =1Uncertainty 𝑋	after 
we see the message 𝑈

Information contained 
in message 𝑈

Mutual information between 𝑋 and 𝑈: what 
we learn about 𝑋 after seeing 𝑈 (or v.v.)

Uncertainty in the 
outcome of the roll 𝑋

Additional information 
in message 𝑈 that is 
unrelated to 𝑋

𝐼 𝑋; 𝑈 =1

• We still learn 3-2=1 bit about the roll of the die 𝑋.
• We also learn 1 bit about the election outcome.

Bar diagrams inspired by Fig 8.1 in "MacKay. Information Theory, Inference, and learning Algorithms. Cambridge University Press, 2002." https://www.inference.org.uk/itprnn/book.pdf 

https://northeastern-datalab.github.io/cs7840/
https://www.inference.org.uk/itprnn/book.pdf
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Mutual information
Given two RVs 𝑋 and 𝑌, mutual information is the amount of information 
that 𝑌 provides about 𝑋 (thus when 𝑌 is observed, but 𝑋 is not). 

𝐼 𝑋; 𝑌 := 𝐻 𝑋 − 𝐻(𝑋|𝑌) Is this function symmetric in 𝑋 and 𝑌 ?

https://northeastern-datalab.github.io/cs7840/
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Mutual information
Given two RVs 𝑋 and 𝑌, mutual information is the amount of information 
that 𝑌 provides about 𝑋 (thus when 𝑌 is observed, but 𝑋 is not). 

𝐼 𝑋; 𝑌 := 𝐻 𝑋 − 𝐻(𝑋|𝑌) 

= 𝐻 𝑋 − 𝐻 𝑋, 𝑌 − 𝐻 𝑌  

Conditional entropy: the amount of information 
needed to describe the outcome of RV 𝑌 given 
that we know the value of another RV 𝑋.

= 𝐻 𝑋 + 𝐻 𝑌 − 𝐻 𝑋, 𝑌

?

https://northeastern-datalab.github.io/cs7840/
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Mutual information
Given two RVs 𝑋 and 𝑌, mutual information is the amount of information 
that 𝑌 provides about 𝑋 (thus when 𝑌 is observed, but 𝑋 is not). 

𝐼 𝑋; 𝑌 := 𝐻 𝑋 − 𝐻(𝑋|𝑌) 

= 𝐻 𝑋 − 𝐻 𝑋, 𝑌 − 𝐻 𝑌  

Conditional entropy: the amount of information 
needed to describe the outcome of RV 𝑌 given 
that we know the value of another RV 𝑋.

= 𝐻 𝑋 + 𝐻 𝑌 − 𝐻 𝑋, 𝑌 symmetric in 𝑋 and 𝑌!

= 𝐻 𝑌 − 𝐻(𝑌|𝑋) 

That's why it is called "mutual" information (it does not "prefer" 𝑋 or 𝑌). 
Reduction of the uncertainty of one RV once we observe the other.

Thus, 𝐼 𝑋; 𝑌 = 𝐼 𝑌; 𝑋

https://northeastern-datalab.github.io/cs7840/
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Entropy, conditional entropy, mutual information

𝐻 𝑋|𝑌 𝐼 𝑋; 𝑌 𝐻 𝑌|𝑋

𝐻 𝑋 𝐻 𝑌𝐻 𝑋, 𝑌
joint entropy

conditional entropy mutual
information

individual or 
marginal entropy

https://northeastern-datalab.github.io/cs7840/


127Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Entropy, conditional entropy, mutual information

𝐻 𝑋|𝑌 𝐼 𝑋; 𝑌 𝐻 𝑌|𝑋

𝐻 𝑋 𝐻 𝑋, 𝑌
joint entropy

conditional entropy mutual
information

𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻 𝑌|𝑋
𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 − 𝐼 𝑋; 𝑌𝐻 𝑋

𝐻 𝑌
𝐻 𝑋|𝑌 𝐼 𝑋; 𝑌 𝐻 𝑌|𝑋

𝐻 𝑋, 𝑌

The bar diagrams are inspired by Fig 8.1 in "MacKay. Information Theory, Inference, and learning Algorithms. Cambridge University Press, 2002." https://www.inference.org.uk/itprnn/book.pdf. 
In particular, see the Interesting discussion and explanation in the solution to exercise 8.8 for why VENN diagrams (with more than 2 variables) can be misleading.

Basically the difference from 
knowing things separately vs. jointly

𝐻 𝑌

individual or 
marginal entropy

https://northeastern-datalab.github.io/cs7840/
https://www.inference.org.uk/itprnn/book.pdf
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Entropy, conditional entropy, mutual information

Figure sources: https://en.wikipedia.org/wiki/Mutual_information / Shannon. A Mathematical Theory of Communication. 1948. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x  

=channel capacity

https://northeastern-datalab.github.io/cs7840/
https://en.wikipedia.org/wiki/Mutual_information
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
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Self-information
What is 𝐼 𝑋; 𝑋 How much does 𝑋 tell us about itself??

https://northeastern-datalab.github.io/cs7840/
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Self-information

𝐼 𝑋; 𝑋 = 𝐻 𝑋 − 𝐻 𝑋|𝑋

What is 𝐼 𝑋; 𝑋 ?

= 0 no uncertainty (entropy) left)

𝐼 𝑋; 𝑋 = 𝐻 𝑋 We learn from 𝑋 everything about 𝑋
Entropy is "self-information".

How much does 𝑋 tell us about itself?

https://northeastern-datalab.github.io/cs7840/
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Relative entropy
= KL divergence

(≠ Cross-Entropy)

https://northeastern-datalab.github.io/cs7840/


132Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Relative Entropy = KL divergence (≠ Cross-Entropy)
The relative entropy (or KL divergence) of a distribution 𝑝 with respect to a 
distribution 𝑞 defined on the alphabet 𝒳 of RV 𝑋	is:

𝐷KL 𝑝||𝑞 = 𝔼" lg
𝑝(𝑋)
𝑞(𝑋)

= 8
5∊𝒳

	

𝑝(𝑥) ⋅ lg
𝑝(𝑥)
𝑞(𝑥)

𝐻 𝑝||𝑞 =

It measures the inefficiency ("divergence", think "difference") for assuming a distribution 𝑞 
instead of a true distribution 𝑝 for RV. 

𝔼.[… ] also written as 𝔼-~.[… ] 
for the expected value operator 
w.r. to the distribution 𝑝

Cross-entropy is usually written as 𝐻 𝑝, 𝑞 , but that notation hides its asymmetry and looks too similar to joint entropy. I prefer the notation 𝐻 𝑝||𝑞 	which captures the asymmetry with a 
similar notation as 𝐷KL 𝑝||𝑞 . Another non-standard notation is 𝐻! 𝑞  which shows that 𝑝 is the true distribution, whereas 𝑞	determines the assumed surprise. 

If we use 𝑞 to construct a binary code, the expected message length is called cross-entropy:

?
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Relative Entropy = KL divergence (≠ Cross-Entropy)
The relative entropy (or KL divergence) of a distribution 𝑝 with respect to a 
distribution 𝑞 defined on the alphabet 𝒳 of RV 𝑋	is:

𝐷KL 𝑝||𝑞 + 𝐻 𝑝

= 𝔼" lg
1

𝑞(𝑋)
= 8

5∊𝒳

	

𝑝(𝑥) ⋅ lg
1

𝑞(𝑥)
𝐻 𝑝
𝐻 𝑝||𝑞

𝐷 𝑝||𝑞

my surprise for seeing 𝑥,
given my assumption of 𝑞(𝑥)

my expected surprise given 𝑝 as the true distribution

Cross-entropy is usually written as 𝐻 𝑝, 𝑞 , but that notation hides its asymmetry and looks too similar to joint entropy. I prefer the notation 𝐻 𝑝||𝑞 	which captures the asymmetry with a 
similar notation as 𝐷KL 𝑝||𝑞 . Another non-standard notation is 𝐻! 𝑞  which shows that 𝑝 is the true distribution, whereas 𝑞	determines the assumed surprise. 

If we use 𝑞 to construct a binary code, the expected message length is called cross-entropy:

𝐷KL 𝑝||𝑞 = 𝔼" lg
𝑝(𝑋)
𝑞(𝑋)

= 8
5∊𝒳

	

𝑝(𝑥) ⋅ lg
𝑝(𝑥)
𝑞(𝑥)

It measures the inefficiency ("divergence", think "difference") for assuming a distribution 𝑞 
instead of a true distribution 𝑝 for RV. 

𝔼.[… ] also written as 𝔼-~.[… ] 
for the expected value operator 
w.r. to the distribution 𝑝

𝐻 𝑝||𝑞 =

https://northeastern-datalab.github.io/cs7840/
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Relative Entropy = KL divergence (≠ Cross-Entropy)

Relative entropy (or KL divergence) :

𝐻 𝑝
𝐻 𝑝||𝑞

𝐷 𝑝||𝑞

Cross-entropy is usually written as 𝐻 𝑝, 𝑞 , but that notation hides its asymmetry and looks too similar to joint entropy. I prefer the notation 𝐻 𝑝||𝑞 	which captures the asymmetry with a 
similar notation as 𝐷KL 𝑝||𝑞 . Another non-standard notation is 𝐻! 𝑞  which shows that 𝑝 is the true distribution, whereas 𝑞	determines the assumed surprise. 

𝐷KL 𝑝||𝑞 = 𝔼" lg
𝑝(𝑋)
𝑞(𝑋)

= 8
5∊𝒳

	

𝑝(𝑥) ⋅ lg
𝑝(𝑥)
𝑞(𝑥)

𝐻 𝑝||𝑞 = 𝔼" lg
1

𝑞(𝑋)
= 8

5∊𝒳

	

𝑝(𝑥) ⋅ lg
1

𝑞(𝑥)

Cross-entropy:

Which of those should / do we 
commonly use in ML? And why? ?

https://northeastern-datalab.github.io/cs7840/
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Relative Entropy = KL divergence (≠ Cross-Entropy)

Relative entropy (or KL divergence) :

𝐻 𝑝
𝐻 𝑝||𝑞

𝐷 𝑝||𝑞

Cross-entropy is usually written as 𝐻 𝑝, 𝑞 , but that notation hides its asymmetry and looks too similar to joint entropy. I prefer the notation 𝐻 𝑝||𝑞 	which captures the asymmetry with a 
similar notation as 𝐷KL 𝑝||𝑞 . Another non-standard notation is 𝐻! 𝑞  which shows that 𝑝 is the true distribution, whereas 𝑞	determines the assumed surprise. 

𝐷KL 𝑝||𝑞 = 𝔼" lg
𝑝(𝑋)
𝑞(𝑋)

= 8
5∊𝒳

	

𝑝(𝑥) ⋅ lg
𝑝(𝑥)
𝑞(𝑥)

𝐻 𝑝||𝑞 = 𝔼" lg
1

𝑞(𝑋)
= 8

5∊𝒳

	

𝑝(𝑥) ⋅ lg
1

𝑞(𝑥)

Cross-entropy:

We don't know 𝑝(𝑥). 

≈ −
1
𝑁
⋅8

2

	

lg 𝑞 𝑥(2)

But we have samples 𝑥(!), … 𝑥(J)

Have you seen this before 
(not in this class) ?

Sample distribution as approximation 
of true distribution 𝑝

https://northeastern-datalab.github.io/cs7840/
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Relative Entropy = KL divergence (≠ Cross-Entropy)

𝐻 𝑝
𝐻 𝑝||𝑞

𝐷 𝑝||𝑞

Cross-entropy is usually written as 𝐻 𝑝, 𝑞 , but that notation hides its asymmetry and looks too similar to joint entropy. I prefer the notation 𝐻 𝑝||𝑞 	which captures the asymmetry with a 
similar notation as 𝐷KL 𝑝||𝑞 . Another non-standard notation is 𝐻! 𝑞  which shows that 𝑝 is the true distribution, whereas 𝑞	determines the assumed surprise. 

𝐻 𝑝||𝑞 = 𝔼" lg
1

𝑞(𝑋)
= 8

5∊𝒳

	

𝑝(𝑥) ⋅ lg
1

𝑞(𝑥)

Cross-entropy:

Parameterized model 
distribution 𝑞K

≈ −
1
𝑁
⋅8

2

	

lg 𝑞K 𝑥(2)

Sample distribution as approximation 
of true distribution 𝑝

https://northeastern-datalab.github.io/cs7840/
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Relative Entropy = KL divergence (≠ Cross-Entropy)

𝐻 𝑝
𝐻 𝑝||𝑞

𝐷 𝑝||𝑞

Cross-entropy is usually written as 𝐻 𝑝, 𝑞 , but that notation hides its asymmetry and looks too similar to joint entropy. I prefer the notation 𝐻 𝑝||𝑞 	which captures the asymmetry with a 
similar notation as 𝐷KL 𝑝||𝑞 . Another non-standard notation is 𝐻! 𝑞  which shows that 𝑝 is the true distribution, whereas 𝑞	determines the assumed surprise. 

𝐻 𝑝||𝑞 = 𝔼" lg
1

𝑞(𝑋)
= 8

5∊𝒳

	

𝑝(𝑥) ⋅ lg
1

𝑞(𝑥)

Cross-entropy:

Cross-entropy = average 
per-sample loss

−8
2

	

lg 𝑞K 𝑥(2)𝑁𝐿𝐿 𝜃 𝒟 =

≈ −
1
𝑁
⋅8

2

	

lg 𝑞K 𝑥(2)

K
2

𝑞K 𝑥 2𝐿 𝜃 𝒟 = Likelihood of seeing the dataset 
𝒟 = 𝑥 ! , … 𝑥 J  under model 𝑞K

ℓ 𝜃 𝒟 = 8
2

	

lg 𝑞K 𝑥(2) Log-likelihood

Negative Log-likelihood

https://northeastern-datalab.github.io/cs7840/
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Compressing messages via variable length codes

• What if we assume following distribution:

• Assume we have the following symbol frequency: New expected length : 

Encoding size
1 bit

½ 

¼ 
⅛
⅛

0

1
1
1

0
1
1

0
1

2 bit 3 bit

½ 

¼ 
⅛
⅛

A

B
C
D

0
10
110
111

A
B
C
D

symbols codewordsfrequency

code

110
0
10
111

A
B
C
D

symbols codewords

code

frequency

½ 

¼ 
⅛
⅛

1 

2
3
3

⋅

⋅
⋅
⋅

= 1.75 bits!

= 1.75 bits!

What is our expected message length per symbol
if we use that code, but 𝑝	is the actual distribution

¼ 

A

B

C
D

½ 

⅛

⅛

?

𝑝!

𝑞!

lg "
#
= −1 

lg "
$
= −2 

lg "
%
= −3 

= −∑2 𝑝2 ⋅ lg 𝑝2  Entropy H(𝐩)	:

https://northeastern-datalab.github.io/cs7840/
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Compressing messages via variable length codes

• What if we assume following distribution:

• Assume we have the following symbol frequency: New expected length : 

Encoding size
1 bit

½ 

¼ 
⅛
⅛

0

1
1
1

0
1
1

0
1

2 bit 3 bit

½ 

¼ 
⅛
⅛

A

B
C
D

𝑝!

0
10
110
111

A
B
C
D

symbols codewordsfrequency

code

110
0
10
111

A
B
C
D

symbols codewords

code
𝑞!

frequency

½ 

¼ 
⅛
⅛

1 

2
3
3

⋅

⋅
⋅
⋅

= 1.75 bits!

= 1.75 bits!

Our new expected message length per symbol:

¼ 

A

B

C
D

½ 

⅛

⅛

Encoding size
1 bit

½ 

¼ 
⅛
⅛

1

0
1
1

0
1 1

2 bit 3 bit

1 0 What is the formula
we need to evaluate𝑝!

lg(𝑞!)

?

lg "
#
= −1 

lg "
$
= −2 

lg "
%
= −3 

= −∑2 𝑝2 ⋅ lg 𝑝2  Entropy H(𝐩)	:

https://northeastern-datalab.github.io/cs7840/
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Compressing messages via variable length codes

• What if we assume following distribution:

• Assume we have the following symbol frequency: New expected length : 

Encoding size
1 bit

½ 

¼ 
⅛
⅛

0

1
1
1

0
1
1

0
1

2 bit 3 bit

½ 

¼ 
⅛
⅛

A

B
C
D

𝑝!

0
10
110
111

A
B
C
D

symbols codewordsfrequency

code

110
0
10
111

A
B
C
D

symbols codewords

code
𝑞!

frequency

½ 

¼ 
⅛
⅛

1 

2
3
3

⋅

⋅
⋅
⋅

= 1.75 bits!

= 1.75 bits!

Our new expected message length per symbol:

¼ 

A

B

C
D

½ 

⅛

⅛

Encoding size
1 bit

½ 

¼ 
⅛
⅛

1

0
1
1

0
1 1

2 bit 3 bit

1 0

−∑2 𝑝2 ⋅ lg 𝑞2  

What is this formula called

𝑝!

lg(𝑞!)

= 2.375 bits!

?

lg "
#
= −1 

lg "
$
= −2 

lg "
%
= −3 

= −∑2 𝑝2 ⋅ lg 𝑝2  Entropy H(𝐩)	:

https://northeastern-datalab.github.io/cs7840/


142Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Compressing messages via variable length codes

• What if we assume following distribution:

• Assume we have the following symbol frequency: New expected length : 

Encoding size
1 bit

½ 

¼ 
⅛
⅛

0

1
1
1

0
1
1

0
1

2 bit 3 bit

½ 

¼ 
⅛
⅛

A

B
C
D

𝑝!

0
10
110
111

A
B
C
D

symbols codewordsfrequency

code

110
0
10
111

A
B
C
D

symbols codewords

code
𝑞!

frequency

½ 

¼ 
⅛
⅛

1 

2
3
3

⋅

⋅
⋅
⋅

= 1.75 bits!

= 1.75 bits!

Our new expected message length per symbol:

¼ 

A

B

C
D

½ 

⅛

⅛

Encoding size
1 bit

½ 

¼ 
⅛
⅛

1

0
1
1

0
1 1

2 bit 3 bit

1 0

𝑝!

lg(𝑞!)

Which distribution 𝑞 
minimizes 𝐻 𝑝||𝑞 ?
Cross entropy 𝐻 𝑝||𝑞  J

= 2.375 bits!

lg "
#
= −1 

lg "
$
= −2 

lg "
%
= −3 

−∑2 𝑝2 ⋅ lg 𝑞2  

= −∑2 𝑝2 ⋅ lg 𝑝2  Entropy H(𝐩)	:

https://northeastern-datalab.github.io/cs7840/
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Compressing messages via variable length codes

• What if we assume following distribution:

• Assume we have the following symbol frequency: New expected length : 

Encoding size
1 bit

½ 

¼ 
⅛
⅛

0

1
1
1

0
1
1

0
1

2 bit 3 bit

½ 

¼ 
⅛
⅛

A

B
C
D

𝑝!

0
10
110
111

A
B
C
D

symbols codewordsfrequency

code

110
0
10
111

A
B
C
D

symbols codewords

code
𝑞!

frequency

½ 

¼ 
⅛
⅛

1 

2
3
3

⋅

⋅
⋅
⋅

= 1.75 bits!

= 1.75 bits!Entropy H(𝐩)	:

Our new expected message length per symbol:

¼ 

A

B

C
D

½ 

⅛

⅛

Encoding size
1 bit

½ 

¼ 
⅛
⅛

1

0
1
1

0
1 1

2 bit 3 bit

1 0

𝑝!

lg(𝑞!)

𝑞 = 𝑝 minimizes 𝐻 𝑝||𝑞

= 2.375 bits!

lg "
#
= −1 

lg "
$
= −2 

lg "
%
= −3 

−∑2 𝑝2 ⋅ lg 𝑞2  

= −∑2 𝑝2 ⋅ lg 𝑝2  

Cross entropy 𝐻 𝑝||𝑞  J
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Properties of Relative Entropy = KL divergence
1. Relative entropy is asymmetric (does not satisfy triangle inequality, 
thus not a metric):

𝐩 =
𝑝
𝑝̅EXAMPLE :

𝐷KL 𝐩||𝐮  

𝐮 = 0.5
0.5

𝑝̅ = 1 − 𝑝

𝑝 = 0.5
𝑝 = 0
𝑝 = 0.01

𝐷KL 𝐮||𝐩  

? ?
? ?
? ?

𝐷KL 𝑝||𝑞 ≠ 𝐷KL 𝑞||𝑝
𝔼) lg

𝑝(𝑋)
𝑞(𝑋)

https://northeastern-datalab.github.io/cs7840/
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Properties of Relative Entropy = KL divergence
1. Relative entropy is asymmetric (does not satisfy triangle inequality, 
thus not a metric):

𝐩 =
𝑝
𝑝̅EXAMPLE :

𝐷KL 𝐩||𝐮  

𝐮 = 0.5
0.5

𝑝̅ = 1 − 𝑝

𝑝 = 0.5
𝑝 = 0
𝑝 = 0.01

𝐷KL 𝐮||𝐩  
0 0
? ?
? ?

𝐷KL 𝑝||𝑞 ≠ 𝐷KL 𝑞||𝑝
𝔼) lg

𝑝(𝑋)
𝑞(𝑋)

https://northeastern-datalab.github.io/cs7840/
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Properties of Relative Entropy = KL divergence
1. Relative entropy is asymmetric (does not satisfy triangle inequality, 
thus not a metric):

𝐩 =
𝑝
𝑝̅EXAMPLE :

𝐷KL 𝐩||𝐮  

𝐮 = 0.5
0.5

𝑝̅ = 1 − 𝑝

𝑝 = 0.5
𝑝 = 0
𝑝 = 0.01

𝐷KL 𝐮||𝐩  
0 0

? ?
1 ∞

𝐷KL 𝑝||𝑞 ≠ 𝐷KL 𝑞||𝑝
𝔼) lg

𝑝(𝑋)
𝑞(𝑋)

https://northeastern-datalab.github.io/cs7840/
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Properties of Relative Entropy = KL divergence
1. Relative entropy is asymmetric (does not satisfy triangle inequality, 
thus not a metric):
𝐷KL 𝑝||𝑞 ≠ 𝐷KL 𝑞||𝑝

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

𝐩 =
𝑝
𝑝̅ 𝐷KL 𝐮||𝐩EXAMPLE :

𝐷KL 𝐩||𝐮  

𝐮 = 0.5
0.5

𝑝̅ = 1 − 𝑝

𝑝 = 0.5
𝑝 = 0
𝑝 = 0.01

𝐷KL 𝐮||𝐩  
0 0
1 ∞
0.92 2.33

.5 lg .-
../

+ .5 lg .-
.00

 .01 lg ../
.-

+ .99 lg .00
.-

 

−0.492.820.96−0.06

What about cross entropies 
𝐻 𝐩||𝐮  and 𝐻 𝐩||𝐮 ?

