Part 3: Applications [L18: Maximum Entropy \(1/2\)](https://northeastern-datalab.github.io/cs7840/fa24/) [Deriving the Maximum entropy principle]

Wolfgang Gatterbauer, Javed Aslam cs7840 Foundations and Applications of Information Th https://northeastern-datalab.github.io/cs7840/fa24/ 11/6/2024

Pre-class conversations

- Please ask many questions! We are all here
- Your experience: Python file vs notebook
	- Lecture 17 (Mon 11/4): Method of Types $(2/2)$ [Sanov's theorm, large de
	- Lecture 18 (Wed 11/6): Logistic Regression (2) ... Bradley-Terry model, Luce's choice axiom, Item
	- (Mon 11/11): no class (Veterans Day)
	- Lecture 19 (Wed 11/13): Minimum Description L
	- Lecture 20 (Mon 11/18): Rate Distortion Theory,
	- Lecture 21 (Wed 11/20):
	- Lecture 22 (Mon 11/25):
	- (Wed $11/27$): no class (Fall break)
- Today:
	- Why maximum entropy?
	- Max Entropy applications
	- MDL

Max Entro

Maximum Entropy Principle

Recall: Entropy as a measure of uncertainty

 $H(X) = -\sum$ $\overline{i=1}$ $p_i \cdot \lg(p_i) = \mathbb{E}_{X \sim p} \, \big| \lg$ 1 $p(X)$ For discrete RV X with distribution $\mathbb{P}[X = x_i] = p_i$:

 $H(X) = - \mid$ $-\infty$ ∞ $p(x) \cdot \lg(p(x)) \cdot dx$ For continuous RV X with PDF $p(x)$, the "differential

MAXIMUM ENTROPY PRINCIPLE: The probability dist is the one which best represents the current state of

Assume we are searching for a probability distribution (e.g. the probabilities of the faces of a die with $m = 6$ outcon

?

We have some other information I (or constraint) about the distribution. (e.g. that the average roll should be 4)

What is the most likely probability distribution

Assume we are searching for a probability distribution (e.g. the probabilities of the faces of a die with $m = 6$ outcon

We have some other information I (or constraint) about the distribution. (e.g. that the average roll should be 4)

What is the most likely probability distribution?

Wallis' thought experiment:

- We have $n \gg m$ balls and throw them randomly into m bins, each bin is treated the same
- Repeat this until the resulting probability distribution conforms to our information (constraint)
- What is the most likely probability distribution to result from this game? We will see this is t that maximizes enti

What is the PDF of the possible (unconstrained) outcomes

?

Multinomial distribution What is the PDF of the possible (unconstrained) outcomes?

pmf = $m^{-n} \cdot \frac{n!}{n!}$ $n_1! \cdot n_2! \cdots n_m$ if all balls had a unique id Multinomial coefficient $\binom{n}{n_1,...,n_m} =:W$ This is the number of ways in which you can partition an n -element set into disjoint subsets of sizes $n_1, n_2, ..., n_m$ with $\sum_i n_i = n$ Number of balls in each bin

New goal: Maximize the following expression s.t. constraint I (not shown):

max $W = \frac{n!}{n_1! \cdot n_2! \cdots n_m!}$

We will show that achieved by maxim

New goal: Maximize the following expression s.t. constraint I (not shown):

$$
\max W = \frac{n!}{n_1! \cdot n_2! \cdots n_m!}
$$
\n
$$
\max \frac{1}{n} \cdot \lg(W) = \frac{1}{n} \cdot \lg\left(\frac{n!}{n_1! \cdot n_2! \cdots n_m!}\right)
$$
\n
$$
= \frac{1}{n} \cdot \lg\left(\frac{n!}{(np_1)! \cdot (np_2)! \cdots (np_m)!}\right)
$$
\n
$$
= \frac{1}{n} \cdot \left(\lg(n!) - \sum_{i=1}^{m} \lg\left(\frac{(np_i)!}{(np_i)!}\right)\right)
$$

