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Pre-class conversations

e Projects!
e Intended Topics & Feedback

e Lecture 20 (Mon 11/18):
Channel capacity [Cover Thomas'06: Ch 7]

« Lecture 21 (Wed 11/20): e Rate Distortion & Information bottleneck theory
Distortion Theory (1/2) [Cover Thomas'06: Ch 10] o [Cover,Thomas'06] Elements of Information Theory. 2nd ed, 2006: Ch 10 Rate distortion theory

e Lecture 22 (Mon 11/25): o [Tishby+'99] Tishby, Pereira, Bialek. The information bottleneck method. The 37th annual Allerton Conference
Distortion Theory (2/2) [Cover Thomas'06: Ch 10] on Communication, Control, and Computing. pp. 368-377.
Python notebooks: 232 o [Harremoes, Tishby'07] The Information Bottleneck Revisited or How to Choose a Good Distortion Measure.

o (Wed 11/27): no class (Fall break) International Symposium on Information Theory, 2007.

e Lecture 23 (Mon 12/2): Information Bottleneck Theory lﬁi}gvglalg'w] Zaslavsky, Kemp, Regier, Tishby. The Efficient compression in color naming and its evolution.

e Lecture 24 (Wed 12/4): Information Bottleneck Theor
( 4) y ebb+24] Webb, Frankland, Altabaa, Segert, Krishnamurthy, Campbell, Russin, Giallanza, Dulberg, OReilly,

) \ afferty, Cohen. The Relational Bottleneck as an Inductive Bias for Efficient Abstraction. Trends in Cognitive
Project presentations Science, 2024.

¢ Lecture 25 (Mon 12/9): P4 Project presentations o [Segert'24] Maximum Entropy, Symmetry, and the Relational Bottleneck: Unraveling the Impact of Inductive
« Lecture 26 (Wed 12/11): P4 Project presentations Biases on Systematic Reasoning. PhD thesis, Neuroscience @ Princeton, 2024.

o [Ren,Li,Leskovec20] Graph Information Bottleneck, NeurIPS, 2020.

e Today:
— Information Bottleneck Theory (1/2)
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Three-step abstractions
X—Y—7 Markov chain what do we know? ?
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Three-step abstractions

X—Y—Z Markov chain XL1LZIY 1IX;Y)=21(X;2)
p(x,y,2z) = p(x) - p(Ix) - p(zl%y)  also:p(y) - p(x|y) - p(z]%:y)

X—Y—f(Y) Dataprocessinginequality ?
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Three-step abstractions

X—Y—Z Markov chain XL1LZIY 1IX;Y)=21(X;2)
p(x,y,z) = p(x) - p(|x) - p(zly) also:p(y) - p(x]y) - p(zl%y)
X—Y—f(Y) Data processing inequality [(X;Y) > ](X;f(Y))

0 —X—T(X) Sufficient statistics

?
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Three-step abstractions sw ®

X—Y—7

X—Y—f()
§—X—T(X)

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/

Markov chain XL1LZ|IY IX;Y)=2I1(X;2)
p(x,y,2z) = p(x) - p(Ix) - p(zl%y)  also:p(y) - p(x|y) - p(z]%:y)

Data processing inequality [(X;Y) > I(X;f(Y))

Sufficient statistics
A statistic T is for O if it preserves all the information in X about 6:

0 LX|T(X) © I(6;T(X)) =1(8;X) & 0 - T(X) - X also forms a Markov chain
: simplest mapping of X that captures all the information in X about 6:

We want to determine Y from X. Goal: find a representation X of X that
captures the relevant features, yet compresses X by removing irrelevant parts

that do not contribute to the prediction of Y

?
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Three-step abstractions sw ®

X—Y—7

X—Y—f()
§—X—T(X)
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Markov chain XL1LZ|IY IX;Y)=2I1(X;2)
p(x,y,2z) = p(x) - p(Ix) - p(zl%y)  also:p(y) - p(x|y) - p(z]%:y)

Data processing inequality [(X;Y) > I(X;f(Y))

Sufficient statistics
A statistic T is for O if it preserves all the information in X about 6:

0 LX|T(X) © I(6;T(X)) =1(8;X) & 0 - T(X) - X also forms a Markov chain
: simplest mapping of X that captures all the information in X about 6:

We want to determine Y from X. Goal: find a representation X of X that
captures the relevant features "max I(Y; )?)", yet compresses X by removing

irrelevant parts that do not contribute to the prediction of Y: "min I(X; )?)".
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Three-step abstractions

X—Y—Z Markov chain XL1LZIY 1IX;Y)=21(X;2)
p(x,y,2z) = p(x) - p(Ix) - p(zl%y)  also:p(y) - p(x|y) - p(z]%:y)

X—Y—f(Y) Data processing inequality I(X;Y) = 1(X; f(Y))
0 —X—T(X) Sufficient statistics

A statistic T is for O if it preserves all the information in X about 6:
0 LX|T(X) © I(6;T(X)) =1(8;X) & 0 - T(X) - X also forms a Markov chain
: simplest mapping of X that captures all the information in X about 6:

We want to determine Y from X. Goal: find a representation X of X that

\ / captures the relevant features "max I(Y X) yet compresses X by removing
RB 1(X;X)]| £(X) I1(Y;X)1 =0z irrelevant parts that do not contribute to the prediction of Y: "min 1(X; X)".