𝔼) lg
𝑝(𝑋)
𝑞(𝑋)

𝐷KL 𝐩||𝐮

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb
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Properties of Relative Entropy = KL divergence
1. Relative entropy is asymmetric (does not satisfy triangle inequality, 
thus not a metric):
𝐷KL 𝑝||𝑞 ≠ 𝐷KL 𝑞||𝑝

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

𝐩 =
𝑝
𝑝̅ 𝐷KL 𝐮||𝐩

𝐷KL 𝐩||𝐮

EXAMPLE :

𝐷KL 𝐩||𝐮  

𝐮 = 0.5
0.5

𝑝̅ = 1 − 𝑝

𝑝 = 0.5
𝑝 = 0
𝑝 = 0.01

𝐷KL 𝐮||𝐩  
0 0
1 ∞
0.92 2.33

.5 lg .-
../

+ .5 lg .-
.00

 .01 lg ../
.-

+ .99 lg .00
.-

 

−0.492.820.96−0.06

𝔼) lg
𝑝(𝑋)
𝑞(𝑋)

𝐻 𝐩||𝐮 = 𝐷 𝐩||𝐮 + 𝐻 𝐩

𝐻 𝐩||𝐮  

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb
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Properties of Relative Entropy = KL divergence
1. Relative entropy is asymmetric (does not satisfy triangle inequality, 
thus not a metric):
𝐷KL 𝑝||𝑞 ≠ 𝐷KL 𝑞||𝑝

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

𝐩 =
𝑝
𝑝̅ 𝐷KL 𝐮||𝐩EXAMPLE :

𝐷KL 𝐩||𝐮  

𝐮 = 0.5
0.5

𝑝̅ = 1 − 𝑝

𝑝 = 0.5
𝑝 = 0
𝑝 = 0.01

𝐷KL 𝐮||𝐩  
0 0
1 ∞
0.92 2.33

.5 lg .-
../

+ .5 lg .-
.00

 .01 lg ../
.-

+ .99 lg .00
.-

 

−0.492.820.96−0.06

𝔼) lg
𝑝(𝑋)
𝑞(𝑋)

𝐻 𝐩||𝐮  

𝐷KL 𝐩||𝐮

𝐻 𝐩||𝐮 = 𝐷 𝐩||𝐮 + 𝐻 𝐩

𝐻 𝐩||𝐮  

𝐻 𝐮||𝐩 = 𝐷 𝐮||𝐩 + 1

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb
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Properties of Relative Entropy = KL divergence
1. Relative entropy is asymmetric (does not satisfy triangle inequality, 
thus not a metric):

𝐷KL 𝑝||𝑞 ≠ 𝐷KL 𝑞||𝑝

2. 𝐷KL 𝑝||𝑝 =?

https://northeastern-datalab.github.io/cs7840/
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Properties of Relative Entropy = KL divergence
1. Relative entropy is asymmetric (does not satisfy triangle inequality, 
thus not a metric):

𝐷KL 𝑝||𝑞 ≠ 𝐷KL 𝑞||𝑝

2. 𝐷KL 𝑝||𝑝 = 0

3. 𝐷𝐾𝐿 𝑝||𝑞 ≥ 0 for all distributions 𝑝, 𝑞 (equality only holds for 𝑝 = 𝑞)

We will prove that next (with Jensen's inequality)

https://northeastern-datalab.github.io/cs7840/
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Commuting functions: an apparent digression

𝔼 𝑓(𝑋) = 𝑓 𝔼 𝑋• Do functions commute with 
taking the expectation? ?

https://northeastern-datalab.github.io/cs7840/
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Commuting functions: an apparent digression

𝔼 𝑓(𝑋) = 𝑓 𝔼 𝑋• Do functions commute with 
taking the expectation? 

• No! This only holds for 
linear functions:

𝑓 𝑥 = 𝑎𝑥 + 𝑏
𝔼 𝑎𝑥 + 𝑏 = 𝑎𝔼 𝑥 + 𝑏

• Jensen's inequality for convex 𝑓: ?

https://northeastern-datalab.github.io/cs7840/


158Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Commuting functions: an apparent digression

0 1

1

0

𝔼 𝑓(𝑋) = 𝑓 𝔼 𝑋• Do functions commute with 
taking the expectation? 

• No! This only holds for 
linear functions:

𝑓 𝑥 = 𝑎𝑥 + 𝑏
𝔼 𝑎𝑥 + 𝑏 = 𝑎𝔼 𝑥 + 𝑏

• Jensen's inequality for convex 𝑓: 𝔼 𝑓(𝑋) ≥ 𝑓 𝔼 𝑋

• Example 𝑓 𝑥 = 𝑥!:
Consider the interval 0	£ 𝑥	£ 1:

𝑓 𝔼 𝑋 =

𝔼 𝑓(𝑋) =

?
?

https://northeastern-datalab.github.io/cs7840/
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Commuting functions: an apparent digression

1

1

𝔼 𝑓(𝑋) = 𝑓 𝔼 𝑋• Do functions commute with 
taking the expectation? 

• No! This only holds for 
linear functions:

𝑓 𝑥 = 𝑎𝑥 + 𝑏
𝔼 𝑎𝑥 + 𝑏 = 𝑎𝔼 𝑥 + 𝑏

• Jensen's inequality for convex 𝑓: 𝔼 𝑓(𝑋) ≥ 𝑓 𝔼 𝑋

• Example 𝑓 𝑥 = 𝑥!:
Consider the interval 0	£ 𝑥	£ 1:

𝑓 𝔼 𝑋 =

𝔼 𝑓(𝑋) =

𝑓 𝔼 𝑋 = 𝑓 0.5 = 0.25

∫?
@ & '
()*

= "'A

+
(
* = 0.33 

0

0.25

0 0.5

0.33

https://northeastern-datalab.github.io/cs7840/
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Background: Convex / Concave function

Figure source: https://www.probabilitycourse.com/chapter6/6_2_5_jensen%27s_inequality.php 

https://northeastern-datalab.github.io/cs7840/
https://www.probabilitycourse.com/chapter6/6_2_5_jensen%27s_inequality.php
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Information inequality 𝐷𝐾𝐿 𝑝||𝑞 ≥ 0

𝔼 𝑓(𝑋) ≥ 𝑓 𝔼 𝑋2. Jensen's inequality

𝐷𝐾𝐿 𝑝||𝑞 = 𝔼" lg
𝑝(𝑋)
𝑞(𝑋)

Fig source: https://flexbooks.ck12.org/cbook/ck-12-interactive-algebra-2/section/5.5/related/lesson/graphing-logarithmic-functions-alg-ii/ 

𝑓 𝑥 = − lg 𝑥

1. − lg 𝑥  is convex
Ingredients:

?=

https://northeastern-datalab.github.io/cs7840/
https://flexbooks.ck12.org/cbook/ck-12-interactive-algebra-2/section/5.5/related/lesson/graphing-logarithmic-functions-alg-ii/
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Information inequality 𝐷𝐾𝐿 𝑝||𝑞 ≥ 0

𝔼 𝑓(𝑋) ≥ 𝑓 𝔼 𝑋2. Jensen's inequality

𝐷𝐾𝐿 𝑝||𝑞 = 𝔼" lg
𝑝(𝑋)
𝑞(𝑋)

= 𝔼" − lg
𝑞(𝑋)
𝑝(𝑋)

≥ − lg 𝔼"
𝑞 𝑋
𝑝 𝑋 = − lg 8

5

	

𝑝(𝑥) ⋅
𝑞 𝑥
𝑝 𝑥 = 0

Fig source: https://flexbooks.ck12.org/cbook/ck-12-interactive-algebra-2/section/5.5/related/lesson/graphing-logarithmic-functions-alg-ii/ 

1. − lg 𝑥  is convex
Ingredients:

= 1

𝐷𝐾𝐿 𝑝||𝑞 = 0 iff ?

𝑓 𝑥 = − lg 𝑥

https://northeastern-datalab.github.io/cs7840/
https://flexbooks.ck12.org/cbook/ck-12-interactive-algebra-2/section/5.5/related/lesson/graphing-logarithmic-functions-alg-ii/
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Information inequality 𝐷𝐾𝐿 𝑝||𝑞 ≥ 0

𝔼 𝑓(𝑋) ≥ 𝑓 𝔼 𝑋2. Jensen's inequality

𝐷𝐾𝐿 𝑝||𝑞 = 𝔼" lg
𝑝(𝑋)
𝑞(𝑋)

= 𝔼" − lg
𝑞(𝑋)
𝑝(𝑋)

≥ − lg 𝔼"
𝑞 𝑋
𝑝 𝑋 = − lg 8

5

	

𝑝(𝑥) ⋅
𝑞 𝑥
𝑝 𝑥 = 0

Fig source: https://flexbooks.ck12.org/cbook/ck-12-interactive-algebra-2/section/5.5/related/lesson/graphing-logarithmic-functions-alg-ii/ 

1. − lg 𝑥  is convex
Ingredients:

= 1

𝐷𝐾𝐿 𝑝||𝑞 = 0 iff 𝑞 𝑥 = 𝑝(𝑥) for all 𝑥.

𝑓 𝑥 = − lg 𝑥

https://northeastern-datalab.github.io/cs7840/
https://flexbooks.ck12.org/cbook/ck-12-interactive-algebra-2/section/5.5/related/lesson/graphing-logarithmic-functions-alg-ii/
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Pre-class conversations

• Last class recapitulation
• Slide decks: please continue checking for errors / inconsistencies / 

unclear details
• Scribes? Your own Python scripts could be part of your next scribes!
• Please share pointers to work using information theory in your area 

of expertise that you find interesting / we may add that as topic.

• Today: 
- Mutual information, multivariate entropies, Markov Chains, 
- Next time: Data Processing inequality, sufficient statistics

https://northeastern-datalab.github.io/cs7840/
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Mutual information as relative entropy and thus ≥ 0
Given two RVs 𝑋 and 𝑌, mutual information is the amount of 
information that 𝑌 provides about 𝑋 when 𝑌 is observed, but 𝑋 is not. 

𝐼 𝑋; 𝑌 := 𝐻 𝑋 − 𝐻(𝑋|𝑌) notation 𝑥 ∊ 𝒳, 𝑦 ∊ 𝒴?≥ 0

https://northeastern-datalab.github.io/cs7840/
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Mutual information as relative entropy and thus ≥ 0
Given two RVs 𝑋 and 𝑌, mutual information is the amount of 
information that 𝑌 provides about 𝑋 when 𝑌 is observed, but 𝑋 is not. 

𝐼 𝑋; 𝑌 := 𝐻 𝑋 − 𝐻(𝑋|𝑌) 

=^
$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
𝑝(𝑥, 𝑦)

𝑝 𝑥 ⋅ 𝑝(𝑦)

notation 𝑥 ∊ 𝒳, 𝑦 ∊ 𝒴

−^
$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝 𝑥|𝑦=^
$

	

𝑝(𝑥) ⋅ lg
1

𝑝 𝑥

=^
$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝 𝑥
−^

$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝 𝑥|𝑦

=^
$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
𝑝(𝑥|𝑦)
𝑝 𝑥

?=

ratio between joint distribution and product of marginals

https://northeastern-datalab.github.io/cs7840/
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Mutual information as relative entropy and thus ≥ 0
Given two RVs 𝑋 and 𝑌, mutual information is the amount of 
information that 𝑌 provides about 𝑋 when 𝑌 is observed, but 𝑋 is not. 

𝐼 𝑋; 𝑌 := 𝐻 𝑋 − 𝐻(𝑋|𝑌) 

=^
$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
𝑝(𝑥, 𝑦)

𝑝 𝑥 ⋅ 𝑝(𝑦)

notation 𝑥 ∊ 𝒳, 𝑦 ∊ 𝒴

Mutual information is the relative entropy (KL divergence) between joint 
distribution and product of their marginal distributions!

= 𝐷KL 𝑝(𝑥, 𝑦)||𝑝(𝑥) ⋅ 𝑝(𝑦)

−^
$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝 𝑥|𝑦=^
$

	

𝑝(𝑥) ⋅ lg
1

𝑝 𝑥

=^
$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝 𝑥
−^

$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝 𝑥|𝑦

=^
$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
𝑝(𝑥|𝑦)
𝑝 𝑥

≥ 0

When equality?

https://northeastern-datalab.github.io/cs7840/
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Mutual information as relative entropy and thus ≥ 0
Given two RVs 𝑋 and 𝑌, mutual information is the amount of 
information that 𝑌 provides about 𝑋 when 𝑌 is observed, but 𝑋 is not. 

𝐼 𝑋; 𝑌 := 𝐻 𝑋 − 𝐻(𝑋|𝑌) 

alternative notation: 
𝐷KL 𝑝-,@||𝑝- ⋅ 𝑝@  

=^
$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
𝑝(𝑥, 𝑦)

𝑝 𝑥 ⋅ 𝑝(𝑦)

notation 𝑥 ∊ 𝒳, 𝑦 ∊ 𝒴

= 𝐷KL 𝑝(𝑥, 𝑦)||𝑝(𝑥) ⋅ 𝑝(𝑦)

−^
$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝 𝑥|𝑦=^
$

	

𝑝(𝑥) ⋅ lg
1

𝑝 𝑥

=^
$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝 𝑥
−^

$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝 𝑥|𝑦

=^
$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
𝑝(𝑥|𝑦)
𝑝 𝑥

≥ 0

equality when 𝑋 and 𝑌 
are independent!

Mutual information is the relative entropy (KL divergence) between joint 
distribution and product of their marginal distributions!

https://northeastern-datalab.github.io/cs7840/
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Mutual information as relative entropy
Given two RVs 𝑋 and 𝑌, mutual information is the amount of 
information that 𝑌 provides about 𝑋 when 𝑌 is observed, but 𝑋 is not. 

=^
$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
𝑝(𝑥, 𝑦)

𝑝 𝑥 ⋅ 𝑝(𝑦) = 𝐷KL 𝑝(𝑥, 𝑦)||𝑝(𝑥) ⋅ 𝑝(𝑦) ≥ 0𝐼 𝑋; 𝑌  

What is that ?

Mutual information is the relative entropy (KL divergence) between joint 
distribution and product of their marginal distributions!

https://northeastern-datalab.github.io/cs7840/
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Mutual information as relative entropy
Given two RVs 𝑋 and 𝑌, mutual information is the amount of 
information that 𝑌 provides about 𝑋 when 𝑌 is observed, but 𝑋 is not. 

=^
$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
𝑝(𝑥, 𝑦)

𝑝 𝑥 ⋅ 𝑝(𝑦) = 𝐷KL 𝑝(𝑥, 𝑦)||𝑝(𝑥) ⋅ 𝑝(𝑦) ≥ 0𝐼 𝑋; 𝑌  

PMI (pointwise mutual information) is a measure 
of association

>0: values (𝑥, 𝑦) co-occur more often together
=0: independent at that point (𝑥, 𝑦)
<0: values (𝑥, 𝑦) co-occur less often together

Mutual information is the relative entropy (KL divergence) between joint 
distribution and product of their marginal distributions!

https://northeastern-datalab.github.io/cs7840/
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Mutual information as relative entropy
Given two RVs 𝑋 and 𝑌, mutual information is the amount of 
information that 𝑌 provides about 𝑋 when 𝑌 is observed, but 𝑋 is not. 

=^
$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
𝑝(𝑥, 𝑦)

𝑝 𝑥 ⋅ 𝑝(𝑦) = 𝐷KL 𝑝(𝑥, 𝑦)||𝑝(𝑥) ⋅ 𝑝(𝑦) ≥ 0𝐼 𝑋; 𝑌  

PMI (pointwise mutual information) is a measure 
of association

MI is then the average over all joint events (MI), 
i.e. the expected PMI under the distribution

While PMI may be negative, MI is ≥ 0

Mutual information is the relative entropy (KL divergence) between joint 
distribution and product of their marginal distributions!

https://northeastern-datalab.github.io/cs7840/
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Conditioning reduces entropy, in expectation

𝐻(𝑋|𝑌) ≤ 𝐻 𝑋

The nonnegativity of mutual information implies that on average the 
entropy of 𝑋 conditioned on the observation 𝑌 = 𝑦 is ≤ than the 
entropy of 𝑋

It is still possible that there is new rare evidence 𝑦 for which:

𝐻 𝑋 < 𝐻(𝑋|𝑌 = 𝑦) 

!

(follows from 𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 𝐻(𝑋|𝑌) ≥ 0)

Example taken from Cover, Thomas. Elements of Information Theory (book, 2nd ed). Theorem 2.6.5. https://doi.org/10.1002/047174882X 

(which intuitively makes sense: getting more information 
only reduces uncertainty, in expectation).

But importantly, the inequality is applied to averaged quantities. 

?Can you think of an exapmle

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1002/047174882X
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Conditioning reduces entropy, in expectation

𝐻(𝑋|𝑌) ≤ 𝐻 𝑋

The nonnegativity of mutual information implies that on average the 
entropy of 𝑋 conditioned on the observation 𝑌 = 𝑦 is ≤ than the 
entropy of 𝑋

It is still possible that there is new rare evidence 𝑦 for which:

𝐻 𝑋 < 𝐻(𝑋|𝑌 = 𝑦) 

!

(follows from 𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 𝐻(𝑋|𝑌) ≥ 0)

Example taken from Cover, Thomas. Elements of Information Theory (book, 2nd ed). Theorem 2.6.5. https://doi.org/10.1002/047174882X 

(which intuitively makes sense: getting more information 
only reduces uncertainty, in expectation).

But importantly, the inequality is applied to averaged quantities. 

EXAMPLE: in a court case, specific new evidence might increase uncertainty, 
but on the average evidence decreases uncertainty.

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1002/047174882X
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New concrete evidence may increase entropy
EXAMPLE 6: Consider the joint ensemble (𝑋, 𝑌) with Boolean 
domains 𝒳 = 𝒴 = {0,1} and following joint distribution.

𝐻 𝑋 = 

𝐻 𝑋|𝑦 = 0 = 

𝐻 𝑋|𝑦 = 1 = 

𝐻 𝑋|𝑌 = 

?
?
?
?

0
𝑥

𝑦
0

1

1
½ 
0 ¼  

¼  

𝑝(𝑥, 𝑦) 
0

𝑥

𝑦
0

1

1

https://northeastern-datalab.github.io/cs7840/
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New concrete evidence may increase entropy

0
𝑥

𝑦
0

1

1
½ 
0 ¼  

¼  

EXAMPLE 6: Consider the joint ensemble (𝑋, 𝑌) with Boolean 
domains 𝒳 = 𝒴 = {0,1} and following joint distribution.

𝐻 𝑋 = 

𝐻 𝑋|𝑦 = 0 = 

𝐻 𝑋|𝑦 = 1 = 

𝐻 𝑋|𝑌 = 

𝑝(𝑥, 𝑦) 
0

𝑥

𝑦
0

1

1

$
&
lg &

$
+ !
&
lg 4 = 0.811  

0

1

!
#𝐻(𝑋|𝑦 = 0) + !

#𝐻(𝑋|𝑦 = 1) = 

𝐻(𝑋|𝑌) ≤ 𝐻 𝑋 < 𝐻(𝑋|𝑦 = 1)
0.811  0.5  1  

0 1

0.5 

Σ

3/4

1/4

Σ 1/2 1/2

𝐻(𝑋|𝑦 = 0) <
0  

https://northeastern-datalab.github.io/cs7840/
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Three-term (multivariate) entropies,
conditional mutual information,

interaction information

https://northeastern-datalab.github.io/cs7840/
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𝐻 𝑋, 𝑌 	 = 

Conditional entropy 𝐻 𝑌 𝑋 : the expected amount of 
information needed to describe the outcome of RV 𝑌, given 
that the value of another RV 𝑋 is known

Conditioning  & chain rules

Two-variable chain rule

𝐻 𝑌 𝑋 = 8
5

	

𝑝(𝑥) ⋅ 𝐻 𝑌 𝑋 = 𝑥

?

https://northeastern-datalab.github.io/cs7840/
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𝐻 𝑋, 𝑌 	 = 

Conditional entropy 𝐻 𝑌 𝑋 : the expected amount of 
information needed to describe the outcome of RV 𝑌, given 
that the value of another RV 𝑋 is known

Conditioning  & chain rules

Two-variable chain rule

𝐻 𝑌 𝑋 = 

𝐻 𝑋, 𝑌|𝑍 = 

8
5

	

𝑝(𝑥) ⋅ 𝐻 𝑌 𝑋 = 𝑥

Conditional chain rule.

𝐻 𝑋 	 + 𝐻 𝑌 𝑋

?

https://northeastern-datalab.github.io/cs7840/
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𝐻 𝑋, 𝑌 	 = 

Conditional entropy 𝐻 𝑌 𝑋 : the expected amount of 
information needed to describe the outcome of RV 𝑌, given 
that the value of another RV 𝑋 is known

Conditioning  & chain rules

Two-variable chain rule

𝐻 𝑌 𝑋 = 

𝐻 𝑋, 𝑌|𝑍 = 

8
5

	

𝑝(𝑥) ⋅ 𝐻 𝑌 𝑋 = 𝑥

Conditional chain rule.

𝐻 𝑋 	 + 𝐻 𝑌 𝑋

?
Conditional joint entropy 𝐻 𝑋, 𝑌|𝑍 : expected joint 
entropy of 𝑋 and 𝑌 together, given that 𝑍 is known

Notice the implied precedence rule𝔼A[𝐻(𝑋, 𝑌|𝑍 = 𝑧)]

https://northeastern-datalab.github.io/cs7840/


188Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

𝐻 𝑋, 𝑌 	 = 

Conditional entropy 𝐻 𝑌 𝑋 : the expected amount of 
information needed to describe the outcome of RV 𝑌, given 
that the value of another RV 𝑋 is known

Conditioning  & chain rules

Two-variable chain rule

𝐻 𝑌 𝑋 = 

𝐻 𝑋, 𝑌|𝑍 = 

8
5

	

𝑝(𝑥) ⋅ 𝐻 𝑌 𝑋 = 𝑥

Conditional chain rule.

Conditional joint entropy 𝐻 𝑋, 𝑌|𝑍 : expected joint 
entropy of 𝑋 and 𝑌 together, given that 𝑍 is known

Conditioning on an event creates a new probability 
space where the same probability concepts apply.

𝐻 𝑋 	 + 𝐻 𝑌 𝑋

𝐻 𝑋|𝑍 + 𝐻 𝑌 𝑋, 𝑍

𝐻 𝑋 𝐻 𝑌|𝑋

𝐻 𝑋, 𝑌

Notice the implied precedence rule𝔼A[𝐻(𝑋, 𝑌|𝑍 = 𝑧)]
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𝐻 𝑋, 𝑌 	 = 

Conditional entropy 𝐻 𝑌 𝑋 : the expected amount of 
information needed to describe the outcome of RV 𝑌, given 
that the value of another RV 𝑋 is known

Conditioning  & chain rules

Two-variable chain rule

𝐻 𝑌 𝑋 = 

𝐻 𝑋, 𝑌|𝑍 = 

8
5

	

𝑝(𝑥) ⋅ 𝐻 𝑌 𝑋 = 𝑥

Conditional chain rule.

Conditional joint entropy 𝐻 𝑋, 𝑌|𝑍 : expected joint 
entropy of 𝑋 and 𝑌 together, given that 𝑍 is known

Conditioning on an event creates a new probability 
space where the same probability concepts apply.

𝐻 𝑋 	 + 𝐻 𝑌 𝑋

𝐻 𝑋|𝑍 + 𝐻 𝑌 𝑋, 𝑍

𝐻 𝑍

𝐻 𝑌|𝑋, 𝑍

𝐻 𝑋, 𝑌|𝑍

𝐻 𝑋|𝑍

Notice the implied precedence rule𝔼A[𝐻(𝑋, 𝑌|𝑍 = 𝑧)]
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190Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

𝐻 𝑋, 𝑌 	 = 

Conditional entropy 𝐻 𝑌 𝑋 : the expected amount of 
information needed to describe the outcome of RV 𝑌, given 
that the value of another RV 𝑋 is known

Conditioning  & chain rules

Two-variable chain rule

𝐻 𝑌 𝑋 = 

𝐻 𝑋, 𝑌|𝑍 = 

8
5

	

𝑝(𝑥) ⋅ 𝐻 𝑌 𝑋 = 𝑥

Conditional chain rule.

Conditional joint entropy 𝐻 𝑋, 𝑌|𝑍 : expected joint 
entropy of 𝑋 and 𝑌 together, given that 𝑍 is known

Conditioning on an event creates a new probability 
space where the same probability concepts apply.

