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Pre-class conversations

• Are you having fun with Python files?

• Intended Topics & Feedback

• Today:

- Rate Distortion (basically lossy transmission)

https://northeastern-datalab.github.io/cs7840/
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Channel
Capacity

Largely based on chapter 7 of
[Cover, Thomas'06] Elements of Information Theory, 2006. https://www.doi.org/10.1002/047174882X 

https://northeastern-datalab.github.io/cs7840/
https://www.doi.org/10.1002/047174882X
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Channel Capacity 𝐶 = highest rate 𝑅

Source: [Cover, Thomas'06] Elements of Information Theory, 2006. Chapter 7 channel capacity, https://www.doi.org/10.1002/047174882X  

Encoder
Channel

𝑝 𝑦|𝑥
Decoder

𝑚 ෝ𝑚𝑋𝑛 𝑌𝑛

message message estimate

source 
symbols

sequence of channel symbols
from input alphabet 𝒳

"Information" channel capacity   𝐶 = max
𝑝(𝑥)

𝐼(𝑋; 𝑌)

"Operational" channel capacity is the highest rate 𝑅 (in bits) per channel use

Shannon's channel coding theorem: 
both are identical, i.e. the channel 
capacity can be achieved in the limit by 
using codes with a long block length.

data compression data transmission

from output alphabet 𝒴

https://northeastern-datalab.github.io/cs7840/
https://www.doi.org/10.1002/047174882X
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Capacity of binary symmetric channel

Source: [Cover, Thomas'06] Elements of Information Theory, 2006. Chapter 7 channel capacity, https://www.doi.org/10.1002/047174882X  
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Hence, capacity for binary symmetric channel is 𝐶 = 1 − 𝐻(𝑞) 

channel capacity 𝐶 = max
𝑝(𝑥)

𝐼(𝑋; 𝑌)

Encoder
Channel

𝑝 𝑦|𝑥
Decoder

𝑚 ෝ𝑚𝑌𝑛

message message estimate

How do we calculate 

the channel capacity 𝐶 ?

𝑋𝑛

https://northeastern-datalab.github.io/cs7840/
https://www.doi.org/10.1002/047174882X
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Capacity of binary symmetric channel

Source: [Cover, Thomas'06] Elements of Information Theory, 2006. Chapter 7 channel capacity, https://www.doi.org/10.1002/047174882X  

𝐼 𝑋; 𝑌 =
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channel capacity 𝐶 = max
𝑝(𝑥)

𝐼(𝑋; 𝑌)

Encoder
Channel

𝑝 𝑦|𝑥
Decoder

𝑚 ෝ𝑚𝑌𝑛

message message estimate

?

𝑋𝑛

https://northeastern-datalab.github.io/cs7840/
https://www.doi.org/10.1002/047174882X
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Capacity of binary symmetric channel

Source: [Cover, Thomas'06] Elements of Information Theory, 2006. Chapter 7 channel capacity, https://www.doi.org/10.1002/047174882X  

𝐼 𝑋; 𝑌 = 𝐻 𝑌 − 𝐻(𝑌|𝑋)

0 0  
1 − 𝑞  

1 − 𝑞  1 1  

𝑞

𝑞

𝑌𝑋

𝑟

1 − 𝑟

σ𝑥 𝑝 𝑥 𝐻(𝑌|𝑋 = 𝑥) 

σ𝑥 𝑝 𝑥 𝐻(𝑞) = 𝐻(𝑞) 

≤ 1 − 𝐻(𝑞) 

Hence, capacity for binary symmetric channel is 𝐶 = 1 − 𝐻(𝑞) 

channel capacity 𝐶 = max
𝑝(𝑥)

𝐼(𝑋; 𝑌)

Encoder
Channel

𝑝 𝑦|𝑥
Decoder

𝑚 ෝ𝑚𝑌𝑛

message message estimate

= 𝐻 𝑌 − 𝐻(𝑞) 

Max of 𝐻 𝑌 = 1 (thus also max of 𝐼 𝑋; 𝑌 ) 
achieved for 𝑝 𝑌=0 = 𝑟 1 − 𝑞 + 1 − 𝑟 𝑞 = 0.5, 
thus 𝑟 = 0.5 uniform input and output distrib.

𝑋𝑛

https://northeastern-datalab.github.io/cs7840/
https://www.doi.org/10.1002/047174882X
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Capacity of binary symmetric channel

Source: [Cover, Thomas'06] Elements of Information Theory, 2006. Chapter 7 channel capacity, https://www.doi.org/10.1002/047174882X  

𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 𝐻(𝑋|𝑌)

𝐻 𝑋|𝑌=0 ⋅ 𝑝 𝑌=0 + 𝐻 𝑋|𝑌=1 ⋅ 𝑝(𝑌=1)0 0  
1 − 𝑞  

1 − 𝑞  1 1  

𝑞

𝑞

𝑌𝑋

𝑟

1 − 𝑟

1 − 𝑞 𝑟 + 𝑞 1 − 𝑟 𝑟𝑞 + 1 − 𝑟 1 − 𝑞

𝐻 𝑟

𝑝 𝑋=0|𝑌=0 = =
(1−𝑞)𝑟

1−𝑞 𝑟+𝑞 1−𝑟
 

𝑝 𝑋=0|𝑌=1 =
𝑝 𝑌=1|𝑋=0 ⋅𝑝 𝑋=0

𝑝 𝑌=1
 =

𝑞𝑟

𝑟𝑞+ 1−𝑟 1−𝑞  

𝐼 𝑋; 𝑌 = 𝐻 𝑟 − 𝐻
1−𝑞 𝑟

1−𝑞 𝑟+𝑞 1−𝑟
1 − 𝑞 𝑟 + 𝑞 1 − 𝑟  

−𝐻
𝑞𝑟

𝑟𝑞+ 1−𝑟 1−𝑞
𝑟𝑞 + 1 − 𝑟 1 − 𝑞  

𝑝 𝑌=0|𝑋=0 ⋅𝑝 𝑋=0

𝑝 𝑌=0
 

channel capacity 𝐶 = max
𝑝(𝑥)

𝐼(𝑋; 𝑌)

Encoder
Channel

𝑝 𝑦|𝑥
Decoder

𝑚 ෝ𝑚𝑌𝑛

message message estimate

𝑋𝑛

Trying to do it the other way 

around should work but becomes 

far more complicated 

https://northeastern-datalab.github.io/cs7840/
https://www.doi.org/10.1002/047174882X
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Capacity of binary symmetric channel

rate 𝑅 = 𝐼(𝑋; 𝑌) = 𝐻(𝑌) − 𝐻(𝑞)

Encoder
Channel

𝑝 𝑦|𝑥
Decoder

𝑚 ෝ𝑚𝑋𝑛 𝑌𝑛

message message estimate

Source symbols
& frequency

Can you create a code that achieves that rate?

How much does this optimized code buys us over the 

most naive code you can imagine? ?