"complexity" reIevance R R R

minimal rate accuray’  L*= min [£(X)] LX) =1(X;X) - BIY; X)

(maximally maximally (X|X)

compresse om0 = max [C(0)] L(£) = 1(ViR) - FI0GR)
p

bigger B (swaller B') allows more complex representations
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162



https://northeastern-datalab.github.io/cs7840/

Information Bottleneck (IB)

Consider an information processing system that receives as input the signal X and tries to
predict a target signal Y. We want to process X to get

X = f(X) (the "bottleneck"), which is then used to predict Y.

Xis for predicting Y if it contains all the information that X encodes about Z, i.e.
1(V;X) =1(X; X).
Xis if it is sufficient for Y and does not contain any extraneous information

about X which does not help in predicting Y, i.e. I(X; )?) < I(X; )?’) for any other sufficient
representation X'.

The information bottleneck objective tries to strike a balance in achieving max compression
(small complexity) while retaining as much relevant information (high accuracy) as possible

bigoer B allows more complex representations
minimize L(X) = I?X; X) - BI(Y; X)
maximize L(X) = I(Y; X) — B'I(X; X)

bigger f° = 1/ pevalizes more complex representations

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 163
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Geometry of longer block lengths:

Independent 4-bit e
quantization: X, :

B R B 1 o O Y P ¥

. SR |'ud;.|-
[ BAANGaAARS

Blocklengthn = 2
and 4-bit per sample

Figure source: https://ieeexplore.ieee.org/document/7767821/
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Geometry of longer block lengths:
| l . p()ﬁer)...deterministic
Independent 4-bit — *_
quantization: X, it Siet
X1

'p()?|X)... stochastic
/1
Blocklengthn = 2

and 4-bit per sample
"It is simpler to describe an elephant and a
chicken with one description than to describe
each alone. This is true even for independent
random variables."

[Cover, Thomas'06]

Figure source: https://ieeexplore.ieee.org/document/7767821/
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Rate-distortion code vs. k-means

X =X ={0,1, ..., 255} thus 8 bit resolution
n = 2 channels per pixel (will be encoded together), 16 bits per pixel
nR = 4 bits per pixel (2 bits per channel level), thus 16 representatives

el16="1111"
R.

J,(10) = (135,105):
reconstruction of index 10

250

200

Green level

£71(10): assignment region

). for index 10
1="0000" 50 100 150 200 250
. Red level
Example image with only red and Vector quantization of colors present in the
green channel (for illustration) image into Voronoi cells using k-means

Source: https://en.wikipedia.org/wiki/K-means_clustering
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The Information Bottleneck (IB) method was introduced by Tishby et al. [1] as a method for
extracting the information that some variable X € X’ provides about another one Y € ) that is of interest,

as shown in Figure 1. A
¢

= (X

@ xex | | =90

Figure 1. Information bottleneck problem.

Ye)y

X—X—Y Markov chain XL1Y|X
p(X,x,y) = p(x) - p(X|x) - p(y|£x)
£*= max [£'(X)] £X)=1(v;X)-p1X:X)

p(X|1X)

21 Y|X relevance Aﬁ rate Rﬁ

Optimization leads to optimal relevance-complexity pairs (Ag, Rg)

Source: Zidi, Estella-Aguerri, Shamai. On the Information Bottleneck Problems: Models, Connections, Applications and Information Theoretic Views. Entropy, 2020. https://doi.org/10.3390/e22020151
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 67
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? I I I I ! T T T T
A 8t 1(Y;X)” ] p(x,y) IS given
B |
g Non-feasible
;.Dﬁ or ]
> .l |
~
(D)
O 4t +
z Feasible
5 3t {
D
=Pl |
B max I(Y;U) - BI(U; X) |
Ulx

O 1 1 1 1 1 1 1 1 1
X Y 0 2 4 6 8 10 12 14 16 18 20

Complexity I(X;U) R B

Re=1(X;X)| £(x) 1 X1 =0

"complexity" "relevance" relevance—comp ,R) that satisfy
minimal rate "accuracy” A< R>I(X,U)
(maximally maximally relevance-complexity pairs (Ag, R g y
compressed) informative P yp ( 'B' ﬁ)

with complexity I(X; X) = Rg and relevance I(Y; X) < Ag

Source: Zidi, Estella-Aguerri, Shamai. On the Information Bottleneck Problems: Models, Connections, Applications and Information Theoretic Views. Entropy, 2020. https://doi.org/10.3390/e22020151
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Binary Information Bott

Let X and Y be a doubly symmetric binary sources (DSBS), i.e., (X,Y) ~ DSBS(p) for some %
0<p<1/2. (ADSBSis a pair (X, Y) of binary random variables X ~ Bern(1/2) and Y ~ Bern(1/2) and
X@Y ~Bern(p), where & is the sum modulo 2. That is, Y is the output of a binary symmetric channel
with crossover probability p corresponding to the input X, and X is the output of the same channel
with input Y.)

