Updated 11/12/2024

Part 3: Applications
L14: Decision trees (1/2)

Wolfgang Gatterbauer, Javed Aslam

cs7840 Foundations and Applications of Information Theory (fa24)
https://northeastern-datalab.github.io/cs7840/fa24/
10/23/2024



https://northeastern-datalab.github.io/cs7840/fa24/

Pre-class conversations

e The value of synthetic experimetns
e Scribes...

e Today:
— Decision trees
— backed in: Occam, MDL, fun questions

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Formal setup

EXAMPLE: Classifying days based on weather conditions.

Columns denote m = 4 features {Xj};_n:l.
Domain X of feature Xy is {high, normal}

/
Predictors I Response

day | (O)utlook | (T)emp. (H)umidity (W)ind | (C)lass

1 | sunny hot high weak no

2 | sunny hot high strong no

3 | overcast hot high weak yes

4 | rain mild high weak yes

5 | rain cool normal weak yes

6 | rain cool normal strong no

7 | overcast cool normal strong yes

8 | sunny mild high weak no

9 | sunny cool normal weak yes
10 | rain mild normal weak yes
11 | sunny mild normal strong yes
12 | overcast mild high strong yes

13 | overcast hot normal weak yes

14 | rain mild high strong no

Rows denote labeled instances (x;, ;).

(X4, Y4)

A

Class label

A

denotes weather a particular event happened.

Problem Setting

— Set of possible instances X = Xy X ... XXy,

— Set of possible labels with size
(binary)

— Unknown target function f: X = UY

— Set of function hypotheses H = {h|h: X = Y}
Input: training examples of unknown
target function f

(X ¥z = Xy, y1), o, X M}
Output: Hypothesis h € H that best
approximates f

Example from [Mitchell'97]. Introduction to Machine Learning, 1997. https://www.cs.cmu.edu/~tom/files/MachinelLearningTomMitchell.pdf
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Decision Tree Classification
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Decision Tree Classification
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Decision Tree Classification
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Decision Tree Classification
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Rectilinear vs. oblique decision boundaries
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Rectilinear vs. obligue decision boundaries
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Figure 3.20. Example of a decision tree and its decision boundaries for a two-dimensional data set.

Figure 3.21. Example of data set that cannot be partitioned optimally using a decision tree with single
attribute test conditions. The true decision boundary is shown by the dashed line.

[Tan+'18] Tan, Steinbach, Kumar. Introduction to Data Mining, 2" ed, 2018. https://www-users.cse.umn.edu/~kumar001/dmbook/index.php
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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How to split?

https://northeastern-datalab.github.io/cs7840/
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Constructing Decision Trees (DTs)

e Given some training data, what is the "optimal” DT?
— With optimal, we mean here the "smallest" that fits the data perfectly
e In general, finding an optimal DT is called intractable (NP-hard)

— There are exponentially many DT's that could be constructed from a given
set of attributes (exponential in number of attributes)

e |In practice, we use greedy heuristics to construct a good DT
(makging a series of locally optimal decisions)

. a decision tree is grown in a recursive fashion by
partitioning the training records into successively "purer” subsets
— We can use different notions of "impurity"

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Practical hardness of optimal decision trees?

Laurent HYAFIL
IRIA — Laboria, 78150 Rocquencourt, France

and

Ronald L. RIVEST

CONSTRUCTING OPTIMAL BINARY DECISION TREES IS NP-COMPLETE"

Dept. of Electrical Engineering and Computer Science, M.I.T., Cambridge, Massachusetts 02139, USA

Information Processing Letters'76

We demonstrate that constructing optimal binary

decision trees is an NP-complete problem, where an op-

timal tree is one which minimizes the expected num-
ber of tests required to identify the unknown object.

Effectivevess with modernw TLP solvers.
Problem: we may veed exponentially many
statistics over the data (but exponential
only in number of attribute ot data size)

Cp. to Shawnon-Favo top-down vs.
Huffman optimal bottom-up!

?

Let p(x;) be the length of the path from the root
of the tree to the terminal node naming x;, that is, the
number of tests required to identify x;. Then the cost
of this tree is merely the external path length, that is,
Zx;jexp(x;). This model is identical to that studied by
Garey [3].

The decision tree problem DT(Y, X, w) is to deter-
mine whether there exists a decision tree with cost less
than or equal to w, given Jand X.

To show that DT is NP-complete, we show that
EC3 a DT, where EC3 is the problem of finding an ex-
act cover for a set X, and where each of the subsets
available for use contains exactly 3 elements. More

Hyafil, Rivest. Constructing optimal binary decision trees is NP-complete. Information Processing Letters, 1976. https://doi.org/10.1016/0020-0190(76)90095-8
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Hunt's algorithm: Top-down induction of Decision trees

* Create a root node x; assign it all training examples: D,
* Repeat {
* If all records in D, belong to the same class, then
make x a leaf node and assign it the class label
* Else:
e Choose an attribute A that partitions the training
records at node x into the "purest” subsets /
* For each value v of A, create a new child node
X4 -, and assign it the training examples Dy4—,,
* Choose a non-leaf node x
e Until all nodes are leaves

There are different ways to
measure "impurity" and we
will discuss in a moment
variants of how we could
measure that

Likely origin of the name. — |

Huvt was Quivlan's PD advisor

Ly

2.1 Divide and conquer

The skeleton of Hunt’s method for constructing a decision tree from a
set T of training cases is elegantly simple. Let the classes be denoted
{C1,Cs,...,Ci}. There are three possibilities:

[Quinlan'93]

"Tan, Steinbach, Kumar. Introduction to Data Mining-Pearson" mentions "Hunt's algorithm" but does not leave a citation. Quinlan himself in his 1993 book on C4.5 refers to "Hunt, Marin, Stone.

Experiments in induction. Academic press, 1966".

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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"Impurity"” of subsets

To determine how well a test condition performs, we compare the "impurity" of the
parent node (before splitting) with the "impurity" of the child nodes (after splitting).

+
+

PN WNRD
<
(™)
N

Ve currently a black box fet

Call the impurity at node N: I(N)

Rl |O|lO|O|O|X
RIR|R|IO|R|[O|O|O

Impurity before: I(N)

Impurity after: ?

(1+, 3-) (3+, 1-)
DX X [..]Y DX, X, [..]Y
100 401
2[00 611
300 711
s[1]o0 s[11

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 25



https://northeastern-datalab.github.io/cs7840/

"Impurity"” of subsets

To determine how well a test condition performs, we compare the "impurity" of the

parent node (before splitting) with the "impurity" of the child nodes (after splitting).

PN WNRD
<
(™)

Ve currently a black box fet

+
+

Call the impurity at node N: I(N)

Expected (weighted
average) impurity

Impurity before: I(N)

Rl |O|lO|O|O|X
RIR|R|IO|R|[O|O|O

Impurity after: ZCEchildren(N) Pc - I(C) = [Ep(C) [1(C)]

gain A : I(N) = Ep(cy[1(C)] 3 kel

. ® @

Have we seen that before

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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"Impurity"” of subsets

To determine how well a test condition performs, we compare the "impurity" of the
parent node (before splitting) with the "impurity" of the child nodes (after splitting).

I s
+

ONOOUDSWNRD
<
(™)

what is the minimum

Call the impurity at node N: I(N) i;?f;ﬁ%,f‘zg:r lj;r@,)

before the split? o

Rl |lO|O|OjO|X
RIRr|R|IO|Rr|[O|OJO

Impurity before: I(N)

Impurity after: ZCEchildren(N) Pc - I(C) = [Ep(C) [1(C)]

gain A : I(N) = Ep(cy[1(C)] 3 kel

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 27
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"Impurity"” of subsets

To determine how well a test condition performs, we compare the "impurity" of the
parent node (before splitting) with the "impurity" of the child nodes (after splitting).

