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Pre-class conversations

• Please ask many questions! We are all here to learn
• Your experience: Python file vs notebook

• Today:
- Why maximum entropy?
- Max Entropy applications
- MDL

https://northeastern-datalab.github.io/cs7840/
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Max Entropy

https://northeastern-datalab.github.io/cs7840/
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Maximum Entropy Principle
Recall: Entropy as a measure of uncertainty

𝐻 𝑋 = −n
!"#

𝑝! ⋅ lg 𝑝! = 𝔼�~� lg
1

𝑝(𝑋)

For discrete RV 𝑋 with distribution ℙ 𝑋 = 𝑥� = 𝑝�:

𝐻 𝑋 = −q
��

�
𝑝 𝑥 ⋅ lg 𝑝 𝑥 ⋅ 𝑑𝑥	

For continuous RV 𝑋 with PDF 𝑝(𝑥), the "differential entropy"

But why ?
MAXIMUM ENTROPY PRINCIPLE: The probability distribution with largest entropy 
is the one which best represents the current state of knowledge about a system.

https://northeastern-datalab.github.io/cs7840/
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The Wallis derivation
Assume we are searching for a probability distribution
(e.g. the probabilities of the faces of a die with 𝑚 = 6 outcomes.

We have some other information 𝐼 (or constraint) about 
the distribution. (e.g. that the average roll should be 4)

What is the most likely probability distribution

𝑚 = 6

This is a biased die!

?

https://northeastern-datalab.github.io/cs7840/
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The Wallis derivation
Assume we are searching for a probability distribution
(e.g. the probabilities of the faces of a die with 𝑚 = 6 outcomes.

We have some other information 𝐼 (or constraint) about 
the distribution. (e.g. that the average roll should be 4)

Wallis' thought experiment:

• Repeat this until the resulting probability distribution 
conforms to our information (constraint) 𝐼 

What is the most likely probability distribution?

• What is the most likely probability 
distribution to result from this game?

• We have 𝑛 ≫ 𝑚 balls and throw them randomly 
into 𝑚 bins, each bin is treated the same

𝑚 = 6

𝑛 = 7
1 2 3 4 5 6

1 2 3 4 5 6

This is a biased die!

𝑛 = 7

We will see this is the one 
that maximizes entropy J

https://northeastern-datalab.github.io/cs7840/
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The Wallis derivation
What is the PDF of the possible (unconstrained) outcomes

This is a biased die!

𝑛 = 7
1 2 3 4 5 6

𝑛 = 7

𝑚 = 6

1 2 3 4 5 6

?

https://northeastern-datalab.github.io/cs7840/
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The Wallis derivation

pmf = 𝑚�� ⋅ �!
�!!⋅�"!⋅⋅⋅�#!

Multinomial distribution

if all balls had a unique id

Multinomial coefficient /
/$,…,/%

=:𝑊 
This is the number of ways in which you can partition an 𝑛-element 
set into disjoint subsets of sizes 𝑛%, 𝑛!, … , 𝑛( with ∑) 𝑛) = 𝑛

𝑊 = 1260

𝑊 = 140

What is the PDF of the possible (unconstrained) outcomes?
This is a biased die!

Number of balls in each bin

𝑛 = 7

𝑛 = 7

𝑚 = 6

1 2 3 4 5 6

1 2 3 4 5 6

https://northeastern-datalab.github.io/cs7840/
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The Wallis derivation
Maximize the following expression 
s.t. constraint 𝐼 (not shown):

New goal:

max 𝑊 = �!
�!!⋅�"!⋅⋅⋅�#!

We will show that maximizing W can be 
achieved by maximizing the entropy

https://northeastern-datalab.github.io/cs7840/
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The Wallis derivation
Maximize the following expression 
s.t. constraint 𝐼 (not shown):

New goal:

max 𝑊 = �!
�!!⋅�"!⋅⋅⋅�#!

max  &
Z
⋅ lg 𝑊 = &

[
⋅ lg [!

[>!⋅[?!⋅⋅⋅[@!

= &
[
⋅ lg [!

([]>)!⋅([]?)!⋅⋅⋅([]@)!
 

= &
[
⋅ lg 𝑛! − ∑(%&' lg 𝑛𝑝( !	

Now we are stuck. What next?

We will show that maximizing W can be 
achieved by maximizing the entropy

https://northeastern-datalab.github.io/cs7840/
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The Wallis derivation
Maximize the following expression 
s.t. constraint 𝐼 (not shown):

New goal:

max 𝑊 = �!
�!!⋅�"!⋅⋅⋅�#!

ln 𝑛! ≈ 𝑛 ⋅ ln 𝑛  

max  &
Z
⋅ lg 𝑊 = &

[
⋅ lg [!

[>!⋅[?!⋅⋅⋅[@!

= &
[
⋅ lg [!

([]>)!⋅([]?)!⋅⋅⋅([]@)!
 

