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Let's gain some intuition for 
"measures of information"

The following numeric examples with hats and 4 balls are based on Chapter 1.1 from [Moser'18] 
Information Theory (lecture notes, 6th ed).https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it

https://northeastern-datalab.github.io/cs7840/
https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
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Let's gain some intuition: What is information?

What is information? Let's look at some sentences with "information":
1. "It will rain tomorrow."
2. "It will snow tomorrow."
3. "The name of the next president of the USA will be...

a. ... Donald."
b. ... Donald Duck."

4. "Our university is called Northeastern University."

?

https://northeastern-datalab.github.io/cs7840/
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Let's gain some intuition: What is information?

What is information? Let's look at some sentences with "information":
1. "It will rain tomorrow."
2. "It will snow tomorrow."
3. "The name of the next president of the USA will be...

a. ... Donald."
b. ... Donald Duck."

4. "Our university is called Northeastern University."

⇒ Information (in a sentence) is linked to surprise (which is the 
delta of knowledge before and after seeing the sentence).

Let's next try to quantify "information" J

https://northeastern-datalab.github.io/cs7840/
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Let's try to quantify "information"

EXAMPLE 1: A gambler throws a fair die with 4 sides {A,  B,  C,  D}. 
- "Side C comes up."
- The "pure" message 𝑈- that we care about in our abstraction is ... ?

https://northeastern-datalab.github.io/cs7840/
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Let's try to quantify "information"

EXAMPLE 1: A gambler throws a fair die with 4 sides {A,  B,  C,  D}. 
- "Side C comes up."
- message 𝑈- = "C"

EXAMPLE 2: A gambler throws a fair die with 6 sides {A,  B,  C,  D,  E,  F}.
- "Side C comes up."
- message 𝑈. = "C"

?What has changed

https://northeastern-datalab.github.io/cs7840/
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Let's try to quantify "information"

EXAMPLE 1: A gambler throws a fair die with 4 sides {A,  B,  C,  D}. 
- "Side C comes up."
- message 𝑈- = "C"
- There are 4 possible outcomes, each has a probability of ¼. 

EXAMPLE 2: A gambler throws a fair die with 6 sides {A,  B,  C,  D,  E,  F}.
- "Side C comes up."
- message 𝑈. = "C"
- There are 6 possible outcomes, each has a probability of 1/6.

⇒ 1) The number of possible outcomes should be linked to "information"
(we need more space to encode a message)

https://northeastern-datalab.github.io/cs7840/
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Let's try to quantify "information"

EXAMPLE 1: A gambler throws a fair die with 4 sides {A,  B,  C,  D}. 
- "Side C comes up."
- message 𝑈- = "C"
- There are 4 possible outcomes, each has a probability of ¼. 

EXAMPLE 2: A gambler throws a fair die with 6 sides {A,  B,  C,  D,  E,  F}.
- "Side C comes up."
- message 𝑈. = "C"
- There are 6 possible outcomes, each has a probability of 1/6.

⇒ 1) The number of possible outcomes should be linked to "information"

00 01 1110

000 001 011010 101100

, or in above binary encoding 𝑈- = "10"

, or in above binary encoding 𝑈. = "010"

(we need more space to encode a message)

https://northeastern-datalab.github.io/cs7840/
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Let's try to quantify "information"

EXAMPLE 1: A gambler throws a fair die with 4 sides {A,  B,  C,  D}. 
- "Side C comes up."
- message 𝑈- = "C"
- There are 4 possible outcomes, each has a probability of ¼. 

EXAMPLE 3: The gambler throws the 4-sided die three times.
- "The sequence of sides are: (C, B, D)"
- The message 𝑈/ = "CBD".

Notice "BCD" is not 
the same as "CBD"How many outcomes do we have now?

https://northeastern-datalab.github.io/cs7840/
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Let's try to quantify "information"

EXAMPLE 1: A gambler throws a fair die with 4 sides {A,  B,  C,  D}. 
- "Side C comes up."
- message 𝑈- = "C"
- There are 4 possible outcomes, each has a probability of ¼. 

EXAMPLE 3: The gambler throws the 4-sided die three times.
- "The sequence of sides are: (C, B, D)"
- The message 𝑈/ = "CBD".
- Now we had 64 = 4 ⋅ 4 ⋅ 4 = 4/ possible outcomes.

How much more information did we learn in situation 3? ?
16 times more!

https://northeastern-datalab.github.io/cs7840/


81Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Let's try to quantify "information"

EXAMPLE 1: A gambler throws a fair die with 4 sides {A,  B,  C,  D}. 
- "Side C comes up."
- message 𝑈- = "C"
- There are 4 possible outcomes, each has a probability of ¼. 

EXAMPLE 3: The gambler throws the 4-sided die three times.
- "The sequence of sides are: (C, B, D)"
- The message 𝑈/ = "CBD".
- Now we had 64 = 4 ⋅ 4 ⋅ 4 = 4/ possible outcomes.
We have 3 independent throws, the message 𝑈	is 3 times as long, 
despite 4/ possible total outcomes. Our information is 3 times as much.

⇒ 2) Information is additive in some sense

https://northeastern-datalab.github.io/cs7840/
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Hartley's measure of information [1928]

𝐻0 𝑈 = log1 𝑛
Hartley's measure 
of information

1 roll has 4 outcomes.

3 rolls have 64 = 4 ⋅ 4 ⋅ 4 = 4/outcomes.

Hartley's insight: use the logarithm of the number of possible 
outcomes 𝑟 to measure the amount of information in an outcome.

Ralph Hartley. Transmission of information, The Bell System Technical Journal, 1928. https://doi.org/10.1002/j.1538-7305.1928.tb01236.x

log2 4 = 1

log2 64 = 3

𝑛	= number of outcomes

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1002/j.1538-7305.1928.tb01236.x
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Hartley's measure of information [1928]

𝐻0 𝑈 = log1 𝑛
Hartley's measure 
of information

The basis 𝑏 of the logarithm is not really important.
(just unit of information, like 1 km = 1000 m)

1 roll has 4 outcomes.

3 rolls have 64 = 4 ⋅ 4 ⋅ 4 = 4/outcomes.

Hartley's insight: use the logarithm of the number of possible 
outcomes 𝑟 to measure the amount of information in an outcome.

Ralph Hartley. Transmission of information, The Bell System Technical Journal, 1928. https://doi.org/10.1002/j.1538-7305.1928.tb01236.x

log2 4 = 1

log2 64 = 3

𝑛	= number of outcomes

log. 𝑐 = 1.443 ⋅ log3 𝑐  

𝑒4 = 2-.22/ 4 = 2-.22/⋅4 
1.443 = log. 𝑒2-.22/ = 𝑒 ⇔

We will 
use: lg(𝑐)

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1002/j.1538-7305.1928.tb01236.x
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Hartley's measure of information [1928]

1 roll has 4 outcomes.

3 rolls have 64 = 4 ⋅ 4 ⋅ 4 = 4/outcomes.

Ralph Hartley. Transmission of information, The Bell System Technical Journal, 1928. https://doi.org/10.1002/j.1538-7305.1928.tb01236.x

log2 4 = 1

log2 64 = 3

log1 𝑛7 = ?For 𝑘 independent trials, 
the amount of information is:

Hartley's measure 
of information

Hartley's insight: use the logarithm of the number of possible 
outcomes 𝑟 to measure the amount of information in an outcome.

𝐻0 𝑈 = log1 𝑛
𝑛	= number of outcomes

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1002/j.1538-7305.1928.tb01236.x
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Hartley's measure of information [1928]

1 roll has 4 outcomes.

3 rolls have 64 = 4 ⋅ 4 ⋅ 4 = 4/outcomes.

Ralph Hartley. Transmission of information, The Bell System Technical Journal, 1928. https://doi.org/10.1002/j.1538-7305.1928.tb01236.x

log2 4 = 1

log2 64 = 3

For 𝑘 independent trials, 
the amount of information is:

Hartley's measure 
of information

Hartley's insight: use the logarithm of the number of possible 
outcomes 𝑟 to measure the amount of information in an outcome.

𝑘 ⋅ log1 𝑛

the power of the logarithm J

log1 𝑛7 = 

𝐻0 𝑈 = log1 𝑛
𝑛	= number of outcomes

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1002/j.1538-7305.1928.tb01236.x
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Let's practice
EXAMPLE 4: A country has 1 million telephones. How long does the country's 
telephone numbers need to be?

Sources: https://www.worldometers.info/world-population/ 

?

https://northeastern-datalab.github.io/cs7840/
https://www.worldometers.info/world-population/
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Let's practice

log-0 1,000,000 = 6 
With 6 digits (like "123 456") we can represent 108 different telephones. 

EXAMPLE 4: A country has 1 million telephones. How long does the country's 
telephone numbers need to be?

EXAMPLE 5: The current world population is 8,174,891,806 (as of Sat, 
September 7, 2024). How long must a binary telephone number be to 
connect to every person?

Sources: https://www.worldometers.info/world-population/ 

A tip: 2/. = 4,294,… ,…

?

https://northeastern-datalab.github.io/cs7840/
https://www.worldometers.info/world-population/
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Let's practice

log-0 1,000,000 = 6 
With 6 digits (like "123 456") we can represent 108 different telephones. 

EXAMPLE 4: A country has 1 million telephones. How long does the country's 
telephone numbers need to be?

EXAMPLE 5: The current world population is 8,174,891,806 (as of Sat, 
September 7, 2024). How long must a binary telephone number be to 
connect to every person?

Sources: https://www.worldometers.info/world-population/ 

log. 8,174,891,806 ≈ 32.93 

A tip: 2/. = 4,294,… ,…

With 33 bits we can uniquely identify every person on the planet (today).

https://northeastern-datalab.github.io/cs7840/
https://www.worldometers.info/world-population/
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A problem with Hartley's information measure
EXAMPLE 6: we have two hats with 
indistinguishable black and white balls. 
There are 4 balls total in each hat. 

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it 

We randomly draw a ball from both hats. Let 𝑈9, 𝑈:  be the color of the ball.

What does Hartley's information measure tell us ?

BA

(maybe let's start with 𝑈9) 

https://northeastern-datalab.github.io/cs7840/
https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
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A problem with Hartley's information measure

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it 

𝐻0 𝑈9 = lg 2 = 1	bit
𝐻0 𝑈: =

B

?

AEXAMPLE 6: we have two hats with 
indistinguishable black and white balls. 
There are 4 balls total in each hat. 

(we have 2 equally likely colors)
We randomly draw a ball from both hats. Let 𝑈9, 𝑈:  be the color of the ball.

https://northeastern-datalab.github.io/cs7840/
https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
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A problem with Hartley's information measure

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it 

We randomly draw a ball from both hats. Let 𝑈9, 𝑈:  be the color of the ball.

𝐻0 𝑈: = lg 2 = 1	bit

⇒ 3) A proper measure of information should take into account 
the (possibly different) probabilities of the various outcomes.

This was the key insight of Claude Shannon [1948]

Problem: if 𝑈 = black, then we get less 
information from 𝑈: than from 𝑈9 
(since we somehow expected that outcome)

BAEXAMPLE 6: we have two hats with 
indistinguishable black and white balls. 
There are 4 balls total in each hat. 

𝐻0 𝑈9 = lg 2 = 1	bit

https://northeastern-datalab.github.io/cs7840/
https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
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"Fixing" Hartley's information measure

?

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it 

B

𝑈: = white:
What does Hartley tell us about the information 
we get after learning 𝑈B=white 

Let's analyze the possible outcomes for 𝑈;:

https://northeastern-datalab.github.io/cs7840/
https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
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"Fixing" Hartley's information measure

That's the result of 1 out of 𝑛 = 4 possible outcomes.

?

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it 

There is a 𝑝 = ¼ chance to draw a white ball. 

B

𝐻0 𝑈; = ???

Let's analyze the possible outcomes for 𝑈;:

𝑈: = white:

1 out of 4

https://northeastern-datalab.github.io/cs7840/
https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
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𝑈: = black:

𝑈: = white:

"Fixing" Hartley's information measure
Let's analyze the possible outcomes for 𝑈;:

That's the result of 1 out of 𝑛 = 4 possible outcomes.

Hartley does not work directly. 
What can we do? ?

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it 

There is a 𝑝 = ¼ chance to draw a white ball. 

B

𝐻0 𝑈; = lg 4 = 2	bits 1 out of 4

lg %
&

 

https://northeastern-datalab.github.io/cs7840/
https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
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"Fixing" Hartley's information measure

What is our chance 𝑝 to draw a black ball?

That's the result of 1 out of 𝑛 = 4 possible outcomes.

?

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it 

There is a 𝑝 = ¼ chance to draw a white ball. 

BLet's analyze the possible outcomes for 𝑈;:

𝑈: = white:

𝑈: = black:

? out of ?𝐻0 𝑈; = lg 4 = 2	bits 
lg %

&
 

https://northeastern-datalab.github.io/cs7840/
https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
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"Fixing" Hartley's information measure

There is a 𝑝 = ¾ chance to draw a black ball. 

That's the result of 1 out of 𝑛 = 4 possible outcomes.

?What do we do with the ¾ ?

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it 

There is a 𝑝 = ¼ chance to draw a white ball. 

BLet's analyze the possible outcomes for 𝑈;:

𝑈: = white:

𝑈: = black:

3 out of 4𝐻0 𝑈; = lg 4 = 2	bits 
lg %

&
 

https://northeastern-datalab.github.io/cs7840/
https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
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"Fixing" Hartley's information measure

There is a 𝑝 = ¾ chance to draw a black ball. 

That's the result of 1 out of 𝑛 = 4 possible outcomes.

For Hartley, we need to 
have 1 black ball (and have 
"1 out of r outcomes"). We 
get this by normalizing, i.e. 
dividing by 3...?

That's the result of 1	out of 𝑛 = 4/3 possible outcomes. 

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it 

There is a 𝑝 = ¼ chance to draw a white ball. 

B

𝐻0 𝑈; = 

Let's analyze the possible outcomes for 𝑈;:

𝑈: = white:

𝑈: = black:

3 out of 4
= 1 out of 4/3

𝐻0 𝑈; = lg 4 = 2	bits 
lg %

&
 

https://northeastern-datalab.github.io/cs7840/
https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
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"Fixing" Hartley's information measure

There is a 𝑝 = ¾ chance to draw a black ball. 

How do we combine these two possible 
outcomes to get one measure ?
Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it 

There is a 𝑝 = ¼ chance to draw a white ball. 

BLet's analyze the possible outcomes for 𝑈;:

𝑈: = white:

𝑈: = black:

𝐻0 𝑈; = log.
2
/
= 0.415	bits 

3 out of 4
= 1 out of 4/3#total balls /

#black balls

𝐻0 𝑈; = lg 4 = 2	bits 
lg %

&
 

That's the result of 1 out of 𝑛 = 4 possible outcomes.

That's the result of 1	out of 𝑛 = 4/3 possible outcomes. 

https://northeastern-datalab.github.io/cs7840/
https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
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"Fixing" Hartley's information measure

There is a 𝑝 = ¾ chance to draw a black ball. 

Let's do "in expectation" J

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it 

There is a 𝑝 = ¼ chance to draw a white ball. 

B

𝔼 𝐻0 𝑈; = -
2
⋅ 	 …	 + /

2
⋅ 	 … 

𝐻0 𝑈; = lg 2
/
= 0.415	bits 

Let's analyze the possible outcomes for 𝑈;:

𝑈: = white:

𝑈: = black:

3 out of 4
= 1 out of 4/3

𝐻0 𝑈; = lg 4 = 2	bits 
That's the result of 1 out of 𝑛 = 4 possible outcomes.

That's the result of 1	out of 𝑛 = 4/3 possible outcomes. 

lg %
&

 

https://northeastern-datalab.github.io/cs7840/
https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
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"Fixing" Hartley's information measure

There is a 𝑝 = ¾ chance to draw a black ball. 

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it 

There is a 𝑝 = ¼ chance to draw a white ball. 

B

= 0.811	bits 𝔼 𝐻0 𝑈; = -
2
⋅ 2	bits + /

2
⋅ 0.415	bits 

Let's analyze the possible outcomes for 𝑈;:

That's our expected amount 
of information we learn.

𝑈: = white:

𝑈: = black:

Let's do "in expectation":

𝐻0 𝑈; = lg 2
/
= 0.415	bits 

𝐻0 𝑈; = lg 4 = 2	bits 
That's the result of 1 out of 𝑛 = 4 possible outcomes.

