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Pre-class conversations

• Last class recapitulation
• Organizational matters: Does every one get Piazza messages?
• First scribe on Piazza. Awesome! I will look over the weekend
• Office hours: Usually right after class, or via email / Teams. Also feel 

free talk to me regularly during break/ after class about project 
ideas, or papers/research directions to include towards the end

• New class arrivals

• Today: 
- The basics of probability theory

https://northeastern-datalab.github.io/cs7840/
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Basics of
probability theory

Following slides are built upon examples by Jay Aslam from earlier editions of this class. For a more extensive 
cover of the basics, I recommend "Bertsekas, Tsitsiklis. Introduction to Probability, 2008." It's a solid textbook on 
probability theory and I regularly find myself going back to this book to look up basic concepts. Working by 
yourself through chapter 1 on "Sample Space and Probability" is a good investment of your time. 

https://northeastern-datalab.github.io/cs7840/
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Sample space / outcomes / events / probability
EXAMPLE 1:

roll a fair die with 6 sides• A random experiment
PROBABILITY

Ω = • Sample space Ω: set 
of all possible outcomes ?

https://northeastern-datalab.github.io/cs7840/
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Sample space / outcomes / events / probability

2
4
6

3
5

ΩEXAMPLE 1:
roll a fair die with 6 sides• A random experiment

PROBABILITY

Ω = {1, 2, 3, 4, 5, 6} • Sample space Ω: set 
of all possible outcomes

• An outcome 𝜔 ∈ Ω of the exp. ?
1

https://northeastern-datalab.github.io/cs7840/
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Sample space / outcomes / events / probability

1

2
4
6

3
5

𝜔

ΩEXAMPLE 1:
roll a fair die with 6 sides• A random experiment

PROBABILITY

Ω = {1, 2, 3, 4, 5, 6} 
Say the outcome is a 1

• Sample space Ω: set 
of all possible outcomes

• An outcome 𝜔 ∈ Ω of the exp.
• Event 𝐸: a subset of the 

sample space 𝐸 ⊆ Ω ?

https://northeastern-datalab.github.io/cs7840/
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Sample space / outcomes / events / probability

1
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𝜔

ΩEXAMPLE 1:
roll a fair die with 6 sides• A random experiment

PROBABILITY

Ω = {1, 2, 3, 4, 5, 6} 
Say the outcome is a 1

• Sample space Ω: set 
of all possible outcomes

• An outcome 𝜔 ∈ Ω of the exp.
• Event 𝐸: a subset of the 

sample space 𝐸 ⊆ Ω 𝐸! = "≥3"
𝐸" = "even" ?

https://northeastern-datalab.github.io/cs7840/
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Sample space / outcomes / events / probability

1
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4
6

3
5

𝜔

ΩEXAMPLE 1:
roll a fair die with 6 sides• A random experiment

PROBABILITY

𝐸!
𝐸"

= {2,	4,	6}
𝐸! = "≥3" = {3,	4,	5,	6}
𝐸" = "even"

• Event 𝐸: a subset of the 
sample space 𝐸 ⊆ Ω 

Ω = {1, 2, 3, 4, 5, 6} 
Say the outcome is a 1

• Sample space Ω: set 
of all possible outcomes

• An outcome 𝜔 ∈ Ω of the exp.

• Probability measure:  

?

https://northeastern-datalab.github.io/cs7840/
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Sample space / outcomes / events / probability

1

2
4
6

3
5

𝜔

ΩEXAMPLE 1:
roll a fair die with 6 sides• A random experiment

PROBABILITY

𝐸!
𝐸"

= {2,	4,	6}
𝐸! = "≥3" = {3,	4,	5,	6}
𝐸" = "even"

• Event 𝐸: a subset of the 
sample space 𝐸 ⊆ Ω 

Ω = {1, 2, 3, 4, 5, 6} 
Say the outcome is a 1

• Sample space Ω: set 
of all possible outcomes

• An outcome 𝜔 ∈ Ω of the exp.

• Probability measure:  
ℙ:Ω → [0, 1] 

?

https://northeastern-datalab.github.io/cs7840/
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𝐸!
𝐸"

Sample space / outcomes / events / probability

The set Σ	of all events E ∈ Σ is a σ-algebra, basically the same as the 
power set 2!, except for some pathological non-measurable sets like the 
Vitali-Set (https://www.youtube.com/watch?v=hs3eDa3_DzU). See also: 
https://en.wikipedia.org/wiki/%CE%A3-algebra

1

2
4
6

3
5

𝜔

Ω

Source of figure to the right: https://en.wikipedia.org/wiki/Probability_measure 

EXAMPLE 2:

EXAMPLE 1:
roll a fair die with 6 sides
Ω = {1, 2, 3, 4, 5, 6} 

Say the outcome is a 1
= {2,	4,	6}
= {3,	4,	5,	6}

𝐸" = "even"

• A random experiment
• Sample space Ω: set 

of all possible outcomes

PROBABILITY

• An outcome 𝜔 ∈ Ω of the exp.
• Event 𝐸: a subset of the 

sample space 𝐸 ⊆ Ω 
• Probability measure: 
ℙ:Ω → [0, 1] 
ℙ: Σ → [0, 1] 

𝐸! = "≥3"

https://northeastern-datalab.github.io/cs7840/
https://www.youtube.com/watch?v=hs3eDa3_DzU
https://en.wikipedia.org/wiki/%CE%A3-algebra
https://en.wikipedia.org/wiki/Probability_measure
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𝐸!
𝐸"

Sample space / outcomes / events / probability

The set Σ	of all events E ∈ Σ is a σ-algebra, basically the same as the 
power set 2!, except for some pathological non-measurable sets like the 
Vitali-Set (https://www.youtube.com/watch?v=hs3eDa3_DzU). See also: 
https://en.wikipedia.org/wiki/%CE%A3-algebra

2) Normalization: ℙ Ω = 1
1) Nonnegativity: ℙ 𝐸 ≥ 0, ∀𝐸 ∈ Σ

3) Additivity: if 𝐸! and 𝐸" are disjoint events,
    then ℙ 𝐸!⋃𝐸" = ℙ 𝐸! + ℙ 𝐸" ,

1

2
4
6

3
5

𝜔

Ω

Source of figure to the right: https://en.wikipedia.org/wiki/Probability_measure 

EXAMPLE 2:

EXAMPLE 1:
roll a fair die with 6 sides
Ω = {1, 2, 3, 4, 5, 6} 

Say the outcome is a 1
= {2,	4,	6}
= {3,	4,	5,	6}

𝐸" = "even"

• A random experiment
• Sample space Ω: set 

of all possible outcomes

PROBABILITY

• An outcome 𝜔 ∈ Ω of the exp.
• Event 𝐸: a subset of the 

sample space 𝐸 ⊆ Ω 
• Probability measure: 
ℙ:Ω → [0, 1] 
ℙ: Σ → [0, 1] 

𝐸! = "≥3"

also!
!∈#

ℙ {𝜔} = 1

https://northeastern-datalab.github.io/cs7840/
https://www.youtube.com/watch?v=hs3eDa3_DzU
https://en.wikipedia.org/wiki/%CE%A3-algebra
https://en.wikipedia.org/wiki/Probability_measure
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𝐸!
𝐸"

Sample space / outcomes / events / probability
EXAMPLE 1:

• A random experiment roll a fair die with 6 sides
PROBABILITY

• Event 𝐸: a subset of the 
sample space 𝐸 ⊆ Ω 

𝐸" = "even" = {2,	4,	6}
= {3,	4,	5,	6}

1

2
4
6

3
5

𝜔

Ω

• If ℙ 𝜔 = "
|1| , ∀𝜔 ∈ Ω, then ℙ 𝐸 =

Ω = {1, 2, 3, 4, 5, 6} 
Say the outcome is a 1

• Sample space Ω: set 
of all possible outcomes

• An outcome 𝜔 ∈ Ω of the exp.

• Probability measure: 
ℙ:Ω → [0, 1] 
ℙ: Σ → [0, 1] 

𝐸! = "≥3"

?
2) Normalization: ℙ Ω = 1
1) Nonnegativity: ℙ 𝐸 ≥ 0, ∀𝐸 ∈ Σ

3) Additivity: if 𝐸! and 𝐸" are disjoint events,
    then ℙ 𝐸!⋃𝐸" = ℙ 𝐸! + ℙ 𝐸" ,

also!
!∈#

ℙ {𝜔} = 1

short for ℙ {𝜔}

https://northeastern-datalab.github.io/cs7840/
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𝐸!
𝐸"

Sample space / outcomes / events / probability
EXAMPLE 1:

• A random experiment roll a fair die with 6 sides
PROBABILITY

• Event 𝐸: a subset of the 
sample space 𝐸 ⊆ Ω 

𝐸" = "even" = {2,	4,	6}
= {3,	4,	5,	6}

1

2
4
6

3
5

𝜔

Ω

ℙ 1 = ℙ 2 = ⋯ = ℙ 6 = "
2 

ℙ 𝐸" = 

• If ℙ 𝜔 = "
|1| , ∀𝜔 ∈ Ω, then ℙ 𝐸 =

Ω = {1, 2, 3, 4, 5, 6} 
Say the outcome is a 1

• Sample space Ω: set 
of all possible outcomes

• An outcome 𝜔 ∈ Ω of the exp.

• Probability measure: 
ℙ:Ω → [0, 1] 
ℙ: Σ → [0, 1] 

𝐸! = "≥3"

|𝐸|
|Ω|

ℙ 𝐸! = ?
2) Normalization: ℙ Ω = 1
1) Nonnegativity: ℙ 𝐸 ≥ 0, ∀𝐸 ∈ Σ

3) Additivity: if 𝐸! and 𝐸" are disjoint events,
    then ℙ 𝐸!⋃𝐸" = ℙ 𝐸! + ℙ 𝐸" ,

also!
!∈#

ℙ {𝜔} = 1

short for ℙ {𝜔}

https://northeastern-datalab.github.io/cs7840/
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𝐸!
𝐸"

Sample space / outcomes / events / probability
EXAMPLE 1:

• A random experiment roll a fair die with 6 sides
PROBABILITY

• Event 𝐸: a subset of the 
sample space 𝐸 ⊆ Ω 

𝐸" = "even" = {2,	4,	6}
= {3,	4,	5,	6}

1

2
4
6

3
5

𝜔

Ω

ℙ 1 = ℙ 2 = ⋯ = ℙ 6 = "
2 

ℙ 𝐸" = 

• If ℙ 𝜔 = "
|1| , ∀𝜔 ∈ Ω, then ℙ 𝐸 =

Ω = {1, 2, 3, 4, 5, 6} 
Say the outcome is a 1

• Sample space Ω: set 
of all possible outcomes

• An outcome 𝜔 ∈ Ω of the exp.

• Probability measure: 
ℙ:Ω → [0, 1] 
ℙ: Σ → [0, 1] 

𝐸! = "≥3"

|𝐸|
|Ω|

ℙ 𝐸! = 

ℙ 2 + ℙ 4 + ℙ 6 = 3
2 =

"
! 

4
2 =

!
3 

2) Normalization: ℙ Ω = 1
1) Nonnegativity: ℙ 𝐸 ≥ 0, ∀𝐸 ∈ Σ

3) Additivity: if 𝐸! and 𝐸" are disjoint events,
    then ℙ 𝐸!⋃𝐸" = ℙ 𝐸! + ℙ 𝐸" ,

also!
!∈#

ℙ {𝜔} = 1

short for ℙ {𝜔}

https://northeastern-datalab.github.io/cs7840/
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Sample space / outcomes / events / probability
EXAMPLE 3:

roll two fair dice with 6 sides
Ω =	

• A random experiment
PROBABILITY

• Event 𝐸: a subset of the 
sample space 𝐸 ⊆ Ω 

• Sample space Ω: set 
of all possible outcomes

• An outcome 𝜔 ∈ Ω of the exp.

• Probability measure: 
ℙ: Σ → [0, 1] 

|Ω| =
?

https://northeastern-datalab.github.io/cs7840/
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Sample space / outcomes / events / probability
EXAMPLE 3:

roll two fair dice with 6 sides
Ω = 1, 2, 3, 4, 5, 6 	×	{1, 2, 3, 4, 5, 6}

• A random experiment
PROBABILITY

• Event 𝐸: a subset of the 
sample space 𝐸 ⊆ Ω 

• Sample space Ω: set 
of all possible outcomes

• An outcome 𝜔 ∈ Ω of the exp.

• Probability measure: 
ℙ: Σ → [0, 1] 

1 2 3 4 5 6
1
2
3
4
5
6

first die

second dieΩ = 36
= { 1,1 , 1,2 , (1,3)… 1,6 , 2,1 , 2,2 , … (6,6)} 

https://northeastern-datalab.github.io/cs7840/
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Sample space / outcomes / events / probability
EXAMPLE 3:

roll two fair dice with 6 sides• A random experiment
PROBABILITY

• Event 𝐸: a subset of the 
sample space 𝐸 ⊆ Ω 

• Sample space Ω: set 
of all possible outcomes

• An outcome 𝜔 ∈ Ω of the exp.