𝐻 𝑋, 𝑌|𝑍  𝐻 𝑋|𝑍 + 𝐻 𝑌 𝑍

𝐻 𝑋 	 + 𝐻 𝑌 𝑋

𝐻 𝑋|𝑍 + 𝐻 𝑌 𝑋, 𝑍

≤ or ≥

?
𝐻 𝑍

𝐻 𝑌|𝑋, 𝑍

𝐻 𝑋, 𝑌|𝑍

𝐻 𝑋|𝑍

Notice the implied precedence rule𝔼A[𝐻(𝑋, 𝑌|𝑍 = 𝑧)]
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𝐻 𝑋, 𝑌 	 = 

Conditional entropy 𝐻 𝑌 𝑋 : the expected amount of 
information needed to describe the outcome of RV 𝑌, given 
that the value of another RV 𝑋 is known

Conditioning  & chain rules

Two-variable chain rule

𝐻 𝑌 𝑋 = 

𝐻 𝑋, 𝑌|𝑍 = 

𝐻 𝑋, 𝑌, 𝑍 = Three-variable chain rule

8
5

	

𝑝(𝑥) ⋅ 𝐻 𝑌 𝑋 = 𝑥

Conditional chain rule.

Conditional joint entropy 𝐻 𝑋, 𝑌|𝑍 : expected joint 
entropy of 𝑋 and 𝑌 together, given that 𝑍 is known

Conditioning on an event creates a new probability 
space where the same probability concepts apply.

𝐻 𝑋, 𝑌|𝑍  𝐻 𝑋|𝑍 + 𝐻 𝑌 𝑍≤ Equality holds if 𝑋 and 𝑌 are conditionally independent, 
given 𝑍 (Proof similar to unconditional case).

𝐻 𝑋 	 + 𝐻 𝑌 𝑋

𝐻 𝑋|𝑍 + 𝐻 𝑌 𝑋, 𝑍

?

Notice the implied precedence rule𝔼A[𝐻(𝑋, 𝑌|𝑍 = 𝑧)]
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𝐻 𝑋, 𝑌 	 = 

Conditional entropy 𝐻 𝑌 𝑋 : the expected amount of 
information needed to describe the outcome of RV 𝑌, given 
that the value of another RV 𝑋 is known

Conditioning  & chain rules

Two-variable chain rule

𝐻 𝑌 𝑋 = 

𝐻 𝑋, 𝑌|𝑍 = 

𝐻 𝑋, 𝑌, 𝑍 = Three-variable chain rule

8
5

	

𝑝(𝑥) ⋅ 𝐻 𝑌 𝑋 = 𝑥

Conditional chain rule.

Conditional joint entropy 𝐻 𝑋, 𝑌|𝑍 : expected joint 
entropy of 𝑋 and 𝑌 together, given that 𝑍 is known

Conditioning on an event creates a new probability 
space where the same probability concepts apply.

𝐻 𝑋, 𝑌|𝑍  𝐻 𝑋|𝑍 + 𝐻 𝑌 𝑍≤ Equality holds if 𝑋 and 𝑌 are conditionally independent, 
given 𝑍 (Proof similar to unconditional case).

𝐻 𝑋 	 + 𝐻 𝑌 𝑋

𝐻 𝑋|𝑍 + 𝐻 𝑌 𝑋, 𝑍

𝐻 𝑋 + 𝐻 𝑌 𝑋 + 𝐻(𝑍|𝑋, 𝑌) 

Notice the implied precedence rule𝔼A[𝐻(𝑋, 𝑌|𝑍 = 𝑧)]
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Conditional mutual information & interaction information
𝐼(𝑋; 𝑌|𝑍) = Conditional mutual information 𝐼 𝑋; 𝑌 𝑍 : 

expected mutual information of 𝑋 and 𝑌, 
given 𝑍 is known𝔼A[𝐼(𝑋; 𝑌|𝑍 = 𝑧)]

?

https://northeastern-datalab.github.io/cs7840/
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Conditional mutual information & interaction information
𝐼(𝑋; 𝑌|𝑍) = Conditional mutual information 𝐼 𝑋; 𝑌 𝑍 : 

expected mutual information of 𝑋 and 𝑌, 
given 𝑍 is known

= 𝐻(𝑋|𝑍) − 𝐻(𝑋|𝑌, 𝑍)
𝐻 𝑌 𝑍 + 𝐻(𝑋|𝑌, 𝑍)

𝐽 𝑋; 𝑌; 𝑍 = 

𝔼A[𝐼(𝑋; 𝑌|𝑍 = 𝑧)]

𝐻(𝑋|𝑍) + 𝐻(𝑌|𝑍) − 𝐻(𝑋, 𝑌|𝑍) 

* Alternative notations include ℐ 𝑋; 𝑌; 𝑍 	and 𝑅 𝑋; 𝑌; 𝑍 . We don't recommend calling it "mutual information" and thus also replace the more common notation 𝐼 𝑋; 𝑌; 𝑍  with 𝐽 𝑋; 𝑌; 𝑍 . 
Some sources prefer not to even define that measure at all (we will discuss the reasons in a bit) https://en.wikipedia.org/wiki/Interaction_information . 

?

𝐻(𝑋|(𝑌, 𝑍))

𝐻 𝑍

𝐻 𝑌|𝑋, 𝑍

𝐻 𝑋, 𝑌|𝑍

𝐻 𝑋|𝑌, 𝑍

Interaction information (often called "mutual information"*): 
measures the negated influence of a variable 𝑍 on the 
amount of information shared between 𝑋 and 𝑌. 

𝐼 𝑋; 𝑌|𝑍

https://northeastern-datalab.github.io/cs7840/
https://en.wikipedia.org/wiki/Interaction_information
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Conditional mutual information & interaction information
𝐼(𝑋; 𝑌|𝑍) = Conditional mutual information 𝐼 𝑋; 𝑌 𝑍 : 

expected mutual information of 𝑋 and 𝑌, 
given 𝑍 is known

= 𝐻(𝑋|𝑍) − 𝐻(𝑋|𝑌, 𝑍)
𝐻 𝑌 𝑍 + 𝐻(𝑋|𝑌, 𝑍)

𝐽 𝑋; 𝑌; 𝑍 = Interaction information (often called "mutual information"*): 
measures the negated influence of a variable 𝑍 on the 
amount of information shared between 𝑋 and 𝑌. 

𝔼A[𝐼(𝑋; 𝑌|𝑍 = 𝑧)]

𝐻(𝑋|𝑍) + 𝐻(𝑌|𝑍) − 𝐻(𝑋, 𝑌|𝑍) 

𝐼 𝑋; 𝑌 − 𝐼(𝑋; 𝑌|𝑍) 

* Alternative notations include ℐ 𝑋; 𝑌; 𝑍 	and 𝑅 𝑋; 𝑌; 𝑍 . We don't recommend calling it "mutual information" and thus also replace the more common notation 𝐼 𝑋; 𝑌; 𝑍  with 𝐽 𝑋; 𝑌; 𝑍 . 
Some sources prefer not to even define that measure at all (we will discuss the reasons in a bit) https://en.wikipedia.org/wiki/Interaction_information . 

Is it symmetric in all the variables ?

𝐻 𝑍

𝐻 𝑌|𝑋, 𝑍

𝐻 𝑋, 𝑌|𝑍

𝐻 𝑋|𝑌, 𝑍 𝐼 𝑋; 𝑌|𝑍

https://northeastern-datalab.github.io/cs7840/
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Conditional mutual information & interaction information
𝐼(𝑋; 𝑌|𝑍) = Conditional mutual information 𝐼 𝑋; 𝑌 𝑍 : 

expected mutual information of 𝑋 and 𝑌, 
given 𝑍 is known

= 𝐻(𝑋|𝑍) − 𝐻(𝑋|𝑌, 𝑍)
𝐻 𝑌 𝑍 + 𝐻(𝑋|𝑌, 𝑍)

𝐽 𝑋; 𝑌; 𝑍 = 

𝔼A[𝐼(𝑋; 𝑌|𝑍 = 𝑧)]

𝐻(𝑋|𝑍) + 𝐻(𝑌|𝑍) − 𝐻(𝑋, 𝑌|𝑍) 

= 𝐻 𝑋 − 𝐻(𝑋|𝑌) 	− 

𝐼 𝑋; 𝑌 − 𝐼(𝑋; 𝑌|𝑍) 

= 𝐻 𝑋 − 𝐻(𝑋|𝑍) 	− (𝐻 𝑋 𝑌 − 𝐻 𝑋 𝑌, 𝑍 ) 

= 𝐼 𝑋; 𝑍 − 𝐼 𝑋; 𝑍 𝑌   (...) thus symmetric in all 3 variables!

* Alternative notations include ℐ 𝑋; 𝑌; 𝑍 	and 𝑅 𝑋; 𝑌; 𝑍 . We don't recommend calling it "mutual information" and thus also replace the more common notation 𝐼 𝑋; 𝑌; 𝑍  with 𝐽 𝑋; 𝑌; 𝑍 . 
Some sources prefer not to even define that measure at all (we will discuss the reasons in a bit) https://en.wikipedia.org/wiki/Interaction_information . 

(𝐻 𝑋 𝑍 − 𝐻 𝑋 𝑌, 𝑍 ) 

Interaction information (often called "mutual information"*): 
measures the negated influence of a variable 𝑍 on the 
amount of information shared between 𝑋 and 𝑌. 

𝐻 𝑍

𝐻 𝑌|𝑋, 𝑍

𝐻 𝑋, 𝑌|𝑍

𝐻 𝑋|𝑌, 𝑍 𝐼 𝑋; 𝑌|𝑍

https://northeastern-datalab.github.io/cs7840/
https://en.wikipedia.org/wiki/Interaction_information


197Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

PARITY EXAMPLE: Consider the joint ensemble (𝑋, 𝑌, 𝑍) with Boolean domains 
𝒳 = 𝒴 = 𝒵 = {0,1}. 𝑋 and 𝑌 are independent uniform binary variables. And 
let 𝑍 be the XOR of 𝑋 and 𝑌: 𝑧 = XOR(𝑥, 𝑦), or equally, 𝑧 = 𝑥 + 𝑦	mod	2.

Interaction information example

0
𝑥 𝑦 𝑧

0 0
0 1 1
1 0 1
1 1 0

https://northeastern-datalab.github.io/cs7840/
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Interaction information example

0
𝑥 𝑦 𝑧

0 0
0 1 1
1 0 1
1 1 0Thus any 2 variables functionally 

determine the 3rd, e.g. 𝑥, 𝑧 → 𝑦 !

𝑝

¼ 
¼ 
¼ 
¼ 

0 0 1 0 
... ... ... 0 

PARITY EXAMPLE: Consider the joint ensemble (𝑋, 𝑌, 𝑍) with Boolean domains 
𝒳 = 𝒴 = 𝒵 = {0,1}. 𝑋 and 𝑌 are independent uniform binary variables. And 
let 𝑍 be the XOR of 𝑋 and 𝑌: 𝑧 = XOR(𝑥, 𝑦), or equally, 𝑧 = 𝑥 + 𝑦	mod	2.

https://northeastern-datalab.github.io/cs7840/
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Interaction information example

0
𝑥 𝑦 𝑧

0 0
0 1 1
1 0 1
1 1 0

𝐻(𝑋) = 

𝐼(𝑋; 𝑌) = 

𝐼(𝑋; 𝑌|𝑍) = 

𝐽 𝑋; 𝑌; 𝑍 = 

?
?
?

?

Thus any 2 variables functionally 
determine the 3rd, e.g. 𝑥, 𝑧 → 𝑦 !

𝑝

¼ 
¼ 
¼ 
¼ 

0 0 1 0 
... ... ... 0 

𝐻(𝑋|𝑌) = 

𝐻(𝑋|𝑌, 𝑍) = 

PARITY EXAMPLE: Consider the joint ensemble (𝑋, 𝑌, 𝑍) with Boolean domains 
𝒳 = 𝒴 = 𝒵 = {0,1}. 𝑋 and 𝑌 are independent uniform binary variables. And 
let 𝑍 be the XOR of 𝑋 and 𝑌: 𝑧 = XOR(𝑥, 𝑦), or equally, 𝑧 = 𝑥 + 𝑦	mod	2.

𝐼 𝑋; 𝑌 − 𝐼 𝑋; 𝑌 𝑍 =

https://northeastern-datalab.github.io/cs7840/
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Interaction information example

0
𝑥 𝑦 𝑧

0 0
0 1 1
1 0 1
1 1 0

Similarly, 𝐻(𝑌) = 1 and 𝐻(𝑍) = 11

Similarly, all variables are pairwise independent𝐻(𝑋) = 1
0

1
Thus, if 𝑍 is observed, then 𝑋 and 𝑌 become dependent: 
(knowing 𝑋 = 𝑥 and 𝑍 = 𝑧, tells you what 𝑌 is: 𝑦 = 𝑧 − 𝑥	mod	2)

0

𝐼 𝑋; 𝑌 − 𝐼 𝑋; 𝑌 𝑍 =−1

Thus the conditional mutual information is bigger than the 
unconditional mutual information: 𝐼 𝑋; 𝑌 𝑍 > 𝐼(𝑋; 𝑌)

𝐻(𝑋) = 

𝐼(𝑋; 𝑌) = 

𝐼(𝑋; 𝑌|𝑍) = 

𝐽 𝑋; 𝑌; 𝑍 = 

𝑝

¼ 
¼ 
¼ 
¼ 

𝐻(𝑋|𝑌) = 

𝐻(𝑋|𝑌, 𝑍) = 

PARITY EXAMPLE: Consider the joint ensemble (𝑋, 𝑌, 𝑍) with Boolean domains 
𝒳 = 𝒴 = 𝒵 = {0,1}. 𝑋 and 𝑌 are independent uniform binary variables. And 
let 𝑍 be the XOR of 𝑋 and 𝑌: 𝑧 = XOR(𝑥, 𝑦), or equally, 𝑧 = 𝑥 + 𝑦	mod	2.
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When VENN diagrams confuse more than help (?)

0
𝑥 𝑦 𝑧

0 0
0 1 1
1 0 1

1 0

𝐻 𝑋

1

=
𝐼 𝑋; 𝑌

𝐻 𝑌

𝐻 𝑍

𝐼 𝑋; 𝑌 − 𝐼 𝑋; 𝑌 𝑍 =−1

1

0

1
0

𝐻(𝑋) = 

𝐼(𝑋; 𝑌) = 

𝐼(𝑋; 𝑌|𝑍) = 

𝐽 𝑋; 𝑌; 𝑍 = 

?

𝑝

¼ 
¼ 
¼ 
¼ 

1

𝐻(𝑋) = 1𝐻(𝑋|𝑌) = 

𝐻(𝑋|𝑌, 𝑍) = 

PARITY EXAMPLE: Consider the joint ensemble (𝑋, 𝑌, 𝑍) with Boolean domains 
𝒳 = 𝒴 = 𝒵 = {0,1}. 𝑋 and 𝑌 are independent uniform binary variables. And 
let 𝑍 be the XOR of 𝑋 and 𝑌: 𝑧 = XOR(𝑥, 𝑦), or equally, 𝑧 = 𝑥 + 𝑦	mod	2.
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When VENN diagrams confuse more than help (?)

0
𝑥 𝑦 𝑧

0 0
0 1 1
1 0 1

1 0

𝐻 𝑋

1

=1
𝐼 𝑋; 𝑌

𝐻 𝑌

𝐻 𝑍

𝐼 𝑋; 𝑌 − 𝐼 𝑋; 𝑌 𝑍 =−1

1

0

1
0

𝐻(𝑋) = 

𝐼(𝑋; 𝑌) = 

𝐼(𝑋; 𝑌|𝑍) = 

𝐽 𝑋; 𝑌; 𝑍 = 

=0

𝑝

¼ 
¼ 
¼ 
¼ 

𝐻(𝑋) = 1𝐻(𝑋|𝑌) = 

𝐻(𝑋|𝑌, 𝑍) = 

PARITY EXAMPLE: Consider the joint ensemble (𝑋, 𝑌, 𝑍) with Boolean domains 
𝒳 = 𝒴 = 𝒵 = {0,1}. 𝑋 and 𝑌 are independent uniform binary variables. And 
let 𝑍 be the XOR of 𝑋 and 𝑌: 𝑧 = XOR(𝑥, 𝑦), or equally, 𝑧 = 𝑥 + 𝑦	mod	2.
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When VENN diagrams confuse more than help (?)

0
𝑥 𝑦 𝑧

0 0
0 1 1
1 0 1

1 0

𝐻 𝑋

1

=1
𝐼 𝑋; 𝑌 =0

𝐻 𝑌

𝐻 𝑍

𝐼 𝑋; 𝑌 − 𝐼 𝑋; 𝑌 𝑍 =−1

1

0

1
0

𝐻(𝑋) = 

𝐼(𝑋; 𝑌) = 

𝐼(𝑋; 𝑌|𝑍) = 

𝐽 𝑋; 𝑌; 𝑍 = 

?

𝑝

¼ 
¼ 
¼ 
¼ 

𝐻(𝑋) = 1𝐻(𝑋|𝑌) = 

𝐻(𝑋|𝑌, 𝑍) = 

PARITY EXAMPLE: Consider the joint ensemble (𝑋, 𝑌, 𝑍) with Boolean domains 
𝒳 = 𝒴 = 𝒵 = {0,1}. 𝑋 and 𝑌 are independent uniform binary variables. And 
let 𝑍 be the XOR of 𝑋 and 𝑌: 𝑧 = XOR(𝑥, 𝑦), or equally, 𝑧 = 𝑥 + 𝑦	mod	2.

https://northeastern-datalab.github.io/cs7840/
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When VENN diagrams confuse more than help (?)

0
𝑥 𝑦 𝑧

0 0
0 1 1
1 0 1

1 0

𝐻 𝑋

1

𝐼 𝑋; 𝑌|𝑍

=1
𝐼 𝑋; 𝑌 =0

𝐻 𝑌

𝐻 𝑍

𝐼 𝑋; 𝑌 − 𝐼 𝑋; 𝑌 𝑍 =−1

1

0

1
0

𝐻(𝑋) = 

𝐼(𝑋; 𝑌) = 

𝐼(𝑋; 𝑌|𝑍) = 

𝐽 𝑋; 𝑌; 𝑍 = 

=1

𝑝

¼ 
¼ 
¼ 
¼ 

𝐻(𝑋) = 1𝐻(𝑋|𝑌) = 

𝐻(𝑋|𝑌, 𝑍) = 

PARITY EXAMPLE: Consider the joint ensemble (𝑋, 𝑌, 𝑍) with Boolean domains 
𝒳 = 𝒴 = 𝒵 = {0,1}. 𝑋 and 𝑌 are independent uniform binary variables. And 
let 𝑍 be the XOR of 𝑋 and 𝑌: 𝑧 = XOR(𝑥, 𝑦), or equally, 𝑧 = 𝑥 + 𝑦	mod	2.

https://northeastern-datalab.github.io/cs7840/
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When VENN diagrams confuse more than help (?)

0
𝑥 𝑦 𝑧

0 0
0 1 1
1 0 1

1 0

𝐻 𝑋

1

𝐼 𝑋; 𝑌|𝑍

=1
𝐼 𝑋; 𝑌 =0

𝐻 𝑌

𝐻 𝑍

𝐼 𝑋; 𝑌 − 𝐼 𝑋; 𝑌 𝑍 =−1

1

0

1
0

𝐻(𝑋) = 

𝐼(𝑋; 𝑌) = 

𝐼(𝑋; 𝑌|𝑍) = 

𝐽 𝑋; 𝑌; 𝑍 = 

=1

?

𝑝

¼ 
¼ 
¼ 
¼ 

𝐻(𝑋) = 1𝐻(𝑋|𝑌) = 

𝐻(𝑋|𝑌, 𝑍) = 

PARITY EXAMPLE: Consider the joint ensemble (𝑋, 𝑌, 𝑍) with Boolean domains 
𝒳 = 𝒴 = 𝒵 = {0,1}. 𝑋 and 𝑌 are independent uniform binary variables. And 
let 𝑍 be the XOR of 𝑋 and 𝑌: 𝑧 = XOR(𝑥, 𝑦), or equally, 𝑧 = 𝑥 + 𝑦	mod	2.

https://northeastern-datalab.github.io/cs7840/
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When VENN diagrams confuse more than help (?)

0
𝑥 𝑦 𝑧

0 0
0 1 1
1 0 1

1 0

𝐻 𝑋|𝑌, 𝑍

𝐻 𝑋

1

𝐽 𝑋; 𝑌; 𝑍

𝐼 𝑋; 𝑌|𝑍 =1

=−1
=0

=1
𝐼 𝑋; 𝑌 =0

𝐻 𝑌

𝐻 𝑍

𝐻 𝑋|𝑌 =1

𝐼 𝑋; 𝑌 − 𝐼 𝑋; 𝑌 𝑍 =−1
⇒ VENN diagrams applied to joint entropies 

with ≥ 2 variables can mislead

1

𝐻(𝑋) = 1
0

1
0

𝐻(𝑋) = 

𝐼(𝑋; 𝑌) = 

𝐼(𝑋; 𝑌|𝑍) = 

𝐻(𝑋|𝑌) = 

𝐻(𝑋|𝑌, 𝑍) = 

𝐽 𝑋; 𝑌; 𝑍 = 

𝑝

¼ 
¼ 
¼ 
¼ 

PARITY EXAMPLE: Consider the joint ensemble (𝑋, 𝑌, 𝑍) with Boolean domains 
𝒳 = 𝒴 = 𝒵 = {0,1}. 𝑋 and 𝑌 are independent uniform binary variables. And 
let 𝑍 be the XOR of 𝑋 and 𝑌: 𝑧 = XOR(𝑥, 𝑦), or equally, 𝑧 = 𝑥 + 𝑦	mod	2.

https://northeastern-datalab.github.io/cs7840/
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Source: Section 8 from [MacKay'02]. Information Theory, Inference, and learning Algorithms. Cambridge University Press, 2002." https://www.inference.org.uk/itprnn/book.pdf 

[MacKay'02] discourages VENN diagrams and does not name 𝐽 𝑋; 𝑌; 𝑍

...

https://northeastern-datalab.github.io/cs7840/
https://www.inference.org.uk/itprnn/book.pdf
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Source: Section 8 from [MacKay'02]. Information Theory, Inference, and learning Algorithms. Cambridge University Press, 2002." https://www.inference.org.uk/itprnn/book.pdf 

[MacKay'02] discourages VENN diagrams and does not name 𝐽 𝑋; 𝑌; 𝑍

...

conditional mutual inf.unconditional mutual inf.

https://northeastern-datalab.github.io/cs7840/
https://www.inference.org.uk/itprnn/book.pdf
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Source: [Cover, Thomas'06]. Elements of Information Theory (book, 2nd ed). Theorem 2.6.5. https://doi.org/10.1002/047174882X 

[Cover,Thomas'06] on three-term entropies

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1002/047174882X
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Sources: Yeung, Information Theory and Network Coding, 2008. Section 3.5 Information Diagrams. http://iest2.ie.cuhk.edu.hk/~whyeung/tempo/main2.pdf 

[Yeung'08] disagrees and heavily uses "information diagrams"

https://northeastern-datalab.github.io/cs7840/
http://iest2.ie.cuhk.edu.hk/~whyeung/tempo/main2.pdf
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Sources: Abramson. Information Theory and Coding, 1963. https://archive.org/details/informationtheor0000abra 

[Abramson 1963]

parity example

https://northeastern-datalab.github.io/cs7840/
https://archive.org/details/informationtheor0000abra
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Sources: Ellerman. New Foundations for Information Theory: Logical Entropy and Shannon Entropy, Springer, 2021. https://doi.org/10.1007/978-3-030-86552-8 

[Ellerman'21] does not like negative values and changes 
the definitions completely

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1007/978-3-030-86552-8
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Sources: Ellerman. New Foundations for Information Theory: Logical Entropy and Shannon Entropy, Springer, 2021. https://doi.org/10.1007/978-3-030-86552-8 

[Ellerman'21] does not like negative values and changes 
the definitions completely

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1007/978-3-030-86552-8
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Sources: Ellerman. New Foundations for Information Theory: Logical Entropy and Shannon Entropy, Springer, 2021. https://doi.org/10.1007/978-3-030-86552-8 

[Ellerman'21] does not like negative values and changes 
the definitions completely

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1007/978-3-030-86552-8
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When VENN diagrams confuse more than help (?)

