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Pre-class conversations

« Are you having fun with Python files?
e Intended Topics & Feedback

e Lecture 19 (Wed 11/13):

e Lecture 20 (Mon 11/18):
Channel capacity [Cover Thomas'06: Ch 7]

e Lecture 21 (Wed 11/20):
Rate Distortion Theory [Cover Thomas'06: Ch 10]

e Lecture 22 (Mon 11/25):

dnformationBettleneck Theory k . \)

e (Wed 11/27): no class (Fall break)
¢ Lecture 24 (Wed 12/4): Placeholder / B

Project presentations

e Lecture 25 (Mon 12/9): P4 Project presentations
¢ Lecture 26 (Wed 12/11): P4 Project presentations

Logistic Regression (2/2) [Luce's choice axiom, Bradley-Terry model]
Maximum Entropy (2/2) [Occam, Kolmogorov, Minimum Description Length (MDL)]

e Lecture 23 (Mon 12/2): Pmbﬂbiﬂmamw(iom7 E

e Today:

* Rate Distortion & Information bottleneck theory

o [Cover,Thomas'06] Elements of Information Theory. 2nd ed, 2006: Ch 10 Rate distortion theory
o [Tishby+'99] Tishby, Pereira, Bialek. The information bottleneck method. The 37th annual Allerton Conference

on Communication, Control, and Computing. pp. 368-377.

o [Harremoes, Tishby'07] The Information Bottleneck Revisited or How to Choose a Good Distortion Measure.

International Symposium on Information Theory, 2007.

o [Zaslavsky+'18] Zaslavsky, Kemp, Regier, Tishby. The Efficient compression in color naming and its evolution.

PNAS, 2018.

o [Webb+'24] Webb, Frankland, Altabaa, Segert, Krishnamurthy, Campbell, Russin, Giallanza, Dulberg, OReilly,

Lafferty, Cohen. The Relational Bottleneck as an Inductive Bias for Efficient Abstraction. Trends in Cognitive
Science, 2024,

o [Segert'24] Maximum Entropy, Symmetry, and the Relational Bottleneck: Unraveling the Impact of Inductive

Biases on Systematic Reasoning. PhD thesis, Neuroscience @ Princeton, 2024.

o [Ren,Li,Leskovec20] Graph Information Bottleneck, NeurIPS, 2020.

- Rate Distortion (basically lossy transmission)

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Channel
Capacity

Largely based on chapter 7 of
[Cover, Thomas'06] Elements of Information Theory, 2006. https://www.doi.org/10.1002/047174882X

https://northeastern-datalab.github.io/cs7840/
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"Operational” channel capacity is the highest rate R (in bits) per channel use

Shannon's channel coding theorem:
both are identical, i.e. the channel
capacity can be achieved in the limit by
using codes with a long block length.

Theorem 7.7.1 (Channel coding theorem)
less channel, all rates below capacity C are achievable. Specifically, for
every rate R < C, there exists a sequence of (2"%, n) codes with maximum

probability of error A\ — 0.

Conversely, any sequence of (2"%, n) codes with A — 0 must have

R <C.

Source: [Cover, Thomas'06] Elements of Information Theory, 2006. Chapter 7 channel capacity, https://www.doi.org/10.1002/047174882X
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Capacity of binary symmetric cha
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How do we calculate
the chawel capacity C

Hence, capacity for binary symmetric channelisC =1 — H(q)

Source: [Cover, Thomas'06] Elements of Information Theory, 2006. Chapter 7 channel capacity, https://www.doi.org/10.1002/047174882X

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Capacity of binary symmetric channel
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Source: [Cover, Thomas'06] Elements of Information Theory, 2006. Chapter 7 channel capacity, https://www.doi.org/10.1002/047174882X
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Capacity of binary symmetric channel

n
m n m
> Encoder |——> Channel > Decoder >

message p(y|x) message estimate

channel capacity C = maxI(X;Y)
p(x)

I(X;Y) = H(Y) — H(Y|X)
0 Sl 0 i YxP(x) HY|X = x)

r
Max of H(Y) = 1 (thus also max of I(X;Y))
q achieved for p(Y=0) =r(1—q) + (1 —r)q = 0.5,
thus r = 0.5 uniform input and output distrib.
1-r 1 = 1
q <1-H(q)

Hence, capacity for binary symmetric channelisC =1 — H(q)

Source: [Cover, Thomas'06] Elements of Information Theory, 2006. Chapter 7 channel capacity, https://www.doi.org/10.1002/047174882X
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Capacity of binary symmetric channel

n
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> Encoder > Channel > Decoder >
message p(y|x) message estimate

channel capacity C = maxI(X;Y)
p(x) Tryivg to do i+ the other way
aromd should work but becomes

I(X;Y) = HX) — H(X|y) far wmore complicated @

.0 1—gq 0 H(r)/ H(X|Y 0) - p(Y 0) +H(XIY 1) - p(Y 1)
q (1-qr +{(1 —r)/;ﬁ')(l —q)
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qr
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Source: [Cover, Thomas'06] Elements of Information Theory, 2006. Chapter 7 channel capacity, https://www.doi.org/10.1002/047174882X
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Capacity of binary symmetric channel

m Xn yn m
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message p(y|x) message estimate

rate R=I1(X;Y)=H(Y) — H(q)

Source symbols
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Cav qou create a code that achieves that rate?

How much does this optimized code buys us over the ?
most vaive code you can imagine? "

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 10
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Capacity of binary symmetric channel

m Xn yn m
> Encoder > Channel > Decoder >
message p(y|x) message estimate

rate R=I1(X;Y)=H(Y) — H(q)

Source symbols

& frequency what is the maximal achievable rate? Assume q = 0.2:
channel capacity C = maxI(X;Y)=C =1 - H(q)
A v p(x)
=1—H(0.2)
B 1, =1-0.722=0.278
C_ | %
D 1%

Cav qou create a code that achieves that rate?
How much does this optimized code buys us over the ’?
most vaive code you can imagine? "

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 1 1
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Capacity of binary symmetric channel

m Xn yn m
> Encoder > Channel > Decoder >
message p(y|x) message estimate

rate R=I1(X;Y)=H(Y) — H(q)

Source symbols

& frequency what is the maximal achievable rate? Assume q = 0.2:
channel capacity C = maxI(X;Y)=C =1 - H(q)
A v p(x)
=1—H(0.2)
B Ya =1-0.722=0.278
C_ | %
D 1%

symbol/codeword/frequency
Code R, = 1.000 - 0.722 = 0.278

Code A |0 )

opt.: A |10 % opt:
Compare C |110 |
achievable rates D [111 |%

for optimized vs.
most vnaive code

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 12
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Capacity of binary symmetric channel

m Xn yn m
> Encoder > Channel > Decoder >
message p(y|x) message estimate

rate R=I1(X;Y)=H(Y) — H(q)

Source symbols

& frequency Code Code
naive: naive:
A | ’) Achievable rate 7
| [ |
B Ya
C Yz
D Vs

symbol/codeword/frequency

Code R, = 1.000—-0.722 = 0.278

Code A |0 )

opt.: A |10 A opt:
C |110 |
D 111 |%

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 13
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Capacity of binary symmetric channel
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Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 14
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Distortion
Theory

Largely based on chapter 10 of
[Cover, Thomas'06] Elements of Information Theory, 2006. https://www.doi.org/10.1002/047174882X

https://northeastern-datalab.github.io/cs7840/
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Rate distortion theory

« Afinite representation of a continuous RV can never be perfect
« How well can we represent it?