What is the maximal achievable rate? Assume 𝑞 = 0.2: ?
½ 

¼ 

⅛
⅛

A

B

C
D

https://northeastern-datalab.github.io/cs7840/
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Capacity of binary symmetric channel

rate 𝑅 = 𝐼(𝑋; 𝑌) = 𝐻(𝑌) − 𝐻(𝑞)

Encoder
Channel

𝑝 𝑦|𝑥
Decoder

𝑚 ෝ𝑚𝑋𝑛 𝑌𝑛

message message estimate

Source symbols
& frequency

Can you create a code that achieves that rate?

How much does this optimized code buys us over the 

most naive code you can imagine? ?

= 1 − 𝐻(0.2) 

channel capacity 𝐶 = max
𝑝(𝑥)

𝐼(𝑋; 𝑌) = 𝐶 = 1 − 𝐻(𝑞) 

= 1 − 0.722 = 0.278  

What is the maximal achievable rate? Assume 𝑞 = 0.2:

½ 

¼ 

⅛
⅛

A

B

C
D

https://northeastern-datalab.github.io/cs7840/
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½ 

¼ 

⅛
⅛
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D

Capacity of binary symmetric channel

rate 𝑅 = 𝐼(𝑋; 𝑌) = 𝐻(𝑌) − 𝐻(𝑞)

Encoder
Channel

𝑝 𝑦|𝑥
Decoder

𝑚 ෝ𝑚𝑋𝑛 𝑌𝑛

message message estimate

Source symbols
& frequency

A 0 ½

A 10 ¼

C 110 ⅛

D 111 ⅛

Code 
opt.:

symbol/codeword/frequency

𝑅2 = 1.000 − 0.722 = 0.278 Code
opt:

= 1 − 𝐻(0.2) 

channel capacity 𝐶 = max
𝑝(𝑥)

𝐼(𝑋; 𝑌) = 𝐶 = 1 − 𝐻(𝑞) 

= 1 − 0.722 = 0.278  

Compare 
achievable rates 
for optimized vs. 
most naive code

1

0

0

1

B

A

0 1

C D

What is the maximal achievable rate? Assume 𝑞 = 0.2:

https://northeastern-datalab.github.io/cs7840/
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Capacity of binary symmetric channel

rate 𝑅 = 𝐼(𝑋; 𝑌) = 𝐻(𝑌) − 𝐻(𝑞)

Encoder
Channel

𝑝 𝑦|𝑥
Decoder

𝑚 ෝ𝑚𝑋𝑛 𝑌𝑛

message message estimate

Source symbols
& frequency Code 

naive:

A 0 ½

A 10 ¼

C 110 ⅛

D 111 ⅛

Code 
opt.:

𝑅2 = 1.000 − 0.722 = 0.278 Code
opt:1

0

0

1

B

A

0 1

C D

symbol/codeword/frequency

Achievable rate ?
Code
naive:

?

https://northeastern-datalab.github.io/cs7840/
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½ 

¼ 

⅛
⅛
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Capacity of binary symmetric channel

rate 𝑅 = 𝐼(𝑋; 𝑌) = 𝐻(𝑌) − 𝐻(𝑞)

Encoder
Channel

𝑝 𝑦|𝑥
Decoder

𝑚 ෝ𝑚𝑋𝑛 𝑌𝑛

message message estimate

Source symbols
& frequency Fraction of 0's in 𝑋:Code 

naive:
A 00 ½

B 01 ¼

C 10 ⅛

D 11 ⅛

A 0 ½

A 10 ¼

C 110 ⅛

D 111 ⅛

Code 
opt.:

11

16
= 0.688 

... in 𝑌:

𝑅1 =

= 0.963 − 0.722 = 0.241 

11

16
0.8 +

5

16
0.2 = 0.613 

𝐻(0.613) − 𝐻(0.2) 

𝑅2 = 1.000 − 0.722 = 0.278 

Code
naive:

Code
opt:

0

1

A

0

0

1 1

B C D

1

0

0

1

B

A

0 1

C D

The distortion 
hits us far more 
than an optimal 
code can buy us

symbol/codeword/frequency

https://northeastern-datalab.github.io/cs7840/
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Distortion

Theory

Largely based on chapter 10 of
[Cover, Thomas'06] Elements of Information Theory, 2006. https://www.doi.org/10.1002/047174882X 

https://northeastern-datalab.github.io/cs7840/
https://www.doi.org/10.1002/047174882X
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Rate distortion theory

• A finite representation of a continuous RV can never be perfect

• How well can we represent it?

• Requires a notion of "goodness" of a representation

- Distortion measure: distance between RV and its representation

• Rate distortion theory:

- Given: source distribution 𝑝 and a distortion measure 𝑑

- Describes: trade-off between communication rate 𝑅 and distortion 𝑑

- Lossy compression framework with zero-error data compression (earlier topics in class) 
a special case

https://northeastern-datalab.github.io/cs7840/
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Quantization

• Let 𝑋 be a continuous RV (e.g. from a Gaussian distribution)

• We approximate 𝑋 by 𝑋

• Using 𝑅 bits to represent 𝑋, then 𝑋 𝑋  has 2𝑅 possible values

- Example 𝑅 = 8 bits, then then 𝑋 has 28 = 256 possible values

• Goal: find the optimal set of values ("representatives") for 𝑋 and 
associated regions ("assignment regions") for each value

https://northeastern-datalab.github.io/cs7840/
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Source: Bernd Girod, 2012: https://web.stanford.edu/class/ee398a/handouts/lectures/05-Quantization.pdf 

Quantization 
Error

Original and 
Quantized 
Signal

https://northeastern-datalab.github.io/cs7840/
https://web.stanford.edu/class/ee398a/handouts/lectures/05-Quantization.pdf
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Quantization of a Gaussian 

?

Assume you have 𝑅 = 1 bit 

(2 values). What is the best 

way to quantize a Gaussian 

distribution 

What is an appropriate measure 

of distortion

?

https://northeastern-datalab.github.io/cs7840/
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Quantization of a Gaussian 

Assume you have 𝑅 = 1 bit 

(2 values). What is the best 

way to quantize a Gaussian 

distribution 

Assume we like to minimize the mean 

of squared errors (MSE)

?

https://northeastern-datalab.github.io/cs7840/
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Quantization of a Gaussian 

If we have 2 values. It makes sense to choose ≥ 0 and 

≤ 0. But what should be the representatives?

Assume you have 𝑅 = 1 bit 

(2 values). What is the best 

way to quantize a Gaussian 

distribution 

Assume we like to minimize the mean 

of squared errors (MSE)

?

≥ 0 ≤ 0 

https://northeastern-datalab.github.io/cs7840/


35https://northeastern-datalab.github.io/cs7840/Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Quantization of a Gaussian 

Assume you have 𝑅 = 1 bit 

(2 values). What is the best 

way to quantize a Gaussian 

distribution 

Assume we like to minimize the mean 

of squared errors (MSE)

If we have 2 values. It makes sense to choose ≥ 0 and 

≤ 0. But what should be the representatives?