= &
[
⋅ lg 𝑛! − ∑(%&' lg 𝑛𝑝( !	

lg 𝑛! ≈ 𝑛 ⋅ 6D 2
6D E

= 𝑛 ⋅ lg 𝑛 − 𝑛 ⋅ lg 𝑒  
≈ 𝑛 ⋅ lg 𝑛  

≈ &
[
⋅ 𝑛 ⋅ lg 𝑛 − ∑(%&

' 𝑛𝑝( ⋅ lg 𝑛𝑝(  

= lg 𝑛 − ∑(%&' 𝑝( ⋅ lg 𝑛𝑝(  

= lg 𝑛 − lg 𝑛 ⋅ ∑(%&' 𝑝( − ∑(%&' 𝑝( ⋅ lg 𝑝(  

= 𝐻(𝒑) All we need to do is to maximize entropy under the constraints of our testable 
information 𝐼. There is no need for any interpretation of 𝐻 in terms of 
information theoretic notion like "amount of uncertainty"

Python file 224: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks  , see also: https://en.wikipedia.org/wiki/Stirling%27s_approximation

Assume 𝑛 → ∞, then apply Stirling's formula:

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks
https://en.wikipedia.org/wiki/Stirling%27s_approximation
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Maximum Entropy Distributions
EXAMPLE: Suppose a continuous random variable 𝑋 has given mean (1st moment) 𝜇 
and variance (2nd moment) 𝜎=. Which PDF 𝑝(𝑥) has the maximum entropy 𝐻(𝑥)?

?How would you formalize this problem

https://northeastern-datalab.github.io/cs7840/


304Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Maximum Entropy Distributions

"Only one constraint is needed, 
because the definition of 𝜎=
already includes 𝜇."

Differential Entropy

𝐻 𝑋 = −q
��

�
𝑝 𝑥 ⋅ lg 𝑝 𝑥 ⋅ 𝑑𝑥	

PDF constraint

q
��

�
𝑝 𝑥 ⋅ 𝑑𝑥	 = 1

q
��

�
𝑥 − 𝜇 = ⋅ 𝑝 𝑥 ⋅ 𝑑𝑥	 = 𝜎=

Moment constraint(s)

EXAMPLE: Suppose a continuous random variable 𝑋 has given mean (1st moment) 𝜇 
and variance (2nd moment) 𝜎=. Which PDF 𝑝(𝑥) has the maximum entropy 𝐻(𝑥)?

https://northeastern-datalab.github.io/cs7840/
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Maximum Entropy Distributions

Entropy

𝐻 𝑋 = −q
��

�
𝑝 𝑥 ⋅ lg 𝑝 𝑥 ⋅ 𝑑𝑥	

PDF constraint

q
��

�
𝑝 𝑥 ⋅ 𝑑𝑥	 = 1

q
��

�
𝑥 − 𝜇 = ⋅ 𝑝 𝑥 ⋅ 𝑑𝑥	 = 𝜎=

Moment constraint(s)

Lagrangian

ℒ = ?

EXAMPLE: Suppose a continuous random variable 𝑋 has given mean (1st moment) 𝜇 
and variance (2nd moment) 𝜎=. Which PDF 𝑝(𝑥) has the maximum entropy 𝐻(𝑥)?

https://northeastern-datalab.github.io/cs7840/
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Maximum Entropy Distributions

Entropy

𝐻 𝑋 = −q
��

�
𝑝 𝑥 ⋅ lg 𝑝 𝑥 ⋅ 𝑑𝑥	

PDF constraint

q
��

�
𝑝 𝑥 ⋅ 𝑑𝑥	 = 1

q
��

�
𝑥 − 𝜇 = ⋅ 𝑝 𝑥 ⋅ 𝑑𝑥	 = 𝜎=

Moment constraint(s)

ℒ = −q
��

�
𝑝 𝑥 ⋅ lg 𝑝 𝑥 ⋅ 𝑑𝑥	

Lagrangian

EXAMPLE: Suppose a continuous random variable 𝑋 has given mean (1st moment) 𝜇 
and variance (2nd moment) 𝜎=. Which PDF 𝑝(𝑥) has the maximum entropy 𝐻(𝑥)?

+𝜆S q
��

�
𝑝 𝑥 ⋅ 𝑑𝑥	 − 1

+𝜆# q
��

�
𝑥 − 𝜇 = ⋅ 𝑝 𝑥 ⋅ 𝑑𝑥	 − 𝜎=

https://northeastern-datalab.github.io/cs7840/
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Maximum Entropy Distributions

Partial derivation (calculus of variation)

ℒ = −q
��

�
𝑝 𝑥 ⋅ lg 𝑝 𝑥 ⋅ 𝑑𝑥	

+𝜆S q
��

�
𝑝 𝑥 ⋅ 𝑑𝑥	 − 1

+𝜆# q
��

�
𝑥 − 𝜇 = ⋅ 𝑝 𝑥 ⋅ 𝑑𝑥	 − 𝜎=

Lagrangian
𝜕ℒ

𝜕𝑝(𝑥)
= − #

M? = 1 + ln 𝑝 𝑥  

+𝜆S

+𝜆# 𝑥 − 𝜇 =

= 0

EXAMPLE: Suppose a continuous random variable 𝑋 has given mean (1st moment) 𝜇 
and variance (2nd moment) 𝜎=. Which PDF 𝑝(𝑥) has the maximum entropy 𝐻(𝑥)?

𝑥 ⋅ ln 𝑥 A = 𝑥 %
"
+ ln 𝑥  

lg 𝑥 ′ = BC "
BC !

A
= %

"⋅BC(!)
 

Calculus 
cheat 
sheet

%
BC(!)

⋅ 𝑝 𝑥 ⋅ ln 𝑝 𝑥  

(functional) function of a function

https://northeastern-datalab.github.io/cs7840/
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Maximum Entropy Distributions

?

EXAMPLE: Suppose a continuous random variable 𝑋 has given mean (1st moment) 𝜇 
and variance (2nd moment) 𝜎=. Which PDF 𝑝(𝑥) has the maximum entropy 𝐻(𝑥)?