• Probability measure: 
ℙ: Σ → [0, 1] 

1 2 3 4 5 6
1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

first die

second die

𝐸" = "sum	is	7" 

|𝐸"| = ?ℙ 𝐸" =	

Ω = 1, 2, 3, 4, 5, 6 	×	{1, 2, 3, 4, 5, 6}

Ω = 36
= { 1,1 , 1,2 , (1,3)… 1,6 , 2,1 , 2,2 , … (6,6)} 

https://northeastern-datalab.github.io/cs7840/
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Sample space / outcomes / events / probability
EXAMPLE 3:

roll two fair dice with 6 sides

𝐸" = "sum	is	7" 
= {(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}

2
32 =

"
2 

• A random experiment
PROBABILITY

• Event 𝐸: a subset of the 
sample space 𝐸 ⊆ Ω 

• Sample space Ω: set 
of all possible outcomes

• An outcome 𝜔 ∈ Ω of the exp.

• Probability measure: 
ℙ: Σ → [0, 1] 

|𝐸"| = 6

ℙ 𝐸" =	|5&|
|1| = 

1 2 3 4 5 6
1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

first die

second die

1, 2, 3, 4, 5, 6 	×	{1, 2, 3, 4, 5, 6}

Ω = 36
= { 1,1 , 1,2 , (1,3)… 1,6 , 2,1 , 2,2 , … (6,6)} 

Ω = 

https://northeastern-datalab.github.io/cs7840/
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Sample space / outcomes / events / probability
EXAMPLE 3:

roll two fair dice with 6 sides• A random experiment
PROBABILITY

• Event 𝐸: a subset of the 
sample space 𝐸 ⊆ Ω 

• Sample space Ω: set 
of all possible outcomes

• An outcome 𝜔 ∈ Ω of the exp.

• Probability measure: 
ℙ: Σ → [0, 1] 

1 2 3 4 5 6
1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

first die

second die

ℙ 𝐸! = |5'|
|1|  

𝐸! = "total	is	greater	than	8" 

|𝐸!| = ?

1, 2, 3, 4, 5, 6 	×	{1, 2, 3, 4, 5, 6}

Ω = 36
= { 1,1 , 1,2 , (1,3)… 1,6 , 2,1 , 2,2 , … (6,6)} 

Ω = 

https://northeastern-datalab.github.io/cs7840/
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Sample space / outcomes / events / probability
EXAMPLE 3:

roll two fair dice with 6 sides• A random experiment
PROBABILITY

• Event 𝐸: a subset of the 
sample space 𝐸 ⊆ Ω 

• Sample space Ω: set 
of all possible outcomes

• An outcome 𝜔 ∈ Ω of the exp.

• Probability measure: 
ℙ: Σ → [0, 1] 

1 2 3 4 5 6
1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

first die

second die

ℙ 𝐸! = |5'|
|1|  

𝐸! = "total	is	greater	than	8" 
= "total	is	9	or	10	or	11	or	12"

|𝐸!| = 

1, 2, 3, 4, 5, 6 	×	{1, 2, 3, 4, 5, 6}

Ω = 36
= { 1,1 , 1,2 , (1,3)… 1,6 , 2,1 , 2,2 , … (6,6)} 

Ω = 

https://northeastern-datalab.github.io/cs7840/
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Sample space / outcomes / events / probability
EXAMPLE 3:

roll two fair dice with 6 sides• A random experiment
PROBABILITY

• Event 𝐸: a subset of the 
sample space 𝐸 ⊆ Ω 

• Sample space Ω: set 
of all possible outcomes

• An outcome 𝜔 ∈ Ω of the exp.

• Probability measure: 
ℙ: Σ → [0, 1] 

ℙ 𝐸! = |5'|
|1|  

𝐸! = "total	is	greater	than	8" 
= "total	is	9	or	10	or	11	or	12"

|𝐸!| = 4	

1 2 3 4 5 6
1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

first die

second die

1, 2, 3, 4, 5, 6 	×	{1, 2, 3, 4, 5, 6}

Ω = 36
= { 1,1 , 1,2 , (1,3)… 1,6 , 2,1 , 2,2 , … (6,6)} 

Ω = 

https://northeastern-datalab.github.io/cs7840/
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Sample space / outcomes / events / probability
EXAMPLE 3:

roll two fair dice with 6 sides• A random experiment
PROBABILITY

• Event 𝐸: a subset of the 
sample space 𝐸 ⊆ Ω 

• Sample space Ω: set 
of all possible outcomes

• An outcome 𝜔 ∈ Ω of the exp.

• Probability measure: 
ℙ: Σ → [0, 1] 

ℙ 𝐸! = |5'|
|1|  

𝐸! = "total	is	greater	than	8" 
= "total	is	9	or	10	or	11	or	12"

|𝐸!| = 4	 +	 3 

1 2 3 4 5 6
1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

first die

second die

1, 2, 3, 4, 5, 6 	×	{1, 2, 3, 4, 5, 6}

Ω = 36
= { 1,1 , 1,2 , (1,3)… 1,6 , 2,1 , 2,2 , … (6,6)} 

Ω = 

https://northeastern-datalab.github.io/cs7840/


23Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Sample space / outcomes / events / probability
EXAMPLE 3:

roll two fair dice with 6 sides• A random experiment
PROBABILITY

• Event 𝐸: a subset of the 
sample space 𝐸 ⊆ Ω 

• Sample space Ω: set 
of all possible outcomes

• An outcome 𝜔 ∈ Ω of the exp.

• Probability measure: 
ℙ: Σ → [0, 1] 

ℙ 𝐸! = |5'|
|1|  

𝐸! = "total	is	greater	than	8" 
= "total	is	9	or	10	or	11	or	12"

|𝐸!| = 4	 +	 3	 +	 2	

1 2 3 4 5 6
1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

first die

second die

1, 2, 3, 4, 5, 6 	×	{1, 2, 3, 4, 5, 6}

Ω = 36
= { 1,1 , 1,2 , (1,3)… 1,6 , 2,1 , 2,2 , … (6,6)} 

Ω = 
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Sample space / outcomes / events / probability
EXAMPLE 3:

roll two fair dice with 6 sides• A random experiment
PROBABILITY

• Event 𝐸: a subset of the 
sample space 𝐸 ⊆ Ω 

• Sample space Ω: set 
of all possible outcomes

• An outcome 𝜔 ∈ Ω of the exp.

• Probability measure: 
ℙ: Σ → [0, 1] 

ℙ 𝐸! = |5'|
|1|  

𝐸! = "total	is	greater	than	8" 
= "total	is	9	or	10	or	11	or	12"

|𝐸!| = 4	 +	 3	 +	 2	 +	 1 

1 2 3 4 5 6
1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

first die

second die

1, 2, 3, 4, 5, 6 	×	{1, 2, 3, 4, 5, 6}

Ω = 36
= { 1,1 , 1,2 , (1,3)… 1,6 , 2,1 , 2,2 , … (6,6)} 

Ω = 
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Sample space / outcomes / events / probability
EXAMPLE 3:

roll two fair dice with 6 sides• A random experiment
PROBABILITY

• Event 𝐸: a subset of the 
sample space 𝐸 ⊆ Ω 

• Sample space Ω: set 
of all possible outcomes

• An outcome 𝜔 ∈ Ω of the exp.

• Probability measure: 
ℙ: Σ → [0, 1] 

ℙ 𝐸! = |5'|
|1|  

𝐸! = "total	is	greater	than	8" 
= "total	is	9	or	10	or	11	or	12"

|𝐸!| = 4	 +	 3	 +	 2	 +	 1 = 10

= "6
32 =

7
"8 

1 2 3 4 5 6
1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

first die

second die

1, 2, 3, 4, 5, 6 	×	{1, 2, 3, 4, 5, 6}

Ω = 36
= { 1,1 , 1,2 , (1,3)… 1,6 , 2,1 , 2,2 , … (6,6)} 

Ω = 

additivity of 
disjoint events

https://northeastern-datalab.github.io/cs7840/
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Conditional Probabilities
/ Independence
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ΩConditional probability
DEFINITION

Conditional probability ℙ 𝐴|𝐵 	
is the probability that event 𝐴 
occurred, given that event 𝐵 
occurred

8 94 12
16

1 2 3 5 6 7 10
1113

14 15

Ω = {1, 2, … , 16}

EXAMPLE 4
(FAIR 16-SIDEDXDIE):

https://northeastern-datalab.github.io/cs7840/
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𝐴 = "divisible	by	4"

ΩConditional probability
DEFINITION

Conditional probability ℙ 𝐴|𝐵 	
is the probability that event 𝐴 
occurred, given that event 𝐵 
occurred

𝐴 𝐵

𝐵 = "center	numbers"

8 94 12
16

1 2 3 5 6 7 10
1113

14 15

Ω = {1, 2, … , 16}

EXAMPLE 4
(FAIR 16-SIDEDXDIE):

= {4,	8,	12,	16}
= {8,	9}

ℙ 𝐴|𝐵 = ?

https://northeastern-datalab.github.io/cs7840/
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𝐴 = "divisible	by	4"

ΩConditional probability

𝐴 𝐵

𝐵 = "center	numbers"

8 94 12
16

1 2 3 5 6 7 10
1113

14 15

Ω = {1, 2, … , 16}

EXAMPLE 4
(FAIR 16-SIDEDXDIE):

= {4,	8,	12,	16}
= {8,	9}

ℙ 𝐴|𝐵 =
1
2

DEFINITION

Conditional probability ℙ 𝐴|𝐵 	
is the probability that event 𝐴 
occurred, given that event 𝐵 
occurred

https://northeastern-datalab.github.io/cs7840/


33Gatterbauer. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

𝐴 = "divisible	by	4"

ΩConditional probability

𝐴 𝐵

𝐵 = "center	numbers"

ℙ 𝐴|𝐵 =

8 94 12
16

1 2 3 5 6 7 10
1113

14 15

Ω = {1, 2, … , 16}

EXAMPLE 4
(FAIR 16-SIDEDXDIE):

= {4,	8,	12,	16}
= {8,	9}

DEFINITION

Conditional probability ℙ 𝐴|𝐵 	
is the probability that event 𝐴 
occurred, given that event 𝐵 
occurred

ℙ 𝐵

https://northeastern-datalab.github.io/cs7840/
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𝐴 = "divisible	by	4"

ΩConditional probability

𝐴 𝐵

𝐵 = "center	numbers"

ℙ 𝐴|𝐵 =

8 94 12
16

1 2 3 5 6 7 10
1113

14 15

Ω = {1, 2, … , 16}

EXAMPLE 4
(FAIR 16-SIDEDXDIE):

= {4,	8,	12,	16}
= {8,	9}

DEFINITION

Conditional probability ℙ 𝐴|𝐵 	
is the probability that event 𝐴 
occurred, given that event 𝐵 
occurred

ℙ 𝐴, 𝐵

ℙ 𝐵

https://northeastern-datalab.github.io/cs7840/
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𝐴 = "divisible	by	4"

ΩConditional probability

𝐴 𝐵

𝐵 = "center	numbers"

ℙ 𝐴|𝐵 =

8 94 12
16

1 2 3 5 6 7 10
1113

14 15

ℙ 𝐴, 𝐵

ℙ 𝐵

Ω = {1, 2, … , 16}

EXAMPLE 4
(FAIR 16-SIDEDXDIE):

= {4,	8,	12,	16}
= {8,	9}

DEFINITION

Conditional probability ℙ 𝐴|𝐵 	
is the probability that event 𝐴 
occurred, given that event 𝐵 
occurred

https://northeastern-datalab.github.io/cs7840/
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𝐴 = "divisible	by	4"

ΩConditional probability

𝐴 𝐵

𝐵 = "center	numbers"

ℙ 𝐴|𝐵 =

ℙ 𝐴|𝐵 =
ℙ 𝐴, 𝐵
ℙ 𝐵

8 94 12
16

1 2 3 5 6 7 10
1113

14 15

ℙ 𝐴, 𝐵

ℙ 𝐵

Ω = {1, 2, … , 16}

EXAMPLE 4
(FAIR 16-SIDEDXDIE):

= {4,	8,	12,	16}
= {8,	9}

2
16

1
16

=
1
2

DEFINITION

Conditional probability ℙ 𝐴|𝐵 	
is the probability that event 𝐴 
occurred, given that event 𝐵 
occurred

ℙ 𝐴⋂𝐵

https://northeastern-datalab.github.io/cs7840/
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Independence

ℙ 𝐴|𝐵 = ℙ 𝐴

DEFINITION:
Two events are independent if 
the probability that one occurred 
is not affected by knowledge that 
the other occurred.

ℙ 𝐵|𝐴 = ℙ 𝐵

(if	ℙ 𝐵 ≠ 0)

(if	ℙ 𝐴 ≠ 0)

https://northeastern-datalab.github.io/cs7840/
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𝐴
𝐵

EXAMPLE 1 (CONTINUED):

1

2
4
6

3
5

𝜔

Ω
Independence

ℙ 𝐴|𝐵 = ℙ 𝐴

DEFINITION:
Two events are independent if 
the probability that one occurred 
is not affected by knowledge that 
the other occurred.

ℙ 𝐵|𝐴 = ℙ 𝐵

(if	ℙ 𝐵 ≠ 0)

(if	ℙ 𝐴 ≠ 0)

roll a fair die with 6 sides

Ω = {1, 2, 3, 4, 5, 6}
the outcome is a 1

𝐴 = "even" = {2,	4,	6}
𝐵 = "≥3" = {3,	4,	5,	6}

?Are 𝐴 and 𝐵 independent 

https://northeastern-datalab.github.io/cs7840/
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𝐴
𝐵

EXAMPLE 1 (CONTINUED):

1

2
4
6

3
5

𝜔

Ω
Independence

ℙ 𝐴|𝐵 = ℙ 𝐴

DEFINITION:
Two events are independent if 
the probability that one occurred 
is not affected by knowledge that 
the other occurred.