0
𝑥 𝑦 𝑧

0 0
0 1 1
1 0 1

1 01

𝑝

¼ 
¼ 
¼ 
¼ 

PARITY EXAMPLE: Consider the joint ensemble (𝑋, 𝑌, 𝑍) with Boolean domains 
𝒳 = 𝒴 = 𝒵 = {0,1}. 𝑋 and 𝑌 are independent uniform binary variables. And 
let 𝑍 be the XOR of 𝑋 and 𝑌: 𝑧 = XOR(𝑥, 𝑦), or equally, 𝑧 = 𝑥 + 𝑦	mod	2.

EXAMPLE 3 (CONTINUED):
roll two fair dice with 6 sides

𝐴 = "1st	roll	is	odd" 
1, 2, 3, 4, 5, 6 	×	{1, 2, 3, 4, 5, 6}

1 2 3 4 5 6
1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

first die

second die

𝐵 = "2nd	roll	is	odd" 
𝐶 = "sum	of	rolls	is	odd" 

https://northeastern-datalab.github.io/cs7840/
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When VENN diagrams confuse more than help (?)

0
𝑥 𝑦 𝑧

0 0
0 1 1
1 0 1

1 01

𝑝

¼ 
¼ 
¼ 
¼ 

PARITY EXAMPLE: Consider the joint ensemble (𝑋, 𝑌, 𝑍) with Boolean domains 
𝒳 = 𝒴 = 𝒵 = {0,1}. 𝑋 and 𝑌 are independent uniform binary variables. And 
let 𝑍 be the XOR of 𝑋 and 𝑌: 𝑧 = XOR(𝑥, 𝑦), or equally, 𝑧 = 𝑥 + 𝑦	mod	2.

EXAMPLE 3 (CONTINUED):
roll two fair dice with 6 sides

𝐴 = "1st	roll	is	odd" 
1, 2, 3, 4, 5, 6 	×	{1, 2, 3, 4, 5, 6}

𝐵 = "2nd	roll	is	odd" 

1 2 3 4 5 6
1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

first die

second die

𝐶 = "sum	of	rolls	is	odd" 

https://northeastern-datalab.github.io/cs7840/
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When VENN diagrams confuse more than help (?)

0
𝑥 𝑦 𝑧

0 0
0 1 1
1 0 1

1 01

𝑝

¼ 
¼ 
¼ 
¼ 

PARITY EXAMPLE: Consider the joint ensemble (𝑋, 𝑌, 𝑍) with Boolean domains 
𝒳 = 𝒴 = 𝒵 = {0,1}. 𝑋 and 𝑌 are independent uniform binary variables. And 
let 𝑍 be the XOR of 𝑋 and 𝑌: 𝑧 = XOR(𝑥, 𝑦), or equally, 𝑧 = 𝑥 + 𝑦	mod	2.

EXAMPLE 3 (CONTINUED):
roll two fair dice with 6 sides

𝐴 = "1st	roll	is	odd" 
1, 2, 3, 4, 5, 6 	×	{1, 2, 3, 4, 5, 6}

𝐵 = "2nd	roll	is	odd" 
𝐶 = "sum	of	rolls	is	odd" 

Fig source: Feller. An Introduction to Probability Theory and its Applications, Volume I, 1968. Chapter V. https://archive.org/details/introductiontopr0001fell/page/n7/mode/2up 

1 2 3 4 5 6
1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

first die

second die

https://northeastern-datalab.github.io/cs7840/
https://archive.org/details/introductiontopr0001fell/page/n7/mode/2up
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Interaction information
𝐽(𝑋; 𝑌; 𝑍) 

− 𝐻 𝑋, 𝑌 + 𝐻 𝑋, 𝑍 + 𝐻 𝑌, 𝑍  

• measures the negated influence of a variable 𝑍 on the mutual information 
between 𝑋 and 𝑌.* (And it is symmetric across the variables) 

• It is positive when 𝑍 decreases/inhibits (i.e., accounts for or explains some 
of) the correlation between 𝑋 and 𝑌 (e.g., that happens in Markov Chains).

• It is negative when 𝑍 increases/facilitates the correlation (e.g., when 𝑋 and 
𝑌 are independent but not conditionally independent given 𝑍, that's our 
last parity example). 

𝐽 𝑋; 𝑌; 𝑍 =

+𝐻(𝑋, 𝑌, 𝑍) 

* Alternative notations include ℐ 𝑋; 𝑌; 𝑍 	and 𝑅 𝑋; 𝑌; 𝑍 . We don't recommend calling it "mutual information" and thus also replace the more common notation 𝐼 𝑋; 𝑌; 𝑍  with 𝐽 𝑋; 𝑌; 𝑍 . 
For more details, see https://en.wikipedia.org/wiki/Interaction_information . 

𝐼 𝑋; 𝑌 − 𝐼 𝑋; 𝑌 𝑍 = 𝐻 𝑋 + 𝐻 𝑌 + 𝐻 𝑍  
can be used to define it recursively 
for more than 3 variables

https://northeastern-datalab.github.io/cs7840/
https://en.wikipedia.org/wiki/Interaction_information
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Pre-class conversations

• Last class recapitulation
• Slide decks / Piazza posts: please continue checking for errors / 

inconsistencies / unclear details etc. (e.g. earlier incorrect links)
• I am working through scribes (to be renamed to mini projects). For 

your next mini projects, Python scripts could be part!

• Today: 
- Markov Chains, Data Processing inequality
- Next time: sufficient statistics, information inequalities

https://northeastern-datalab.github.io/cs7840/
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Mutual Information 𝐼	vs. Covariance Cov	(Correlation 𝜌)

Cov 𝑋, 𝑌 = 𝔼 𝑋𝑌 − 𝔼 𝑋 ⋅ 𝔼[𝑌] 

𝜌 = +,- ",$
.$⋅.%

 

𝐼 𝑋; 𝑌 = ∑',0	 𝑝'0 ⋅ lg
&$%

&$∗⋅&∗%
 

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

moment-based dependencies
that capture linearity

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb
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Mutual Information 𝐼	vs. Covariance Cov	(Correlation 𝜌)

Cov 𝑋, 𝑌 = 𝔼 𝑋𝑌 − 𝔼 𝑋 ⋅ 𝔼[𝑌] 

= 𝑝11 − 𝑝1∗ ⋅ 𝑝∗0 

𝜌 = +,- ",$
.$⋅.%

 

= +,- ",$
&'∗⋅&'∗⋅&∗'⋅&∗'

 

𝐼 𝑋; 𝑌 = ∑',0	 𝑝'0 ⋅ lg
&$%

&$∗⋅&∗%
 

EXAMPLE: 2 RVs  𝑋, 𝑌 ∊ {0,1}

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

moment-based dependencies
that capture linearity ?

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb
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Mutual Information 𝐼	vs. Covariance Cov	(Correlation 𝜌)

Cov 𝑋, 𝑌 = 𝔼 𝑋𝑌 − 𝔼 𝑋 ⋅ 𝔼[𝑌] 

= 𝑝11 − 𝑝1∗ ⋅ 𝑝∗0 

𝜌 = +,- ",$
.$⋅.%

 

= +,- ",$
&'∗⋅&'∗⋅&∗'⋅&∗'

 

𝐼 𝑋; 𝑌 = ∑',0	 𝑝'0 ⋅ lg
&$%

&$∗⋅&∗%
 

EXAMPLE: 2 RVs  𝑋, 𝑌 ∊ {0,1}

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

moment-based dependencies
that capture linearity

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb
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Mutual Information 𝐼	vs. Covariance Cov	(Correlation 𝜌)

Cov 𝑋, 𝑌 = 𝔼 𝑋𝑌 − 𝔼 𝑋 ⋅ 𝔼[𝑌] 

= 𝑝11 − 𝑝1∗ ⋅ 𝑝∗0 

𝜌 = +,- ",$
.$⋅.%

 

= +,- ",$
&'∗⋅&'∗⋅&∗'⋅&∗'

 

𝐼 𝑋; 𝑌 = ∑',0	 𝑝'0 ⋅ lg
&$%

&$∗⋅&∗%
 

EXAMPLE: 2 RVs  𝑋, 𝑌 ∊ {0,1}

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

moment-based dependencies
that capture linearity

Is it possible to have a non-linear 
dependence, and thus
Cov 𝑋, 𝑌 = 0, but 𝐼 𝑋; 𝑌 > 0?

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb
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Mutual Information 𝐼	vs. Covariance Cov	(Correlation 𝜌)

Cov 𝑋, 𝑌 = 𝔼 𝑋𝑌 − 𝔼 𝑋 ⋅ 𝔼[𝑌] 

= 𝑝11 − 𝑝1∗ ⋅ 𝑝∗0 

𝜌 = +,- ",$
.$⋅.%

 

= +,- ",$
&'∗⋅&'∗⋅&∗'⋅&∗'

 

𝐼 𝑋; 𝑌 = ∑',0	 𝑝'0 ⋅ lg
&$%

&$∗⋅&∗%
 

EXAMPLE: 2 RVs  𝑋, 𝑌 ∊ {0,1}

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

moment-based dependencies
that capture linearity

Is it possible to have a non-linear 
dependence, and thus
Cov 𝑋, 𝑌 = 0, but 𝐼 𝑋; 𝑌 > 0 ?

If they are dependent, then the joint distribution 
deviates from the product of marginals. This deviation 
always shows up as a nonzero covariance.

Yes, it is possible to have a non-linear dependence, and thus
Cov 𝑋, 𝑌 = 0, but 𝐼 𝑋; 𝑌 > 0

But it is not possible for two binary variables!

Two binary variables are determined by a 2×2 
joint probability table. 

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb
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Mutual Information 𝐼	vs. Covariance Cov	(Correlation 𝜌)
EXAMPLE: Let 𝑋 take values from
{−2,−1,1,2} uniformly, and let 𝑌 = 𝑋%

𝔼 𝑌 = 
𝔼 𝑋 = 

𝔼 𝑋𝑌 = 

=

Covariance

Mutual information
𝐻 𝑋 = 

𝐻 𝑌 = 

𝐻 𝑌|𝑋 = 
𝐼 𝑋; 𝑌 = 𝐻 𝑌 − 𝐻(𝑌|𝑋) 

Cov 𝑋, 𝑌 = 𝔼 𝑋𝑌 − 𝔼 𝑋 ⋅ 𝔼[𝑌] 

=

??
?
?

??
?
?

https://northeastern-datalab.github.io/cs7840/
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Mutual Information 𝐼	vs. Covariance Cov	(Correlation 𝜌)
EXAMPLE: Let 𝑋 take values from
{−2,−1,1,2} uniformly, and let 𝑌 = 𝑋%

𝔼 𝑌 = 
𝔼 𝑋 = 

𝔼 𝑋𝑌 = 

=

Covariance

Mutual information
𝐻 𝑋 = 

𝐻 𝑌 = 

𝐻 𝑌|𝑋 = 
𝐼 𝑋; 𝑌 = 𝐻 𝑌 − 𝐻(𝑌|𝑋) 

Cov 𝑋, 𝑌 = 𝔼 𝑋𝑌 − 𝔼 𝑋 ⋅ 𝔼[𝑌] 

0
2.5
34315154

6
= 0 

2
1
0 (since 𝑋 determines 𝑌)

=

0

1
Can we rearrange the points as to 
increase mutual information to 2 bits? ?

Notice: 𝑋 has 4 possible outcomes, 𝑌 has 2.

https://northeastern-datalab.github.io/cs7840/
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Mutual Information 𝐼	vs. Covariance Cov	(Correlation 𝜌)
EXAMPLE: Let (𝑋, 𝑌) take values from
{ −3,−1 , −1,3 , 1, −3 , 3,1 } uniformly.

𝔼 𝑌 = 
𝔼 𝑋 = 

𝔼 𝑋𝑌 = 

= 0

Covariance

Mutual information
𝐻 𝑋 = 

𝐻 𝑌 = 

𝐻 𝑌|𝑋 = 
𝐼 𝑋; 𝑌 = 𝐻 𝑌 − 𝐻(𝑌|𝑋) 

= 2

Cov 𝑋, 𝑌 = 𝔼 𝑋𝑌 − 𝔼 𝑋 ⋅ 𝔼[𝑌] 

0
0
7373757

6
= 0 

2
2
0 

𝑋↦𝑌 is a bijection (it is 
deterministic and invertible)

Notice: 𝑋 has 4 possible outcomes, now 𝑌 also has 4.

https://northeastern-datalab.github.io/cs7840/
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Markov chains

https://northeastern-datalab.github.io/cs7840/
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Markov Chain
.7

.2
.3 .1

.3

.5.6 .1
.2

B

M S

State transition matrix 𝐏:

.7 .2 .1

.3 .6 .1

.3 .2 .5
𝐏 =

B M S
B

M
S

𝑃B,C = ℙ 𝑋DE* = 𝑗	|𝑋D = 𝑖 : 
      probability of choosing 𝑗 after 𝑖

EXAMPLE: restaurants

ℙ M|B = 0.2

Numerical example by Jay Aslam: https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf 

Is this matrix row-stochastic 
or column-stochastic ?

https://northeastern-datalab.github.io/cs7840/
https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf
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Markov Chain
.7

.2
.3 .1

.3

.5.6 .1
.2

B

M S

State transition matrix 𝐏:

.7 .2 .1

.3 .6 .1

.3 .2 .5
𝐏 =

B M S
B

M
S

𝑃B,C = ℙ 𝑋DE* = 𝑗	|𝑋D = 𝑖 : 
      probability of choosing 𝑗 after 𝑖

How to find the stationary distribution 𝛍?

EXAMPLE: restaurants

Σ
1
1
1

Σ 1.3 1.0 .7

𝐏B,: row vector (probability distribution)

row-stochastic

ℙ M|B = 0.2

Numerical example by Jay Aslam: https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf 

?

https://northeastern-datalab.github.io/cs7840/
https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf
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Markov Chain
.7

.2
.3 .1

.3

.5.6 .1
.2

B

M S

State transition matrix 𝐏:

.7 .2 .1

.3 .6 .1

.3 .2 .5
𝐏 =

B M S
B

M
S

𝑃B,C = ℙ 𝑋DE* = 𝑗	|𝑋D = 𝑖 : 
      probability of choosing 𝑗 after 𝑖

How to find the stationary distribution 𝛍?

EXAMPLE: restaurants

Σ
1
1
1

Σ 1.3 1.0 .7

𝐏B,: row vector (probability distribution)

row-stochastic

By finding the largest eigenvector of 𝐏, 
i.e. solving an equation system algebraically:

𝜇C = ∑B 𝜇B𝑃B,C for all 𝑗ℙ M|B = 0.2 𝛍 = 𝐏G𝛍
transpose

Numerical example by Jay Aslam: https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf 

𝛍 is a left eigenvector for 𝐏 (right eigenvector for 𝐏9) 
with eigenvalue 1. And 1 is the largest left eigenvalue 
for a row-stochastic matrix (Perron-Frobenius theorem)

If graph is disconnected, then we would have multiple linearly 
independent eigenvectors with eigenvalue 1.

https://northeastern-datalab.github.io/cs7840/
https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf
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Markov Chain
.7

.2
.3 .1

.3

.5.6 .1
.2

B

M S

State transition matrix 𝐏:

.7 .2 .1

.3 .6 .1

.3 .2 .5
𝐏 =

B M S
B

M
S

𝑃B,C = ℙ 𝑋DE* = 𝑗	|𝑋D = 𝑖 : 
      probability of choosing 𝑗 after 𝑖

How to find the stationary distribution 𝛍?

EXAMPLE: restaurants

Σ
1
1
1

Σ 1.3 1.0 .7

𝐏B,: row vector (probability distribution)

row-stochastic

By finding the largest eigenvector of 𝐏, 
i.e. solving an equation system algebraically:

𝜇C = ∑B 𝜇B𝑃B,C for all 𝑗ℙ M|B = 0.2 𝛍 = 𝐏G𝛍
transpose

Numerical example by Jay Aslam: https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf 

𝜇B 
𝜇M 
𝜇S  

0.7 ⋅ 𝜇B +0.3 ⋅ 𝜇M +0.3 ⋅ 𝜇S=
=
=
0.2 ⋅ 𝜇B +0.6 ⋅ 𝜇M +0.2 ⋅ 𝜇S
0.1 ⋅ 𝜇B +0.1 ⋅ 𝜇M +0.5 ⋅ 𝜇S

3 equations and 3 unknowns. So can we solve it

1
2
3

?

https://northeastern-datalab.github.io/cs7840/
https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf
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Markov Chain
.7

.2
.3 .1

.3

.5.6 .1
.2

B

M S

State transition matrix 𝐏:

.7 .2 .1

.3 .6 .1

.3 .2 .5
𝐏 =

B M S
B

M
S

𝑃B,C = ℙ 𝑋DE* = 𝑗	|𝑋D = 𝑖 : 
      probability of choosing 𝑗 after 𝑖

How to find the stationary distribution 𝛍?

EXAMPLE: restaurants

Σ
1
1
1

Σ 1.3 1.0 .7

𝐏B,: row vector (probability distribution)

row-stochastic

By finding the largest eigenvector of 𝐏, 
i.e. solving an equation system algebraically:

𝜇C = ∑B 𝜇B𝑃B,C for all 𝑗ℙ M|B = 0.2 𝛍 = 𝐏G𝛍
transpose

Numerical example by Jay Aslam: https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf 

𝜇B 
𝜇M 
𝜇S  

0.7 ⋅ 𝜇B +0.3 ⋅ 𝜇M +0.3 ⋅ 𝜇S=
=
=
0.2 ⋅ 𝜇B +0.6 ⋅ 𝜇M +0.2 ⋅ 𝜇S
0.1 ⋅ 𝜇B +0.1 ⋅ 𝜇M +0.5 ⋅ 𝜇S

𝜇B + 𝜇M + 𝜇S = 1

0 +3𝜇M +3𝜇S=
0 = 2𝜇B +2𝜇S
1 𝜇B +	 𝜇M +	 𝜇S=

2

1
2
4

=

−3𝜇B 
−4𝜇M 

⇒ 𝜇M = 
6𝜇B 3 = ⇒ 𝜇B = 

⇒ 𝜇S = 

In general, solving n equations in n unknowns takes 
𝒪(𝑛7). So is there a more efficient (practical) way

1
2
3
4

242 ⋅ − :
143 ⋅ − :

?

6𝜇M

1 1/3 +1/2 +𝜇S=

1/3 
1/2
1/6

5
6

4 :5 6,

https://northeastern-datalab.github.io/cs7840/
https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf
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Entropy rates of
Markov Chains

https://northeastern-datalab.github.io/cs7840/
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Markov Chain
.7

.2
.3 .1

.3

.5.6 .1
.2

B

M S

State transition matrix 𝐏:

.7 .2 .1

.3 .6 .1

.3 .2 .5
𝐏 =

B M S
B

M
S

𝑃B,C = ℙ 𝑋DE* = 𝑗	|𝑋D = 𝑖 : 
      probability of choosing 𝑗 after 𝑖

How to find the stationary distribution 𝛍?

EXAMPLE: restaurants

Σ
1
1
1

Σ 1.3 1.0 .7

𝐏B,: row vector (probability distribution)

row-stochastic

?ℙ M|B = 0.2

𝑖
𝑗

https://northeastern-datalab.github.io/cs7840/
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Markov Chain
.7

.2
.3 .1

.3

.5.6 .1
.2

B

M S

State transition matrix 𝐏:

.7 .2 .1

.3 .6 .1

.3 .2 .5
𝐏 =

B M S
B

M
S

𝑃B,C = ℙ 𝑋DE* = 𝑗	|𝑋D = 𝑖 : 
      probability of choosing 𝑗 after 𝑖

How to find the stationary distribution 𝛍?

𝛍 = 𝐏G𝛍

𝛍 =
1/2
1/3
1/6

EXAMPLE: restaurants

Σ
1
1
1

Σ 1.3 1.0 .7

𝐏B,: row vector (probability distribution)

row-stochastic

By finding the largest eigenvector of 𝐏, 
i.e. solving an equation system:

What would be the state transition matrix 𝐏′ with 
same stationary distribution 𝛍	if there was no 
memory: ℙ 𝑋4g! = 𝑗	|𝑋4 = 𝑖 = ℙ 𝑋4g! = 𝑗	

𝜇C = ∑B 𝜇B𝑃B,C for all 𝑗

1.460𝐻 𝛍 =

?

ℙ M|B = 0.2
transpose

https://northeastern-datalab.github.io/cs7840/
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Markov Chain
.7

.2
.3 .1

.3

.5.6 .1
.2

B

M S

State transition matrix 𝐏:

.7 .2 .1

.3 .6 .1

.3 .2 .5
𝐏 =

B M S
B

M
S

𝑃B,C = ℙ 𝑋DE* = 𝑗	|𝑋D = 𝑖 : 
      probability of choosing 𝑗 after 𝑖

How to find the stationary distribution 𝛍?

𝛍 =
1/2
1/3
1/6

EXAMPLE: restaurants

Σ
1
1
1

Σ 1.3 1.0 .7

𝐏B,: row vector (probability distribution)

row-stochastic

By finding the largest eigenvector of 𝐏, 
i.e. solving an equation system:

What would be the state transition matrix 𝐏′ with 
same stationary distribution 𝛍	if there was no 
memory: ℙ 𝑋4g! = 𝑗	|𝑋4 = 𝑖 = ℙ 𝑋4g! = 𝑗	

1/2 1/3 1/6
1/2 1/3 1/6
1/2 1/3 1/6

𝐏′ =

B M S
B

M
S

Σ
1
1
1

Σ 1.5 1.0 .5

𝑃B,C′ = 𝜇C 

𝜇C = ∑B 𝜇B𝑃B,C for all 𝑗

1.460𝐻 𝛍 =

ℙ M|B = 0.2 𝛍 = 𝐏G𝛍
transpose

Which process (𝐏 or 𝐏′) has a higher "entropy rate"?

½ 

½ 
½ 

B

https://northeastern-datalab.github.io/cs7840/
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Markov Chain How to find the stationary distribution 𝛍?
By finding the largest eigenvector of 𝐏, 
i.e. solving an equation system:.7

.2
.3 .1

.3

.5.6 .1
.2

ℙ M|B = 0.2 B

M S

State transition matrix 𝐏:

.7 .2 .1

.3 .6 .1

.3 .2 .5
𝐏 =

B M S
B

M
S

𝑃B,C = ℙ 𝑋DE* = 𝑗	|𝑋D = 𝑖 : 
      probability of choosing 𝑗 after 𝑖

EXAMPLE: restaurants

Σ
1
1
1

Σ 1.3 1.0 .7

𝐏B,: row vector (probability distribution)

row-stochastic

𝛍 =
1/2
1/3
1/6

𝜇C = ∑B 𝜇B𝑃B,C 

1.460𝐻 𝛍 =

Code: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

𝛍 = 𝐏G𝛍
transpose

𝐏′

𝐏

Which process (𝐏 or 𝐏′) has a higher "entropy rate"?