− #
M? = 1 + ln 𝑝 𝑥 + 𝜆S + 𝜆# 𝑥 − 𝜇 = = 0 

− 1 + ln 𝑝 𝑥 + 𝜆S� + 𝜆#� 𝑥 − 𝜇 = = 0 

𝑝 𝑥 = 𝑒�6??v�7? /�� 8
 

Constraints

𝜆'A − 1

https://northeastern-datalab.github.io/cs7840/
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⇒

Maximum Entropy Distributions

− #
M? = 1 + ln 𝑝 𝑥 + 𝜆S + 𝜆# 𝑥 − 𝜇 = = 0 

− 1 + ln 𝑝 𝑥 + 𝜆S� + 𝜆#� 𝑥 − 𝜇 = = 0 

Constraints

�
@F

F
𝑝 𝑥 ⋅ 𝑑𝑥	 = 1

�
@F

F
𝑥 − 𝜇 8 ⋅ 𝑝 𝑥 ⋅ 𝑑𝑥	 = 𝜎8

�
@F

F
𝑒GHII>G-I :@H 0 ⋅ 𝑑𝑥	 = 1

�
@F

F
𝑥 − 𝜇 8 ⋅ 𝑒GHII>G-I :@H 0 ⋅ 𝑑𝑥	 = 𝜎8

𝜆19 = − 1
8I0

 

𝑒GHII = − G-I

J
= 1

I 8J
 

𝑝 𝑥 = #
� =� 𝑒

� @AB 8

8C8  

⇒

⇒

The maximum entropy principle 
is empirically justified J

EXAMPLE: Suppose a continuous random variable 𝑋 has given mean (1st moment) 𝜇 
and variance (2nd moment) 𝜎=. Which PDF 𝑝(𝑥) has the maximum entropy 𝐻(𝑥)?

𝑝 𝑥 = 𝑒�6??v�7? /�� 8
 

For details, see next page

https://northeastern-datalab.github.io/cs7840/
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Calculus 
cheat 
sheet

Maximum Entropy Distribution: DETAILS

�
@F

F
𝑒GHII>G-I :@H 0 ⋅ 𝑑𝑥	 = 1 �

@F

F
𝑥 − 𝜇 8 ⋅ 𝑒GHII>G-I :@H 0 ⋅ 𝑑𝑥	 = 𝜎8

𝜆19 = − 1
8I0

 𝑒GHII = − G-I

J
= 1

I 8J
  

J
@G-I

= 𝑒@GHII 

𝑒GHII ⋅ �
@F

F
𝑒G-I :@H 0 ⋅ 𝑑𝑥	 = 1

�
@F

F
𝑒G-I :@H 0 ⋅ 𝑑𝑥	 = 𝑒@GHII

https://en.wikipedia.org/wiki/Gaussian_integral 

Calculus 
cheat 
sheet

https://en.wikipedia.org/wiki/List_of_integrals_of_exponential_functions  

𝑒GHII ⋅ �
@F

F
𝑧8 ⋅ 𝑒G-I K0 ⋅ 𝑑𝑧	 = 𝜎8

BACKUP

1
8

J
@G-I

J = 𝜎8 ⋅ 𝑒@GHII 

1
8G-I

J
@G-I

	 = 𝜎8 ⋅ J
@G-I

 

https://northeastern-datalab.github.io/cs7840/
https://en.wikipedia.org/wiki/Gaussian_integral
https://en.wikipedia.org/wiki/List_of_integrals_of_exponential_functions
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Jaynes' dice

Source: https://bjlkeng.io/posts/maximum-entropy-distributions/ 

https://northeastern-datalab.github.io/cs7840/
https://bjlkeng.io/posts/maximum-entropy-distributions/
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Jaynes' dice

Source: https://bjlkeng.io/posts/maximum-entropy-distributions/ 

https://northeastern-datalab.github.io/cs7840/
https://bjlkeng.io/posts/maximum-entropy-distributions/
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BACKUP on 
Multinomial Distribution

& Combinatorics

https://northeastern-datalab.github.io/cs7840/
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Permutations, Combinations, Binomial coefficient
Permutations

Given 𝑛 = 4 objects {𝐴, 𝐵, 𝐶, 𝐷}. There are 
how many permutations:
𝐴𝐵𝐶𝐷, 𝐴𝐵𝐷𝐶, 𝐴𝐶𝐵𝐷, 𝐴𝐶𝐵𝐷,… , 𝐷𝐶𝐵𝐴 

BACKUP

?

https://northeastern-datalab.github.io/cs7840/
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Permutations, Combinations, Binomial coefficient
Permutations

Given 𝑛 = 4 objects {𝐴, 𝐵, 𝐶, 𝐷}. There are 
𝑛! = 24 different permutations:
𝐴𝐵𝐶𝐷, 𝐴𝐵𝐷𝐶, 𝐴𝐶𝐵𝐷, 𝐴𝐶𝐵𝐷,… , 𝐷𝐶𝐵𝐴 

There are how may different permutations of 
size 𝑘 = 2:
𝐴𝐵, 𝐴𝐶, 𝐴𝐷, 𝐵𝐴,…𝐷𝐶 

𝑘-permutations (partial permutations)

BACKUP

?

https://northeastern-datalab.github.io/cs7840/
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Permutations, Combinations, Binomial coefficient
Permutations 𝑘-combinations

Given 𝑛 = 4 objects {𝐴, 𝐵, 𝐶, 𝐷}. There are 
𝑛! = 24 different permutations:
𝐴𝐵𝐶𝐷, 𝐴𝐵𝐷𝐶, 𝐴𝐶𝐵𝐷, 𝐴𝐶𝐵𝐷,… , 𝐷𝐶𝐵𝐴 

There are 𝑃(𝑛, 𝑘) = 2!
2@3 !