= ℙ 9,	;
ℙ ;  

ℙ 𝐵|𝐴 = ℙ 𝐵

(if	ℙ 𝐵 ≠ 0)

(if	ℙ 𝐴 ≠ 0)

1

2

3

4

5

6

roll a fair die with 6 sides

Ω = {1, 2, 3, 4, 5, 6}
the outcome is a 1

𝐴 = "even" = {2,	4,	6}
𝐵 = "≥3" = {3,	4,	5,	6}

ℙ 𝐴

!𝐴 and 𝐵 are independent 

ℙ 𝐴|𝐵

= "
! 

= "
! 

https://northeastern-datalab.github.io/cs7840/
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𝐴
𝐵

EXAMPLE 1 (CONTINUED):

1

2
4
6

3
5

𝜔

Ω
Independence

ℙ 𝐴|𝐵 = ℙ 𝐴

DEFINITION:
Two events are independent if 
the probability that one occurred 
is not affected by knowledge that 
the other occurred.

= ℙ 9,	;
ℙ ;  

ℙ 𝐵|𝐴 = ℙ 𝐵

(if	ℙ 𝐵 ≠ 0)

(if	ℙ 𝐴 ≠ 0)

1

2

3

4

5

6ℙ 𝐴 = "
! 

ℙ 𝐵 = !
3 

roll a fair die with 6 sides

Ω = {1, 2, 3, 4, 5, 6}
the outcome is a 1

𝐴 = "even" = {2,	4,	6}
𝐵 = "≥3" = {3,	4,	5,	6}

ℙ 𝐴

!𝐴 and 𝐵 are independent 

ℙ 𝐴|𝐵

= "
! 

= "
! 

Think about a coordinate system: 
x and y are independent

https://northeastern-datalab.github.io/cs7840/
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CLAIM

Independence

ℙ 𝐴|𝐵 = ℙ 𝐴

DEFINITION:
Two events are independent if 
the probability that one occurred 
is not affected by knowledge that 
the other occurred.

ℙ 𝐵|𝐴 = ℙ 𝐵

(if	ℙ 𝐵 ≠ 0)

(if	ℙ 𝐴 ≠ 0)

Two events 𝐴	and 𝐵 are independent if and only if
ℙ 𝐴⋂𝐵 = ℙ 𝐴 ⋅ ℙ 𝐵  

ℙ 𝐴|𝐵 =
ℙ 𝐴, 𝐵
ℙ 𝐵

PROOF (assuming ℙ 𝐴 ≠ 0, ℙ 𝐵 ≠ 0) 

Recall the definition of cond. prob.:

?

https://northeastern-datalab.github.io/cs7840/
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CLAIM

Independence

ℙ 𝐴|𝐵 = ℙ 𝐴

DEFINITION:
Two events are independent if 
the probability that one occurred 
is not affected by knowledge that 
the other occurred.

ℙ 𝐵|𝐴 = ℙ 𝐵

(if	ℙ 𝐵 ≠ 0)

(if	ℙ 𝐴 ≠ 0)

Two events 𝐴	and 𝐵 are independent if and only if
ℙ 𝐴⋂𝐵 = ℙ 𝐴 ⋅ ℙ 𝐵  

ℙ 𝐴|𝐵 =
ℙ 𝐴, 𝐵
ℙ 𝐵

(⇒) If ℙ 𝐴|𝐵 = ℙ 𝐴 :

(⇐) If ℙ 𝐴⋂𝐵 = ℙ 𝐴 ⋅ ℙ 𝐵 	:
Recall the definition of cond. prob.:

?
?

PROOF (assuming ℙ 𝐴 ≠ 0, ℙ 𝐵 ≠ 0) 

https://northeastern-datalab.github.io/cs7840/
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CLAIM

Independence

ℙ 𝐴|𝐵 = ℙ 𝐴

DEFINITION:
Two events are independent if 
the probability that one occurred 
is not affected by knowledge that 
the other occurred.

ℙ 𝐵|𝐴 = ℙ 𝐵

(if	ℙ 𝐵 ≠ 0)

(if	ℙ 𝐴 ≠ 0)

Two events 𝐴	and 𝐵 are independent if and only if
ℙ 𝐴⋂𝐵 = ℙ 𝐴 ⋅ ℙ 𝐵  

ℙ 𝐴|𝐵 =
ℙ 𝐴, 𝐵
ℙ 𝐵

PROOF (assuming ℙ 𝐴 ≠ 0, ℙ 𝐵 ≠ 0) 

(⇒) If ℙ 𝐴|𝐵 = ℙ 𝐴 :

(⇐) If ℙ 𝐴, 𝐵 = ℙ 𝐴 ⋅ ℙ 𝐵 	:

Then ℙ 𝐴, 𝐵 = ℙ 𝐴|𝐵 ⋅ ℙ 𝐵 = ℙ 𝐴 ⋅ ℙ 𝐵

ℙ 𝐴|𝐵 = ℙ 9,;
ℙ ;  = ℙ 9 ⋅ℙ ;

ℙ ;  = ℙ 𝐴Recall the definition of cond. prob.:

≠0

https://northeastern-datalab.github.io/cs7840/
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Commonly used as definition of independence because it is slightly more general: 
if one event has probability 0 then the statement holds vacuously (while one 
conditional probability is undefined). And if both are not 0, then we just proved
                        that to be equivalent to the earlier definition.DEFINITION:

Independence

ℙ 𝐴|𝐵 = ℙ 𝐴

DEFINITION:
Two events are independent if 
the probability that one occurred 
is not affected by knowledge that 
the other occurred.

ℙ 𝐵|𝐴 = ℙ 𝐵

(if	ℙ 𝐵 ≠ 0)

(if	ℙ 𝐴 ≠ 0)

Two events 𝐴	and 𝐵 are independent ⇔
ℙ 𝐴⋂𝐵 = ℙ 𝐴 ⋅ ℙ 𝐵  

ℙ 𝐴|𝐵 =
ℙ 𝐴, 𝐵
ℙ 𝐵

PROOF (assuming ℙ 𝐴 ≠ 0, ℙ 𝐵 ≠ 0) 

(⇒) If ℙ 𝐴|𝐵 = ℙ 𝐴 :

(⇐) If ℙ 𝐴, 𝐵 = ℙ 𝐴 ⋅ ℙ 𝐵 	:

Then ℙ 𝐴, 𝐵 = ℙ 𝐴|𝐵 ⋅ ℙ 𝐵 = ℙ 𝐴 ⋅ ℙ 𝐵

ℙ 𝐴|𝐵 = ℙ 9,;
ℙ ;  = ℙ 9 ⋅ℙ ;

ℙ ;  = ℙ 𝐴Recall the definition of cond. prob.:

≠0

https://northeastern-datalab.github.io/cs7840/
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Independence

Example adapted from example 1.19 of [Bertsekas, Tsitsiklis. Introduction to probability, 2nd ed, 2008]

EXAMPLE 3 (CONTINUED):
roll two fair dice with 6 sides

𝐴 = "1st	roll	is	1" 
Ω = 1, 2, 3, 4, 5, 6 	×	{1, 2, 3, 4, 5, 6}

𝐵 = "sum	is	7" 
Are 𝐴 and 𝐵 independent?

DEFINITION:

?

Two events 𝐴	and 𝐵 are 
independent if
ℙ 𝐴⋂𝐵 = ℙ 𝐴 ⋅ ℙ 𝐵  

https://northeastern-datalab.github.io/cs7840/
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Independence

Example adapted from example 1.19 of [Bertsekas, Tsitsiklis. Introduction to probability, 2nd ed, 2008]

EXAMPLE 3 (CONTINUED):
roll two fair dice with 6 sides

𝐴 = "1st	roll	is	1" 
Ω = 1, 2, 3, 4, 5, 6 	×	{1, 2, 3, 4, 5, 6}

𝐵 = "sum	is	7" 
Are 𝐴 and 𝐵 independent?

DEFINITION:
Two events 𝐴	and 𝐵 are 
independent if
ℙ 𝐴⋂𝐵 = ℙ 𝐴 ⋅ ℙ 𝐵  

ℙ 𝐴 =

ℙ 𝐵 =

ℙ 𝐴, 𝐵 =

?
?
?
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Independence

Example adapted from example 1.19 of [Bertsekas, Tsitsiklis. Introduction to probability, 2nd ed, 2008]

EXAMPLE 3 (CONTINUED):
roll two fair dice with 6 sides

1 2 3 4 5 6
1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

first die

second die

𝐴 = "1st	roll	is	1" 
Ω = 1, 2, 3, 4, 5, 6 	×	{1, 2, 3, 4, 5, 6}

𝐵 = "sum	is	7" 
Are 𝐴 and 𝐵 independent?

DEFINITION:

ℙ 𝐴 =

ℙ 𝐵 =

"
2 

"
2 

Two events 𝐴	and 𝐵 are 
independent if
ℙ 𝐴⋂𝐵 = ℙ 𝐴 ⋅ ℙ 𝐵  

ℙ 𝐴, 𝐵 = ?

https://northeastern-datalab.github.io/cs7840/
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Independence

Example adapted from example 1.19 of [Bertsekas, Tsitsiklis. Introduction to probability, 2nd ed, 2008]

EXAMPLE 3 (CONTINUED):
roll two fair dice with 6 sides

𝐴 = "1st	roll	is	1" 
Ω = 1, 2, 3, 4, 5, 6 	×	{1, 2, 3, 4, 5, 6}

𝐵 = "sum	is	7" 
Are 𝐴 and 𝐵 independent?

DEFINITION:

ℙ 𝐴 =

ℙ 𝐵 =

ℙ 𝐴, 𝐵 =

"
2 

"
2 

"
32 

Yes: ℙ 𝐴⋂𝐵 = ℙ 𝐴 ⋅ ℙ 𝐵  

Two events 𝐴	and 𝐵 are 
independent if
ℙ 𝐴⋂𝐵 = ℙ 𝐴 ⋅ ℙ 𝐵  

1 2 3 4 5 6
1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

first die

second die

https://northeastern-datalab.github.io/cs7840/
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Chain rules
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Chain Rule
DEFINITION:

ℙ 𝐴|𝐵 =
ℙ 𝐴, 𝐵
ℙ 𝐵

Recall the definition of cond. prob.:

ℙ 𝐴, 𝐵, 𝐶 = ?

ℙ 𝐴, 𝐵 = ℙ 𝐴 	 ⋅ ℙ 𝐵|𝐴  

https://northeastern-datalab.github.io/cs7840/
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Chain Rule

ℙ 𝐴, 𝐵
DEFINITION:

ℙ 𝐴|𝐵 =
ℙ 𝐴, 𝐵
ℙ 𝐵

Recall the definition of cond. prob.:

ℙ 𝐴, 𝐵, 𝐶 =

= ℙ 𝐴 	 ⋅ ℙ 𝐵|𝐴  

ℙ 𝐴 ⋅ ℙ 𝐵|𝐴 ⋅ ℙ 𝐶|𝐴, 𝐵
Just treat 𝐴⋂𝐵 as a new event 𝐸

= ℙ 𝐴, 𝐵 ⋅ ℙ 𝐶|𝐴, 𝐵  ℙ 𝐴, 𝐵, 𝐶
𝐴 𝐵

𝐶

𝐴⋂𝐵

𝐶

𝐸 𝐸 𝐸

https://northeastern-datalab.github.io/cs7840/
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Bayes law

https://northeastern-datalab.github.io/cs7840/
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Bayes Law

ℙ 𝐴|𝐵 =
ℙ 𝐴, 𝐵
ℙ 𝐵

DEFINITION

Conditional probability ℙ 𝐴|𝐵 	
is the probability that event 𝐴 
occurred, given that event 𝐵 
occurred (defined if ℙ 𝐵 ≠ 0) 

ℙ 𝐵|𝐴 =
ℙ 𝐴, 𝐵
ℙ 𝐴

ℙ 𝐴, 𝐵 = ℙ 𝐵|𝐴 ⋅ ℙ 𝐴

= ℙ 𝐴|𝐵 ⋅ ℙ 𝐵

BAYES LAW

ℙ 𝐴|𝐵 =
ℙ 𝐵|𝐴 ⋅ ℙ 𝐴  

ℙ 𝐵

https://northeastern-datalab.github.io/cs7840/
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Bayes Law

ℙ 𝐴|𝐵 =
ℙ 𝐴, 𝐵
ℙ 𝐵

DEFINITION

Conditional probability ℙ 𝐴|𝐵 	
is the probability that event 𝐴 
occurred, given that event 𝐵 
occurred (defined if ℙ 𝐵 ≠ 0) 

ℙ 𝐵|𝐴 =
ℙ 𝐴, 𝐵
ℙ 𝐴

Ω

𝐴 𝐵

8 94 12
16

1 2 3 5 6 7 10
1113

14 15

Ω = {1, 2, … , 16}

EXAMPLE 4:

ℙ 𝐴, 𝐵 = ℙ 𝐵|𝐴 ⋅ ℙ 𝐴

= ℙ 𝐴|𝐵 ⋅ ℙ 𝐵

BAYES LAW

ℙ 𝐴|𝐵 =
ℙ 𝐵|𝐴 ⋅ ℙ 𝐴  

ℙ 𝐵

?

https://northeastern-datalab.github.io/cs7840/
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Bayes Law

ℙ 𝐴|𝐵 =
ℙ 𝐴, 𝐵
ℙ 𝐵

DEFINITION

Conditional probability ℙ 𝐴|𝐵 	
is the probability that event 𝐴 
occurred, given that event 𝐵 
occurred (defined if ℙ 𝐵 ≠ 0) 

ℙ 𝐵|𝐴 =
ℙ 𝐴, 𝐵
ℙ 𝐴

Ω

𝐴 𝐵

8 94 12
16

1 2 3 5 6 7 10
1113

14 15

Ω = {1, 2, … , 16}

EXAMPLE 4:

ℙ 𝐴, 𝐵 = ℙ 𝐵|𝐴 ⋅ ℙ 𝐴

= ℙ 𝐴|𝐵 ⋅ ℙ 𝐵 = "
! ⋅

"
8 

= "
4
⋅ "
4
 = "

"2
 

= "
"2

 

BAYES LAW

ℙ 𝐴|𝐵 =
ℙ 𝐵|𝐴 ⋅ ℙ 𝐴  

ℙ 𝐵

https://northeastern-datalab.github.io/cs7840/
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Bayes Law ("Base rate fallacy problem")
EXAMPLE 5: Zika in Florida in 2016
• prevalence of Zika 𝑍  in Florida is 10-5 (1 in 100k)
• accuracy of blood test is 99%
• A patient has a positive test. 

