Applications

Updated 10/14/2024

Part 3: Practice L11: Compression (1/4)

Javed Aslam, Wolfgang Gatterbauer

cs7840 Foundations and Applications of Information Theory (fa24)

https://northeastern-datalab.github.io/cs7840/fa24/

10/9/2024

· Start compression · Continue as an application

Compression Taxonomy:

() Fixed source alphabet of bounded size

(a) assume we know underlying distribution p; must code symbol - by - symbol

- Shannen Code EEL] < H(x) +1

- Fand code $E[L] \leq H(x) + I - P_{min}$

- Huffman wde optimal but > H(x)

4 - Shaman-Famo - Elias $H[x]+1 \leq E[L] < H[x]+2$

Arishmetre Lodnig approaches H(x) in limit
 block coding "for free"
 today - no exponential blow up

· Sender & receiver must agree in code book lorit must be sent) · coding dist. 2 must match actual distribution P, else suffer D(plig) loss · in general, only approches entropy limit with block coding - Code book grows exponentially in size

Shannon - Fano-Elias
. Let
$$\mathcal{K} = \{a_1, b, c\}$$
 $\vec{P} = (\frac{14}{3}, \frac{14}{3}, \frac{14}{5})$
. Consider intervals in range [0,1]
 $\vec{P} = (\frac{14}{3}, \frac{14}{3}, \frac{14}{3})$
 $\vec{P} = \frac{1}{3}$
 \vec{P}

In our example:
• a use
$$\Gamma_{15} V_{(1/3)} + 1 = \Gamma_{15} + 1 = 2 \text{ bits}$$

mid point 0.010000
 $a \to 01$
• b use $\Gamma_{15} V_{(1/3)} + 1 = \Gamma_{193} + 1 = 3 \text{ bits}$
mid point 0.101010
 $b \to 101$
• c use $\Gamma_{15} V_{(1/3)} + 1 = \Gamma_{156} + 1 = 4 \text{ bits}$
mid point 0.11101010
 $c \to 1110$

For
$$l_{i} = \left[15 \frac{1}{p_{i}} \right] + 1$$
:
 $E[L] = \sum_{i} p_{i} \cdot l_{i} = \sum_{i} p_{i} \left(\left[15 \frac{1}{p_{i}} \right] + 1 \right)$
 $= \left(\sum_{i} p_{i} \cdot \left[15 \frac{1}{p_{i}} \right] + 1 \right)$
 $< \left(\sum_{i} p_{i} \cdot \left[15 \frac{1}{p_{i}} \right] + 1 \right)$
 $= \left(\sum_{i} p_{i} \cdot \left[15 \frac{1}{p_{i}} \right] + 2 \right)$
 $= H(X) + 2$
 $E[L] = \sum_{i} p_{i} \cdot l_{i} = \sum_{i} p_{i} \left(\left[15 \frac{1}{p_{i}} \right] + 1 \right)$
 $\ge \sum_{i} p_{i} \left(\left[15 \frac{1}{p_{i}} \right] + 1 \right)$
 $= H(X) + 1$
 $\Rightarrow H(X) + 1 \le E[L] < H(X) + 2$

Efficiency :

- · Use [1g/w]+1 bits if final interval is of width W
- · Final interval width is plxi).plxi) plxi) = plxix an)

· By AEP, for large n, with high probability,

$$p(x_1x_2-x_n) \sim 2^{-n}H(x)$$

- total bits ~
$$\Gamma_{13}$$
 /2-nH(x) 7 + < n H(x) +2

Updated 10/17/2024

Part 3: Practice L12: Compression (2/4)

Javed Aslam, Wolfgang Gatterbauer

cs7840 Foundations and Applications of Information Theory (fa24)

https://northeastern-datalab.github.io/cs7840/fa24/

10/16/2024

Last time

- · Compression as our application of Information theory
- taxonomy
- Shannon- Fano- Elias
- Arithmetic Encoding