Now we are stuck, what ne

The Wallis derivation Stirling's Approx. ($10⁵$ $a(n!)$ Stirling's Approx. $10⁴$ New goal: Maximize the following expression s.t. constraint I (not shown): $\frac{1}{9}$ $\frac{10^3}{10^3}$ $n!$ $10²$ max $W =$ $n_1! \cdot n_2! \cdots n_m!$ $10¹$ $\frac{1}{n} \cdot \lg(W) = \frac{1}{n} \cdot \lg \left(\frac{n!}{n_1! \cdot n_2! \cdots n_m!} \right)$ max 10^{0}
 10^{0} 10^{1} $10²$ $\frac{1}{n} \cdot \lg \left(\frac{n!}{(np_1)!(np_2)!(nnp_m)!} \right)$ n = Assume $\frac{1}{n} \cdot (\lg(n!) - \sum_{i=1}^{m} \lg((np_i))!)$ = $ln(n!)$ $\approx \frac{1}{n} \cdot (n \cdot \lg(n) - \sum_{i=1}^{m} n p_i \cdot \lg(n p_i))$ $lg(n!)$ $= \lg(n) - \sum_{i=1}^{m} p_i \cdot \lg(np_i)$ $= \lg(n) - \lg(n) \cdot \sum_{i=1}^{m} p_i - \sum_{i=1}^{m} p_i \cdot \lg(p_i)$ $= H(\boldsymbol{p})$ All we need to do is to maximize entropy under the constraints of \boldsymbol{p} information I . There is no need for any inter information theoretic notion like "amount

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ Python file 224: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks , see also: https://en.w

EXAMPLE: Suppose a continuous random variable X has given and variance (2nd moment) σ^2 . Which PDF $p(x)$ has the maxim

How would you formalize this problem ?

EXAMPLE: Suppose a continuous random variable X has given $\mathsf I$ and variance (2nd moment) σ^2 . Which PDF $p(x)$ has the maxi

Differential Entropy

$$
H(X) = -\int_{-\infty}^{\infty} p(x) \cdot \lg(p(x)) \cdot dx
$$

PDF constraint

$$
\int_{-\infty}^{\infty} p(x) \cdot dx = 1
$$

Moment constraint(s)

$$
\int_{-\infty}^{\infty} (x - \mu)^2 \cdot p(x) \cdot dx = \sigma^2
$$

\n"Only one because t
\n
$$
because
$$

\nalready in

EXAMPLE: Suppose a continuous random variable X has given $\mathsf I$ and variance (2nd moment) σ^2 . Which PDF $p(x)$ has the maxim

Entropy
\n
$$
H(X) = -\int_{-\infty}^{\infty} p(x) \cdot \lg(p(x)) \cdot dx \qquad \qquad \mathcal{L} = \bigcap
$$

PDF constraint

$$
\int_{-\infty}^{\infty} p(x) \cdot dx = 1
$$

Moment constraint(s)

$$
\int_{-\infty}^{\infty} (x - \mu)^2 \cdot p(x) \cdot dx = \sigma^2
$$

EXAMPLE: Suppose a continuous random variable X has given $\mathsf I$ and variance (2nd moment) σ^2 . Which PDF $p(x)$ has the maxim

Entropy
\n
$$
H(X) = -\int_{-\infty}^{\infty} p(x) \cdot \lg(p(x)) \cdot dx \qquad \qquad \mathcal{L} = -\int_{-\infty}^{\infty} p
$$

PDF constraint

$$
\int_{-\infty}^{\infty} p(x) \cdot dx = 1 \qquad \qquad + \lambda_0 \left(\int_{-\infty}^{\infty} p(x) \cdot dx \right)
$$

Moment constraint(s)

$$
\int_{-\infty}^{\infty} (x - \mu)^2 \cdot p(x) \cdot dx = \sigma^2 \qquad \qquad + \lambda_1 \left(\int_{-\infty}^{\infty} \right)
$$