—— Trade-off (p=0.1)
—— Trade-off (p=0.2)

e I | e < |< formation Bottleneck: Relevance vs Complexity for p=0.1 an 5
Trade-off (p=0) 0 [}

o
o

X

Relevance I(U; Y)
(=]
S

o
N

Then, it can be shown that the optimal U in (4) is such that (X, U) ~ DSBS(gq) for some 001 i , . , 1
0<g<1. Sucha U can be obtained with the mapping Py;x such that S comlemieo 0.5

U=XeQ, withQ~DSBS(q). (6)
In this case, straightforward algebra leads to that the complexity level is given by

I(U; X) = 1-hy(q), 7)

where, for 0 < x < 1, hy(x) is the entropy of a Bernoulli-(x) source, i.e., hy(x) = -xlog,(x) - (1 -
x)log,(1-x)

, and the relevance level is given by

I(U;Y) =1-hy(p*q) (8)

where p xq = p(1-9) +q(1 - p). The result extends easily to discrete symmetric mappings ¥ — X
with binary X (one bit output quantization) and discrete non-binary Y.

Source: Zidi, Estella-Aguerri, Shamai. On the Information Bottleneck Problems: Models, Connections, Applications and Information Theoretic Views. Entropy, 2020. https://doi.org/10.3390/e22020151
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Rate distortion theory

X T ... compressed representation (a quantized codebook) of X

an(X/T)

representation is defined through a (possibly stochastic)
..,put mapping (condition distribution p(t|x)) between each
: value x € X to each representative valuet € 7.

I(T; X) ... compression information. Also rate of a code.

p(x) s calculated based on the joint distribution p(t|x) - p(x)
=
2nHX) @ The expected distortion is:
I(T:X) D =Exr[dX,T)] = Xxep(x) - p(tlx) - d(x,t)

Figure 2.1: An illustration of the relation between the compression-information, /(7"; X ), and the maximal number
of bits that can be reliably transmitted between X and 7'. For every typical sequence of length n of 7' symbols
there are ~ 2"H(XIT) possible (“input”) X sequences. Hence, the total number of ~ 2"7(X) X sequences needs
to be divided into disjoint subsets of size ~ 2™ (XIT) The number of such subsets is therefore upper bounded by
ot H(X)—H(X|T)) — 9nl(T;X) 1In other words, we can reliably send at most ~ 2™/(T:X) sequences of length n
between X and 7'

Source: Slonim. The information bottleneck: theory and applications, PhD thesis 2002. https://citeseerx.ist.psu.edu/document?doi=f9357064ef06a30f4533901cbc956bb25af646ad
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 170
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Rate distortion theory

B — o0

Ir:X)

0.4
0.3
0.2

0.1

oR
oD
Rate-distortion
R(D) region
Non-achievable
region
01 02 03
<d(x.t) > p—>0

Finding the rate-distortion function requires solving a minimization problem of a convex function over the
convex set of all the (normalized) conditional distributions p(t | z), satisfying the distortion constraint. This
problem can be solved by introducing a Lagrange multiplier, (3, and then minimizing the functional

f[p(t | $)] = I(T; X) + < d(l'vt) >p(:c)p(t\x) ) (2.3)

under the normalization constraints ) , p(t | ) = 1, Vo € X. This formulation has the following well
known consequences.

Figure 2.2: Anillustration of a rate distortion function, R(D). This function defines a monotonic convex curve in the
distortion-compression plane with a slope of —/3. When 8 — oo we focus solely on minimizing the distortion which
corresponds to the extreme case of the curve with ( d(x,t) ) p(2)p(t]2) — 0. When 3 — O we are only interested in
compression, which corresponds to the other extreme of the curve with R — 0 . This curve characterizes the input
(source) statistics, p(x) with respect to a specific distortion measure and a specific choice of representatives, given by
T values. The region above the curve is achievable while the region below it is non-achievable.

Source: Slonim. The information bottleneck: theory and applications, PhD thesis 2002. https://citeseerx.ist.psu.edu/document?doi=f9357064ef06a30f4533901cbc956bb25af646ad
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Proposition 2.1.2: Let p(z)p(t | x) be a given joint distribution. Then the prior distribution p(t) that
minimizes Dy 1 [p(z)p(t | z)|p(z)p(t)] is the corresponding marginal distribution, i.e.,

p*(t) = pla)p(t | z) . @7)

Note that at the minimum, Dy [p(z)p(t | z)|p(z)p(t)] is exactly the information, I(7"; X') calculated
on the basis of the joint distribution p(x)p(t | =). Hence, this K L divergence is an upper bound for the
compression-information term, and equality holds if and only if p(#) is set to be the marginal distribution of
p(x)p(t | x). This proposition allows us to rewrite the definition of the rate-distortion function as a double
minimization:
R(D) = min min Dip[p(z)p(t| z)|p(x)p(t)] - (2.8)

(D) {p(®)} {p(t|z): (d(z,t) )<D} P )] |
If A is the set of all joint distributions p(¢, x) with marginal p(z) that satisfy the distortion constraint and if
B is the set of the product distributions p(¢)p(z) with some normalized p(t), we get

D) = mi in D b| .
R(D) = min min Dk r[a]?)

Figure 2.3: An illustration of alternating minimization of the Euclidean distance between two convex sets in R 2.
Since the minimized function (i.e., the Euclidean distance between the sets) is convex, the algorithm will always
converge to the global minimum distance, independently of the initialization. This is also true for minimizing the K L
divergence between two convex sets of probability distributions.