H=1
2 5 Y @
.|t
.|t

(4+, 4-) ]{(Y)=1

PN WNRD
<
(™)

Call the impurity at node N: I[(N) = H(Y)

(per label)

Impurity before: I(N)

Rl |O|lO|O|O|X
RIR|R|IO|R|[O|O|O

Impurity after: ZCEchildren(N) Pc - I(C) = [Ep(C) [1(C)]

gain A : I(N) — Epoy[1(C)] Jlcakial )

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 28
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"Impurity"” of subsets

To determine how well a test condition performs, we compare the "impurity" of the

parent node (before splitting) with the "impurity" of the child nodes (after splitting).

PN WNRD
<
(™)

H=1
2 5 Y @
|+
|+

Call the impurity at node N: I[(N) = H(Y)
(4+, 4-) H(Y)=1

(per label)

Rl |O|lO|O|O|X
RIR|R|IO|R|[O|O|O

Impurity before: I(N)

Impurity after: ZCEchildren(N) Pc - I(C) = [Ep(C) [1(C)]

gain A : I(N) = Ep(cy[1(C)] 3 kel
"mformation @aiw" : § § Z i %
Ainto: HY) - P

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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"Impurity"” of subsets

To determine how well a test condition performs, we compare the "impurity" of the
parent node (before splitting) with the "impurity" of the child nodes (after splitting).

H=1
2 5 Y @
|t
+

(4+, 4-) H(Y)=1

PN WNRD
<
(™)

Call the impurity at node N: I[(N) = H(Y)
(per label)

Rl |O|lO|O|O|X
RIR|R|IO|R|[O|O|O

Impurity before: I(N)

Impurity after: ZCEchildren(N) Pc - I(C) = [Ep(C) [1(C)]

gain A : I(N) — Epey [1(C)] B e
"nformation gain" g § § Z i %

Ainfo- H(Y) - H(Y|X)

+ +
- +
/ H(Y|X2—0)=0.81f\ @ @ /\\H(Y|X2-1)=0.81

Conditional entropy: the amount of
information needed to describe the
outcome of RV Y given that we know  H(Y|X) = 2 p(x) -HY|X =x) =E,»[HY|X = x)]
the value of another RV X. X
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 30
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"Impurity"” of subsets

To determine how well a test condition performs, we compare the "impurity" of the
parent node (before splitting) with the "impurity" of the child nodes (after splitting).

Call the impurity at node N: I[(N) = H(Y)

Impurity before: I(N)
Impurity after: ZCEchildren(N) Pc - I(C) = [Ep(C) [1(C)]
I(N) — Epn[I(O)]

gain A :

"nformation gain"

Ainfo:

\

Ainfo is the reduction of class label entropy H(Y) from the parent (i.e.
the training data in a branch) to the average entropies of the children

/

(per label)

H(Y) - HY|X)=I(X;Y)

/

(i.e. the new partitions constructed from the values of variable X.

>
>

S|y

NV A WNRLQg
S I I =l =1 =1 (=]
i =l (el o) le)

(1+l 3_)
DX X, | Y
1{0]|0
210(0
310(0
5110

H(Y|X2—0)=0.81f\ @

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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A

H(Y)=1

(3+l 1-)
X, 1%, | . |V
0]1
1(1
1(1
1(1

+
+
@ /\\H(Y|X2-1)=0.81
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"Impurity" reduction

DX, |X,|...|Y D|(X; |X,]|...|Y
1/10]0|..]|- 1/10|0]|..]|-
2100 ]..] - I I 2|00 f..] - I I
3(0]0]...[+ 3100 ]..|+
410(1 4(0]1
5]111]0 5110
6[1]1 6 [1]1
71111 71111
8|11 8|11

(2+1 2_) (1+I 3_)
ID [X; X, Y ID [X; X, Y ID [X; [X, Y ID [X; [X, Y
1/0]0 - 5(11]0 1]0(0 410(1 +
2|10f0 - 6|11 2(0]0 6 (1)1 -
31010 + 71111 + 3({0]0 + 71111 +
4 (0|1 + 8|11 + 5([1]0 8|1]1 +

IT eSIT @. (.l

Which variable would you choose ?

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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"Impurity" reduction, measured by entropy

H=1 H=1

ID [X; | X, Y ID [X; |X, Y
1(0(0 - 1(0|0 -
2(0fo0 - I I 2(0f0 - I I
3(0f0 + 3(0]0 +
4f{of1 + ( )= 4101 i ( ):
5 1 0 (4+’ 4_) H Y 1 5 1 0 (4+’ 4_) H Y 1
6[1]1 6 [1]1
71111 71111
8|11 8|11

(2+, 2-) (1+, 3-) (3+, 1-)
ID [X; X, Y DX, [Xo] ... |Y DX, X, ] ...|Y ID [X; |X, Y
1(0{0 - 5({11]0 1]0(0 - 410(1 +
20710 - 6(1]1 2(0]0 6 (1)1 -
31010 + 71111 + 31010 + 71111 +
4 (0|1 + 8|11 + 5(1]0].. 8|1]1 +

H(Y|X1=1)=1/\ AH(Y|X1=1)=1 H(Y|X2=0)=0.81f\ /\\H(Y|X2=1)=0.81
. @n @I .l

H(Y|X2)=1 H(Y|X2)=O.81
Ajnfo= ? Ajnfo= ?

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 33
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"Impurity" reduction, measured by entropy

H=1 H=1

ID [X; | X, Y ID [X; |X, Y
1(0(0 - 1(0|0 -
2(0fo0 - I I 2(0f0 - I I
3(0]0 + 3(0]0 +
4f{of1 + ( )= 4101 i ( ):
5 1 0 (4+’ 4_) H Y 1 5 1 0 (4+’ 4_) H Y 1
6[1]1 6 [1]1
71111 7111
8|11 8|11

(2+, 2-) (1+, 3-) (3+, 1-)
ID [X; X, Y DX, [Xo] ... |Y DX, X, ] ...|Y ID [X; |X, Y
1(0{0 - 5({11]0 1]0(0 - 410(1 +
2(01]0 - 6 1)1 2(0]0 6 (1)1 -
31010 + 71111 + 31010 + 71111 +
4 (0|1 + 8|11 + 5(1]0].. 8|1]1 +

H(Y|X1=1)=1/\ AH(Y|X1=1)=1 H(Y|X2=0)=0.81f\ /\\H(Y|X2=1)=0.81
. @n @I .l

H(Y|X2)=1 H(Y|X2)=O.81
Ainfo:I(Y; X2)=0 Ainfo=I(Y; X2)=0-19

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 34
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"Impurity" reduction, measured by entropy

H=1 H=1

ID | X, [X, Y D [X; [X, Y
1{o]o - 1{o]o -
2(0]o0 - I I 2{0]o0 - I I
3{0]o0 + 3100 +
4lo]1 + ( )= 41lo0f1 + ( ):
s[ 1o (4+’ 4_) H Y 1 5110 (4+’ 4_) H Y 1
611 611
7111 7111
8|11 8|11

(2+, 2-) (1+, 3-) (3+, 1-)
ID |X; [X, Y ID |X; [X, Y DX, [X,]|..]Y D [X; [X, Y
1{o]o - 5(1]0 - 1(0]o0 - 4lof1 "
2(ofo - 611 - 2{0fo0 611 -
310(0 + 7111 + 3100 ]..]+ 7111 +
410f1 + 811 & 5{1(o0 8|11 +

H(Y|X1=1)=1/\ AH(Y|X1=1)=1 H(Y|X2=0)=0.81f\ /\\H(Y|X2=1)=0.81
. @n @l. @,
o3

H(Y|X2)=1 Uniform labels Nov-uviform labels /H(7Y|X2)=()_81

_ _ _n  (high impurity) (low impurity) _ _ _
Ainfo=I(Y; X2)=0 Not a good split @ A better split © Ainfo=I(Y; X2)=0.19

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 35
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Impurity

Very impure group Less impure

Slide by Eric Eaton, based on a slide by Pedro Domingos
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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impurity
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Calculating Information Gain
Information Gain = entropy(parent) — [average entropy(children)]

child — E.logz— — i-10g2 4 20787
entropy 17

Entire population (30 instances)

child
entropy — log, — |-| —log, 1_):0-391

parent _(ﬂ log, 14) (16 1o
entropy |\ 30 30 ) 130 13 instances

1
(Weighted) Average Entropy of Children = (— 0. 787]+(30 -0. 391] 0.615

Information Gain= 0.996 - 0.615 = 0.38 .

