Updated 9/16/2025

Part 1: Theory LO3: Basics of entropy (1/6) [measures of information, intuition behind entropy]

Wolfgang Gatterbauer

cs7840 Foundations and Applications of Information Theory (fa25)

https://northeastern-datalab.github.io/cs7840/fa25/

9/15/2025

Let's gain some intuition for "measures of information"

The following numeric examples with hats and 4 balls are based on Chapter 1.1 from [Moser'18] Information Theory (lecture notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it

Let's gain some intuition: What is information?

What is information? Let's look at some sentences with "information":

- 1. "It will rain tomorrow."
- 2. "It will snow tomorrow."
- 3. "The name of the next president of the USA will be...
 - a. ... Donald."
 - b. ... Donald Duck."
- 4. "Our university is called Northeastern University."

Let's gain some intuition: What is information?

What is information? Let's look at some sentences with "information":

- 1. "It will rain tomorrow."
- 2. "It will snow tomorrow."
- 3. "The name of the next president of the USA will be...
 - a. ... Donald."
 - b. ... Donald Duck."
- 4. "Our university is called Northeastern University."
- \Rightarrow Information (in a sentence) is linked to surprise (which is the delta of knowledge before and after seeing the sentence).

Let's next try to quantify "information" ©

EXAMPLE 1: A gambler throws a fair die with 4 sides {A, B, C, D}.

- "Side C comes up."
- The "pure" message U_1 that we care about in our abstraction is ...

EXAMPLE 1: A gambler throws a fair die with 4 sides {A, B, C, D}.

- "Side C comes up."
- message $U_1 = \mathbf{C}$

EXAMPLE 2: A gambler throws a fair die with 6 sides {A, B, C, D, E, F}.

- "Side C comes up."
- message $U_2 = \mathbf{C}$

What has changed?

EXAMPLE 1: A gambler throws a fair die with 4 sides {A, B, C, D}.

- "Side C comes up."
- message $U_1 = \mathbf{C}$
- There are 4 possible outcomes, each has a probability of $\frac{1}{4}$.

EXAMPLE 2: A gambler throws a fair die with 6 sides {A, B, C, D, E, F}.

- "Side C comes up."
- message $U_2 = \mathbf{C}$
- There are 6 possible outcomes, each has a probability of 1/6.

 \Rightarrow 1) The number of possible outcomes should be linked to "information" (we need more space to encode a message)

EXAMPLE 1: A gambler throws a fair die with 4 sides {A, B, C, D}.

60 X

- "Side C comes up."
- message $U_1 = "C"$, or in above binary encoding $U_1 = "10"$
- There are 4 possible outcomes, each has a probability of $\frac{1}{4}$.

EXAMPLE 2: A gambler throws a fair die with 6 sides {A, B, C, D, E, F}.

- "Side C comes up."

- 000 001 010 011 100 101
- message $U_2=$ "C", or in above binary encoding $U_2=$ "010"
- There are 6 possible outcomes, each has a probability of 1/6.
- \Rightarrow 1) The number of possible outcomes should be linked to "information" (we need more space to encode a message)

EXAMPLE 1: A gambler throws a fair die with 4 sides {A, B, C, D}.

- "Side C comes up."
- message $U_1 = \mathbf{C}$
- There are 4 possible outcomes, each has a probability of $\frac{1}{4}$.

EXAMPLE 3: The gambler throws the 4-sided die three times.

- "The sequence of sides are: (C, B, D)"
- The message $U_3 = "CBD"$.

How many outcomes do we have now

EXAMPLE 1: A gambler throws a fair die with 4 sides {A, B, C, D}.

- "Side C comes up."
- message $U_1 = \mathbf{C}$
- There are 4 possible outcomes, each has a probability of $\frac{1}{4}$.

EXAMPLE 3: The gambler throws the 4-sided die three times.

- "The sequence of sides are: (C, B, D)"
- The message $U_3 =$ "CBD".

16 times more!

How much more information did we learn in situation 3?

EXAMPLE 1: A gambler throws a fair die with 4 sides {A, B, C, D}.

w 2)

- "Side C comes up."
- message $U_1 = \mathbf{C}$
- There are 4 possible outcomes, each has a probability of $\frac{1}{4}$.

EXAMPLE 3: The gambler throws the 4-sided die three times.

- "The sequence of sides are: (C, B, D)"
- The message $U_3 = "\mathtt{CBD}"$.
- Now we had $64 = 4 \cdot 4 \cdot 4 = 4^3$ possible outcomes.

We have 3 independent throws, the message U is 3 times as long, despite 4^3 possible total outcomes. Our information is 3 times as much.

 \Rightarrow 2) Information is additive in some sense

1 roll has 4 outcomes.