Source: Slonim. The information bottleneck: theory and applications, PhD thesis 2002. https://citeseerx.ist.psu.edu/document?doi=f9357064ef06a30f4533901cbc956bb25af646ad
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 172



https://northeastern-datalab.github.io/cs7840/
https://citeseerx.ist.psu.edu/document?doi=f9357064ef06a30f4533901cbc956bb25af646ad

Rate distortion theory
P(XY)~I(X:Y)

@ p(t)

minI(T,;X) max I(T;Y)

Figure 2.5: The information between X and Y is squeezed through the compact “bottleneck” representation, 7. In
particular, under some constraint over the minimal level of relevant information, I(7;Y"), one is trying to minimize
the compression-information, 7(7'; X') (note the similarity of the left part of the figure with Figure 2.1). In this
formulation the IB principle extends the rate distortion problem, in the sense that given p(x, y), the setup of the problem
is completed and no distortion measure need be defined. An equivalent formulation is to constraint the compression-
information to some maximal level, and then try to maximize the relevant information term. In this formulation the IB
principle is somewhat reminiscent of the channel coding problem. Specifically, in this case one is trying to maximize
the information transmitted through a (compact) channel, where the channel properties are governed by the constraint
over the compression-information.

Source: Slonim. The information bottleneck: theory and applications, PhD thesis 2002. https://citeseerx.ist.psu.edu/document?doi=f9357064ef06a30f4533901cbc956bb25af646ad
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 173
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Pre-class conversations

e Projects!
e Please start writing extensive feedback (you can post later)
e Today: Information Bottleneck Theory (2/2)

e Lecture 20 (Mon 11/18):
Channel capacity [Cover Thomas'06: Ch 7]

o Lecture 21 (Wed 11/20):

e Rate Distortion & Information bottleneck theory

Distortion Theory (1/2) [Cover Thomas'06: Ch 10] o [Cover,Thomas'06] Elements of Information Theory. 2nd ed, 2006: Ch 10 Rate distortion theory

e Lecture 22 (Mon 11/25): o [Tishby+'99] Tishby, Pereira, Bialek. The information bottleneck method. The 37th annual Allerton Conference
Distortion Theory (2/2) [Cover Thomas'06: Ch 10] on Communication, Control, and Computing. pp. 368-377.
Python notebooks: 232 o [Harremoes, Tishby'07] The Information Bottleneck Revisited or How to Choose a Good Distortion Measure.

o (Wed 11/27): no class (Fall break) International Symposium on Information Theory, 2007.

o Lecture 23 (Mon 12/2): Information Bottleneck Theory @Zﬁigv;lazg'w] Zaslavsky, Kemp, Regier, Tishby. The Efficient compression in color naming and its evolution.

e Lecture 24 (Wed 12/4): Information Bottleneck Theor
( 4) y ebb+24] Webb, Frankland, Altabaa, Segert, Krishnamurthy, Campbell, Russin, Giallanza, Dulberg, OReilly,

) \ afferty, Cohen. The Relational Bottleneck as an Inductive Bias for Efficient Abstraction. Trends in Cognitive
Project presentations Science, 2024.

¢ Lecture 25 (Mon 12/9): P4 Project presentations o [Segert'24] Maximum Entropy, Symmetry, and the Relational Bottleneck: Unraveling the Impact of Inductive
e Lecture 26 (Wed 12/11): P4 Project presentations Biases on Systematic Reasoning. PhD thesis, Neuroscience @ Princeton, 2024.

o [Ren,Li,Leskovec20] Graph Information Bottleneck, NeurIPS, 2020.

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 175
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Please leave lots of textual feedback on what is most helpful

1. Motivation: foundations & intuitive applications of information theory, n >> 10

2. Topics:

d.

b
C.
d.
e

basics = compression/encoding — channel/transmission — distortion — IB
logistic regression, cross entropy, KL divergence as loss function (even k-means)
axioms: intended as separate, ended up mixed into the topics (probability axioms)
AEP, method of types, KL divergence, proofs

Data management applications: information inequalities, cardinality estimation, normal forms,
approximate acyclic schemas, explanation tables

3. Regular feedback (in both directions):

a. Quick and often project feedback. Was not always used. More guidance on projects?
b. Scribes: quick feedback on Piazza, more time for final versions on Canvas. Any procedural way to
improve the scribe process? Scribes vs. homeworks.
c. Online feedback form for instructors was used very rarely? Why? Can't be that you did not spot any
errors in the slides. More interactivity (break-out sessions). Maybe more flipped (posting links upfront)
4. Other?

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 177
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One reason why | don't post slides *before™ lecture

From the preamble of one of the best physics books ever: ,How to read +his book”

We will also have vw-class
whiteboard lectures and exercises!

Source: "Thinking Physics: Understanding Practical Reality”, Lewis Carroll Epstein, 1979-2009. https://www.goodreads.com/book/show/268266.Thinking Physics
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 178
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Efficient compression in color naming and its evolution

Noga Zaslavsky®?', Charles Kemp®?, Terry Regier®?, and Naftali Tishby®®

2Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem 9190401, Israel; ?PDepartment of Linguistics, University of California,
Berkeley, CA 94720; ‘Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213; 9Cognitive Science Program, University of California,
Berkeley, CA 94720; and ¢The Benin School of Computer Science and Engineering, The Hebrew University, Jerusalem 9190401, Israel

Edited by James L. McClelland, Stanford University, Stanford, CA, and approved June 18, 2018 (received for review January 11, 2018)
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Fig. 1. (A) Shannon’s (23) communication model. In our instantiation of
this model, the source message M and its reconstruction M are distributions
over objects in the universe /. We refer to these messages as meanings. M is
compressed into a code, or word, W. We assume that W is transmitted over M U
an idealized noiseless channel and that the reconstruction M of the source

message is based on W. The accuracy of communication is determined by

comparing M and M, and the complexity of the lexicon is determined by the Rﬁz I(M;W)] W(M) I(U; W)T=Ap

mapping from M to W. (B) Color communication example, where U is a set "complexity" "relevance"

of colors, shown for simplicity along a single dimension. A specific meaning minimal rate "accuracy"”

m is drawn from p(m). The speaker communicates m by uttering the word (maximally maximally

“blue,” and the listener interprets blue as meaning m. compressed) informative
Source: Zaslavsky, Kemp, Regier, Tishby. Efficient compression in color naming and its evolution, PNAS 2018. https://doi.org/10.1073/pnas.1800521115 180
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Fig. 2.