What is the chance they have Zika?

Source: Jay Aslam's course notes from 2024: https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf 

? 𝐵 (𝐵
𝑍 ℙ 𝐵|𝑍 = 0.99 ℙ (𝐵|𝑍 = 0.01
𝑍̅ ℙ 𝐵|𝑍̅ = 0.01 ℙ (𝐵|𝑍̅ = 0.99

patient has
Zika Z  

blood test positive B

https://northeastern-datalab.github.io/cs7840/
https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf
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Bayes Law ("Base rate fallacy problem")
EXAMPLE 5: Zika in Florida in 2016
• prevalence of Zika 𝑍  in Florida is 10-5 (1 in 100k)
• accuracy of blood test is 99%
• A patient has a positive test. 

What is the chance they have Zika?

Source: Jay Aslam's course notes from 2024: https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf 

? 𝐵 (𝐵
𝑍 ℙ 𝐵|𝑍 = 0.99 ℙ (𝐵|𝑍 = 0.01
𝑍̅ ℙ 𝐵|𝑍̅ = 0.01 ℙ (𝐵|𝑍̅ = 0.99

patient has
Zika Z  

blood test positive B

false positive

false 
negative

We don't want ℙ 𝐵|𝑍 = 0.99, but rather ℙ 𝑍|𝐵

= base rate= ℙ 𝑍

https://northeastern-datalab.github.io/cs7840/
https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf
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Bayes Law ("Base rate fallacy problem")
EXAMPLE 5: Zika in Florida in 2016
• prevalence of Zika 𝑍  in Florida is 10-5 (1 in 100k)

ℙ 𝑍|𝐵 =

• accuracy of blood test is 99%
𝐵 (𝐵

𝑍 ℙ 𝐵|𝑍 = 0.99 ℙ (𝐵|𝑍 = 0.01
𝑍̅ ℙ 𝐵|𝑍̅ = 0.01 ℙ (𝐵|𝑍̅ = 0.99

patient has
Zika Z  

blood test positive B

• A patient has a positive test. 
What is the chance they have Zika?

We don't want ℙ 𝐵|𝑍 = 0.99, but rather ℙ 𝑍|𝐵

= base rate

Source: Jay Aslam's course notes from 2024: https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf 

ℙ 𝐵, 𝑍
ℙ 𝐵

=

= ℙ 𝑍

ℙ 𝐵|𝑍 ⋅ ℙ 𝑍
	 ?

https://northeastern-datalab.github.io/cs7840/
https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf
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Bayes Law ("Base rate fallacy problem")
EXAMPLE 5: Zika in Florida in 2016
• prevalence of Zika 𝑍  in Florida is 10-5 (1 in 100k)
• accuracy of blood test is 99%

𝐵 (𝐵
𝑍 ℙ 𝐵|𝑍 = 0.99 ℙ (𝐵|𝑍 = 0.01
𝑍̅ ℙ 𝐵|𝑍̅ = 0.01 ℙ (𝐵|𝑍̅ = 0.99

patient has
Zika Z  

blood test positive B

• A patient has a positive test. 
What is the chance they have Zika?

We don't want ℙ 𝐵|𝑍 = 0.99, but rather ℙ 𝑍|𝐵

= base rate

Source: Jay Aslam's course notes from 2024: https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf 

𝐵
𝑍𝑍̅ 𝐵⋂𝑍

𝐵⋂𝑍̅

= ℙ 𝑍

ℙ 𝐵, 𝑍 + ℙ 𝐵, 𝑍̅

?
total probability theorem

ℙ 𝐵, 𝑍
ℙ 𝐵

=
ℙ 𝐵|𝑍 ⋅ ℙ 𝑍

	
ℙ 𝑍|𝐵 =

ℙ 𝐵|𝑍 ⋅ ℙ 𝑍

https://northeastern-datalab.github.io/cs7840/
https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf
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Bayes Law ("Base rate fallacy problem")
EXAMPLE 5: Zika in Florida in 2016
• prevalence of Zika 𝑍  in Florida is 10-5 (1 in 100k)
• accuracy of blood test is 99%

𝐵 (𝐵
𝑍 ℙ 𝐵|𝑍 = 0.99 ℙ (𝐵|𝑍 = 0.01
𝑍̅ ℙ 𝐵|𝑍̅ = 0.01 ℙ (𝐵|𝑍̅ = 0.99

patient has
Zika Z  

blood test positive B

• A patient has a positive test. 
What is the chance they have Zika?

We don't want ℙ 𝐵|𝑍 = 0.99, but rather ℙ 𝑍|𝐵

= base rate

Source: Jay Aslam's course notes from 2024: https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf 

=
0.99 ⋅ 10=7

0.99 ⋅ 10=7 + 0.01 ⋅ (1 − 10=7)

ℙ 𝐵|𝑍 ⋅ ℙ 𝑍

ℙ 𝐵|𝑍̅ ⋅ ℙ 𝑍̅
≈

10=7

10=7 + 0.01

10()

≈
10=7

10=! = 10=3 = 0.1%

= ℙ 𝑍

𝐵
𝑍𝑍̅ 𝐵⋂𝑍

𝐵⋂𝑍̅

ℙ 𝐵, 𝑍 + ℙ 𝐵, 𝑍̅

total probability theorem

ℙ 𝐵, 𝑍
ℙ 𝐵

=
ℙ 𝐵|𝑍 ⋅ ℙ 𝑍

	
ℙ 𝑍|𝐵 =

https://northeastern-datalab.github.io/cs7840/
https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf
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Bayes Law ("Base rate fallacy problem")
EXAMPLE 5: Zika in Florida in 2016
• prevalence of Zika 𝑍  in Florida is 10-5 (1 in 100k)

ℙ 𝑍|𝐵

• accuracy of blood test is 99%
= base rate

Source: Jay Aslam's course notes from 2024: https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf 

= ℙ 𝑍

𝐵 (𝐵
𝑍
𝑍̅

patient has
Zika Z  

blood test positive B

?

≈ 0.1%

• Assume 10M people in FL.
Complete the numbers! ? ? ??

https://northeastern-datalab.github.io/cs7840/
https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf
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Bayes Law ("Base rate fallacy problem")
EXAMPLE 5: Zika in Florida in 2016
• prevalence of Zika 𝑍  in Florida is 10-5 (1 in 100k)
• accuracy of blood test is 99%

= base rate

Source: Jay Aslam's course notes from 2024: https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf 

= ℙ 𝑍

𝐵 (𝐵
𝑍
𝑍̅

patient has
Zika Z  

blood test positive B

100
9,999,900

ℙ 𝑍|𝐵 ≈ 0.1%

• Assume 10M people in FL.
Complete the numbers!

https://northeastern-datalab.github.io/cs7840/
https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf
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𝐵 (𝐵
𝑍
𝑍̅

Bayes Law ("Base rate fallacy problem")
EXAMPLE 5: Zika in Florida in 2016
• prevalence of Zika 𝑍  in Florida is 10-5 (1 in 100k)
• accuracy of blood test is 99%
• Assume 10M people in FL.

Complete the numbers!

= base rate

Source: Jay Aslam's course notes from 2024: https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf 

= ℙ 𝑍

𝐵 (𝐵
𝑍 99 1
𝑍̅

patient has
Zika Z  

blood test positive B

100
9,999,900

ℙ 𝑍|𝐵 ≈ 0.1%

ℙ 𝐵|𝑍 = 99% 
ℙ (𝐵|𝑍̅ = 99% 

https://northeastern-datalab.github.io/cs7840/
https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf
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Bayes Law ("Base rate fallacy problem")
EXAMPLE 5: Zika in Florida in 2016
• prevalence of Zika 𝑍  in Florida is 10-5 (1 in 100k)
• accuracy of blood test is 99%

Source: Jay Aslam's course notes from 2024: https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf 

𝐵 (𝐵
𝑍 99 1
𝑍̅ 99,999 9,899,901

patient has
Zika Z  

blood test positive B

100
9,999,900

ℙ 𝑍|𝐵 ≈ 0.1%

• Assume 10M people in FL.
Complete the numbers!

ℙ 𝐵|𝑍 = 99% 
ℙ (𝐵|𝑍̅ = 99% 

= base rate= ℙ 𝑍

https://northeastern-datalab.github.io/cs7840/
https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf
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Bayes Law ("Base rate fallacy problem")
EXAMPLE 5: Zika in Florida in 2016
• prevalence of Zika 𝑍  in Florida is 10-5 (1 in 100k)
• accuracy of blood test is 99%

Source: Jay Aslam's course notes from 2024: https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf 

𝐵 (𝐵
𝑍 99 1
𝑍̅ 99,999 9,899,901

patient has
Zika Z  

blood test positive B

100
9,999,900

• Assume 10M people in FL.
Complete the numbers!

ℙ 𝐵|𝑍 = 99% 
ℙ (𝐵|𝑍̅ = 99% 

100,098 9,899,902

probability that: 
a positive test is correct

ℙ 𝑍|𝐵 ≈ 0.1%

= base rate= ℙ 𝑍

https://northeastern-datalab.github.io/cs7840/
https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf
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Bayes Law ("Base rate fallacy problem")
EXAMPLE 5: Zika in Florida in 2016
• prevalence of Zika 𝑍  in Florida is 10-5 (1 in 100k)
• accuracy of blood test is 99%

100

= base rate

Source: Jay Aslam's course notes from 2024: https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf 

= ℙ 𝑍

probability that: 
a positive test is correct

9,999,900

𝐵 (𝐵
𝑍 99 1
𝑍̅ 99,999 9,899,901

patient has
Zika Z  

blood test positive B

ℙ 𝑍|𝐵 ≈ 0.1%
100,098 9,899,902

probability that a random 
test is correct

ℙ 𝐵|𝑍 ⋅ ℙ 𝑍 + ℙ g𝐵|𝑍̅ ⋅ ℙ 𝑍̅ = 99%
≠

• Assume 10M people in FL.
Complete the numbers!

ℙ 𝐵|𝑍 = 99% 
ℙ (𝐵|𝑍̅ = 99% 

https://northeastern-datalab.github.io/cs7840/
https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf
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Bayes Law ("Base rate fallacy problem")
EXAMPLE 5: Zika in Florida in 2016
• prevalence of Zika 𝑍  in Florida is 10-5 (1 in 100k)
• accuracy of blood test is 99%

100

= base rate

Source: Jay Aslam's course notes from 2024: https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf 

= ℙ 𝑍

probability that: 
a positive test is correct

9,999,900

𝐵 (𝐵
𝑍 99 1
𝑍̅ 99,999 9,899,901

patient has
Zika Z  

blood test positive B

ℙ 𝑍|𝐵 ≈ 0.1%
100,098 9,899,902

probability that a random 
test is correct

ℙ 𝐵|𝑍 ⋅ ℙ 𝑍 + ℙ g𝐵|𝑍̅ ⋅ ℙ 𝑍̅ = 99%
≠

• Assume 10M people in FL.
Complete the numbers!

ℙ 𝐵|𝑍 = 99% 
ℙ (𝐵|𝑍̅ = 99% 

ℙ 𝑍  =	10-5

https://northeastern-datalab.github.io/cs7840/
https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf
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Bayes Law ("Base rate fallacy problem")
EXAMPLE 5: Zika in Florida in 2016
• prevalence of Zika 𝑍  in Florida is 10-5 (1 in 100k)
• accuracy of blood test is 99%

100

= base rate

Source: Jay Aslam's course notes from 2024: https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf 

= ℙ 𝑍

probability that: 
a positive test is correct

9,999,900

𝐵 (𝐵
𝑍 99 1
𝑍̅ 99,999 9,899,901

patient has
Zika Z  

blood test positive B

ℙ 𝑍|𝐵 ≈ 0.1%
100,098 9,899,902

probability that a random 
test is correct

ℙ 𝐵|𝑍 ⋅ ℙ 𝑍 + ℙ g𝐵|𝑍̅ ⋅ ℙ 𝑍̅ = 99%
≠

• Assume 10M people in FL.
Complete the numbers!