EXAMPLE: Suppose a continuous random variable X has given $\mathsf I$ and variance (2nd moment) σ^2 . Which PDF $p(x)$ has the maxim

Partial derivation (calculus of variation)
\n
$$
\frac{\partial \mathcal{L}}{\partial p(x)} = -\frac{1}{\ln(2)} \left(1 + \ln(p(x)) \right) \qquad \mathcal{L} = -\int_{-\infty}^{\infty} p
$$
\n
$$
\frac{\left(\text{Calculate } \ln(p(x)) \right)}{\left(\text{check } \ln(z) \right)^{\prime} = \left(\frac{\ln(x)}{\ln(2)} \right)^{\prime} = \frac{1}{x \cdot \ln(2)}} + \lambda_0 \left(\int_{-\infty}^{\infty} p(x) \cdot \ln(x) dx \right) + \lambda_1 (x - \mu)^2
$$
\n
$$
= 0
$$
\n
$$
\frac{\partial \mathcal{L}}{\partial p(x)} = \frac{1}{\ln(2)} \left(\frac{\ln(x)}{\ln(2)} \right)^{\prime} = \frac{1}{x \cdot \ln(2)} + \lambda_0 \left(\int_{-\infty}^{\infty} p(x) \cdot \ln(x) dx \right)^{\prime}
$$

EXAMPLE: Suppose a continuous random variable X has given and variance (2nd moment) σ^2 . Which PDF $p(x)$ has the maxi

$$
-\frac{1}{\ln(2)}(1 + \ln(p(x))) + \lambda_0 + \lambda_1(x - \mu)^2 = 0
$$

-(1 + \ln(p(x))) + \lambda'_0 + \lambda'_1(x - \mu)^2 = 0

$$
p(x) = e^{\lambda'_0 + \lambda'_1(x - \mu)^2}
$$

Constraints

EXAMPLE: Suppose a continuous random variable X has given and variance (2nd moment) σ^2 . Which PDF $p(x)$ has the maxi

$$
-\frac{1}{\ln(2)}(1 + \ln(p(x))) + \lambda_0 + \lambda_1(x - \mu)^2 = 0
$$

-(1 + \ln(p(x))) + \lambda'_0 + \lambda'_1(x - \mu)^2 = 0

$$
p(x) = e^{\lambda''_0 + \lambda'_1(x - \mu)^2}
$$

Constraints

$$
\int_{-\infty}^{\infty} p(x) \cdot dx = 1 \qquad \Rightarrow \qquad \int_{-\infty}^{\infty} e^{\lambda_0'' + \lambda_1'(x - \mu)^2} \cdot dx = 1
$$

$$
\int_{-\infty}^{\infty} (x - \mu)^2 \cdot p(x) \cdot dx = \sigma^2 \qquad \Rightarrow \qquad \int_{-\infty}^{\infty} (x - \mu)^2 \cdot e^{\lambda_0'' + \lambda_1'(x - \mu)^2} \cdot dx
$$

$$
p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}
$$

Maximum Entropy Distribution: DETA

Jaynes' dice

Example 3: Jaynes' Dice

A die has been tossed a very large number N of times, and we are told that the average number of spots per toss was not 3.5, as we might expect from an honest die, but 4.5. Translate this information into a probability assignment p_n , $n = 1, 2, ..., 6$, for the *n*-th face to come up on the next toss.