« Requires a notion of "goodness" of a representation
. distance between RV and its representation

e Rate distortion theory:
- Given: source distribution p and a distortion measure d
- Describes: trade-off between and

- Lossy compression framework with zero-error data compression (earlier topics in class)
a special case

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Quantization

e Let X be a continuous RV (e.g. from a Gaussian distribution)
« We approximate X by X

« Using R bits to represent X, then X(X) has 2R possible values
- Example R = 8 bits, then then X has 28 = 256 possible values

. Goal: find the optimal set of values ("representatives") for X and
associated regions ("assignment regions") for each value

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 30
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Source: Bernd Girod, 2012: https://web.stanford.edu/class/ee398a/handouts/lectures/05-Quantization.pdf

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Quantization of a Gaussian

0.4
Assume vou have R = 1 bit
0-35 (2. values). What is the bes+ ’?
0.3 way to quantize a Fanssion .
0.25 distribution
S 02 What is an appropriate measure ’7
0.15 of distor+ion .
0.1
0.05
0
—-2.5

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 32
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Quantization of a Gaussian iy

0.4

Assume vou have R = 1 bit
(2 values). What is the best ’?
way to quantize a Fanssion

0.35

0.3

0.95 distribution ]
S 02 Assume we like to minimize the mean
0.15 of sauared errors (MSE)
0.1
0.05
0
-2.5

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 33
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Quantization of a Gaussian

0.4
Assume vou have R = 1 bit
0-35 (2. values). What is the bes+ ’?
0.3 way to quantize a Fanssion .
0.25 distribution
S 02 Assume we like +o minimize the mean

0.15 of sauared errors (MSE)
0.1

0.05

0

Tf we have 2 values. T+ makes sense to choose = 0 and
< 0. But what should be +he representatives?

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 34
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Quantization of a Gaussian iy

0.4
| Assume you have R = 1 bit
035 I- (2 values). What is the best
0.3 - way to duantize a (anssiav
0.25 |- distribution
S 02 Assume we like +o minimize the meam
0.15 |- of sauared errors (MSE)
01 |
0.05 The (conditional) wmean (centroid) of
ol 1 1 1y | LSl || a region Wminimizes the MSEL

25 2 -15 17705 0 05
—-0.80 X 0.80

Tf we have 2 values. T+ makes sense to choose = 0 and
< 0. But what should be +he representatives?

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 35
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Quantization of a Gaussian

0.4

Assume vou have R = 2 bits
(4 values). What is the best
way to quantize a Fanssion
distribution under MSE?

0.35
0.3

0.25

0.15 Now we need +o determive 3

boundaries {t;}
and 4 reconstruction points
{x;}. But how?

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 36
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Two properties of optimal boundaries and construction points

] {td = Fid)

Given two thresholds t;, t;,; marking the boundaries of a
region. What is the best representative X;,, of the region?

L/ N ?

]
25 2 -15 -1 05 0 0|5 1 1% 2 25
X

ti titq

%} =1t
Given a set of representative values {X;, 1}, which
representative should we choose for any given x?

f?

0 .
25 -2 15 -1 05 0 Jj05 1 15 2 25
X

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 37
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Two properties of optimal boundaries and construction points

] {td = Fid)

Given two thresholds t;, t;,; marking the boundaries of a
region. What is the best representative X;,, of the region?

Ol | The conditional means (conditioned on the region
005 : \ = centroids) minimize the MSE and should thus be
%52 75 1 05 0 o T b 2 25 the reconstruction points.
ti tiy1

%} =1t
Given a set of representative values {X;, 1}, which
representative should we choose for any given x?

0.35

Distortion (MSE) is minimized by assigning values to
: their closest points. Thus a Voronoi partition gives
Ee s St 2 use the optimal thresholds.

0.05

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/



https://northeastern-datalab.github.io/cs7840/

Lloyd-Max scalar quantizer

Problem: For a signal x with given PDF fy(x) find a quantizer with m representative

levels (or "codes" that minimizes

Lloyd-Max quantizer

Input: initial vector X of m representative levels
Repeat {
* Create m — 1 decision thresholds t exactly
half-way between representative levels
* Create m representative levels X as the
centroids of PDF between two successive
decision thresholds
until (likely) convergence}

d = MSE = E[(X — X)°]

5C\i_1+5c\i
2
tit1
fti x'fX(x)dx

[ fr(odx’

i

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/

40


https://northeastern-datalab.github.io/cs7840/

0: representatives: [1 2], d: 1.9414
0.4 1: representatives: [-0.1388 1.9387], d: 0.6019
2: representatives: [-0.3261 1.4456], d: 0.4686
3: representatives: [-0.479 1.1851], d: 0.4073
0.35 4: representatives: [-0.5875 1.0354], d: 0.3814
5: representatives: [-0.661 0.9457], d: 0.3707
0.3 6: representatives: [-0.7095 0.8907], d: 0.3664
7: representatives: [-0.7411 0.8564], d: 0.3646
8: representatives: [-0.7616 0.8349], d: 0.3639
0.25 9: representatives: [-0.7747 0.8214], d: 0.3636
10: representatives: [-0.7831 0.8128], d: 0.3635
< 0.2 11: representatives: [-0.7884 0.8074], d: 0.3634
L~ ' 12: representatives: [-0.7919 0.8039], d: 0.3634
13: representatives: [-0.7941 0.8017], d: 0.3634
0.15 14: representatives: [-0.7954 0.8003], d: 0.3634
15: representatives: [-0.7963 0.7994], d: 0.3634
16: representatives: [-0.7969 0.7989], d: 0.3634
0.1 17: representatives: [-0.7973 0.7985], d: 0.3634
18: representatives: [-0.7975 0.7983], d: 0.3634
19: representatives: [-0.7976 0.7981], d: 0.3634
0.05 20: representatives: [-0.7977 0.798 ], d: 0.3634
21: representatives: [-0.7978 0.798 ], d: 0.3634
0 22: representatives: [-0.7978 0.798 ], d: 0.3634
25 23: representatives: [-0.7978 0.7979], d: 0.3634
24: representatives: [-0.7979 0.7979], d: 0.3634
25: representatives: [-0.7979 0.7979], d: 0.3634
26: representatives: [-0.7979 0.7979], d: 0.3634
27: representatives: [-0.7979 0.7979], d: 0.3634
28: representatives: [-0.7979 0.7979], d: 0.3634
29: representatives: [-0.7979 0.7979], d: 0.3634