Today

- · Final thoughts on Arithmetic Encodnig
- . Connections between

random ness

compression & randomness

Next time

· Lempel-Ziv

analysis

compressibility ~ predictability • Encoding arbitrary integers

- unary
- Elias Gamma
- Elias Delta
- Elias Omega
- Fibonacci + some fun facts

Now suppose we want to servate a r.v. X from fair bits, e.g., $X = \begin{cases} q & \omega / prob & V_{\lambda} \\ b & \omega / prob & V_{\gamma} \\ c & \omega / prob & V_{\gamma} \\ c & \omega / prob & V_{\gamma} \end{cases}$ How? Obvins · Given a stream of fair bits Z, Z___ - it bit is 0, output a 0-99 10-06 7 - if 10, output b -if 11, intput C - repeat · How etticiant? 1/2.1 + 1/4.2 + 1/4.2 = 1.5 bits per character on average = H(x)

- Can show that using a bin on y expansion tree

 $H(x) \in E(T) \leq H(x) + 2$

Analysis
Analysis

$$k \text{ Let } y = \{y_1, y_2, -y_1\}$$

be set of leaves
 $y_1 \text{ of } 1$
 $y_1 \text{ of } 1$
 $y_1 \text{ of } 1$
 $y_2 \text{ of } 1$
 $y_1 \text{ of } 1$
 $y_2 \text{ of } 1$
 $y_1 \text{ of } 1$
 $y_2 \text{ of } 1$
 $y_2 \text{ of } 1$
 $y_2 \text{ of } 1$
 $y_3 \text{ of } 1$
 $y_1 \text{ of } 1$
 $y_2 \text{ of } 2$
 $y_1 \text{ of } 1$
 $y_2 \text{ of } 2$
 $y_1 \text{ of } 1$
 $y_1 \text{ of } 2$
 $y_2 \text{ of } 2$
 $y_2 \text{ of } 2$
 $y_1 \text{ of } 2$
 $y_2 \text{ of } 2$
 $y_3 \text{ of } 3$
 $y_3 \text{ of } 3$

Thus
$$E[T] = H(Y)$$

Pf: $H(Y) = - \leq P(y) \leq P(y)$
 $= - \leq q a^{-k(y)} \leq a^{-k(y)}$
 $= \leq k \leq y \leq a^{-k(y)} \leq a^{-k(y)}$
 $= \leq k \leq y \leq a^{-k(y)} \leq a^{-k(y)}$
 $= \epsilon (T)$

then
$$H(y) \ge H(x)$$

H(y) $\ge H(x)$
 $H(y) \ge H(y)$
 $H(y) \ge H(x,y) = H(x) + H(y|x)$
 $\Rightarrow H(y) = H(x) + H(y|x)$
 $\Rightarrow H(y) = H(x) + H(y|x)$
 $\Rightarrow H(y) \ge H(x)$
 $= 0$ only achieves equality
 $it \ 1-to-(mapping X to Y)$
 $= 0$ therefore your of the pointive
 $- in efficiency$

$$= E[L] = H(\lambda) > H(\lambda)$$

Upshot:

Updated 10/22/2024

Part 3: Practice L13: Compression (3/4) [Encoding arbitrary integers, Lempel-Ziv]

Javed Aslam, Wolfgang Gatterbauer

cs7840 Foundations and Applications of Information Theory (fa24)

https://northeastern-datalab.github.io/cs7840/fa24/

10/21/2024

Last time

- · Final thoughts on Arithmetic Encoding
- . Connections between compression & randomness
 - fair bits from n.V. Via compression
 - N.V. from four bits · Lempel Ziv Via compression-like trees to "decode" a four bit stream

<u>Today</u> • Encoding arbitrary integers - Unary - Elias Gamma - Elias Delta - Elias Omega - Fibonacci + some fun facts

. what about zero? what about negative integers?