Slide by Eric Eaton, based on a slide by Pedro Domingos
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Test conditions for nominal attributes

Marital
Status

Single Divorced Married
Binary split by grouping attributes
Marital Marital Marital

{Married} {Single, {Single} {Married, {Single, {Divorced}
Divorced} Divorced} Married}

Multiway split

OR OR

[Tan+'18] Tan, Steinbach, Kumar. Introduction to Data Mining, 2" ed, 2018. Figure 3.8 https://www-users.cse.umn.edu/~kumar001/dmbook/index.php
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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\ ) . 1(S)
}é— ' Avother way +o +hink about the y-axis is ————
max I(S)
S
<
o . e e
Entropy Gini index
o measures the amount of uncertainty (or measures the probability of misclassifying a
e randomness) in a set / can be interpreted as |[randomly chosen element in a set / can be
the average amount of information needed |interpreted as the expected error rate in a
S to specify the class of an instance. classifier.
The range of entropy is [0, Ig(c)], where cis [The range of the Gini index is [0, 1-1/c]
- the number of classes. (often incorrectly stated as [0,1])
S ] It has a bias toward selecting splits that It has a bias toward selecting splits that
result in a higher reduction of uncertainty  |result in a more balanced (equally sized)
o _ (distinguishes more between highly impure |distribution of classes.
o . .
| | | | | | and moderately impure splits, better for
0.0 0.2 0.4 0.6 0.8 1.0 imbalanced datasets)
Entropy is typically used in ID3 and C4.5 Gini index is typically used in CART
P ("Classification and Regression Trees")

FIGURE 9.3. Node impurity measures for two-class classification, as a function
of the proportion p in class 2. Cross-entropy has been scaled to pass through
(0.5,0.5).

-1 . A Simple interesting scribe: create a wotebook
Entropy = —» pi(t)log, pi(t), 10 A and figures that compare ternary Givi vs
=0 08 ~\ entropy function over the probability

S o implex. H the derivatives closed +
Giniindex = 1-3 pi(t)?, 04 simplex. How are the derivatives closed +o
e 0.2 pure sets'? Two starter posts:

. . 0. R - https://physics.stackexchange.com/questions/363545/what-is-the-relation-between-linear-
Cl&SSlﬁC&tlon error — ]. = max[p,, (t)], 8'0 0.2 04 0.6t0.8 L0 12 14 purity-and-von-neumann-entropy-of-a-state
1

https://math.stackexchange.com/questions/3791203/what-do-the-level-sets-of-the-shannon-
entropy-look-like

Left figure: [Hastie+'09] Hastie, Tibshirani, Friedman. The Elements of Statistical Learning, 2" ed, 2009. https://doi.org/10.1007/978-0-387-84858-7
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 39



https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1007/978-0-387-84858-7
https://physics.stackexchange.com/questions/363545/what-is-the-relation-between-linear-purity-and-von-neumann-entropy-of-a-state
https://physics.stackexchange.com/questions/363545/what-is-the-relation-between-linear-purity-and-von-neumann-entropy-of-a-state
https://math.stackexchange.com/questions/3791203/what-do-the-level-sets-of-the-shannon-entropy-look-like
https://math.stackexchange.com/questions/3791203/what-do-the-level-sets-of-the-shannon-entropy-look-like

Gini index and "logical entropy"”

When there are point probabilities p = (pi,...,pn) for p; as the probability of the outcome
uj € U with Y77 | p; = 1, then Pr(B;) = > {p; : u; € B;} in the formula for logical entropy. This
also gives the definition of logical entropy for any probability distribution p = (p1, ..., pn),

h(p)=1-) pj. (23)

n
1=12=(p1+ ... +Pn) @1+ .. +Pn) = > DI+ > DiDk (2.4)
=1 i#k

so that:

h(p)=1-3 pi=) p;i(L=pj) =) pipk=2) piPk (2.5)

j#k j<k

J=1

Ellerman. Introduction to Logical Entropy and Its Relationship to Shannon Entropy, 2021. https://arxiv.org/abs/2112.01966
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/

40


https://northeastern-datalab.github.io/cs7840/
https://arxiv.org/abs/2112.01966

Gini index and "logical entropy"”

1.5 Brief History of the Logical Entropy Formula

The logical entropy formula 2(p) = Y ,pi(l1—p;) = 1 — Y, p? is the
probability of getting distinct values u; # u; in two independent samplings of
the random variable u. The complementary measure 1 — A (p) = ), pl-2 is the
probability that the two drawings yield the same value from U. Thus 1 — ), pi2 is
a measure of heterogeneity or diversity in keeping with our theme of information as
distinctions, while the complementary measure ) _; pi2 is a measure of homogeneity
or concentration. Historically, the formula can be found in either form depending
on the particular context. The p;’s might be relative shares such as the relative
share of organisms of the ith species in some population of organisms, and then
the interpretation of p; as a probability arises by considering the random choice of
an organism from the population.

According to 1. J. Good, the formula has a certain naturalness: “If pq,..., p;
are the probabilities of ¢ mutually exclusive and exhaustive events, any statistician
of this century who wanted a measure of homogeneity would have take about
two seconds to suggest ) pi2 which I shall call p.” [13, p. 561] As noted by
Bhargava and Uppuluri [4], the formula 1 — ) pi2 was used by Gini in 1912 [10]
as a measure of “mutability” or diversity. But another development of the formula
(in the complementary form) in the early twentieth century was in cryptography.
The American cryptologist, William F. Friedman, devoted a 1922 book [9] to the
“index of coincidence” (i.e., piz). Solomon Kullback (see the Kullback-Leibler
divergence treated later) worked as an assistant to Friedman and wrote a book on
cryptology which used the index [16].

Ellerman. New Foundations for Information Theory: Logical Entropy and Shannon Entropy, Springer, 2021. https://doi.org/10.1007/978-3-030-86552-8
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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"Logical entropy"

Recall that this concerv can be
2.2 Logical Entropy, Not Shannon Entropy, Is a easily avoided by wmore careful
(Non-negative) Measure notation and *not* (ASM@ the
termivology of "mutual
information” for what we called
the "interaction information”

As we will see, for
three or more random variables, the Shannon mutual information can have negative
values—which has no known interpretation.

. . Fig. 4.6 Negative ‘area’
4.2 An Example of Negative Mutual Information for 1 (X, Y, Z) in/Venn diagram

Shannon Entropy

Norman Abramson gives an example [1, pp. 130-131] where the Shannon mutual
information of three variables is negative.> William Feller gives a similar concrete
example that we will use [11, Exercise 26, p. 143]. Any probability theory textbook
example to show that pair-wise independence does not imply mutual independence
for three or more random variables would do as well.

Ellerman. New Foundations for Information Theory: Logical Entropy and Shannon Entropy, Springer, 2021. https://doi.org/10.1007/978-3-030-86552-8
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 42
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Tennis classification example

Example: Deciding whether to play or not to play tennis on a Saturday (binary classification)
Columns denote 4 features X;. Rows denote labeled instances (X;, y;). Play denotes the classification.

Predictors Response
day | (O)utlook | (T)emp. | (H)umidity | (W)ind | (P)lay
1 | sunny hot high weak no
2 | sunny hot high strong no
3 | overcast hot high weak yes
4 | rain mild high weak yes <X4, y4)
5 | rain cool normal weak yes
6 | rain cool normal strong no
7 | overcast cool normal strong yes
8 | sunny mild high weak no
9 | sunny cool normal weak yes
10 | rain mild normal weak yes
11 | sunny mild normal strong yes
12 | overcast mild high strong yes
13 | overcast hot normal weak yes
14 | rain mild high strong no
#no: 5
Hyes: 9

H(P) = ?

Example from [Mitchell'97]. Introduction to Machine Learning, 1997. https://www.cs.cmu.edu/~tom/files/MachinelLearningTomMitchell.pdf
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Tennis classification example

Example: Deciding whether to play or not to play tennis on a Saturday (binary classification)
Columns denote 4 features X;. Rows denote labeled instances (X;, y;). Play denotes the classification.