= 𝑛3 = 12 

different permutations of size 𝑘 = 2	:
𝐴𝐵, 𝐴𝐶, 𝐴𝐷, 𝐵𝐴,…𝐷𝐶 
INTUITION 1: We don't distinguish between 
permutations of the items not shown: 
𝐴𝐵 𝐶𝐷 = 𝐴𝐵(𝐷𝐶). Thus we divide by the 
number of such permutations 𝑛 − 𝑘 ! = 2

𝑘-permutations (partial permutations)

There are how many different combinations 
(subsets) of size 𝑘 = 2	:
𝐴, 𝐵 , 𝐴, 𝐶 , 𝐴, 𝐷 , 𝐵, 𝐶 , 𝐵, 𝐷 , {𝐶, 𝐷} 

INTUITION 2: We have 𝑛 choices for the 1st, 𝑛 − 1 
for the 2nd, ..., (𝑛 − 𝑘 + 1) for the 𝑘th. Thus 𝑛0.

BACKUP

?

https://northeastern-datalab.github.io/cs7840/
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Permutations, Combinations, Binomial coefficient
Permutations 𝑘-combinations

Given 𝑛 = 4 objects {𝐴, 𝐵, 𝐶, 𝐷}. There are 
𝑛! = 24 different permutations:
𝐴𝐵𝐶𝐷, 𝐴𝐵𝐷𝐶, 𝐴𝐶𝐵𝐷, 𝐴𝐶𝐵𝐷,… , 𝐷𝐶𝐵𝐴 

There are 𝑃(𝑛, 𝑘) = 2!
2@3 !

= 𝑛3 = 12 

different permutations of size 𝑘 = 2	:
𝐴𝐵, 𝐴𝐶, 𝐴𝐷, 𝐵𝐴,…𝐷𝐶 
INTUITION 1: We don't distinguish between 
permutations of the items not shown: 
𝐴𝐵 𝐶𝐷 = 𝐴𝐵(𝐷𝐶). Thus we divide by the 
number of such permutations 𝑛 − 𝑘 ! = 2

𝑘-permutations (partial permutations)

There are 𝐶 𝑛, 𝑘 = M 2,3
M 3,3

= 2L

3!
= 2!

3! 2@3 !
= 2

3 =
6 different combinations (subsets) of size 𝑘 = 2	:
𝐴, 𝐵 , 𝐴, 𝐶 , 𝐴, 𝐷 , 𝐵, 𝐶 , 𝐵, 𝐷 , {𝐶, 𝐷} 

INTUITION: We don't distinguish between permutations of the 
items shown: 𝐴𝐵 = 𝐵𝐴. Thus we divide by the number of 
such permutations 𝑘!

INTUITION 2: We have 𝑛 choices for the 1st, 𝑛 − 1 
for the 2nd, ..., (𝑛 − 𝑘 + 1) for the 𝑘th. Thus 𝑛0.

𝑘-combinations
There are how many ways to partition the set into 
disjoint subsets of sizes 𝑘1 = 2, 𝑘8 = 1, 𝑘N = 1 with 
∑/ 𝑘/ = 𝑛. 
𝐴𝐵|𝐶|𝐷 , 𝐴𝐵|𝐷|𝐶 , 𝐴𝐶|𝐵|𝐶 , ... 𝐶𝐷|𝐵|𝐴  

BACKUP

?

https://northeastern-datalab.github.io/cs7840/
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Permutations, Combinations, Binomial coefficient
Permutations 𝑘-combinations

Given 𝑛 = 4 objects {𝐴, 𝐵, 𝐶, 𝐷}. There are 
𝑛! = 24 different permutations:
𝐴𝐵𝐶𝐷, 𝐴𝐵𝐷𝐶, 𝐴𝐶𝐵𝐷, 𝐴𝐶𝐵𝐷,… , 𝐷𝐶𝐵𝐴 

There are 𝑃(𝑛, 𝑘) = 2!
2@3 !

= 𝑛3 = 12 

different permutations of size 𝑘 = 2	:
𝐴𝐵, 𝐴𝐶, 𝐴𝐷, 𝐵𝐴,…𝐷𝐶 
INTUITION 1: We don't distinguish between 
permutations of the items not shown: 
𝐴𝐵 𝐶𝐷 = 𝐴𝐵(𝐷𝐶). Thus we divide by the 
number of such permutations 𝑛 − 𝑘 ! = 2

𝑘-permutations (partial permutations)

There are 𝐶 𝑛, 𝑘 = M 2,3
M 3,3

= 2L

3!
= 2!

3! 2@3 !
= 2

3 =
6 different combinations (subsets) of size 𝑘 = 2	:
𝐴, 𝐵 , 𝐴, 𝐶 , 𝐴, 𝐷 , 𝐵, 𝐶 , 𝐵, 𝐷 , {𝐶, 𝐷} 

INTUITION: We don't distinguish between permutations of the 
items shown: 𝐴𝐵 = 𝐵𝐴. Thus we divide by the number of 
such permutations 𝑘!