That's the result of 1	out of 𝑛 = 4/3 possible outcomes. 

lg %
&

 

https://northeastern-datalab.github.io/cs7840/
https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
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"Fixing" Hartley's information measure

There is a 𝑝 = ¾ chance to draw a black ball. 

What would we get for 
hat A instead of hat B ?Let's do "in expectation":

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it 

There is a 𝑝 = ¼ chance to draw a white ball. 

B

𝔼 𝐻0 𝑈; = -
2
⋅ 2	bits + /

2
⋅ 0.415	bits = 0.811	bits 

ALet's analyze the possible outcomes:

𝑈: = white:

𝑈: = black:

𝐻0 𝑈; = lg 2
/
= 0.415	bits 

𝐻0 𝑈; = lg 4 = 2	bits 
That's the result of 1 out of 𝑛 = 4 possible outcomes.

That's the result of 1	out of 𝑛 = 4/3 possible outcomes. 

lg %
&

 

https://northeastern-datalab.github.io/cs7840/
https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
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"Fixing" Hartley's information measure

There is a 𝑝 = ¾ chance to draw a black ball. 

𝔼 𝐻0 𝑈; = -
2
⋅ 2	bits + /

2
⋅ 0.415	bits 

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it 

There is a 𝑝 = ¼ chance to draw a white ball. 

BA

hat B
1	bit for hat A

Notice that 1 bit was the min unit of 
information for the Hartley measure. 
Expectation allowed us to go lower!

= 0.811	bits 

Let's analyze the possible outcomes:

Let's do "in expectation":

𝑈: = white:

𝑈: = black:

𝐻0 𝑈; = lg 2
/
= 0.415	bits 

𝐻0 𝑈; = lg 4 = 2	bits 
That's the result of 1 out of 𝑛 = 4 possible outcomes.

That's the result of 1	out of 𝑛 = 4/3 possible outcomes. 

lg %
&

 

https://northeastern-datalab.github.io/cs7840/
https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
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𝔼 𝐻0 𝑈; = -
2
⋅ lg 4 	+ /

2
⋅ lg 2

/
 

"Fixing" Hartley's information measure

There is a 𝑝 = ¾ chance to draw a black ball. 

That's the result of 1 out of 𝑛 = 4 possible outcomes.

That's the result of 1	out of 𝑛 = 4/3 possible outcomes. 

Let's do "in expectation":

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it 

There is a 𝑝 = ¼ chance to draw a white ball. 

B

𝑈: = white:

𝑈: = black:

This is Claude Shannon's 
measure of information

ALet's analyze the possible outcomes:

𝐻0 𝑈; = lg 2
/
= 0.415	bits 

𝐻0 𝑈; = lg 4 = 2	bits 

hat B
1	bit for hat A

= 0.811	bits 

lg %
&

 

https://northeastern-datalab.github.io/cs7840/
https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
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Shannon's entropy

Claude Shannon. A Mathematical Theory of Communication, The Bell System Technical Journal, 1948. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x 

1948:

Shannon's measure of information as expected Hartley information (averaged

𝑝<  = probability of the 𝑖-th possible outcome

Uncertainty: Normalized number of outcomes, 
for option 𝑖 to be "1 out of ... outcomes"

𝐻0(𝑈)

𝐻 𝒑 = 

over all possible outcomes)

= −S
<=-

>

𝑝< ⋅ lg 𝑝< = 𝔼 lg
1
𝑝<

S
<=-

>

𝑝< ⋅ lg
1
𝑝<

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
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Shannon's entropy

Ralph Hartley. Transmission of information, The Bell System Technical Journal, 1928. https://doi.org/10.1002/j.1538-7305.1928.tb01236.x
Claude Shannon. A Mathematical Theory of Communication, The Bell System Technical Journal, 1948. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x 

1928:

1948:

𝑝<  = probability of the 𝑖-th possible outcome

Uncertainty: Normalized number of outcomes, 
for option 𝑖 to be "1 out of ... outcomes"

𝐻0(𝑈)

Shannon's measure of information as expected Hartley information (averaged

𝐻 𝒑 = 

over all possible outcomes)

= −S
<=-

>

𝑝< ⋅ lg 𝑝< = 𝔼 lg
1
𝑝<

S
<=-

>

𝑝< ⋅ lg
1
𝑝<

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1002/j.1538-7305.1928.tb01236.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x


106Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Shannon's entropy

𝑝<  = probability of the 𝑖-th possible outcome

= −S
<=-

>

𝑝< ⋅ lg 𝑝<

Uncertainty: Normalized number of outcomes, 
for option 𝑖 to be "1 out of ... outcomes"

𝐻0(𝑈)

2) Information is additive in some sense

1) The number of possible outcomes should be 
linked to "information"

3) A proper measure of information should take into 
account the different probabilities of the outcomes.

𝐻0

𝐻
Ralph Hartley. Transmission of information, The Bell System Technical Journal, 1928. https://doi.org/10.1002/j.1538-7305.1928.tb01236.x
Claude Shannon. A Mathematical Theory of Communication, The Bell System Technical Journal, 1948. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x 

= 𝔼 lg
1
𝑝<

Shannon's measure of information as expected Hartley information (averaged

𝐻 𝒑 = S
<=-

>

𝑝< ⋅ lg
1
𝑝<

over all possible outcomes)

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1002/j.1538-7305.1928.tb01236.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
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Pre-class conversations

• Last class recapitulation
• To be posted: Online Python notebook (feedback *very* welcome, 

also possibly useful for your own scribes)
• Feedback on newly posted scribes on Piazza over weekend
• Any feedback on organization on course website (Canvas, Piazza)?

• Today: 
- Keep pen & paper ready for hands-on calculus, logarithm

• also see Schneider's "Information Theory Primer, With an Appendix on Logarithms"
- Intuition behind entropy (and variants)

https://northeastern-datalab.github.io/cs7840/
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Properties
of information (entropy)

by example

https://northeastern-datalab.github.io/cs7840/
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Shannon entropy for unbiased outcomes

?EXAMPLE 1: What is the entropy in a roll of an unbiased 8-sided die?

S
<=-

>

𝑝< ⋅ lg
1
𝑝<

𝐻 𝒑 =

https://northeastern-datalab.github.io/cs7840/
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Shannon entropy for unbiased outcomes
EXAMPLE 1: What is the entropy in a roll of an unbiased 8-sided die?

?= S
<=-

>

𝑝< ⋅ lg
1
𝑝<

= lg
1
𝑝<

1

S
<=-

>

𝑝< ⋅ lg
1
𝑝<

𝐻 𝒑 =

https://northeastern-datalab.github.io/cs7840/
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Shannon entropy for unbiased outcomes = Hartley measure

=	

Entropy is exactly the Hartley information measure for unbiased outcomes J

EXAMPLE 1: What is the entropy in a roll of an unbiased 8-sided die?

?
= S

<=-

>

𝑝< ⋅ lg
1
𝑝<

= lg
1
𝑝<

1

S
<=-

>

𝑝< ⋅ lg
1
𝑝<

𝐻 𝒑 = = 𝐻0
1
𝑝<

	

number of outcomes

https://northeastern-datalab.github.io/cs7840/
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Shannon entropy for unbiased outcomes = Hartley measure

= S
<=-

>

𝑝< ⋅ lg
1
𝑝<

= lg
1
𝑝<

Entropy is exactly the Hartley information measure for unbiased outcomes J

1

EXAMPLE 1: What is the entropy in a roll of an unbiased 8-sided die?

number of outcomes

S
<=-

>

𝑝< ⋅ lg
1
𝑝<

𝐻 𝒑 = = 𝐻0
1
𝑝<

	

= lg 8 = 3 

https://northeastern-datalab.github.io/cs7840/


117Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Characterization of the Hartley information measure

= 𝐻0
1
𝑝<

= lg 𝑛

Shannon entropy for uniform sampling from 𝑛 choices.

𝐻0 𝑟  

𝟎 𝟎 𝟎
𝟎 𝟎
𝟎

lg 𝑚 ⋅ 𝑛 = lg 𝑚 + lg 𝑛  

two independent uniformly distributed Rvs,
with alphabet size 𝑚 and 𝑛 

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

?
EXAMPLE 2: We roll an unbiased 8-sided die with sides {1,2, ...,8} .

We then get a message with the information that the outcome of a roll is even.
How much information did we learn?

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

• Before the message:

We then get a message with the information that the outcome of a roll is even.

• After the message:

EXAMPLE 2: We roll an unbiased 8-sided die with sides {1,2, ...,8} .

How much information did we learn?

?

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

There are 8 choices: {1,2,3,4,5,6,7,8}
There are 4 choices: {2,4,6,8}

• Before the message:

We then get a message with the information that the outcome of a roll is even.

• After the message:

EXAMPLE 2: We roll an unbiased 8-sided die with sides {1,2, ...,8} .

How much information did we learn?

?How much information did we have before?
How much information did we have after

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

Let's think about encodings

000 001 011010 101100

{ 1,   2,   3,   4,   5,   6,   7,   8 }

111110

000 001 011010 101100

{ 1,   2,   3,   4,   5,   6,   7,   8 }
111110

After:

Before: Do you notice something

?

(binary encoding with 
atypical 1-indexing)

• Before the message:
• After the message:

EXAMPLE 2: We roll an unbiased 8-sided die with sides {1,2, ...,8} .

We then get a message with the information that the outcome of a roll is even.
How much information did we learn?

𝐻0 8 = 3 bits
𝐻0 4 = 2 bits

There are 8 choices: {1,2,3,4,5,6,7,8}
There are 4 choices: {2,4,6,8}

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

Let's think about encodings

000 001 011010 101100

{ 1,   2,   3,   4,   5,   6,   7,   8 }

111110

000 001 011010 101100

{ 1,   2,   3,   4,   5,   6,   7,   8 }
111110

After:

Before:
We have learned 1 bit! ??1

• Before the message:
• After the message:

EXAMPLE 2: We roll an unbiased 8-sided die with sides {1,2, ...,8} .

We then get a message with the information that the outcome of a roll is even.
How much information did we learn?

"Grouping rule": Dividing the outcomes into 
two (last bit), randomly choose one group 
(e.g. 1), and then randomly pick an element 
from that group (e.g. 10), does not change 
the entropy

𝐻0 8 = 3 bits
𝐻0 4 = 2 bits

There are 8 choices: {1,2,3,4,5,6,7,8}
There are 4 choices: {2,4,6,8}

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

Recall: information is additive:

1 flip of a 2-sided coin has 2 outcomes.

2 flips have 2. = 4 outcomes.

lg 2 = 1

lg 4 = 2

• Before the message:
• After the message:

EXAMPLE 2: We roll an unbiased 8-sided die with sides {1,2, ...,8} .

We then get a message with the information that the outcome of a roll is even.
How much information did we learn?

3 flips have 2/ = 8 outcomes. lg 8 = 3

+1 bit

+1 bit 

𝐻0 8 = 3 bits
𝐻0 4 = 2 bits

There are 8 choices: {1,2,3,4,5,6,7,8}
There are 4 choices: {2,4,6,8}

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

• Before the message:

The power of the logarithm: transform multiplication into addition

• After the message:

Uncertainty before −	Uncertainty after

lg 8 	−	 lg 4

lg @
2
= lg 2 = 1 bit

Information content in a message 
𝑈	that reduces the number of 
unbiased outcomes from 𝑛 to 𝑚

lg A
B

 𝐻 𝑈 =

EXAMPLE 2: We roll an unbiased 8-sided die with sides {1,2, ...,8} .

We then get a message with the information that the outcome of a roll is even.
How much information did we learn?

𝐻0 8 = 3 bits
𝐻0 4 = 2 bits

There are 8 choices: {1,2,3,4,5,6,7,8}
There are 4 choices: {2,4,6,8}

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

?
We then get 4 messages, one after the other: 𝑈- =	"The outcome of the roll is 
not 1", 𝑈. =	"... not 3", 𝑈/ =	"... not 5", 𝑈2 =	"... not 7".

EXAMPLE 3: We roll an unbiased 8-sided die with sides {1,2, ...,8} .

How much information do we learn from each individual message?

?
?
?
?

𝐻 𝑈% = 

𝐻 𝑈$|𝑈% = 

𝐻 𝑈'|𝑈%,$ = 

𝐻 𝑈)|𝑈%*' = 

These are called "conditional entropies"!

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

𝐻 𝑈% = 

𝐻 𝑈$|𝑈% = 

𝐻 𝑈'|𝑈%,$ = 

𝐻 𝑈)|𝑈%*' = 

EXAMPLE 3: We roll an unbiased 8-sided die with sides {1,2, ...,8} .

We then get 4 messages, one after the other: 𝑈- =	"The outcome of the roll is 
not 1", 𝑈. =	"... not 3", 𝑈/ =	"... not 5", 𝑈2 =	"... not 7".
How much information do we learn from each individual message?

?
?
?

lg +
,

 = 0.193 bits

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

𝐻 𝑈% = 

𝐻 𝑈$|𝑈% = 

𝐻 𝑈'|𝑈%,$ = 

𝐻 𝑈)|𝑈%*' = 

EXAMPLE 3: We roll an unbiased 8-sided die with sides {1,2, ...,8} .

We then get 4 messages, one after the other: 𝑈- =	"The outcome of the roll is 
not 1", 𝑈. =	"... not 3", 𝑈/ =	"... not 5", 𝑈2 =	"... not 7".
How much information do we learn from each individual message?

lg +
,

 

lg ,
-

 

lg -
.

 

lg .
)

 

= 0.193 bits

= 0.222 bits

= 0.263 bits

= 0.322 bits

?... and all of them together?

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

𝐻 𝑈% = 

𝐻 𝑈$|𝑈% = 

𝐻 𝑈'|𝑈%,$ = 

𝐻 𝑈)|𝑈%*' = 

𝐻 {𝑈%, 𝑈$, 𝑈', 𝑈)}  

EXAMPLE 3: We roll an unbiased 8-sided die with sides {1,2, ...,8} .

We then get 4 messages, one after the other: 𝑈- =	"The outcome of the roll is 
not 1", 𝑈. =	"... not 3", 𝑈/ =	"... not 5", 𝑈2 =	"... not 7".
How much information do we learn from each individual message?

... and all of them together?

= 1 bit

How come that the SUM of these numbers 
turns out to be soooo nice?

?

lg +
,

 

lg ,
-

 

lg -
.

 

lg .
)

 

= 0.193 bits

= 0.222 bits

= 0.263 bits

= 0.322 bits

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

𝐻 𝑈% = 

𝐻 𝑈$|𝑈% = 

𝐻 𝑈'|𝑈%,$ = 

𝐻 𝑈)|𝑈%*' = 

𝐻 {𝑈%, 𝑈$, 𝑈', 𝑈)}  

= 𝐻 𝑈% +𝐻 𝑈$|𝑈% +𝐻 𝑈'|𝑈%,$ +𝐻 𝑈)|𝑈%*'  

𝐻 {𝑈%, 𝑈$, 𝑈', 𝑈)}  

EXAMPLE 3: We roll an unbiased 8-sided die with sides {1,2, ...,8} .

We then get 4 messages, one after the other: 𝑈- =	"The outcome of the roll is 
not 1", 𝑈. =	"... not 3", 𝑈/ =	"... not 5", 𝑈2 =	"... not 7".
How much information do we learn from each individual message?

... and all of them together?

= 1 bit

This is called the "chain rule"

lg +
,

 

lg ,
-

 

lg -
.

 

lg .
)

 

= 0.193 bits

= 0.222 bits

= 0.263 bits

= 0.322 bits

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

𝐻 𝑈% = 

𝐻 𝑈$|𝑈% = 

𝐻 𝑈'|𝑈%,$ = 

𝐻 𝑈)|𝑈%*' = 

𝐻 {𝑈%, 𝑈$, 𝑈', 𝑈)}  

= 𝐻 𝑈% +𝐻 𝑈$|𝑈% +𝐻 𝑈'|𝑈%,$ +𝐻 𝑈)|𝑈%*'  

= lg +
, + lg ,

- + lg -
. + lg .

)
 

𝐻 {𝑈%, 𝑈$, 𝑈', 𝑈)}  

EXAMPLE 3: We roll an unbiased 8-sided die with sides {1,2, ...,8} .

We then get 4 messages, one after the other: 𝑈- =	"The outcome of the roll is 
not 1", 𝑈. =	"... not 3", 𝑈/ =	"... not 5", 𝑈2 =	"... not 7".
How much information do we learn from each individual message?

... and all of them together?

= 1 bit
?= 

lg +
,

 

lg ,
-

 

lg -
.