≥ 0 ≤ 0 

The (conditional) mean (centroid) of 

a region minimizes the MSE!

−0.80 0.80 

https://northeastern-datalab.github.io/cs7840/
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Quantization of a Gaussian 

Assume you have 𝑅 = 2 bits 

(4 values). What is the best 

way to quantize a Gaussian 

distribution under MSE? 

𝑡𝑖 𝑡𝑖+1ො𝑥𝑖

Now we need to determine 3  

boundaries {𝑡𝑖}
and 4 reconstruction points 

{ ො𝑥𝑖}. But how?

https://northeastern-datalab.github.io/cs7840/
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Two properties of optimal boundaries and construction points

𝑡𝑖 𝑡𝑖+1

𝑥

Given two thresholds 𝑡𝑖, 𝑡𝑖+1 marking the boundaries of a 
region. What is the best representative ො𝑥𝑖+1 of the region?

ො𝑥𝑖+1

Given a set of representative values { ො𝑥𝑖+1}, which 
representative should we choose for any given 𝑥?

ො𝑥𝑖+1ො𝑥𝑖

𝑡𝑖 ⇒ { ො𝑥𝑖+1} 

{ ො𝑥𝑖} ⇒ 𝑡𝑖  

?

?

https://northeastern-datalab.github.io/cs7840/
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Two properties of optimal boundaries and construction points

𝑡𝑖 𝑡𝑖+1

𝑥

Given two thresholds 𝑡𝑖, 𝑡𝑖+1 marking the boundaries of a 
region. What is the best representative ො𝑥𝑖+1 of the region?

ො𝑥𝑖+1

The conditional means (conditioned on the region 
= centroids) minimize the MSE and should thus be 
the reconstruction points.

Given a set of representative values { ො𝑥𝑖+1}, which 
representative should we choose for any given 𝑥?

Distortion (MSE) is minimized by assigning values to 
their closest points. Thus a Voronoi partition gives 
use the optimal thresholds.

ො𝑥𝑖+1ො𝑥𝑖

𝑡𝑖 ⇒ { ො𝑥𝑖+1} 

{ ො𝑥𝑖} ⇒ 𝑡𝑖  

https://northeastern-datalab.github.io/cs7840/
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Lloyd-Max scalar quantizer
Problem: For a signal 𝑥 with given PDF 𝑓𝑋 𝑥  find a quantizer with 𝑚 representative 
levels (or "codes" that minimizes

𝑡𝑖 =
ො𝑥𝑖−1+ ො𝑥𝑖

2
, 𝑖 = 1, … , 𝑚 − 1 

𝑑 = 𝑀𝑆𝐸 = 𝔼[ 𝑋 − 𝑋
2

]

Lloyd-Max quantizer

ො𝑥𝑖 =
𝑡𝑖

𝑡𝑖+1 𝑥⋅𝑓𝑋 𝑥 𝑑𝑥

𝑡𝑖

𝑡𝑖+1 𝑓𝑋 𝑥 𝑑𝑥
, 𝑖 = 0, … , 𝑚 − 1 

Input: initial vector ො𝐱 of 𝑚 representative levels
Repeat {
• Create 𝑚 − 1 decision thresholds 𝐭 exactly 

half-way between representative levels
• Create 𝑚 representative levels ො𝐱 as the 

centroids of PDF between two successive 
decision thresholds

until (likely) convergence}

https://northeastern-datalab.github.io/cs7840/
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−0.80 0.80 

Python file 232: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks
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−0.80 0.80 

Python file 232: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks
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Python file 232: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks

https://northeastern-datalab.github.io/cs7840/
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...

−1.51 0.45 −1.51 −0.45 

0.98−0.98

https://northeastern-datalab.github.io/cs7840/
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Example: Lloyd-Max quantizers for Gaussian PDF
Data 
point

𝑥

0.1

Code
name
𝑘(𝑥)

Recon-
struction

𝑚(𝑘)

-0.98 0.98

-1.51 -0.45 0.45 1.51

0

0

0

0

1

1

0

1

1

1 0.80

10 0.45

100 0.25

-0.80 0.80

0

0 1

-1.05 0.50

-1.34 -0.76 0.25 1.34

0

0

0

1

1.05 1.75

0.76 2.15-0.25-2.15

-0.50-1.75

0

0

0

0

1

1

0

1

0

1

0

1

1

0

0

1

1

1

1

1

0

Reconstruction
error 𝑑

𝑚 𝑘 𝑥 − 𝑥
2

0.624

Code
length

bits

1

2

3

0.194

0.058

1.0 1 0.80

11 1.51

101 0.76

0.0401

2

3

0.240

0.058

also: index

also: quantized value

0.0345

0.3634

0.1175

Expected Distortion
𝐷 = 𝔼[𝑑]

https://northeastern-datalab.github.io/cs7840/
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Vector quantization:
the geometry of longer block length (higher 
dimensions): Voronoi tessellations and connection 
to k-means

https://northeastern-datalab.github.io/cs7840/
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The geometry of vector quantization

Figure source: https://ieeexplore.ieee.org/document/7767821/ 

Independent 4-bit quantization (16 representatives) 
for 𝑛 = 2 independent Gaussians:

Joint encoding of 𝑛 = 2 independent Gaussians:

?

https://northeastern-datalab.github.io/cs7840/
https://ieeexplore.ieee.org/document/7767821/
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The geometry of vector quantization

Figure source: https://ieeexplore.ieee.org/document/7767821/ 

Independent 4-bit quantization (16 representatives) 
for 𝑛 = 2 independent Gaussians:

Joint encoding of 𝑛 = 2 independent Gaussians: 
2D vector quantization, i.e. block length 𝑛 = 2 
and 4-bit per sample, or 8-bit (and 256 
representatives) for two samples together

https://northeastern-datalab.github.io/cs7840/
https://ieeexplore.ieee.org/document/7767821/
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Figure source: https://speechprocessingbook.aalto.fi/Modelling/Vector_quantization_VQ.html 

https://northeastern-datalab.github.io/cs7840/
https://speechprocessingbook.aalto.fi/Modelling/Vector_quantization_VQ.html
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Figure source: https://speechprocessingbook.aalto.fi/Modelling/Vector_quantization_VQ.html 

https://northeastern-datalab.github.io/cs7840/
https://speechprocessingbook.aalto.fi/Modelling/Vector_quantization_VQ.html
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Lloyd's algorithm = k-means

Figure source: https://en.wikipedia.org/wiki/Lloyd's_algorithm 

https://northeastern-datalab.github.io/cs7840/
https://en.wikipedia.org/wiki/Lloyd's_algorithm
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Optimal tessellations

Figure source: https://link.springer.com/article/10.1007/s41651-024-00200-5 

?

https://northeastern-datalab.github.io/cs7840/
https://link.springer.com/article/10.1007/s41651-024-00200-5
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Optimal tessellations

Source: https://www.kontur.io/blog/why-we-use-h3/ 

Three types of spatial grids: hexagonal, square, and triangular.
Only the hexagonal grid provides an equal distance between the centers of neighboring cells.
There are at least two different distance categories for other kinds of grids.

https://northeastern-datalab.github.io/cs7840/
https://www.kontur.io/blog/why-we-use-h3/
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Optimal tessellations

Source: Nazzi, "The hexagonal shape of the honeycomb cells depends on the construction behavior of bees", Nature, 2016. https://www.nature.com/articles/srep28341 

"Early natural philosophers, like Marcus Terentius Varro [37 BC], based on the 
observation that hexagons possess the highest surface/perimeter ratio, compared to 
other polygons that can be used for tiling the plane, suggested that honey bees build 
their hexagonal cells in order to achieve the best economy of material."

https://northeastern-datalab.github.io/cs7840/
https://www.nature.com/articles/srep28341
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It even gets better *with* correlations

Figure source: https://link.springer.com/chapter/10.1007/978-3-031-57840-3_40 

Correlation of neighboring pixels

?