INTUITION 2: We have 𝑛 choices for the 1st, 𝑛 − 1 
for the 2nd, ..., (𝑛 − 𝑘 + 1) for the 𝑘th. Thus 𝑛0.

𝑘-combinations
There are 2

3-,30,3J
= 2!

3-!30!3J!
= 12 different ways to 

partition the set into disjoint subsets of sizes 𝑘1 = 2, 
𝑘8 = 1, 𝑘N = 1 with ∑/ 𝑘/ = 𝑛. 
𝐴𝐵|𝐶|𝐷 , 𝐴𝐵|𝐷|𝐶 , 𝐴𝐶|𝐵|𝐶 , ... 𝐶𝐷|𝐵|𝐴  

INTUITION: We don't distinguish between permutations within 
each group. Thus we divide by the size of the equivalence 
class, i.e. 𝑘)! permutations for each group.

BACKUP

https://northeastern-datalab.github.io/cs7840/
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Binomial & Multinomial distribution
Binomial theorem (or Binomial expansion)

BACKUP

?

https://northeastern-datalab.github.io/cs7840/
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Binomial & Multinomial distribution
Binomial theorem (or Binomial expansion) Multinomial theorem (here, for 𝑚 = 3)

𝑎 + 𝑏 2 = S
30O

2
𝑛
𝑘
⋅ 𝑎2@3𝑏3

Figure source: https://study.com/academy/lesson/binomial-coefficient-formula-examples.html 

Binomial coefficient 2
3 = 2!

3!⋅ 2@3 !
= 2L

3!
Number of ways in which you can select 𝑘 items 
from a total of 𝑛 different items

𝑎 + 𝑏 P = 𝑎P + 4𝑎N𝑏 + 6𝑎8𝑏8 + 4𝑎𝑏N + 𝑏P

BACKUP

?

https://northeastern-datalab.github.io/cs7840/
https://study.com/academy/lesson/binomial-coefficient-formula-examples.html
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Binomial & Multinomial distribution
Binomial theorem (or Binomial expansion) Multinomial theorem (here, for 𝑚 = 3)

𝑎 + 𝑏 2 = S
30O

2
𝑛
𝑘
⋅ 𝑎2@3𝑏3

Figure source: https://study.com/academy/lesson/binomial-coefficient-formula-examples.html 

Binomial coefficient 2
3 = 2!

3!⋅ 2@3 !
= 2L

3!
Number of ways in which you can select 𝑘 items 
from a total of 𝑛 different items

𝑎 + 𝑏 P = 𝑎P + 4𝑎N𝑏 + 6𝑎8𝑏8 + 4𝑎𝑏N + 𝑏P

𝑎 + 𝑏 + 𝑐 2 = S
3->30>3J02

𝑛
𝑘1, 𝑘8, 𝑘N

𝑎3-𝑏30𝑐3J

Multinomial coefficient 2
3-,30,3J

= 2!
3-!30!3J!

Number of ways in which to partition an 𝑛-element set 
into disjoint subsets of sizes 𝑘1, 𝑘8, 𝑘N w/ ∑/ 𝑘/ = 𝑛. 

𝑎 + 𝑏 + 𝑐 P = 𝑎P + 𝑏P + 𝑐P	
 +4𝑎N𝑏 + 4𝑎N𝑐 + 4𝑏N𝑎 + 4𝑏N𝑐 + 4𝑐N𝑎 + 4𝑐N𝑏	
 +6𝑎8𝑏8 + 6𝑎8𝑐8 + 6𝑏8𝑐8	
 +12𝑎8𝑏𝑐 + 12𝑎𝑏8𝑐 + 12𝑎𝑏𝑐8 

BACKUP

https://northeastern-datalab.github.io/cs7840/
https://study.com/academy/lesson/binomial-coefficient-formula-examples.html
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Figure Source: https://www.thephysicsmill.com/2014/04/13/probability-part-2-distributions/ 

"Two possible paths leading to the 
same bin within the bean machine."

"This animation captures the way a binomial 
distribution with increasing 𝑛 will begin to look 
like a normal distribution." 
Likely for 𝑝 ≈ 0.5, yet cut-off on the right.

Binomial distribution towards Normal distribution

https://northeastern-datalab.github.io/cs7840/
https://www.thephysicsmill.com/2014/04/13/probability-part-2-distributions/


325Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 
Figure Source: https://tex.stackexchange.com/questions/471912/binomial-tree-converging-to-a-normal-distribution-3d 

Binomial distribution towards Normal distribution

https://northeastern-datalab.github.io/cs7840/
https://tex.stackexchange.com/questions/471912/binomial-tree-converging-to-a-normal-distribution-3d
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Binomial distribution towards Normal distribution

Figure Source: https://stackoverflow.com/questions/60546225/plotting-the-normal-and-binomial-distribution-in-same-plot 

https://northeastern-datalab.github.io/cs7840/
https://stackoverflow.com/questions/60546225/plotting-the-normal-and-binomial-distribution-in-same-plot
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Occam's Razor

https://northeastern-datalab.github.io/cs7840/
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Continuing a series of numbers

Example taken from "[MacKay'02] Information Theory, Inference, and learning Algorithms. Cambridge University Press, 2002." https://www.inference.org.uk/itprnn/book.pdf 

?How to continue-1, 3, 7, 11.

https://northeastern-datalab.github.io/cs7840/
https://www.inference.org.uk/itprnn/book.pdf
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Continuing a series of numbers