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb


269Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Markov Chains and information measures
𝑋 → 𝑌 → 𝑍 is a Markov chain if ?

https://northeastern-datalab.github.io/cs7840/
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Markov Chains and information measures
𝑋 → 𝑌 → 𝑍 is a Markov chain if

𝑝 𝑥, 𝑦, 𝑧 = ?
𝑋 ⊥ 𝑍|𝑌 , and thus:

Intuitively: The future depends only on the 
current state (not the previous ones)

https://northeastern-datalab.github.io/cs7840/
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Markov Chains and information measures
𝑋 → 𝑌 → 𝑍 is a Markov chain if

𝑝 𝑥, 𝑦, 𝑧 = 

?𝑝 𝑥, 𝑧|𝑦 = 

In general, 𝑝 𝑥, 𝑦, 𝑧 = 𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑥, 𝑦)𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑦)
𝑋 ⊥ 𝑍|𝑌 , and thus:

Intuitively: The future depends only on the 
current state (not the previous ones)

https://northeastern-datalab.github.io/cs7840/
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Markov Chains and information measures
𝑋 → 𝑌 → 𝑍 is a Markov chain if

𝑝 𝑥, 𝑦, 𝑧 = 

?
𝑝 𝑥, 𝑧|𝑦 = 

In general, 𝑝 𝑥, 𝑦, 𝑧 = 𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑥, 𝑦)𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑦)

𝐼 𝑋; 𝑍 𝑌 = 

In general, 𝑝 𝑥, 𝑧|𝑦 =  𝑝(𝑥|𝑦) ⋅ 𝑝(𝑧|𝑥, 𝑦)𝑝(𝑥|𝑦) ⋅ 𝑝(𝑧|𝑦) 

𝑋 ⊥ 𝑍|𝑌 , and thus:
Intuitively: The future depends only on the 
current state (not the previous ones)

MI beween 𝑋 and 𝑍
if we know 𝑌

https://northeastern-datalab.github.io/cs7840/
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Markov Chains and information measures
𝑋 → 𝑌 → 𝑍 is a Markov chain if

𝑝 𝑥, 𝑦, 𝑧 = 

?

𝑝 𝑥, 𝑧|𝑦 = 

In general, 𝑝 𝑥, 𝑦, 𝑧 = 𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑥, 𝑦)𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑦)

𝐼 𝑋; 𝑍 𝑌 = 

In general, 𝑝 𝑥, 𝑧|𝑦 =  𝑝(𝑥|𝑦) ⋅ 𝑝(𝑧|𝑥, 𝑦)𝑝(𝑥|𝑦) ⋅ 𝑝(𝑧|𝑦) 

What does this mean for the interaction information 𝐽 𝑋; 𝑌; 𝑍 ?

0 

𝑋 ⊥ 𝑍|𝑌 , and thus:
Intuitively: The future depends only on the 
current state (not the previous ones)

https://northeastern-datalab.github.io/cs7840/
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Markov Chains and information measures

𝑝 𝑥, 𝑦, 𝑧 = 

𝑝 𝑥, 𝑧|𝑦 = 

𝐼 𝑋; 𝑍 𝑌 = 

𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑦)

What does this mean for the interaction information 𝐽 𝑋; 𝑌; 𝑍 ?

𝑝(𝑥|𝑦) ⋅ 𝑝(𝑧|𝑦) 
0 

• Recall: 𝐽 𝑋; 𝑍; 𝑌 	measures the negated influence of a variable 𝑌 on the amount of 
information shared between 𝑋 and 𝑍 (their mutual information).

𝐽 𝑋; 𝑍; 𝑌 = 𝐼 𝑋; 𝑍 − 𝐼 𝑋; 𝑍 𝑌 = 𝐼(𝑋; 𝑍) ≥ 0 

• It is positive when 𝑌 decreases/inhibits (i.e., accounts for or explains some of) the 
correlation between 𝑋 and 𝑍 (that happens here in Markov chains).

• It is negative when 𝑌 increases/facilitates the correlation (e.g., when 𝑋 and 𝑌 are 
independent yet not conditionally independent given 𝑍, see earlier parity example). 

𝑋 → 𝑌 → 𝑍 is a Markov chain if
In general, 𝑝 𝑥, 𝑦, 𝑧 = 𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑥, 𝑦)
In general, 𝑝 𝑥, 𝑧|𝑦 =  𝑝(𝑥|𝑦) ⋅ 𝑝(𝑧|𝑥, 𝑦)

𝑋 ⊥ 𝑍|𝑌 , and thus:
Intuitively: The future depends only on the 
current state (not the previous ones)

= 0

https://northeastern-datalab.github.io/cs7840/
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Markov Chains and information measures

𝑝 𝑥, 𝑦, 𝑧 = 

𝑝 𝑥, 𝑧|𝑦 = 

𝐼 𝑋; 𝑍 𝑌 = 

𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑦)

What does this mean for the interaction information 𝐽 𝑋; 𝑌; 𝑍 ?

𝑝(𝑥|𝑦) ⋅ 𝑝(𝑧|𝑦) 
0 

𝐽 𝑋; 𝑍; 𝑌 = 𝐼 𝑋; 𝑍 − 𝐼 𝑋; 𝑍 𝑌 = 𝐼(𝑋; 𝑍) ≥ 0 

𝑋 → 𝑌 → 𝑍 is a Markov chain if
In general, 𝑝 𝑥, 𝑦, 𝑧 = 𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑥, 𝑦)
In general, 𝑝 𝑥, 𝑧|𝑦 =  𝑝(𝑥|𝑦) ⋅ 𝑝(𝑧|𝑥, 𝑦)

𝑋 ⊥ 𝑍|𝑌 , and thus:

= 0

Intuitively: The future depends only on the 
current state (not the previous ones)

𝐽 𝑋; 𝑍; 𝑌

𝐻 𝑋 𝐻 𝑍𝐻 𝑌
𝐻 𝑋

𝐻 𝑍𝐼 𝑋; 𝑍|𝑌

𝐽 𝑋; 𝑍; 𝑌

𝐻 𝑌

https://northeastern-datalab.github.io/cs7840/
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Markov Chains and stationary stochastic processes

𝑝 𝑥, 𝑦, 𝑧 = 

𝑝 𝑥, 𝑧|𝑦 = 

𝐼 𝑋; 𝑍 𝑌 = 

𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑦)
𝑝(𝑥|𝑦) ⋅ 𝑝(𝑧|𝑦) 
0 

?
A discrete stochastic process (𝑋!, 𝑋#, … ) is a Markov chain if

𝑋 → 𝑌 → 𝑍 is a Markov chain if
In general, 𝑝 𝑥, 𝑦, 𝑧 = 𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑥, 𝑦)
In general, 𝑝 𝑥, 𝑧|𝑦 =  𝑝(𝑥|𝑦) ⋅ 𝑝(𝑧|𝑥, 𝑦)

𝑋 ⊥ 𝑍|𝑌 , and thus:

https://northeastern-datalab.github.io/cs7840/
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Markov Chains and stationary stochastic processes

𝑝 𝑥, 𝑦, 𝑧 = 

𝑝 𝑥, 𝑧|𝑦 = 

𝐼 𝑋; 𝑍 𝑌 = 

𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑦)
𝑝(𝑥|𝑦) ⋅ 𝑝(𝑧|𝑦) 
0 

A stochastic process 𝑋2 = (𝑋!, 𝑋#, … ) is stationary if ...

?

A discrete stochastic process (𝑋!, 𝑋#, … ) is a Markov chain if each RV depends only on the 
one preceding it and is conditionally independent of all the other preceding RVs

ℙ 𝑥4g!|𝑥4, 𝑥4'!, … , 𝑥! = 

𝑋 → 𝑌 → 𝑍 is a Markov chain if
In general, 𝑝 𝑥, 𝑦, 𝑧 = 𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑥, 𝑦)
In general, 𝑝 𝑥, 𝑧|𝑦 =  𝑝(𝑥|𝑦) ⋅ 𝑝(𝑧|𝑥, 𝑦)

𝑋 ⊥ 𝑍|𝑌 , and thus:

ℙ 𝑥4g!|𝑥4	

https://northeastern-datalab.github.io/cs7840/
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Markov Chains and stationary stochastic processes
𝑋 → 𝑌 → 𝑍 is a Markov chain if

𝑝 𝑥, 𝑦, 𝑧 = 

𝑝 𝑥, 𝑧|𝑦 = 

𝐼 𝑋; 𝑍 𝑌 = 

𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑦)
𝑝(𝑥|𝑦) ⋅ 𝑝(𝑧|𝑦) 
0 

A discrete stochastic process (𝑋!, 𝑋#, … ) is a Markov chain if each RV depends only on the 
one preceding it and is conditionally independent of all the other preceding RVs

A stochastic process 𝑋2 = 𝑋!, 𝑋#, …  is stationary if the joint distribution 
of any subsequence is invariant w.r.t. shifts in the time index (say by ℓ	steps)

ℙ (𝑥!, 𝑥#, … , 𝑥j) = 

In general, 𝑝 𝑥, 𝑦, 𝑧 = 𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑥, 𝑦)
In general, 𝑝 𝑥, 𝑧|𝑦 =  𝑝(𝑥|𝑦) ⋅ 𝑝(𝑧|𝑥, 𝑦)

𝑋 ⊥ 𝑍|𝑌 , and thus:

ℙ 𝑥4g!|𝑥4, 𝑥4'!, … , 𝑥! = ℙ 𝑥4g!|𝑥4	

ℙ (𝑥!gℓ, 𝑥#gℓ, … , 𝑥jgℓ)

https://northeastern-datalab.github.io/cs7840/
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Entropy rate for stationary Markov Chain

𝐻 𝑋!, 𝑋#, … , 𝑋4 → 𝑛 ⋅ 𝐻(𝒳)  𝐻 𝒳 = 

The entropy rate of a stochastic process {𝑋2} =:𝒳 is the average entropy per symbol:

For a stationary stochastic process, this is equal to the rate of information innovation

lim
4→m

	
1
𝑛 ⋅ 𝐻(𝑋!, 𝑋#, … , 𝑋4)

𝐻 𝒳 = 

Notice a slight inconsistency in notation inherited from [Cover, Thomas]: This symbol 𝒳	represents 
the entire stochastic process as a whole. Thus literally, 𝐻 𝒳  should be 𝐻(𝑋*, 𝑋%, … , 𝑋D), and not *

D
 

of that. To clarify, some textbooks write 𝐻′ 𝒳  for the entropy rate.

?

https://northeastern-datalab.github.io/cs7840/
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Entropy rate for stationary Markov Chain

𝐻 𝑋!, 𝑋#, … , 𝑋4 → 𝑛 ⋅ 𝐻(𝒳)  𝐻 𝒳 = 

The entropy rate of a stochastic process {𝑋2} =:𝒳 is the average entropy per symbol:

For a stationary stochastic process, this is equal to the rate of information innovation

lim
4→m

	
1
𝑛 ⋅ 𝐻(𝑋!, 𝑋#, … , 𝑋4)

𝐻 𝒳 = 

Notice a slight inconsistency in notation inherited from [Cover, Thomas]: This symbol 𝒳	represents 
the entire stochastic process as a whole. Thus literally, 𝐻 𝒳  should be 𝐻(𝑋*, 𝑋%, … , 𝑋D), and not *

D
 

of that. To clarify, some textbooks write 𝐻′ 𝒳  for the entropy rate.

𝐻 𝒳 = 
For a stationary Markov Chain, the entropy rate is

lim
4→m

𝐻(𝑋4|𝑋4'!, … , 𝑋!)

?

https://northeastern-datalab.github.io/cs7840/
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Entropy rate for stationary Markov Chain

𝐻 𝒳 = where the conditional entropy is calculated 
using the stationary distribution (!) 

𝐻(𝑋#|𝑋!)
For a stationary Markov Chain, the entropy rate is

𝐻 𝑋!, 𝑋#, … , 𝑋4 → 𝑛 ⋅ 𝐻(𝒳)  𝐻 𝒳 = 

The entropy rate of a stochastic process {𝑋2} =:𝒳 is the average entropy per symbol:

For a stationary stochastic process, this is equal to the rate of information innovation

lim
4→m

	
1
𝑛 ⋅ 𝐻(𝑋!, 𝑋#, … , 𝑋4)

lim
4→m

𝐻(𝑋4|𝑋4'!, … , 𝑋!)𝐻 𝒳 = 

Notice a slight inconsistency in notation inherited from [Cover, Thomas]: This symbol 𝒳	represents 
the entire stochastic process as a whole. Thus literally, 𝐻 𝒳  should be 𝐻(𝑋*, 𝑋%, … , 𝑋D), and not *

D
 

of that. To clarify, some textbooks write 𝐻′ 𝒳  for the entropy rate.

𝐻(𝑋#)

≤ or ≥

?

https://northeastern-datalab.github.io/cs7840/
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Entropy rate for stationary Markov Chain

𝐻 𝒳 = where the conditional entropy is calculated 
using the stationary distribution (!) 

𝐻(𝑋#|𝑋!)
For a stationary Markov Chain, the entropy rate is

𝐻 𝑋!, 𝑋#, … , 𝑋4 → 𝑛 ⋅ 𝐻(𝒳)  𝐻 𝒳 = 

The entropy rate of a stochastic process {𝑋2} =:𝒳 is the average entropy per symbol:

For a stationary stochastic process, this is equal to the rate of information innovation

lim
4→m

	
1
𝑛 ⋅ 𝐻(𝑋!, 𝑋#, … , 𝑋4)

lim
4→m

𝐻(𝑋4|𝑋4'!, … , 𝑋!)𝐻 𝒳 = 

Notice a slight inconsistency in notation inherited from [Cover, Thomas]: This symbol 𝒳	represents 
the entire stochastic process as a whole. Thus literally, 𝐻 𝒳  should be 𝐻(𝑋*, 𝑋%, … , 𝑋D), and not *

D
 

of that. To clarify, some textbooks write 𝐻′ 𝒳  for the entropy rate.

𝐻(𝑋#)≤

(conditioning cannot 
increase the entropy)

=8
2
𝜇2 ⋅ 𝐻(𝑋#|𝑋! = 𝑖)

= −8
2
𝜇2 ⋅ 𝑃2n ⋅ lg(𝑃2n)

= 𝔼2~p[𝐻(𝐏2:)]=8
2
𝜇2 ⋅ 𝐻(𝐏2:)

https://northeastern-datalab.github.io/cs7840/
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Markov Chain (cont.) How to find the stationary distribution 𝛍?
By finding the largest eigenvector of 𝐏, 
i.e. solving an equation system:.7

.2
.3 .1

.3

.5.6 .1
.2

ℙ M|B = 0.2 B

M S

State transition matrix 𝐏:

.7 .2 .1

.3 .6 .1

.3 .2 .5
𝐏 =

B M S
B

M
S

𝑃B,C = ℙ 𝑋DE* = 𝑗	|𝑋D = 𝑖 : 
      probability of choosing 𝑗 after 𝑖

EXAMPLE: restaurants

Σ
1
1
1

Σ 1.3 1.0 .7

𝐏B,: row vector (probability distribution)

row-stochastic

𝛍 =
1/2
1/3
1/6

𝜇C = ∑B 𝜇B𝑃B,C 

1.460𝐻 𝛍 =

𝐻 𝐏 = 

Entropy rate of 𝐏:

?
Code: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

𝛍 = 𝐏G𝛍
transpose

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb
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Markov Chain (cont.) How to find the stationary distribution 𝛍?
By finding the largest eigenvector of 𝐏, 
i.e. solving an equation system:.7

.2
.3 .1

.3

.5.6 .1
.2

ℙ M|B = 0.2 B

M S

State transition matrix 𝐏:

.7 .2 .1

.3 .6 .1

.3 .2 .5
𝐏 =

B M S
B

M
S

𝑃B,C = ℙ 𝑋DE* = 𝑗	|𝑋D = 𝑖 : 
      probability of choosing 𝑗 after 𝑖

EXAMPLE: restaurants

Σ
1
1
1

Σ 1.3 1.0 .7

𝐏B,: row vector (probability distribution)

row-stochastic

𝛍 =
1/2
1/3
1/6

𝜇C = ∑B 𝜇B𝑃B,C 

1.460𝐻 𝛍 =

𝐻 𝐏 = 

Entropy rate of 𝐏:
𝔼B~H[𝐻(𝐏B:)]

= 1.258=^
B
𝜇B ⋅ 𝐻(𝐏B:)

Code: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

𝛍 = 𝐏G𝛍
transpose

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb


285Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Markov Chain

𝑝

𝐏 =

EXAMPLE: A simple two-state Markov Chain

𝑝̅ = 1 − 𝑝
𝑝̅

𝑝̅
1 2 𝑝

?

https://northeastern-datalab.github.io/cs7840/
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Markov Chain

𝑝

𝑝 𝑝̅ 
𝑝̅ 𝑝𝐏 =

EXAMPLE: A simple two-state Markov Chain

𝑝̅ = 1 − 𝑝
𝑝̅

𝑝̅
1 2 𝑝

𝛍 = ?

https://northeastern-datalab.github.io/cs7840/
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Markov Chain

𝑝

𝑝 𝑝̅ 
𝑝̅ 𝑝𝐏 =

EXAMPLE: A simple two-state Markov Chain

𝑝̅ = 1 − 𝑝
𝑝̅

𝑝̅
1 2 𝑝

𝛍 = 0.5
0.5

𝐻 𝛍 = ?

𝑝 = 0.95:

𝑝 = 0.05:

Code: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb
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Markov Chain

𝑝

𝑝 𝑝̅ 
𝑝̅ 𝑝𝐏 =

EXAMPLE: A simple two-state Markov Chain

𝑝̅ = 1 − 𝑝
𝑝̅

𝑝̅
1 2 𝑝

𝛍 = 0.5
0.5

1𝐻 𝛍 = 

𝑝 = 0.95:

𝑝 = 0.05:

𝐻 𝐏 = ?
Code: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb
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Markov Chain

𝑝

𝑝 𝑝̅ 
𝑝̅ 𝑝𝐏 =

EXAMPLE: A simple two-state Markov Chain

𝑝̅ = 1 − 𝑝
𝑝̅

𝑝̅
1 2 𝑝

𝛍 = 0.5
0.5

1𝐻 𝛍 = 

𝑝 = 0.95:

𝑝 = 0.05:

𝐻 𝐏 = 

= 𝐻B 𝑝

𝔼B~H[𝐻(𝐏B:)] 

Code: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

𝐻B 𝑝 = 0.286

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb
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Pre-class conversations

• Last class recapitulation
• Python scripts ...
• Renaming scribes to mini projects). 
• Project ideas: Talk to me often. I can't meet right after class for next 

4 times, but before or in my office via email coordination.
- Feel free to explore how to use information theory to your current work
- And feel free to explore "crazy" ideas; that's what these projects are for

• Today: 
- (Markov Chains) -> Data Processing inequality, Sufficient statistics
- Today or next time: information inequalities

https://northeastern-datalab.github.io/cs7840/
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Data Processing
Inequality

https://northeastern-datalab.github.io/cs7840/
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Intuitively, the data processing inequality states that no clever transformation of a received 
representation 𝑌 can increase the information about the original information 𝑋.

Data Processing Inequality for 𝑋 → 𝑌 → 𝑍

THEOREM: Suppose we have a Markov chain 𝑋 → 𝑌 → 𝑍 (and thus 𝑋 ⊥ 𝑍|𝑌), then

≤ or ≥

?𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍)

https://northeastern-datalab.github.io/cs7840/
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Intuitively, the data processing inequality states that no clever transformation of a received 
representation 𝑌 can increase the information about the original information 𝑋.

Data Processing Inequality for 𝑋 → 𝑌 → 𝑍

THEOREM: Suppose we have a Markov chain 𝑋 → 𝑌 → 𝑍 (and thus 𝑋 ⊥ 𝑍|𝑌), then

𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍)≥

COROLLARY: If 𝑍 = 𝑓(𝑌), then 𝐼 𝑋; 𝑌 ≥ 𝐼 𝑋; 𝑓 𝑌 . Thus functions of 𝑌	cannot increase the 
information about 𝑋. In other words, no processing of 𝑌, deterministic or random, can increase 
the information that 𝑌 contains about 𝑋 (unless you add additional outside information).

This follows from 𝑋 → 𝑌 → 𝑓(𝑌) forming a Markov chain.

https://northeastern-datalab.github.io/cs7840/
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Intuitively, the data processing inequality states that no clever transformation of a received 
representation 𝑌 can increase the information about the original information 𝑋.

Data Processing Inequality for 𝑋 → 𝑌 → 𝑍

THEOREM: Suppose we have a Markov chain 𝑋 → 𝑌 → 𝑍 (and thus 𝑋 ⊥ 𝑍|𝑌), then

𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍)≥

𝐼 𝑋; 𝑌, 𝑍 = 
PROOF:

𝐼 𝑋; (𝑌, 𝑍)  

?

https://northeastern-datalab.github.io/cs7840/
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Intuitively, the data processing inequality states that no clever transformation of a received 
representation 𝑌 can increase the information about the original information 𝑋.

Data Processing Inequality for 𝑋 → 𝑌 → 𝑍

THEOREM: Suppose we have a Markov chain 𝑋 → 𝑌 → 𝑍 (and thus 𝑋 ⊥ 𝑍|𝑌), then

𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍)≥

𝐼 𝑋; 𝑌, 𝑍 = 
PROOF:

𝐻 𝑋 − 𝐻(𝑋|𝑌, 𝑍) = 𝐻 𝑋 + −𝐻 𝑋 𝑍 + 𝐻 𝑋 𝑍 − 𝐻(𝑋|𝑌, 𝑍) 

=	𝐼 𝑋; (𝑌, 𝑍)  ? + ?

https://northeastern-datalab.github.io/cs7840/


301Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Intuitively, the data processing inequality states that no clever transformation of a received 
representation 𝑌 can increase the information about the original information 𝑋.

Data Processing Inequality for 𝑋 → 𝑌 → 𝑍

THEOREM: Suppose we have a Markov chain 𝑋 → 𝑌 → 𝑍 (and thus 𝑋 ⊥ 𝑍|𝑌), then

𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍)≥

𝐼 𝑋; 𝑌, 𝑍 = 
PROOF:

𝐻 𝑋 − 𝐻(𝑋|𝑌, 𝑍) = 𝐻 𝑋 + −𝐻 𝑋 𝑍 + 𝐻 𝑋 𝑍 − 𝐻(𝑋|𝑌, 𝑍) 

= 	 𝐼 𝑋; 𝑍  

(similarly, 
from symmetry)

𝐼 𝑋; (𝑌, 𝑍)  

?

𝐼(𝑋; 𝑌|𝑍) + 

= 	 𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍|𝑌) + 
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Intuitively, the data processing inequality states that no clever transformation of a received 
representation 𝑌 can increase the information about the original information 𝑋.

Data Processing Inequality for 𝑋 → 𝑌 → 𝑍

THEOREM: Suppose we have a Markov chain 𝑋 → 𝑌 → 𝑍 (and thus 𝑋 ⊥ 𝑍|𝑌), then

𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍)≥

𝐼 𝑋; 𝑌, 𝑍 = 
PROOF:

𝐻 𝑋 − 𝐻(𝑋|𝑌, 𝑍) = 

= 	 𝐼 𝑋; 𝑍  

(similarly, 
from symmetry)

𝐼 𝑋; (𝑌, 𝑍)  𝐼(𝑋; 𝑌|𝑍) + 

= 	 𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍|𝑌) + 

𝐼 𝑋; 𝑌 = 𝐼 𝑋; 𝑍 + 𝐼(𝑋; 𝑌|𝑍) 

?

= 0
⇒

𝐻 𝑋 + −𝐻 𝑋 𝑍 + 𝐻 𝑋 𝑍 − 𝐻(𝑋|𝑌, 𝑍) 
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Intuitively, the data processing inequality states that no clever transformation of a received 
representation 𝑌 can increase the information about the original information 𝑋.