 

lg .
)

 

= 0.193 bits

= 0.222 bits

= 0.263 bits

= 0.322 bits

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

𝐻 𝑈% = 

𝐻 𝑈$|𝑈% = 

𝐻 𝑈'|𝑈%,$ = 

𝐻 𝑈)|𝑈%*' = = 1 bit

𝐻 {𝑈%, 𝑈$, 𝑈', 𝑈)}  

= 𝐻 𝑈% +𝐻 𝑈$|𝑈% +𝐻 𝑈'|𝑈%,$ +𝐻 𝑈)|𝑈%*'  

= lg +
, + lg ,

- + lg -
. + lg .

)
 

= lg +
, ⋅

,
- ⋅

-
. ⋅

.
)

 

𝐻 {𝑈%, 𝑈$, 𝑈', 𝑈)}  

= lg +
)

 

EXAMPLE 3: We roll an unbiased 8-sided die with sides {1,2, ...,8} .

We then get 4 messages, one after the other: 𝑈- =	"The outcome of the roll is 
not 1", 𝑈. =	"... not 3", 𝑈/ =	"... not 5", 𝑈2 =	"... not 7".
How much information do we learn from each individual message?

... and all of them together?

Again, the logarithm J= 1 bit

lg +
,

 

lg ,
-

 

lg -
.

 

lg .
)

 

= 0.193 bits

= 0.222 bits

= 0.263 bits

= 0.322 bits

https://northeastern-datalab.github.io/cs7840/
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Maximum Entropy
distributions

https://northeastern-datalab.github.io/cs7840/


133Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

𝐻; 𝑝 =	

Binary Entropy Function

?

Biased coin flip:

𝑋	is a Bernoulli RV with 𝑝 𝑥 = W𝑝, if	𝑥 = 1
1 − 𝑝, if	𝑥 = 0

https://northeastern-datalab.github.io/cs7840/
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𝐻; 𝑝 = −𝑝 ⋅ lg 𝑝 − 1 − 𝑝 ⋅ lg(1 − 𝑝) 

Binary Entropy Function Binary entropy function

𝑋	is a Bernoulli RV with 𝑝 𝑥 = W𝑝, if	𝑥 = 1
1 − 𝑝, if	𝑥 = 0

𝐻! 𝑝

−𝑝 ⋅ lg 𝑝

− lg 𝑝

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb
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𝐻; 𝑝 = −𝑝 ⋅ lg 𝑝 − 1 − 𝑝 ⋅ lg(1 − 𝑝) 

Binary Entropy Function

How to choose 𝑝 in order to maximize entropy?

Binary entropy function

𝑋	is a Bernoulli RV with 𝑝 𝑥 = W𝑝, if	𝑥 = 1
1 − 𝑝, if	𝑥 = 0

𝐻! 𝑝

−𝑝 ⋅ lg 𝑝

− lg 𝑝

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb
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𝐻; 𝑝 = −𝑝 ⋅ lg 𝑝 − 1 − 𝑝 ⋅ lg(1 − 𝑝) 

Binary Entropy Function

How to choose 𝑝 in order to maximize entropy?

CD
CE
= ?

lg 𝑥 ′ =

lg(1 − 𝑥)! =

𝑥 ⋅ lg 𝑥 ! =

(1 − 𝑥) ⋅ lg 1 − 𝑥 ! =

"# $
"# %

!
= 

ln 𝑥 ′ =

lg 𝑥 = log%(𝑥) =
"# $
"# %

 

Understanding "change of basis"

? ?

Calculus 
cheat 
sheet

Binary entropy function

𝑋	is a Bernoulli RV with 𝑝 𝑥 = W𝑝, if	𝑥 = 1
1 − 𝑝, if	𝑥 = 0

𝐻! 𝑝

−𝑝 ⋅ lg 𝑝

− lg 𝑝

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb
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Binary entropy function

𝐻; 𝑝 = −𝑝 ⋅ lg 𝑝 − 1 − 𝑝 ⋅ lg(1 − 𝑝) 

Binary Entropy Function

How to choose 𝑝 in order to maximize entropy?

CD
CE
= ?

lg 𝑥 ′ =

lg(1 − 𝑥)! =

𝑥 ⋅ lg 𝑥 ! =

(1 − 𝑥) ⋅ lg 1 − 𝑥 ! =

"# $
"# %

!
= 

ln 𝑥 ′ =

lg 𝑥 = log%(𝑥) =
"# $
"# %

 

2"&'!($) =

log%(𝑥) ⋅ ln 2 = ln(𝑥) 

definition

apply ln(...) 
on both sides

Understanding "change of basis"

𝑥
ln 2"&'!($) = ln(𝑥) ln(ab) = b	⋅	ln(a) 

Calculus 
cheat 
sheet

?

𝑋	is a Bernoulli RV with 𝑝 𝑥 = W𝑝, if	𝑥 = 1
1 − 𝑝, if	𝑥 = 0

𝐻! 𝑝

−𝑝 ⋅ lg 𝑝

− lg 𝑝

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb
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𝐻; 𝑝 = −𝑝 ⋅ lg 𝑝 − 1 − 𝑝 ⋅ lg(1 − 𝑝) 

Binary Entropy Function

How to choose 𝑝 in order to maximize entropy?

CD
CE
= ?

lg 𝑥 ′ =

lg(1 − 𝑥)! =

𝑥 ⋅ lg 𝑥 ! =

(1 − 𝑥) ⋅ lg 1 − 𝑥 ! =

*
$⋅"#(%)

 

− *
(*,$)⋅"#(%)

 

𝑥 *
$ "# %

+ 

− *
"# %

− lg 1 − 𝑥  

"# $
"# %

!
= 

ln 𝑥 ′ = *
$
 Calculus 

cheat 
sheet

lg 𝑥  

Binary entropy function

𝑋	is a Bernoulli RV with 𝑝 𝑥 = W𝑝, if	𝑥 = 1
1 − 𝑝, if	𝑥 = 0

𝐻! 𝑝

−𝑝 ⋅ lg 𝑝

− lg 𝑝

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

https://northeastern-datalab.github.io/cs7840/
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𝐻; 𝑝 = −𝑝 ⋅ lg 𝑝 − 1 − 𝑝 ⋅ lg(1 − 𝑝) 

Binary Entropy Function

𝑋	is a Bernoulli RV with 𝑝 𝑥 = W𝑝, if	𝑥 = 1
1 − 𝑝, if	𝑥 = 0

How to choose 𝑝 in order to maximize entropy?

CD
CE
= 

lg 𝑥 ′ =

lg(1 − 𝑥)! =

𝑥 ⋅ lg 𝑥 ! =

(1 − 𝑥) ⋅ lg 1 − 𝑥 ! =

Calculus 
cheat 
sheet *

$⋅"#(%)
 

− *
(*,$)⋅"#(%)

 

𝑥 *
$ "# %

+ lg 𝑥  

− *
"# %

− lg 1 − 𝑥  

"# $
"# %

!
= 

ln 𝑥 ′ = *
$
 

− -
PQ .

− lg 𝑝 +	 -
PQ .

+ lg 1 − 𝑝  

Binary entropy function

𝐻! 𝑝

−𝑝 ⋅ lg 𝑝

− lg 𝑝

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

https://northeastern-datalab.github.io/cs7840/
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𝐻; 𝑝 = −𝑝 ⋅ lg 𝑝 − 1 − 𝑝 ⋅ lg(1 − 𝑝) 

Binary Entropy Function

How to choose 𝑝 in order to maximize entropy?

CD
CE
= 

lg 𝑥 ′ =

lg(1 − 𝑥)! =

𝑥 ⋅ lg 𝑥 ! =

(1 − 𝑥) ⋅ lg 1 − 𝑥 ! =

*
$⋅"#(%)

 

− *
(*,$)⋅"#(%)

 

𝑥 *
$ "# %

+ lg 𝑥  

− *
"# %

− lg 1 − 𝑥  

"# $
"# %

!
= 

ln 𝑥 ′ = *
$
 

− -
PQ .

− lg 𝑝 +	 -
PQ .

+ lg 1 − 𝑝  = 0  

C!D
CE!

= 

lg -RE
E

= 0 ⇔ -RE
E

= 1 ⇔ 𝑝 = -
.
  ⇔

?

Calculus 
cheat 
sheet

Binary entropy function

𝑋	is a Bernoulli RV with 𝑝 𝑥 = W𝑝, if	𝑥 = 1
1 − 𝑝, if	𝑥 = 0

𝐻! 𝑝

−𝑝 ⋅ lg 𝑝

− lg 𝑝

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

https://northeastern-datalab.github.io/cs7840/
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𝐻; 𝑝 = −𝑝 ⋅ lg 𝑝 − 1 − 𝑝 ⋅ lg(1 − 𝑝) 

Binary Entropy Function

How to choose 𝑝 in order to maximize entropy?

CD
CE
= 

lg 𝑥 ′ =

lg(1 − 𝑥)! =

𝑥 ⋅ lg 𝑥 ! =

(1 − 𝑥) ⋅ lg 1 − 𝑥 ! =

*
$⋅"#(%)

 

− *
(*,$)⋅"#(%)

 

𝑥 *
$ "# %

+ lg 𝑥  

− *
"# %

− lg 1 − 𝑥  

"# $
"# %

!
= 

ln 𝑥 ′ = *
$
 

− -
PQ .

− lg 𝑝 +	 -
PQ .

+ lg 1 − 𝑝  = 0  

C!D
CE!

= − -
E⋅PQ .

− -
-RE ⋅PQ .

 < 0 

lg -RE
E

= 0 ⇔ -RE
E

= 1 ⇔ 𝑝 = -
.
  ⇔

concave

Calculus 
cheat 
sheet

Binary entropy function

𝑋	is a Bernoulli RV with 𝑝 𝑥 = W𝑝, if	𝑥 = 1
1 − 𝑝, if	𝑥 = 0

𝐻! 𝑝

−𝑝 ⋅ lg 𝑝

− lg 𝑝

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

https://northeastern-datalab.github.io/cs7840/
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Interaction with https://chatgpt.com/ (ChatGPT 4o mini, 9/2024)

Asking ChatGPT for help

…

?
ChatGPT made the *same* mistake as me!

https://northeastern-datalab.github.io/cs7840/
https://chatgpt.com/
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Interaction with https://chatgpt.com/ (ChatGPT 4o mini, 9/2024)

Asking ChatGPT for help

…

…

https://northeastern-datalab.github.io/cs7840/
https://chatgpt.com/
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Maximum Entropy distribution for nonbinary discrete RV

Entropy of a discrete distribution with 𝑛 outcomes
Which choice of 𝐩 = (𝑝-, … , 𝑝A) maximizes the entropy?

−A
!5%

6

𝑝! ⋅ lg 𝑝!𝐻 𝐩 =

?

https://northeastern-datalab.github.io/cs7840/
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Maximum Entropy distribution for nonbinary discrete RV

Entropy of a discrete distribution with 𝑛 outcomes
Which choice of 𝐩 = (𝑝-, … , 𝑝A) maximizes the entropy?

−A
!5%

6

𝑝! ⋅ lg 𝑝!𝐻 𝐩 =

A
!5%

6

𝑝! = 1s.t.
Form the Lagrangian:

max
𝐩
	[𝐻 𝐩 ]Can be solved with constrained optimization: 

?

https://northeastern-datalab.github.io/cs7840/
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Maximum Entropy distribution for nonbinary discrete RV

Entropy of a discrete distribution with 𝑛 outcomes
Which choice of 𝐩 = (𝑝-, … , 𝑝A) maximizes the entropy?

−A
!5%

6

𝑝! ⋅ lg 𝑝!𝐻 𝐩 =

A
!5%

6

𝑝! = 1s.t.
Form the Lagrangian:

𝐽 𝐩, 𝜆 = −'
#$%

&

𝑝# ⋅ lg 𝑝# + 𝜆 '
#$%

&

𝑝# − 1

max
𝐩
	[𝐻 𝐩 ]Can be solved with constrained optimization: 

𝜕𝐽
𝜕𝑝#

=

lg 𝑥 ′ =

𝑥 ⋅ lg 𝑥 ! =

Calculus 
exercise *

$⋅"#(%)
 

*
"# %

+ lg 𝑥  

"# $
"# %

!
= 

ln 𝑥 ′ = *
$
 ?

https://northeastern-datalab.github.io/cs7840/
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Maximum Entropy distribution for nonbinary discrete RV

Entropy of a discrete distribution with 𝑛 outcomes
Which choice of 𝐩 = (𝑝-, … , 𝑝A) maximizes the entropy?

−A
!5%

6

𝑝! ⋅ lg 𝑝!𝐻 𝐩 =

A
!5%

6

𝑝! = 1s.t.
Form the Lagrangian:

𝐽 𝐩, 𝜆 = −'
#$%

&

𝑝# ⋅ lg 𝑝# + 𝜆 '
#$%

&

𝑝# − 1

max
𝐩
	[𝐻 𝐩 ]Can be solved with constrained optimization: 

𝜕𝐽
𝜕𝑝#

=

lg 𝑝# = 𝜆 −
1

ln 2 𝑝# = 2'(
%

)* +

What next?

⇔

= 0

⇔

−
1

ln 2 − lg 𝑝# + 𝜆

?
lg 𝑥 ′ =

𝑥 ⋅ lg 𝑥 ! =

Calculus 
exercise *

$⋅"#(%)
 

*
"# %

+ lg 𝑥  

"# $
"# %

!
= 

ln 𝑥 ′ = *
$
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Maximum Entropy distribution for nonbinary discrete RV

Entropy of a discrete distribution with 𝑛 outcomes
Which choice of 𝐩 = (𝑝-, … , 𝑝A) maximizes the entropy?

−A
!5%

6

𝑝! ⋅ lg 𝑝!𝐻 𝐩 =

A
!5%

6

𝑝! = 1s.t.
Form the Lagrangian:

𝐽 𝐩, 𝜆 = −'
#$%

&

𝑝# ⋅ lg 𝑝# + 𝜆 '
#$%

&

𝑝# − 1

max
𝐩
	[𝐻 𝐩 ]Can be solved with constrained optimization: 

𝜕𝐽
𝜕𝑝#

=

lg 𝑝# = 𝜆 −
1

ln 2 𝑝# = 2'(
%

)* +

we are done J, all 𝑝! are identical!

'
#$%

&

𝑝# = 1 '
#$%

&

𝐶 = 1 𝐶 =
1
𝑛

⇔

= 0

⇔ =:𝐶

⇔ ⇔

−
1

ln 2 − lg 𝑝# + 𝜆

lg 𝑥 ′ =

𝑥 ⋅ lg 𝑥 ! =

Calculus 
exercise *

$⋅"#(%)
 

*
"# %

+ lg 𝑥  

"# $
"# %

!
= 

ln 𝑥 ′ = *
$
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Pre-class conversations

• Last class recapitulation

• Today: 
- Intuition behind entropy with examples continued 
- Together with the general principles of entropy
- Then we are changing back to compression

https://northeastern-datalab.github.io/cs7840/
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Properties
of information (entropy)
by example (continued)

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

We get two messages: 𝑈- that the outcome of a roll is even, 𝑈. that the outcome 
of the same roll is ≤ 4. How much information did we learn after each message?

EXAMPLE 4: We again roll the unbiased 8-sided die with sides 𝒳={1,2, ...,8} .

𝐻 𝑈% = 

𝐻 𝑈$ = 

𝐻 𝑈$|𝑈% = 

?
?
?
?

https://northeastern-datalab.github.io/cs7840/
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Learning partial information
EXAMPLE 4: We again roll the unbiased 8-sided die with sides 𝒳={1,2, ...,8} .

𝐻 𝑈% = 

𝐻 𝑈$ = 

𝐻 𝑈$|𝑈% = 

lg +
)

 

lg +
)

 

lg )
$

 

= 1 bit

= 1 bit

= 1 bit

𝐻 𝑈$|𝑈% = 𝐻 𝑈$ = 1
?

We get two messages: 𝑈- that the outcome of a roll is even, 𝑈. that the outcome 
of the same roll is ≤ 4. How much information did we learn after each message?

https://northeastern-datalab.github.io/cs7840/
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Learning partial information
EXAMPLE 4: We again roll the unbiased 8-sided die with sides 𝒳={1,2, ...,8} .