 $\log_4(4) = 1$

3 rolls have $64 = 4 \cdot 4 \cdot 4 = 4^3$ outcomes.

 $\log_4(64) = 3$

Hartley's insight: use the logarithm of the number of possible outcomes r to measure the amount of information in an outcome.

Hartley's measure of information

$$H_0(U) = \log_b(n)$$

= number of outcomes

1 roll has 4 outcomes.

$$\log_4(4) = 1$$

3 rolls have $64 = 4 \cdot 4 \cdot 4 = 4^3$ outcomes.

$$\log_4(64) = 3$$

Hartley's insight: use the logarithm of the number of possible outcomes r to measure the amount of information in an outcome.

Hartley's measure of information

$$H_0(U) = \log_b(n)$$

n = number of outcomes

The basis **b** of the logarithm is not really important. (just unit of information, like 1 km = 1000 m)

We will use:
$$lg(c)$$

$$\log_2(c) = 1.443 \cdot \log_e(c)$$

$$c^z = (2^{1.443})^z = 2^{1.443 \cdot z}$$

$$2^{1.443} = e \Leftrightarrow 1.443 = \log_2(e)$$

1 roll has 4 outcomes.

3 rolls have $64 = 4 \cdot 4 \cdot 4 = 4^3$ outcomes.

$$\log_4(64) = 3$$

Hartley's insight: use the logarithm of the number of possible outcomes r to measure the amount of information in an outcome.

Hartley's measure of information

$$H_0(U) = \log_b(n)$$

n = number of outcomes

For k independent trials, the amount of information is:

$$\log_b(n^k) =$$

1 roll has 4 outcomes.

$$\log_4(4) = 1$$

3 rolls have $64 = 4 \cdot 4 \cdot 4 = 4^3$ outcomes.

$$\log_4(64) = 3$$

Hartley's insight: use the logarithm of the number of possible outcomes r to measure the amount of information in an outcome.

Hartley's measure of information

$$H_0(U) = \log_b(\underline{n})$$

n = number of outcomes

For k independent trials, the amount of information is:

$$\log_b(n^k) = k \cdot \log_b(n)$$

the power of the logarithm ©

Let's practice

EXAMPLE 4: A country has 1 million telephones. How long does the country's telephone numbers need to be?

Let's practice

EXAMPLE 4: A country has 1 million telephones. How long does the country's telephone numbers need to be?

 $\log_{10}(1,000,000) = 6$

With 6 digits (like "123 456") we can represent 10^6 different telephones.

EXAMPLE 5: The current world population is 8,174,891,806 (as of Sat, September 7, 2024). How long must a binary telephone number be to connect to every person?

A tip: $2^{32} = 4,294,...,...$

Let's practice

EXAMPLE 4: A country has 1 million telephones. How long does the country's telephone numbers need to be?

 $\log_{10}(1,000,000) = 6$

With 6 digits (like "123 456") we can represent 10^6 different telephones.

EXAMPLE 5: The current world population is 8,174,891,806 (as of Sat, September 7, 2024). How long must a binary telephone number be to connect to every person?

A tip: $2^{32} = 4,294,...,...$

 $\log_2(8,174,891,806) \approx 32.93$

With 33 bits we can uniquely identify every person on the planet (today).

A problem with Hartley's information measure

EXAMPLE 6: we have two hats with indistinguishable black and white balls. There are 4 balls total in each hat.

We randomly draw a ball from both hats. Let U_A , U_B be the color of the ball.

What does Hartley's information measure tell us (maybe let's start with U_A)

A problem with Hartley's information measure

EXAMPLE 6: we have two hats with indistinguishable black and white balls. There are 4 balls total in each hat.

We randomly draw a ball from both hats. Let U_A , U_B be the color of the ball.

$$H_0(U_A) = \lg(2) = 1$$
 bit (we have 2 equally likely colors) $H_0(U_B) = 7$

A problem with Hartley's information measure

EXAMPLE 6: we have two hats with indistinguishable black and white balls. There are 4 balls total in each hat.

We randomly draw a ball from both hats. Let U_A , U_B be the color of the ball.

$$H_0(U_A) = \lg(2) = 1$$
 bit

$$H_0(U_B) = \lg(2) = 1$$
 bit

Problem: if U = black, then we get less information from U_B than from U_A (since we somehow expected that outcome)

 \Rightarrow 3) A proper measure of information should take into account the (possibly different) probabilities of the various outcomes.

This was the key insight of Claude Shannon [1948]

Let's analyze the possible outcomes for $U_{\rm R}$:

 U_R = white:

What does Hartley tell us about the information we get after learning $U_{\rm B}$ =white

Let's analyze the possible outcomes for $U_{\rm B}$:

$$U_B = \text{white}$$
:

There is a $p = \frac{1}{4}$ chance to draw a white ball.