Data Processing Inequality for 𝑋 → 𝑌 → 𝑍

THEOREM: Suppose we have a Markov chain 𝑋 → 𝑌 → 𝑍 (and thus 𝑋 ⊥ 𝑍|𝑌), then

𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍)≥

𝐼 𝑋; 𝑌, 𝑍 = 
PROOF:

𝐻 𝑋 − 𝐻(𝑋|𝑌, 𝑍) = 

= 	 𝐼 𝑋; 𝑍  

(similarly, 
from symmetry)

𝐼 𝑋; (𝑌, 𝑍)  𝐼(𝑋; 𝑌|𝑍) + 

= 	 𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍|𝑌) + 

𝐼 𝑋; 𝑌 = 𝐼 𝑋; 𝑍 + 𝐼(𝑋; 𝑌|𝑍) 
= 0

⇒

≥ 0
since mutual information is 
always non-negative𝐼 𝑋; 𝑌 ≥ 𝐼 𝑋; 𝑍  ⇒

𝐻 𝑋 + −𝐻 𝑋 𝑍 + 𝐻 𝑋 𝑍 − 𝐻(𝑋|𝑌, 𝑍) 
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Data Processing Inequality for 𝑋 → 𝑌 → 𝑍
𝐻 𝑋 𝐻 𝑍

𝐻 𝑌

𝐼 𝑋; 𝑌, 𝑍 = 𝐻 𝑋 − 𝐻(𝑋|𝑌, 𝑍) = 

since mutual information is 
always non-negative

𝐼 𝑋; (𝑌, 𝑍)  𝐼 𝑋|(𝑌, 𝑍)  

?

𝐼 𝑋; 𝑌 = 𝐼 𝑋; 𝑍 + 𝐼(𝑋; 𝑌|𝑍) 

≥ 0

⇒

𝐼 𝑋; 𝑌 ≥ 𝐼 𝑋; 𝑍  ⇒

= 	 𝐼 𝑋; 𝑍  

(similarly, 
from symmetry)

𝐼(𝑋; 𝑌|𝑍) + 

= 	 𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍|𝑌) + 

= 0

𝐻 𝑋 + −𝐻 𝑋 𝑍 + 𝐻 𝑋 𝑍 − 𝐻(𝑋|𝑌, 𝑍) 
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Data Processing Inequality for 𝑋 → 𝑌 → 𝑍
𝐻 𝑋 𝐻 𝑍

𝐻 𝑌

𝐼 𝑋; 𝑌, 𝑍 = 𝐻 𝑋 − 𝐻(𝑋|𝑌, 𝑍) = 
𝐼 𝑋; (𝑌, 𝑍)  𝐼 𝑋|(𝑌, 𝑍)  

𝐻 𝑌, 𝑍

since mutual information is 
always non-negative

?

𝐼 𝑋; 𝑌 = 𝐼 𝑋; 𝑍 + 𝐼(𝑋; 𝑌|𝑍) 

≥ 0

⇒

𝐼 𝑋; 𝑌 ≥ 𝐼 𝑋; 𝑍  ⇒

= 	 𝐼 𝑋; 𝑍  

(similarly, 
from symmetry)

𝐼(𝑋; 𝑌|𝑍) + 

= 	 𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍|𝑌) + 

= 0

𝐻 𝑋 + −𝐻 𝑋 𝑍 + 𝐻 𝑋 𝑍 − 𝐻(𝑋|𝑌, 𝑍) 
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Data Processing Inequality for 𝑋 → 𝑌 → 𝑍
𝐻 𝑋 𝐻 𝑍

𝐻 𝑌

𝐼 𝑋; 𝑌, 𝑍 = 𝐻 𝑋 − 𝐻(𝑋|𝑌, 𝑍) = 
𝐼 𝑋; (𝑌, 𝑍)  𝐼 𝑋|(𝑌, 𝑍)  

𝐻 𝑌, 𝑍
𝐼 𝑋; 𝑌, 𝑍

since mutual information is 
always non-negative

𝐼 𝑋; 𝑌 = 𝐼 𝑋; 𝑍 + 𝐼(𝑋; 𝑌|𝑍) 

≥ 0

⇒

𝐼 𝑋; 𝑌 ≥ 𝐼 𝑋; 𝑍  ⇒

= 	 𝐼 𝑋; 𝑍  

(similarly, 
from symmetry)

𝐼(𝑋; 𝑌|𝑍) + 

= 	 𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍|𝑌) + 

= 0

𝐻 𝑋 + −𝐻 𝑋 𝑍 + 𝐻 𝑋 𝑍 − 𝐻(𝑋|𝑌, 𝑍) 
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Data Processing Inequality for 𝑋 → 𝑌 → 𝑍
𝐻 𝑋 𝐻 𝑍

𝐻 𝑌

𝐻 𝑋 𝐻 𝑍

𝐻 𝑌

𝐼 𝑋; 𝑌, 𝑍 = 𝐻 𝑋 − 𝐻(𝑋|𝑌, 𝑍) = 
𝐼 𝑋; (𝑌, 𝑍)  𝐼 𝑋|(𝑌, 𝑍)  

since mutual information is 
always non-negative

𝐼 𝑋; 𝑌, 𝑍

𝐼 𝑋; 𝑌 = 𝐼 𝑋; 𝑍 + 𝐼(𝑋; 𝑌|𝑍) 

≥ 0

⇒

𝐼 𝑋; 𝑌 ≥ 𝐼 𝑋; 𝑍  ⇒

= 	 𝐼 𝑋; 𝑍  

(similarly, 
from symmetry)

𝐼(𝑋; 𝑌|𝑍) + 

= 	 𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍|𝑌) + 

= 0

𝐻 𝑋 + −𝐻 𝑋 𝑍 + 𝐻 𝑋 𝑍 − 𝐻(𝑋|𝑌, 𝑍) 
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Data Processing Inequality for 𝑋 → 𝑌 → 𝑍
𝐻 𝑋 𝐻 𝑍

𝐻 𝑌

𝐻 𝑋 𝐻 𝑍

𝐻 𝑌

𝐼 𝑋; 𝑌, 𝑍 = 𝐻 𝑋 − 𝐻(𝑋|𝑌, 𝑍) = 
𝐼 𝑋; (𝑌, 𝑍)  𝐼 𝑋|(𝑌, 𝑍)  

since mutual information is 
always non-negative

𝐼 𝑋; 𝑌, 𝑍

?
?
?

?

𝐼 𝑋; 𝑌 = 𝐼 𝑋; 𝑍 + 𝐼(𝑋; 𝑌|𝑍) 

≥ 0

⇒

𝐼 𝑋; 𝑌 ≥ 𝐼 𝑋; 𝑍  ⇒

= 	 𝐼 𝑋; 𝑍  

(similarly, 
from symmetry)

𝐼(𝑋; 𝑌|𝑍) + 

= 	 𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍|𝑌) + 

= 0

𝐻 𝑋 + −𝐻 𝑋 𝑍 + 𝐻 𝑋 𝑍 − 𝐻(𝑋|𝑌, 𝑍) 
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Data Processing Inequality for 𝑋 → 𝑌 → 𝑍
𝐻 𝑋 𝐻 𝑍

𝐻 𝑌

𝐻 𝑋 𝐻 𝑍

𝐻 𝑌

𝐼 𝑋; 𝑌, 𝑍 = 𝐻 𝑋 − 𝐻(𝑋|𝑌, 𝑍) = 
𝐼 𝑋; (𝑌, 𝑍)  𝐼 𝑋|(𝑌, 𝑍)  

since mutual information is 
always non-negative

𝐼 𝑋; 𝑌, 𝑍

𝐼 𝑋; 𝑍
𝐼 𝑋; 𝑍|𝑌

𝐼 𝑋; 𝑌
𝐼 𝑋; 𝑌|𝑍

𝐼 𝑋; 𝑌 = 𝐼 𝑋; 𝑍 + 𝐼(𝑋; 𝑌|𝑍) 

≥ 0

⇒

𝐼 𝑋; 𝑌 ≥ 𝐼 𝑋; 𝑍  ⇒

= 	 𝐼 𝑋; 𝑍  

(similarly, 
from symmetry)

𝐼(𝑋; 𝑌|𝑍) + 

= 	 𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍|𝑌) + 

= 0

𝐻 𝑋 + −𝐻 𝑋 𝑍 + 𝐻 𝑋 𝑍 − 𝐻(𝑋|𝑌, 𝑍) 
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Data Processing Inequality for 𝑋 → 𝑌 → 𝑍
𝐻 𝑋 𝐻 𝑍

𝐻 𝑌

𝐻 𝑋 𝐻 𝑍

𝐻 𝑌

𝐼 𝑋; 𝑌, 𝑍 = 𝐻 𝑋 − 𝐻(𝑋|𝑌, 𝑍) = 
𝐼 𝑋; (𝑌, 𝑍)  𝐼 𝑋|(𝑌, 𝑍)  

since mutual information is 
always non-negative

𝐼 𝑋; 𝑌, 𝑍

𝐼 𝑋; 𝑍

𝐼 𝑋; 𝑌
𝐼 𝑋; 𝑌|𝑍

𝐼 𝑋; 𝑍|𝑌

𝐼 𝑋; 𝑌 = 𝐼 𝑋; 𝑍 + 𝐼(𝑋; 𝑌|𝑍) 

≥ 0

⇒

𝐼 𝑋; 𝑌 ≥ 𝐼 𝑋; 𝑍  ⇒

= 	 𝐼 𝑋; 𝑍  

(similarly, 
from symmetry)

𝐼(𝑋; 𝑌|𝑍) + 

= 	 𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍|𝑌) + 

= 0

𝐻 𝑋 + −𝐻 𝑋 𝑍 + 𝐻 𝑋 𝑍 − 𝐻(𝑋|𝑌, 𝑍) 

= 0
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Data Processing Inequality for 𝑋 → 𝑌 → 𝑍
𝐻 𝑋 𝐻 𝑍

𝐻 𝑌

𝐻 𝑋 𝐻 𝑍

𝐻 𝑌

𝐼 𝑋; 𝑌, 𝑍

𝐼 𝑋; 𝑍

𝐼 𝑋; 𝑌
𝐼 𝑋; 𝑌|𝑍

𝐼 𝑋; 𝑍|𝑌

𝐼 𝑋; 𝑌 ≥ 𝐼 𝑋; 𝑍  ⇒

= 0

𝐻 𝑋 𝐻 𝑍𝐻 𝑌

𝐽 𝑋; 𝑍; 𝑌 = 
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Data Processing Inequality for 𝑋 → 𝑌 → 𝑍
𝐻 𝑋 𝐻 𝑍

𝐻 𝑌

𝐻 𝑋 𝐻 𝑍

𝐻 𝑌

𝐼 𝑋; 𝑌, 𝑍

𝐼 𝑋; 𝑍

𝐼 𝑋; 𝑌
𝐼 𝑋; 𝑌|𝑍

𝐼 𝑋; 𝑍|𝑌

𝐼 𝑋; 𝑌 ≥ 𝐼 𝑋; 𝑍  ⇒

= 0

𝐻 𝑋 𝐻 𝑍𝐻 𝑌

𝐽 𝑋; 𝑍; 𝑌 = 

𝐼 𝑋; 𝑌
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Data Processing Inequality for 𝑋 → 𝑌 → 𝑍
𝐻 𝑋 𝐻 𝑍

𝐻 𝑌

𝐻 𝑋 𝐻 𝑍

𝐻 𝑌

𝐼 𝑋; 𝑌, 𝑍

𝐼 𝑋; 𝑍

𝐼 𝑋; 𝑌
𝐼 𝑋; 𝑌|𝑍

𝐼 𝑋; 𝑍|𝑌

𝐼 𝑋; 𝑌 ≥ 𝐼 𝑋; 𝑍  ⇒

= 0

𝐻 𝑋 𝐻 𝑍𝐻 𝑌

𝐽 𝑋; 𝑍; 𝑌 = 

𝐼 𝑋; 𝑍 =𝐽 𝑋; 𝑍; 𝑌

𝐼 𝑋; 𝑌
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Bottleneck 𝑋 → 𝑌 → 𝑍

Example 2.16 from: [Cover, Thomas'06]. Elements of Information Theory (book, 2nd ed). https://doi.org/10.1002/047174882X 

EXAMPLE: suppose a (non-stationary) Markov chain starts in one of 𝑛 states, necks down 
to 𝑘 < 𝑛 states, and then fans back to 𝑚 > 𝑘 states. 

𝑋
1

2

3

𝑛 

𝑌

1

𝑘 

𝑍
1

2

𝑚 

How can we upper bound 𝐼 𝑋; 𝑍 ?

In other words, 𝑋 → 𝑌 → 𝑍 with 
𝑝 𝑥, 𝑦, 𝑧 = 𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑦), and 𝑥 ∈ 𝑛 , 𝑦 ∈ 𝑘 , 𝑧 ∈ 𝑚 .
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Bottleneck 𝑋 → 𝑌 → 𝑍

Example 2.16 from: [Cover, Thomas'06]. Elements of Information Theory (book, 2nd ed). https://doi.org/10.1002/047174882X 

𝐼 𝑋; 𝑍 ≤	

How can we upper bound 𝐼 𝑋; 𝑍 ?

𝐻 𝑌 − 𝐻(𝑌|𝑋)
≤ 𝐻(𝑌) 
≤ lg(𝑘) 

⇒ The dependence between 𝑋	and 𝑍 is limited by the 
size 𝑘	of the bottleneck.

What if 𝑘 = 1

𝐼 𝑋; 𝑌 = 

?

EXAMPLE: suppose a (non-stationary) Markov chain starts in one of 𝑛 states, necks down 
to 𝑘 < 𝑛 states, and then fans back to 𝑚 > 𝑘 states. In other words, 𝑋 → 𝑌 → 𝑍 with 
𝑝 𝑥, 𝑦, 𝑧 = 𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑦), and 𝑥 ∈ 𝑛 , 𝑦 ∈ 𝑘 , 𝑧 ∈ 𝑚 .

𝑋
1

2

3

𝑛 

𝑌

1

𝑘 

𝑍
1

2

𝑚 
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Bottleneck 𝑋 → 𝑌 → 𝑍

Example 2.16 from: [Cover, Thomas'06]. Elements of Information Theory (book, 2nd ed). https://doi.org/10.1002/047174882X 

𝐼 𝑋; 𝑍 ≤	

How can we upper bound 𝐼 𝑋; 𝑍 ?

𝐻 𝑌 − 𝐻(𝑌|𝑋)
≤ 𝐻(𝑌) 
≤ lg(𝑘) 

⇒ The dependence between 𝑋	and 𝑍 is limited by the 
size 𝑘	of the bottleneck.

⇒ 𝐼 𝑋; 𝑍 ≤ lg 1 = 0. ⇒ 𝑋 and 𝑍 are independent.

𝐼 𝑋; 𝑌 = 

EXAMPLE: suppose a (non-stationary) Markov chain starts in one of 𝑛 states, necks down 
to 𝑘 < 𝑛 states, and then fans back to 𝑚 > 𝑘 states. In other words, 𝑋 → 𝑌 → 𝑍 with 
𝑝 𝑥, 𝑦, 𝑧 = 𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑦), and 𝑥 ∈ 𝑛 , 𝑦 ∈ 𝑘 , 𝑧 ∈ 𝑚 .

𝑋
1

2

3

𝑛 

𝑌

1

𝑍
1

2

𝑚 

What if 𝑘 = 1?

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1002/047174882X
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Autoencoders

Picture source: https://medium.com/@khotpavankumar27/autoencoder-s-the-deep-generative-models-9645f6e94942 

https://northeastern-datalab.github.io/cs7840/
https://medium.com/@khotpavankumar27/autoencoder-s-the-deep-generative-models-9645f6e94942
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Autoencoders

Picture source: https://charliegoldstraw.com/articles/autoencoder/ 

https://northeastern-datalab.github.io/cs7840/
https://charliegoldstraw.com/articles/autoencoder/
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Autoencoders

Picture source: https://www.mathworks.com/discovery/autoencoder.html 

https://northeastern-datalab.github.io/cs7840/
https://www.mathworks.com/discovery/autoencoder.html
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Autoencoders

Picture source: https://medium.com/aimonks/unlocking-the-potential-of-convolutional-autoencoders-a-deep-dive-into-image-processing-and-3d1212bad408 

https://northeastern-datalab.github.io/cs7840/
https://medium.com/aimonks/unlocking-the-potential-of-convolutional-autoencoders-a-deep-dive-into-image-processing-and-3d1212bad408
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Knowledge Distillation vs. Data processing inequality?

Screenshots from https://en.wikipedia.org/wiki/Knowledge_distillation , https://www.scaler.com/topics/nlp/distilbert/, 
https://medium.com/@aadityaura_26777/quantization-vs-distillation-in-neural-networks-a-comparison-8ef522e4fbec , 

https://northeastern-datalab.github.io/cs7840/
https://en.wikipedia.org/wiki/Knowledge_distillation
https://www.scaler.com/topics/nlp/distilbert/
https://medium.com/@aadityaura_26777/quantization-vs-distillation-in-neural-networks-a-comparison-8ef522e4fbec
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Knowledge Distillation vs. Data processing inequality?

https://northeastern-datalab.github.io/cs7840/
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Sufficient statistics
Following part builds on text, notation and examples from several sources, in particular:
[Casella,Berger'24] Statistical inference (2nd ed), 2024: Ch 6 Principles of Data Reduction. https://doi.org/10.1201/9781003456285 
[Fithian'24] Statistics 210a: Theoretical Statistics, Berkeley, 2014: Lecture 4 sufficiency. https://stat210a.berkeley.edu/fall-
2024/reader/sufficiency.html 
[Scott'11] EECS 564: Estimation, Filtering, and Detection, University of Michigan, 2011: Lecture 5 Sufficient statistics. 
https://web.eecs.umich.edu/~cscott/past_courses/eecs564w11/index.html  
[Cover,Thomas'06] Elements of Information Theory (2nd ed), 2006: Ch 2.9 Sufficient Statistics. https://www.doi.org/10.1002/047174882X

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1201/9781003456285
https://stat210a.berkeley.edu/fall-2024/reader/sufficiency.html
https://stat210a.berkeley.edu/fall-2024/reader/sufficiency.html
https://web.eecs.umich.edu/~cscott/past_courses/eecs564w11/index.html
https://www.doi.org/10.1002/047174882X
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Parameter estimation
Suppose the probability distribution of a random variable 𝑋	is determined by a parameter 𝜃:

𝑋~𝑓K(𝑥)

EXAMPLE: If 𝑋	is a discrete Bernoulli RV, then its pmf 
(probability mass function) is parameterized by 𝑝:

𝑓" 𝑥 = 

Think of this as a conditional distribution: 𝑓= 𝑥 = 𝑝(𝑥|𝜃)

?

https://northeastern-datalab.github.io/cs7840/
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Parameter estimation
Suppose the probability distribution of a random variable 𝑋	is determined by a parameter 𝜃:

𝑋~𝑓K(𝑥)

EXAMPLE: If 𝑋	is a discrete Bernoulli RV, then its pmf 
(probability mass function) is parameterized by 𝑝:

𝑓" 𝑥 = �𝑝	 if	𝑥 = 1
𝑝̅	 if	𝑥 = 0  

0 1

𝑝
𝑝̅

EXAMPLE: If 𝑋	is a continuous Normal RV, then its pdf 
(probability density function) is parameterized by (𝜇, 𝜎#):

𝑓(p,r8) 𝑥 =

Think of this as a conditional distribution: 𝑓= 𝑥 = 𝑝(𝑥|𝜃)

The parameter can 
also be a vector

?

𝑝̅ ≔ 1 − 𝑝 

https://northeastern-datalab.github.io/cs7840/
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Parameter estimation
Suppose the probability distribution of a random variable 𝑋	is determined by a parameter 𝜃:

𝑋~𝑓K(𝑥)

EXAMPLE: If 𝑋	is a discrete Bernoulli RV, then its pmf 
(probability mass function) is parameterized by 𝑝:

𝑓" 𝑥 = �𝑝	 if	𝑥 = 1
𝑝̅	 if	𝑥 = 0  

0 1

𝑝
𝑝̅

In statistical inference, we assume the functional form of 𝑓 is known, but 𝜃 is hidden. We 
then observe a realization (a sample) 𝐱 of iid RV's 𝐗 and want to guess 𝜃 ("estimate 𝜃").

EXAMPLE: If 𝑋	is a continuous Normal RV, then its pdf 
(probability density function) is parameterized by (𝜇, 𝜎#):

𝑓(p,r8) 𝑥 =

𝜇

2𝜎

Think of this as a conditional distribution: 𝑓= 𝑥 = 𝑝(𝑥|𝜃)

!
#sr8

𝑒'
9:; 8	
8=8  The parameter can 

also be a vector

Independent and Identically Distributed

https://northeastern-datalab.github.io/cs7840/
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Parameter estimation
Suppose the probability distribution of a random variable 𝑋	is determined by a parameter 𝜃:

𝑋~𝑓K(𝑥)

EXAMPLE: If 𝑋	is a discrete Bernoulli RV, then its pmf 
(probability mass function) is parameterized by 𝑝:

0 1

𝑝
𝑝̅

In statistical inference, we assume the functional form of 𝑓 is known, but 𝜃 is hidden. We 
then observe a realization (a sample) 𝐱 of iid RV's 𝐗 and want to guess 𝜃 ("estimate 𝜃").

EXAMPLE: If 𝑋	is a continuous Normal RV, then its pdf 
(probability density function) is parameterized by (𝜇, 𝜎#):

𝑓(p,r8) 𝑥 =

𝜇

2𝜎

Think of this as a conditional distribution: 𝑓= 𝑥 = 𝑝(𝑥|𝜃)

!
#sr8

𝑒'
9:; 8	
8=8  The parameter can 

also be a vector

Independent and Identically Distributed

In essence, when you "do statistics", you want 
to infer the process by which data you have 
was generated. 

When you "do machine learning", you want to 
predict what future data will look like w.r.t. 
some variable.

https://doi.org/10.1214/ss/1009213726 

Statistics ML

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1214/ss/1009213726
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Parameter estimation
Suppose the probability distribution of a random variable 𝑋	is determined by a parameter 𝜃:

𝑋~𝑓K(𝑥)

EXAMPLE: If 𝑋	is a discrete Bernoulli RV, then its pmf 
(probability mass function) is parameterized by 𝑝:

0 1

𝑝
𝑝̅

In statistical inference, we assume the functional form of 𝑓 is known, but 𝜃 is hidden. We 
then observe a realization (a sample) 𝐱 of iid RV's 𝐗 and want to guess 𝜃 ("estimate 𝜃").

EXAMPLE: If 𝑋	is a continuous Normal RV, then its pdf 
(probability density function) is parameterized by (𝜇, 𝜎#):

𝑓(p,r8) 𝑥 =

𝜇

2𝜎

Think of this as a conditional distribution: 𝑓= 𝑥 = 𝑝(𝑥|𝜃)

!
#sr8

𝑒'
9:; 8	
8=8  The parameter can 

also be a vector

Independent and Identically Distributed

basically, why ML took over ...

https://northeastern-datalab.github.io/cs7840/


334Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Parameter estimation
Suppose the probability distribution of a random variable 𝑋	is determined by a parameter 𝜃:

𝑋~𝑓K(𝑥)

EXAMPLE: If 𝑋	is a discrete Bernoulli RV, then its pmf 
(probability mass function) is parameterized by 𝑝:

𝑓" 𝑥 = �𝑝	 if	𝑥 = 1
𝑝̅	 if	𝑥 = 0  

0 1

𝑝
𝑝̅

In statistical inference, we assume the functional form of 𝑓 is known, but 𝜃 is hidden. We 
then observe a realization (a sample) 𝐱 of iid RV's 𝐗 and want to guess 𝜃 ("estimate 𝜃").