Python file 232: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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0: representatives: [2 3], d: 4.9960
0.4 1: representatives: [-0.0176 2.8227], d: 08.7932
2: representatives: [-0.1622 1.8562], d: 0.5800
3: representatives: [-0.3477 1.404 ], d: 0.4579
0.35 4: representatives: [-0.4948 1.1617], d: 0.4027
5: representatives: [-0.5984 1.0216], d: 0.3795
0.3 6: representatives: [-0.6682 0.9373], d: 0.3699
7: representatives: [-0.7143 0.8854], d: 0.3660
8: representatives: [-0.7442 0.8532], d: 0.3645
0.25 9: representatives: [-0.7635 0.8329], d: 0.3638
10: representatives: [-0.7759 0.8201], d: 0.3636
< 0.2 11: representatives: [-0.7839 0.812 ], d: 0.3635
= v 12: representatives: [-0.789 0.8069], d: 0.3634
13: representatives: [-0.7922 0.8036], d: 0.3634
0.15 14: representatives: [-0.7943 0.8015], d: 0.3634
15: representatives: [-0.7956 0.8002], d: 0.3634
16: representatives: [-0.7964 0.7994], d: 0.3634
0.1 17: representatives: [-0.7969 0.7988], d: 0.3634
18: representatives: [-0.7973 0.7985], d: 0.3634
19: representatives: [-0.7975 0.7983], d: 0.3634
0.05 20: representatives: [-0.7976 0.7981], d: 0.3634
21: representatives: [-0.7977 0.798 ], d: 0.3634
0 22: representatives: [-0.7978 0.798 ], d: 0.3634
25 23: representatives: [-0.7978 0.7979], d: 0.3634
24: representatives: [-0.7978 0.7979], d: 0.3634
25: representatives: [-0.7979 0.7979], d: 0.3634
26: representatives: [-0.7979 0.7979], d: 0.3634
27: representatives: [-0.7979 0.7979], d: 0.3634
28: representatives: [-0.7979 0.7979], d: 0.3634
29: representatives: [-0.7979 0.7979], d: 0.3634

Python file 232: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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0: representatives: [2 3], d: 4.9960
0.4 1: representatives: [-0.0176 2.8227], d: 08.7932
2: representatives: [-0.1622 1.8562], d: 0.5800
3: representatives: [-0.3477 1.404 ], d: 0.4579
0.35 4: representatives: [-0.4948 1.1617], d: 0.4027
5: representatives: [-0.5984 1.0216], d: 0.3795
0.3 6: representatives: [-0.6682 0.9373], d: 0.3699
7: representatives: [-0.7143 0.8854], d: 0.3660
8: representatives: [-0.7442 0.8532], d: 0.3645
0.25 9: representatives: [-0.7635 0.8329], d: 0.3638
10: representatives: [-0.7759 0.8201], d: 0.3636
< 0.2 11: representatives: [-0.7839 0.812 ], d: 0.3635
= v 12: representatives: [-0.789 0.8069], d: 0.3634
13: representatives: [-0.7922 0.8036], d: 0.3634
0.15 14: representatives: [-0.7943 0.8015], d: 0.3634
15: representatives: [-0.7956 0.8002], d: 0.3634
16: representatives: [-0.7964 0.7994], d: 0.3634
0.1 17: representatives: [-0.7969 0.7988], d: 0.3634
18: representatives: [-0.7973 0.7985], d: 0.3634
19: representatives: [-0.7975 0.7983], d: 0.3634
0.05 20: representatives: [-0.7976 0.7981], d: 0.3634
21: representatives: [-0.7977 0.798 ], d: 0.3634
0 22: representatives: [-0.7978 0.798 ], d: 0.3634
25 23: representatives: [-0.7978 0.7979], d: 0.3634
24: representatives: [-0.7978 0.7979], d: 0.3634
25: representatives: [-0.7979 0.7979], d: 0.3634
26: representatives: [-0.7979 0.7979], d: 0.3634
27: representatives: [-0.7979 0.7979], d: 0.3634
28: representatives: [-0.7979 0.7979], d: 0.3634
29: representatives: [-0.7979 0.7979], d: 0.3634

Python file 232: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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0: representatives: [-1 0 2 3], d: 0.2671
04 1: representatives: [-1.1411 0.2066 1.4723 2.8227], d: 0.1828
2: representatives: [-1.1172 0.1611 1.303 2.5045], d: 0.1675
3: representatives: [-1.125 0.1123 1.1789 2.2883], d: 0.1567
035 4: representatives: [-1.1458 0.0622 1.08796 2.1395], d: 0.1485
5: representatives: [-1.1718 0.0131 0.9976 2.0323], d: 0.1420
0.3 6: representatives: [-1.1996 -0.0335 0.9285 1.9514], d: 0.1369
7: representatives: [-1.2274 -0.0768 0.8698 1.8878], d: 0.1328
8: representatives: [-1.2542 -0.1165 0.8193 1.8362], d: 0.1296
0.25 9: representatives: [-1.2794 -0.1526 0.7757 1.7935], d: 0.1271
10: representatives: [-1.3027 -0.185 0.7376 1.7575], d: 0.1250
3? 02 11: representatives: [-1.3241 -0.2142 0.7044 1.7268], d: 0.1234
L —g - 12: representatives: [-1.3435 -0.2403 0.6752 1.7004], d: 0.1222
13: representatives: [-1.3611 -0.2637 0.6496 1.6775], d: 0.1212
015 14: representatives: [-1.3771 -0.2846 0.627 1.6576], d: 0.12084
15: representatives: [-1.3914 -0.3032 0.6071 1.6403], d: 0.1198