This problem is similar to the above except for two changes: our support is $\{1, ..., 6\}$ and the expectation of the die roll is 4.5. We can formulate the problem in a similar way with the following Lagrangian with an added term for the expected value (B) :

$$
\mathcal{L}(p_1, \ldots, p_6, \lambda_0, \lambda_1) = -\sum_{k=1}^6 p_k \log(p_k) - \lambda_0 (\sum_{k=1}^6 p_k - 1) - \lambda_1 (\sum_{k=1}^6 k p_k - B) \tag{11}
$$

Taking the partial derivatives and setting them to zero, we get:

$$
log(p_k) = -1 - \lambda_0 - k\lambda_1 = 0
$$

$$
log(p_k) = -1 - \lambda_0 - k\lambda_1
$$

$$
p_k = e^{-1 - \lambda_0 - k\lambda_1}
$$
 (12)

$$
\sum_{k=1}^{6} p_k = 1 \tag{13}
$$

$$
\sum_{k=1}^{6} k p_k = B \tag{14}
$$

Define a new o

$$
Z(\lambda_1) :=
$$

Substituting Ed

$$
\frac{\sum_{k=1}^{6} ke^{-}}{\sum_{k=1}^{6} e^{-1}}
$$

$$
\frac{\sum_{k=1}^{6} e^{-1}}{\sum_{k=1}^{6} e^{-1}}
$$

Going back to

$$
p_k = \frac{1}{Z(\lambda)}
$$

Unfortunately, solution. Intere distribution wit sure the proba We can easily

Source: https://bilkeng.io/posts/maximum-entropy-distributions/

Jaynes' dice

```
from numpy import exp
from scipy.optimize import newton
                                                                                                       Define a new c
a, b, B = 1, 6, 4.5
                                                                                                           Z(\lambda_1) :=# Equation 15
def z(lamb):return 1. / sum(exp(-k*lamb) for k in range(a, b + 1))
                                                                                                       Substituting Ed
# Equation 16
                                                                                                           \frac{\sum_{k=1}^{6} ke^{-}}{\sum_{k=1}^{6} e^{-1}}def f(lamb, B=B):y = sum(k * exp(-k*lambda)) for k in range(a, b + 1))
    return y * z(lamb) - B
                                                                                                                 \frac{\sum_{k=1}^{6}}{\sum_{k=1}^{6}}# Equation 17
def p(k, lamb):
     return z(\text{lambda}) * \exp(-k * \text{lambda})Going back to
lamb = newton(f, x0=0.5)
                                                                                                          p_k = \frac{1}{Z(\lambda)}print("Lambda = %.4f" % 1amb)for k in range(a, b + 1):
    print("p_{sd} = %4f" % (k, p(k, lamb)))Unfortunately,
                                                                                                       solution. Intere
# Output:
#Lambda = -0.3710distribution wit
   p_1 = 0.0544#sure the proba
  p_2 = 0.0788#We can easily
#p_3 = 0.1142# p_4 = 0.1654#p_{5} = 0.2398# p_6 = 0.3475
```
Source: https://bjlkeng.io/posts/maximum-entropy-distributions/

BACKUP OI Multinomial Disti & Combinato

Permutations

Given $n = 4$ objects $\{A, B, C, D\}$. There are how many permutations: ABCD, ABDC, ACBD, ACBD, ..., DCBA ?

Permutations

Given $n = 4$ objects $\{A, B, C, D\}$. There are $n! = 24$ different permutations: ABCD, ABDC, ACBD, ACBD, ..., DCBA

k -permutations (partial permutations)

There are how may different permutations of size $k = 2$: $AB, AC, AD, BA, \dots DC$ [?](https://northeastern-datalab.github.io/cs7840/)

$Permutations$ k -combinations

Given $n = 4$ objects $\{A, B, C, D\}$. There are $n! = 24$ different permutations: ABCD, ABDC, ACBD, ACBD, ..., DCBA

There are how (subsets) of siz ${A, B}, {A, C},$

k -permutations (partial permutations)

There are $P(n, k) = \frac{n!}{(n - k)!}$ $(n-k)!$ $= n^{\underline{k}} = 12$ different permutations of size $k = 2$: AB , AC , AD , BA , ... DC INTUITION 1: We don't distinguish between permutations of the items not shown: $AB(CD) = AB(DC)$. Thus we divide by the number of such permutations $(n - k)! = 2$ INTUITION 2: We have *n* choices for the 1st, $n-1$

for the 2nd, ..., $(n - k + 1)$ for the k^{th} . Thus $n^{\underline{k}}$.