EXAMPLE: If 𝑋	is a continuous Normal RV, then its pdf 
(probability density function) is parameterized by (𝜇, 𝜎#):

𝑓(p,r8) 𝑥 =

𝜇

2𝜎

Think of this as a conditional distribution: 𝑓= 𝑥 = 𝑝(𝑥|𝜃)

0 1

.3

0 1

.6

!
#sr8

𝑒'
9:; 8	
8=8  

𝐱 = (1,1,0,1,1,1,0,0,1,1) 

The parameter can 
also be a vector

Independent and Identically Distributed

?

https://northeastern-datalab.github.io/cs7840/
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Parameter estimation
Suppose the probability distribution of a random variable 𝑋	is determined by a parameter 𝜃:

𝑋~𝑓K(𝑥)

EXAMPLE: If 𝑋	is a discrete Bernoulli RV, then its pmf 
(probability mass function) is parameterized by 𝑝:

𝑓" 𝑥 = �𝑝	 if	𝑥 = 1
𝑝̅	 if	𝑥 = 0  

0 1

𝑝
𝑝̅

In statistical inference, we assume the functional form of 𝑓 is known, but 𝜃 is hidden. We 
then observe a realization (a sample) 𝐱 of iid RV's 𝐗 and want to guess 𝜃 ("estimate 𝜃").

EXAMPLE: If 𝑋	is a continuous Normal RV, then its pdf 
(probability density function) is parameterized by (𝜇, 𝜎#):

𝑓(p,r8) 𝑥 =

𝜇

2𝜎

Think of this as a conditional distribution: 𝑓= 𝑥 = 𝑝(𝑥|𝜃)

0 1

.3

0 1

.6

-4 -2 0 2 4 6 8 10

0,1 4,4!
#sr8

𝑒'
9:; 8	
8=8  

𝐱 = (1,1,0,1,1,1,0,0,1,1) 

𝐱 = (5.2, 2.5, 0.3, 4.2) 

The parameter can 
also be a vector

Independent and Identically Distributed

?

?

https://northeastern-datalab.github.io/cs7840/
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Sufficient statistics
Given a sample 𝒙 = (𝑥!, … , 𝑥4) with unknown parameter 𝜃, we would like to compress the 
measurements 𝒙	into a low-dimensional statistic without affecting the quality of the possible 
inference about 𝜃 (i.e. we do not want to loose relevant information about 𝜃).

In other words, we are interested in whether there exists a sufficient statistic 𝑇 𝐗  where the 
dimension of 𝐭 = 𝑇 𝐱  is 𝑚 < 𝑛, s.t. 𝐭	carries all the useful information from 𝐱 about 𝜃.

If such a sufficient statistic exists, then for the purpose of studying 𝜃, we could discard the raw 
measurement 𝐱 and retain only the compressed statistic 𝐭.

measured 
data 𝐱 

hidden
parameter 𝜃

sampling

estimate

https://northeastern-datalab.github.io/cs7840/
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Sufficient statistics
Given a sample 𝒙 = (𝑥!, … , 𝑥4) with unknown parameter 𝜃, we would like to compress the 
measurements 𝒙	into a low-dimensional statistic without affecting the quality of the possible 
inference about 𝜃 (i.e. we do not want to loose relevant information about 𝜃).

In other words, we are interested in whether there exists a sufficient statistic 𝑇 𝐗  where the 
dimension of 𝐭 = 𝑇 𝐱  is 𝑚 < 𝑛, s.t. 𝐭	carries all the useful information from 𝐱 about 𝜃.

If such a sufficient statistic exists, then for the purpose of studying 𝜃, we could discard the raw 
measurement 𝐱 and retain only the compressed statistic 𝐭.

Figure credit: Clayton Scott, EECS 564: Estimation, Filtering, and Detection, University of Michigan, 2011. https://web.eecs.umich.edu/~cscott/past_courses/eecs564w11/index.html 

compressed 
sample data 𝐭 

"sufficient statistic" 𝑇(𝐗) 

measured 
data 𝐱 

hidden
parameter 𝜃

sampling

estimate

https://northeastern-datalab.github.io/cs7840/
https://web.eecs.umich.edu/~cscott/past_courses/eecs564w11/index.html
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Sufficient statistics in the eyes of information theory
Given a family of distributions {𝑓K(𝑥)} indexed by a parameter 𝜃. Let 𝐗 = (𝑋!, … , 𝑋4) be an iid 
sample from 𝑓K, and 𝑇(𝐗) be a statistic (a quantity computed from the values in the sample). 

𝜃 → 𝐗 → 𝑇(𝐗) 

From the data processing inequality, we thus know

forms a Markov chain

can also be a vector

Then

?

𝜃 ⊥ 𝑇 𝐗 	|	𝐗

https://northeastern-datalab.github.io/cs7840/
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Sufficient statistics in the eyes of information theory
Given a family of distributions {𝑓K(𝑥)} indexed by a parameter 𝜃. Let 𝐗 = (𝑋!, … , 𝑋4) be an iid 
sample from 𝑓K, and 𝑇(𝐗) be a statistic (a quantity computed from the values in the sample). 

𝜃 → 𝐗 → 𝑇(𝐗) 

From the data processing inequality, we thus know
𝐼(𝜃; 𝑇 𝐗 ) ≤ 

A statistic is sufficient for 𝜃 if it preserves all the information in 𝐗 about 𝜃:

forms a Markov chain

can also be a vector

Then

𝐼(𝜃; 𝐗) 

?

𝜃 ⊥ 𝑇 𝐗 	|	𝐗

https://northeastern-datalab.github.io/cs7840/


341Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Sufficient statistics in the eyes of information theory
Given a family of distributions {𝑓K(𝑥)} indexed by a parameter 𝜃. Let 𝐗 = (𝑋!, … , 𝑋4) be an iid 
sample from 𝑓K, and 𝑇(𝐗) be a statistic (a quantity computed from the values in the sample). 

𝜃 → 𝐗 → 𝑇(𝐗) 

From the data processing inequality, we thus know
𝐼(𝜃; 𝑇 𝐗 ) ≤ 

A statistic is sufficient for 𝜃 if it preserves all the information in 𝐗 about 𝜃:
𝐼 𝜃; 𝑇 𝐗 = 𝐼(𝜃; 𝐗) 

PRACTICAL DEFINITION: A function 𝑇(𝐗) is said to be a sufficient statistic relative to the 
family {𝑓K(𝑥)} if the conditional distribution of 𝐗 given 𝑇(𝐗) is independent of 𝜃:

𝜃 → 𝑇(𝐗) → 𝐗

forms a Markov chain

also forms a Markov chain

can also be a vector

Then

𝐼(𝜃; 𝐗) 

𝜃 ⊥ 𝐗	|	𝑇(𝐗) In other words, 
This follows from our earlier definition of Markov chains (we just need to 
avoid to the temptation to equate the arrows with direction of time!)

𝜃 ⊥ 𝑇 𝐗 	|	𝐗

https://northeastern-datalab.github.io/cs7840/
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Example Sufficient statistics
EXAMPLE: Given a sample 𝐱	of 𝑛 iid Bernoulli RVs 𝑋!, … , 𝑋4 with unknown ℙ 𝑋2 = 1 = 𝑝. 

This is the parameter 𝜃

Then, given a fixed 𝑛, what could be a sufficient statistic 𝑇 𝐗  for 𝑝

? 0 1

𝑝
𝑝̅

0 1𝐱* = (1,1,0,1,1,1,0,0,1,1) 
𝐱% = (1,0,1,1,1,1,0,0,1,1) 

https://northeastern-datalab.github.io/cs7840/
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Example Sufficient statistics
EXAMPLE: Given a sample 𝐱	of 𝑛 iid Bernoulli RVs 𝑋!, … , 𝑋4 with unknown ℙ 𝑋2 = 1 = 𝑝. 

This is the parameter 𝜃

Then 𝑘 = 𝑇 𝐗 = ∑2	 𝑋2 is a sufficient statistic for 𝜃 (assuming 𝑛 is fixed).
0 1

𝑝
𝑝̅

0 1𝐱* = (1,1,0,1,1,1,0,0,1,1) 
𝐱% = (1,0,1,1,1,1,0,0,1,1) 

PROOF:

https://northeastern-datalab.github.io/cs7840/
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We know that 𝑝 → 𝐗 → 𝑘 forms a Markov chain from the fact that 𝑘 is calculated from 𝐗. To 
prove that 𝑘 is a sufficient statistic for 𝑝, it is enough to show that 𝑝 → 𝑘 → 𝐗 also forms a Markov chain.

Example Sufficient statistics
EXAMPLE: Given a sample 𝐱	of 𝑛 iid Bernoulli RVs 𝑋!, … , 𝑋4 with unknown ℙ 𝑋2 = 1 = 𝑝. 

We prove that by showing that the conditional distribution of 𝐗 given 𝑇 𝐗 = 𝑘 is independent of 𝜃.

ℙ. 𝐗 = 𝐱 = 

ℙ. 𝐗 = 𝐱	|	𝑇 𝐗 = 𝑘 = 

This is the parameter 𝜃

Then 𝑘 = 𝑇 𝐗 = ∑2	 𝑋2 is a sufficient statistic for 𝜃 (assuming 𝑛 is fixed).

ℙ. 𝑇 𝐗 = 𝑘 = 

ℙ. 𝐗 = 𝐱 ∧ 𝑇 𝐗 = 𝑘 = 
joint probability

PROOF:

0 1

𝑝
𝑝̅

0 1𝐱* = (1,1,0,1,1,1,0,0,1,1) 
𝐱% = (1,0,1,1,1,1,0,0,1,1) 

?
?
?
?

https://northeastern-datalab.github.io/cs7840/
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Pre-class conversations

• Last class recapitulation
• Project ideas: Talk to me often. I can't meet right after class today, 

but before or in my office via email coordination.
- I will look at the Piazza project posts before THU

• Today: 
- Sufficient statistics, information inequalities
- Today or next time: start of compression

https://northeastern-datalab.github.io/cs7840/


347Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Example Sufficient statistics
EXAMPLE: Given a sample 𝐱	of 𝑛 iid Bernoulli RVs 𝑋!, … , 𝑋4 with unknown ℙ 𝑋2 = 1 = 𝑝. 

This is the parameter 𝜃

Then 𝑘 = 𝑇 𝐗 = ∑2	 𝑋2 is a sufficient statistic for 𝜃 (assuming 𝑛 is fixed).
0 1

𝑝
𝑝̅

0 1𝐱* = (1,1,0,1,1,1,0,0,1,1) 
𝐱% = (1,0,1,1,1,1,0,0,1,1) 

PROOF:

https://northeastern-datalab.github.io/cs7840/
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We know that 𝑝 → 𝐗 → 𝑘 forms a Markov chain from the fact that 𝑘 is calculated from 𝐗. To 
prove that 𝑘 is a sufficient statistic for 𝑝, it is enough to show that 𝑝 → 𝑘 → 𝐗 also forms a Markov chain.

Example Sufficient statistics
EXAMPLE: Given a sample 𝐱	of 𝑛 iid Bernoulli RVs 𝑋!, … , 𝑋4 with unknown ℙ 𝑋2 = 1 = 𝑝. 

We prove that by showing that the conditional distribution of 𝐗 given 𝑇 𝐗 = 𝑘 is independent of 𝜃.

ℙ. 𝐗 = 𝐱 = 

ℙ. 𝐗 = 𝐱	|	𝑇 𝐗 = 𝑘 = 

This is the parameter 𝜃

Then 𝑘 = 𝑇 𝐗 = ∑2	 𝑋2 is a sufficient statistic for 𝜃 (assuming 𝑛 is fixed).

ℙ. 𝑇 𝐗 = 𝑘 = 

ℙ. 𝐗 = 𝐱 ∧ 𝑇 𝐗 = 𝑘 = 
joint probability

PROOF:

0 1

𝑝
𝑝̅

0 1𝐱* = (1,1,0,1,1,1,0,0,1,1) 
𝐱% = (1,0,1,1,1,1,0,0,1,1) 

?
?
?
?
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We know that 𝑝 → 𝐗 → 𝑘 forms a Markov chain from the fact that 𝑘 is calculated from 𝐗. To 
prove that 𝑘 is a sufficient statistic for 𝑝, it is enough to show that 𝑝 → 𝑘 → 𝐗 also forms a Markov chain.

Example Sufficient statistics
EXAMPLE: Given a sample 𝐱	of 𝑛 iid Bernoulli RVs 𝑋!, … , 𝑋4 with unknown ℙ 𝑋2 = 1 = 𝑝. 

We prove that by showing that the conditional distribution of 𝐗 given 𝑇 𝐗 = 𝑘 is independent of 𝜃.

ℙ. 𝐗 = 𝐱 = 

ℙ. 𝐗 = 𝐱	|	𝑇 𝐗 = 𝑘 = 

This is the parameter 𝜃

Then 𝑘 = 𝑇 𝐗 = ∑2	 𝑋2 is a sufficient statistic for 𝜃 (assuming 𝑛 is fixed).

ℙ. 𝑇 𝐗 = 𝑘 = 

ℙ. 𝐗 = 𝐱 ∧ 𝑇 𝐗 = 𝑘 = 
joint probability

PROOF:

0 1

𝑝
𝑝̅

0 1𝐱* = (1,1,0,1,1,1,0,0,1,1) 
𝐱% = (1,0,1,1,1,1,0,0,1,1) 

?
?
?

?ℙ> 𝐗$𝐱,X 𝐗 $Y
ℙ> Y

= 

https://northeastern-datalab.github.io/cs7840/


350Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

We know that 𝑝 → 𝐗 → 𝑘 forms a Markov chain from the fact that 𝑘 is calculated from 𝐗. To 
prove that 𝑘 is a sufficient statistic for 𝑝, it is enough to show that 𝑝 → 𝑘 → 𝐗 also forms a Markov chain.

Example Sufficient statistics
EXAMPLE: Given a sample 𝐱	of 𝑛 iid Bernoulli RVs 𝑋!, … , 𝑋4 with unknown ℙ 𝑋2 = 1 = 𝑝. 

We prove that by showing that the conditional distribution of 𝐗 given 𝑇 𝐗 = 𝑘 is independent of 𝜃.

ℙ. 𝐗 = 𝐱 = ∏#
& 𝑝Z9 1 − 𝑝 [Z9 =   𝑝Y 1 − 𝑝 &(Y 

ℙ. 𝐗 = 𝐱	|	𝑇 𝐗 = 𝑘 = 

This is the parameter 𝜃

Then 𝑘 = 𝑇 𝐗 = ∑2	 𝑋2 is a sufficient statistic for 𝜃 (assuming 𝑛 is fixed).

ℙ. 𝑇 𝐗 = 𝑘 = 

ℙ. 𝐗 = 𝐱 ∧ 𝑇 𝐗 = 𝑘 = 
joint probability

Very important later: Notice that the density 
ℙ& 𝐗 = 𝐱   depends on 𝐱 only through 𝑘 = 𝑇 𝐗 .
Thus, ℙ& 𝐗 = 𝐱  could be written as some function 
𝑔(𝑇 𝐱 , 𝜃), which is key to what happens next.

PROOF:

0 1

𝑝
𝑝̅

0 1𝐱* = (1,1,0,1,1,1,0,0,1,1) 
𝐱% = (1,0,1,1,1,1,0,0,1,1) 

ℙ> 𝐗$𝐱,X 𝐗 $Y
ℙ> Y

= ?
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We know that 𝑝 → 𝐗 → 𝑘 forms a Markov chain from the fact that 𝑘 is calculated from 𝐗. To 
prove that 𝑘 is a sufficient statistic for 𝑝, it is enough to show that 𝑝 → 𝑘 → 𝐗 also forms a Markov chain.

Example Sufficient statistics
EXAMPLE: Given a sample 𝐱	of 𝑛 iid Bernoulli RVs 𝑋!, … , 𝑋4 with unknown ℙ 𝑋2 = 1 = 𝑝. 

We prove that by showing that the conditional distribution of 𝐗 given 𝑇 𝐗 = 𝑘 is independent of 𝜃.

ℙ. 𝐗 = 𝐱 = ∏#
& 𝑝Z9 1 − 𝑝 [Z9 =   𝑝Y 1 − 𝑝 &(Y 

ℙ. 𝐗 = 𝐱	|	𝑇 𝐗 = 𝑘 = 

This is the parameter 𝜃

Then 𝑘 = 𝑇 𝐗 = ∑2	 𝑋2 is a sufficient statistic for 𝜃 (assuming 𝑛 is fixed).

ℙ. 𝑇 𝐗 = 𝑘 = &
Y ⋅ 𝑝Y 1 − 𝑝 &(Y 

ℙ. 𝐗 = 𝐱 ∧ 𝑇 𝐗 = 𝑘 = �ℙ& 𝐗 = 𝐱 	 if	 ∑BD 𝑥B = 𝑘	
0	 otherwise	joint probability

Very important later: Notice that the density 
ℙ& 𝐗 = 𝐱   depends on 𝐱 only through 𝑘 = 𝑇 𝐗 .
Thus, ℙ& 𝐗 = 𝐱  could be written as some function 
𝑔(𝑇 𝐱 , 𝜃), which is key to what happens next.

PROOF:

binomial distribution

0 1

𝑝
𝑝̅

0 1𝐱* = (1,1,0,1,1,1,0,0,1,1) 
𝐱% = (1,0,1,1,1,1,0,0,1,1) 

ℙ> 𝐗$𝐱,X 𝐗 $Y
ℙ> Y

= ?
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We know that 𝑝 → 𝐗 → 𝑘 forms a Markov chain from the fact that 𝑘 is calculated from 𝐗. To 
prove that 𝑘 is a sufficient statistic for 𝑝, it is enough to show that 𝑝 → 𝑘 → 𝐗 also forms a Markov chain.

Example Sufficient statistics
EXAMPLE: Given a sample 𝐱	of 𝑛 iid Bernoulli RVs 𝑋!, … , 𝑋4 with unknown ℙ 𝑋2 = 1 = 𝑝. 

We prove that by showing that the conditional distribution of 𝐗 given 𝑇 𝐗 = 𝑘 is independent of 𝜃.

ℙ. 𝐗 = 𝐱 = ∏#
& 𝑝Z9 1 − 𝑝 [Z9 =   𝑝Y 1 − 𝑝 &(Y 

ℙ. 𝐗 = 𝐱	|	𝑇 𝐗 = 𝑘 = �
D
I
,*
	 if	 ∑BD 𝑥B = 𝑘

0	 otherwise	

This is the parameter 𝜃

Then 𝑘 = 𝑇 𝐗 = ∑2	 𝑋2 is a sufficient statistic for 𝜃 (assuming 𝑛 is fixed).

ℙ. 𝑇 𝐗 = 𝑘 = &
Y ⋅ 𝑝Y 1 − 𝑝 &(Y 

ℙ. 𝐗 = 𝐱 ∧ 𝑇 𝐗 = 𝑘 = 

ℙ> 𝐗$𝐱,X 𝐗 $Y
ℙ> Y

= 

�ℙ& 𝐗 = 𝐱 	 if	 ∑BD 𝑥B = 𝑘	
0	 otherwise	

Thus, we have shown that ℙ. X|𝑘 = ℙ X|𝑘  is independent of 𝑝. 
Concretely, all sequences x with 𝑘 1’s (and n−𝑘 0's) are equally likely.

joint probability

_: %(_ ;<:

;
: ⋅_: %(_ ;<: = 

Very important later: Notice that the density 
ℙ& 𝐗 = 𝐱   depends on 𝐱 only through 𝑘 = 𝑇 𝐗 .
Thus, ℙ& 𝐗 = 𝐱  could be written as some function 
𝑔(𝑇 𝐱 , 𝜃), which is key to what happens next.

PROOF:

binomial distribution

0 1

𝑝
𝑝̅

0 1𝐱* = (1,1,0,1,1,1,0,0,1,1) 
𝐱% = (1,0,1,1,1,1,0,0,1,1) 
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Factorization Theorem
In the previous example, we had to guess the sufficient statistic and work out the conditional pmf 
ℙ 𝐗	|	𝑇 𝐗 = 𝑇 𝐱 	by hand. This can become quite difficult in general. 

As we will see next, we didn’t really need to go to the trouble of calculating the conditional 
distribution. Once we noticed that the density ℙK 𝐗 = 𝐱  (also 𝑓J(𝐱)) depends on 𝐱 only through 
𝑇 𝐱 , we could have concluded that the statistics 𝑇 𝐗  was sufficient.

The easiest way to identify and verify sufficient statistics is to show that the density 𝑓 (𝐱) factorizes 
into a part that involves only the parameter 𝜃 and 𝑇(𝐱), and a part that involves only 𝐱. This can be 
used as a working definition of sufficiency.

THEOREM: Let 𝑓K(𝐱) (or 𝑓 𝐱 𝜃 ) denote the joint distribution of a data set 𝐗, given parameter 𝜃. 
A statistic 𝑇(𝐗) is a sufficient statistic for 𝜃 if and only if there exist functions 𝑔(𝑇 𝐱 , 𝜃)	and 
ℎ(𝐱) such that, for all sample points 𝐱 and all parameter points 𝜃, 𝑓K(𝐱) factorizes into:

𝑓K(𝐱) = 𝑔(𝑇 𝐱 , 𝜃) ⋅ ℎ(𝐱) Notice that the unknown parameter 𝜃 interacts with the data 𝐱 
only via the statistic 𝑇 𝐱 , and ℎ(𝐱) is independent of 𝜃.

This was ℙ& 𝐗 = 𝐱 = 𝑝I 1 − 𝑝 D,I in the previous example.
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EXAMPLE: Given a sample of 𝑛 iid Bernoulli RVs 𝑋!, … , 𝑋4 with unknown ℙ 𝑋2 = 1 = 𝑝. 

Example Sufficient statistics via factorization

We prove that by showing that the conditional distribution of 𝐗 given 𝑇 𝐗 = 𝑘 is independent of 𝜃.

ℙ. 𝐗 = 𝐱	|	𝑇 𝐗 = 𝑘 = �
D
I
,*	 if	 ∑BD 𝑥B = 𝑘

0	 otherwise	

ℙ. 𝑇 𝐗 = 𝑘 = &
Y ⋅ 𝑝Y 1 − 𝑝 &(Y 

ℙ> 𝐗$𝐱,X 𝐗 $Y
ℙ> Y

= 

Thus, we have shown that ℙ. X|𝑘 = ℙ X|𝑘  is independent of 𝑝. 

_: %(_ ;<:

;
: ⋅_: %(_ ;<: = 

Then 𝑘 = 𝑇 𝐗 = ∑2	 𝑋2 is a sufficient statistic for 𝜃 (assuming 𝑛 is fixed).

Can you find the factorization 𝑓"(𝐱) = 𝑔(𝑇 𝐱 , 𝑝) ⋅ ℎ(𝐱) in our earlier proof ?

ℙ. 𝐗 = 𝐱 = ∏#
& 𝑝Z9 1 − 𝑝 [Z9 =   𝑝Y 1 − 𝑝 &(Y 

ℙ. 𝐗 = 𝐱 ∧ 𝑇 𝐗 = 𝑘 = �ℙ& 𝐗 = 𝐱 	 if	 ∑BD 𝑥B = 𝑘	
0	 otherwise	
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EXAMPLE: Given a sample of 𝑛 iid Bernoulli RVs 𝑋!, … , 𝑋4 with unknown ℙ 𝑋2 = 1 = 𝑝. 

Example Sufficient statistics via factorization

We prove that by showing that the conditional distribution of 𝐗 given 𝑇 𝐗 = 𝑘 is independent of 𝜃.

Thus, we have shown that ℙ. X|𝑘 = ℙ X|𝑘  is independent of 𝑝. 

Then 𝑘 = 𝑇 𝐗 = ∑2	 𝑋2 is a sufficient statistic for 𝜃 (assuming 𝑛 is fixed).

ℙ. 𝐗 = 𝐱 = ∏#
& 𝑝Z9 1 − 𝑝 [Z9 =   𝑝Y 1 − 𝑝 &(Y 

ℙ. 𝐗 = 𝐱 ∧ 𝑇 𝐗 = 𝑘 = ⋯ 

ℙ. 𝑇 𝐗 = 𝑘 = &
Y ⋅ 𝑝Y 1 − 𝑝 &(Y 

⋅ 1
𝑔(𝑘, 𝑝) ℎ(𝐱)

Can you find the factorization 𝑓"(𝐱) = 𝑔(𝑇 𝐱 , 𝑝) ⋅ ℎ(𝐱) in our earlier proof ?