Predictors Response
day | (O)utlook | (T)emp. | (H)umidity | (W)ind | (P)lay What happens if we split by attribute W ?
1 | sunny hot high weak no
2 | sunny hot high strong no -
3 | overcast hot high weak yes
4 | rain mild high weak yes
5 | rain cool normal weak yes
6 | rain cool normal strong no
7 | overcast cool normal strong yes
8 | sunny mild high weak no
9 | sunny cool normal weak yes
10 | rain mild normal weak yes
11 | sunny mild normal strong yes
12 | overcast mild high strong yes
13 | overcast hot normal weak yes
14 | rain mild high strong no
#no: 5
Hyes: 9

H(P) = H (%1—54) — 0.940

Example from [Mitchell'97]. Introduction to Machine Learning, 1997. https://www.cs.cmu.edu/~tom/files/MachinelLearningTomMitchell.pdf
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Tennis classification example

Example: Deciding whether to play or not to play tennis on a Saturday (binary classification)
Columns denote 4 features X;. Rows denote labeled instances (X;, y;). Play denotes the classification.

Predictors Response
day | (Olutlook | (Temp. | (Hlumidity | (W)ind_| (P)lay What happens if we split by attribute W?
1 | sunny hot high weak no
3 | overcast hot high weak yes
4 | rain mild high weak yes
5 | rain cool normal weak yes H(PlW) —
8 | sunny mild high weak no -
9 | sunny cool normal weak yes
10 | rain mild normal weak yes
13 | overcast hot normal weak yes
2 | sunny hot high strong no
6 | rain cool normal strong no
overcast cool normal strong yes
11 | sunny mild normal strong yes
12 | overcast mild high strong yes
14 | rain mild high strong no

[(P;W) = ?

now partitioned by wW H(P)=H (i,%) = 0.940

Example from [Mitchell'97]. Introduction to Machine Learning, 1997. https://www.cs.cmu.edu/~tom/files/MachineLearningTomMitchell.pdf
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Tennis classification example

Example: Deciding whether to play or not to play tennis on a Saturday (binary classification)

Columns denote 4 features X;. Rows denote labeled instances (X;, y;). Play denotes the classification.

Predictors Response
day | (O)utlook | (T)emp. | (H)umidity | (W)ind | (P)lay
1 | sunny hot high weak no
3 | overcast hot high weak yes
4 | rain mild high weak yes
5 | rain cool normal weak yes
8 | sunny mild high weak no
9 | sunny cool normal weak yes
10 | rain mild normal weak yes
13 | overcast hot normal weak yes
2 | sunny hot high strong no
6 | rain cool normal strong no

overcast cool normal strong yes

11 | sunny mild normal strong yes

12 | overcast mild high strong yes

14 | rain mild high strong no
now partitioned by W

H(P)=H(

What happens if we split by attribute W?
Ep ) [H(P|W = v)]

H(PIW) = ) p(v) - HPIW =)

H(P|W - weak) = ?

H(P|W = strong) = ?

[(P;W) = ?

E'ﬁ) — 0.940

Example from [Mitchell'97]. Introduction to Machine Learning, 1997. https://www.cs.cmu.edu/~tom/files/MachineLearningTomMitchell.pdf
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Tennis classification example

Example: Deciding whether to play or not to play tennis on a Saturday (binary classification)

Columns denote 4 features X;. Rows denote labeled instances (X;, y;). Play denotes the classification.

Predictors Response
day | (O)utlook | (T)emp. | (H)umidity | (W)ind | (P)lay
1 | sunny hot high weak no
3 | overcast hot high weak yes
4 | rain mild high weak yes
5 | rain cool normal weak yes
8 | sunny mild high weak no
9 | sunny cool normal weak yes
10 | rain mild normal weak yes
13 | overcast hot normal weak yes
2 | sunny hot high strong no
6 | rain cool normal strong no
7 | overcast cool normal strong yes
11 | sunny mild normal strong yes
12 | overcast mild high strong yes
14 | rain mild high strong no

now partitioned by W

H(P)=H (14’

What happens if we split by attribute W?

Ep ) [H(P|W = v)]

H(PIW) = ) p(v) - HPIW =)
H(P|W = weak) = H (gg) = 0.811
H(P|W = strong) = H (22) =1

H(P|W) = ﬁ 0.811 + % 1 =0.892

[(P;W) = ?

= 0.940

Example from [Mitchell'97]. Introduction to Machine Learning, 1997. https://www.cs.cmu.edu/~tom/files/MachinelLearningTomMitchell.pdf
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Tennis classification example

Example: Deciding whether to play or not to play tennis on a Saturday (binary classification)

Columns denote 4 features X;. Rows denote labeled instances (X;, y;). Play denotes the classification.

Predictors Response
day | (O)utlook | (T)emp. | (H)umidity | (W)ind | (P)lay
1 | sunny hot high weak no
3 | overcast hot high weak yes
4 | rain mild high weak yes
5 | rain cool normal weak yes
8 | sunny mild high weak no
9 | sunny cool normal weak yes
10 | rain mild normal weak yes
13 | overcast hot normal weak yes
sunny hot high strong no
6 | rain cool normal strong no

overcast cool normal strong yes

11 | sunny mild normal strong yes

12 | overcast mild high strong yes

14 | rain mild high strong no
now partitioned by W

H(P)=H (14’

What happens if we split by attribute W?

[Ep(v) [H(P|W = v)]
H(PIW) = ) p(v) - HPIW =)

v
H(P|W = weak) = H (gg) = 0.811
H(P|W = strong) = H (22) =1

H(P|W) = ﬁ 0.811 + % 1 =0.892

I(P; W) = H(P) — H(P|W) = 0.048

= 0.940

Example from [Mitchell'97]. Introduction to Machine Learning, 1997. https://www.cs.cmu.edu/~tom/files/MachinelLearningTomMitchell.pdf
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Tennis classification example

Example: Deciding whether to play or not to play tennis on a Saturday (binary classification)
Columns denote 4 features X;. Rows denote labeled instances (X;, y;). Play denotes the classification.

Predictors Response
day | (O)utlook | (T)emp. | (H)umidity | (W)ind | (P)lay
1 | sunny hot high weak no
2 | sunny hot high strong no
3 | overcast hot high weak yes
4 | rain mild high weak yes
5 | rain cool normal weak yes . .
o e o T o Now we calculate mutual information
7 |Revercastil[fcoe S| nc IS Estiengil yes (aka information gain) between P and
8 | sunny mild high weak no ]
9 | sunny cool normal weak yes the other attributes
10 | rain mild normal weak yes
11 | sunny mild normal strong yes
12 | overcast mild high strong yes
13 | overcast hot normal weak yes
14 | rain mild high strong no

\ \I(P; W) = H(P) — H(P|W) = 0.048

I(P; H) = 0.152

I(P;T) =0.029 which attribute do we pick ?
[(P;0) = 0.246 .

Example from [Mitchell'97]. Introduction to Machine Learning, 1997. https://www.cs.cmu.edu/~tom/files/MachinelLearningTomMitchell.pdf
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Tennis classification example

Example: Deciding whether to play or not to play tennis on a Saturday (binary classification)
Columns denote 4 features X;. Rows denote labeled instances (X;, y;). Play denotes the classification.

Predictors Response
day | (O)utlook | (T)emp. | (H)umidity | (W)ind | (P)lay
1 | sunny hot high weak no
2 | sunny hot high strong no
3 | overcast hot high weak yes
4 | rain mild high weak yes
5 | rain cool normal weak yes . .
o e o T o Now we calculate mutual information
7 |Revercastil[fcoe S| nc IS Estiengil yes (aka information gain) between P and
8 | sunny mild high weak no ]
9 | sunny cool normal weak yes the other attributes
10 | rain mild normal weak yes
11 | sunny mild normal strong yes
12 | overcast mild high strong yes
13 | overcast hot normal weak yes
14 | rain mild high strong no

\ \I(P; W) = H(P) — H(P|W) = 0.048

I(P;H) = 0.152
I(P;T) = 0.029 We pick the attribute with
I(P;0) = 0.246 ——  +the highest information gain

Example from [Mitchell'97]. Introduction to Machine Learning, 1997. https://www.cs.cmu.edu/~tom/files/MachinelLearningTomMitchell.pdf
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Tennis classification example

Example: Deciding whether to play or not to play tennis on a Saturday (binary classification)

Columns denote 4 features X;. Rows denote labeled instances (X;, y;). Play denotes the classification.