0.1

67: representatives: [-1.5102 -0.4525 0.4531 1.5107], d: 0.1175
005 68: representatives: [-1.5102 -0.4525 0.4531 1.5106], d: 0.1175
69: representatives: [-1.5102 -0.4525 0.453 1.5106], d: 0.1175
70: representatives: [-1.5102 -0.4526 0.453 1.5106], d: 0.1175
() 71: representatives: [-1.5103 -0.4526 0.453 1.5106], d: 0.1175
-2.5 . . . . . 72: representatives: [-1.5103 -0.4526 0.453 1.5106], d: 0.1175
73: representatives: [-1.5103 -0.4526 0.4529 1.5105], d: 0.1175
74: representatives: [-1.5103 -0.4526 0.4529 1.5105], d: 0.1175
75: representatives: [-1.5103 -0.4527 0.4529 1.5105], d: 0.1175
76: representatives: [-1.5103 -0.4527 0.4529 1.5105], d: 0.1175
77: representatives: [-1.5103 -0.4527 0.4529 1.5105], d: 0.1175
78: representatives: [-1.5103 -0.4527 0.4529 1.5105], d: 0.1175
79: representatives: [-1.5104 -0.4527 0.4529 1.5105], d: 0.1175

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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0: representatives: [-2.5 -1.5 -0.5 0.5 1.5 2.5], d: 0.0849
0 4 1: representatives: [-2.3732 -1.3832 -0.4599 0.4599 1.3832 2.3732], d: 0.0748
. 2: representatives: [-2.2658 -1.2991 -0.4292 0.4292 1.2991 2.2658], d: 0.0686
3: representatives: [-2.182 -1.2349 -0.4059 0.4059 1.2349 2.182 ], d: 0.0647
4: representatives: [-2.1177 -1.1851 -0.3878 0.3878 1.1851 2.1177], d: 0.0622
5: representatives: [-2.0683 -1.1461 -0.3734 0.3734 1.1461 2.0683], d: 0.06087
().:355 6: representatives: [-2.0303 -1.1154 -08.362 0.362 1.1154 2.0303], d: 0.0597
7: representatives: [-2.0809 -1.0912 -0.3529 0.3529 1.0912 2.0009], d: 0.0590
8: representatives: [-1.9779 -1.0722 -0.3456 0.3456 1.0722 1.9779], d: 0.0586
9: representatives: [-1.96 -1.0571 -0.3399 0.3399 1.8571 1.96 1, d: 0.0584
0.3 10: representatives: [-1.946 -1.0452 -8.3353 0.3353 1.0452 1.946 ], d: 8.0582
11: representatives: [-1.9349 -1.0358 -0.3317 0.3317 1.0358 1.9349], d: 0.0581
12: representatives: [-1.9263 -1.0284 -0.3288 0.3288 1.0284 1.9263], d: 0.0581
13: representatives: [-1.9194 -1.0225 -0.3265 0.3265 1.0225 1.9194], d: 0.0580
()_2255 14: representatives: [-1.914 -1.0179 -0.3247 0.3247 1.0179 1.914 ], d: 0.0580
15: representatives: [-1.9098 -1.0142 -0.3232 0.3232 1.0142 1.9098], d: 0.0580
16: representatives: [-1.9064 -1.0112 -0.3221 0.3221 1.0112 1.9064], d: 0.0580
1;2\ 17: representatives: [-1.9037 -1.0089 -0.3212 0.3212 1.0089 1.9037], d: 0.0580
()_22 18: representatives: [-1.9016 -1.0071 -0.3205 0.3205 1.0071 1.9016], d: 0.0580
t’ 19: representatives: [-1.8999 -1.0856 -0.3199 0.3199 1.0856 1.8999], d: 0.0580
20: representatives: [-1.8986 -1.0045 -0.3194 0.3194 1.0045 1.8986], d: 0.0580
21: representatives: [-1.8976 -1.0036 -0.3191 0.3191 1.0036 1.8976], d: 0.0580
0'15 22: representatives: [-1.8968 -1.0829 -0.3188 0.3188 1.8029 1.8968], d: 0.0580
23: representatives: [-1.8961 -1.0023 -0.3186 0.3186 1.0023 1.8961], d: 0.0580
24: representatives: [-1.8956 -1.0818 -0.3184 0.3184 1.0818 1.8956], d: 0.0580
25: representatives: [-1.8952 -1.0015 -0.3183 0.3183 1.0015 1.8952], d: 0.0580
0 1 26: representatives: [-1.8948 -1.0812 -0.3181 0.3181 1.8012 1.8948], d: 0.8580
" 27: representatives: [-1.8946 -1.001 -0.3181 0.3181 1.0801 1.8946], d: 0.8580
28: representatives: [-1.8944 -1.0008 -0.318 0.318 1.0008 1.8944], d: 0.0580
29: representatives: [-1.8942 -1.0806 -0.3179 0.3179 1.0006 1.8942], d: 0.08580
0 05 30: representatives: [-1.8941 -1.0805 -0.3179 0.3179 1.8005 1.8941], d: 0.8580
" 31: representatives: [-1.894 -1.0004 -0.3178 0.3178 1.0004 1.894 ], d: 0.0580
32: representatives: [-1.8939 -1.0004 -0.3178 0.3178 1.0004 1.8939], d: 0.0580
33: representatives: [-1.8938 -1.0003 -0.3178 0.3178 1.0003 1.8938], d: 0.0580
() 34: representatives: [-1.8938 -1.0003 -0.3178 0.3178 1.0003 1.8938], d: 0.0580
35: representatives: [-1.8937 -1.0002 -0.3178 0.3178 1.0002 1.8937], d: 0.0580
——22_55 36: representatives: [-1.8937 -1.0002 -0.3178 0.3178 1.0002 1.8937], d: 0.0580
37: representatives: [-1.8937 -1.0002 -0.3177 0.3177 1.0002 1.8937], d: 0.0580
38: representatives: [-1.8937 -1.0002 -0.3177 0.3177 1.0002 1.8937], d: 0.0580
39: representatives: [-1.8937 -1.0002 -0.3177 0.3177 1.0002 1.8937], d: 0.0580
40: representatives: [-1.8936 -1.0001 -0.3177 0.3177 1.0001 1.8936], d: 0.0580
41: representatives: [-1.8936 -1.0801 -0.3177 0.3177 1.0801 1.8936], d: 0.0580
42: representatives: [-1.8936 -1.0001 -0.3177 0.3177 1.0001 1.8936], d: 0.0580
43: representatives: [-1.8936 -1.0001 -0.3177 0.3177 1.00801 1.8936], d: 0.0580
44: representatives: [-1.8936 -1.0801 -0.3177 0.3177 1.8001 1.8936], d: 0.8580
45: representatives: [-1.8936 -1.0001 -0.3177 0.3177 1.0001 1.8936], d: 0.0580
46: representatives: [-1.8936 -1.0801 -0.3177 0.3177 1.0801 1.8936], d: 0.0580
47: representatives: [-1.8936 -1.0001 -08.3177 0.3177 1.0001 1.8936], d: 0.0580
48: representatives: [-1.8936 -1.0801 -0.3177 0.3177 1.8001 1.8936], d: 0.8580
49: representatives: [-1.8936 -1.0801 -0.3177 0.3177 1.8001 1.8936], d: 0.8580