Given $n = 4$ objects $\{A, B, C, D\}$. There are $n! = 24$ different permutations: ABCD, ABDC, ACBD, ACBD, ..., DCBA

k -permutations (partial permutations)

There are $P(n, k) = \frac{n!}{(n - k)!}$ $(n-k)!$ $= n^{\underline{k}} = 12$ different permutations of size $k = 2$: AB , AC , AD , BA , ... DC INTUITION 1: We don't distinguish between permutations of the items not shown:

 $AB(CD) = AB(DC)$. Thus we divide by the number of such permutations $(n - k)! = 2$

INTUITION 2: We have *n* choices for the 1st, $n-1$ for the 2nd, ..., $(n - k + 1)$ for the k^{th} . Thus $n^{\underline{k}}$.

$Permutations$ k -combinations

There are $C(n,$

6 different con ${A, B}, {A, C},$

INTUITION: We do items shown: AE such permutations

k -combinatio

There are how disjoint subset: $\sum_i k_i = n$. ${AB|C|D}, {AB}$

Given $n = 4$ objects $\{A, B, C, D\}$. There are $n! = 24$ different permutations: ABCD, ABDC, ACBD, ACBD, ..., DCBA

k -permutations (partial permutations)

There are $P(n, k) = \frac{n!}{(n - k)!}$ $(n-k)!$ $= n^{\underline{k}} = 12$ different permutations of size $k = 2$: AB , AC , AD , BA , ... DC INTUITION 1: We don't distinguish between permutations of the items not shown: $AB(CD) = AB(DC)$. Thus we divide by the number of such permutations $(n - k)! = 2$

INTUITION 2: We have *n* choices for the 1st, $n-1$ for the 2nd, ..., $(n - k + 1)$ for the k^{th} . Thus $n^{\underline{k}}$.

$Permutations$ k -combinations

There are $C(n,$

6 different con ${A, B}, {A, C},$

INTUITION: We do items shown: \overline{A} such permutations

k -combinatio

There are $\int_{k_1}^{\infty}$ k_1,k partition the set $k_2 = 1, k_3 = 1$ ${AB|C|D}, {AB}$

INTUITION: We do each group. Thus class, i.e. $k_i!$ per

Binomial & Multinomial distribution

Binomial theorem (or Binomial expansion)

Binomial & Multinomial distribution

Binomial theorem (or Binomial expansion) Multinomial theorem (or Binomial expansion)

$$
(a+b)^n = \sum_{k=0}^n {n \choose k} \cdot a^{n-k} b^k
$$

Binomial coefficient $\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$ $k! (n-k)!$ = $n^{\underline{k}}$ $k!$ Number of ways in which you can select k items from a total of n [different items](https://study.com/academy/lesson/binomial-coefficient-formula-examples.html)

$$
(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4
$$

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ Figure source: https://study.com/academy/lesson/binomial-coefficient-formula-examples.html

Binomial & Multinomial distribution

Binomial theorem (or Binomial expansion) Multinomial theorem (or Binomial expansion)

$$
(a+b)^n = \sum_{k=0}^n {n \choose k} \cdot a^{n-k} b^k \qquad (a+b)
$$

Binomial coefficient $\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$ $k! (n-k)!$ = $n^{\underline{k}}$ $k!$ Number of ways in which you can select k items from a total of n [different items](https://study.com/academy/lesson/binomial-coefficient-formula-examples.html)

$$
(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4
$$

$$
(a+b+c)^n = \binom{k}{k}
$$

Multinomial coeff

Number of ways in into disjoint subse

$$
(a+b+c)^4 = a
$$

+4a³b + 4a³
+6a²b² + 6a
+12a²bc + 1

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ Figure source: https://study.com/academy/lesson/binomial-coefficient-formula-examples.html

Binomial distribution towards Norma

"Two possible paths leading to the same bin within the bean machine." "This animation capture distribution with i like a normal disti Likely for $p \approx 0.5$

Binomial distribution towards Norma

Figure Source: https://tex.stackexchange.com/questions/471912/binomial-tree-converging-to-a-normal-distribution-3d
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github

Binomial distribution towards Norma

Binomial distribution, n=151, p=0.