ℙ 𝐵|𝑍 = 99% 
ℙ (𝐵|𝑍̅ = 99% 

ℙ 𝐵 ≈	10-2

ℙ 𝑍  =	10-5

https://northeastern-datalab.github.io/cs7840/
https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf
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Bayes Law ("Base rate fallacy problem")
EXAMPLE 5: Zika in Florida in 2016
• prevalence of Zika 𝑍  in Florida is 10-5 (1 in 100k)
• accuracy of blood test is 99%

100

= base rate

Source: Jay Aslam's course notes from 2024: https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf 

= ℙ 𝑍

probability that: 
a positive test is correct

9,999,900

𝐵 (𝐵
𝑍 99 1
𝑍̅ 99,999 9,899,901

patient has
Zika Z  

blood test positive B

ℙ 𝑍|𝐵 = 0.1%

ℙ 𝐵 ≈	10-2

ℙ 𝑍  =	10-5

𝐵⋂𝑍
𝐵⋂𝑍̅

100,098 9,899,902

probability that a random 
test is correct

ℙ 𝐵|𝑍 ⋅ ℙ 𝑍 + ℙ g𝐵|𝑍̅ ⋅ ℙ 𝑍̅ = 99%
≠

• Assume 10M people in FL.
Complete the numbers

ℙ 𝐵|𝑍 = 99% 
ℙ (𝐵|𝑍̅ = 99% 

https://northeastern-datalab.github.io/cs7840/
https://northeastern-datalab.github.io/cs7840/fa24/download/cs7840-L02-3-Probability_Primer.pdf
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An unrelated (?) question:

https://northeastern-datalab.github.io/cs7840/
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An unrelated (?) question:

https://northeastern-datalab.github.io/cs7840/
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Bayes theorem illustrated by 3Blue1Brown

Source: 3Blue1Brown: "Bayes theorem, the geometry of changing beliefs": https://www.3blue1brown.com/lessons/bayes-theorem , https://www.youtube.com/watch?v=HZGCoVF3YvM

https://northeastern-datalab.github.io/cs7840/
https://www.3blue1brown.com/lessons/bayes-theorem
https://www.youtube.com/watch?v=HZGCoVF3YvM
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Bayes theorem illustrated by 3Blue1Brown

Source: 3Blue1Brown: "Bayes theorem, the geometry of changing beliefs": https://www.3blue1brown.com/lessons/bayes-theorem , https://www.youtube.com/watch?v=HZGCoVF3YvM

https://northeastern-datalab.github.io/cs7840/
https://www.3blue1brown.com/lessons/bayes-theorem
https://www.youtube.com/watch?v=HZGCoVF3YvM
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Bayes theorem illustrated by 3Blue1Brown

Source: 3Blue1Brown: "Bayes theorem, the geometry of changing beliefs": https://www.3blue1brown.com/lessons/bayes-theorem , https://www.youtube.com/watch?v=HZGCoVF3YvM

https://northeastern-datalab.github.io/cs7840/
https://www.3blue1brown.com/lessons/bayes-theorem
https://www.youtube.com/watch?v=HZGCoVF3YvM
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Bayes theorem illustrated by 3Blue1Brown

Source: 3Blue1Brown: "Bayes theorem, the geometry of changing beliefs": https://www.3blue1brown.com/lessons/bayes-theorem , https://www.youtube.com/watch?v=HZGCoVF3YvM

https://northeastern-datalab.github.io/cs7840/
https://www.3blue1brown.com/lessons/bayes-theorem
https://www.youtube.com/watch?v=HZGCoVF3YvM
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Bayes theorem illustrated by 3Blue1Brown

Source: 3Blue1Brown: "Bayes theorem, the geometry of changing beliefs": https://www.3blue1brown.com/lessons/bayes-theorem , https://www.youtube.com/watch?v=HZGCoVF3YvM

https://northeastern-datalab.github.io/cs7840/
https://www.3blue1brown.com/lessons/bayes-theorem
https://www.youtube.com/watch?v=HZGCoVF3YvM
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Bayes theorem illustrated by 3Blue1Brown

Source: 3Blue1Brown: "Bayes theorem, the geometry of changing beliefs": https://www.3blue1brown.com/lessons/bayes-theorem , https://www.youtube.com/watch?v=HZGCoVF3YvM

https://northeastern-datalab.github.io/cs7840/
https://www.3blue1brown.com/lessons/bayes-theorem
https://www.youtube.com/watch?v=HZGCoVF3YvM
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Bayes theorem illustrated by 3Blue1Brown

Source: 3Blue1Brown: "Bayes theorem, the geometry of changing beliefs": https://www.3blue1brown.com/lessons/bayes-theorem , https://www.youtube.com/watch?v=HZGCoVF3YvM

https://northeastern-datalab.github.io/cs7840/
https://www.3blue1brown.com/lessons/bayes-theorem
https://www.youtube.com/watch?v=HZGCoVF3YvM
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Bayes theorem illustrated by 3Blue1Brown

Source: 3Blue1Brown: "Bayes theorem, the geometry of changing beliefs": https://www.3blue1brown.com/lessons/bayes-theorem , https://www.youtube.com/watch?v=HZGCoVF3YvM

New evidence updates prior beliefs! Evidence does not exist in a vaccum

https://northeastern-datalab.github.io/cs7840/
https://www.3blue1brown.com/lessons/bayes-theorem
https://www.youtube.com/watch?v=HZGCoVF3YvM
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Pre-class conversations

• Last class recapitulation
• Suggestions on small class projects = "scribes" (e.g. parallelizing 

compression)
• New class arrivals
• Questions

• Today: 
- The basics of probability theory
- Start of information theory basics

https://northeastern-datalab.github.io/cs7840/
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Random variable,
expectation

https://northeastern-datalab.github.io/cs7840/
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Random variable (RV)
𝑋: 	Ω → ℝ 

EXAMPLE 3 (CONT.):
roll two fair dice with 6 sides

1 2 3 4 5 6
1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

first 
die

second die
Ω = { 1,1 , 1,2 , (1,3)… 1,6 , 2,1 , 2,2 , … (6,6)} 

Random variable: pmf 𝑝! 𝑥

Let 𝑋 be the sum of the rolls. Ω

Then 𝑋 is a RV.

Two types:

e.g. 𝑋 𝜔 = )1	 if	win0	 if	not	

1. numerical 
e.g. 𝑋(𝜔) lottery win

2. indicator

𝑝# 𝑥 = ℙ({𝑋 = 𝑥}) 
also written as 𝑝 𝑥 = ℙ(𝑋 = 𝑥) 

𝑋 is called a "random variable" (RV) 
because it depends on the outcome 
of a random experiment. But the 
mapping 𝑋: 	Ω → ℝ is deterministic.

The underlying probability measure 
ℙ: Σ → [0, 1] induces a pmf 𝑝# 
(probability mass function) over the 
range of the RV 𝑋: 𝑝#: ℝ → [0,1] 

What is the pmf?

https://northeastern-datalab.github.io/cs7840/
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EXAMPLE 3 (CONT.):
roll two fair dice with 6 sides

1 2 3 4 5 6
1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

first 
die

second die
Ω = { 1,1 , 1,2 , (1,3)… 1,6 , 2,1 , 2,2 , … (6,6)} 

Random variable: pmf 𝑝! 𝑥

Let 𝑋 be the sum of the rolls. Ω

Then 𝑋 is a RV.

first 
die

𝑋 1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

What is the pmf?

Random variable (RV)
𝑋: 	Ω → ℝ 

Two types:

e.g. 𝑋 𝜔 = )1	 if	win0	 if	not	

1. numerical 
e.g. 𝑋(𝜔) lottery win

2. indicator

𝑝# 𝑥 = ℙ({𝑋 = 𝑥}) 
also written as 𝑝 𝑥 = ℙ(𝑋 = 𝑥) 

𝑋 is called a "random variable" (RV) 
because it depends on the outcome 
of a random experiment. But the 
mapping 𝑋: 	Ω → ℝ is deterministic.

The underlying probability measure 
ℙ: Σ → [0, 1] induces a pmf 𝑝# 
(probability mass function) over the 
range of the RV 𝑋: 𝑝#: ℝ → [0,1] 

https://northeastern-datalab.github.io/cs7840/
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1 2 3 4 5 6
1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

EXAMPLE 3 (CONT.):
roll two fair dice with 6 sides

1 2 3 4 5 6
1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

first 
die

second die
Ω = { 1,1 , 1,2 , (1,3)… 1,6 , 2,1 , 2,2 , … (6,6)} 

Random variable: pmf 𝑝! 𝑥

1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

Let 𝑋 be the sum of the rolls.

first 
die

Ω

𝑋

Then 𝑋 is a RV.

0.00

0.04

0.08

0.12

0.16

2 3 4 5 6 7 8 9 101112

𝑋 3,1 = 4 

What is the pmf?

Random variable (RV)
𝑋: 	Ω → ℝ 

Two types:

e.g. 𝑋 𝜔 = )1	 if	win0	 if	not	

1. numerical 
e.g. 𝑋(𝜔) lottery win

2. indicator

𝑝# 𝑥 = ℙ({𝑋 = 𝑥}) 
also written as 𝑝 𝑥 = ℙ(𝑋 = 𝑥) 

𝑋 is called a "random variable" (RV) 
because it depends on the outcome 
of a random experiment. But the 
mapping 𝑋: 	Ω → ℝ is deterministic.

The underlying probability measure 
ℙ: Σ → [0, 1] induces a pmf 𝑝# 
(probability mass function) over the 
range of the RV 𝑋: 𝑝#: ℝ → [0,1] pmf

https://northeastern-datalab.github.io/cs7840/
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Expectation: a weighted average 
(in proportion to the probabilities) 
of the possible values of 𝑋

𝔼 𝑋 = <
*∈,

𝑋(𝜔) ⋅ ℙ({𝜔})

𝔼 𝑋 =<
-

𝑥 ⋅ 𝑝. 𝑥

EXAMPLE 3 (CONT.):
roll two fair dice with 6 sides
Ω = { 1,1 , 1,2 , (1,3)… 1,6 , 2,1 , 2,2 , … (6,6)} 

Random variable: expectation 𝔼

Let 𝑋 be the sum of the rolls.

Random variable (RV)
𝑋: 	Ω → ℝ 

What is 𝔼 𝑋 ? first 
die

second dieΩ

0.00

0.04

0.08

0.12

0.16

2 3 4 5 6 7 8 9 101112

1 2 3 4 5 6
1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

first 
die

𝑋 1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

pmf

https://northeastern-datalab.github.io/cs7840/
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Expectation: a weighted average 
(in proportion to the probabilities) 
of the possible values of 𝑋

𝔼 𝑋 = <
*∈,

𝑋(𝜔) ⋅ ℙ({𝜔})

𝔼 𝑋 =<
-

𝑥 ⋅ 𝑝. 𝑥

EXAMPLE 3 (CONT.):
roll two fair dice with 6 sides
Ω = { 1,1 , 1,2 , (1,3)… 1,6 , 2,1 , 2,2 , … (6,6)} 

Random variable: expectation 𝔼

Let 𝑋 be the sum of the rolls.

𝔼 𝑋 = ∑*∈,𝑋(𝜔) ⋅ ℙ({𝜔}) 

Random variable (RV)
𝑋: 	Ω → ℝ 

What is 𝔼 𝑋 ?

Variant 1:

first 
die

second dieΩ

0.00

0.04

0.08

0.12

0.16

2 3 4 5 6 7 8 9 101112

1 2 3 4 5 6
1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

first 
die

𝑋 1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

?
pmf

https://northeastern-datalab.github.io/cs7840/
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Expectation: a weighted average 
(in proportion to the probabilities) 
of the possible values of 𝑋

𝔼 𝑋 = <
*∈,

𝑋(𝜔) ⋅ ℙ({𝜔})

𝔼 𝑋 =<
-

𝑥 ⋅ 𝑝. 𝑥

EXAMPLE 3 (CONT.):
roll two fair dice with 6 sides
Ω = { 1,1 , 1,2 , (1,3)… 1,6 , 2,1 , 2,2 , … (6,6)} 

Random variable: expectation 𝔼

Let 𝑋 be the sum of the rolls.

𝔼 𝑋 = ∑*∈,𝑋(𝜔) ⋅ ℙ({𝜔}) 

/
01
	

= /
01
⋅ ∑*∈,𝑋(𝜔) 

= /
01
⋅ ("sum	of	table") 

= 7

Random variable (RV)
𝑋: 	Ω → ℝ 

What is 𝔼 𝑋 ?

Variant 1:

first 
die

second dieΩ

0.00

0.04

0.08

0.12

0.16

2 3 4 5 6 7 8 9 101112

1 2 3 4 5 6
1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

first 
die

𝑋 1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

pmf

https://northeastern-datalab.github.io/cs7840/
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𝔼 𝑋 = <
*∈,

𝑋(𝜔) ⋅ ℙ({𝜔})

EXAMPLE 3 (CONT.):
roll two fair dice with 6 sides
Ω = { 1,1 , 1,2 , (1,3)… 1,6 , 2,1 , 2,2 , … (6,6)} 

Random variable: expectation 𝔼

Let 𝑋 be the sum of the rolls.