Example taken from "[MacKay'02] Information Theory, Inference, and learning Algorithms. Cambridge University Press, 2002." https://www.inference.org.uk/itprnn/book.pdf 

!, −19.9, 1043.8-1, 3, 7, 11

https://northeastern-datalab.github.io/cs7840/
https://www.inference.org.uk/itprnn/book.pdf
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Continuing a series of numbers

Example taken from "[MacKay'02] Information Theory, Inference, and learning Algorithms. Cambridge University Press, 2002." https://www.inference.org.uk/itprnn/book.pdf 

− %
%%

−1 + G
%%
1 + !&

%%
= &&

%%
= 3 

− %
%%

27 + G
%%
9 + !&

%%
= HH

%%
= 7 

− %
%%

343 + G
%%
49 + !&

%%
= %!%

%%
= 11 

− %
%%

1331 + G
%%
121 + !&

%%
= 1!%G

%%
= 19. 90 

− %
%%

− %',I'&,JIG
%&&%

+ G
%%

JH,GK%
%!%

+ !&
%%
≈ 1043.7956 

, −19.9, 1043.8-1, 3, 7, 11 evaluating − #
##𝑥

� + �
##𝑥

= + =�
##

Rule: get the next number from 
the previous number 𝑥 by:

https://northeastern-datalab.github.io/cs7840/
https://www.inference.org.uk/itprnn/book.pdf
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Choosing between alternative hypotheses

-1, 3, 7, 11 𝐻#: 

Rule: get the next number from 
the previous number 𝑥 by:

, −19.9, 1043.8 𝐻=: 

Example taken from "[MacKay'02] Information Theory, Inference, and learning Algorithms. Cambridge University Press, 2002." https://www.inference.org.uk/itprnn/book.pdf 

adding 4

evaluating − #
##𝑥

� + �
##𝑥

= + =�
##

?How do we choose between different hypotheses

-1, 3, 7, 11, 15, 19

-1, 3, 7, 11

https://northeastern-datalab.github.io/cs7840/
https://www.inference.org.uk/itprnn/book.pdf
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Choosing between alternative hypotheses

ℙ 𝐻 𝐷 =
ℙ 𝐷 𝐻 ⋅ℙ[𝐻]

ℙ[𝐷]
ℙ 𝐻# 𝐷
ℙ 𝐻= 𝐷

=

Bayes' theorem: Plausibility of 
model 𝐻 given the data

Example taken from "[MacKay'02] Information Theory, Inference, and learning Algorithms. Cambridge University Press, 2002." https://www.inference.org.uk/itprnn/book.pdf 

embodies Occam’s razor automatically: 
Simpler models tend to make more 
narrow and more predictions

allows us to insert a 
prior bias in favor of 
𝐻1	on aesthetic grounds

-1, 3, 7, 11 𝐻#: 

Rule: get the next number from 
the previous number 𝑥 by:

, −19.9, 1043.8 𝐻=: 

adding 4

evaluating − #
##𝑥

� + �
##𝑥

= + =�
##

-1, 3, 7, 11, 15, 19

-1, 3, 7, 11

ℙ 𝐷 𝐻#
ℙ 𝐷 𝐻=

ℙ[𝐻#]
ℙ[𝐻=]

⋅

https://northeastern-datalab.github.io/cs7840/
https://www.inference.org.uk/itprnn/book.pdf
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Choosing between alternative hypotheses

The horizontal axis represents the 
space of possible data sets D.

Bayes’ theorem rewards models 
in proportion to how much they 
predicted the data that occurred.

embodies Occam’s razor automatically: 
Simpler models tend to make more 
narrow and more predictions

ℙ 𝐷 𝐻#
ℙ 𝐷 𝐻=

Figure taken from "[MacKay'02] Information Theory, Inference, and learning Algorithms. Cambridge University Press, 2002." https://www.inference.org.uk/itprnn/book.pdf 

https://northeastern-datalab.github.io/cs7840/
https://www.inference.org.uk/itprnn/book.pdf
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Choosing between alternative hypotheses

Example taken from "[MacKay'02] Information Theory, Inference, and learning Algorithms. Cambridge University Press, 2002." https://www.inference.org.uk/itprnn/book.pdf 

-1, 3, 7, 11 𝐻#: 

Rule: get the next number from 
the previous number 𝑥 by:

𝐻=: 

adding 𝑛 (where 𝑛	is an integer)

evaluating a cubic function 𝑓 𝑥 = 𝑐𝑥� + 𝑏𝑥= + 𝑒 
(where 𝑐, 𝑏, 𝑒 are fractions)

-1, 3, 7, 11.

𝑠S, 𝑠#, 𝑠=, 𝑠�.
− %
%%
𝑥& + G

%%
𝑥! + !&

%%
 

+4 

Assume that 𝑠M and 𝑛	could each have 
been anywhere between −50 and 50

ℙ 𝐷 𝐻& = &
&^&

⋅ &
&^&

≈ 10R1 

https://northeastern-datalab.github.io/cs7840/
https://www.inference.org.uk/itprnn/book.pdf
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Choosing between alternative hypotheses

Example taken from "[MacKay'02] Information Theory, Inference, and learning Algorithms. Cambridge University Press, 2002." https://www.inference.org.uk/itprnn/book.pdf 

-1, 3, 7, 11 𝐻#: 

Rule: get the next number from 
the previous number 𝑥 by:

𝐻=: 

adding 𝑛 (where 𝑛	is an integer)

evaluating a cubic function 𝑓 𝑥 = 𝑐𝑥� + 𝑏𝑥= + 𝑒 
(where 𝑐, 𝑏, 𝑒 are fractions)

-1, 3, 7, 11.