· Create mappings:

$$0 \rightarrow 1 \qquad 0 \rightarrow 1$$

$$1 \rightarrow 2 \qquad 1 \rightarrow 2$$

$$2 \rightarrow 3 \qquad -1 \rightarrow 3$$

$$3 \rightarrow 4$$

$$1 \rightarrow 2 \rightarrow 5$$

$$3 \rightarrow 6$$

$$1 \qquad -2 \rightarrow 5$$

$$5 \qquad -2 \rightarrow 5$$

$$-2 \rightarrow 5$$

.

To encode n, use n zeroes followed by a trailing one 5-, 000001

Regumes NHI bits

(d)

#

w

Elias Gamma

3 Elias Delta

Output =
$$0$$

while $n > 1$
output = dec2bin (n). output
 $n = \lfloor \lg n \rfloor$

$$H (LlgnJtl) + (LlgLlgnJ]tl) + \cdots \qquad bits$$

$$Ig^{*}n trincs \qquad \frac{n}{2} \qquad \frac{lg^{*}n}{2} \qquad \frac{1}{2}$$

$$Note: There are only ~ 1080 atoms \qquad a^{10} = 65536 \quad y$$

$$\Rightarrow lg^{*}n \leq 5 \quad \text{for all practical purposes} \leftarrow 2 \quad \sim 10 \quad 5$$

Lempel - Z.V

Basic idea:

- parse string into unique substrings
- break unique substrings into previously seen substring + suffix bit
- encode reterence to previously seen substring + suffix bit
- lots of variants, depending on how one encodes references
 - absolute index (2-pass with fixed # bits or 1-pass w/ Elias)
 - relative midex (1-pass)
 - stiding windows to collect mides distributions and then Huffman code

- etc.

Worked example w/ back references:
()
$$1 \circ 1 \circ 1 \circ 1 \circ 1 \circ 1 \circ 1 \circ 1$$

(a) $1 \circ 1 \circ 1 \circ 1 \circ 1 \circ 1 \circ 1$
Substrugt 1 a 3 4 5 6 7
(c) $(e_1) \circ (e_1) \circ (e_1)$

Example: My initials in ASCEE

$$j \rightarrow 01101010$$

 $a \rightarrow 01100001$
 $a \rightarrow 01100001$

> 0110 1010 0110 0001 0110 0001

You try ...

Example: My initials in ASCEE

$$j \rightarrow 01101010$$

 $a \rightarrow 01100001$
 $0 1 10 00 0100000$
 $0 1 10 00 01 000 01 010 0000 1$
 $(0,0) (0,1) (1,0) (1,1) (4,0) (4,1) (000 01 01,0) (0000,1)$
 $(-,0) (0,1) (01,0) (01,1) (1000,0) (100,1) (010,0) (1000,1) (0000,1)$
 $0010 0001 1100 0100 1010 0111 1000 1100 1000 0001$
Again, larger, but... when processing larg string will get
larg substrings that will be represented compactly with
short binary encodings of references. (AEP argument)

Lempel-Ziv analysis setup:

We will assume an d.d. source of bits, with encoding in bits
 works for Markov sources over arbitrary alphabets

- as if using absolute indexes

- worse than method described (relative nideses)
- actual implementations do even better w/ slidning windows to capture distributions over (velocive) indexes