Random variable (RV)
𝑋: 	Ω → ℝ 

first 
die

second dieΩ

0.00

0.04

0.08

0.12

0.16

2 3 4 5 6 7 8 9 101112

1 2 3 4 5 6
1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

𝔼 𝑋 = ∑- 𝑥 ⋅ ℙ(𝑋 = 𝑥) 

Expectation: a weighted average 
(in proportion to the probabilities) 
of the possible values of 𝑋

𝔼 𝑋 =<
-

𝑥 ⋅ 𝑝. 𝑥

Variant 2:

first 
die

𝑋 1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

What is 𝔼 𝑋 ?

?
pmf

https://northeastern-datalab.github.io/cs7840/
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𝔼 𝑋 = <
*∈,

𝑋(𝜔) ⋅ ℙ({𝜔})

EXAMPLE 3 (CONT.):
roll two fair dice with 6 sides
Ω = { 1,1 , 1,2 , (1,3)… 1,6 , 2,1 , 2,2 , … (6,6)} 

Random variable: expectation 𝔼

Let 𝑋 be the sum of the rolls.

Random variable (RV)
𝑋: 	Ω → ℝ 

𝔼 𝑋 = 2 ⋅ /
01
+ 3 ⋅ )

01
+	…+ 12 ⋅ /

01
 = 7

𝑋 = 2 𝑝. 2 = /
01

 

𝑋 = 3 𝑝. 3 = )
01

 

𝑋 = 12 𝑝. 12 = /
01 

𝔼 𝑋 = ∑- 𝑥 ⋅ ℙ(𝑋 = 𝑥) 

… …

Expectation: a weighted average 
(in proportion to the probabilities) 
of the possible values of 𝑋

𝔼 𝑋 =<
-

𝑥 ⋅ 𝑝. 𝑥

Variant 2:

first 
die

second dieΩ

0.00

0.04

0.08

0.12

0.16

2 3 4 5 6 7 8 9 101112

1 2 3 4 5 6
1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

first 
die

𝑋

What is 𝔼 𝑋 ?

pmf

https://northeastern-datalab.github.io/cs7840/
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𝔼 𝑋 = <
*∈,

𝑋(𝜔) ⋅ ℙ({𝜔})

EXAMPLE 3 (CONT.):
roll two fair dice with 6 sides
Ω = { 1,1 , 1,2 , (1,3)… 1,6 , 2,1 , 2,2 , … (6,6)} 

Random variable: expectation 𝔼

Let 𝑋 be the sum of the rolls.

𝔼 𝑋 = 𝔼 𝑋/ + 𝑋) =

Random variable (RV)
𝑋: 	Ω → ℝ 

first 
die

second die

first 
die

Ω

𝑋

0.00

0.04

0.08

0.12

0.16

2 3 4 5 6 7 8 9 101112

1 2 3 4 5 6
1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

RVs for the outcome of the 
first and second die rolls

Expectation: a weighted average 
(in proportion to the probabilities) 
of the possible values of 𝑋

𝔼 𝑋 =<
-

𝑥 ⋅ 𝑝. 𝑥

What is 𝔼 𝑋 ?

Variant 3:

?

pmf

https://northeastern-datalab.github.io/cs7840/
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𝔼 𝑋 = <
*∈,

𝑋(𝜔) ⋅ ℙ({𝜔})

EXAMPLE 3 (CONT.):
roll two fair dice with 6 sides
Ω = { 1,1 , 1,2 , (1,3)… 1,6 , 2,1 , 2,2 , … (6,6)} 

Random variable: expectation 𝔼

Let 𝑋 be the sum of the rolls.

𝔼 𝑋 = 𝔼 𝑋/ + 𝑋) =

Random variable (RV)
𝑋: 	Ω → ℝ 

first 
die

second die

first 
die

Ω

𝑋

0.00

0.04

0.08

0.12

0.16

2 3 4 5 6 7 8 9 101112

1 2 3 4 5 6
1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

𝔼 𝑋 = 3.5 + 3.5 = 7

𝔼 𝑋/ + 𝔼 𝑋)

RVs for the outcome of the 
first and second die rolls

linearity of expectation!

𝔼 𝑋/ = 𝔼 𝑋) = 3.5

Expectation: a weighted average 
(in proportion to the probabilities) 
of the possible values of 𝑋

𝔼 𝑋 =<
-

𝑥 ⋅ 𝑝. 𝑥

What is 𝔼 𝑋 ?

Variant 3:

pmf

https://northeastern-datalab.github.io/cs7840/
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𝔼 𝑋 = <
*∈,

𝑋(𝜔) ⋅ ℙ({𝜔})

EXAMPLE 3 (CONT.):
roll two fair dice with 6 sides
Ω = { 1,1 , 1,2 , (1,3)… 1,6 , 2,1 , 2,2 , … (6,6)} 

Random variable: expectation 𝔼

Let 𝑌 be the product of the rolls.

Random variable (RV)
𝑋: 	Ω → ℝ 

first 
die

second die

first 
die

Ω

𝑌

1 2 3 4 5 6
1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 8 10 12
3 3 6 9 12 15 18
4 4 8 12 16 20 24
5 5 10 15 20 25 30
6 6 12 18 24 30 36

Expectation: a weighted average 
(in proportion to the probabilities) 
of the possible values of 𝑋

𝔼 𝑋 =<
-

𝑥 ⋅ 𝑝. 𝑥

What is 𝔼 𝑌 ?

https://northeastern-datalab.github.io/cs7840/
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𝔼 𝑋 = <
*∈,

𝑋(𝜔) ⋅ ℙ({𝜔})

EXAMPLE 3 (CONT.):
roll two fair dice with 6 sides
Ω = { 1,1 , 1,2 , (1,3)… 1,6 , 2,1 , 2,2 , … (6,6)} 

Random variable: expectation 𝔼

Let 𝑌 be the product of the rolls.

Random variable (RV)
𝑋: 	Ω → ℝ 

first 
die

second die

first 
die

Ω

𝑌

1 2 3 4 5 6
1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 8 10 12
3 3 6 9 12 15 18
4 4 8 12 16 20 24
5 5 10 15 20 25 30
6 6 12 18 24 30 36

Expectation: a weighted average 
(in proportion to the probabilities) 
of the possible values of 𝑋

𝔼 𝑋 =<
-

𝑥 ⋅ 𝑝. 𝑥

What is 𝔼 𝑌 ?

𝔼 𝑌 = 𝔼 𝑋/ ⋅ 𝑋) = 𝔼 𝑋/ ⋅ 𝔼 𝑋)

?

https://northeastern-datalab.github.io/cs7840/
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𝔼 𝑋 = <
*∈,

𝑋(𝜔) ⋅ ℙ({𝜔})

EXAMPLE 3 (CONT.):
roll two fair dice with 6 sides
Ω = { 1,1 , 1,2 , (1,3)… 1,6 , 2,1 , 2,2 , … (6,6)} 

Random variable: expectation 𝔼

Let 𝑌 be the product of the rolls.

Random variable (RV)
𝑋: 	Ω → ℝ 

first 
die

second die

first 
die

Ω

𝑌

1 2 3 4 5 6
1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 8 10 12
3 3 6 9 12 15 18
4 4 8 12 16 20 24
5 5 10 15 20 25 30
6 6 12 18 24 30 36

Expectation: a weighted average 
(in proportion to the probabilities) 
of the possible values of 𝑋

𝔼 𝑋 =<
-

𝑥 ⋅ 𝑝. 𝑥

What is 𝔼 𝑌 ?

𝔼 𝑌 = 𝔼 𝑋/ ⋅ 𝑋) =

𝔼 𝑋 = 3.5 ⋅ 3.5 = 12.25

𝔼 𝑋/ ⋅ 𝔼 𝑋)

because the 𝑋! ⊥ 𝑋" 

𝔼 𝑋/ = 𝔼 𝑋) = 3.5

https://northeastern-datalab.github.io/cs7840/
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𝔼 𝑋 = <
*∈,

𝑋(𝜔) ⋅ ℙ({𝜔})

EXAMPLE 3 (CONT.):
roll two fair dice with 6 sides
Ω = { 1,1 , 1,2 , (1,3)… 1,6 , 2,1 , 2,2 , … (6,6)} 

Random variable: expectation 𝔼

Let 𝑌 be the product of the rolls.

Random variable (RV)
𝑋: 	Ω → ℝ 

first 
die

second dieΩ
1 2 3 4 5 6

1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

What is 𝔼 𝑋 + 𝑌
Let 𝑋 be the sum of the rolls.

first 
die

𝑋 1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

Expectation: a weighted average 
(in proportion to the probabilities) 
of the possible values of 𝑋

𝔼 𝑋 =<
-

𝑥 ⋅ 𝑝. 𝑥
first 
die

𝑌 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 8 10 12
3 3 6 9 12 15 18
4 4 8 12 16 20 24
5 5 10 15 20 25 30
6 6 12 18 24 30 36

?

https://northeastern-datalab.github.io/cs7840/
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𝔼 𝑋 = <
*∈,

𝑋(𝜔) ⋅ ℙ({𝜔})

EXAMPLE 3 (CONT.):
roll two fair dice with 6 sides
Ω = { 1,1 , 1,2 , (1,3)… 1,6 , 2,1 , 2,2 , … (6,6)} 

Random variable: expectation 𝔼

Let 𝑌 be the product of the rolls.

𝔼 𝑋 + 𝑌 =

Random variable (RV)
𝑋: 	Ω → ℝ 

first 
die

second dieΩ
1 2 3 4 5 6

1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

What is 𝔼 𝑋 + 𝑌 ?

Let 𝑋 be the sum of the rolls.

𝔼 𝑋 + 𝔼 𝑌

first 
die

𝑋 1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

Expectation: a weighted average 
(in proportion to the probabilities) 
of the possible values of 𝑋

𝔼 𝑋 =<
-

𝑥 ⋅ 𝑝. 𝑥
first 
die

𝑌 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 8 10 12
3 3 6 9 12 15 18
4 4 8 12 16 20 24
5 5 10 15 20 25 30
6 6 12 18 24 30 36

?

https://northeastern-datalab.github.io/cs7840/
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𝔼 𝑋 = <
*∈,

𝑋(𝜔) ⋅ ℙ({𝜔})

EXAMPLE 3 (CONT.):
roll two fair dice with 6 sides
Ω = { 1,1 , 1,2 , (1,3)… 1,6 , 2,1 , 2,2 , … (6,6)} 

Random variable: expectation 𝔼

Let 𝑌 be the product of the rolls.

𝔼 𝑋 + 𝑌 =

Random variable (RV)
𝑋: 	Ω → ℝ 

first 
die

second dieΩ
1 2 3 4 5 6

1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

What is 𝔼 𝑋 + 𝑌 ?

Let 𝑋 be the sum of the rolls.

𝔼 𝑋 + 𝔼 𝑌

𝑋and 𝑌 are clearly dependent L

first 
die

𝑋 1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

Expectation: a weighted average 
(in proportion to the probabilities) 
of the possible values of 𝑋

𝔼 𝑋 =<
-

𝑥 ⋅ 𝑝. 𝑥
first 
die

𝑌 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 8 10 12
3 3 6 9 12 15 18
4 4 8 12 16 20 24
5 5 10 15 20 25 30
6 6 12 18 24 30 36

https://northeastern-datalab.github.io/cs7840/
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𝔼 𝑋 = <
*∈,

𝑋(𝜔) ⋅ ℙ({𝜔})

EXAMPLE 3 (CONT.):
roll two fair dice with 6 sides
Ω = { 1,1 , 1,2 , (1,3)… 1,6 , 2,1 , 2,2 , … (6,6)} 

Random variable: expectation 𝔼

Let 𝑌 be the product of the rolls.

𝔼 𝑋 + 𝑌 =

Random variable (RV)
𝑋: 	Ω → ℝ 

first 
die

second dieΩ
1 2 3 4 5 6

1 (1,1) (1,2) (1,2) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

𝔼 𝑋 = 7 + 12.25 = 19.25

What is 𝔼 𝑋 + 𝑌 ?

Let 𝑋 be the sum of the rolls.

𝔼 𝑋 + 𝔼 𝑌

𝑋and 𝑌 are clearly dependent L

first 
die

𝑋 1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

Expectation: a weighted average 
(in proportion to the probabilities) 
of the possible values of 𝑋

𝔼 𝑋 =<
-

𝑥 ⋅ 𝑝. 𝑥
first 
die

𝑌 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 8 10 12
3 3 6 9 12 15 18
4 4 8 12 16 20 24
5 5 10 15 20 25 30
6 6 12 18 24 30 36But linearity of expectation still holds 

even if the RVs are dependent J

https://northeastern-datalab.github.io/cs7840/
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𝔼[𝑋 + 𝑌] vs. 𝔼 𝑋 ⋅ 𝑌  

PROOF PROOF
holds even if 𝑋 and 𝑌 are not independent

? ?

𝔼 𝑋 + 𝑌 = 𝔼 𝑋 + 𝔼 𝑌  (linearity of expectation) 𝔼 𝑋 ⋅ 𝑌 = 𝔼 𝑋 ⋅ 𝔼 𝑌 , only if 𝑋 ⊥ 𝑌 (independent)

=*
!