𝐻 𝑈% = 

𝐻 𝑈$ = 

𝐻 𝑈$|𝑈% = 

lg +
)

 

lg +
)

 

lg )
$

 

= 1 bit

= 1 bit

= 1 bit

1 2
3 4
5 6
7 8

𝐻 𝑈$|𝑈% = 𝐻 𝑈$ = 1

We get two messages: 𝑈- that the outcome of a roll is even, 𝑈. that the outcome 
of the same roll is ≤ 4. How much information did we learn after each message?

messages are independent How do the messages 
reduce the possible 
outcomes? ?

https://northeastern-datalab.github.io/cs7840/
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Learning partial information
EXAMPLE 4: We again roll the unbiased 8-sided die with sides 𝒳={1,2, ...,8} .

𝐻 𝑈% = 

𝐻 𝑈$ = 

𝐻 𝑈$|𝑈% = 

lg +
)

 

lg +
)

 

lg )
$

 

= 1 bit

= 1 bit

= 1 bit

1 2
3 4
5 6
7 8

𝑈%

𝐻 𝑈$|𝑈% = 𝐻 𝑈$ = 1

We get two messages: 𝑈- that the outcome of a roll is even, 𝑈. that the outcome 
of the same roll is ≤ 4. How much information did we learn after each message?

messages are independent

https://northeastern-datalab.github.io/cs7840/
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Learning partial information
EXAMPLE 4: We again roll the unbiased 8-sided die with sides 𝒳={1,2, ...,8} .

𝐻 𝑈% = 

𝐻 𝑈$ = 

𝐻 𝑈$|𝑈% = 

lg +
)

 

lg +
)

 

lg )
$

 

= 1 bit

= 1 bit

= 1 bit

1 2
3 4
5 6
7 8

𝑈%

𝑈$
𝐻 𝑈$|𝑈% = 𝐻 𝑈$ = 1

probability of the event 𝑋 ≤ 4

We get two messages: 𝑈- that the outcome of a roll is even, 𝑈. that the outcome 
of the same roll is ≤ 4. How much information did we learn after each message?

messages are independent

𝑝 𝑈$|𝑈% = 𝑝 𝑈$ = %
$
 

the events are independent

https://northeastern-datalab.github.io/cs7840/
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Learning partial information
EXAMPLE 4: We again roll the unbiased 8-sided die with sides 𝒳={1,2, ...,8} .

𝐻 𝑈% = 

𝐻 𝑈$ = 

𝐻 𝑈$|𝑈% = 

lg +
)

 

lg +
)

 

lg )
$

 

= 1 bit

= 1 bit

= 1 bit

𝐻 {𝑈%, 𝑈$}  

000 001 011010 101100
{ 1,   2,   3,   4,   5,   6,   7,   8 }

111110

1 2
3 4
5 6
7 8

𝑈%

𝑈$

We learned 2 bits 
independently

0?1

= 𝐻 𝑈% +𝐻 𝑈$|𝑈%
= 𝐻 𝑈% +𝐻 𝑈$

𝐻 𝑈$|𝑈% = 𝐻 𝑈$ = 1

probability of the event 𝑋 ≤ 4

We get two messages: 𝑈- that the outcome of a roll is even, 𝑈. that the outcome 
of the same roll is ≤ 4. How much information did we learn after each message?

messages are independent

𝑝 𝑈$|𝑈% = 𝑝 𝑈$ = %
$
 

the events are independent

𝑈* and 𝑈% are independent

https://northeastern-datalab.github.io/cs7840/


166Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Properties
of information (entropy)

abstracted

https://northeastern-datalab.github.io/cs7840/
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Entropy

𝐻 𝑋 = 𝔼 lg
1

𝑝(𝑋)
= A

7

	

𝑝(𝑥) ⋅ lg
1

𝑝(𝑥)

Given a discrete RV 𝑋 with probability mass function (PMF) 𝑝 𝑥 = ℙ 𝑋 = 𝑥 , 
for 𝑥 ∈ 𝒳. Entropy is defined as:

Entropy is label-invariant, meaning that it depends only on the probability 
distribution and not on the actual values that the random variable 𝑋 can take.

Alternative notation: 𝑝 𝑋 = 𝑝-(𝑥). Also: 
𝔼. …  or 𝔼-[… ] or 𝔼-~.[… ] for the expected 
value operator w.r. to the distribution 𝑝

𝒳= {1, 2, 3, 4} 

𝒳= {A, T, G, C}

Figure source: https://www.amoebasisters.com/parameciumparlorcomics/dna-alphabet 

https://northeastern-datalab.github.io/cs7840/
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Joint Entropy
Given two RVs 𝑋 and 𝑌 with PMF 𝑝 𝑋, 𝑌 , their joint entropy is:

If 𝑋 and 𝑌 are independent:

𝐻 𝑋, 𝑌 = 𝔼 lg
1

𝑝(𝑋, 𝑌)
= A

7

	

A
9

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝(𝑥, 𝑦)

𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻(𝑌)

How can we prove that??

treat (𝑋, 𝑌) just like a single vector-valued RV 𝑍 = ⟨𝑋, 𝑌⟩

Other notation: 𝑝 𝑋, 𝑌 = 𝑝",$(𝑥, 𝑦). 
Also: 𝔼",$~&[… ] or 𝔼",$~&[… ] or 𝔼&[… ] 

https://northeastern-datalab.github.io/cs7840/
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Joint Entropy
Given two RVs 𝑋 and 𝑌 with PMF 𝑝 𝑋, 𝑌 , their joint entropy is:

𝐻 𝑋, 𝑌 = 𝔼 lg
1

𝑝(𝑋, 𝑌)
= A

7

	

A
9

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝(𝑥, 𝑦)

𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻(𝑌) = 𝔼 lg
1

𝑝(𝑋, 𝑌)
𝐻 𝑋, 𝑌

= 𝔼 lg
1

𝑝 𝑋 ⋅ 𝑝(𝑌)

= 𝔼 lg
1

𝑝 𝑋
+ 𝔼 lg

1
𝑝 𝑌

= 	 𝐻 𝑋)	 + 	 𝐻(𝑌   

= 𝔼 lg
1

𝑝 𝑋
+ lg

1
𝑝 𝑌

If 𝑋 and 𝑌 are independent:

Other notation: 𝑝 𝑋, 𝑌 = 𝑝",$(𝑥, 𝑦). 
Also: 𝔼",$~&[… ] or 𝔼",$~&[… ] or 𝔼&[… ] 

https://northeastern-datalab.github.io/cs7840/


170Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Conditional Entropy, Chain rule of Entropy
Given two RVs 𝑋 and 𝑌 with PMF 𝑝 𝑋, 𝑌 , their joint entropy is:

𝐻 𝑋, 𝑌 = 𝔼 lg
1

𝑝(𝑋, 𝑌)
= A

7

	

A
9

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝(𝑥, 𝑦)

𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻(𝑌)

If 𝑋 and 𝑌 are not independent, observing 𝑋	might 
contain already some information about 𝑌, so simply 
adding the information from each would overcount.

?What do we 
need to do?

If 𝑋 and 𝑌 are not independent:

https://northeastern-datalab.github.io/cs7840/
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Conditional Entropy, Chain rule of Entropy

𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 𝑋

Conditional entropy 𝐻 𝑌 𝑋 : the expected 
amount of information needed to describe 
the outcome of RV 𝑌 given that the value 
of another RV 𝑋 is known

𝐻 𝑋, 𝑌 = 𝔼 lg
1

𝑝(𝑋, 𝑌)
= A

7

	

A
9

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝(𝑥, 𝑦)

Given two RVs 𝑋 and 𝑌 with PMF 𝑝 𝑋, 𝑌 , their joint entropy is:

If 𝑋 and 𝑌 are not independent:

𝐻 𝑌 𝑋 =H
'

	

𝑝(𝑥) ⋅ 𝐻 𝑌 𝑋 = 𝑥

=1
!

	

1
#

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝(𝑥, 𝑦)
𝐻 𝑋, 𝑌

=1
!

	

1
#

	

𝑝 𝑥 ⋅ 𝑝(𝑦|𝑥) ⋅ lg
1

𝑝 𝑥 ⋅ 𝑝(𝑦|𝑥)

=1
!

	

1
#

	

𝑝 𝑥 ⋅ 𝑝(𝑦|𝑥) ⋅ lg
1

𝑝 𝑥
+1

!

	

1
#

	

𝑝 𝑥 ⋅ 𝑝(𝑦|𝑥) ⋅ lg
1

𝑝(𝑦|𝑥)

=1
!

	

𝑝 𝑥 ⋅ lg
1

𝑝 𝑥
⋅1
#

	

𝑝(𝑦|𝑥) +1
!

	

𝑝 𝑥 ⋅1
#

	

𝑝 𝑦|𝑥 ⋅ lg
1

𝑝(𝑦|𝑥)

𝐻(𝑌|𝑋 = 𝑥)1𝐻(𝑋)

𝐻(𝑌|𝑋) =.
&,(

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝(𝑦|𝑥)
DEFINITION of 
conditional entropy

https://northeastern-datalab.github.io/cs7840/
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Chain rule for entropy

𝐻 𝑋, 𝑌, 𝑍 = 𝐻 𝑋) + 𝐻(𝑌|𝑋 + 𝐻(𝑍|𝑋, 𝑌) 

If not independent:

𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 𝑋
conditional entropy

... obvious generalization to 
a chain of (not necessarily 
independent) observations

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

We then get a message 𝑈: "The outcome of the roll is even, and by the way, the 
next president of the US will be ...". Assuming two equally likely outcomes for 
the election, how much information did we learn?

EXAMPLE 5: We again roll the unbiased 8-sided die with sides 𝒳={1,2, ...,8} .

?

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

We then get a message 𝑈: "The outcome of the roll is even, and by the way, the 
next president of the US will be ...". Assuming two equally likely outcomes for 
the election, how much information did we learn?

EXAMPLE 5: We again roll the unbiased 8-sided die with sides 𝒳={1,2, ...,8} .

?

We learned 2 bits
(𝑈	contains 2 bits)

Wasn't information supposed to be additive?

• We still learn 3-2=1 bit about the roll of the die 𝑋.
• We also learn 1 bit about the election outcome.

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

We then get a message 𝑈: "The outcome of the roll is even, and by the way, the 
next president of the US will be ...". Assuming two equally likely outcomes for 
the election, how much information did we learn?

EXAMPLE 5: We again roll the unbiased 8-sided die with sides 𝒳={1,2, ...,8} .

𝐻 𝑋 =3
𝐻 𝑈 =2

Information contained 
in message 𝑈

Uncertainty in the 
outcome of the roll 𝑋

?

We learned 2 bits
(𝑈	contains 2 bits)

Wasn't information supposed to be additive?

• We still learn 3-2=1 bit about the roll of the die 𝑋.
• We also learn 1 bit about the election outcome.

Uncertainty 𝑋	after 
we see the message 𝑈

Inspired by Fig 8.1 in "MacKay. Information Theory, Inference, and learning Algorithms. Cambridge University Press, 2002." https://www.inference.org.uk/itprnn/book.pdf 

https://northeastern-datalab.github.io/cs7840/
https://www.inference.org.uk/itprnn/book.pdf
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Learning partial information

We then get a message 𝑈: "The outcome of the roll is even, and by the way, the 
next president of the US will be ...". Assuming two equally likely outcomes for 
the election, how much information did we learn?

EXAMPLE 5: We again roll the unbiased 8-sided die with sides 𝒳={1,2, ...,8} .

𝐻 𝑋 =3
𝐻 𝑈 =2𝐻 𝑋|𝑈 =2

Uncertainty 𝑋	after 
we see the message 𝑈

Information contained 
in message 𝑈

Uncertainty in the 
outcome of the roll 𝑋

?

We learned 2 bits
(𝑈	contains 2 bits)

Wasn't information supposed to be additive?

• We still learn 3-2=1 bit about the roll of the die 𝑋.
• We also learn 1 bit about the election outcome.

Inspired by Fig 8.1 in "MacKay. Information Theory, Inference, and learning Algorithms. Cambridge University Press, 2002." https://www.inference.org.uk/itprnn/book.pdf 
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Learning partial information

We then get a message 𝑈: "The outcome of the roll is even, and by the way, the 
next president of the US will be ...". Assuming two equally likely outcomes for 
the election, how much information did we learn?

EXAMPLE 5: We again roll the unbiased 8-sided die with sides 𝒳={1,2, ...,8} .

𝐻 𝑋 =3
𝐻 𝑈 =2𝐻 𝑋|𝑈 =2

?Uncertainty 𝑋	after 
we see the message 𝑈

Information contained 
in message 𝑈

Uncertainty in the 
outcome of the roll 𝑋

Additional information 
in message 𝑈 that is 
unrelated to 𝑋

𝐼 𝑋; 𝑈 =1

We learned 2 bits
(𝑈	contains 2 bits)

Wasn't information supposed to be additive?

• We still learn 3-2=1 bit about the roll of the die 𝑋.
• We also learn 1 bit about the election outcome.

Mutual information between 𝑋 and 𝑈: what 
we learn about 𝑋 after seeing 𝑈 (or v.v.)

Inspired by Fig 8.1 in "MacKay. Information Theory, Inference, and learning Algorithms. Cambridge University Press, 2002." https://www.inference.org.uk/itprnn/book.pdf 

https://northeastern-datalab.github.io/cs7840/
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Learning partial information

We then get a message 𝑈: "The outcome of the roll is even, and by the way, the 
next president of the US will be ...". Assuming two equally likely outcomes for 
the election, how much information did we learn?

EXAMPLE 5: We again roll the unbiased 8-sided die with sides 𝒳={1,2, ...,8} .

We learned 2 bits
(𝑈	contains 2 bits)

Wasn't information supposed to be additive?

𝐻 𝑋 =3
𝐻 𝑈 =2𝐻 𝑋|𝑈 =2

𝐻 𝑈|𝑋 =1Uncertainty 𝑋	after 
we see the message 𝑈

Information contained 
in message 𝑈

Mutual information between 𝑋 and 𝑈: what 
we learn about 𝑋 after seeing 𝑈 (or v.v.)

Uncertainty in the 
outcome of the roll 𝑋

Additional information 
in message 𝑈 that is 
unrelated to 𝑋

𝐼 𝑋; 𝑈 =1

• We still learn 3-2=1 bit about the roll of the die 𝑋.
• We also learn 1 bit about the election outcome.

Inspired by Fig 8.1 in "MacKay. Information Theory, Inference, and learning Algorithms. Cambridge University Press, 2002." https://www.inference.org.uk/itprnn/book.pdf 

https://northeastern-datalab.github.io/cs7840/
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Mutual information
Given two RVs 𝑋 and 𝑌, mutual information is the amount of information 
that 𝑌 provides about 𝑋 (thus when 𝑌 is observed, but 𝑋 is not). 

𝐼 𝑋; 𝑌 := 𝐻 𝑋 − 𝐻(𝑋|𝑌) Is this function symmetric in 𝑋 and 𝑌 ?

https://northeastern-datalab.github.io/cs7840/
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Mutual information
Given two RVs 𝑋 and 𝑌, mutual information is the amount of information 
that 𝑌 provides about 𝑋 (thus when 𝑌 is observed, but 𝑋 is not). 

𝐼 𝑋; 𝑌 := 𝐻 𝑋 − 𝐻(𝑋|𝑌) 

= 𝐻 𝑋 − 𝐻 𝑋, 𝑌 − 𝐻 𝑌  
Conditional entropy: the amount of information needed to describe 
the outcome of RV 𝑌 given that we know the value of another RV 𝑋.

= 𝐻 𝑋 + 𝐻 𝑌 − 𝐻 𝑋, 𝑌 symmetric in 𝑋 and 𝑌!

= 𝐻 𝑌 − 𝐻(𝑌|𝑋) 

That's why it is called "mutual" information (it does not "prefer" 𝑋 or 𝑌). 
Reduction of the uncertainty of one RV once we observe the other.