That's the result of 1 out of n = 4 possible outcomes.

$$H_0(U_{\rm B}) = ???$$

Let's analyze the possible outcomes for $U_{\rm B}$:

$$U_B = \text{white}$$
:

There is a $p = \frac{1}{4}$ chance to draw a white ball.

That's the result of 1 out of n = 4 possible outcomes.

$$H_0(U_{\rm B}) = \lg(4) = 2$$
 bits

$$U_B = \text{black}$$
: $\lg\left(\frac{1}{p}\right)$

Hartley does not work directly. What can we do?

Let's analyze the possible outcomes for $U_{\rm B}$:

$$U_B = \text{white}$$
:

There is a $p = \frac{1}{4}$ chance to draw a white ball.

That's the result of 1 out of n = 4 possible outcomes.

$$H_0(U_{\rm B}) = \lg(4) = 2$$
 bits

$$\underline{U_B} = \text{black}$$
: $\lg\left(\frac{1}{p}\right)$

What is our chance p to draw a black ball?

Let's analyze the possible outcomes for $U_{\rm R}$:

$$\underline{U_B} = \text{white}$$
:

There is a $p = \frac{1}{4}$ chance to draw a white ball.

That's the result of 1 out of n=4 possible outcomes.

$$H_0(U_{\rm B}) = \lg(4) = 2$$
 bits

$$U_B = \text{black}$$
: $\lg\left(\frac{1}{p}\right)$

There is a $p = \frac{3}{4}$ chance to draw a black ball.

What do we do with the 34?

Let's analyze the possible outcomes for $U_{\rm B}$:

$$U_B = \text{white}$$
:

There is a $p = \frac{1}{4}$ chance to draw a white ball.

That's the result of 1 out of n = 4 possible outcomes.

$$H_0(U_{\rm B}) = \lg(4) = 2$$
 bits

$$U_B = \text{black}$$
: $\lg \left(\frac{1}{n}\right)$

There is a $p = \frac{3}{4}$ chance to draw a black ball.

That's the result of 1 out of n = 4/3 possible outcomes.

$$H_0(U_{\mathrm{B}}) =$$

For Hartley, we need to have 1 black ball (and have "1 out of r outcomes"). We get this by normalizing, i.e. dividing by 3...

Let's analyze the possible outcomes for $U_{\rm B}$:

$U_B = \text{white}$:

There is a $p = \frac{1}{4}$ chance to draw a white ball.

That's the result of 1 out of n = 4 possible outcomes.

$$H_0(U_{\rm B}) = \lg(4) = 2$$
 bits #total balls / $\underline{U_B} = \text{black}$: $\lg\left(\frac{1}{p}\right)$ #black balls

There is a $p = \frac{3}{4}$ chance to draw a black ball.

That's the result of 1 out of n = 4/3 possible outcomes.

$$H_0(U_{\rm B}) = \lg\left(\frac{4}{3}\right) = 0.415 \text{ bits}$$

How do we combine these two possible outcomes to get one measure

Let's analyze the possible outcomes for $U_{\rm B}$:

$U_B = \text{white}$:

There is a $p = \frac{1}{4}$ chance to draw a white ball.

That's the result of 1 out of n = 4 possible outcomes.

$$H_0(U_{\rm B}) = \lg(4) = 2$$
 bits

$$U_B = \text{black}$$
: $\lg\left(\frac{1}{p}\right)$

There is a $p = \frac{3}{4}$ chance to draw a black ball.

That's the result of 1 out of n = 4/3 possible outcomes.

$$H_0(U_{\rm B}) = \lg\left(\frac{4}{3}\right) = 0.415 \text{ bits}$$

Let's do "in expectation" ©

$$\mathbb{E}[H_0(U_{\rm B})] = \frac{1}{4} \cdot \dots + \frac{3}{4} \cdot \dots$$

Let's analyze the possible outcomes for $U_{\rm B}$:

$U_B = \text{white}$:

There is a $p = \frac{1}{4}$ chance to draw a white ball.

That's the result of 1 out of n = 4 possible outcomes.

$$H_0(U_{\rm B}) = \lg(4) = 2$$
 bits

$$U_B = \text{black}$$
: $\lg \left(\frac{1}{p}\right)$

There is a $p = \frac{3}{4}$ chance to draw a black ball.

That's the result of 1 out of n = 4/3 possible outcomes.

$$H_0(U_{\rm B}) = \lg\left(\frac{4}{3}\right) = 0.415 \text{ bits}$$

Let's do "in expectation":

Let's analyze the possible outcomes:

$U_B = \text{white}$:

There is a $p = \frac{1}{4}$ chance to draw a white ball.