ℙ. 𝐗 = 𝐱	|	𝑇 𝐗 = 𝑘 = �
D
I
,*	 if	 ∑BD 𝑥B = 𝑘

0	 otherwise	

ℙ> 𝐗$𝐱,X 𝐗 $Y
ℙ> Y

= _: %(_ ;<:

;
: ⋅_: %(_ ;<: = 
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Proof Factorization Theorem (1/2)

FIRST DIRECTION sufficient statistics ⇒ factorization:

𝑓K 𝐱 = since 𝑇	is a function of 𝐗, and as long as 𝑡 = 𝑇(𝐗)

by the definition of sufficient statistics 𝜃 ⊥ 𝐱|𝑡

Assume 𝑇 𝐗  to be a sufficient statistics, i.e. 𝜃 ⊥ 𝐗|𝑇(𝐗).
Let 𝑓K(𝐱, 𝑇(𝐱) = 𝑡) be the joint pdf of ℙK 𝐗 = 𝐱	, 𝑇 𝐗 = 𝑡 .

chain rule

PROOF (DISCRETE CASE): sufficient statistics ⇔ factorization 𝑓K(𝐱) = 𝑔(𝑇 𝐱 , 𝜃) ⋅ ℎ(𝐱)

?

because 𝑡 is a function of 𝐱: 𝑡 = 𝑇(𝐱)

https://northeastern-datalab.github.io/cs7840/
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= 𝑔K(𝑡) ⋅ ℎK(𝐱|𝑡)
= 𝑔K(𝑡) ⋅ ℎ(𝐱|𝑡)

𝑔(𝑇 𝐱 , 𝜃) 
ℎ(𝐱) 

Proof Factorization Theorem (1/2)

FIRST DIRECTION sufficient statistics ⇒ factorization:

𝑓K 𝐱 = since 𝑇	is a function of 𝐗, and as long as 𝑡 = 𝑇(𝐗)𝑓K(𝐱, 𝑡)

by the definition of sufficient statistics 𝜃 ⊥ 𝐱|𝑡

Assume 𝑇 𝐗  to be a sufficient statistics, i.e. 𝜃 ⊥ 𝐗|𝑇(𝐗).
Let 𝑓K(𝐱, 𝑇(𝐱) = 𝑡) be the joint pdf of ℙK 𝐗 = 𝐱	, 𝑇 𝐗 = 𝑡 .

chain rule

PROOF (DISCRETE CASE): sufficient statistics ⇔ factorization 𝑓K(𝐱) = 𝑔(𝑇 𝐱 , 𝜃) ⋅ ℎ(𝐱)

because 𝑡 is a function of 𝐱: 𝑡 = 𝑇(𝐱)

This was ℙ& 𝐗 = 𝐱 = ∏B
D 𝑝$? 1 − 𝑝 K$? = 𝑝I 1 − 𝑝 D,I in the previous example.
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Proof Factorization Theorem (2/2)
OTHER DIRECTION: factorization ⇒ sufficient statistics:
Assume 𝑓K(𝐱) = 𝑔(𝑡, 𝜃) ⋅ ℎ(𝐱).
We need to show that the conditional probability distribution 𝑓K(𝐱|𝑡) of 𝐗 given 𝑇(𝐗) is 
independent of 𝜃, i.e. 𝑓K 𝐱 𝑡 = 𝑓 𝐱 𝑡 .

𝑓K 𝐱|𝑡 =

𝑓K 𝑡 = ?

?
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Proof Factorization Theorem (2/2)
OTHER DIRECTION: factorization ⇒ sufficient statistics:
Assume 𝑓K(𝐱) = 𝑔(𝑡, 𝜃) ⋅ ℎ(𝐱).
We need to show that the conditional probability distribution 𝑓K(𝐱|𝑡) of 𝐗 given 𝑇(𝐗) is 
independent of 𝜃, i.e. 𝑓K 𝐱 𝑡 = 𝑓 𝐱 𝑡 .

𝑓K 𝐱|𝑡 =

𝑓K 𝑡 = ?

? does not depend on 𝜃, hence 𝑇 is a sufficient statistic

definition of marginal probability distribution

since 𝑡 is a function of 𝐱

definition of conditional probability distribution

using our assumption

factoring out a common factor

𝑓K 𝐱, 𝑡
𝑓K 𝑡

=
𝑓K 𝐱
𝑓K 𝑡
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Proof Factorization Theorem (2/2)
OTHER DIRECTION: factorization ⇒ sufficient statistics:
Assume 𝑓K(𝐱) = 𝑔(𝑡, 𝜃) ⋅ ℎ(𝐱).
We need to show that the conditional probability distribution 𝑓K(𝐱|𝑡) of 𝐗 given 𝑇(𝐗) is 
independent of 𝜃, i.e. 𝑓K 𝐱 𝑡 = 𝑓 𝐱 𝑡 .

𝑓K 𝐱|𝑡 =
𝑓K 𝐱, 𝑡
𝑓K 𝑡

=
𝑓K 𝐱
𝑓K 𝑡

does not depend on 𝜃, hence 𝑇 is a sufficient statistic

= ∑𝐱:u 𝐱 3v 𝑓K 𝐱  

= ∑𝐱:u 𝐱 3v𝑔(𝑡, 𝜃) ⋅ ℎ(𝐱) 
= 𝑔(𝑡, 𝜃) ⋅ ∑𝐱:u 𝐱 3v ℎ(𝐱) 

definition of marginal probability distribution

since 𝑡 is a function of 𝐱

definition of conditional probability distribution

𝑓K 𝑡 = ∑𝐱:u 𝐱 3v 𝑓K 𝐱, 𝑡  

using our assumption

factoring out a common factor

?
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Proof Factorization Theorem (2/2)
OTHER DIRECTION: factorization ⇒ sufficient statistics:
Assume 𝑓K(𝐱) = 𝑔(𝑡, 𝜃) ⋅ ℎ(𝐱).
We need to show that the conditional probability distribution 𝑓K(𝐱|𝑡) of 𝐗 given 𝑇(𝐗) is 
independent of 𝜃, i.e. 𝑓K 𝐱 𝑡 = 𝑓 𝐱 𝑡 .

𝑓K 𝐱|𝑡 =
𝑓K 𝐱, 𝑡
𝑓K 𝑡

=
𝑓K 𝐱
𝑓K 𝑡

=
𝑔(𝑡, 𝜃) ⋅ ℎ(𝐱)

𝑔(𝑡, 𝜃) ⋅ ∑𝐱:u 𝐱 3v ℎ(𝐱)
does not depend on 𝜃, hence 𝑇 is a sufficient statistic

= ∑𝐱:u 𝐱 3v 𝑓K 𝐱  

= ∑𝐱:u 𝐱 3v𝑔(𝑡, 𝜃) ⋅ ℎ(𝐱) 
= 𝑔(𝑡, 𝜃) ⋅ ∑𝐱:u 𝐱 3v ℎ(𝐱) 

definition of marginal probability distribution

since 𝑡 is a function of 𝐱

definition of conditional probability distribution

𝑓K 𝑡 = ∑𝐱:u 𝐱 3v 𝑓K 𝐱, 𝑡  

using our assumption

factoring out a common factor
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Sufficient Statistics & Factorization Theorem

The factorization theorem is also varyingly called:
• Fisher's factorization theorem
• Fisher-Neyman factorization theorem
• Neyman-Fisher factorization theorem
• Halmos-Savage factorization theorem

Sir Ronald Fisher (1890–1962)

The concept of sufficient statistics is due to Sir Ronald Fisher around 1920, 
thus before the advent of information theory.

Fisher, "On the mathematical foundations of theoretical statistics", Philosophical Transactions of the Royal Society A, 1922. https://doi.org/10.1098/rsta.1922.0009 . See also 
https://en.wikipedia.org/wiki/Sufficient_statistic, and references in https://encyclopediaofmath.org/wiki/Factorization_theorem

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1098/rsta.1922.0009
https://en.wikipedia.org/wiki/Sufficient_statistic
https://encyclopediaofmath.org/wiki/Factorization_theorem
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Normal (Gaussian) distribution: (𝜇, 𝜎!) are sufficient statistics 

[Casella,Berger'24] Statistical inference (2nd ed), 2024: Ch 6 Principles of Data Reduction. https://doi.org/10.1201/9781003456285  

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1201/9781003456285
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Exponential Family

Source: https://en.wikipedia.org/wiki/Exponential_family 

https://northeastern-datalab.github.io/cs7840/
https://en.wikipedia.org/wiki/Exponential_family
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Aggregates in Databases

Gray et al. "Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals", ICDE 1996, DMKD 1997. https://doi.org/10.1023/A:1009726021843 , 
https://tc.computer.org/tcde-demo/icde-steering-committee/influential-papers/ 

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1023/A:1009726021843
https://tc.computer.org/tcde-demo/icde-steering-committee/influential-papers/
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Circuits: another form of the factorization theorem?

Darwiche. Tractable Boolean and Arithmetic Circuits, 2022. https://arxiv.org/pdf/2202.02942, 
Amarilli, Capelli, Tractable Circuits in Database Theory, 2024. https://sigmodrecord.org/?smd_process_download=1&download_id=13771 

https://northeastern-datalab.github.io/cs7840/
https://arxiv.org/pdf/2202.02942
https://sigmodrecord.org/?smd_process_download=1&download_id=13771
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Information Inequalities

Best reference:
[Yeung'08] Yeung, Information Theory and Network Coding, 2008. Ch 2.6, 2.7, 13, 14, 15  
http://iest2.ie.cuhk.edu.hk/~whyeung/tempo/main2.pdf 

https://northeastern-datalab.github.io/cs7840/
http://iest2.ie.cuhk.edu.hk/~whyeung/tempo/main2.pdf
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Basic inequalities
Shannon’s information measures refer to entropy, conditional entropy, mutual information, and 
conditional mutual information (but not interaction information!).
They can be expressed as linear combinations of entropies:

𝐻 𝑋|𝑌 =
𝐼 𝑋; 𝑌 =
𝐼 𝑋; 𝑌|𝑍 =

?
?
?

https://northeastern-datalab.github.io/cs7840/
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Basic inequalities
Shannon’s information measures refer to entropy, conditional entropy, mutual information, and 
conditional mutual information (but not interaction information!).

They are also special cases of conditional mutual information.
𝐻 𝑋 = Assume 𝜑 to be degenerate RV that takes on a 

constant value with probability 1 𝐻 𝑋|𝑍 =
𝐼 𝑋; 𝑌 =

𝐻 𝑋|𝑌 = 𝐻 𝑋, 𝑌 − 𝐻(𝑌)
𝐼 𝑋; 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 − 𝐻(𝑋, 𝑌)
𝐼 𝑋; 𝑌|𝑍 = 𝐻 𝑋, 𝑍 + 𝐻 𝑌, 𝑍 − 𝐻 𝑋, 𝑌, 𝑍 − 𝐻(𝑍)

by repeated expansion of 
conditional entropies; also holds 
if we replace variables with 
sets of variables (grouping rule)

They can be expressed as linear combinations of entropies:

?
?
?

https://northeastern-datalab.github.io/cs7840/
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Basic inequalities
Shannon’s information measures refer to entropy, conditional entropy, mutual information, and 
conditional mutual information (but not interaction information!).

𝐼 𝑈; 𝑉|𝑊 ≥ 0

They are also special cases of conditional mutual information.
𝐻 𝑋 = 𝐼 𝑋; 𝑋|𝜑 Assume 𝜑 to be degenerate RV that takes on a 

constant value with probability 1 𝐻 𝑋|𝑍 = 𝐼 𝑋; 𝑋|𝑍
𝐼 𝑋; 𝑌 = 𝐼 𝑋; 𝑌|𝜑

With the basic inequalities we refer to the fact that all Shannon’s information 
measures are non-negative (because conditional mutual information is ≥ 0).

𝑈, 𝑉,𝑊 can be arbitrary joint entropies

𝐻 𝑋|𝑌 = 𝐻 𝑋, 𝑌 − 𝐻(𝑌)
𝐼 𝑋; 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 − 𝐻(𝑋, 𝑌)
𝐼 𝑋; 𝑌|𝑍 = 𝐻 𝑋, 𝑍 + 𝐻 𝑌, 𝑍 − 𝐻 𝑋, 𝑌, 𝑍 − 𝐻(𝑍)

by repeated expansion of 
conditional entropies; also holds 
if we replace variables with 
sets of variables (grouping rule)

They can be expressed as linear combinations of entropies:

https://northeastern-datalab.github.io/cs7840/
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Shannon-type inequalities Γ" (and constraints)
Shannon-type inequalities are inequalities on information measures implied by the basic 
inequalities and possibly additional constraints on the joint distribution of the RVs involved.

From 𝐼 𝑋; 𝑍 𝑌 = 0 and basic inequalities, we derived 𝐼 𝑋; 𝑌 ≥ 𝐼(𝑋; 𝑍) 
EXAMPLE: data-processing inequality for 𝑋 → 𝑌 → 𝑍: 

EXAMPLE : 𝑛 = 3 variables with given 𝑘 = 2$ − 1 = 	7 joint entropies:

𝐻 𝑋 𝐻 𝑍

𝐻 𝑌

𝐻 𝑋 = 2 
𝐻 𝑌 = 3 
𝐻 𝑍 = 4 

𝐻 𝑋, 𝑌 = 4	
𝐻 𝑋, 𝑍 = 4 
𝐻 𝑌, 𝑍 = 4 

𝐻 𝑋, 𝑌, 𝑍 = 5 

not a basic inequality

Information inequalities are the inequalities that govern the impossibilities in information 
theory. They imply that certain things cannot happen. For this reason, they are sometimes 
referred to as the laws of information theory.

Find 3 RVs that fulfill those constraints ?

https://northeastern-datalab.github.io/cs7840/
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Shannon-type inequalities Γ" (and constraints)
Shannon-type inequalities are inequalities on information measures implied by the basic 
inequalities and possibly additional constraints on the joint distribution of the RVs involved.

Almost all the information inequalities known to date are 
Shannon-type inequalities and thus implied by the basic inequalities.

From 𝐼 𝑋; 𝑍 𝑌 = 0 and basic inequalities, we derived 𝐼 𝑋; 𝑌 ≥ 𝐼(𝑋; 𝑍) 
EXAMPLE: data-processing inequality for 𝑋 → 𝑌 → 𝑍: 

EXAMPLE : 𝑛 = 3 variables with given 𝑘 = 2$ − 1 = 	7 joint entropies:

𝐻 𝑋 𝐻 𝑍

𝐻 𝑌

−1 1

1
1

1

1

1𝐼 𝑋; 𝑌|𝑍 ≱0 
𝐻 𝑋 = 2 
𝐻 𝑌 = 3 
𝐻 𝑍 = 4 

𝐻 𝑋, 𝑌 = 4	
𝐻 𝑋, 𝑍 = 4 
𝐻 𝑌, 𝑍 = 4 

𝐻 𝑋, 𝑌, 𝑍 = 5 

Information inequalities are the inequalities that govern the impossibilities in information 
theory. They imply that certain things cannot happen. For this reason, they are sometimes 
referred to as the laws of information theory.

not possible L

not a basic inequality

https://northeastern-datalab.github.io/cs7840/
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Applications in Databases

Ngo, Porat, Re, Rudra. Worst-case Optimal Join Algorithms, JAC 2018 (PODS 2012). https://doi.org/10.1145/3180143 , 
Khamis, Kolaitis, Ngo, Suciu, "Decision Problems in Information Theory", ICALP 2020. https://doi.org/10.4230/LIPIcs.ICALP.2020.106 

ICALP'20PODS'12, JACM'18

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1145/3180143
https://doi.org/10.4230/LIPIcs.ICALP.2020.106
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Applications in Databases

Abo Khamis, Ngo, Suciu. What Do Shannon-type Inequalities, Submodular Width, and Disjunctive Datalog Have to Do with One Another? PODS 2017. https://doi.org/10.1145/3034786.3056105 

PODS'17

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1145/3034786.3056105
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Applications in Databases

Suciu. Applications of Information Inequalities to Database Theory Problems, LICS keynote 2023. https://arxiv.org/pdf/2304.11996 , 
slides: https://homes.cs.washington.edu/~suciu/talk-lics-2023.pdf , 

LICS'23 keynote

https://northeastern-datalab.github.io/cs7840/
https://arxiv.org/pdf/2304.11996
https://homes.cs.washington.edu/~suciu/talk-lics-2023.pdf
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Source: Dan Suciu. CS294-248: Special topics in databases, Berkeley fall 2023. See also videos: https://berkeley-cs294-248.github.io/ 

https://northeastern-datalab.github.io/cs7840/
https://berkeley-cs294-248.github.io/
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Information inequalities Γ"∗
Information inequalities are the inequalities that govern the impossibilities in information 
theory. They imply that certain things cannot happen. For this reason, they are sometimes 
referred to as the laws of information theory.

Quoted from: [Yeung'08] Information Theory and Network Coding, 2008. http://iest2.ie.cuhk.edu.hk/~whyeung/tempo/main2.pdf  / [Zhang,Yeung'98]. On characterization of entropy function 
via information inequalities, 1998. https://doi.org/10.1109/18.681320 / For an accessible proof, see [Cramer, Fehr'15] The Mathematical Theory of Information, and Applications, lecture 
notes. https://staff.science.uva.nl/c.schaffner/courses/infcom/2014/notes/CramerFehr.pdf 

There exist laws in information theory that are not implied by the basic inequalities (called non-
Shannon-type inequalities). This celebrated result was published by [Zhang,Yeung'98]

PROPOSITION: The following information inequality always holds on any list of five random 
variables 𝑋, 𝑌, 𝑍, 𝑈, 𝑉, but is not implied by the basic inequalities:

𝐻 𝑋 + 𝐻 𝑌 + 𝐼 𝑈; 𝑉 𝑋 + 𝐼 𝑈; 𝑉 𝑌 + 2𝐼 𝑈; 𝑉 𝑍 + 𝐼(𝑈, 𝑉; 𝑍) ≥ 𝐻 𝑋, 𝑍 + 2𝐼 𝑈; 𝑉  

An information inequality or identity involves (linear combinations of) Shannon’s information 
measures only (and possibly with constant terms) and is said to always hold if it holds for any 
joint distribution for the random variables involved.

Key proof insight: 𝐼 𝑋𝑌; 𝑍 𝑈𝑉 = 0 can be assumed for a different argument

https://northeastern-datalab.github.io/cs7840/
http://iest2.ie.cuhk.edu.hk/~whyeung/tempo/main2.pdf
https://doi.org/10.1109/18.681320%20/
https://staff.science.uva.nl/c.schaffner/courses/infcom/2014/notes/CramerFehr.pdf
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A formalization of entropic vectors
• Given a set of 𝑛 RVs 𝛩 = 𝑋!, … , 𝑋4 , written as 𝛩 = 𝑋2 , 𝑖 ∈ [𝑛]. 
• Associated with 𝛩 are 24 − 1 joint entropies 𝐻 𝑋! ,…, 𝐻 𝑋!, … , 𝑋4	 , written as 𝐻w 𝛼 =
𝐻 𝑋x  for any subset of [𝑛]. Call the function 𝐻w 𝛼 , 𝛼 ∈ 2[4] the entropy function of 𝛩. 

• Example: 𝐻 𝑋!, 𝑋#, 𝑋&  is 𝐻w 𝛼  for 𝛼 = {1,2,4}.
• Together, the joint entropies form a point in the 24 − 1 dimensional entropy space ℝ#>'!.
• In turn, a point in that space is called entropic if the point corresponds to the entropy 

function 𝐻w of some set 𝛩 of 𝑛 RVs. Let Γ4∗ ⊂ ℝ#>'! be the set of all entropic points. 
• How does that space Γ4∗ ⊂ ℝ#>'! look like?

Our earlier EXAMPLE: 𝑛 = 3, thus 𝑘 = 2$ − 1 = 	7 joint entropies, representing a point in ℝ) 

𝐻 𝑋 = 2 
𝐻 𝑌 = 3 
𝐻 𝑍 = 4 

𝐻 𝑋, 𝑌 = 4	
𝐻 𝑋, 𝑍 = 4 
𝐻 𝑌, 𝑍 = 4 

𝐻 𝑋, 𝑌, 𝑍 = 5 

?

{1, 2, ... n}

https://northeastern-datalab.github.io/cs7840/
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Entropic vectors
• Given a set of 𝑛 RVs 𝛩 = 𝑋!, … , 𝑋4 , written as 𝛩 = 𝑋2 , 𝑖 ∈ [𝑛]. 
• Associated with 𝛩 are 24 − 1 joint entropies 𝐻 𝑋! ,…, 𝐻 𝑋!, … , 𝑋4	 , written as 𝐻w 𝛼 =
𝐻 𝑋x  for any subset of [𝑛]. Call the function 𝐻w 𝛼 , 𝛼 ∈ 2[4] the entropy function of 𝛩. 

• Example: 𝐻 𝑋!, 𝑋#, 𝑋&  is 𝐻w 𝛼  for 𝛼 = {1,2,4}.
• Together, the joint entropies form a point in the 24 − 1 dimensional entropy space ℝ#>'!.
• In turn, a point in that space is called entropic if the point corresponds to the entropy 

function 𝐻w of some set 𝛩 of 𝑛 RVs. Let Γ4∗ ⊂ ℝ#>'! be the set of all entropic points. 
• How does that space Γ4∗ ⊂ ℝ#>'! look like?

Our earlier EXAMPLE: 𝑛 = 3, thus 𝑘 = 2$ − 1 = 	7 joint entropies, representing a point in ℝ) 

𝐼 𝑋; 𝑌|𝑍 ≱0 
𝐻 𝑋 = 2 
𝐻 𝑌 = 3 
𝐻 𝑍 = 4 

𝐻 𝑋, 𝑌 = 4	
𝐻 𝑋, 𝑍 = 4 
𝐻 𝑌, 𝑍 = 4 

𝐻 𝑋, 𝑌, 𝑍 = 5 

Thus this point 2,3,4,4,4,5 ∉ Γ$∗?

https://northeastern-datalab.github.io/cs7840/
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A subtlety: entropic vectors Γ2∗ 	vs. almost entropic vectors ̅Γ2∗
Our earlier "parity example":

For details see: [Yeung'08] Yeung, Information Theory and Network Coding, 2008. Ch 15.1  http://iest2.ie.cuhk.edu.hk/~whyeung/tempo/main2.pdf  

However, a more careful analysis shows that all variables 𝑋, 𝑌, 𝑍 
need to be uniform for this example to work, which implies only 
discrete particular entropies as possible.

𝐻 𝑋|𝑌, 𝑍

𝐻 𝑋 = 1

𝐽 𝑋; 𝑌; 𝑍
𝐼 𝑋; 𝑌|𝑍

−1

𝐻 𝑌

𝐻 𝑍

1

0

0

1

−𝑎
0

𝑎

0

0

𝑎

𝑎

10

More generally (from basic inequalities):

𝐻 𝑋 = 𝑎 ∈ ℝE 𝐻 𝑌

𝐻 𝑍

Γ&∗  set of all entropic vectors
̅Γ&∗  set of all almost entropic vectors: 

defined as topological closure of Γ&∗

Γ&	 subset of vectors that fulfill the 
Shannon inequalities

Γ4∗  
Γ4	

̅Γ4∗  

The closure of a subset S 
of points in a topological 
space consists of all 
points in S together with 
all limit points of S.

Intuitively, it is possible 
to create a mixture model 
that models any rational 
number. The "closure" 
extends that to the real 
numbers.

https://northeastern-datalab.github.io/cs7840/
http://iest2.ie.cuhk.edu.hk/~whyeung/tempo/main2.pdf