Thus, 𝐼 𝑋; 𝑌 = 𝐼 𝑌; 𝑋

https://northeastern-datalab.github.io/cs7840/
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Entropy, conditional entropy, mutual information

𝐻 𝑋|𝑌 𝐼 𝑋; 𝑌 𝐻 𝑌|𝑋

𝐻 𝑋 𝐻 𝑌
𝐻 𝑋, 𝑌
joint entropy

conditional entropy mutual
information

individual (or marginal) entropy

𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻 𝑌|𝑋

𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 − 𝐼 𝑋; 𝑌

𝐻 𝑋

𝐻 𝑌
𝐻 𝑋|𝑌 𝐼 𝑋; 𝑌 𝐻 𝑌|𝑋

𝐻 𝑋, 𝑌

The bar diagrams are inspired by Fig 8.1 in "MacKay. Information Theory, Inference, and learning Algorithms. Cambridge University Press, 2002." https://www.inference.org.uk/itprnn/book.pdf. 
In particular, see the Interesting discussion and explanation in the solution to exercise 8.8 for why VENN diagrams (with more than 2 variables) can be misleading.

https://northeastern-datalab.github.io/cs7840/
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Entropy, conditional entropy, mutual information

Figure sources: https://en.wikipedia.org/wiki/Mutual_information / Shannon. A Mathematical Theory of Communication. 1948. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x  

=channel capacity

https://northeastern-datalab.github.io/cs7840/
https://en.wikipedia.org/wiki/Mutual_information
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x


184Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Self-information
What is 𝐼 𝑋; 𝑋 How much does 𝑋 tell us about itself??

https://northeastern-datalab.github.io/cs7840/
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Self-information

𝐼 𝑋; 𝑋 = 𝐻 𝑋 − 𝐻 𝑋|𝑋

What is 𝐼 𝑋; 𝑋 ?

= 0 no uncertainty (entropy) left)

𝐼 𝑋; 𝑋 = 𝐻 𝑋 We learn from 𝑋 everything about 𝑋
Entropy is "self-information".

How much does 𝑋 tell us about itself?

https://northeastern-datalab.github.io/cs7840/
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Relative entropy
= KL divergence

(≠ Cross-Entropy)

https://northeastern-datalab.github.io/cs7840/
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Relative Entropy = KL divergence (≠ Cross-Entropy)
The relative entropy (or KL divergence) of a distribution 𝑝 with respect to a 
distribution 𝑞 defined on the alphabet 𝒳 of RV 𝑋	is:

𝐷KL 𝑝||𝑞 = 𝔼& lg
𝑝(𝑋)
𝑞(𝑋)

= A
7∊𝒳

	

𝑝(𝑥) ⋅ lg
𝑝(𝑥)
𝑞(𝑥)

𝐻 𝑝||𝑞 = 𝐷KL 𝑝||𝑞 + 𝐻 𝑝

It measures the inefficiency for assuming a distribution 𝑞 instead of a true distribution 𝑝 for RV. 

= 𝔼& lg
1

𝑞(𝑋)
=

𝔼.[… ] also written as 𝔼-~.[… ] 
for the expected value operator 
w.r. to the distribution 𝑝

A
7∊𝒳

	

𝑝(𝑥) ⋅ lg
1

𝑞(𝑥)
𝐻 𝑝
𝐻 𝑝||𝑞

𝐷 𝑝||𝑞

my surprise for seeing 𝑥,
given my assumption of 𝑞(𝑥)

my expected surprise given 𝑝 as the true distribution

Cross-entropy is usually written as 𝐻 𝑝, 𝑞 , but that notation hides its asymmetry and looks too similar to joint entropy. We prefer the notation 𝐻 𝑝||𝑞 	which captures the asymmetry with a 
similar notation as 𝐷KL 𝑝||𝑞 . Another non-standard notation is 𝐻! 𝑞  which shows that 𝑝 is the true distribution, whereas 𝑞	determines the surprise. 

If we use 𝑞 to construct a binary code, the expected message length is called cross-entropy:

https://northeastern-datalab.github.io/cs7840/
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Compressing messages via variable length codes

• What if we assume following distribution:

• Assume we have the following symbol frequency: New expected length : 

Encoding size
1 bit

½ 

¼ 
⅛
⅛

0

1
1
1

0
1
1

0
1

2 bit 3 bit

½ 

¼ 
⅛
⅛

A

B
C
D

0
10
110
111

A
B
C
D

symbols codewordsfrequency

code

110
0
10
111

A
B
C
D

symbols codewords

code

frequency

½ 

¼ 
⅛
⅛

1 

2
3
3

⋅

⋅
⋅
⋅

= 1.75 bits!

= 1.75 bits!

What is our expected message length per symbol
if we use that code, but 𝑝	is the actual distribution

¼ 

A

B

C
D

½ 

⅛

⅛

?

𝑝!

𝑞!

lg "
#
= −1 

lg "
$
= −2 

lg "
%
= −3 

= −∑! 𝑝! ⋅ lg 𝑝!  Entropy H(𝐩)	:

https://northeastern-datalab.github.io/cs7840/


189Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Compressing messages via variable length codes

• What if we assume following distribution:

• Assume we have the following symbol frequency: New expected length : 

Encoding size
1 bit

½ 

¼ 
⅛
⅛

0

1
1
1

0
1
1

0
1

2 bit 3 bit

½ 

¼ 
⅛
⅛

A

B
C
D

𝑝!

0
10
110
111

A
B
C
D

symbols codewordsfrequency

code

110
0
10
111

A
B
C
D

symbols codewords

code
𝑞!

frequency

½ 

¼ 
⅛
⅛

1 

2
3
3

⋅

⋅
⋅
⋅

= 1.75 bits!

= 1.75 bits!

Our new expected message length per symbol:

¼ 

A

B

C
D

½ 

⅛

⅛

Encoding size
1 bit

½ 

¼ 
⅛
⅛

1

0
1
1

0
1 1

2 bit 3 bit

1 0

𝑝!

lg "
#
= −1 

lg "
$
= −2 

lg "
%
= −3 

= −∑! 𝑝! ⋅ lg 𝑝!  Entropy H(𝐩)	:
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Compressing messages via variable length codes

• What if we assume following distribution:

• Assume we have the following symbol frequency: New expected length : 

Encoding size
1 bit

½ 

¼ 
⅛
⅛

0

1
1
1

0
1
1

0
1

2 bit 3 bit

½ 

¼ 
⅛
⅛

A

B
C
D

𝑝!

0
10
110
111

A
B
C
D

symbols codewordsfrequency

code

110
0
10
111

A
B
C
D

symbols codewords

code
𝑞!

frequency

½ 

¼ 
⅛
⅛

1 

2
3
3

⋅

⋅
⋅
⋅

= 1.75 bits!

= 1.75 bits!

Our new expected message length per symbol:

¼ 

A

B

C
D

½ 

⅛

⅛

Encoding size
1 bit

½ 

¼ 
⅛
⅛

1

0
1
1

0
1 1

2 bit 3 bit

1 0 What is the formula
we need to evaluate𝑝!

log(𝑞!)

?

lg "
#
= −1 

lg "
$
= −2 

lg "
%
= −3 

= −∑! 𝑝! ⋅ lg 𝑝!  Entropy H(𝐩)	:
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Compressing messages via variable length codes

• What if we assume following distribution:

• Assume we have the following symbol frequency: New expected length : 

Encoding size
1 bit

½ 

¼ 
⅛
⅛

0

1
1
1

0
1
1

0
1

2 bit 3 bit

½ 

¼ 
⅛
⅛

A

B
C
D

𝑝!

0
10
110
111

A
B
C
D

symbols codewordsfrequency

code

110
0
10
111

A
B
C
D

symbols codewords

code
𝑞!

frequency

½ 

¼ 
⅛
⅛

1 

2
3
3

⋅

⋅
⋅
⋅

= 1.75 bits!

= 1.75 bits!

Our new expected message length per symbol:

¼ 

A

B

C
D

½ 

⅛

⅛

Encoding size
1 bit

½ 

¼ 
⅛
⅛

1

0
1
1

0
1 1

2 bit 3 bit

1 0

−∑! 𝑝! ⋅ lg 𝑞!  

What is this formula called

𝑝!

log(𝑞!)

= 2.375 bits!

?

lg "
#
= −1 

lg "
$
= −2 

lg "
%
= −3 

= −∑! 𝑝! ⋅ lg 𝑝!  Entropy H(𝐩)	:
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Compressing messages via variable length codes

• What if we assume following distribution:

• Assume we have the following symbol frequency: New expected length : 

Encoding size
1 bit

½ 

¼ 
⅛
⅛

0

1
1
1

0
1
1

0
1

2 bit 3 bit

½ 

¼ 
⅛
⅛

A

B
C
D

𝑝!

0
10
110
111

A
B
C
D

symbols codewordsfrequency

code

110
0
10
111

A
B
C
D

symbols codewords

code
𝑞!

frequency

½ 

¼ 
⅛
⅛

1 

2
3
3

⋅

⋅
⋅
⋅

= 1.75 bits!

= 1.75 bits!

Our new expected message length per symbol:

¼ 

A

B

C
D

½ 

⅛

⅛

Encoding size
1 bit

½ 

¼ 
⅛
⅛

1

0
1
1

0
1 1

2 bit 3 bit

1 0

𝑝!

log(𝑞!)

Which distribution 𝑞 
minimizes 𝐻 𝑝||𝑞 ?
Cross entropy 𝐻 𝑝||𝑞  J

= 2.375 bits!

lg "
#
= −1 

lg "
$
= −2 

lg "
%
= −3 

−∑! 𝑝! ⋅ lg 𝑞!  

= −∑! 𝑝! ⋅ lg 𝑝!  Entropy H(𝐩)	:
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Compressing messages via variable length codes

• What if we assume following distribution:

• Assume we have the following symbol frequency: New expected length : 

Encoding size
1 bit

½ 

¼ 
⅛
⅛

0

1
1
1

0
1
1

0
1

2 bit 3 bit

½ 

¼ 
⅛
⅛

A

B
C
D

𝑝!

0
10
110
111

A
B
C
D

symbols codewordsfrequency

code

110
0
10
111

A
B
C
D

symbols codewords

code
𝑞!

frequency

½ 

¼ 
⅛
⅛

1 

2
3
3

⋅

⋅
⋅
⋅

= 1.75 bits!

= 1.75 bits!Entropy H(𝐩)	:

Our new expected message length per symbol:

¼ 

A

B

C
D

½ 

⅛

⅛

Encoding size
1 bit

½ 

¼ 
⅛
⅛

1

0
1
1

0
1 1

2 bit 3 bit

1 0

𝑝!

log(𝑞!)

𝑞 = 𝑝 minimizes 𝐻 𝑝||𝑞

= 2.375 bits!

lg "
#
= −1 

lg "
$
= −2 

lg "
%
= −3 

−∑! 𝑝! ⋅ lg 𝑞!  

= −∑! 𝑝! ⋅ lg 𝑝!  

Cross entropy 𝐻 𝑝||𝑞  J
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Properties of Relative Entropy = KL divergence
1. Relative entropy is asymmetric (does not satisfy triangle inequality, 
thus not a metric):

𝐷KL 𝑝||𝑞 ≠ 𝐷KL 𝑞||𝑝

𝐩 =
𝑝
𝑝̅EXAMPLE :

𝐷KL 𝐩||𝐮  

𝐮 = 0.5
0.5

𝑝̅ = 1 − 𝑝

𝑝 = 0.5
𝑝 = 0
𝑝 = 0.01

𝐷KL 𝐮||𝐩  

? ?
? ?
? ?

https://northeastern-datalab.github.io/cs7840/
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Properties of Relative Entropy = KL divergence
1. Relative entropy is asymmetric (does not satisfy triangle inequality, 
thus not a metric):

𝐷KL 𝑝||𝑞 ≠ 𝐷KL 𝑞||𝑝

𝐩 =
𝑝
𝑝̅EXAMPLE :

𝐷KL 𝐩||𝐮  

𝐮 = 0.5
0.5

𝑝̅ = 1 − 𝑝

𝑝 = 0.5
𝑝 = 0
𝑝 = 0.01

𝐷KL 𝐮||𝐩  
0 0
? ?
? ?

https://northeastern-datalab.github.io/cs7840/
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Properties of Relative Entropy = KL divergence
1. Relative entropy is asymmetric (does not satisfy triangle inequality, 
thus not a metric):

𝐷KL 𝑝||𝑞 ≠ 𝐷KL 𝑞||𝑝

𝐩 =
𝑝
𝑝̅EXAMPLE :

𝐷KL 𝐩||𝐮  

𝐮 = 0.5
0.5

𝑝̅ = 1 − 𝑝

𝑝 = 0.5
𝑝 = 0
𝑝 = 0.01

𝐷KL 𝐮||𝐩  
0 0

? ?
1 ∞

https://northeastern-datalab.github.io/cs7840/
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Properties of Relative Entropy = KL divergence
1. Relative entropy is asymmetric (does not satisfy triangle inequality, 
thus not a metric):

𝐷KL 𝑝||𝑞 ≠ 𝐷KL 𝑞||𝑝

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

𝐩 =
𝑝
𝑝̅

𝐷KL 𝐮||𝐩

𝐷KL 𝐩||𝐮

EXAMPLE :

𝐷KL 𝐩||𝐮  

𝐮 = 0.5
0.5

𝑝̅ = 1 − 𝑝

𝑝 = 0.5
𝑝 = 0
𝑝 = 0.01

𝐷KL 𝐮||𝐩  
0 0
1 ∞
0.92 2.33

.5 lg .,
.-.

+ .5 lg .,
.//

 .01 lg .-.
.,

+ .99 lg .//
.,

 

−0.492.820.96−0.06

What about cross entropies 
𝐻 𝐩||𝐮  and 𝐻 𝐩||𝐮 ?

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb
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Properties of Relative Entropy = KL divergence
1. Relative entropy is asymmetric (does not satisfy triangle inequality, 
thus not a metric):

𝐷KL 𝑝||𝑞 ≠ 𝐷KL 𝑞||𝑝

2. 𝐷KL 𝑝||𝑝 =?

https://northeastern-datalab.github.io/cs7840/


203Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Properties of Relative Entropy = KL divergence
1. Relative entropy is asymmetric (does not satisfy triangle inequality, 
thus not a metric):

𝐷KL 𝑝||𝑞 ≠ 𝐷KL 𝑞||𝑝

2. 𝐷KL 𝑝||𝑝 = 0

3. 𝐷𝐾𝐿 𝑝||𝑞 ≥ 0 for all distributions 𝑝, 𝑞 (equality only holds for 𝑝 = 𝑞)

We will prove that next (with Jensen's inequality)

https://northeastern-datalab.github.io/cs7840/
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Commuting functions: an apparent digression

𝔼 𝑓(𝑋) = 𝑓 𝔼 𝑋• Do functions commute with 
taking the expectation? ?

https://northeastern-datalab.github.io/cs7840/
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Commuting functions: an apparent digression

𝔼 𝑓(𝑋) = 𝑓 𝔼 𝑋• Do functions commute with 
taking the expectation? 

• No! This only holds for 
linear functions:

𝑓 𝑥 = 𝑎𝑥 + 𝑏
𝔼 𝑎𝑥 + 𝑏 = 𝑎𝔼 𝑥 + 𝑏

• Jensen's inequality for convex 𝑓: ?

https://northeastern-datalab.github.io/cs7840/
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Commuting functions: an apparent digression

0 1

1

0

𝔼 𝑓(𝑋) = 𝑓 𝔼 𝑋• Do functions commute with 
taking the expectation? 

• No! This only holds for 
linear functions:

𝑓 𝑥 = 𝑎𝑥 + 𝑏
𝔼 𝑎𝑥 + 𝑏 = 𝑎𝔼 𝑥 + 𝑏

• Jensen's inequality for convex 𝑓: 𝔼 𝑓(𝑋) ≥ 𝑓 𝔼 𝑋

• Example 𝑓 𝑥 = 𝑥#:
Consider the interval 0	£ 𝑥	£ 1:

𝑓 𝔼 𝑋 =

𝔼 𝑓(𝑋) =

?
?

https://northeastern-datalab.github.io/cs7840/
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Commuting functions: an apparent digression

1

1

𝔼 𝑓(𝑋) = 𝑓 𝔼 𝑋• Do functions commute with 
taking the expectation? 