Vector space partitioning in 
scalar quantization (approximate)

https://northeastern-datalab.github.io/cs7840/
https://link.springer.com/chapter/10.1007/978-3-031-57840-3_40
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It even gets better *with* correlations

Figure source: https://link.springer.com/chapter/10.1007/978-3-031-57840-3_40 

Correlation of neighboring pixels Vector space partitioning in 
scalar quantization (approximate)

Arrangement of cells with the 
smallest average quantization 
error in vector quantization

?

https://northeastern-datalab.github.io/cs7840/
https://link.springer.com/chapter/10.1007/978-3-031-57840-3_40
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It even gets better *with* correlations

Figure source: https://link.springer.com/chapter/10.1007/978-3-031-57840-3_40 

Correlation of neighboring pixels Arrangement of cells with the 
smallest average quantization 
error in vector quantization

Vector space partitioning in 
scalar quantization (approximate)

https://northeastern-datalab.github.io/cs7840/
https://link.springer.com/chapter/10.1007/978-3-031-57840-3_40
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Rate-distortion code vs. k-means

Source: https://en.wikipedia.org/wiki/K-means_clustering 

Vector quantization of colors present in the 
image into Voronoi cells using k-means

Example image with only red and 
green channel (for illustration)

𝑛 = 2 channels per pixel (will be encoded together)

𝑛𝑅 = 4 bits per pixel (2 bits per channel level), thus 16 representatives 

https://northeastern-datalab.github.io/cs7840/
https://en.wikipedia.org/wiki/K-means_clustering
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Rate-distortion code vs. k-means

Source: https://en.wikipedia.org/wiki/K-means_clustering 

Vector quantization of colors present in the 
image into Voronoi cells using k-means

Example image with only red and 
green channel (for illustration)

1="0000"

16="1111"

𝑛 = 2 channels per pixel (will be encoded together)

𝑛𝑅 = 4 bits per pixel (2 bits per channel level), thus 16 representatives 

Pairs inside this cell ("assignment 
region") get assigned to index 10 

index 10 (="1001" in bits) 
represents the pair (135, 105)

15

14

13
12

11

10="1001"

9

8

7

6

5

4
32

https://northeastern-datalab.github.io/cs7840/
https://en.wikipedia.org/wiki/K-means_clustering
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The magic of vector quantization

• Given a set of 𝑛 samples (e.g. iid from Gaussian distribution)

• We want to jointly quantize the vector 𝑋1, … , 𝑋𝑛

• Represent these vectors using 𝑛𝑅 bits

• Represent the entire sequence by a single index taking 2𝑛𝑅  values 
("representatives")

• Vector quantization achieves a lower distortion than linear 
(independent, scalar) quantization

https://northeastern-datalab.github.io/cs7840/
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Source: https://arxiv.org/abs/2402.15319 

https://northeastern-datalab.github.io/cs7840/
https://arxiv.org/abs/2402.15319
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An animation of k-means

Source of animation figure: https://en.wikipedia.org/wiki/K-means_clustering

https://northeastern-datalab.github.io/cs7840/
https://en.wikipedia.org/wiki/K-means_clustering
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k-means in higher dimensions

Source: https://www.ovito.org/docs/current/reference/pipelines/modifiers/voronoi_analysis.html 

https://northeastern-datalab.github.io/cs7840/
https://www.ovito.org/docs/current/reference/pipelines/modifiers/voronoi_analysis.html
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An animation of Voronoi tessellation

Source: https://cartography-playground.gitlab.io/playgrounds/triangulation-delaunay-voronoi-diagram/ 

5.2 MB

https://northeastern-datalab.github.io/cs7840/
https://cartography-playground.gitlab.io/playgrounds/triangulation-delaunay-voronoi-diagram/
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Logistic regression vs. (soft) k-means

https://northeastern-datalab.github.io/cs7840/
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Logistic regression vs. (soft) k-means

?Is this always 

possible

https://northeastern-datalab.github.io/cs7840/
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2.2 MB instead of 5.2 MB

Source: https://cartography-playground.gitlab.io/playgrounds/triangulation-delaunay-voronoi-diagram/ 

https://northeastern-datalab.github.io/cs7840/
https://cartography-playground.gitlab.io/playgrounds/triangulation-delaunay-voronoi-diagram/
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Let's make this more formal

(Definitions)

Largely based on chapter 10 of
[Cover, Thomas'06] Elements of Information Theory, 2006. https://www.doi.org/10.1002/047174882X 

https://northeastern-datalab.github.io/cs7840/
https://www.doi.org/10.1002/047174882X
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Distortion theory

• Given: source distribution 𝑝, distortion measure 𝑑. What is the minimum 
expected distortion 𝐷 achievable at a particular transmission rate 𝑅 (in bits)? 

- In particular: What is the fundamental lower-bound on distortion 𝐷 for a given rate 𝑅?

- Intuition: more bits available (higher rate 𝑅), then fewer errors (smaller distortion 𝐷)

• Equivalently: what is the min rate 𝑅 required to achieve a given distortion 𝐷? 