Analysis high lights \$\$ steps:
(1) Let
$$c = clw$$
 be # distinct substruigs in parsing of string
of length N. Then $c \leq \frac{N}{(1-\epsilon_n)}$ where $\epsilon_n \Rightarrow 0$ as $n \Rightarrow co$
Pf: countring argument
(2) Let $\vec{x} = \chi_1 \chi_{\chi_n} - \chi_n$ be string of length N
Let $\vec{y} = y_1 y_2 - y_2$ be any parsing of that string into c substrings
 $\forall l$, let c_l be # substruigs at length $l = c_l = c$ # $\leq l - c_l = n$
Then $\sum_{k=1}^{l} c_k \log c_k + c [\log(\frac{n}{2} + 1) + \log e]$
(3) $c \log c \leq \sum_{k=1}^{l} (c_k + 1) + c [\log(\frac{n}{2} + 1) + \log e]$
(4) $c (\log c + 1) \leq -\log p(n^2) + c [\log(\frac{n}{2} + 1) + \log e + 1] = -\log p(n^2) + O(\frac{n}{\log n})$
(5) $\lim_{n \to \infty} \frac{c(\log c + 1)}{n} \leq H(x)$ with prob 1 $c \log c$ to $\sum_{k=1}^{l} c_k (p + 1) - \log p(n^2)$ to $H(x)$

(a) Let
$$\vec{x} = x_1 \cdot y_2 - x_n$$
 be string of length N
Let $\vec{y} = y_1 \cdot y_2 - y_2$ be any parsing of that string into C substrings
 $\forall l$, let C_l be $\#$ substrings of length $l = c_l = c \notin l + c_l = n$
Then $\sum_{k} c_k | g(z_k) = -lg p(\vec{x})$
 $lg p(y_1) = lg p(\vec{y})$ $lld: p(\vec{z}) = p(x_1)p(x_1) - p(x_k) = \prod_{k=1}^{k} p(x_1)$
 $= lg p(y_1, y_2 - y_2)$
 $= lg(\prod_{k=1}^{k} p(y_k))$
 $= \xi | g p(y_2)$
 $= lg p(y_2, y_2 - y_2)$
 $= lg(\prod_{k=1}^{k} p(y_2))$
 $= \xi | lg p(y_2)$
 $= \xi | lg p(y_2)$
 $= \xi c_k \left[lg p(y_2) \right]$
 $= \xi c_k \left[lg p(y_2) \right]$
 $x_1 = lg p(y_2)$
 $x_2 \in lg p(y_2) \right]$

Jensen's Inequality:

$$= \underset{k}{\leq} c_{k} \left[\frac{1}{c_{k}} \underset{k}{\leq} l_{9} \rho(y_{0}) \right]$$

$$\leq \underset{k}{\leq} c_{k} l_{9} \left[\frac{1}{c_{k}} \cdot \underset{k}{\leq} \rho(y_{0}) \right]$$

$$\leq \underset{k}{\leq} c_{k} l_{9} \left[\frac{1}{c_{k}} \cdot \underset{k}{\leq} \rho(y_{0}) \right]$$

$$\leq \underset{k}{\leq} c_{k} l_{9} \frac{1}{c_{k}}$$

$$= - \underset{k}{\leq} c_{k} l_{9} \frac{1}{c_{k}}$$

$$\leq - \underset{k}{\leq} c_{k} l_{9} c_{k}$$

$$\leq - \underset{k}{\leq} c_{k} l_{9} c_{k}$$

$$\leq 0 \dots l_{9} \rho(\vec{\pi}) \leq - \underset{k}{\leq} c_{k} l_{9} c_{k}$$

$$\Leftrightarrow \underset{k}{\leq} c_{k} l_{9} c_{k} \leq - l_{9} \rho(\vec{\pi})$$

(3)
$$c \lg c \leq \frac{c}{k} c_k \lg c_k + c [\lg (\frac{u}{k} + 1) + \lg e]$$

Pf: $\underset{k}{\leq} c_k \lg c_k = c \cdot \underset{k}{\leq} \frac{c}{\leq} \lg (\frac{c}{k} \cdot c)$ · let $Tt_k = \frac{c_k}{c}$
 $= c \cdot \underset{k}{\leq} Tt_k \lg (tt_k \cdot c)$ · lengths
 $= c \cdot \underset{k}{\leq} Tt_k \lg (tt_k \cdot c)$ · $\underset{k}{\leq} Tt_k = 1$
 $= c \cdot \underset{k}{\leq} Tt_k (\lg c + \lg Tt_k)$
 $= c \lg c \cdot \underset{k}{\leq} Tt_k + c \underset{k}{\leq} Tt_k \lg Tt_k$
 $= c \lg c - c + l(\widehat{Tt})$ · but $n = \underset{k}{\leq} l \cdot c_k$
 $= c \underset{k}{\leq} l \cdot Tt_k$
 \cdots we need to bound $H(\widehat{Tt})$ · $c \lesssim substrings cover.isg$
 $n \ bits$