• No! This only holds for 
linear functions:

𝑓 𝑥 = 𝑎𝑥 + 𝑏
𝔼 𝑎𝑥 + 𝑏 = 𝑎𝔼 𝑥 + 𝑏

• Jensen's inequality for convex 𝑓: 𝔼 𝑓(𝑋) ≥ 𝑓 𝔼 𝑋

• Example 𝑓 𝑥 = 𝑥#:
Consider the interval 0	£ 𝑥	£ 1:

𝑓 𝔼 𝑋 =

𝔼 𝑓(𝑋) =

𝑓 𝔼 𝑋 = 𝑓 0.5 = 0.25

∫;
< & '
()*

= "'=

+
(
* = 0.33 

0

0.25

0 0.5

0.33

https://northeastern-datalab.github.io/cs7840/
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Background: Convex / Concave function

Figure source: https://www.probabilitycourse.com/chapter6/6_2_5_jensen%27s_inequality.php 

https://northeastern-datalab.github.io/cs7840/
https://www.probabilitycourse.com/chapter6/6_2_5_jensen%27s_inequality.php
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Information inequality 𝐷𝐾𝐿 𝑝||𝑞 ≥ 0

𝔼 𝑓(𝑋) ≥ 𝑓 𝔼 𝑋2. Jensen's inequality

𝐷𝐾𝐿 𝑝||𝑞 = 𝔼& lg
𝑝(𝑋)
𝑞(𝑋)

Fig source; https://flexbooks.ck12.org/cbook/ck-12-interactive-algebra-2/section/5.5/related/lesson/graphing-logarithmic-functions-alg-ii/ 

𝑓 𝑥 = − lg 𝑥

1. − lg 𝑥  is convex
Ingredients:

?=

https://northeastern-datalab.github.io/cs7840/
https://flexbooks.ck12.org/cbook/ck-12-interactive-algebra-2/section/5.5/related/lesson/graphing-logarithmic-functions-alg-ii/
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Information inequality 𝐷𝐾𝐿 𝑝||𝑞 ≥ 0

𝔼 𝑓(𝑋) ≥ 𝑓 𝔼 𝑋2. Jensen's inequality

𝐷𝐾𝐿 𝑝||𝑞 = 𝔼& lg
𝑝(𝑋)
𝑞(𝑋)

= 𝔼& − lg
𝑞(𝑋)
𝑝(𝑋)

≥ − lg 𝔼&
𝑞 𝑋
𝑝 𝑋 = − lg A

7

	

𝑝(𝑥) ⋅
𝑞 𝑥
𝑝 𝑥 = 0

Fig source; https://flexbooks.ck12.org/cbook/ck-12-interactive-algebra-2/section/5.5/related/lesson/graphing-logarithmic-functions-alg-ii/ 

1. − lg 𝑥  is convex
Ingredients:

= 1

𝐷𝐾𝐿 𝑝||𝑞 = 0 iff ?

𝑓 𝑥 = − lg 𝑥

https://northeastern-datalab.github.io/cs7840/
https://flexbooks.ck12.org/cbook/ck-12-interactive-algebra-2/section/5.5/related/lesson/graphing-logarithmic-functions-alg-ii/
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Information inequality 𝐷𝐾𝐿 𝑝||𝑞 ≥ 0

𝔼 𝑓(𝑋) ≥ 𝑓 𝔼 𝑋2. Jensen's inequality

𝐷𝐾𝐿 𝑝||𝑞 = 𝔼& lg
𝑝(𝑋)
𝑞(𝑋)

= 𝔼& − lg
𝑞(𝑋)
𝑝(𝑋)

≥ − lg 𝔼&
𝑞 𝑋
𝑝 𝑋 = − lg A

7

	

𝑝(𝑥) ⋅
𝑞 𝑥
𝑝 𝑥 = 0

Fig source; https://flexbooks.ck12.org/cbook/ck-12-interactive-algebra-2/section/5.5/related/lesson/graphing-logarithmic-functions-alg-ii/ 

1. − lg 𝑥  is convex
Ingredients:

= 1

𝐷𝐾𝐿 𝑝||𝑞 = 0 iff 𝑞 𝑥 = 𝑝(𝑥) for all 𝑥.

𝑓 𝑥 = − lg 𝑥

https://northeastern-datalab.github.io/cs7840/
https://flexbooks.ck12.org/cbook/ck-12-interactive-algebra-2/section/5.5/related/lesson/graphing-logarithmic-functions-alg-ii/
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Mutual information as relative entropy and thus ≥ 0
Given two RVs 𝑋 and 𝑌, mutual information is the amount of 
information that 𝑌 provides about 𝑋 when 𝑌 is observed, but 𝑋 is not. 

𝐼 𝑋; 𝑌 := 𝐻 𝑋 − 𝐻(𝑋|𝑌) notation 𝑥 ∊ 𝒳, 𝑦 ∊ 𝒴?≥ 0

https://northeastern-datalab.github.io/cs7840/
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Mutual information as relative entropy and thus ≥ 0
Given two RVs 𝑋 and 𝑌, mutual information is the amount of 
information that 𝑌 provides about 𝑋 when 𝑌 is observed, but 𝑋 is not. 

𝐼 𝑋; 𝑌 := 𝐻 𝑋 − 𝐻(𝑋|𝑌) 

=`
$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
𝑝(𝑥, 𝑦)

𝑝 𝑥 ⋅ 𝑝(𝑦)

notation 𝑥 ∊ 𝒳, 𝑦 ∊ 𝒴

−`
$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝 𝑥|𝑦=`
$

	

𝑝(𝑥) ⋅ lg
1

𝑝 𝑥

=`
$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝 𝑥
−`

$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝 𝑥|𝑦

=`
$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
𝑝(𝑥|𝑦)
𝑝 𝑥

?=

https://northeastern-datalab.github.io/cs7840/
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Mutual information as relative entropy and thus ≥ 0
Given two RVs 𝑋 and 𝑌, mutual information is the amount of 
information that 𝑌 provides about 𝑋 when 𝑌 is observed, but 𝑋 is not. 

𝐼 𝑋; 𝑌 := 𝐻 𝑋 − 𝐻(𝑋|𝑌) 

=`
$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
𝑝(𝑥, 𝑦)

𝑝 𝑥 ⋅ 𝑝(𝑦)

notation 𝑥 ∊ 𝒳, 𝑦 ∊ 𝒴

Mutual information is the relative entropy between joint distribution and 
product of their marginal distributions!

= 𝐷KL 𝑝(𝑥, 𝑦)||𝑝(𝑥) ⋅ 𝑝(𝑦)

−`
$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝 𝑥|𝑦=`
$

	

𝑝(𝑥) ⋅ lg
1

𝑝 𝑥

=`
$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝 𝑥
−`

$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝 𝑥|𝑦

=`
$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
𝑝(𝑥|𝑦)
𝑝 𝑥

≥ 0

When equality?

https://northeastern-datalab.github.io/cs7840/
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Mutual information as relative entropy and thus ≥ 0
Given two RVs 𝑋 and 𝑌, mutual information is the amount of 
information that 𝑌 provides about 𝑋 when 𝑌 is observed, but 𝑋 is not. 

𝐼 𝑋; 𝑌 := 𝐻 𝑋 − 𝐻(𝑋|𝑌) 

alternative notation: 
𝐷KL 𝑝-,@||𝑝- ⋅ 𝑝@  

=`
$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
𝑝(𝑥, 𝑦)

𝑝 𝑥 ⋅ 𝑝(𝑦)

notation 𝑥 ∊ 𝒳, 𝑦 ∊ 𝒴

Mutual information is the relative entropy between joint distribution and 
product of their marginal distributions!

= 𝐷KL 𝑝(𝑥, 𝑦)||𝑝(𝑥) ⋅ 𝑝(𝑦)

−`
$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝 𝑥|𝑦=`
$

	

𝑝(𝑥) ⋅ lg
1

𝑝 𝑥

=`
$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝 𝑥
−`

$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
1

𝑝 𝑥|𝑦

=`
$,>

	

𝑝(𝑥, 𝑦) ⋅ lg
𝑝(𝑥|𝑦)
𝑝 𝑥

≥ 0

equality when 𝑋 and 𝑌 
are independent!

https://northeastern-datalab.github.io/cs7840/
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Conditioning reduces entropy, in expectation

𝐻(𝑋|𝑌) ≤ 𝐻 𝑋

The nonnegativity of mutual information implies that on average the 
entropy of 𝑋 conditioned on the observation 𝑌 = 𝑦 is ≤ than the 
entropy of 𝑋 (which intuitively makes sense: getting more information 
only reduces uncertainty, in expectation).

But importantly, the inequality is applied to averaged quantities. 
It is still possible that there is new rare evidence 𝑦 for which:

𝐻 𝑋 < 𝐻(𝑋|𝑌 = 𝑦) 

Example: in a court case, specific new evidence might increase uncertainty, 
but on the average evidence decreases uncertainty.

!

(follows from 𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 𝐻(𝑋|𝑌) ≥ 0)

Example taken from Cover, Thomas. Elements of Information Theory (book, 2nd ed). Theorem 2.6.5. https://doi.org/10.1002/047174882X 

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1002/047174882X
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But new concrete evidence may increase entropy
EXAMPLE 6: Consider the joint ensemble (𝑋, 𝑌) with Boolean 
domains 𝒳 = 𝒴 = {0,1} and following joint distribution.

𝐻 𝑋 = 

𝐻 𝑋|𝑦 = 0 = 

𝐻 𝑋|𝑦 = 1 = 

𝐻 𝑋|𝑌 = 

?
?
?
?

0
𝑥

𝑦
0

1

1
½ 
0 ¼  

¼  

𝑝(𝑥, 𝑦) 
0

𝑥

𝑦
0

1

1

https://northeastern-datalab.github.io/cs7840/
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But new concrete evidence may increase entropy

0
𝑥

𝑦
0

1

1
½ 
0 ¼  

¼  

EXAMPLE 6: Consider the joint ensemble (𝑋, 𝑌) with Boolean 
domains 𝒳 = 𝒴 = {0,1} and following joint distribution.

𝐻 𝑋 = 

𝐻 𝑋|𝑦 = 0 = 

𝐻 𝑋|𝑦 = 1 = 

𝐻 𝑋|𝑌 = 

𝑝(𝑥, 𝑦) 
0

𝑥

𝑦
0

1

1

'
)
lg )

'
+ %
)
lg 4 = 0.811  

0

1

%
$𝐻(𝑋|𝑦 = 0) + %

$𝐻(𝑋|𝑦 = 1) = 

𝐻(𝑋|𝑌) ≤ 𝐻 𝑋 < 𝐻(𝑋|𝑦 = 1)
0.811  0.5  1  

0 1

0.5 

Σ

3/4

1/4

Σ 1/2 1/2
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Pre-class conversations

• Last class recapitulation
• Slide decks: more overall consistent updates coming
• Next scribe correct towards end of week
• Python scripts also coming soon

• Today so far: compression
• Today next:
- Multi-variate entropies
- Markov Chains & Data Processing inequality

https://northeastern-datalab.github.io/cs7840/
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Three-term (multivariate) entropies,
conditional mutual information,

interaction information

https://northeastern-datalab.github.io/cs7840/
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𝐻 𝑋, 𝑌 	 = 

Conditional entropy 𝐻 𝑌 𝑋 : the expected amount of 
information needed to describe the outcome of RV 𝑌, given 
that the value of another RV 𝑋 is known

Conditioning  & chain rules

Two-variable chain rule

𝐻 𝑌 𝑋 = A
7

	

𝑝(𝑥) ⋅ 𝐻 𝑌 𝑋 = 𝑥

?

https://northeastern-datalab.github.io/cs7840/
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𝐻 𝑋, 𝑌 	 = 

Conditional entropy 𝐻 𝑌 𝑋 : the expected amount of 
information needed to describe the outcome of RV 𝑌, given 
that the value of another RV 𝑋 is known

Conditioning  & chain rules

Two-variable chain rule

𝐻 𝑌 𝑋 = 

𝐻 𝑋, 𝑌|𝑍 = 

A
7

	

𝑝(𝑥) ⋅ 𝐻 𝑌 𝑋 = 𝑥

Conditional chain rule.

𝐻 𝑋 	 + 𝐻 𝑌 𝑋

?
Conditional joint entropy 𝐻 𝑋, 𝑌|𝑍 : expected joint 
entropy of 𝑋 and 𝑌 together, given that 𝑍 is known

Notice the implied precedence rule𝔼[𝐻(𝑋, 𝑌)|𝑍]

https://northeastern-datalab.github.io/cs7840/
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𝐻 𝑋, 𝑌 	 = 

Conditional entropy 𝐻 𝑌 𝑋 : the expected amount of 
information needed to describe the outcome of RV 𝑌, given 
that the value of another RV 𝑋 is known

Conditioning  & chain rules

Two-variable chain rule

𝐻 𝑌 𝑋 = 

𝐻 𝑋, 𝑌|𝑍 = 

A
7

	

𝑝(𝑥) ⋅ 𝐻 𝑌 𝑋 = 𝑥

Conditional chain rule.

Conditional joint entropy 𝐻 𝑋, 𝑌|𝑍 : expected joint 
entropy of 𝑋 and 𝑌 together, given that 𝑍 is known

Conditioning on an event creates a new probability 
space where the same probability concepts apply.

𝐻 𝑋, 𝑌|𝑍  𝐻 𝑋|𝑍 + 𝐻 𝑌 𝑍

Notice the implied precedence rule𝔼[𝐻(𝑋, 𝑌)|𝑍]

𝐻 𝑋 	 + 𝐻 𝑌 𝑋

𝐻 𝑋|𝑍 + 𝐻 𝑌 𝑋, 𝑍

≤ or ≥

?

https://northeastern-datalab.github.io/cs7840/
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𝐻 𝑋, 𝑌 	 = 

Conditional entropy 𝐻 𝑌 𝑋 : the expected amount of 
information needed to describe the outcome of RV 𝑌, given 
that the value of another RV 𝑋 is known

Conditioning  & chain rules

Two-variable chain rule

𝐻 𝑌 𝑋 = 

𝐻 𝑋, 𝑌|𝑍 = 

𝐻 𝑋, 𝑌, 𝑍 = Three-variable chain rule

A
7

	

𝑝(𝑥) ⋅ 𝐻 𝑌 𝑋 = 𝑥

Conditional chain rule.

Conditional joint entropy 𝐻 𝑋, 𝑌|𝑍 : expected joint 
entropy of 𝑋 and 𝑌 together, given that 𝑍 is known

Conditioning on an event creates a new probability 
space where the same probability concepts apply.

𝐻 𝑋, 𝑌|𝑍  𝐻 𝑋|𝑍 + 𝐻 𝑌 𝑍≤ Equality holds if 𝑋 and 𝑌 are conditionally independent, 
given 𝑍 (Proof similar to unconditional case).

Notice the implied precedence rule𝔼[𝐻(𝑋, 𝑌)|𝑍]

𝐻 𝑋 	 + 𝐻 𝑌 𝑋

𝐻 𝑋|𝑍 + 𝐻 𝑌 𝑋, 𝑍

?

https://northeastern-datalab.github.io/cs7840/
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𝐻 𝑋, 𝑌 	 = 

Conditional entropy 𝐻 𝑌 𝑋 : the expected amount of 
information needed to describe the outcome of RV 𝑌, given 
that the value of another RV 𝑋 is known

Conditioning  & chain rules

Two-variable chain rule

𝐻 𝑌 𝑋 = 

𝐻 𝑋, 𝑌|𝑍 = 

𝐻 𝑋, 𝑌, 𝑍 = Three-variable chain rule

A
7

	

𝑝(𝑥) ⋅ 𝐻 𝑌 𝑋 = 𝑥

Conditional chain rule.

Conditional joint entropy 𝐻 𝑋, 𝑌|𝑍 : expected joint 
entropy of 𝑋 and 𝑌 together, given that 𝑍 is known

Conditioning on an event creates a new probability 
space where the same probability concepts apply.

𝐻 𝑋, 𝑌|𝑍  𝐻 𝑋|𝑍 + 𝐻 𝑌 𝑍≤ Equality holds if 𝑋 and 𝑌 are conditionally independent, 
given 𝑍 (Proof similar to unconditional case).

Notice the implied precedence rule𝔼[𝐻(𝑋, 𝑌)|𝑍]

𝐻 𝑋 	 + 𝐻 𝑌 𝑋

𝐻 𝑋|𝑍 + 𝐻 𝑌 𝑋, 𝑍

𝐻 𝑋 + 𝐻 𝑌 𝑋 + 𝐻(𝑍|𝑋, 𝑌) 

https://northeastern-datalab.github.io/cs7840/
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Conditional mutual information & interaction information
𝐼(𝑋; 𝑌|𝑍) = Conditional mutual information 𝐼 𝑋; 𝑌 𝑍 : 

expected mutual information of 𝑋 and 𝑌, 
given 𝑍 is known𝔼[𝐼(𝑋; 𝑌)|𝑍]

?

https://northeastern-datalab.github.io/cs7840/
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Conditional mutual information & interaction information
𝐼(𝑋; 𝑌|𝑍) = Conditional mutual information 𝐼 𝑋; 𝑌 𝑍 : 

expected mutual information of 𝑋 and 𝑌, 
given 𝑍 is known

= 𝐻(𝑋|𝑍) − 𝐻(𝑋|𝑌, 𝑍)
𝐻 𝑌 𝑍 + 𝐻(𝑋|𝑌, 𝑍)

𝐽 𝑋; 𝑌; 𝑍 = Interaction information (often also called "mutual 
information"*): measures the influence of a variable 𝑍 
on the amount of information shared between 𝑋 and 𝑌. 