That's the result of 1 out of n = 4 possible outcomes.

$$H_0(U_{\rm B}) = \lg(4) = 2$$
 bits

$$U_B = black$$
:

$$\lg\left(\frac{1}{p}\right)$$

There is a $p = \frac{3}{4}$ chance to draw a black ball.

That's the result of 1 out of n = 4/3 possible outcomes.

$$H_0(U_{\rm B}) = \lg\left(\frac{4}{3}\right) = 0.415 \text{ bits}$$

Let's do "in expectation":

Let's analyze the possible outcomes:

$\underline{U_B} = \text{white}$:

There is a $p = \frac{1}{4}$ chance to draw a white ball.

That's the result of 1 out of n = 4 possible outcomes.

$$H_0(U_{\rm B}) = \lg(4) = 2$$
 bits

$$U_B = \text{black}$$
:

There is a $p = \frac{3}{4}$ chance to draw a black ball.

That's the result of 1 out of n = 4/3 possible outcomes.

$$H_0(U_{\rm B}) = \lg\left(\frac{4}{3}\right) = 0.415 \text{ bits}$$

Let's do "in expectation":

 $\mathbb{E}[H_0(U_{\rm B})] = \frac{1}{4} \cdot 2 \text{ bits } + \frac{3}{4} \cdot 0.415 \text{ bits} = \frac{0.811}{10} \text{ bits hat B}$

Let's analyze the possible outcomes:

$$U_B = \text{white}$$
:

There is a $p = \frac{1}{4}$ chance to draw a white ball.

That's the result of 1 out of n = 4 possible outcomes.

$$H_0(U_{\rm B}) = \lg(4) = 2$$
 bits

$$\underline{U_B} = \text{black}$$
: $\lg \left(\frac{1}{n}\right)$

There is a $p = \frac{3}{4}$ chance to draw a black ball.

That's the result of 1 out of n = 4/3 possible outcomes.

$$H_0(U_{\rm B}) = \lg\left(\frac{4}{3}\right) = 0.415 \text{ bits}$$

Let's do "in expectation":

$$\mathbb{E}[H_0(U_{\rm B})] = \frac{1}{4} \cdot \lg(4) + \frac{3}{4} \cdot \lg\left(\frac{4}{3}\right)$$

This is Claude Shannon's measure of information

1 bit for hat A = 0.811 bits hat B

Shannon's entropy

Shannon's measure of information as expected Hartley information (averaged over all possible outcomes)

$$H(\mathbf{p}) = \left[\sum_{i=1}^{r} p_i \cdot \lg\left(\frac{1}{p_i}\right)\right] = -\sum_{i=1}^{r} H_0(U)$$

$$\left| \frac{1}{p_i} \right| = -\sum_{i=1}^{r} p_i \cdot \lg(p_i) = \mathbb{E}\left[\lg\left(\frac{1}{p_i}\right)\right]$$

 p_i = probability of the *i*-th possible outcome

Uncertainty: Normalized number of outcomes, for option i to be "1 out of ... outcomes"

1948:

A Mathematical Theory of Communication

By C. E. SHANNON

$$H = -K \sum_{i=1}^{n} p_i \log p_i$$

Shannon's entropy

Shannon's measure of information as expected Hartley information (averaged over all possible outcomes)

$$H(\boldsymbol{p}) = \left| \sum_{i=1}^{r} p_i \cdot \lg\left(\frac{1}{p_i}\right) \right| = -\sum_{i=1}^{r} p_i \cdot \lg(p_i) = \mathbb{E}\left[\lg\left(\frac{1}{p_i}\right)\right]$$

 p_i = probability of the *i*-th possible outcome

Uncertainty: Normalized number of outcomes, for option i to be "1 out of ... outcomes"

$$H = Kn,$$

$$H = n \log s$$

1948:

A Mathematical Theory of Communication

By C. E. SHANNON

$$H = -K \sum_{i=1}^{n} p_i \log p_i$$

Shannon's entropy

Shannon's measure of information as expected Hartley information (averaged over all possible outcomes)

$$H(\mathbf{p}) = \left[\sum_{i=1}^{r} p_i \cdot \lg\left(\frac{1}{p_i}\right)\right] = -\sum_{i=1}^{r} p_i$$

$$H_0(U)$$

 $= -\sum_{i=1}^{r} p_i \cdot \lg(p_i) = \mathbb{E}\left[\lg\left(\frac{1}{p_i}\right)\right]$

 p_i = probability of the *i*-th possible outcome

Uncertainty: Normalized number of outcomes, for option i to be "1 out of ... outcomes"

- 1) The number of possible outcomes should be linked to "information"
- 2) Information is additive in some sense
- 3) A proper measure of information should take into account the different probabilities of the outcomes.