• An intriguing aspect of this theory is that joint descriptions (think block codes) 
are more efficient than individual descriptions, even for independent RVs

- The reason is found in the geometry: rectangular grid points (arising from independent 
descriptions) do not fill up the space efficiently (recall the earlier Voronoi diagrams)

- Instead of representing each RV using 𝑅 bits, we represent a sequence of 𝑛 RVs by a 
single index taking 2𝑛𝑅  values. Encoding entire sequences at once achieves a lower 
distortion 𝐷 for the same rate than independent quantization of the individual samples

https://northeastern-datalab.github.io/cs7840/
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Distortion function 𝑑

𝑑: 𝒳 × 𝒳 → ℝ+

Distortion function (measure) 𝑑:

source alphabet
reproduction alphabet

cost of representing a symbol by its 
quantized version

We assume the distortion to be bounded:
𝑑max = max

𝑥∈𝒳, ො𝑥∈ 𝒳
𝑑 𝑥, ො𝑥 ≤ ∞

Usually, 𝒳 = 𝒳

What is then the distortion between sequences ?

https://northeastern-datalab.github.io/cs7840/
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Distortion function 𝑑

𝑑: 𝒳 × 𝒳 → ℝ+

Distortion function (measure) 𝑑:

source alphabet
reproduction alphabet

𝑑 𝑥, ො𝑥 = ቊ
0 if 𝑥 = ො𝑥
1 if 𝑥 ≠ ො𝑥

 

Hamming distortion:

same as "probability of error" distortion

cost of representing a symbol by its 
quantized version

We assume the distortion to be bounded:
𝑑max = max

𝑥∈𝒳, ො𝑥∈ 𝒳
𝑑 𝑥, ො𝑥 ≤ ∞

Usually, 𝒳 = 𝒳

Distortion between sequences is the 
average per symbol distortion:

𝑑 𝑥𝑛, ො𝑥𝑛 =
1

𝑛
σ𝑖 𝑑 𝑥𝑖 , ො𝑥𝑖  

?

https://northeastern-datalab.github.io/cs7840/
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Distortion function 𝑑

𝑑: 𝒳 × 𝒳 → ℝ+

Distortion function (measure) 𝑑:

source alphabet
reproduction alphabet

𝑑 𝑥, ො𝑥 = ቊ
0 if 𝑥 = ො𝑥
1 if 𝑥 ≠ ො𝑥

 

Hamming distortion:

𝔼 𝑑 𝑋, 𝑋 = ℙ[𝑋 ≠ 𝑋] 

same as "probability of error" distortion

𝑑 𝑥, ො𝑥 = 𝑥 − ො𝑥 2

Squared-error distortion:

cost of representing a symbol by its 
quantized version

We assume the distortion to be bounded:
𝑑max = max

𝑥∈𝒳, ො𝑥∈ 𝒳
𝑑 𝑥, ො𝑥 ≤ ∞

Usually, 𝒳 = 𝒳

Why are we always so excited about 

squared errors? Think "least squares", 

"sum of squared errors (SSE)", or "mean 

of squared errors (MSE)", in linear 

regression, etc...

Distortion between sequences is the 
average per symbol distortion:

𝑑 𝑥𝑛, ො𝑥𝑛 =
1

𝑛
σ𝑖 𝑑 𝑥𝑖 , ො𝑥𝑖  

?

https://northeastern-datalab.github.io/cs7840/
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Distortion function 𝑑

𝑑: 𝒳 × 𝒳 → ℝ+

Distortion function (measure) 𝑑:

source alphabet
reproduction alphabet

𝑑 𝑥, ො𝑥 = ቊ
0 if 𝑥 = ො𝑥
1 if 𝑥 ≠ ො𝑥

 

Hamming distortion:

𝔼 𝑑 𝑋, 𝑋 = ℙ[𝑋 ≠ 𝑋] 

same as "probability of error" distortion

𝑑 𝑥, ො𝑥 = 𝑥 − ො𝑥 2

Squared-error distortion:

cost of representing a symbol by its 
quantized version

We assume the distortion to be bounded:
𝑑max = max

𝑥∈𝒳, ො𝑥∈ 𝒳
𝑑 𝑥, ො𝑥 ≤ ∞

Usually, 𝒳 = 𝒳

Connection to simple expectations (means):

The squared error distortion penalizes large 
deviations quadratically. The conditional 
mean of 𝑋 (given some available information) 
minimizes this penalty. 

Distortion between sequences is the 
average per symbol distortion:

𝑑 𝑥𝑛, ො𝑥𝑛 =
1

𝑛
σ𝑖 𝑑 𝑥𝑖 , ො𝑥𝑖  

https://northeastern-datalab.github.io/cs7840/
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Distortion function 𝑑: Squared-error distortion

𝑚1 𝑚2 = 2𝑚1𝓁1 𝓁2

𝑑 𝑥, ො𝑥 = 𝑥 − ො𝑥 2

Squared-error distortion:

?⇒
𝓁1

𝓁2
= 

Connection to simple expectations (means):

The squared error distortion penalizes large 
deviations quadratically. The conditional 
mean of 𝑋 (given some available information) 
minimizes this penalty. 

https://northeastern-datalab.github.io/cs7840/
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Distortion function 𝑑: Squared-error distortion

𝑚1 𝑚2 = 2𝑚1𝓁1 𝓁2

⇒
𝓁1

𝓁2
= 2 

What does this have to do with 

squared-error distortion?

𝑑 𝑥, ො𝑥 = 𝑥 − ො𝑥 2

Squared-error distortion:

?

Connection to simple expectations (means):

The squared error distortion penalizes large 
deviations quadratically. The conditional 
mean of 𝑋 (given some available information) 
minimizes this penalty. 

https://northeastern-datalab.github.io/cs7840/
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Distortion function 𝑑: Squared-error distortion

⇒
𝓁1

𝓁2
= 2 

𝑚1 𝑚2 = 2𝑚1𝓁1 𝓁2

min[𝓁1
2 + 2𝓁2

2] , s. t.  to 𝓁1 + 𝓁2 = 𝑐 

𝑚1 2𝑚1

𝓁1 𝓁2

⇒
𝓁1

𝓁2
= 2 

𝑑 𝑥, ො𝑥 = 𝑥 − ො𝑥 2

Squared-error distortion:

SSE 𝓁1 = 

𝜕SSE

𝜕𝓁1
= 

⇒ 𝓁1 =
2𝑐

3
 

𝓁1
2 + 2(𝑐 − 𝓁1)2

2𝓁1 + 2(−2𝑐 + 2𝓁1) = 0 
Connection to simple expectations (means):

The squared error distortion penalizes large 
deviations quadratically. The conditional 
mean of 𝑋 (given some available information) 
minimizes this penalty. 

☺

https://northeastern-datalab.github.io/cs7840/


105https://northeastern-datalab.github.io/cs7840/Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Distortion function 𝑑: Squared-error distortion

⇒
𝓁1

𝓁2
= 2 

𝑚1 𝑚2 = 2𝑚1𝓁1 𝓁2

min[𝓁1
2 + 2𝓁2

2] , s. t.  to 𝓁1 + 𝓁2 = 𝑐 

𝑚1 2𝑚1

min[𝓁1 + 2𝓁2] , s. t.  to 𝓁1 + 𝓁2 = 𝑐 

𝓁1 𝓁2

⇒
𝓁1

𝓁2
= 2 

☺

𝑑 𝑥, ො𝑥 = 𝑥 − ො𝑥 2

Squared-error distortion:

?
Connection to simple expectations (means):

The squared error distortion penalizes large 
deviations quadratically. The conditional 
mean of 𝑋 (given some available information) 
minimizes this penalty. 

https://northeastern-datalab.github.io/cs7840/


106https://northeastern-datalab.github.io/cs7840/Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Distortion function 𝑑: Squared-error distortion

𝑚1 𝑚2 = 2𝑚1𝓁1 𝓁2

min[𝓁1
2 + 2𝓁2

2] , s. t.  to 𝓁1 + 𝓁2 = 𝑐 

⇒ 𝓁2 = 0 

𝑚1 2𝑚1

min[𝓁1 + 2𝓁2] , s. t.  to 𝓁1 + 𝓁2 = 𝑐 

𝑚1 2𝑚1

𝓁1 𝓁2

⇒
𝓁1

𝓁2
= 2 



The arithmetic mean is the "center" 

("centroid" or center of mass) of the 

distribution that balances the squared error!