𝔼[𝐼(𝑋; 𝑌)|𝑍]

𝐻(𝑋|𝑍) + 𝐻(𝑌|𝑍) − 𝐻(𝑋, 𝑌|𝑍) 

* Alternative notations include ℐ 𝑋; 𝑌; 𝑍 	and 𝑅 𝑋; 𝑌; 𝑍 . We don't recommend calling it "mutual information" and thus also replace the more common notation 𝐼 𝑋; 𝑌; 𝑍  with 𝐽 𝑋; 𝑌; 𝑍 . 
Some sources prefer not to even define that measure at all (we will discuss the reasons in a bit) https://en.wikipedia.org/wiki/Interaction_information . 

?

https://northeastern-datalab.github.io/cs7840/
https://en.wikipedia.org/wiki/Interaction_information
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Pre-class conversations

• Last class recapitulation
• Slide decks: please continue checking for errors / inconsistencies / 

unclear details
• Your own Python scripts could be part of your next scribes!

• Today:
- Multi-variate entropies
- Markov Chains, Data Processing inequality, sufficient statistics
- Possibly starting with Part 2: axioms

https://northeastern-datalab.github.io/cs7840/
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Three-term (multivariate) entropies,
conditional mutual information,

interaction information
(continued)

https://northeastern-datalab.github.io/cs7840/
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Conditional mutual information & interaction information
𝐼(𝑋; 𝑌|𝑍) = Conditional mutual information 𝐼 𝑋; 𝑌 𝑍 : 

expected mutual information of 𝑋 and 𝑌, 
given 𝑍 is known𝔼[𝐼(𝑋; 𝑌)|𝑍]

?

https://northeastern-datalab.github.io/cs7840/
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Conditional mutual information & interaction information
𝐼(𝑋; 𝑌|𝑍) = Conditional mutual information 𝐼 𝑋; 𝑌 𝑍 : 

expected mutual information of 𝑋 and 𝑌, 
given 𝑍 is known

= 𝐻(𝑋|𝑍) − 𝐻(𝑋|𝑌, 𝑍)
𝐻 𝑌 𝑍 + 𝐻(𝑋|𝑌, 𝑍)

𝐽 𝑋; 𝑌; 𝑍 = Interaction information (often also called "mutual 
information"*): measures the influence of a variable 𝑍 
on the amount of information shared between 𝑋 and 𝑌. 

𝔼[𝐼(𝑋; 𝑌)|𝑍]

𝐻(𝑋|𝑍) + 𝐻(𝑌|𝑍) − 𝐻(𝑋, 𝑌|𝑍) 

* Alternative notations include ℐ 𝑋; 𝑌; 𝑍 	and 𝑅 𝑋; 𝑌; 𝑍 . We don't recommend calling it "mutual information" and thus also replace the more common notation 𝐼 𝑋; 𝑌; 𝑍  with 𝐽 𝑋; 𝑌; 𝑍 . 
Some sources prefer not to even define that measure at all (we will discuss the reasons in a bit) https://en.wikipedia.org/wiki/Interaction_information . 

?

𝐻(𝑋|(𝑌, 𝑍))

https://northeastern-datalab.github.io/cs7840/
https://en.wikipedia.org/wiki/Interaction_information


240Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Conditional mutual information & interaction information
𝐼(𝑋; 𝑌|𝑍) = Conditional mutual information 𝐼 𝑋; 𝑌 𝑍 : 

expected mutual information of 𝑋 and 𝑌, 
given 𝑍 is known

= 𝐻(𝑋|𝑍) − 𝐻(𝑋|𝑌, 𝑍)
𝐻 𝑌 𝑍 + 𝐻(𝑋|𝑌, 𝑍)

𝐽 𝑋; 𝑌; 𝑍 = Interaction information (often also called "mutual 
information"*): measures the influence of a variable 𝑍 
on the amount of information shared between 𝑋 and 𝑌. 

𝔼[𝐼(𝑋; 𝑌)|𝑍]

𝐻(𝑋|𝑍) + 𝐻(𝑌|𝑍) − 𝐻(𝑋, 𝑌|𝑍) 

𝐼 𝑋; 𝑌 − 𝐼(𝑋; 𝑌|𝑍) 

* Alternative notations include ℐ 𝑋; 𝑌; 𝑍 	and 𝑅 𝑋; 𝑌; 𝑍 . We don't recommend calling it "mutual information" and thus also replace the more common notation 𝐼 𝑋; 𝑌; 𝑍  with 𝐽 𝑋; 𝑌; 𝑍 . 
Some sources prefer not to even define that measure at all (we will discuss the reasons in a bit) https://en.wikipedia.org/wiki/Interaction_information . 

Is it symmetric in all the variables ?

https://northeastern-datalab.github.io/cs7840/
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Conditional mutual information & interaction information
𝐼(𝑋; 𝑌|𝑍) = Conditional mutual information 𝐼 𝑋; 𝑌 𝑍 : 

expected mutual information of 𝑋 and 𝑌, 
given 𝑍 is known

= 𝐻(𝑋|𝑍) − 𝐻(𝑋|𝑌, 𝑍)
𝐻 𝑌 𝑍 + 𝐻(𝑋|𝑌, 𝑍)

𝐽 𝑋; 𝑌; 𝑍 = Interaction information (often also called "mutual 
information"*): measures the influence of a variable 𝑍 
on the amount of information shared between 𝑋 and 𝑌. 

𝔼[𝐼(𝑋; 𝑌)|𝑍]

𝐻(𝑋|𝑍) + 𝐻(𝑌|𝑍) − 𝐻(𝑋, 𝑌|𝑍) 

= 𝐻 𝑋 − 𝐻(𝑋|𝑌) 	− 

𝐼 𝑋; 𝑌 − 𝐼(𝑋; 𝑌|𝑍) 

= 𝐻 𝑋 − 𝐻(𝑋|𝑍) 	− (𝐻 𝑋 𝑌 − 𝐻 𝑋 𝑌, 𝑍 ) 

= 𝐼 𝑋; 𝑍 − 𝐼 𝑋; 𝑍 𝑌   (...) thus symmetric in all 3 variables!

* Alternative notations include ℐ 𝑋; 𝑌; 𝑍 	and 𝑅 𝑋; 𝑌; 𝑍 . We don't recommend calling it "mutual information" and thus also replace the more common notation 𝐼 𝑋; 𝑌; 𝑍  with 𝐽 𝑋; 𝑌; 𝑍 . 
Some sources prefer not to even define that measure at all (we will discuss the reasons in a bit) https://en.wikipedia.org/wiki/Interaction_information . 

(𝐻 𝑋 𝑍 − 𝐻 𝑋 𝑌, 𝑍 ) 

https://northeastern-datalab.github.io/cs7840/
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EXAMPLE: Consider the joint ensemble (𝑋, 𝑌, 𝑍) with Boolean domains 𝒳 =
𝒴 = 𝒵 = {0,1}. 𝑋 and 𝑌 are independent uniform binary variables. And let 
𝑍 be the XOR of 𝑋 and 𝑌: 𝑧 = XOR(𝑥, 𝑦), or equally, 𝑧 = 𝑥 + 𝑦	mod	2.

Interaction information example

0
𝑥 𝑦 𝑧

0 0
0 1 1
1 0 1
1 1 0

https://northeastern-datalab.github.io/cs7840/
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EXAMPLE: Consider the joint ensemble (𝑋, 𝑌, 𝑍) with Boolean domains 𝒳 =
𝒴 = 𝒵 = {0,1}. 𝑋 and 𝑌 are independent uniform binary variables. And let 
𝑍 be the XOR of 𝑋 and 𝑌: 𝑧 = XOR(𝑥, 𝑦), or equally, 𝑧 = 𝑥 + 𝑦	mod	2.

Interaction information example

0
𝑥 𝑦 𝑧

0 0
0 1 1
1 0 1
1 1 0Thus any 2 variables functionally 

determine the 3rd, e.g. 𝑥, 𝑧 → 𝑦 !

𝑝

¼ 
¼ 
¼ 
¼ 

0 0 1 0 
... ... ... 0 

https://northeastern-datalab.github.io/cs7840/
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EXAMPLE: Consider the joint ensemble (𝑋, 𝑌, 𝑍) with Boolean domains 𝒳 =
𝒴 = 𝒵 = {0,1}. 𝑋 and 𝑌 are independent uniform binary variables. And let 
𝑍 be the XOR of 𝑋 and 𝑌: 𝑧 = XOR(𝑥, 𝑦), or equally, 𝑧 = 𝑥 + 𝑦	mod	2.

Interaction information example

0
𝑥 𝑦 𝑧

0 0
0 1 1
1 0 1
1 1 0

𝐻(𝑋) = 

𝐼(𝑋; 𝑌) = 

𝐼(𝑋; 𝑌|𝑍) = 

𝐽 𝑋; 𝑌; 𝑍 = 

?
?
?

?

Thus any 2 variables functionally 
determine the 3rd, e.g. 𝑥, 𝑧 → 𝑦 !

𝑝

¼ 
¼ 
¼ 
¼ 

0 0 1 0 
... ... ... 0 

𝐻(𝑋|𝑌) = 

𝐻(𝑋|𝑌, 𝑍) = 

https://northeastern-datalab.github.io/cs7840/
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Interaction information example

0
𝑥 𝑦 𝑧

0 0
0 1 1
1 0 1
1 1 0

Similarly, 𝐻(𝑌) = 1 and 𝐻(𝑍) = 11

Similarly, all variables are pairwise independent𝐻(𝑋) = 1
0

1
Thus, if 𝑍 is observed, then 𝑋 and 𝑌 become dependent: 
(knowing 𝑋 = 𝑥 and 𝑍 = 𝑧, tells you what 𝑌 is: 𝑦 = 𝑧 − 𝑥	mod	2)

0

𝐼 𝑋; 𝑌 − 𝐼 𝑋; 𝑌 𝑍 =−1

Thus the conditional mutual information is bigger than the 
unconditional mutual information: 𝐼 𝑋; 𝑌 𝑍 > 𝐼(𝑋; 𝑌)

EXAMPLE: Consider the joint ensemble (𝑋, 𝑌, 𝑍) with Boolean domains 𝒳 =
𝒴 = 𝒵 = {0,1}. 𝑋 and 𝑌 are independent uniform binary variables. And let 
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8.3: Further exercises 141

Exercise 8.7.[2, p.143] Consider the ensemble XY Z in which AX = AY =
AZ = {0, 1}, x and y are independent with PX = {p, 1 − p} and
PY = {q, 1−q} and

z = (x + y)mod 2. (8.13)

(a) If q = 1/2, what is PZ? What is I(Z;X)?

(b) For general p and q, what is PZ? What is I(Z;X)? Notice that
this ensemble is related to the binary symmetric channel, with x =
input, y = noise, and z = output.

H(X|Y) H(Y|X)I(X;Y)

H(X)

H(Y)

H(X,Y)

Figure 8.2. A misleading
representation of entropies
(contrast with figure 8.1).

Three term entropies

Exercise 8.8.[3, p.143] Many texts draw figure 8.1 in the form of a Venn diagram
(figure 8.2). Discuss why this diagram is a misleading representation
of entropies. Hint: consider the three-variable ensemble XY Z in which
x ∈ {0, 1} and y ∈ {0, 1} are independent binary variables and z ∈ {0, 1}
is defined to be z = x + y mod 2.

8.3 Further exercises

The data-processing theorem

The data processing theorem states that data processing can only destroy
information.

Exercise 8.9.[3, p.144] Prove this theorem by considering an ensemble WDR
in which w is the state of the world, d is data gathered, and r is the
processed data, so that these three variables form a Markov chain

w → d → r, (8.14)

that is, the probability P (w, d, r) can be written as

P (w, d, r) = P (w)P (d |w)P (r | d). (8.15)

Show that the average information that R conveys about W, I(W ;R), is
less than or equal to the average information that D conveys about W ,
I(W ;D).

This theorem is as much a caution about our definition of ‘information’ as it
is a caution about data processing!
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140 8 — Dependent Random Variables

H(X,Y )

H(X)

H(Y )

I(X;Y )H(X |Y ) H(Y |X)

Figure 8.1. The relationship
between joint information,
marginal entropy, conditional
entropy and mutual entropy.

8.2 Exercises

! Exercise 8.1.[1 ] Consider three independent random variables u, v,w with en-
tropies Hu,Hv,Hw. Let X ≡ (U, V ) and Y ≡ (V,W ). What is H(X,Y )?
What is H(X |Y )? What is I(X;Y )?

! Exercise 8.2.[3, p.142] Referring to the definitions of conditional entropy (8.3–
8.4), confirm (with an example) that it is possible for H(X | y = bk) to
exceed H(X), but that the average, H(X |Y ), is less than H(X). So
data are helpful – they do not increase uncertainty, on average.

! Exercise 8.3.[2, p.143] Prove the chain rule for entropy, equation (8.7).
[H(X,Y ) = H(X) + H(Y |X)].

Exercise 8.4.[2, p.143] Prove that the mutual information I(X;Y ) ≡ H(X) −
H(X |Y ) satisfies I(X;Y ) = I(Y ;X) and I(X;Y ) ≥ 0.

[Hint: see exercise 2.26 (p.37) and note that

I(X;Y ) = DKL(P (x, y)||P (x)P (y)).] (8.11)

Exercise 8.5.[4 ] The ‘entropy distance’ between two random variables can be
defined to be the difference between their joint entropy and their mutual
information:

DH(X,Y ) ≡ H(X,Y ) − I(X;Y ). (8.12)

Prove that the entropy distance satisfies the axioms for a distance –
DH(X,Y ) ≥ 0, DH(X,X)= 0, DH(X,Y )=DH(Y,X), and DH(X,Z) ≤
DH(X,Y ) + DH(Y,Z). [Incidentally, we are unlikely to see DH(X,Y )
again but it is a good function on which to practise inequality-proving.]

Exercise 8.6.[2, p.147] A joint ensemble XY has the following joint distribution.

P (x, y) x
1 2 3 4

1 1/8 1/16 1/32 1/32

y 2 1/16 1/8 1/32 1/32

3 1/16 1/16 1/16 1/16

4 1/4 0 0 0
4
3
2
1

1 2 3 4

What is the joint entropy H(X,Y )? What are the marginal entropies
H(X) and H(Y )? For each value of y, what is the conditional entropy
H(X | y)? What is the conditional entropy H(X |Y )? What is the
conditional entropy of Y given X? What is the mutual information
between X and Y ?
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Exercise 8.7.[2, p.143] Consider the ensemble XY Z in which AX = AY =
AZ = {0, 1}, x and y are independent with PX = {p, 1 − p} and
PY = {q, 1−q} and

z = (x + y)mod 2. (8.13)

(a) If q = 1/2, what is PZ? What is I(Z;X)?

(b) For general p and q, what is PZ? What is I(Z;X)? Notice that
this ensemble is related to the binary symmetric channel, with x =
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(contrast with figure 8.1).

Three term entropies

Exercise 8.8.[3, p.143] Many texts draw figure 8.1 in the form of a Venn diagram
(figure 8.2). Discuss why this diagram is a misleading representation
of entropies. Hint: consider the three-variable ensemble XY Z in which
x ∈ {0, 1} and y ∈ {0, 1} are independent binary variables and z ∈ {0, 1}
is defined to be z = x + y mod 2.

8.3 Further exercises

The data-processing theorem

The data processing theorem states that data processing can only destroy
information.

Exercise 8.9.[3, p.144] Prove this theorem by considering an ensemble WDR
in which w is the state of the world, d is data gathered, and r is the
processed data, so that these three variables form a Markov chain

w → d → r, (8.14)

that is, the probability P (w, d, r) can be written as

P (w, d, r) = P (w)P (d |w)P (r | d). (8.15)

Show that the average information that R conveys about W, I(W ;R), is
less than or equal to the average information that D conveys about W ,
I(W ;D).

This theorem is as much a caution about our definition of ‘information’ as it
is a caution about data processing!
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Exercise 8.7.[2, p.143] Consider the ensemble XY Z in which AX = AY =
AZ = {0, 1}, x and y are independent with PX = {p, 1 − p} and
PY = {q, 1−q} and

z = (x + y)mod 2. (8.13)

(a) If q = 1/2, what is PZ? What is I(Z;X)?