𝑠S, 𝑠#, 𝑠=, 𝑠�.
− %
%%
𝑥& + G

%%
𝑥! + !&

%%
 

+4 

Assume that 𝑠M and 𝑛	could each have 
been anywhere between −50 and 50

ℙ 𝐷 𝐻& = &
&^&

⋅ &
&^&

≈ 10R1 

Assume 𝑐, 𝑏, 𝑒 are rational numbers with numerator between −50 and 50, 
and denominator between 1 and 50.

ℙ 𝐷 𝐻& = &
&^&

⋅ 4 &
&^&

&
2^

⋅ 4 &
&^&

&
2^

⋅ 2 &
&^&

&
2^

≈ 2.5⋅10R&5 

Under this prior, there are four ways of expressing the fraction 𝑐 = − ?
?? : 

?
??
= @

@@
= A

AA
 = !

!!
. Similarly, there are four solutions for 𝑑 and two for 𝑒.

⇒ ℙ 𝐷 𝐻&
ℙ 𝐷 𝐻5

> 10c 

https://northeastern-datalab.github.io/cs7840/
https://www.inference.org.uk/itprnn/book.pdf
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Kolmogorov Complexity &
Minimum Description Length

(MDL)
Great reference for MDL:
[Gruenwald'04] A Tutorial Introduction to the Minimum Description Length Principle, book chapter 2005.
https://doi.org/10.7551/mitpress/1114.003.0005 

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.7551/mitpress/1114.003.0005


367Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Compressing text is hard

Source of quote: https://en.wikiquote.org/wiki/Blaise_Pascal

Je n'ai fait celle-ci plus longue que parce que 
je n'ai pas eu le loisir de la faire plus courte.

I have made this letter longer, because I did 
not have the time to make it shorter.

Blaise Pascal (1656)

https://northeastern-datalab.github.io/cs7840/
https://en.wikiquote.org/wiki/Blaise_Pascal
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011010100000100111100110011001111111001110111100110010010000100010110010111110110001001101100110111

01010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

Compressing text is not always possible

Can you make the following two messages shorter?

Contrast:
• Computational complexity: measured by program execution time
• Algorithmic complexity: measured by program length (Kolmogorov complexity)

https://northeastern-datalab.github.io/cs7840/
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011010100000100111100110011001111111001110111100110010010000100010110010111110110001001101100110111

01010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

Compressing text is not always possible

Print 50 '01's

Can you make the following two messages shorter?

Contrast:
• Computational complexity: measured by program execution time
• Algorithmic complexity: measured by program length (Kolmogorov complexity)

https://northeastern-datalab.github.io/cs7840/


370Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Print the first 100 digits of 2 in binary after comma

011010100000100111100110011001111111001110111100110010010000100010110010111110110001001101100110111

01010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

Contrast:
• Computational complexity: measured by program execution time
• Algorithmic complexity: measured by program length (Kolmogorov complexity)

Compressing text is not always possible

Print 50 '01's

1.

Can you make the following two messages shorter?

https://northeastern-datalab.github.io/cs7840/
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Kolmogorov Complexity
Kolmogorov complexity 𝐾(𝑥) of a string 𝑥: the length of the shortest program that can generate the 
string (the length of the ultimately compressed version of a file)

Further reading: https://en.wikipedia.org/wiki/Liar_paradox, https://en.wikipedia.org/wiki/Berry_paradox, https://en.wikipedia.org/wiki/Kolmogorov_complexity  

THEOREM: 𝐾(𝑥) is uncomputable. 

?
?

Core of the argument is a variant on the "self-referential paradox":

• Liar paradox

• Berry's paradox

https://northeastern-datalab.github.io/cs7840/
https://en.wikipedia.org/wiki/Liar_paradox
https://en.wikipedia.org/wiki/Berry_paradox
https://en.wikipedia.org/wiki/Kolmogorov_complexity
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Kolmogorov Complexity
Kolmogorov complexity 𝐾(𝑥) of a string 𝑥: the length of the shortest program that can generate the 
string (the length of the ultimately compressed version of a file)

Further reading: https://en.wikipedia.org/wiki/Liar_paradox, https://en.wikipedia.org/wiki/Berry_paradox, https://en.wikipedia.org/wiki/Kolmogorov_complexity  

THEOREM: 𝐾(𝑥) is uncomputable. 

The paradox: this is a number that is both: 
"simple" (because we define it with a short program) and 
"complex" (because it was defined as having high Kolmogorov complexity). 

Core of the argument is a variant on the "self-referential paradox":

• Liar paradox

• Berry's paradox

"This sentence is a lie."

"The smallest positive integer not definable in under sixty letters" (phrase with 57)

https://northeastern-datalab.github.io/cs7840/
https://en.wikipedia.org/wiki/Liar_paradox
https://en.wikipedia.org/wiki/Berry_paradox
https://en.wikipedia.org/wiki/Kolmogorov_complexity
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Kolmogorov Complexity
Kolmogorov complexity 𝐾(𝑥) of a string 𝑥: the length of the shortest program that can generate the 
string (the length of the ultimately compressed version of a file)

Further reading: https://en.wikipedia.org/wiki/Liar_paradox, https://en.wikipedia.org/wiki/Berry_paradox, https://en.wikipedia.org/wiki/Kolmogorov_complexity  

• Assume 𝐾(𝑥) is computable, i.e. there is an algorithm 𝐴 that computes 𝐾(𝑥)
• Then we can construct a paradoxical string:

− Let 𝑛 be a fixed integer.
− Consider all strings 𝑥 s.t. 𝐾 𝑥 ≥ 𝑛. (We could use our assumed algorithm 𝐴 to 

search through all strings check their Kolmogorov complexities)
− Find the lexicographically smallest string 𝑠 s.t. 𝐾 𝑠 ≥ 𝑛.