(Upper) The WCS stimulus palette. Columns correspond to equally
spaced Munsell hues. Rows correspond to equally spaced lightness values.
Each stimulus is at the maximum available saturation for that hue/lightness
combination. (Lower) These colors are irregularly distributed in 3D CIELAB
color space.

Encoders. Our primary data source for empirically estimating
encoders was the World Color Survey (WCS), which contains
color-naming data from 110 languages of nonindustrialized soci-
eties (24). Native speakers of each language provided names for
the 330 color chips shown in Fig. 2, Upper. We also analyzed
color-naming data from English, collected relative to the same
stimulus array (25). We assumed that each color chip c is asso-
ciated with a unique meaning m. and therefore estimated an
encoder ¢;(w|m.) for each language ! from the empirical dis-
tribution of word w given chip c (see data rows in Fig. 4 for
examples). Each such encoder corresponds to a representative
speaker for language [, obtained by averaging naming responses
over speakers.

Source: Zaslavsky, Kemp, Regier, Tishby. Efficient compression in color naming and its evolution, PNAS 2018. https://doi.org/10.1073/pnas.1800521115
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In our formulation the speaker represents her intended _S_"_“_“je Rueagar @ m @ AeRRHEP
meaning M by W, using an encoder gq(w|m), and thus the (m) O glwim) W NESESSS S g (rinfw)
complexity is given by the informationrate e complexity .-
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Source: Zaslavsky, Kemp, Regier, Tishby. Efficient compression in color naming and its evolution, PNAS 2018. https://doi.org/10.1073/pnas.1800521115
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In our formulation the speaker represents her intended _S_"_“_”C_e Rueagar — SERmHCr
meaning M by W, using an encoder g(w|m), and thus the p(m) @ (w|m) @ - @ g(rn|w)
complexity is given by the information rate ""'-~-..._____c_omplex-t_x ____________
B m m
Z p wlm log M’ [2] — ‘blue’ (_#u_}ﬁ
q(w)
— —
N
%
1(X;X):=H(X) — HX|X) HI1X) = EpHY1X = x)]

= Z p(x) - p(%|x) - Ig (p(flx)) - Z p(x) - HY|X =x)

" Zp(x) Zp(xpc) 8(>m)
H(N 2p(x> 5(5 ) p(f)=Zp(x>-p(f|x)
= ;p(x) -p(X[x) - 1g (p(lf))

Source: Zaslavsky, Kemp, Regier, Tishby. Efficient compression in color naming and its evolution, PNAS 2018. https://doi.org/10.1073/pnas.1800521115
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The accuracy of a lexicon is inversely related to the cost
of a misinterpreted or distorted meaning. While RDT allows
an arbitrary distortion measure, IB considers specifically the
Kullback-Leibler (KL) divergence,

D mi)= 3" m(w)log ™), 3]

ueEU m(u)

which is a natural distortion measure between distributions. [For
a general justification of the KL divergence see ref. 26, and in
the context of IB see ref. 18.] Note that this quantity is 0 if and
only if the listener’s interpretation is accurate; namely, m = m.

The distortion between the speaker and the ideal listener is the
expected KL divergence,

E, | DIM|| )] = Zp g(w|m)D [m|n).  [4]

In this case, the accuracy of the lexicon is directly related to
Shannon’s mutual information,

o [ DIM| 81| = 1(M; U) — 1,(W; V). [5]

Since I(M; U) is independent of ¢(w|m), minimizing distortion
is equivalent to maximizing the informativeness, or accuracy, of
the lexicon, quantified by I,(W; U). This means that mutual
information appears in our setting as a natural measure both for
complexity and for semantic informativeness.

source encoder decoder
----- @ @ Channel @
(m) (w|m) 1(m|w)

B m ’I;I/
JE ‘blue, Jﬁ
< Ui=> A W=
— —

M U

Re=I1(M; W) | *W (M) 7~ 1(U; W)1=p,

"complexity" "relevance"
minimal rate "accuracy”
(maximally maximally
compressed) informative

Source: Zaslavsky, Kemp, Regier, Tishby. Efficient compression in color naming and its evolution, PNAS 2018. https://doi.org/10.1073/pnas.1800521115
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Component IB (1999) IB (current)
Target variable / universe yey uelU
Source variable TEX m e M
Speaker’s intended meaning p(y|z) m(u)
Communication Source distribution / need p(x) p(m)
model Cluster / word eX wEW
Encoder / naming distribution q(Z|x) q(w|m)
Decoder & — q(y|&) q(h|w)
Listener’s interpreted meaning q(y|Z) My (u)
Complexity ILi(X; X) I, (M; W)
Optimization Distortion / communicative cost  D[p(y|z)||q(y|%)] D[m||r]
principle Accuracy I,(X;Y) I,(W;U)
Tradeoff parameter B B