Predictors Response

day | (O)utlook | (T)emp. | (H)umidity | (W)ind | (P)lay

1 | sunny hot high weak no

2 | sunny hot high strong no

8 | sunny mild high weak no

9 | sunny cool normal weak yes
11 | sunny mild normal strong yes

3 | overcast hot high weak yes

7 | overcast cool normal strong yes
12 | overcast mild high strong yes
13 | overcast hot normal weak yes

4 | rain mild high weak yes

5 | rain cool normal weak yes

6 | rain cool normal strong no
10 | rain mild normal weak yes
14 | rain mild high strong no

now partitioned by O

(9+, 5-)

Outlook

(2+, 3-)

H(P) = 0.971

(4+, 0-)

HE) = 7P

(3+, 2-)

Example from [Mitchell'97]. Introduction to Machine Learning, 1997. https://www.cs.cmu.edu/~tom/files/MachineLearningTomMitchell.pdf

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Tennis classification example

Example: Deciding whether to play or not to play tennis on a Saturday (binary classification)
Columns denote 4 features X;. Rows denote labeled instances (X;, y;). Play denotes the classification.

Predictors Response (9+ 5_)
day | (O)utlook | (T)emp. | (H)umidity | (W)ind | (P)lay !
1 | sunny hot high weak no
2 | sunny hot high strong no Outlook
8 | sunny mild high weak no
9 | sunny cool normal weak yes
11 | sunny mild normal strong yes
3 | overcast hot high weak yes
7 | overcast cool normal strong yes
12 | overcast mild high strong yes
13 | overcast hot normal weak yes
rain mild high weak yes
5 | rain cool normal weak yes
6 | rain cool normal strong | no (2+’ 3_) (4+’ 0_) (3+’ 2_)
10 | rain mild normal weak yes
14 | rain mild high strong no

H(P) = 0.971 H(P) =0

now partitioned by O

Example from [Mitchell'97]. Introduction to Machine Learning, 1997. https://www.cs.cmu.edu/~tom/files/MachineLearningTomMitchell.pdf
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Tennis classification example

Example: Deciding whether to play or not to play tennis on a Saturday (binary classification)

Columns denote 4 features X;. Rows denote labeled instances (X;, y;). Play denotes the classification.

Predictors Response
day | (O)utlook | (T)emp. | (H)umidity | (W)ind | (P)lay
1 | sunny hot high weak no
2 | sunny hot high strong no
8 | sunny mild high weak no
9 | sunny cool normal weak yes
11 | sunny mild normal strong yes
3 | overcast hot high weak yes
7 | overcast cool normal strong yes
12 | overcast mild high strong yes
13 | overcast hot normal weak yes
4 | rain mild high weak yes
5 | rain cool normal weak yes
6 | rain cool normal strong no (2.|.’ 3_)
10 | rain mild normal weak yes
14 | rain mild high strong no H(P) — 0971

I(P;T) = 0.571
I(P;H) = 0.971
1(P; W) = 0.020

now partitioned by O

(9+, 5-)

Outlook

(4+, 0-) (3+, 2-)

H(P) =0

What next ?

Example from [Mitchell'97]. Introduction to Machine Learning, 1997. https://www.cs.cmu.edu/~tom/files/MachineLearningTomMitchell.pdf

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Tennis classification example

Example: Deciding whether to play or not to play tennis on a Saturday (binary classification)
Columns denote 4 features X;. Rows denote labeled instances (X;, y;). Play denotes the classification.

Predictors Response (9+ 5_)

day | (O)utlook | (T)emp. | (H)umidity | (W)ind | (P)lay !

1 | sunny hot high weak no

2 | sunny hot high strong no Outlook

8 | sunny mild high weak no

9 | sunny cool normal weak yes

11 | sunny mild normal strong yes

3 | overcast hot high weak yes

7 | overcast cool normal strong yes

12 | overcast mild high strong yes

13 | overcast hot normal weak yes

4 | rain mild high weak yes

5 | rain cool normal weak yes

6 | rain cool normal strong | no (2.|.’ 3_) (4+’ 0_) (3+’ 2_)
10 | rain mild normal weak yes

14 | rain mild high strong no H(P) — 0971 H(P) —0

I(P;T) = 0.571

[(P;H) = 0971 ~—— perfect separation: We

1(P; W) =0.020 have vwo nicertaivty lef+
now partitioned by O

Example from [Mitchell'97]. Introduction to Machine Learning, 1997. https://www.cs.cmu.edu/~tom/files/MachineLearningTomMitchell.pdf
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Tennis classification example

Example: Deciding whether to play or not to play tennis on a Saturday (binary classification)
Columns denote 4 features X;. Rows denote labeled instances (X;, y;). Play denotes the classification.

Predictors Response (9+ 5_)
day | (O)utlook | (T)emp. | (H)umidity | (W)ind | (P)lay !
1 | sunny hot high weak no
2 | sunny hot high strong no Outlook
8 | sunny mild high weak no
9 | sunny cool normala weak yes
11 | sunny mild normal \ strong yes
3 | overcast hot high \ weak yes
7 | overcast cool normal \ strong yes
12 | overcast mild high \ strong yes
13 | overcast hot normal \ weak yes
rain mild high | | weak yes
5 | rain cool normal \ weak yes
6 | rain cool normal \ strong | no
10 | rain mild normal \ weak yes
14 | rain mild high \ strong no
further partitioned by H no yes

now partitioved by O (0+, 3-) (2+, 0-)

Example from [Mitchell'97]. Introduction to Machine Learning, 1997. https://www.cs.cmu.edu/~tom/files/MachineLearningTomMitchell.pdf
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Tennis classification example

Example: Deciding whether to play or not to play tennis on a Saturday (binary classification)
Columns denote 4 features X;. Rows denote labeled instances (X;, y;). Play denotes the classification.

Predictors Response (9+ 5_)
day | (O)utlook | (T)emp. | (H)umidity | (W)ind | (P)lay !
1 | sunny hot high weak no
2 | sunny hot high strong no Outlook
8 | sunny mild high weak no
9 | sunny cool normal weak yes
11 | sunny mild normal strong yes
3 | overcast hot high weak yes
7 | overcast cool normal strong yes
12 | overcast mild high strong yes
13 | overcast hot normal weak yes
6 | rain cool normal strong no
14 | rain mild high strong no
4 | rain mild high weak yes
5 | rain cool normal weak yes
10 | rain mild normal weak yes

no yes no yes

(0+, 3-) (2+, 0-) (0+, 2-) (3+, 0-)

Example from [Mitchell'97]. Introduction to Machine Learning, 1997. https://www.cs.cmu.edu/~tom/files/MachineLearningTomMitchell.pdf
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Tennis classification example

Example: Deciding whether to play or not to play tennis on a Saturday (binary classification)
Columns denote 4 features X;. Rows denote labeled instances (X;, y;). Play denotes the classification.

Predictors Response o ] .
day | (O)utlook | (T)emp. | (H)jumidity | (W)ind | (P)lay | was missing a better predictor. Which one
1 | sunny hot high weak no -
2 | sunny hot high strong | no A
3 | overcast hot high weak yes lI’lfO
4 | rain mild high weak yes
5 | rain cool normal weak yes
6 | rain cool normal strong no
7 | overcast cool normal strong yes ( . ) —
8 | sunny mild high weak no I P’ 0 0246
9 | sunny cool normal weak yes . _
10 | rain mild normal weak yes I(P, H) — 0152
11 | sunny mild normal strong yes
12 | overcast mild high strong yes I(P; W) — 004'8
13 | overcast hot normal weak yes
14 | rain mild high strong | no I(P, T) — 0029

H(P) = 0.940

Example from [Mitchell'97]. Introduction to Machine Learning, 1997. https://www.cs.cmu.edu/~tom/files/MachinelLearningTomMitchell.pdf
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Tennis classification example

Example: Deciding whether to play or not to play tennis on a Saturday (binary classification)
Columns denote 4 features X;. Rows denote labeled instances (X;, y;). Play denotes the classification.