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Example: Lloyd-Max quantizers for Gaussian PDF

Data Code Code Recon- Reconstruction
error d

x  bits  k(x) mk)  (m(k(x)) - x)z

point length name struction

0.1 1 1 0.80
2 10 0.45
3 100 0.25

1.0 1 1 0.80
2 11 1.51
3 101 0.76

also: index

also: quantized value

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/

0.624
0.194
0.058

0.040
0.240
0.058

0
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-1.75 -1.05-0.500 0.50 1.05 1.75

1

-0. IO.25|O.25 .

Expected Distortion
D = E[d]
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Vector quantization:

the geometry of longer block length (higher
dimensions): Voronoi tessellations and connection
to k-means

https://northeastern-datalab.github.io/cs7840/
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The geometry of vector quantization

Independent 4-bit quantization (16 representatives) — :%‘;;,;:_.:-:;;':;; T
forn = 2 independent Gaussians: o

G

| [n]

Joint encoding of n = 2 independent Gaussians:

Figure source: https://ieeexplore.ieee.org/document/7767821/
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 59
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The geometry of vector quantization

Independent 4-bit quantization (16 representatives)
forn = 2 independent Gaussians:

"
' S P9 W 2 " 3 A
SN 0 A LK ¢ : e
X T T K -

Joint encoding of n = 2 independent Gaussians:
2D vector quantization, i.e. block length n = 2
and 4-bit per sample, or 8-bit (and 256
representatives) for two samples together

Figure source: https://ieeexplore.ieee.org/document/7767821/
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 60
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Figure source: https://speechprocessingbook.aalto.fi/Modelling/Vector_guantization_VQ.html
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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| Codebooks

Data

4 3 2 1 0

Figure source: https://speechprocessingbook.aalto.fi/Modelling/Vector_guantization_VQ.html
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Lloyd's algorithm = k-means

Figure source: https://en.wikipedia.org/wiki/Lloyd's_algorithm
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Optimal tessellations

?

Figure source: https://link.springer.com/article/10.1007/s41651-024-00200-5
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Optimal tessellations
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Three types of spatial grids: hexagonal, square, and triangular.
Only the hexagonal grid provides an equal distance between the centers of neighboring cells.
There are at least two different distance categories for other kinds of grids.

Gl e

Source: https://www.kontur.io/blog/why-we-use-h3/
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/

65


https://northeastern-datalab.github.io/cs7840/
https://www.kontur.io/blog/why-we-use-h3/

Optimal tessellations

"Early natural philosophers, like Marcus Terentius Varro [37 BC], based on the
observation that hexagons possess the highest surface/perimeter ratio, compared to
other polygons that can be used for tiling the plane, suggested that honey bees build
their hexagonal cells in order to achieve the best economy of material."

Source: Nazzi, "The hexagonal shape of the honeycomb cells depends on the construction behavior of bees", Nature, 2016. https://www.nature.com/articles/srep28341
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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't even gets better *with™* correlations

250

200 A

150 -

100 -

0 50 100 150 200 250

Correlation of neighboring pixels Vector space partitioning in
scalar quantization (approximate)

Figure source: https://link.springer.com/chapter/10.1007/978-3-031-57840-3_40
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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't even gets better *with™* correlations

250 A . 250 +

200 - 200 +

150 - 150 -

=N >

100 - 100 A
50 50
0 Ll Ll T T L) O Ll T T T L)

0 50 100 150 200 250 0 50 100 150 200 250
X X
Correlation of neighboring pixels Vector space partitioning in

scalar quantization (approximate)

Figure source: https://link.springer.com/chapter/10.1007/978-3-031-57840-3_40
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/

Arrangement of cells with the
smallest average quantization
error in vector quantization

68
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't even gets better *with™* correlations
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0 50 100 150 200 250 0 50 100 150 200 250
X X
Correlation of neighboring pixels Vector space partitioning in

scalar quantization (approximate)

Figure source: https://link.springer.com/chapter/10.1007/978-3-031-57840-3_40
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/

0 50 100 150 200 250

X

Arrangement of cells with the
smallest average quantization
error in vector quantization
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Rate-distortion code vs. k-means

n = 2 channels per pixel (will be encoded together)
nR = 4 bits per pixel (2 bits per channel level), thus 16 representatives

250
200
2 150
=
b
S 100
50 =
50 100 150 200 250
: Red level
Example image with only red and Vector quantization of colors present in the
green channel (for illustration) image into Voronoi cells using k-means

Source: https://en.wikipedia.org/wiki/K-means_clustering
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Rate-distortion code vs. k-means

n = 2 channels per pixel (will be encoded together)
nR = 4 bits per pixel (2 bits per channel level), thus 16 representatives

el6="1111"
R

index 10 (="1001" in bits)
represents the pair (135, 105)

250

200

Green level
p—
)]
=)

[
(&)
o

......

.51-' < Pairs inside this cell ("assighment
e \ region") get assigned to index 10
1="0000" 50 100 150 200 250
. Red level
Example image with only red and Vector quantization of colors present in the
green channel (for illustration) image into Voronoi cells using k-means

Source: https://en.wikipedia.org/wiki/K-means_clustering
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 71
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The magic of vector quantization

e Given a set of n samples (e.g. iid from Gaussian distribution)
« We want to jointly quantize the vector (X5, ..., X,,)
« Represent these vectors using nR bits

 Represent the entire sequence by a single index taking 2™F values
("representatives")

achieves a lower distortion than linear
(independent, scalar) quantization

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Uniform quantization Non uniform quant. (1D VQ) 2D vector'quantization Llama-v2 7B weights SQNR

° ® © 00 0 o [ ] 16
4 b 14
° ° 1.2
L L ]
° ° o 10
o ° = 8
[ J L ] O
v 6
L ] ® © 00 0 o L ]
4
. Llamav2-70B WikiText2 test set perplexity 2
—#— Uniform (OmniQuant) g Uniform Non uniform VQ 2D VQ 4D
—#— Uniform (GPTQ) quant. scalar quant.
B -8~ 1D VQ (Ours)
g —&- 2D VQ (Ours)
S5 e FEARDeusine Figure 2. Quantization SQNR depending on the dimensionality
m . . . . . .
= for Llama-v2 7B weights. Signal-to-noise ratio increases with
* 4 i quantization dimensionality due to additional flexibility in the
. A —— quantization grid.
® 2125 3.125 4,125

Bits per value
Figure 1. Top: An example of how vector quantization can better
represent 2D normally distributed data compared to uniform quan-
tization, non-uniform quantization. Bottom: Comparing GPTVQ
to state-of-the-art uniform quantization on Llama 70B.