- What is maximum $H(\vec{\pi})$ subject to constraint $E[\vec{\pi}] = {}^{n}c$?
- · Max. ent. distributions, solved via constrained optimization - will cover later when discuss max. ent. method
 - " Here, can show that

$$l(\pi) \leq lg(\frac{n}{2} + 1) + lge -entropy contbe too highif mean issmall$$

So,
$$\xi c_{\ell} l_{j} c_{\ell} = c l_{g} c - c H(\hat{\pi})$$

 $\geq c l_{g} c - c \left[l_{g}(\frac{n}{c} + 1) + l_{g} e \right]$
 $\iff c l_{g} c \leq \xi c_{\ell} l_{g} c_{\ell} + c \left[l_{g}(\frac{n}{c} + 1) + l_{g} e \right]$

(4) Lemped - Ziv # bits to encode is
$$c(\lg c+1)$$

substitues bits to
 $c(\lg c+1) \leq \leq c_{\ell} \lg c_{\ell} + c[\lg(\frac{\pi}{c}+1) + \lg c+1]$ encode reference
 $\leq -\lg p(\pi) + c[\lg(\frac{\pi}{c}+1) + \lg c+1]$
 $= -\lg p(\pi) + O(\frac{n \lg \lg n}{\lg n})$ since $c \leq \frac{n}{(l-\epsilon_n)} \lg n$

$$C(lgc+1) \leq -lgplit) + O(\frac{nlglgn}{lgn})$$

Compression rate in limit
$$AEP$$

 $\lim_{n \to \infty} \frac{c(l_{gc+1})}{n} \leq \lim_{n \to \infty} \left[-\frac{1}{n} \log p(\vec{x}) + O\left(\frac{l_{gl_{gn}}}{l_{gn}}\right)\right]$

$$= H(x)$$

Updated 10/25/2024

Part 3: Practice L14: Compression (4/4) [Fibonacci Encodings]

Javed Aslam, Wolfgang Gatterbauer

cs7840 Foundations and Applications of Information Theory (fa24)

https://northeastern-datalab.github.io/cs7840/fa24/

10/23/2024

Last time • Encoding arbitrary integers - Unary - Elias Gamma - Elias Delta - Elias Omega

· Lempel - Ziv

Today

· Fibonacci Encoding + some fun facts

· Decision Thees (W6)

Next time

· Contrine applications w/ Wolfgang

Fiburacci Encoding: A universal code for viteges using a
Fiburacci representation
First, let's consider arbitrary integer representations
· Assume we have place values
…
$$P_Y = P_3 > P_2 > P_1 = 1$$

· Greedy algorithm to produce standard representation:
To encode n:
① Find largest place value $P_0 = N$
③ Find largest integer constant C_0 s.t. C_0 ·Po = N
③ Put C_0 in position i
④ N \leftarrow N - C_0 ·Pi ; repeat
⑤ Put zeroes in unused place value positions

Example : Brivary Representation
- Place values are provers of 2

$$a^{6} a^{5} a^{7} a^{3} a^{2} a^{1} a^{0}$$

 $a^{6} a^{5} a^{7} a^{3} a^{2} a^{1} a^{0}$
 $a^{6} b^{7} a^{5} a^{7} a^{3} a^{2} a^{1} a^{0}$
 $a^{6} b^{7} a^{5} a^{7} a^{3} a^{2} a^{1} a^{0}$
 $a^{7} b^{7} a^{7} b^{7} a^{7} a^{7} a^{1} a^{0}$
 $1 1 1 1 0 0$
 $a^{7} a^{7} a^{$