	

*
#

	

𝑥 + 𝑦 ⋅ 𝑝(𝑥, 𝑦)	𝔼[𝑋 + 𝑌] =*
!

	

*
#

	

𝑥 ⋅ 𝑦 ⋅ 𝑝(𝑥, 𝑦)	𝔼[𝑋 ⋅ 𝑌]

= 𝔼 𝑋 ⋅ 𝔼 𝑌

= 𝔼 𝑋 + 𝔼 𝑌

https://northeastern-datalab.github.io/cs7840/
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𝔼[𝑋 + 𝑌] vs. 𝔼 𝑋 ⋅ 𝑌  
𝔼 𝑋 + 𝑌 = 𝔼 𝑋 + 𝔼 𝑌  (linearity of expectation)

=*
!

	

*
#

	

𝑥 + 𝑦 ⋅ 𝑝(𝑥, 𝑦)	𝔼[𝑋 + 𝑌]

=*
!

	

*
#

	

𝑥 ⋅ 𝑝(𝑥, 𝑦)	 +*
!

	

*
#

	

𝑦 ⋅ 𝑝(𝑥, 𝑦)	

= *
!

	

𝑥 ⋅*
#

	

𝑝(𝑥, 𝑦)	 +*
#

	

𝑦 ⋅*
!

	

𝑝(𝑥, 𝑦)  

=*
!

	

𝑥 ⋅ 𝑝(𝑥) +*
#

	

𝑦 ⋅ 𝑝(𝑦)

𝔼 𝑋 ⋅ 𝑌 = 𝔼 𝑋 ⋅ 𝔼 𝑌 , only if 𝑋 ⊥ 𝑌 (independent)

=*
!

	

*
#

	

𝑥 ⋅ 𝑦 ⋅ 𝑝(𝑥, 𝑦)	𝔼[𝑋 ⋅ 𝑌]

=*
!

	

*
#

	

𝑥 ⋅ 𝑦 ⋅ 𝑝(𝑥) ⋅ 𝑝(𝑦)	

= *
!

	

𝑥 ⋅ 𝑝 𝑥 ⋅ *
#

	

𝑥 ⋅ 𝑝 𝑦

= 𝔼 𝑋 ⋅ 𝔼 𝑌

because 𝑋⊥𝑌 

distributive law of 
multiplication over addition 
(each cross-term  appears 
exactly once on both sides)

= 𝔼 𝑋 + 𝔼 𝑌

PROOF PROOF
holds even if 𝑋 and 𝑌 are not independent

https://northeastern-datalab.github.io/cs7840/
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Linearity of Expectation

• The digits 1,2,3, and 4 are randomly arranged to form two two-digit numbers, 𝐴𝐵 and 𝐶𝐷.

Example from: https://brilliant.org/wiki/linearity-of-expectation/ 

EXAMPLE 6 (CONT.):

• What is the expected value of 𝐴𝐵⋅𝐶𝐷?

For example, we could have 𝐴𝐵 = 42 and 𝐶𝐷 = 13. 

?

https://northeastern-datalab.github.io/cs7840/
https://brilliant.org/wiki/linearity-of-expectation/
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Linearity of Expectation

• The digits 1,2,3, and 4 are randomly arranged to form two two-digit numbers, 𝐴𝐵 and 𝐶𝐷.

Example from: https://brilliant.org/wiki/linearity-of-expectation/ 

EXAMPLE 6 (CONT.):

• What is the expected value of 𝐴𝐵⋅𝐶𝐷?

• What about 𝔼[𝐴𝐵]⋅𝔼 𝐶𝐷 ?

For example, we could have 𝐴𝐵 = 42 and 𝐶𝐷 = 13. 

?

https://northeastern-datalab.github.io/cs7840/
https://brilliant.org/wiki/linearity-of-expectation/
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Linearity of Expectation

• The digits 1,2,3, and 4 are randomly arranged to form two two-digit numbers, 𝐴𝐵 and 𝐶𝐷.

• No! 𝔼 𝑥𝑦 = 𝔼 𝑥 ⋅𝔼 𝑦  only holds when the RVs are independent. 

Example from: https://brilliant.org/wiki/linearity-of-expectation/ 

EXAMPLE 6 (CONT.):

• What is the expected value of 𝐴𝐵⋅𝐶𝐷?

For example, we could have 𝐴𝐵 = 42 and 𝐶𝐷 = 13. 

Clearly, 𝐴𝐵 and 𝐶𝐷	are not independent since each digit can only be used once 
(e.g., if 𝐴𝐵 = 42 then we would know that 𝐶𝐷	can only be 13 or 31). 

• What about 𝔼[𝐴𝐵]⋅𝔼 𝐶𝐷 ?

https://northeastern-datalab.github.io/cs7840/
https://brilliant.org/wiki/linearity-of-expectation/
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Linearity of Expectation

• The digits 1,2,3, and 4 are randomly arranged to form two two-digit numbers, 𝐴𝐵 and 𝐶𝐷.

Example from: https://brilliant.org/wiki/linearity-of-expectation/ 

EXAMPLE 6 (CONT.):

• What is the expected value of 𝐴𝐵⋅𝐶𝐷?

For example, we could have 𝐴𝐵 = 42 and 𝐶𝐷 = 13. 

• Can we instead get some kind of sum? ?
• What about 𝔼[𝐴𝐵]⋅𝔼 𝐶𝐷 ?

https://northeastern-datalab.github.io/cs7840/
https://brilliant.org/wiki/linearity-of-expectation/
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Linearity of Expectation

• The digits 1,2,3, and 4 are randomly arranged to form two two-digit numbers, 𝐴𝐵 and 𝐶𝐷.

Example from: https://brilliant.org/wiki/linearity-of-expectation/ 

EXAMPLE 6 (CONT.):

• What is the expected value of 𝐴𝐵⋅𝐶𝐷?

For example, we could have 𝐴𝐵 = 42 and 𝐶𝐷 = 13. 

• Now by linearity of expectation,

10⋅𝐴 + 𝐵 ⋅ 10⋅𝐶 + 𝐷 = 100⋅𝐴⋅𝐶 + 10⋅𝐴⋅𝐷 + 10⋅𝐵⋅𝐶 + 𝐵⋅𝐷 𝐴𝐵⋅𝐶𝐷 = 

• Can we instead get some kind of sum?

?

• What about 𝔼[𝐴𝐵]⋅𝔼 𝐶𝐷 ?

https://northeastern-datalab.github.io/cs7840/
https://brilliant.org/wiki/linearity-of-expectation/
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Linearity of Expectation

• The digits 1,2,3, and 4 are randomly arranged to form two two-digit numbers, 𝐴𝐵 and 𝐶𝐷.

Example from: https://brilliant.org/wiki/linearity-of-expectation/ 

EXAMPLE 6 (CONT.):

• What is the expected value of 𝐴𝐵⋅𝐶𝐷?

For example, we could have 𝐴𝐵 = 42 and 𝐶𝐷 = 13. 

𝔼 𝐴𝐵⋅𝐶𝐷 = 100⋅𝔼 𝐴⋅𝐶 + 10⋅𝔼 𝐴⋅𝐷 + 10⋅𝔼 𝐵⋅𝐶 + 𝔼 𝐵⋅𝐷 = 
• Now by linearity of expectation,

10⋅𝐴 + 𝐵 ⋅ 10⋅𝐶 + 𝐷 = 100⋅𝐴⋅𝐶 + 10⋅𝐴⋅𝐷 + 10⋅𝐵⋅𝐶 + 𝐵⋅𝐷 𝐴𝐵⋅𝐶𝐷 = 

• Can we instead get some kind of sum?

?

• What about 𝔼[𝐴𝐵]⋅𝔼 𝐶𝐷 ?

https://northeastern-datalab.github.io/cs7840/
https://brilliant.org/wiki/linearity-of-expectation/
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Linearity of Expectation

• The digits 1,2,3, and 4 are randomly arranged to form two two-digit numbers, 𝐴𝐵 and 𝐶𝐷.

Example from: https://brilliant.org/wiki/linearity-of-expectation/ 

EXAMPLE 6 (CONT.):

• What is the expected value of 𝐴𝐵⋅𝐶𝐷?

For example, we could have 𝐴𝐵 = 42 and 𝐶𝐷 = 13. 

𝔼 𝐴𝐵⋅𝐶𝐷 = 100⋅𝔼 𝐴⋅𝐶 + 10⋅𝔼 𝐴⋅𝐷 + 10⋅𝔼 𝐵⋅𝐶 + 𝔼 𝐵⋅𝐷 = 121⋅𝔼 𝐴⋅𝐶 = 
• Now by linearity of expectation,

The expected value of all of these products are the 
same since there is symmetry among 𝐴, 𝐵, 𝐶, 𝐷. 

10⋅𝐴 + 𝐵 ⋅ 10⋅𝐶 + 𝐷 = 100⋅𝐴⋅𝐶 + 10⋅𝐴⋅𝐷 + 10⋅𝐵⋅𝐶 + 𝐵⋅𝐷 𝐴𝐵⋅𝐶𝐷 = 

• Can we instead get some kind of sum?

?

• What about 𝔼[𝐴𝐵]⋅𝔼 𝐶𝐷 ?

https://northeastern-datalab.github.io/cs7840/
https://brilliant.org/wiki/linearity-of-expectation/
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Linearity of Expectation

• The digits 1,2,3, and 4 are randomly arranged to form two two-digit numbers, 𝐴𝐵 and 𝐶𝐷.

Example from: https://brilliant.org/wiki/linearity-of-expectation/ 

EXAMPLE 6 (CONT.):

• What is the expected value of 𝐴𝐵⋅𝐶𝐷?

For example, we could have 𝐴𝐵 = 42 and 𝐶𝐷 = 13. 

𝔼 𝐴𝐵⋅𝐶𝐷 = 100⋅𝔼 𝐴⋅𝐶 + 10⋅𝔼 𝐴⋅𝐷 + 10⋅𝔼 𝐵⋅𝐶 + 𝔼 𝐵⋅𝐷 = 121⋅𝔼 𝐴⋅𝐶 = 789:
;

= 705.83̇
• Now by linearity of expectation,

𝔼 𝐴⋅𝐶 = <⋅8=<⋅9=<⋅7=8⋅9=8⋅7=9⋅7
;

= 9:
;

 

The expected value of all of these products are the 
same since there is symmetry among 𝐴, 𝐵, 𝐶, 𝐷. 

10⋅𝐴 + 𝐵 ⋅ 10⋅𝐶 + 𝐷 = 100⋅𝐴⋅𝐶 + 10⋅𝐴⋅𝐷 + 10⋅𝐵⋅𝐶 + 𝐵⋅𝐷 𝐴𝐵⋅𝐶𝐷 = 

• Can we instead get some kind of sum?

• What about 𝔼[𝐴𝐵]⋅𝔼 𝐶𝐷 ?

https://northeastern-datalab.github.io/cs7840/
https://brilliant.org/wiki/linearity-of-expectation/
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Variance

https://northeastern-datalab.github.io/cs7840/
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case 1:
{4 cm, 5 cm, 6 cm}

case 2:
{9 cm, 10 cm, 11 cm}

case 3:
{8 cm, 10 cm, 12 cm}

Measuring variability
EXAMPLE: average size of mice

?What is a reasonable 
measure of centrality?

https://northeastern-datalab.github.io/cs7840/
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case 1:
{4 cm, 5 cm, 6 cm}

case 2:
{9 cm, 10 cm, 11 cm}

case 3:
{8 cm, 10 cm, 12 cm}

Measuring variability
EXAMPLE: average size of mice

mean = average = 
"expected value"

𝔼 𝑋 = 5 10 10 𝔼 𝑋 = ∑- 𝑥 ⋅ 𝑝. 𝑥  

What is a reasonable 
measure of centrality?

https://northeastern-datalab.github.io/cs7840/
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case 1:
{4 cm, 5 cm, 6 cm}

case 2:
{9 cm, 10 cm, 11 cm}

case 3:
{8 cm, 10 cm, 12 cm} 𝔼 𝑌 = ∑2 𝑦 ⋅ 𝑝3 𝑦  

Measuring variability
EXAMPLE: average size of mice

What are possible ways 
to measure expected 
"variability" ∆ around the 
mean for each point?

𝔼 𝑋 = 5 10 10 𝔼 𝑋 = ∑- 𝑥 ⋅ 𝑝. 𝑥  
?

https://northeastern-datalab.github.io/cs7840/
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case 1:
{4 cm, 5 cm, 6 cm}

case 2:
{9 cm, 10 cm, 11 cm}

case 3:
{8 cm, 10 cm, 12 cm}

𝑌< = 𝑋 − 𝔼 𝑋  

𝔼 𝑌 = ∑2 𝑦 ⋅ 𝑝3 𝑦  

Measuring variability

𝔼 𝑌< = 

EXAMPLE: average size of mice

−1 ⋅ $%+ 0 ⋅
$
%+ 1 ⋅ $%

= 0
−1 ⋅ $%+ 0 ⋅

$
%+ 1 ⋅ $% −2 ⋅ $%+ 0 ⋅

$
%+ 2 ⋅ $%

= 0 = 0

𝔼 𝑋 = 5 10 10 𝔼 𝑋 = ∑- 𝑥 ⋅ 𝑝. 𝑥  

What are possible ways 
to measure expected 
"variability" ∆ around the 
mean for each point?