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ Figure Source: https://stackoverflow.com/questions/60546225/plotting-the-normal-and-binomial-distribution-in-same-plo

Part 3: Applications [L19: Maximum Entropy\(2/2\)](https://northeastern-datalab.github.io/cs7840/fa24/) [Occam's razor, Kolmogorov Complexity, M Length]

Wolfgang Gatterbauer, Javed Aslam cs7840 Foundations and Applications of Information Th https://northeastern-datalab.github.io/cs7840/fa24/ 11/13/2024

Occam's Ra

Continuing a series of numbers

 -1 , 3, 7, 11. How to continue

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ Example taken from "[MacKay'02] Information Theory, Inference, and learning Algorithms. Cambridge University Press, 20

Continuing a series of numbers

! -1, 3, 7, 11, −19.9, 1043.8

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ Example taken from "[MacKay'02] Information Theory, Inference, and learning Algorithms. Cambridge University Press, 20

Continuing a series of numbers

Rule: get the nex the previous nun

evaluating $-\frac{1}{11}x$

$$
-1, 3, 7, 11, -19.9, 1043.8
$$

\n
$$
-\frac{1}{11}(-1) + \frac{9}{11}1 + \frac{23}{11} = \frac{33}{11} = 3
$$

\n
$$
-\frac{1}{11}(27) + \frac{9}{11}9 + \frac{23}{11} = \frac{77}{11} = 7
$$

\n
$$
-\frac{1}{11}(343) + \frac{9}{11}49 + \frac{23}{11} = \frac{121}{11} = 11
$$

\n
$$
-\frac{1}{11}(1331) + \frac{9}{11}121 + \frac{23}{11} = \frac{-219}{11} = 19.\overline{90}
$$

\n
$$
-\frac{1}{11}\left(-\frac{10,503,459}{1331}\right) + \frac{9}{11}\frac{47,961}{121} + \frac{23}{11} \approx 1043.7956
$$

Example taken from "[MacKay'02] Information Theory, Inference, and learning Algorithms. Cambridge University Press, 20 Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/

Choosing between alternative hypoth

Rule: get the next the previous num

- $-1, 3, 7, 11, 15, 19$ H_1 : $-1, 3, 7, 11, -19.9, 1043.8$ H_2 :
	- evaluating $-\frac{1}{11}$ 11 χ

 H_1 : adding 4

How do we choose between different

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ Example taken from "[MacKay'02] Information Theory, Inference, and learning Algorithms. Cambridge University Press, 20

Choosing between alternative hypoth

Rule: get the nex the previous nun

 H_1 : adding 4

 H_2 : evaluating $-\frac{1}{11}x$

Bayes' theorem: Plausibility of model H given the data $\mathbb{P}[H|D] = \frac{\mathbb{P}[D|H]\cdot\mathbb{P}[H]}{\mathbb{P}[D]}$

 $-1, 3, 7, 11, -19.9, 1043.8$

 $-1, 3, 7, 11, 15, 19$

 $\frac{\mathbb{P}[H_1|D]}{\mathbb{P}[H_2|D]} = \frac{\mathbb{P}[E]}{\mathbb{P}[E]}$

allows us to insert a prior bias in favor of H_1 on aesthetic grounds

Example taken from "[MacKay'02] Information Theory, Inference, and learning Algorithms. Cambridge University Press, 20 Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/

Choosing between alternative hypoth

The horizontal axis represents the space of possible data sets D.

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ Figure taken from "[MacKay'02] Information Theory, Inference, and learning Algorithms. Cambridge University Press, 2002

Choosing between alternative hypotheses

 H_2 : evaluating a cubi (where c , b , e are

Assume that s_0 and n could each have been anywhere between −50 and 50

 S_0, S_1, S_2, S_3 .