𝑑 𝑥, ො𝑥 = 𝑥 − ො𝑥 2

Squared-error distortion:

⇒
𝓁1

𝓁2
= 2 

Connection to simple expectations (means):

The squared error distortion penalizes large 
deviations quadratically. The conditional 
mean of 𝑋 (given some available information) 
minimizes this penalty. 

☺

https://northeastern-datalab.github.io/cs7840/
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Rate-distortion code

Encoder Decoder
𝑋𝑛𝑋𝑛

A source produces an iid 
sequence 𝑋1, 𝑋2, … , 𝑋𝑛 with 
𝑋𝑖 ∼ 𝑝 𝑋  and 𝑋 taken 
from a source alphabet 𝒳

The representation of 𝑋 is 𝑋(𝑋). 
The decoder represents 𝑋𝑛 by 
an estimate 𝑋𝑛 ∈ 𝒳𝑛 with 𝒳 
being the reproduction alphabet

source sequence

vector quantization, reproduction, 
representation, reconstruction, ...

?

https://northeastern-datalab.github.io/cs7840/
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Rate-distortion code

Encoder Decoder
𝑋𝑛𝑋𝑛

A source produces an iid 
sequence 𝑋1, 𝑋2, … , 𝑋𝑛 with 
𝑋𝑖 ∼ 𝑝 𝑋  and 𝑋 taken 
from a source alphabet 𝒳

The representation of 𝑋 is 𝑋(𝑋). 
The decoder represents 𝑋𝑛 by 
an estimate 𝑋𝑛 ∈ 𝒳𝑛 with 𝒳 
being the reproduction alphabet

source sequence

vector quantization, reproduction, 
representation, reconstruction, ...

𝑓𝑛(𝑋𝑛) ∈ {1, 2, … , 2𝑛𝑅}

We are given 𝑅 bits to 
represent 𝑋. Thus the 
function 𝑋 can take on 
2𝑅  different values

index

𝑓𝑛: 𝒳𝑛 → {1, 2, … , 2𝑛𝑅} 𝑔𝑛: 1, 2, … , 2𝑛𝑅 → 𝒳𝑛 

The encoder describes the source sequence 𝑋𝑛 via 
an encoding function that maps 𝑋𝑛 to an index

The decoding function maps an 
index to a reconstructed sequence

https://northeastern-datalab.github.io/cs7840/
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Rate-distortion code

Encoder Decoder
𝑋𝑛𝑋𝑛 𝑓𝑛(𝑋𝑛) ∈ {1, 2, … , 2𝑛𝑅}

A source produces an iid 
sequence 𝑋1, 𝑋2, … , 𝑋𝑛 with 
𝑋𝑖 ∼ 𝑝 𝑋  and 𝑋 taken 
from a source alphabet 𝒳

We are given 𝑅 bits to 
represent 𝑋. Thus the 
function 𝑋 can take on 
2𝑅  different values

source sequence index
vector quantization, reproduction, 
representation, reconstruction, ...

?What is its associated distortion

The representation of 𝑋 is 𝑋(𝑋). 
The decoder represents 𝑋𝑛 by 
an estimate 𝑋𝑛 ∈ 𝒳𝑛 with 𝒳 
being the reproduction alphabet

𝑓𝑛: 𝒳𝑛 → {1, 2, … , 2𝑛𝑅} 𝑔𝑛: 1, 2, … , 2𝑛𝑅 → 𝒳𝑛 

𝑔𝑛 1 , … , 𝑔𝑛(2𝑛𝑅): codebook

𝑓𝑛
−1 1 , … , 𝑓𝑛

−1(2𝑛𝑅): assignment regions

The encoder describes the source sequence 𝑋𝑛 via 
an encoding function that maps 𝑋𝑛 to an index

The decoding function maps an 
index to a reconstructed sequence

A (2𝑛𝑅 , 𝑛)-rate distortion code consists of 𝑓𝑛 and 𝑔𝑛. 

https://northeastern-datalab.github.io/cs7840/
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Rate-distortion code

Encoder Decoder
𝑋𝑛𝑋𝑛 𝑓𝑛(𝑋𝑛) ∈ {1, 2, … , 2𝑛𝑅}

A source produces an iid 
sequence 𝑋1, 𝑋2, … , 𝑋𝑛 with 
𝑋𝑖 ∼ 𝑝 𝑋  and 𝑋 taken 
from a source alphabet 𝒳

A (2𝑛𝑅 , 𝑛)-rate distortion code consists of 𝑓𝑛 and 𝑔𝑛. 

We are given 𝑅 bits to 
represent 𝑋. Thus the 
function 𝑋 can take on 
2𝑅  different values

source sequence index

𝑓𝑛: 𝒳𝑛 → {1, 2, … , 2𝑛𝑅} 𝑔𝑛: 1, 2, … , 2𝑛𝑅 → 𝒳𝑛 

vector quantization, reproduction, 
representation, reconstruction, ...

𝐷 = 𝔼𝑋~𝑝 𝑑 𝑋𝑛 , 𝑔𝑛(𝑓𝑛(𝑋𝑛)) 

= σ𝑥𝑛 𝑝 𝑥𝑛 ⋅ 𝑑 𝑥𝑛 , 𝑔𝑛(𝑓𝑛(𝑥𝑛))  

𝑔𝑛 1 , … , 𝑔𝑛(2𝑛𝑅): codebook

𝑓𝑛
−1 1 , … , 𝑓𝑛

−1(2𝑛𝑅): assignment regions

The representation of 𝑋 is 𝑋(𝑋). 
The decoder represents 𝑋𝑛 by 
an estimate 𝑋𝑛 ∈ 𝒳𝑛 with 𝒳 
being the reproduction alphabet

The encoder describes the source sequence 𝑋𝑛 via 
an encoding function that maps 𝑋𝑛 to an index

The decoding function maps an 
index to a reconstructed sequence

𝑋Its associated distortion is:

https://northeastern-datalab.github.io/cs7840/
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Rate-distortion code vs. k-means

Source: https://en.wikipedia.org/wiki/K-means_clustering 

Vector quantization of colors present in the 
image into Voronoi cells using k-means

Example image with only red and 
green channel (for illustration)

𝑛 = 2 channels per pixel (will be encoded together), 16 bits per pixel

𝒳 = 𝒳 = {0,1, … , 255} thus 8 bit resolution

https://northeastern-datalab.github.io/cs7840/
https://en.wikipedia.org/wiki/K-means_clustering
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Rate-distortion code vs. k-means