?How can we fix 
that

L cancels out

https://northeastern-datalab.github.io/cs7840/
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case 1:
{4 cm, 5 cm, 6 cm}

case 2:
{9 cm, 10 cm, 11 cm}

case 3:
{8 cm, 10 cm, 12 cm}

𝑌< = 𝑋 − 𝔼 𝑋  

𝑌8 = 𝑋 − 𝔼 𝑋  

𝔼 𝑌 = ∑2 𝑦 ⋅ 𝑝3 𝑦  

Measuring variability

𝔼 𝑌< = 

EXAMPLE: average size of mice

−1 ⋅ $%+ 0 ⋅
$
%+ 1 ⋅ $%

= 0
−1 ⋅ $%+ 0 ⋅

$
%+ 1 ⋅ $% −2 ⋅ $%+ 0 ⋅

$
%+ 2 ⋅ $%

𝔼 𝑌8 = 
= 1 ⋅ $

%
+ 0 ⋅ $

%
+ 1 ⋅ $

%
 = 1 ⋅ $

%
+ 0 ⋅ $

%
+ 1 ⋅ $

%
 = 2 ⋅ $

%
+ 0 ⋅ $

%
+ 2 ⋅ $

%
 

| − 1| ⋅ $%+ |0| ⋅
$
%+ |1| ⋅

$
% | − 1| ⋅ $%+ |0| ⋅

$
%+ |1| ⋅

$
% | − 2| ⋅ $%+ |0| ⋅

$
%+ |2| ⋅

$
% 

= 0 = 0

= &
% = &

% = '
% 

absolute deviation

𝔼 𝑋 = 5 10 10 𝔼 𝑋 = ∑- 𝑥 ⋅ 𝑝. 𝑥  

What are possible ways 
to measure expected 
"variability" ∆ around the 
mean for each point?

?Anything else

J makes more sense

L cancels out

https://northeastern-datalab.github.io/cs7840/
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case 1:
{4 cm, 5 cm, 6 cm}

case 2:
{9 cm, 10 cm, 11 cm}

case 3:
{8 cm, 10 cm, 12 cm}

𝑌< = 𝑋 − 𝔼 𝑋  

𝑌8 = 𝑋 − 𝔼 𝑋  

𝑌9 = 𝑋 − 𝔼 𝑋 8 

𝔼 𝑌 = ∑2 𝑦 ⋅ 𝑝3 𝑦  

Measuring variability

𝔼 𝑌< = 

EXAMPLE: average size of mice

−1 ⋅ $%+ 0 ⋅
$
%+ 1 ⋅ $%

= 0
−1 ⋅ $%+ 0 ⋅

$
%+ 1 ⋅ $% −2 ⋅ $%+ 0 ⋅

$
%+ 2 ⋅ $%

𝔼 𝑌8 = 
= 1 ⋅ $

%
+ 0 ⋅ $

%
+ 1 ⋅ $

%
 = 1 ⋅ $

%
+ 0 ⋅ $

%
+ 1 ⋅ $

%
 = 2 ⋅ $

%
+ 0 ⋅ $

%
+ 2 ⋅ $

%
 

𝔼 𝑌9 = 
1 ⋅ $%+ 0 ⋅

$
%+ 1 ⋅ $% 1 ⋅ $%+ 0 ⋅

$
%+ 1 ⋅ $% 4 ⋅ $%+ 0 ⋅

$
%+ 4 ⋅ $%

1& ⋅ $%+ 0
& ⋅ $%+ 1& ⋅ $% 1& ⋅ $%+ 0

& ⋅ $%+ 1& ⋅ $% 2& ⋅ $%+ 0
& ⋅ $%+ 2& ⋅ $%

| − 1| ⋅ $%+ |0| ⋅
$
%+ |1| ⋅

$
% | − 1| ⋅ $%+ |0| ⋅

$
%+ |1| ⋅

$
% | − 2| ⋅ $%+ |0| ⋅

$
%+ |2| ⋅

$
% 

= 0 = 0

= &
% = &

% = '
% 

= &
%
 = &

%
 = (

% 

absolute deviation

squared error

?

𝔼 𝑋 = 5 10 10 𝔼 𝑋 = ∑- 𝑥 ⋅ 𝑝. 𝑥  

What are possible ways 
to measure expected 
"variability" ∆ around the 
mean for each point?

What are now the "units" of variability

J makes more sense

L cancels out

https://northeastern-datalab.github.io/cs7840/
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case 1:
{4 cm, 5 cm, 6 cm}

case 2:
{9 cm, 10 cm, 11 cm}

case 3:
{8 cm, 10 cm, 12 cm}

𝑌< = 𝑋 − 𝔼 𝑋  

𝑌8 = 𝑋 − 𝔼 𝑋  

𝑌9 = 𝑋 − 𝔼 𝑋 8 

𝔼 𝑌 = ∑2 𝑦 ⋅ 𝑝3 𝑦  

Measuring variability

𝔼 𝑌< = 

EXAMPLE: average size of mice

−1 ⋅ $%+ 0 ⋅
$
%+ 1 ⋅ $%

= 0
−1 ⋅ $%+ 0 ⋅

$
%+ 1 ⋅ $% −2 ⋅ $%+ 0 ⋅

$
%+ 2 ⋅ $%

𝔼 𝑌8 = 
= 1 ⋅ $

%
+ 0 ⋅ $

%
+ 1 ⋅ $

%
 = 1 ⋅ $

%
+ 0 ⋅ $

%
+ 1 ⋅ $

%
 = 2 ⋅ $

%
+ 0 ⋅ $

%
+ 2 ⋅ $

%
 

𝔼 𝑌9 = 
1 ⋅ $%+ 0 ⋅

$
%+ 1 ⋅ $% 1 ⋅ $%+ 0 ⋅

$
%+ 1 ⋅ $% 4 ⋅ $%+ 0 ⋅

$
%+ 4 ⋅ $%

1& ⋅ $%+ 0
& ⋅ $%+ 1& ⋅ $% 1& ⋅ $%+ 0

& ⋅ $%+ 1& ⋅ $% 2& ⋅ $%+ 0
& ⋅ $%+ 2& ⋅ $%

| − 1| ⋅ $%+ |0| ⋅
$
%+ |1| ⋅

$
% | − 1| ⋅ $%+ |0| ⋅

$
%+ |1| ⋅

$
% | − 2| ⋅ $%+ |0| ⋅

$
%+ |2| ⋅

$
% 

= 0 = 0

= &
% = &

% = '
% 

= &
%
 = &

%
 = (

% cm& cm& cm& 

cm cm cm
absolute deviation

L cancels out

squared error

?

𝔼 𝑋 = 5 10 10 𝔼 𝑋 = ∑- 𝑥 ⋅ 𝑝. 𝑥  

What are possible ways 
to measure expected 
"variability" ∆ around the 
mean for each point?

cm squared is strange. What can we do?

J makes more sense

L ???

https://northeastern-datalab.github.io/cs7840/
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case 1:
{4 cm, 5 cm, 6 cm}

case 2:
{9 cm, 10 cm, 11 cm}

case 3:
{8 cm, 10 cm, 12 cm}

𝑌< = 𝑋 − 𝔼 𝑋  

𝑌8 = 𝑋 − 𝔼 𝑋  

𝑌9 = 𝑋 − 𝔼 𝑋 8 

𝔼 𝑌 = ∑2 𝑦 ⋅ 𝑝3 𝑦  

Measuring variability

𝔼 𝑌< = 

EXAMPLE: average size of mice

−1 ⋅ $%+ 0 ⋅
$
%+ 1 ⋅ $%

= 0
−1 ⋅ $%+ 0 ⋅

$
%+ 1 ⋅ $% −2 ⋅ $%+ 0 ⋅

$
%+ 2 ⋅ $%

𝔼 𝑌8 = 
= 1 ⋅ $

%
+ 0 ⋅ $

%
+ 1 ⋅ $

%
 = 1 ⋅ $

%
+ 0 ⋅ $

%
+ 1 ⋅ $

%
 = 2 ⋅ $

%
+ 0 ⋅ $

%
+ 2 ⋅ $

%
 

𝔼 𝑌9 = 
1 ⋅ $%+ 0 ⋅

$
%+ 1 ⋅ $% 1 ⋅ $%+ 0 ⋅

$
%+ 1 ⋅ $% 4 ⋅ $%+ 0 ⋅

$
%+ 4 ⋅ $%

1& ⋅ $%+ 0
& ⋅ $%+ 1& ⋅ $% 1& ⋅ $%+ 0

& ⋅ $%+ 1& ⋅ $% 2& ⋅ $%+ 0
& ⋅ $%+ 2& ⋅ $%

| − 1| ⋅ $%+ |0| ⋅
$
%+ |1| ⋅

$
% | − 1| ⋅ $%+ |0| ⋅

$
%+ |1| ⋅

$
% | − 2| ⋅ $%+ |0| ⋅

$
%+ |2| ⋅

$
% 

= 0 = 0

= &
% = &

% = '
% 

= &
%
 = &

%
 = (

% cm& cm& cm& 

cm cm cm

Just take the square root:

= &
%
 = &

%
 = 2 &

%
 cm cm cm 

absolute deviation

squared error

Looks pretty complicated. 
So why is everyone so 
excited about squared error 
instead of absolute error?

?

𝔼 𝑋 = 5 10 10 𝔼 𝑋 = ∑- 𝑥 ⋅ 𝑝. 𝑥  

What are possible ways 
to measure expected 
"variability" ∆ around the 
mean for each point?

L cancels out

J makes more sense

L ???

???

https://northeastern-datalab.github.io/cs7840/
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∆8= 𝑋 − 𝔼 𝑋  

∆9= 𝑋 − 𝔼 𝑋 8 

Why variance, and not absolute deviation?

absolute deviation

• Algebraic convenience: 𝑓 𝑥 = 𝑥8 is 
differentiable, but 𝑔 𝑥 = 𝑥  is not.

• Outliers have a bigger influence

• Geometric explanation in Euclidean space (distance = square root 
of squared components): Projection onto a subspace. Variance is 
literally the "average squared distance" from the mean.

• Variance plays an important role in the Central Limit Theorem. 
The variance is a natural parameter for the Normal Distribution. 

squared error

But what is the most substantial reason? ?

https://northeastern-datalab.github.io/cs7840/
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∆8= 𝑋 − 𝔼 𝑋  

∆9= 𝑋 − 𝔼 𝑋 8 

Why variance, and not absolute deviation?

absolute deviation

• Algebraic convenience: 𝑓 𝑥 = 𝑥8 is 
differentiable, but 𝑔 𝑥 = 𝑥  is not.

• Outliers have a bigger influence

• Geometric explanation in Euclidean space (distance = square root 
of squared components): Projection onto a subspace. Variance is 
literally the "average squared distance" from the mean.

• Variance plays an important role in the Central Limit Theorem. 
The variance is a natural parameter for the Normal Distribution. 

squared error

• Statistical properties: The mean minimizes the sum of squared 
errors, while the median minimizes the sum of absolute errors.
(Maximum likelihood estimation leads to minimizing squared errors)

https://northeastern-datalab.github.io/cs7840/
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Mean (minimizes variance), Median (minimizes absolute error)

mean = min
4
<
5

𝑥5 − 𝑐 ) median = min
4
<
5

𝑥5 − 𝑐

EXAMPLE (MEAN VS. MEDIAN):

mean = 4 median = 3

data = {1, 2, 3, 6, 8}

https://northeastern-datalab.github.io/cs7840/
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Mean (minimizes variance), Median (minimizes absolute error)

mean = min
4
<
5

𝑥5 − 𝑐 )

EXAMPLE (MEAN VS. MEDIAN):

mean = 4

data = {1, 2, 3, 6, 8}

mean:<
5

𝑥5 − 𝑐 = 0

This is not an optimization problem, but a 
constraint problem: the sum of signed errors = 0.

https://northeastern-datalab.github.io/cs7840/
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𝜎8 = Var 𝑋 = 𝔼[ 𝑋 − 𝔼 𝑋 8]

𝜎 = Var 𝑋 = 𝔼[ 𝑋 − 𝔼 𝑋 8]

variance

standard deviation (back in original units)

𝔼 𝑋 − 𝔼 𝑋 8 =

PROOF

𝔼 𝑋8 − 2⋅𝑋⋅𝔼 𝑋 + (𝔼 𝑋 )8

= 𝔼 𝑋8 − 𝔼 2⋅𝑋⋅𝔼 𝑋 + 𝔼 𝔼 𝑋 8

= 𝔼 𝑋8 − 2⋅𝔼 𝑋 ⋅𝔼 𝑋 + 𝔼 𝑋 8

= 𝔼 𝑋8 − 2 ⋅ 𝔼 𝑋 8 + 𝔼 𝑋 8

= 𝔼 𝑋8 − 𝔼 𝑋 8

ALTERNATIVE FORMULA

𝔼 𝑋 − 𝔼 𝑋 8 = 𝔼 𝑋8 − 𝔼 𝑋 8

by linearity of expectation

just a constant

case 3:
{8 cm, 10 cm, 12 cm}

𝔼 𝑋8 =

𝔼 𝑋 8 = 100

D$=<E$=<8^8
9

= 9ED
9

 

9ED
9
− 9EE

9
= 8/3 

Alternative formula for variance

https://northeastern-datalab.github.io/cs7840/