Predictors Response . . .

(D)ay | (O)utlook | (T)emp. | (Hjumidity | (W)ind | (P)iay The day has the highest mutual information

1 | sunny hot high weak no

2 | sunny hot high strong | no A

3 | overcast hot high weak yes lI’lfO

4 | rain mild high weak yes

5 | rain cool normal weak yes I(P D) — O 940

6 | rain cool normal strong no ¢ ]

7 | overcast cool normal strong yes ( . ) —

8 | sunny mild high weak no I P’ 0 0246

9 | sunny cool normal weak yes . _

10 | rain mild normal weak yes I(PJ H) — 0152

11 | sunny mild normal strong yes

12 | overcast mild high strong | yes I(P, W) — 004‘8

13 | overcast hot normal weak yes

14 | rain mild high strong | no I(P, T) — 0029

H(P) = 0.940

Example from [Mitchell'97]. Introduction to Machine Learning, 1997. https://www.cs.cmu.edu/~tom/files/MachinelLearningTomMitchell.pdf
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Galn ratio

Disadvantage of information gain: It prefers attributes with large number of values that
split the data into small, pure subsets

Quinlan’s gain ratio (introduced with C4.5) uses normalization on the splitting criterion, i.e.
it takes into account the number of outcomes produced by the attribute test condition.

The gain ratio penalizes attributes such as Date by
incorporating a term, called split information, that is sensitive Gain ratio =
to how broadly and uniformly the attribute splits the data

Ainfo
split info

The "split information" is just the entropy of the "split distribution", i.e. the distribution of
the attribute on which we split

If all are balanced, then = In(k)

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 79
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Tennis classification example

Example: Deciding whether to play or not to play tennis on a Saturday (binary classification)

Columns denote 4 features X;. Rows denote labeled instances (X;, y;). Play denotes the classification.

Predictors Response
(D)ay | (O)utlook | (T)emp. | (H)umidity | (W)ind | (P)lay
1 | sunny hot high weak no
2 | sunny hot high strong no
3 | overcast hot high weak yes
4 | rain mild high weak yes
5 | rain cool normal weak yes
6 | rain cool normal strong no
7 | overcast cool normal strong yes
8 | sunny mild high weak no
9 | sunny cool normal weak yes
10 | rain mild normal weak yes
11 | sunny mild normal strong yes
12 | overcast mild high strong yes
13 | overcast hot normal weak yes
14 | rain mild high strong no

The day has the highest mutual information

Ainfo

[(P;D)
[(P; 0)

0.940
0.246

I(P; H) = 0.152
1(P; W) = 0.048
1(P;T) = 0.029

H(P) = 0.940

split info gain ratio
H(D) = 3.81 0.247
H(O) = 1.58 0.156
HH) =1 0.152
H(W) = 0.99 0.048
H(T) = 1.56 0.019
Gain ratio = —oinfe
split info

The vormalization still does *wot* help here. T+ would help if the data set was bigaer as H(D)
grows with the size of the dataset, while H(0) would stay the same.

Example from [Mitchell'97]. Introduction to Machine Learning, 1997. https://www.cs.cmu.edu/~tom/files/MachinelLearningTomMitchell.pdf
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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The Parity Function

https://northeastern-datalab.github.io/cs7840/
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Expressiveness

Decision trees have a variable-sized hypothesis space

* As the #nodes (or depth) increases, the hypothesis
space grows

— Depth 1 (“decision stump”): can represent any boolean
function of one feature

— Depth 2: any boolean fn of two features; some involving
three features (e.g., (r1 A x2) V (—x1 A —x3))

— etc.
2
| x1<0.5
1 | O /\
x2 < 0.5 x2 < 0.5
0 0 1 /\ /\
= 0 1 1 0

Based on a slide by Pedro Domingos
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Parity function

Predictors Resp.

A B C Y

0_{o 1o Jo Decision Tree for parity function

o 11 o o of 3 Boolean attributes

0 1 1 1

1 0 0 0

1 0 1 1 . .

1 (1 [0 o Owly combinations of
1 1 1 1

attributes are informative!

HY) =1
H(Y|A)=05-1+05-1=1

H(Y|A,B)=05-1+05-1=1

(1+, 0-) H(f|A,B) =0

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Decision trees
VS. Circuits

https://northeastern-datalab.github.io/cs7840/
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Parity function

Predictors
B

X

(1)

(%)
©

Rrlr|r|r|lo|lo|lo|lo]|»

R(—rlO|lOfFR|[R|[O|O
R|O(Rr|O|lFR|O|lFR,|[O|O
RrlO|rRr|O(Rr|O|R|[O|=<

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Parity function

Predictors
B

X

(1)

(%)
©

Rrlr|r|r|lo|lo|lo|lo]|»

R(—rlO|lOfFR|[R|[O|O
R|O(Rr|O|lFR|O|lFR,|[O|O
RrlO|rRr|O(Rr|O|R|[O|=<

(1+, 0-)

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/

92


https://northeastern-datalab.github.io/cs7840/

Parity function

S The DT grows exponentially
T with the nvumber of attributes
o |1 Jo o (livearly in the size of the
o To T truth +table).
1 0 1 1
1 1 0 0
1 1 1 1
(4+, 4-)
(1+, 1-)
(1+, O-)

The OBDD (Ordered Binary
Decision Diagrams) grows
linearly in nvumber of attributes

(exponewntially more succinet thav
truth table)

(4+, 4-)

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Overtfitting
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Overfitting due to presence of noise

Training set

name

porcupine

cat

bat

whale
salamander
komodo dragon
python

salmon

eagle

guppy

Example taken from Ch 4.4.1 of [Tan+'18] Tan, Steinbach, Karpatne, Kumar. Introduction to Data Mining, 2" ed, 2018. https://www-users.cse.umn.edu/~kumar001/dmbook/index.php

Predictors Label
Body Temp. | Gives Birth |4 legs | Mammal
warm yes yes |yes
warm yes yes |yes
warm yes no no
warm yes no no
cold no yes no
cold no yes no
cold no no no
cold no no no
warm no no no
cold yes no no

DT 1

Warm-blooded

(2+, 8-)

Temperature

Cold-blooded

Non-
mammals

(0+, 5-)

Mammals o=
mammals
(2+, 0-) (0+, 2-)

0% training error

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Overfitting due to presence of noise

Training set

Predictors Label
name Body Temp. | Gives Birth |4 legs | Mammal
porcupine warm yes yes |yes
cat warm yes yes |yes
bat warm yes no no
whale warm yes no no
salamander cold no yes no
komodo dragon | cold no yes no
python cold no no no
salmon cold no no no
eagle warm no no no
guppy cold yes no no

mislabeled

DT 1

Warm-blooded

(2+, 3-)

(2+, 2-)

Yes

(2+, 8-)

Body
Temperature

Cold-blooded

Non-
mammals

(0+, 5-)

Yes No

Non-
mammals

(0+, 1-)

Mammals

Non-
mammals

(2+, 0-)

(0+, 2-)

0% training error

DT 2

Body
Temperature

Warm-blooded Cold-blooded

Non-
mammals
Yes No
Mammals Non-
mammals
( 2 +, 2 _)

N\

(vot perfectly clear how
"mamwmals" are chosewn here)

20% training error

Example taken from Ch 4.4.1 of [Tan+'18] Tan, Steinbach, Karpatne, Kumar. Introduction to Data Mining, 2" ed, 2018. https://www-users.cse.umn.edu/~kumar001/dmbook/index.php
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Overfitting due to presence of noise

Training set

Predictors Label
name Body Temp. | Gives Birth |4 legs | Mammal
porcupine warm yes yes yes
cat warm yes yes |yes
bat warm yes no no
whale warm yes no no
salamander cold no yes no
komodo dragon | cold no yes no
python cold no no no
salmon cold no no no
eagle warm no no no
guppy cold yes no no
Test set
human warm yes no yes
pigeon warm no no no
elephant warm yes yes yes
leopard shark | cold yes no no
turtle cold no yes no
penguin cold no no no
eel cold no no no
dolphin warm yes no yes
spiny anteater |warm no yes yes
gila monster cold no yes no