Source: https://arxiv.org/abs/2402.15319
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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An animation of k-means
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Source of animation figure: https://en.wikipedia.org/wiki/K-means_clustering

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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k-means in higher dimensions

Coordination

1T W15

Source: https://www.ovito.org/docs/current/reference/pipelines/modifiers/voronoi_analysis.html
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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An animation of Voronoi tessellation

Delaunay triangulation and Voronoi diagram

Source: https://cartography-playground.gitlab.io/playgrounds/triangulation-delaunay-voronoi-diagram/
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Logistic regression vs. (soft) k-means
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Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Logistic regression vs. (soft) k-means
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2.2 MB instead of 5.2 MB

Delaunay triangulation and Voronoi diagram

@ voronol Delaunay m m

Source: https://cartography-playground.gitlab.io/playgrounds/triangulation-delaunay-voronoi-diagram/
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Let's make this more formal
(Definitions)

Largely based on chapter 10 of
[Cover, Thomas'06] Elements of Information Theory, 2006. https://www.doi.org/10.1002/047174882X

https://northeastern-datalab.github.io/cs7840/
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Distortion theory

e Given: source distribution p, distortion measure d. What is the minimum

expected achievable at a particular transmission (in bits)?
In particular: What is the fundamental lower-bound on

for a given ?
- Intuition: more bits available (higher ), then fewer errors (smaller )
e Equivalently: what is the min required to achieve a given ?

« Anintriguing aspect of this theory is that joint descriptions (think block codes)
are more efficient than individual descriptions, even for independent RVs

- The reason is found in the geometry: rectangular grid points (arising from independent
descriptions) do not fill up the space efficiently (recall the earlier Voronoi diagrams)
Instead of representing each RV using
single index taking

, We represent a sequence of by a
. Encoding entire sequences at once achieves a lower
for the same rate than independent quantization of the individual samples

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Distortion function d

Distortion function (measure) d:

cost of representing a symbol by its
guantized version

d: X xX - Rt

e

source alphabet
reproduction alphabet Usually, X =X

We assume the distortion to be bounded:

= max d(x,X) <o

dmax 2
XEX,XEX

What is then the distortion between sequences ?

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Distortion function d Hamming distortion:

Distortion function (measure) d: d(x, %) = 0 ifx=%

cost of representing a symbol by its ' 1 ifx#X

quantized version same as "probability of error" distortion ?
d: X xX - R* -

e

source alphabet
reproduction alphabet Usually, X =X

We assume the distortion to be bounded:

= max _d(x X)) <o

dmax 2
XEX,XEX

Distortion between sequences is the
average per symbol distortion:

d(x™, &™) = =%, d(x;, %)

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Distortion function d

Distortion function (measure) d:

cost of representing a symbol by its
guantized version

d: X xX - Rt

e

source alphabet

reproduction alphabet Usually, X = X

We assume the distortion to be bounded:

dnax = max _d(x,X) < o
XEX,XEX

Distortion between sequences is the
average per symbol distortion:

d(x™, &™) = =%, d(x;, %)

Hamming distortion:
~ )0 ifx=X
4%, %) = {1 if x # %

same as "probability of error" distortion

Eld(X, X)| = P[X # X]

d(x, %) = (x — %)?

why are we always so excited about
squared errors? Think "least squares”,
"sum of squared errors (SSE)", or "mean
of squared errors (MSE)", in linear
regressiow, etc...

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Distortion function d

Distortion function (measure) d:

cost of representing a symbol by its
guantized version

d: X xX - Rt

e

source alphabet
reproduction alphabet Usually, X =X

We assume the distortion to be bounded:

dnax = max _d(x,X) < o
XEX,XEX

Distortion between sequences is the
average per symbol distortion:

d(x™, &™) = =%, d(x;, %)

Hamming distortion:

~ )0 ifx=X
d(x’x)_{l if x # %

same as "probability of error" distortion

Eld(X, X)| = P[X # X]

d(x, %) = (x — %)?

Connection to simple expectations (means):

The squared error distortion penalizes large
deviations quadratically. The conditional
mean of X (given some available information)
minimizes this penalty.

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 101
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Distortion function d: Squared-error distortion

ml‘ 7 A fz‘mz = 2my
L8

Squared-error distortion:
d(x, %) = (x — %)?

Connection to simple expectations (means):

The squared error distortion penalizes large
deviations quadratically. The conditional

mean of X (given some available information)
minimizes this penalty.

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 102
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Distortion function d: Squared-error distortion

m m, =2m
O £ A fz‘ f
1 _ 5

= = =

wWhat does +his have o do with ?
squared-error distortion? .

Squared-error distortion:
d(x, %) = (x — %)?

Connection to simple expectations (means):

The squared error distortion penalizes large
deviations quadratically. The conditional

mean of X (given some available information)
minimizes this penalty.

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 103
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Distortion function d: Squared-error distortion

m m, =2m
O £ Afz‘ f

ml‘ ' 2m4
b & Squared-error distortion:
min[#;° + 2¢,°], s.t. tof, + ¥, = ¢ d(x,%) = (x — %)2
SSE(#1) = €,° + 2(c — £,)?
dSSE Connection to simple expectations (means):

a0, - 20, +2(—2c+2¢,)=0 | | |
- ¢ The squared error distortion penalizes large
=t = 3 = v, = 2 © deviations quadratically. The conditional
mean of X (given some available information)

minimizes this penalty.

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 104
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Distortion function d: Squared-error distortion

m m, =2m
O £ Afz‘ f

t1 t2 Squared-error distortion:
min[#;° + 2¢,°], s.t. tof, + ¥, = ¢ d(x,%) = (x — )2
b _
== ©

Connection to simple expectations (means):

min[¥; + 2¢;],s.t. tof; + €, =¢ ? The squared error distortion penalizes large
deviations quadratically. The conditional

mean of X (given some available information)
minimizes this penalty.