Source: https://en.wikipedia.org/wiki/K-means_clustering 

Vector quantization of colors present in the 
image into Voronoi cells using k-means

Example image with only red and 
green channel (for illustration)

1="0000"

16="1111"

𝑛 = 2 channels per pixel (will be encoded together), 16 bits per pixel

𝑛𝑅 = 4 bits per pixel (2 bits per channel level), thus 16 representatives 

𝑓𝑛
−1 10 : assignment region 

for index 10 

𝑔𝑛 10 = (135, 105): 
reconstruction of index 10 

𝒳 = 𝒳 = {0,1, … , 255} thus 8 bit resolution

15

14

13
12

11

10

9

8

7

6

5

4
32
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Main theorem of Rate-distortion theory 
A rate distortion pair 𝑅, 𝐷  is achievable if there exists a sequence of  (2𝑛𝑅 , 𝑛)-rate 
distortion code (𝑓𝑛 , 𝑔𝑛) with 

lim
𝑛→∞

𝔼𝑋~𝑝 𝑑 𝑋𝑛, 𝑔𝑛(𝑓𝑛(𝑋𝑛)) ≤ 𝐷 

A rate distortion region for a source is the closure of 
the set of achievable distortion pairs 𝑅, 𝐷 .

The rate distortion 𝑅(𝐷) is the infimum of rates 𝑅 
s.t. 𝑅, 𝐷  is in the rate distortion region of the 
source for given distortion 𝐷.

THEOREM: The rate distortion 𝑅(𝐷) for an iid source 
𝑋~𝑝 and bounded distortion 𝑑 𝑋, 𝑋  is

𝑅 𝐷 =  min 𝐼(𝑋; 𝑋)
𝑝 𝑋|𝑋 :  𝔼 𝑑 𝑋, 𝑋 ≤ 𝐷

maximum allowable distortion

reconstruction of 𝑋

rate distortion function for Bernoulli 
𝑝 with Hamming distortion

rate distortion region

𝑝 𝑥 ⋅ 𝑝 ො𝑥|𝑥

σ 𝑥, ො𝑥 𝑝 𝑥, ො𝑥 ⋅ 𝑑 𝑥, ො𝑥  

https://northeastern-datalab.github.io/cs7840/
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Rate Distortion function 𝑅 𝐷 Channel capacity 𝐶

𝑅 𝐷 =  min 𝐼(𝑋; 𝑋)
𝑝 𝑋|𝑋 :  𝔼 𝑑 𝑋, 𝑋 ≤ 𝐷

𝐶 = max
𝑝(𝑋)

𝐼(𝑋; 𝑌)

maximum allowable distortion

reconstruction of 𝑋

RATE-DISTORTION THEORY CHANNEL CODING THEORY

Encoder
Channel

𝑝 𝑦|𝑥
Decoder

𝑚 ෝ𝑚𝑋𝑛 𝑌𝑛

message message estimate

Encoder Decoder
𝑋𝑛𝑋𝑛 𝑓𝑛(𝑋𝑛)

source sequence index

∈ {1, 2, … , 2𝑛𝑅}

representation channel symbols

?Why is one minimizing, the other maximizing mutual information

https://northeastern-datalab.github.io/cs7840/
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Rate Distortion function 𝑅 𝐷 Channel capacity 𝐶

𝑅 𝐷 =  min 𝐼(𝑋; 𝑋)
𝑝 𝑋|𝑋 :  𝔼 𝑑 𝑋, 𝑋 ≤ 𝐷

𝐶 = max
𝑝(𝑋)

𝐼(𝑋; 𝑌)

maximum allowable distortion

reconstruction of 𝑋

RATE-DISTORTION THEORY CHANNEL CODING THEORY

• compress data 𝑋 into a small representation 𝑋 
while satisfying a given distortion constraint ≤ 𝐷 
(and thus achieve a certain level of fidelity)

• encode the information (via its input distribution 
𝑝(𝑋)) as to maximize the amount of information 
successfully transmitted through the channel

Encoder Decoder
𝑋𝑛𝑋𝑛 𝑓𝑛(𝑋𝑛)

source sequence index

∈ {1, 2, … , 2𝑛𝑅}

representation

Encoder
Channel

𝑝 𝑦|𝑥
Decoder

𝑚 ෝ𝑚𝑋𝑛 𝑌𝑛

message message estimatechannel symbols

https://northeastern-datalab.github.io/cs7840/
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Rate Distortion function 𝑅 𝐷 Channel capacity 𝐶

𝑅 𝐷 =  min 𝐼(𝑋; 𝑋)
𝑝 𝑋|𝑋 :  𝔼 𝑑 𝑋, 𝑋 ≤ 𝐷

𝐶 = max
𝑝(𝑋)

𝐼(𝑋; 𝑌)

maximum allowable distortion

reconstruction of 𝑋

RATE-DISTORTION THEORY CHANNEL CODING THEORY

• Optimization (Minimization) over 𝑝 𝑋|𝑋  
reflects the search for the most efficient 
encoding that meets the distortion 𝐷.

• Optimization (Maximization) over 𝑝(𝑋) reflects the 
search for the input distribution that makes best use 
of the channel's capacity to transmit information.

• find the minimum communication rate 𝑅 =
𝐼(𝑋; 𝑋) necessary to satisfy distortion ≤ 𝐷

• find the maximum reliable communication rate 𝑅 =
𝐼(𝑋; 𝑌) that a channel can support (its capacity 𝐶)

• compress data 𝑋 into a small representation 𝑋 
while satisfying a given distortion constraint ≤ 𝐷 
(and thus achieve a certain level of fidelity)

• encode the information (via its input distribution 
𝑝(𝑋)) as to maximize the amount of information 
successfully transmitted through the channel

https://northeastern-datalab.github.io/cs7840/
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2 Examples

Largely based on Ch10 of [Cover, Thomas'06] Elements of Information Theory, 2006. 
https://doi.org/10.1002/047174882X , and Ch 8 of [Yeung'08] Information Theory and Network Coding. 
https://doi.org/10.1007/978-0-387-79234-7 

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1002/047174882X
https://doi.org/10.1007/978-0-387-79234-7
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Rate Distortion for Bernoulli 𝑝 with Hamming distortion

𝑑 𝑥, ො𝑥 = ቊ
0 if 𝑥 = ො𝑥
1 if 𝑥 ≠ ො𝑥

 

Assume a Hamming distortion measure

WLOG, assume 𝑝 ≤ 0.5.

Consider a binary source 𝑋 ∼ Bernoulli(𝑝):
𝑝 𝑋 = 1 = 𝑝 ?If we had to guess x, should 

we rather guess x=0 or x=1?𝑝 𝑋 = 0 = 1 − 𝑝
ℙ 𝑋 = 0 ≥ 0.5 

Our minimum expected 
distortion between X and a 
constant estimate of x=0 is: ?