A x

source encoder decoder -
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1.1. Summary of notation. We use capital letters to denote random variables (e.g. M and U), calligraphic letters to
denote their support (e.g. M and U), and lower case letters to denote a specific realization (e.g. m and u). In our

formulation we consider a finite set of distributions M. Each element in this set (i.e., each m € M) is a distribution
over the set U. In other words, m is a function that takes u as an argument. We use the notation m(u) when we wish

M U

to make explicit that m is a function of u, or when we wish to denote the probability of a specific u according to m.
= p(u|m). Table S1 summarizes

It may be helpful to think of m(u) in terms of conditional probabilities, i.e., m(u)

Re=I1(M; W) | *W (M) 7~ 1(U; W)1=p,

"complexity" "relevance"
minimal rate "accuracy”
(maximally maximally
compressed) informative

Source: Zaslavsky, Kemp, Regier, Tishby. Efficient compression in color naming and its evolution, PNAS 2018. https://doi.org/10.1073/pnas.1800521115
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In this case, the listener receives w and interprets it as
meaning m based on her interpretation policy ¢(m|w), which is a
decoder. We focus on the efficiency of the encoder and therefore
assume an optimal Bayesian listener with respect to the speaker
(see SI Appendix, section 1.2 for derivation), who interprets every
word w deterministically as meaning

()= 3 q(m|w)m(u), [1]

meM

where ¢(m|w) is obtained by applying Bayes’ rule with respect to
¢(w|m) and p(m).

In this model, different color-naming systems correspond
to different encoders, and our goal is to test the hypothe-
sis that encoders corresponding to color-naming systems found
in the world’s languages are information-theoretically effi-
cient. We next describe the elements of this model in further

AX

.
ov*
.
«®
R
.
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*

source encoder decoder -
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Re=I1(M; W) | *W (M) 7~ 1(U; W)1=p,

"complexity" "relevance"
minimal rate "accuracy”
(maximally maximally
compressed) informative

Source: Zaslavsky, Kemp, Regier, Tishby. Efficient compression in color naming and its evolution, PNAS 2018. https://doi.org/10.1073/pnas.1800521115
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 186



https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1073/pnas.1800521115

AX
p(ulw) p(ujm)

e “encoder decoder -
----- @ @ Channel @ @
(m) (w|m) 1(m|w)

o**
.
.
.
.
.®
.
.
.
.
.t
.

.
",
",
““““
. .
. .
. .
. .
. .
. .
.
. .
* LY
. .
T

.

‘e
.
.
.
Y
e
»
.
»
"
.
taa,

1.2. Bayesian listener. We show/that the ideal listener with respect to a given speaker is an optimal Bayesian decision compIeX|ty
maker. In our case, this megns that we can assumepan ideal listener that always decodes w deterministically by
. . A _ m m
interpreting it as meaning 1., (u) = . oq ¢(m|w)m(u), where g(m|w) is obtained by applying Bayes’ rule, ‘blue’ m A
oy = Lelmlp(m) s cus
q(w) E— —
where g(w) =3, p(m')g(w|m’). To show that this Bayesian listener is optimal, assume that the speaker’s encoder
is given by g(w|m). The optimal listener for this speaker is defined by the decoder g(m|w) that minimizes
Fola] = L(M; W) = BI(W;U) = I,(M; W) - B (I(M; U) — E, [ DIM]|1]) ) , 52
where the second equality follows from Eq. (5). Note that I(M;U) is constant in g and I,(M;W) depends on the
encoder but not on the decoder. Only the last term depends on the decoder, and it holds that
E, [DIMINL)] = 3 p(m)awlm)a(ilw)D ]l 3]
= Y q(w)g(mlw)q(mw)D [m|w] [S4] M U
> " gq(w)argmin y  g(m|w)D [m||r’] [S5]
w ' m
Therefore, there is a deterministic decoder g(7|w) that minimizes Eq. (S2), Rﬁz I (M ) W)l W (M ) I (U; W) T=AB
n H n n n
A 1 if i = argmin Eqgmyuy [D [ml#?] complexity "relevanc?
q(m|w) = g otherwisem : [S6] minimal rate accuracy
(maximally maximally
. . . A I . A / . . . . . . A
Differentiating Eq(mw) [D [m||77']] with respect to 7 and equating to 0 gives that the minimum is attained at 7. compressed) informative

Since ), M4, (u) = 1 we did not need to impose this normalization constraint on the optimization, and because the
KL divergence is convex in both arguments 7, is indeed the minimum.

Source: Zaslavsky, Kemp, Regier, Tishby. Efficient compression in color naming and its evolution, PNAS 2018. https://doi.org/10.1073/pnas.1800521115
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If the speaker and the listener are unwilling to tolerate any
information loss, the speaker must assign a unique word to each
meaning, which requires maximal complexity. However, between
the two extremes of minimal complexity and maximal accuracy,
an optimal trade-off between these two competing needs can be
obtained by minimizing the IB objective function,

Folg(w|m)]=I,(M; W) — B1,(W; U), [6]

=1

M U

Re=I1(M; W) | *W (M) 7~ 1(U; W)1=p,

Fig. 3. Color-naming systems across languages (blue circles) achieve near-
optimal compression. The theoretical limit is defined by the IB curve (black).
A total of 93% of the languages achieve better trade-offs than any of their
hypothetical variants (gray circles). Small light-blue Xs mark the languages
in Fig. 4, which are ordered by complexity.