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 105
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Distortion function d: Squared-error distortion

=2 . . . " "
m (@ 2, A 4, ‘ M2 = e The arithmetic mean is the “center
1 — 2

_h ("centroid" or center of mass) of the
2 distribution that balances the squared error!
m1‘ : 2my
& & Squared-error distortion:
min[€;° + 2€,°], s.t. tof; + £, =c d(x,%) = (x — £)2
= i—l = ©
i Connection to simple expectations (means):
min[¥; + 2¢;],s.t. tof; + €, =¢ The squared error distortion penalizes large
=4, =0 deviations quadratically. The conditional

m O 2m;,  ® mean of X (given some available information)
minimizes this penalty.

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 106
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Rate-distortion code
source sequence f?

/

)’Zn
> Encoder >
A source produces an iid

vector quantization, reproduction,
representation, reconstruction, ...

Decoder >

Y

The representation of X is X (X).
sequence X{, X5, ..., X;; with The decoder represents X™ by
X; ~ p(X) and X taken an estimate X™ € X" with X
from a source alphabet X

being the reproduction alphabet

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Rate-distortion code

vector quantization, reproduction,

source sequence index representation, reconstruction, ...
xn X" e{1,2,..,2"R xn
/ > Encoder In \) { J, Decoder \ >

A source produces an iid We are given R bits to The representation of X is X (X).
sequence X1, Xy, ..., X;, with represent X. Thus the The decoder represents X™ by
X; ~ p(X) and X taken function X can take on an estimate X™ € X" with X
from a source alphabet X 2R different values being the reproduction alphabet
The encoder describes the source sequence X™ via The decoding function maps an
an encoding function that maps X" to an index index to a reconstructed sequence

fi X" —>{1,2,..,2"} gn:{1,2,..,2"R} > XM

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 108
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Rate-distortion code

vector quantization, reproduction,

source sequence index representation, reconstruction, ...
xn X" e{1,2,..,2"R xn
/ > Encoder In \) { J, Decoder \ >

A source produces an iid We are given R bits to The representation of X is X (X).
sequence X1, Xy, ..., X;, with represent X. Thus the The decoder represents X™ by
X; ~ p(X) and X taken function X can take on an estimate X™ € X" with X
from a source alphabet X 2R different values being the reproduction alphabet
The encoder describes the source sequence X™ via The decoding function maps an
an encoding function that maps X™ to an index index to a reconstructed sequence

fi X" —>{1,2,..,2"} gn:{1,2,..,2"R} > XM

A (2™R n)-rate distortion code consists of f,, and g,,.

Ry.
In(1), 1, gn(2™): codebook What is its associated distortion ?
it (D), ..., f 1(2™8): assignment regions o

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 109
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Rate-distortion code

vector quantization, reproduction,

source sequence index representation, reconstruction, ...
xn X" e{1,2,..,2"R xn
/ > Encoder In \) { J, Decoder \ >
A source produces an iid We are given R bits to The representation of X is X (X).
sequence X1, Xy, ..., X;, with represent X. Thus the The decoder represents X™ by
X; ~ p(X) and X taken function X can take on an estimate X™ € X" with X
from a source alphabet X 2R different values being the reproduction alphabet
The encoder describes the source sequence X™ via The decoding function maps an
an encoding function that maps X" to an index index to a reconstructed sequence
fi X" —>{1,2,..,2"} gn:{1,2,..,2"R} > XM
A (2™% n)-rate distortion code consists of f,, and g,,.  Its associated distortion is: e
A
gn(l); ;gn(an): COdEbOOk D = ]EX~p[d(Xni['gn(le(Xn))\)]
7)), ..., f,71(2™F): assignment regions =Y. apx™ - dx™, go(fn(x™))

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 1 10
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Rate-distortion code vs. k-means

X=X-= {0,1, ..., 255} thus 8 bit resolution
n = 2 channels per pixel (will be encoded together), 16 bits per pixel

g

3

=

b

S

50 100 150 200 250
: Red level

Example image with only red and Vector quantization of colors present in the
green channel (for illustration) image into Voronoi cells using k-means

Source: https://en.wikipedia.org/wiki/K-means_clustering
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Rate-distortion code vs. k-means

X=X-= {0,1, ..., 255} thus 8 bit resolution
n = 2 channels per pixel (will be encoded together), 16 bits per pixel
nR = 4 bits per pixel (2 bits per channel level), thus 16 representatives

el6="1111"
R

g, (10) = (135,105):
reconstruction of index 10

250

200

Green level

.....

f,71(10): assignment region

forindex 10
1="0000" 50 100 150 200 250
. Red level
Example image with only red and Vector quantization of colors present in the
green channel (for illustration) image into Voronoi cells using k-means

Source: https://en.wikipedia.org/wiki/K-means_clustering
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 112
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Main theorem of Rate-distortion theory

A rate distortion pair (R, D) is achievable if there exists a sequence of (2"%,n)-rate
distortion code (f;,, g,,) with

lim By, [d(X™, g (f(X™)))] < D

n—->00

A rate distortion region for a source is the closure of
the set of achievable distortion pairs (R, D).

rate distortion function for Bernoulli

The rate distortion R(D) is the infimum of rates R p with Hamming distortion

s.t. (R, D) is in the rate distortion region of the

1

source for given distortion D. I B B
0.9 —
. . N oer rate distortion region
THEOREM: The rate distortion R(D) for an iid source 07k i
X~p and bounded distortion d(X, X) is 0.6 |- .
Sos5]- |
reconstruction of X * 0.4l |

: < '
R(D)=  min  I(X;X) 03} -
p(X1X)/E[d(X, X)]\< D 02} |
maximum allowable distortion 0.1} -
Z(x,7/p(96, Id(x, %) 00 01 02 03 04 05 06 07 08 09
D

p(x) - p(X|x)

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 1 13



https://northeastern-datalab.github.io/cs7840/

Rate Distortion function R(D)  Channel capacity C

reconstruction of X

RD) = o Bty <5 ) C =D& Y)

maximum allowable distortion/

RATE-DISTORTION THEORY CHANNEL CODING THEORY

Why is one minimizing, the other maximizing mutual information ?

source seguence index representation message channel symbols message estimate
X" fu(X™) X" m X" | channel| Y" m
—> Encoder —>| Decoder——> —> Encoder —> (y]x) —> Decoder——>