DT 1

(2+, 8-)

Body
Temperature

mislabeled Warm-blooded Cold-blooded
Non-
(2+, 3-) mammals
Yes No (O+' 5_)
Non-
(2+, 2-) mammals
Yes (O+’ 1_)
Mammals Haf
mammals
(2+l O_) (O+, 2_)
0% training error

30% test error

DT 2

Body
Temperature

Warm-blooded Cold-blooded

Non-
mammals
Yes No
Mammals Non-
mammals
( 2 +, 2 _)

N\

(vot perfectly clear how
"mamwmals" are chosewn here)

20% training error
10% test error

Example taken from Ch 4.4.1 of [Tan+'18] Tan, Steinbach, Karpatne, Kumar. Introduction to Data Mining, 2" ed, 2018. https://www-users.cse.umn.edu/~kumar001/dmbook/index.php
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Practical considerations

https://northeastern-datalab.github.io/cs7840/
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Decision Tree Classification REPETITION

(40, 60)

(20, 0) (0, 30) (20,0) (0, 30)

Feature B
© OO0 0|00 0000
© O O 0|00 00 00
© O O 0|00 00 00
© OO0 0|00 0000
© O O 0|00 00 00
©O 000 0 0|00 00
© 0000 0|00 00
© 000 0 0|00 00
© 0000 0|00 00
© 000 0 0|00 00

0 Feature A 1

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 105
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Decision Tree Classification

What will happew
if we apply information gain ?

Attribute B
@ ®@ @ @ * * & & & #
@ @ @ @ * * * * & #
@ @ @ @ * * *# * & #
®@ @ @ @ * * * * & #
®@ @ @ @ * * *# * & #
+ * * & & @ @ @ O O
+ *+ + & & & @ @ O O
$ * * & & @ @ @ @ O
+ * * & & @ @ @ O O
+ * * & & @ @ @ O O

o
[

Attribute A

Python file 202: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 106
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Decision Tree Classification

B <= 0.389
e ¢« @« # 2|0 © © © © Samples = 100
valutlea:S[:O,l 60]

¢ & & & 2| © © © © -

®$ & £ & |06 6 6 © © True False
m ®$ & # £ |06 6 6 © ©

A<=0.5 A<=0.5

Q entropy = 1.0 entropy = 0.918
+ ® & & & S|P & & S & samples = 40 samples = 60
-] value = [20, 20] value = [20, 40]
H®) class =0 class = 1
E ® & & & 1S & & & S
)
< © @ © © |l # & + = \

@ © © 06 oOo|+® & & & =

B <= 0.611
entropy = 0.918
value = [20, 10]
class =0
01®@ © © 0 oO|+® & &+ & &
0 1
Attribute A

Python file 202: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 107
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Decision Tree Classification

While you can't directly force a decision tree in scikit-learn to use a particular
attribute first, you can influence its behavior by:

1. Feature Engineering:

Create a new feature:

Combine the attribute you want to prioritize with other features or create a new
feature based on its transformations. This can increase its importance in the decision-

14 @ @ @ @ @ ’ ‘ ’ ’ ‘ making process.
Scale the feature:
& & & &b & ’ ‘ ’ ’ ’ If the attribute has a different scale compared to other features, scaling it can make it
more prominent in the tree's decision-making.
® * * * * ® ® ® © © 2. Hyperparameter Tuning:
max_depth:
e8] ® ® ® ® ® ’ ’ ‘ ’ ’ Limiting the maximum depth of the tree can prevent it from exploring deeper levels
Q where your desired attribute might be used.
— ® & & & | & & & &
- min_samples_split:
Ne) This . . B
—_— parameter sets the minimum number of samples required to split an internal node.
b + + ® + + ® + & + + u Increasing this value can force the tree to consider attributes with higher information
] gain earlier.
< . . . . . + + * * + min_samples_leaf:
This parameter sets the minimum number of samples required to be at a leaf node.
. . . . . & &b & ) ) Increasing this value can have a similar effect to increasing min_samples_split.
o) O 0O © 0O & ® & & ® 3. Custom Splitting Criteria:
¢ Implement your own splitting criterion: You can write a custom function to
] calculate the splitting criterion, giving more weight to the attribute you want to
0 ’ ’ ’ ‘ ’ ® ® ® ® ® d O 6 5 V‘ O+ prioritize.
0 1

Attr| bute A M 6 [P 6]—{'[/] Gr However, keep in mind that:

¢ Decision trees are designed to find the best splits based on the data. Forcing a
specific attribute might lead to a suboptimal model.

¢ The importance of an attribute depends on its relationship with the target
variable. If the attribute is not strongly correlated with the target, it might not be
used even if you try to force it.

Here's an example of how to use feature engineering to influence the
decision tree:

Python file 202: https://github.com/northeastern-datalab/cs7840-activities/tree/main/notebooks
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 108
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MDL

(Minimum Description Length)

https://northeastern-datalab.github.io/cs7840/
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Preference bias: Occam’s Razor

« Idea: The simplest consistent explanation is usually the best
e Principle attributed to William of Ockham (1285-1347)

— "Entia non sunt multiplicanda praeter necessitatem”
= "Entities must not be multiplied beyond necessity"

— also known as "Ockham’s Razor" and "principle of parsimony"”

e For DT learning:
— Given two DT's with the same generalization errors, the simpler one is preferred

— Idea: adding some penalty for model complexity

See excellent discussion on Occam's Razor in Ch 3.6.2 of [Mitchell'97]. Introduction to Machine Learning, 1997. https://www.cs.cmu.edu/~tom/files/MachineLearningTomMitchell.pdf
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 111



https://northeastern-datalab.github.io/cs7840/
https://www.cs.cmu.edu/~tom/files/MachineLearningTomMitchell.pdf

Minimum Description Length (MDL)

MDL: an information-theoretic approach to incorporate model complexity

 Assume A and B are both given a set of instances with

A B
known attribute values x.
> e Assume only person A also knows the class label y for
every instance,
e M x| reeeed e A would like to share the class information with B by
X2 | 9 X2 | 7 sending a message containing the labels.
3 3
ol e * How many bits of information would such a message
Xv | 1 X | ? would require?

?

Figure from [Tan+'18] Tan, Steinbach, Kumar. Introduction to Data Mining, 2" ed, 2018. Chapter 3. https://www-users.cse.umn.edu/~kumar001/dmbook/index.php
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Minimum Description Length (MDL)

MDL: an information-theoretic approach to incorporate model complexity

 Assume A and B are both given a set of instances with

A B
known attribute values x.
> e Assume only person A also knows the class label y for
every instance,
e M x| reeeed e A would like to share the class information with B by
X2 | 9 X2 | 7 sending a message containing the labels.
3 3
ol e * How many bits of information would such a message
Xv | 1 X | ? would require?

® (n), where n is the total number of instances

Figure from [Tan+'18] Tan, Steinbach, Kumar. Introduction to Data Mining, 2" ed, 2018. Chapter 3. https://www-users.cse.umn.edu/~kumar001/dmbook/index.php
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Minimum Description Length (MDL)

MDL: an information-theoretic approach to incorporate model complexity

 Alternatively, A builds a DT from the instances and labels
 Atransmitthe DTto B

> * B applies the DT to determine the class labels

* |f the model is 100% accurate, then the transmission cost

e M x> uneeeled s just the number of bits required to encode the model.
X 0 L& ; * Otherwise, A must also transmit information about which
Xa) I instances are misclassified

X [ * How big is the extra information needed assuming a

fraction f of misclassified instances?

?

Figure from [Tan+'18] Tan, Steinbach, Kumar. Introduction to Data Mining, 2" ed, 2018. Chapter 3. https://www-users.cse.umn.edu/~kumar001/dmbook/index.php
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 114
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Minimum Description Length (MDL)

MDL: an information-theoretic approach to incorporate model complexity

 Alternatively, A builds a DT from the instances and labels
 Atransmitthe DTto B

> * B applies the DT to determine the class labels

* |f the model is 100% accurate, then the transmission cost

e M x> uneeeled s just the number of bits required to encode the model.
X 0 L& ; * Otherwise, A must also transmit information about which
Xa) I instances are misclassified
X [ * How big is the extra information needed assuming a

. fraction f of misclassified instances?