𝐷max = 𝔼[𝑑 𝑋, 0 ] 

= ℙ[𝑋 = 1] 

= 𝑝 

https://northeastern-datalab.github.io/cs7840/
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Rate Distortion for Bernoulli 𝑝 with Hamming distortion

𝑅 𝐷 = ቊ
𝐻 𝑝 − 𝐻 𝐷 , 0 < 𝐷 < 𝑝
0, else

What is the description rate 𝑅 𝐷  required 
to describe 𝑋 with an expected proportion of 
errors less than or equal to 𝐷?

rate distortion function

Two steps (instead of minimizing 𝐼 𝑋; 𝑋  directly): We first find a lower bound. We then 
show that this lower bound is achievable.

𝑑 𝑥, ො𝑥 = ቊ
0 if 𝑥 = ො𝑥
1 if 𝑥 ≠ ො𝑥

 

Assume a Hamming distortion measure:

WLOG, assume 𝑝 ≤ 0.5. 

𝑝 𝑋 = 1 = 𝑝

𝑝 𝑋 = 0 = 1 − 𝑝

Consider a binary source 𝑋 ∼ Bernoulli(𝑝):

https://northeastern-datalab.github.io/cs7840/
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Rate Distortion for Bernoulli 𝑝 with Hamming distortion

𝐼 𝑋; 𝑋 = 𝐻 𝑋 − 𝐻 𝑋| 𝑋

= 𝐻 𝑝 − 𝐻 𝑌| 𝑋

≥ 𝐻 𝑝 − 𝐻 𝑌

≥ 𝐻 𝑝 − 𝐻 𝐷

𝑅(𝐷) ≥ 𝐻 𝑝 − 𝐻 𝐷

Lower bound:

Let 𝑌 denote 𝑑(𝑋, 𝑋), or 𝑌 = 1 ⇔ 𝑋 ≠ 𝑋 . 

Then conditioning on 𝑋, 𝑋 and 𝑌 determine each 
other, and thus the uncertainty (entropy 𝐻) is the 

same if we consider 𝑋 or 𝑌: 𝐻 𝑋| 𝑋 = 𝐻 𝑌| 𝑋

since ℙ 𝑌 = ℙ 𝑋 ≠ 𝑋 = 𝔼[𝑑(𝑋 ≠ 𝑋)] ≤ 𝐷 

for 𝐷 ≤ 𝑝, and 𝐻(𝑥) increases with 𝑥 ≤ 0.5

𝐻 𝑌| 𝑋 ≤ 𝐻 𝑌 : our uncertainty can only reduce 

by conditioning (i.e. learning additional information)

For any joint distribution satisfying 
the distortion constraint, we know:

We thus have:

https://northeastern-datalab.github.io/cs7840/
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Rate Distortion for Bernoulli 𝑝 with Hamming distortion
We now show that the lower bound is actually the rate distortion function by finding a joint distribution 

𝑋, 𝑋  that meets the distortion constraint and has 𝑅 𝐷 = 𝐼 𝑋; 𝑋 .

Concretely, for 0 ≤ 𝐷 ≤ 𝑝, we can achieve value 𝐻 𝑝 − 𝐻 𝐷  for the rate distortion function 𝑅 𝐷  

by choosing 𝑋; 𝑋  to have the joint distribution given by the following binary symmetric channel:

0 0  
1 − 𝐷  

1 − 𝐷  1 1  

𝐷

𝐷

𝑋𝑋

1 − 𝑝  

𝑝

Here just 𝑝 corresponds to 𝐷 and 𝑌 to 𝑋:

𝐼 𝑋; 𝑋 = 𝐻 𝑝 − 𝐻(𝐷).

Recall that for a Binary Symmetric Channel 
𝐼 𝑋; 𝑌 = 𝐻 𝑌 − 𝐻(𝑝). 

1 − 𝑟  

𝑟

We need to find an appropriate 𝑟 𝑋 of 𝑋 at 
the input of the channel s.t. the output 
distribution of 𝑋 is the specified 𝑝𝑋.

𝑟 1 − 𝐷 + 1 − 𝑟 𝐷 = 𝑝

Let 𝑟 = ℙ 𝑋 = 1 . Then choose 𝑟 s.t. 

𝑟 =
𝑝−𝐷

1−2𝐷
  ⇒  

https://northeastern-datalab.github.io/cs7840/
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Rate Distortion for Bernoulli 𝑝 with Hamming distortion
If 𝐷 ≤ 𝑝 ≤ 0.5, then:

• 𝐼 𝑋; 𝑋 = 𝐻 𝑋 − 𝐻 𝑋| 𝑋 = 𝐻 𝑝 − 𝐻(𝐷)

and the expected distortion is ℙ 𝑋 ≠ 𝑋 = 𝐷.

Indeed, the uncertainty of 𝑋 when 𝑋 is known is 𝐷, 

hence 𝐻 𝑋| 𝑋 = 𝐻(𝐷).

• ℙ[ 𝑋 = 1] ≥ 0 and ℙ[ 𝑋 = 0] ≥ 0 

If 𝐷 ≥ 𝑝, then:

• We can achieve 𝑅 𝐷 = 0 by letting 𝑋 = 0 
with probability 1 

𝑅 𝐷 = ቊ
𝐻 𝑝 − 𝐻 𝐷 , 0 < 𝐷 < 𝑝
0, else

rate distortion function

https://northeastern-datalab.github.io/cs7840/
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Rate Distortion for Gaussian source with squared error distortion

Assume a squared error distortion 

WLOG, assume 𝑝 ≤ 0.5 

Consider a Gaussian source 𝑋 ∼ 𝒩(0, 𝜎2).

Then the description rate 𝑅 𝐷  required to 
describe 𝑋 with an expected proportion of 
errors less than or equal to 𝐷 can be shown 
to be as follows:

Proof: see book

𝑑 𝑥, ො𝑥 = 𝑥 − ො𝑥 2

𝑅 𝐷 = ቐ
1

2
ln

𝜎2

𝐷
, 0 ≤ 𝐷 ≤ 𝜎2

0, else

https://northeastern-datalab.github.io/cs7840/
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Rate Distortion for Gaussian source with squared error distortion

Each bit of description reduces the expected 
distortion by a factor of 4.

We can rewrite 𝑅 𝐷  to express the distortion 
𝐷 in terms of the rate 𝑅:

𝐷 𝑅 = 𝜎22−2𝑅

With a 1-bit description, the best expected 
square error is 0.25𝜎2.

Our simple 1-bit quantization from earlier
can be calculated to be 0.36𝜎2.

The rate distortion limit 𝑅 𝐷  is achieved by 
considering several distortion problems in 
succession (longer block lengths) instead of 
considering each problem separately.

Figure source: https://ieeexplore.ieee.org/document/7767821/ 

Independent 4-bit 
quantization:

Blocklength 𝑛 = 2 
and 4-bit per sample

Geometry of longer block lengths:

https://northeastern-datalab.github.io/cs7840/
https://ieeexplore.ieee.org/document/7767821/
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