Source: Zaslavsky, Kemp, Regier, Tishby. Efficient compression in color naming and its evolution, PNAS 2018. https://doi.org/10.1073/pnas.1800521115

"complexity" "relevance"
minimal rate "accuracy”
(maximally "semantic
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A Culina, 8; = 1.024 Agarabi, 5, = 1.033 Dyimini, 5, = 1.038 English, 8, = 1.085

o el (oSl bl il B
| | I

Data

B
1 =
Data
0 -
1 -
1B X ) VY Structure of Semantic Categories. Previous work (e.g., ref. 8) has
0 - 0 - [P P sometimes summarized color-naming responses across multiple
F20 F40 F1 F20 speakers of the same language by recording the modal naming
Fig. 4. Similarity between color-naming distributions of languages (data rows) and the corresponding optimal encoders at 3, (IB rows). Each color category response for eaCh Chip, resulting in a hard Categorical partition

is represented by the centroid color of the category. (A) Mode maps. Each chip is colored according to its modal category. (B) Contours of the naming : : .
distribution. Solid lines correspond to level sets between 0.5 and 0.9; dashed lines correspond to level sets of 0.4 and 0.45. (C) Naming probabilities along of the stimulus array, called a mode map (C.g., Flg 4A) How

the hue dimension of row F in the WCS palette. €ver, IB predicts that if some information loss is allowed, i.e.,
B < oo, then an efficient encoder would induce soft rather than
hard categories. T'his Tollows from the structure of the 1B optima

, glven by

gs(w|m) o« gs(w) exp(—BD[m|| 7)), [7]

which is satisfied self-consistently with Eq. 1 and with the
marginal gg(w). We therefore evaluate how well our model
accounts for mode maps, but more importantly we also evaluate
how well it accounts for the full color-naming distribution across

Source: Zaslavsky, Kemp, Regier, Tishby. Efficient compression in color naming and its evolution, PNAS 2018. https://doi.org/10.1073/pnas.1800521115
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2. Least informative source

2.1. Definition for a given language. We begin by defining a least informative prior over color chips, with respect to a
given naming distribution ¢;(w|c). Because we assumed that each chip c is associated with a unique meaning m.., any
prior p(c) induces a source distribution by setting p(m.) = p(c). One common approach for obtaining uninformative
priors is by invoking the maximum entropy principle. However, in our case the maximum entropy distribution over
color chips is simply the uniform distribution. Another natural approach in our setting is to find a distribution that
maximizes the entropy of ¢ while minimizing the expected uncertainty over c give a term w in the language. That is,

pi(c) = argmax H(C) — Hy(C|W) [S10]

p(c)

q\w

where H,(C|W) = — p(c)g(wlc) log BE%) is the conditional entropy, and g(clw) = 292 g the posterior
q c,w ( )
distribution of ¢ given w.

This definition has two interesting interpretations, in addition to being a constrained maximum entropy distribution.

First, note that

I,(W;C) = argmax H(C) — Hy(C|W), [S11]

p(c)

which implies that p;(c) maximizes the mutual information between colors and words. This type of prior distribution
is also called a capacity achieving prior, and can be evaluated using the Blahut-Arimoto algorithm (10, 11). Note that
in the IB model, a language [ would be maximally complex if the source distribution were defined from p;(c). This
contrasts with the IB principle, which aims to minimize complexity. Second, p;(c) is considered the least informative
prior over c¢ in the sense that it minimizes information about the posterior g(c|w) by maximizing the KL divergence
between the prior and posterior. This interpretation 10lows I he 1dentity

LW:0) = Y qw)Dlgcw)p(e], —IN/Of (about) @

w

and it is closely related to the notion of reference priors in Bayesian inference (12). Reference priors are considered
objective priors in the sense that they depend solely on the given distribution g(w|c), but not on other assumptions
that may reflect subjective prior beliefs.

I(X:Y) =
Dy (p (e, Ylp(x) - p(¥))

DKL(pX,Yl |px - py)
DKL(pY|X| |PY)

Source: Zaslavsky, Kemp, Regier, Tishby. Efficient compression in color naming and its evolution, PNAS 2018. https://doi.org/10.1073/pnas.1800521115
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Fig. 5. Bifurcations of the IB color categories (Movie S1). The y axis shows
the relative accuracy of each category w (defined in Materials and Methods).
Colors correspond to centroids and width is proportional to the weight of
each category, i.e., gz(w). Black vertical lines correspond to the IB systems
in Fig. 4.
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Fig. S7. Uniform source. Information plane (A) and bifurcation diagram (B) evaluated for the uniform source. For more details see captions of Fig.3 and
Fig.5 in main text.
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Fig. S5. CIELUV space. Information plane (A) and bifurcation diagram (B) for the full LI source. These figures are similar to Fig.3 and Fig.5 in main text,

but they are based on the results for CIELUV instead of CIELAB.