O(f -n-lgn)

Figure from [Tan+'18] Tan, Steinbach, Kumar. Introduction to Data Mining, 2" ed, 2018. Chapter 3. https://www-users.cse.umn.edu/~kumar001/dmbook/index.php
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 115
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Minimum Description Length (MDL)

MDL: an information-theoretic approach to incorporate model complexity

 Alternatively, A builds a DT from the instances and labels
 Atransmitthe DTto B

> * B applies the DT to determine the class labels

* |f the model is 100% accurate, then the transmission cost

))((1 Y > Labeled 3} Y —>Uniabeled g just the number of bits required to encode the model.
X 0 L& ; * Otherwise, A must also transmit information about which
Xg | 1 T instances are misclassified

X | D * How big is the total description length (DL) of the

message (= overall transmission cost)?

?

Figure from [Tan+'18] Tan, Steinbach, Kumar. Introduction to Data Mining, 2" ed, 2018. Chapter 3. https://www-users.cse.umn.edu/~kumar001/dmbook/index.php
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 116
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Minimum Description Length (MDL)

MDL: an information-theoretic approach to incorporate model complexity

 Alternatively, A builds a DT from the instances and labels
 Atransmitthe DTto B

> * B applies the DT to determine the class labels

* |f the model is 100% accurate, then the transmission cost

X | Labeled e Jreeded s just the number of bits required to encode the model.
2|0 el * Otherwise, A must also transmit information about which
X | 1 g2 instances are misclassified

Xy | 1 D * How big is the total description length (DL) of the

message (= overall transmission cost)?

cost(DT, data) = cost(data|DT) + a - cost(DT)

e /
encoding of hyper-parameter
misclassified for trade-off
instances

Figure from [Tan+'18] Tan, Steinbach, Kumar. Introduction to Data Mining, 2" ed, 2018. Chapter 3. https://www-users.cse.umn.edu/~kumar001/dmbook/index.php
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 117



https://northeastern-datalab.github.io/cs7840/
https://www-users.cse.umn.edu/~kumar001/dmbook/index.php

MDL Example

EXAMPLE: Assume a dataset with m = 16 binary attributes, k = 3 classes {C;, C,, C3}, and n
tuples. Consider the following two DTs with their respective number of classification errors.
Compare the total description length (DL) for the two DTs according to the MDL principle.

DT 1 DT 2
. ?
|
Cy| G5 Cy G, |C3
G, |G,
7 errors 4 errors

[Tan+'18] Tan, Steinbach, Kumar. Introduction to Data Mining, 2" ed, 2018. Example 10 in Chapter 3. https://www-users.cse.umn.edu/~kumar001/dmbook/index.php
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 118



https://northeastern-datalab.github.io/cs7840/
https://www-users.cse.umn.edu/~kumar001/dmbook/index.php

Updated 10/28/2024

Part 3: Applications
L15: Decision trees (2/2)

Wolfgang Gatterbauer, Javed Aslam

cs7840 Foundations and Applications of Information Theory (fa24)
https://northeastern-datalab.github.io/cs7840/fa24/
10/28/2024

119


https://northeastern-datalab.github.io/cs7840/fa24/

Pre-class conversations

e Please ask questions and slow me down

e Lecture 14 (Wed 10/23): Decision trees

e Lecture 15 (Mon 10/28): Connections (multinomial) logistic regression, maximum entropy
models, Lagrange multipliers, Occam's razor, softmax, cross-entropy, loss functions

e Lecture 16 (Wed 10/30): Bradtey-Terry modet, Luce'schotee-axiom,ltem Response Theory

(GRT)- theory of types
e Lecture 17 (Mon 11/4): Minimum Description Length (MDL)

e Lecture 18 (Wed 11/6): Information Bottleneck Theory
e (Mon 11/11): no class (Veterans Day)

e Today:
- MDL
— maximum entropy leading to logistic regresion

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 120
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MDL Example

EXAMPLE: Assume a dataset with m = 16 binary attributes, k = 3 classes {C;, C,, C3}, and n
tuples. Consider the following two DTs with their respective number of classification errors.
Compare the total description length (DL) for the two DTs according to the MDL principle.

DT 1 DT 2
. ?
|
Cy| G5 Cy G, |C3
G, |G,
7 errors 4 errors

[Tan+'18] Tan, Steinbach, Kumar. Introduction to Data Mining, 2" ed, 2018. Example 10 in Chapter 3. https://www-users.cse.umn.edu/~kumar001/dmbook/index.php
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 121
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MDL Example

EXAMPLE: Assume a dataset with m = 16 attributes, k = 3 classes {C, C,, C5}, and n tuples.

Consider the following two DTs with their respective number of classification errors.
Compare the total description length (DL) for the two DTs according to the MDL principle.

* Total DL: cost(DT, data) = cost(data|DT) + cost(DT)

DT 1 DT 2
e cost(DT):
C1 ;
[}
Gyl 1G5 Cy Gy 1G5
Ci] |Gy
» cost(data|DT):
/ errors 4 errors
[}
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EXAMPLE: Assume a dataset with m = 16 attributes, k = 3 classes {C, C,, C5}, and n tuples.

Consider the following two DTs with their respective number of classification errors.
Compare the total description length (DL) for the two DTs according to the MDL principle.

* Total DL: cost(DT, data) = cost(data|DT) + cost(DT)

DT 1 DT 2
* cost(DT): cost of encoding all nodes and edges of DT
Simplification: we only add up the encoding costs for nodes
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Consider the following two DTs with their respective number of classification errors.
Compare the total description length (DL) for the two DTs according to the MDL principle.

DT 1 DT 2 * Total DL: cost(DT, data) = cost(data|DT) + cost(DT)

* cost(DT): cost of encoding all nodes and edges of DT

Simplification: we only add up the encoding costs for nodes

C . : e .
1 * Encoding of an internal node: by ID of splitting attribute
cost per internal node: ?
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DT 1 DT 2 * Total DL: cost(DT, data) = cost(data|DT) + cost(DT)

* cost(DT): cost of encoding all nodes and edges of DT

Simplification: we only add up the encoding costs for nodes

G * Encoding of an internal node: by ID of splitting attribute
ol C Al cost per internal node: lg(m) =1g(16) =4
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EXAMPLE: Assume a dataset with m = 16 attributes, k = 3 classes {C, C,, C5}, and n tuples.
Consider the following two DTs with their respective number of classification errors.
Compare the total description length (DL) for the two DTs according to the MDL principle.

DT 1 DT 2 * Total DL: cost(DT, data) = cost(data|DT) + cost(DT)

* cost(DT): cost of encoding all nodes and edges of DT

Simplification: we only add up the encoding costs for nodes

G * Encoding of an internal node: by ID of splitting attribute
Al C Al cost per internal node: lg(m) =Ig(16) =4
* Encoding of a leaf node: by ID of class
AR cost per leaf node: lg(k) =1Tlg(3)]=2
1 2
» cost(data|DT): cost of encoding all erroneous data points
7 errors 4 errors cost per error: lg(n)

/14<r 7 - 1g(n) /26<r 4 -1g(n)
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EXAMPLE: Assume a dataset with m = 16 attributes, k = 3 classes {C, C,, C5}, and n tuples.
Consider the following two DTs with their respective number of classification errors.
Compare the total description length (DL) for the two DTs according to the MDL principle.

DT 1 DT 2 * Total DL: cost(DT, data) = cost(data|DT) + cost(DT)

* cost(DT): cost of encoding all nodes and edges of DT

Simplification: we only add up the encoding costs for nodes

G * Encoding of an internal node: by ID of splitting attribute
Al C Al cost per internal node: lg(m) =Ig(16) =4
* Encoding of a leaf node: by ID of class
AR cost per leaf node: lg(k) =1Tlg(3)]=2
1 2
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