 $\mathbb{P}[D|H_1] =$ $\frac{1}{101}$. $\frac{1}{101}$ $\approx 10^{-4}$

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ Example taken from "[MacKay'02] Information Theory, Inference, and learning Algorithms. Cambridge University Press, 20

Choosing between alternative hypotheses

 $-1, 3, 7, 11.$ $H_1:$ S_0, S_1, S_2, S_3 . Assume that s_0 and n could each have been anywhere between −50 and 50 $\mathbb{P}[D|H_1] =$ $\frac{1}{101}$. $\frac{1}{101}$ $\approx 10^{-4}$

Rule: get the next the previous nun

 H_1 : adding *n* (where

 H_2 : evaluating a cubi (where c , b , e are

Assume c , b , e are rational number and denominator between 1 and

Under this prior, there are four w

 $\frac{1}{11} = \frac{2}{22} = \frac{3}{33} = \frac{4}{44}$. Similarly, then

$$
\mathbb{P}[D|H_1] = \frac{1}{101} \cdot \left(4\frac{1}{101}\right)
$$

$$
\Rightarrow \frac{\mathbb{P}[D|H_1]}{\mathbb{P}[D|H_2]} > 10^7
$$

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ Example taken from "[MacKay'02] Information Theory, Inference, and learning Algorithms. Cambridge University Press, 20

Kolmogorov Com [Minimum De](https://doi.org/10.7551/mitpress/1114.003.0005)[scriptio](https://northeastern-datalab.github.io/cs7840/) (MDL)

Great reference for MDL: [Gruenwald'04] A Tutorial Introduction to the Minimum Description Leng https://doi.org/10.7551/mitpress/1114.003.0005

Compressing text is hard

Je n'ai fait celle-c je n'ai pas eu le loisir de la faire plus courte.

I have made this [not have the time](https://northeastern-datalab.github.io/cs7840/)

Blaise Pascal (165

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ Source of quote: https://en.wikiquote.org/wiki/Blaise_Pascal

Compressing text is not always possik

Contrast:

- Computational complexity: measured by program execution
- Algorithmic complexity: measured by program length (Ko

Can you make the following two messages shorter

010

011010100000100111100110011001111111001110111100110010010000100010110010111110110001001101100110111

Compressing text is not always possik

Contrast:

- Computational complexity: measured by program execution
- Algorithmic complexity: measured by program length (Ko

Can you make the following two messages shorter?

010

Print 50 '01's

011010100000100111100110011001111111001110111100110010010000100010110010111110110001001101100110111

Compressing text is not always possik

Contrast:

- Computational complexity: measured by program execution
- Algorithmic complexity: measured by program length (Ko

Can you make the following two messages shorter?

010

Print 50 '01's

011010100000100111100110011001111111001110111100110010010000100010110010111110110001001101100110111 1.

Print the first 100 digits of $\sqrt{2}$ in binary after comm

Kolmogorov Complexity

Kolmogorov complexity $K(x)$ of a string x: the length of the shorte string (the length of the ultimately compressed version of a file)

THEOREM: $K(x)$ is uncomputable.

? Core of the argument is a variant on the "self-referential paradox":

- Liar paradox
- ? • Berry'[s paradox](https://en.wikipedia.org/wiki/Liar_paradox)

Kolmogorov Complexity

Kolmogorov complexity $K(x)$ of a string x: the length of the shorte string (the length of the ultimately compressed version of a file)

THEOREM: $K(x)$ is uncomputable.

Core of the argument is a variant on the "self-referential paradox":

- Liar paradox "This sentence is a lie."
- Berry's paradox ["The smalles](https://en.wikipedia.org/wiki/Liar_paradox)[t positive integer](https://en.wikipedia.org/wiki/Berry_paradox) not definable in

The paradox: this is a number that is both: "simple" (because we define it with a short prog "complex" (because it was defined as having high

Kolmogorov Complexity

Kolmogorov complexity $K(x)$ of a string x: the length of the shorte string (the length of the ultimately compressed version of a file)

THEOREM: $K(x)$ is uncomputable.