Source: Zaslavsky, Kemp, Regier, Tishby. Efficient compression in color naming and its evolution, PNAS 2018. https://doi.org/10.1073/pnas.1800521115
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efficient abstraction
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Source: Webb, Frankland, Altabaa, Segert, Krishnamurthy, Campbell, Russin, Giallanza, Dulberg, OReilly, Lafferty, Cohen. The Relational Bottleneck as an Inductive Bias for Efficient Abstraction,
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Figure 1. The relational bottleneck. An inductive bias that prioritizes the representation of relations (e.g., ‘same’ versus
‘different’) and discourages the representation of the features of individual objects (e.g., the shape or color of the objects
in the images). The result is that downstream pr ocessing is driven primarily, or even exclusively, by pattems of relations
and can therefore systematically generalize those patterns across distinct instances (e.g., the common ABA pattern
displayed on both left and right), even for completely novel objects. The approach is illustrated here with same/different rela-
tions, but other relations can also be accommodated. Note that this example is intended only to illustrate the overall goal of
the relational bottleneck framework. Figure 2 in the main text depicts neural architectures that implement the approach.

Source: Webb, Frankland, Altabaa, Segert, Krishnamurthy, Campbell, Russin, Giallanza, Dulberg, OReilly, Lafferty, Cohen. The Relational Bottleneck as an Inductive Bias for Efficient Abstraction,

2024. Trends in Cognitive Sciences, 2024. https://doi.org/10.1016/j.tics.2024.04.001
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Relational Query Patterns

Definition 9 (Query signature). A table reference in a query expression q is any existentially or
universally quantified reference to an input table. The signature S of q is the ordered list of its table
references.

Definition 10 (Dissociated query). A dissociation of a query expression g with signature § is a
modified query ¢’ with S being replaced with a table signature S’ of same size (i.e. |S’| = |S]),
where every table in 8’ has a different name, and every table S’[i] has the same schema as table

S|[i] for all i€ [|S]].

Definition 11 (Relational pattern). Given a query expression g with signature S. The relational
pattern of q is the logical function defined by its dissociated query ¢g’(S’).

Definition 12 (Pattern isomorphism). Given two logically-equivalent queries ¢; and g, with
signatures S; and S, and dissociated queries q;(S;) and q,(S;), respectively. The queries are
pattern-isomorphic iff q7(S]) = q,(7(S;])) for some permutation 7. In that case, we call the bijection
S1[i] — S;[7(i)] between the query signatures a pattern-preserving mapping.

Definition 15 (Similar Patterns). Given two queries q; and q,. The queries use a similar pattern iff
there is a schema mapping A from ¢, to g; s.t. A(q1) and g, are pattern-isomorphic.

Source: Gatterbauer, Dunne, On the Reasonable Effectiveness of Relational Diagrams: Explaining Relational Query Patterns and the Pattern Expressiveness of Relational Languages. SIGMOD

2024. https://doi.org/10.1145/3639316 , https://relationaldiagrams.com/
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2. Pattern similarity (across different schemas)

Pataloo

"R —Sailor,
A—sid

sShame
.-"

RELATIONAL PATTERN (informal):

1. Only focus on extensional atoms of a query

2. Treat each repeated table as different
(“dissociated queries”)

3. The logical function defined by that query
and table signature is its relational pattern

Q: “Find sailors who reserved all boats”
TgqSailor — 14(7Tq pig(Sailor X Boat

via approprm-l'@ renamings of cows+aw+s
and names (or positional permutation)

Source: Gatterbauer, Dunne, On the Reasonab ectiveness of Relational Diagrams: SIGMOD 2024. https://doi.org/10.
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern—datalab.,qithub.io/cs7840/

————————————————————
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Figure 2: Implementing the relational bottleneck. Three neural architectures that implement
the relational bottleneck. (a) Emergent Symbol Binding Network (ESBN) [52]. (b) Compositional
Relation Network (CoRelNet) [53]. (c) Abstractor [54]. In all cases, high-dimensional inputs (e.g.,
images) are processed by a neural encoder (e.g., a convolutional network), yielding a set of object
embeddings O. These are projected to a set of keys K and queries Q, which are then compared
yielding a relation matrix R, in which each entry is an inner product between a query and key.
Abstract values V are isolated from perceptual inputs (the core feature of the relational bottleneck),
and depend only on the relations between them.

Source: Webb, Frankland, Altabaa, Segert, Krishnamurthy, Campbell, Russin, Giallanza, Dulberg, OReilly, Lafferty, Cohen. The Relational Bottleneck as an Inductive Bias for Efficient Abstraction,

2024. Trends in Cognitive Sciences, 2024. https://doi.org/10.1016/j.tics.2024.04.001
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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In this review, we highlight an emerging approach that suggests a novel reconciliation of these
two traditions. The central feature of this approach is an inductive bias that we refer to as the
relational bottleneck: a constraint that biases neural network models to focus on relations between
objects rather than the attributes of individual objects. This approach enables the data efficiency
associated with-symbolic cognitive models—wimie retaifiing the scalable training procedures associated
with neural network models (see Box 1 for further discussion of neuro-symbolic approaches). In the

e The relational bottleneck principle suggests a novel way to bridge the gap. By restricting in-

formation processing to focus only on relations, the approach encourages abstract symbol-like
mechanisms to emerge in neural networks.

e We present an information theoretic formulation, and review neural network architectures that

implement the principle, enabling rapid learning and systematic generalization of relational pat-

terns.
e

Source: Webb, Frankland, Altabaa, Segert, Krishnamurthy, Campbell, Russin, Giallanza, Dulberg, OReilly, Lafferty, Cohen. The Relational Bottleneck as an Inductive Bias for Efficient Abstraction,
2024. Trends in Cognitive Sciences, 2024. https://doi.org/10.1016/j.tics.2024.04.001
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