€{1,2,..,2"R}

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 114
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Rate Distortion function R(D)  Channel capacity C

reconstruction of X

RD) = o Bty <5 ) C =D& Y)

maximum allowable distortion/

RATE-DISTORTION THEORY CHANNEL CODING THEORY
« compress data X into a small representation X * encode the information (via its input distribution
while satisfying a given distortion constraint < D p(X)) as to maximize the amount of information
(and thus achieve a certain level of fidelity) successfully transmitted through the channel
source seguence index representation message channel symbols message estimate
X" fu(X™) X" m X" | channel| Y" m
—> Encoder —>| Decoder——> —> Encoder F—> (y]x) —> Decoder——>

€{1,2,..,2"R}

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 1 15
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Rate Distortion function R(D)  Channel capacity C

reconstruction of X

RD) = o Bty <5 ) C =D& Y)

maximum allowable distortion/

RATE-DISTORTION THEORY CHANNEL CODING THEORY

« compress data X into a small representation X * encode the information (via its input distribution
while satisfying a given distortion constraint < D p(X)) as to maximize the amount of information
(and thus achieve a certain level of fidelity) successfully transmitted through the channel

* find the minimum communication rate R = * find the maximum reliable communication rate R =
1(X; X) necessary to satisfy distortion < D I1(X;Y) that a channel can support (its capacity C)

* Optimization (Minimization) over p()?|X) * Optimization (Maximization) over p(X) reflects the
reflects the search for the most efficient search for the input distribution that makes best use
encoding that meets the distortion D. of the channel's capacity to transmit information.

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 1 16
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2 Examples

Largely based on Ch10 of [Cover, Thomas'06] Elements of Information Theory, 2006.

https://doi.org/10.1002/047174882X , and Ch 8 of [Yeung'08] Information Theory and Network Coding.
https://doi.org/10.1007/978-0-387-79234-7

https://northeastern-datalab.github.io/cs7840/
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Rate Distortion for Bernoulli p with Hamming distortion

Consider a binary source X ~ Bernoulli(p):

pX=1)=p If we had +o guess x, should 7))
pX=0)=1-p we rather guess x=0 or x=17 :
WLOG, assume p < 0.5. P[X =0] = 0.5

Assume a Hamming distortion measure Our mivimam expected

0 if x =% distortion between X and a
d(x,x) = { 1 1 ; X ; ’f constant estimate of x=0 is: .
if x #X
Dpax = [E[d(X; O)]
= P[X = 1]

=D

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 122
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Rate Distortion for Bernoulli p with Hamming distortion

Consider a binary source X ~ Bernoulli(p): rate distortion function
p(X=1)=p
p(X=0))=1-p

WLOG, assume p < 0.5.

| | | | I I I [ |

Assume a Hamming distortion measure:

~ 10 ifx=Xx
d(x’x)_{l if x %

0 [ T R
0O 01 02 03 04 05 06 07 08 09 1

D

What is the description rate R(D) required
to describe X with an expected proportion of R(D) = {
errors less than or equal to D?

H(p)—H(D), 0<D <p
0, else

Two steps (instead of minimizing I(X; )?) directly): We first find a lower bound. We then
show that this lower bound is achievable.

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 123
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Rate Distortion for Bernoulli p with Hamming distortion

Lower bound:

For any joint distribution satisfying Let Y denote d(X,X),or (Y = 1) & (X = X).
the distortion constraint, we know: Then conditioning on )?, X and Y determine each
~ ~ other, and thus the uncertainty (entropy H) is the
1(X;X) = HX) — H(X|X) same if we consider X or Y: H(X|X) = H(Y|X)
= H(p) — H(Y|)?) H(Y|X) < H(Y): our uncertainty can only reduce
/ by conditioning (i.e. learning additional information)
> H(p) — H(Y)
> H(p) — H(D) \m
since P[Y] = P|X # X| = E[d(X # X)] <D
We thus have: for D < p, and H(x) increases with x < 0.5

R(D) =z H(p) —H(D)

124

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Rate Distortion for Bernoulli p with Hamming distortion

We now show that the lower bound is actually the by finding a joint distribution
(X, X) that meets the distortion constraint and has R(D) = I(X; X).

Concretely, for 0 < D < p, we can achieve value H(p) — H(D) for the rate distortion function R(D)
by choosing (X; )?) to have the joint distribution given by the following binary symmetric channel:

Recall that for a Binary Symmetric Channel
I(X;Y) =H(Y) — H(p).

Here just p correspondsto D and Y to X:
1(X;X) = H(p) — H(D).

We need to find an appropriate rg of X at
the input of the channel s.t. the output
distribution of X is the specified py.

Letr = IP[)? = 1]. Then choose 1 s.t. r 1

r1-D)+ (1 —-7r)D=p
p—D

1-2D
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 125
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Rate Distortion for Bernoulli p with Hamming distortion

If D < p < 0.5, then: rate distortion function

| | | | I I I [ |

AN

« P[X=1]=0andP[X=0]=>0
« I(X;X)=HX)-H(X|X)=H(p) — H(D)

and the expected distortion is IP[X * )?] =D.

R(D)

Indeed, the uncertainty of X when X is known is D,
hence H(X|)?) = H(D).

0
0 01 02 03 04 05 06 07 08 09 1

If D = p, then: D

« We can achieve R(D) = 0 by letting X = 0 R(D) = H(p)—H(D), 0<D<p
with probability 1 o, else

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 126
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Rate Distortion for Gaussian source with squared error distortion

Consider a Gaussian source X ~ NV'(0,02). ST T T T T T T 1

Assume a squared error distortion

d(x,%) = (x — %)?

R(D)

WLOG, assume p < 0.5

Then the description rate R(D) required to
describe X with an expected proportion of 002 01 06 0B + 17 14 18 18 2

errors less than or equal to D can be shown b
to be as follows: .
1 o2
“In(— <D < ¢g?
R(D) =+ zln(D)’ 0<D=o
\ 0, else

Proof: see book

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 129
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Rate Distortion for Gaussian source with squared error distortion

We can rewrite R(D) to express the distortion
Dint fth te R:
in terms of the rate D(R) = 622-2R

Each bit of description reduces the expected
distortion by a factor of 4.

With a 1-bit description, the best expected
square error is 0.2502.

Our simple 1-bit quantization from earlier
can be calculated to be 0.365°2.

The rate distortion limit R(D) is achieved by
considering several distortion problems in
succession (longer block lengths) instead of
considering each problem separately.

Figure source: https://ieeexplore.ieee.org/document/7767821/

Geometry of longer block lengths:

Independent 4-bit ]
quantization: BEEEEAAEs SR
i} oo RS Eme
SE== T e
a TR
—
| [n]
Blocklengthn = 2

and 4-bit per sample

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 150
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