THEOREM: 𝐾(𝑥) is uncomputable. 

PROPOSITION: There exist strings of arbitrarily large 𝐾(𝑥)
PROOF: Otherwise infinitely many finite strings could be generated by finitely many programs with 
complexity below 𝑛 bits. 

PROOF THEOREM:

https://northeastern-datalab.github.io/cs7840/
https://en.wikipedia.org/wiki/Liar_paradox
https://en.wikipedia.org/wiki/Berry_paradox
https://en.wikipedia.org/wiki/Kolmogorov_complexity
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Ilya Sutskever @ Simons [2023]

Ilya Sutsekever: "An Observation on Generalization". https://simons.berkeley.edu/talks/ilya-sutskever-openai-2023-08-14 , https://www.youtube.com/watch?v=AKMuA_TVz3A&t=1640s 

https://northeastern-datalab.github.io/cs7840/
https://simons.berkeley.edu/talks/ilya-sutskever-openai-2023-08-14
https://www.youtube.com/watch?v=AKMuA_TVz3A&t=1640s
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Minimum Description Length (MDL)
Model selection problem in Learning and Inference:

Further reading: https://en.wikipedia.org/wiki/Model_selection

?

https://northeastern-datalab.github.io/cs7840/
https://en.wikipedia.org/wiki/Model_selection
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Minimum Description Length (MDL)
Model selection problem in Learning and Inference: How to decide among competing 
explanations of data (a phenomenon) given limited observations? 

Further reading: https://en.wikipedia.org/wiki/Model_selection

Underlying Idea behind MDL is "Learning (Induction) as Data Compression": the better model 
can compress the data better (has the shortest description) as it detects the more regularity in 
the data (and thus hopefully generalizes better = draw broader conclusions from specific 
observation)

Thus the MDL principle is:
• a more mathematical applications of Occam's razor (favoring simpler models)
• a more practical version of Kolmogorov complexity (for model selection) 

https://northeastern-datalab.github.io/cs7840/
https://en.wikipedia.org/wiki/Model_selection
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𝐿(𝐷) = min
)∈ℋ

𝐿 𝐷 𝐻 + 𝐿 𝐻

length of the description 
(encoding) of the model 𝐻

length of the description of the 
data when encoded with 𝐻

Minimum Description Length (MDL)
Given a set of models (hypotheses) ℋ, the best model 𝐻 ∈ ℋ is the one that minimizes

MDL was proposed in [Rissanen'78], and is very similar to the Minimum Message Length (MML) Principle from [Wallace, Bolton'68] which predates MDL by 10 years, and also selects a 
hypothesis minimizing code length using two-part codes

Note that with MDL we are only interested in the length of the description (as model of model 
complexity), not in the actual encoding itself. 

This formulation is also called "two-part MDL" (model and data are encoded separately), and 
we are usually interested in the model parameter of the optimal model 𝐻

https://northeastern-datalab.github.io/cs7840/
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Based on slides from "Vreeken, Yamanishi. Modern MDL meets Data Mining: Insights, Theory, and Practice, KDD tutorial, 2019. https://doi.org/10.1145/3292500.333228 "

DEFINITION: The Boolean rank of an n-by-m Boolean matrix A is the 
least integer k such that there exists an n-by-k Boolean matrix B and a 
k-by-m Boolean matrix C for which A = B ◦ C. 

Example: Approximate Boolean Matrix Factorization

Matrices B and C are the factor 
matrices of A; the pair (B, C) is the 
exact Boolean factorization of A.

Notice that for Boolean 
sum (𝑥 ∨ 𝑦): 1 + 1 = 1

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1145/3292500.333228


379Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

PROBLEM (BMF). Given n-by-m Boolean 
matrix A and integer k, find n-by-k 
Boolean matrix B and k-by-m Boolean 
matrix C such that B and C minimize

| A ⊕ (B ◦ C) | .

If A ≈ B ◦ C (but the dimensions match), the factorization is approximate

Example: Approximate Boolean Matrix Factorization

Notice that for exclusive 
or (𝑥⊕𝑦): 1 + 1 = 0

"Model order selection problem": determine the proper rank of the factorization, 
i.e, to answer where fine-grained structure stops, and where noise starts.

subtractive erroradditive error

Figure Source: Miettinen, Vreeken. MDL4BMF: Minimum Description Length for Boolean Matrix Factorization, TKDD, 2014. https://doi.org/10.1145/260143 
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Example: Approximate Boolean Matrix Factorization
The main contribution of the article linked below is to provide a method to (approximately) 
solve the model order selection problem in the BMF framework.

...

Figure Source: Miettinen, Vreeken. MDL4BMF: Minimum Description Length for Boolean Matrix Factorization, TKDD, 2014. https://doi.org/10.1145/260143 
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Model order estimates
True model orders (some 
synthetic data generator)

Figure Source: Miettinen, Vreeken. MDL4BMF: Minimum Description Length for Boolean Matrix Factorization, TKDD, 2014. https://doi.org/10.1145/260143 
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