PROPOSITION: There exist strings of arbitrarily large $K(x)$

PROOF: Otherwise infinitely many finite strings could be generated I complexi[ty below](https://en.wikipedia.org/wiki/Liar_paradox) n bits.

PROOF THEOREM:

- Assume $K(x)$ is computable, i.e. there is an algorithm A that computed to
- Then we can construct a paradoxical string:
	- $-$ Let n be a fixed integer.
	- − Consider all strings x s.t. $K(x) \geq n$. (We could use our asset search through all strings check their Kolmogorov complex
	- Find the lexicographically smallest string *s* s.t. $K(s) \geq n$.

Ilya Sutskever @ Simons [2023]

An Observation on Generalization

Conditional Kolmogorov complexity as the solutic

• If C is a computable compressor, then:

For all x,

$$
K(Y|X) < |C(Y|X)| + K(C) + O(1)
$$

Conditioning on a dataset, not an example Will extract all "value" out of X for predicting Y

> So this is the to unsupervise

Ilya Sutsekever: "An Observation on Generalization". https://simons.berkeley.edu/talks/ilya-sutskever-openai-2023-08-14 Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/

Minimum Description Length (MDL)

?

Model selection problem in Learning and Inference:

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ Further reading: https://en.wikipedia.org/wiki/Model selection

Minimum Description Length (MDL)

Model selection problem in Learning and Inference: How to competition explanations of data (a phenomenon) given limited observati

Underlying Idea behind MDL is "Learning (Induction) as Data can compress the data better (has the shortest description) a the data (and thus hopefully generalizes better $=$ draw broader $=$ observa[tion\)](https://en.wikipedia.org/wiki/Model_selection)

Thus the MDL principle is:

- a more mathematical applications of Occam's razor (favoring
- a more practical version of Kolmogorov complexity (for model)

Further reading: https://en.wikipedia.org/wiki/Model selection

Minimum Description Length (MDL)

Given a set of models (hypotheses) H , the best model $H \in \mathcal{F}$

Note that with MDL we are only inter[ested in the length of th](https://northeastern-datalab.github.io/cs7840/)e complexity), not in the actual encoding itself.

This formulation is also called "two-part MDL" (model and data we are usually interested in the model parameter of the optir

MDL was proposed in [Rissanen'78], and is very similar to the Minimum Message Length (MML) Principle from [Wallace, B hypothesis minimizing code length using two-part codes

Example: Approximate Boolean Matr

DEFINITION: The Boolean rank of an n-by-m Boolean matrix **A** is the least integer k such that there exists an n-by-k Boolean matrix B and a k-by-m Boolean matrix C for which $A = B \circ C$.

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ Based on slides from "Vreeken, Yamanishi. Modern MDL meets Data Mining: Insights, Theory, and Practice, KDD tutorial, 2

Example: Approximate Boolean Matr

"Model order selection problem": determine i.e, to answer where fine-grained structure stops,

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ Figure Source: Miettinen, Vreeken. MDL4BMF: Minimum Description Length for Boolean Matrix Factorization, TKDD, 2014

Example: Approximate Boolean Matr

The main contribution of the article linked below is to provide a method to solve the model order selection problem in the BMF framework.

We start by $H = (\mathbf{B}, \mathbf{C})$, of

That is, we el matrices. By e encode matric To encode m 1983]. A unive the decoder to of the code w 2007]. With th is defined as

where log^{*} is terms are in $c_0 = \sum_{j \geq 1} 2^{-j}$ ensure that th

...

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ Figure Source: Miettinen, Vreeken. MDL4BMF: Minimum Description Length for Boolean Matrix Factorization, TKDD, 2014

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ Figure Source: Miettinen, Vreeken. MDL4BMF: Minimum Description Length for Boolean Matrix Factorization, TKDD, 2014