Example: Ternary Representation
- place values are powers of 3

$$3^{4}$$
 3^{3} 3^{2} 3^{2} 3^{0}
 3^{4} 3^{3} 3^{2} 3^{2} 3^{0}
 3^{4} 3^{3} 3^{2} 3^{2} 3^{0}
 3^{4} 3^{2} 3^{2} 3^{2} 3^{2}
 3^{1}
 3^{2} 3^{2} 3^{2} 3^{2} 3^{2}
 3^{2} 3^{2} 3^{2} 3^{2} 3^{2}
 3^{2} 3^{2} 3^{2} 3^{2} 3^{2}
 3^{2} 3^{2} 3^{2} 3^{2} 3^{2}
 3^{2} 3^{2} 3^{2} 3^{2} 3^{2} 3^{2}
 3^{2} 3^{2} 3^{2} 3^{2} 3^{2} 3^{2} 3^{2}
 3^{2} 3^{2} 3^{2} 3^{2} 3^{2} 3^{2} 3^{2} 3^{2}
 3^{2} 3^{2}

N=60. Fibonacci representation: 100001000

· Fiberracci encodnig :

Properties: $\phi = \frac{1+\sqrt{5}}{2} \approx 1.618$ 1) Efficiency $F_n = \frac{p^n - p^n}{\sqrt{5}}$ where $\hat{\phi} = \frac{1 - \sqrt{51}}{2} = -0.618$ - Since 10/11, 0"-0 as n= 0 Ø = "Golden Ratio" \Rightarrow for large n, $F_n \approx \frac{p^n}{\Gamma}$ => Fn/Fn-1 2 \$ => Fibracci sequence grows (about) exponentially we have \$ => length of Fibmacii representation / encoding is about $\log_{\phi} n = \frac{\lg n}{\lg \phi} \approx 1.44.\lg n$ -> 44% longer than a bistory representation -> but universal + nice properties (robustness)

And now for some fun, we can use Fibanacci representations to convert from miles to kilometers and inches to centimeters without multiplication.

 \implies TS do SO, we will leverage the fact that the ratio between consecutive Fibonacci numbers is 250 = 1.618...

Rattos: 1.6179 1.6182 1.6176 1.619 1.615 1.625 1.6
$$\frac{1.66}{5}$$
 $\frac{1.5}{3}$ 2 1
144 89 55 34 21 13 8 5 3 2 1

=) In a Fibaracci representation... (1) Shifting left effectively <u>multiplies</u> by $\approx \phi = 1.618...$ (2) Shifting <u>right</u> effectively <u>divides</u> by $\approx \phi = 1.618...$

1) Miles (or mph)
$$\iff$$
 Kilometers (or Kph)
• there are 1.609 km/mile, very close to $\phi = 1.618$
• To approximately multiply or divide by 1.605 , just represent
in Fibonacci and shift left or right
Patros: 1.6179 1.6182 1.6176 1.619 1.615 1.625 1.6 1.66 1.52 1.6179 1.6182 1.6176 1.619 1.6183 1.6176 1.619 1.6183 1.617

2 Inches
$$\Leftrightarrow$$
 Centimeters
• there are $\lambda.54 \text{ cm/in}$, close to $\beta^2 = \lambda.618$
• To approximately multiply or divide by 2.54 , just represent
in Fibonaccii and shift left or right 2 places
Ratros: 1.6179 1.6182 1.6176 1.619 1.615 1.625 1.6 1.66 1.5
 $144 89 55 34 21 13 8 5 3 2 1$
12 miches = $8 + 3 + 1$ shift left thore $21 + 8 + 3 = 32 \text{ cm}$ (actual: 30.48)
100 cm = $89 + 8 + 3$ might twire $34 + 3 + 1 = 38 \text{ in}$ (actual: 39.37)