(b) For general p and q, what is PZ? What is I(Z;X)? Notice that
this ensemble is related to the binary symmetric channel, with x =
input, y = noise, and z = output.
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Figure 8.2. A misleading
representation of entropies
(contrast with figure 8.1).

Three term entropies

Exercise 8.8.[3, p.143] Many texts draw figure 8.1 in the form of a Venn diagram
(figure 8.2). Discuss why this diagram is a misleading representation
of entropies. Hint: consider the three-variable ensemble XY Z in which
x ∈ {0, 1} and y ∈ {0, 1} are independent binary variables and z ∈ {0, 1}
is defined to be z = x + y mod 2.

8.3 Further exercises

The data-processing theorem

The data processing theorem states that data processing can only destroy
information.

Exercise 8.9.[3, p.144] Prove this theorem by considering an ensemble WDR
in which w is the state of the world, d is data gathered, and r is the
processed data, so that these three variables form a Markov chain

w → d → r, (8.14)

that is, the probability P (w, d, r) can be written as

P (w, d, r) = P (w)P (d |w)P (r | d). (8.15)

Show that the average information that R conveys about W, I(W ;R), is
less than or equal to the average information that D conveys about W ,
I(W ;D).

This theorem is as much a caution about our definition of ‘information’ as it
is a caution about data processing!
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Figure 8.3. A misleading
representation of entropies,
continued.

that the random outcome (x, y) might correspond to a point in the diagram,
and thus confuse entropies with probabilities.

Secondly, the depiction in terms of Venn diagrams encourages one to be-
lieve that all the areas correspond to positive quantities. In the special case of
two random variables it is indeed true that H(X |Y ), I(X;Y ) and H(Y |X)
are positive quantities. But as soon as we progress to three-variable ensembles,
we obtain a diagram with positive-looking areas that may actually correspond
to negative quantities. Figure 8.3 correctly shows relationships such as

H(X) + H(Z |X) + H(Y |X,Z) = H(X,Y,Z). (8.31)

But it gives the misleading impression that the conditional mutual information
I(X;Y |Z) is less than the mutual information I(X;Y ). In fact the area
labelled A can correspond to a negative quantity. Consider the joint ensemble
(X,Y,Z) in which x ∈ {0, 1} and y ∈ {0, 1} are independent binary variables
and z ∈ {0, 1} is defined to be z = x + y mod2. Then clearly H(X) =
H(Y ) = 1 bit. Also H(Z) = 1 bit. And H(Y |X) = H(Y ) = 1 since the two
variables are independent. So the mutual information between X and Y is
zero. I(X;Y ) = 0. However, if z is observed, X and Y become dependent —
knowing x, given z, tells you what y is: y = z − xmod 2. So I(X;Y |Z) = 1
bit. Thus the area labelled A must correspond to −1 bits for the figure to give
the correct answers.

The above example is not at all a capricious or exceptional illustration. The
binary symmetric channel with input X, noise Y , and output Z is a situation
in which I(X;Y ) = 0 (input and noise are independent) but I(X;Y |Z) > 0
(once you see the output, the unknown input and the unknown noise are
intimately related!).

The Venn diagram representation is therefore valid only if one is aware
that positive areas may represent negative quantities. With this proviso kept
in mind, the interpretation of entropies in terms of sets can be helpful (Yeung,
1991).

Solution to exercise 8.9 (p.141). For any joint ensemble XY Z, the following
chain rule for mutual information holds.

I(X;Y,Z) = I(X;Y ) + I(X;Z |Y ). (8.32)

Now, in the case w → d → r, w and r are independent given d, so
I(W ;R |D) = 0. Using the chain rule twice, we have:

I(W ;D,R) = I(W ;D) (8.33)

and
I(W ;D,R) = I(W ;R) + I(W ;D |R), (8.34)

so
I(W ;R) − I(W ;D) ≤ 0. (8.35)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

144 8 — Dependent Random Variables

H(Y|X,Z)

H(X)

H(Z)

I(X;Y)

H(Z|X) H(Z|X,Y)

I(X;Y|Z)A

H(Z|Y)

H(X|Y,Z)

H(Y)
H(X,Y|Z)

Figure 8.3. A misleading
representation of entropies,
continued.

that the random outcome (x, y) might correspond to a point in the diagram,
and thus confuse entropies with probabilities.

Secondly, the depiction in terms of Venn diagrams encourages one to be-
lieve that all the areas correspond to positive quantities. In the special case of
two random variables it is indeed true that H(X |Y ), I(X;Y ) and H(Y |X)
are positive quantities. But as soon as we progress to three-variable ensembles,
we obtain a diagram with positive-looking areas that may actually correspond
to negative quantities. Figure 8.3 correctly shows relationships such as

H(X) + H(Z |X) + H(Y |X,Z) = H(X,Y,Z). (8.31)

But it gives the misleading impression that the conditional mutual information
I(X;Y |Z) is less than the mutual information I(X;Y ). In fact the area
labelled A can correspond to a negative quantity. Consider the joint ensemble
(X,Y,Z) in which x ∈ {0, 1} and y ∈ {0, 1} are independent binary variables
and z ∈ {0, 1} is defined to be z = x + y mod2. Then clearly H(X) =
H(Y ) = 1 bit. Also H(Z) = 1 bit. And H(Y |X) = H(Y ) = 1 since the two
variables are independent. So the mutual information between X and Y is
zero. I(X;Y ) = 0. However, if z is observed, X and Y become dependent —
knowing x, given z, tells you what y is: y = z − xmod 2. So I(X;Y |Z) = 1
bit. Thus the area labelled A must correspond to −1 bits for the figure to give
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The above example is not at all a capricious or exceptional illustration. The
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in which I(X;Y ) = 0 (input and noise are independent) but I(X;Y |Z) > 0
(once you see the output, the unknown input and the unknown noise are
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The Venn diagram representation is therefore valid only if one is aware
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1991).
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chain rule for mutual information holds.
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Now, in the case w → d → r, w and r are independent given d, so
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H(X,Y )

H(X)

H(Y )

I(X;Y )H(X |Y ) H(Y |X)

Figure 8.1. The relationship
between joint information,
marginal entropy, conditional
entropy and mutual entropy.

8.2 Exercises

! Exercise 8.1.[1 ] Consider three independent random variables u, v,w with en-
tropies Hu,Hv,Hw. Let X ≡ (U, V ) and Y ≡ (V,W ). What is H(X,Y )?
What is H(X |Y )? What is I(X;Y )?

! Exercise 8.2.[3, p.142] Referring to the definitions of conditional entropy (8.3–
8.4), confirm (with an example) that it is possible for H(X | y = bk) to
exceed H(X), but that the average, H(X |Y ), is less than H(X). So
data are helpful – they do not increase uncertainty, on average.

! Exercise 8.3.[2, p.143] Prove the chain rule for entropy, equation (8.7).
[H(X,Y ) = H(X) + H(Y |X)].

Exercise 8.4.[2, p.143] Prove that the mutual information I(X;Y ) ≡ H(X) −
H(X |Y ) satisfies I(X;Y ) = I(Y ;X) and I(X;Y ) ≥ 0.

[Hint: see exercise 2.26 (p.37) and note that

I(X;Y ) = DKL(P (x, y)||P (x)P (y)).] (8.11)

Exercise 8.5.[4 ] The ‘entropy distance’ between two random variables can be
defined to be the difference between their joint entropy and their mutual
information:

DH(X,Y ) ≡ H(X,Y ) − I(X;Y ). (8.12)

Prove that the entropy distance satisfies the axioms for a distance –
DH(X,Y ) ≥ 0, DH(X,X)= 0, DH(X,Y )=DH(Y,X), and DH(X,Z) ≤
DH(X,Y ) + DH(Y,Z). [Incidentally, we are unlikely to see DH(X,Y )
again but it is a good function on which to practise inequality-proving.]

Exercise 8.6.[2, p.147] A joint ensemble XY has the following joint distribution.

P (x, y) x
1 2 3 4

1 1/8 1/16 1/32 1/32

y 2 1/16 1/8 1/32 1/32

3 1/16 1/16 1/16 1/16

4 1/4 0 0 0
4
3
2
1

1 2 3 4

What is the joint entropy H(X,Y )? What are the marginal entropies
H(X) and H(Y )? For each value of y, what is the conditional entropy
H(X | y)? What is the conditional entropy H(X |Y )? What is the
conditional entropy of Y given X? What is the mutual information
between X and Y ?
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8.4), confirm (with an example) that it is possible for H(X | y = bk) to
exceed H(X), but that the average, H(X |Y ), is less than H(X). So
data are helpful – they do not increase uncertainty, on average.

! Exercise 8.3.[2, p.143] Prove the chain rule for entropy, equation (8.7).
[H(X,Y ) = H(X) + H(Y |X)].

Exercise 8.4.[2, p.143] Prove that the mutual information I(X;Y ) ≡ H(X) −
H(X |Y ) satisfies I(X;Y ) = I(Y ;X) and I(X;Y ) ≥ 0.

[Hint: see exercise 2.26 (p.37) and note that

I(X;Y ) = DKL(P (x, y)||P (x)P (y)).] (8.11)

Exercise 8.5.[4 ] The ‘entropy distance’ between two random variables can be
defined to be the difference between their joint entropy and their mutual
information:

DH(X,Y ) ≡ H(X,Y ) − I(X;Y ). (8.12)

Prove that the entropy distance satisfies the axioms for a distance –
DH(X,Y ) ≥ 0, DH(X,X)= 0, DH(X,Y )=DH(Y,X), and DH(X,Z) ≤
DH(X,Y ) + DH(Y,Z). [Incidentally, we are unlikely to see DH(X,Y )
again but it is a good function on which to practise inequality-proving.]

Exercise 8.6.[2, p.147] A joint ensemble XY has the following joint distribution.

P (x, y) x
1 2 3 4

1 1/8 1/16 1/32 1/32

y 2 1/16 1/8 1/32 1/32

3 1/16 1/16 1/16 1/16

4 1/4 0 0 0
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What is the joint entropy H(X,Y )? What are the marginal entropies
H(X) and H(Y )? For each value of y, what is the conditional entropy
H(X | y)? What is the conditional entropy H(X |Y )? What is the
conditional entropy of Y given X? What is the mutual information
between X and Y ?
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Exercise 8.7.[2, p.143] Consider the ensemble XY Z in which AX = AY =
AZ = {0, 1}, x and y are independent with PX = {p, 1 − p} and
PY = {q, 1−q} and

z = (x + y)mod 2. (8.13)

(a) If q = 1/2, what is PZ? What is I(Z;X)?

(b) For general p and q, what is PZ? What is I(Z;X)? Notice that
this ensemble is related to the binary symmetric channel, with x =
input, y = noise, and z = output.

H(X|Y) H(Y|X)I(X;Y)

H(X)

H(Y)

H(X,Y)

Figure 8.2. A misleading
representation of entropies
(contrast with figure 8.1).

Three term entropies

Exercise 8.8.[3, p.143] Many texts draw figure 8.1 in the form of a Venn diagram
(figure 8.2). Discuss why this diagram is a misleading representation
of entropies. Hint: consider the three-variable ensemble XY Z in which
x ∈ {0, 1} and y ∈ {0, 1} are independent binary variables and z ∈ {0, 1}
is defined to be z = x + y mod 2.

8.3 Further exercises

The data-processing theorem

The data processing theorem states that data processing can only destroy
information.

Exercise 8.9.[3, p.144] Prove this theorem by considering an ensemble WDR
in which w is the state of the world, d is data gathered, and r is the
processed data, so that these three variables form a Markov chain

w → d → r, (8.14)

that is, the probability P (w, d, r) can be written as

P (w, d, r) = P (w)P (d |w)P (r | d). (8.15)

Show that the average information that R conveys about W, I(W ;R), is
less than or equal to the average information that D conveys about W ,
I(W ;D).

This theorem is as much a caution about our definition of ‘information’ as it
is a caution about data processing!
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Solution to exercise 8.3 (p.140). The chain rule for entropy follows from the
decomposition of a joint probability:

H(X,Y ) =
∑

xy

P (x, y) log
1

P (x, y)
(8.20)

=
∑

xy

P (x)P (y |x)
[
log

1
P (x)

+ log
1

P (y |x)

]
(8.21)

=
∑

x

P (x) log
1

P (x)
+
∑

x

P (x)
∑

y

P (y |x) log
1

P (y |x)
(8.22)

= H(X) + H(Y |X). (8.23)

Solution to exercise 8.4 (p.140). Symmetry of mutual information:

I(X;Y ) = H(X) − H(X |Y ) (8.24)

=
∑

x

P (x) log
1

P (x)
−
∑

xy

P (x, y) log
1

P (x | y)
(8.25)

=
∑

xy

P (x, y) log
P (x | y)
P (x)

(8.26)

=
∑

xy

P (x, y) log
P (x, y)

P (x)P (y)
. (8.27)

This expression is symmetric in x and y so

I(X;Y ) = H(X) − H(X |Y ) = H(Y ) − H(Y |X). (8.28)

We can prove that mutual information is positive in two ways. One is to
continue from

I(X;Y ) =
∑

x,y

P (x, y) log
P (x, y)

P (x)P (y)
(8.29)

which is a relative entropy and use Gibbs’ inequality (proved on p.44), which
asserts that this relative entropy is ≥ 0, with equality only if P (x, y) =
P (x)P (y), that is, if X and Y are independent.

The other is to use Jensen’s inequality on

−
∑

x,y

P (x, y) log
P (x)P (y)
P (x, y)

≥ − log
∑

x,y

P (x, y)
P (x, y)

P (x)P (y) = log 1 = 0. (8.30)

Solution to exercise 8.7 (p.141). z = x + y mod 2.

(a) If q = 1/2, PZ = {1/2, 1/2} and I(Z;X) = H(Z) − H(Z |X) = 1 − 1 = 0.

(b) For general q and p, PZ = {pq+(1−p)(1−q), p(1−q)+q(1−p)}. The mutual
information is I(Z;X) = H(Z)−H(Z |X) = H2(pq+(1−p)(1−q))−H2(q).

Three term entropies

Solution to exercise 8.8 (p.141). The depiction of entropies in terms of Venn
diagrams is misleading for at least two reasons.

First, one is used to thinking of Venn diagrams as depicting sets; but what
are the ‘sets’ H(X) and H(Y ) depicted in figure 8.2, and what are the objects
that are members of those sets? I think this diagram encourages the novice
student to make inappropriate analogies. For example, some students imagine
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Figure 8.3. A misleading
representation of entropies,
continued.

that the random outcome (x, y) might correspond to a point in the diagram,
and thus confuse entropies with probabilities.

Secondly, the depiction in terms of Venn diagrams encourages one to be-
lieve that all the areas correspond to positive quantities. In the special case of
two random variables it is indeed true that H(X |Y ), I(X;Y ) and H(Y |X)
are positive quantities. But as soon as we progress to three-variable ensembles,
we obtain a diagram with positive-looking areas that may actually correspond
to negative quantities. Figure 8.3 correctly shows relationships such as

H(X) + H(Z |X) + H(Y |X,Z) = H(X,Y,Z). (8.31)

But it gives the misleading impression that the conditional mutual information
I(X;Y |Z) is less than the mutual information I(X;Y ). In fact the area
labelled A can correspond to a negative quantity. Consider the joint ensemble
(X,Y,Z) in which x ∈ {0, 1} and y ∈ {0, 1} are independent binary variables
and z ∈ {0, 1} is defined to be z = x + y mod2. Then clearly H(X) =
H(Y ) = 1 bit. Also H(Z) = 1 bit. And H(Y |X) = H(Y ) = 1 since the two
variables are independent. So the mutual information between X and Y is
zero. I(X;Y ) = 0. However, if z is observed, X and Y become dependent —
knowing x, given z, tells you what y is: y = z − xmod 2. So I(X;Y |Z) = 1
bit. Thus the area labelled A must correspond to −1 bits for the figure to give
the correct answers.

The above example is not at all a capricious or exceptional illustration. The
binary symmetric channel with input X, noise Y , and output Z is a situation
in which I(X;Y ) = 0 (input and noise are independent) but I(X;Y |Z) > 0
(once you see the output, the unknown input and the unknown noise are
intimately related!).

The Venn diagram representation is therefore valid only if one is aware
that positive areas may represent negative quantities. With this proviso kept
in mind, the interpretation of entropies in terms of sets can be helpful (Yeung,
1991).

Solution to exercise 8.9 (p.141). For any joint ensemble XY Z, the following
chain rule for mutual information holds.

I(X;Y,Z) = I(X;Y ) + I(X;Z |Y ). (8.32)

Now, in the case w → d → r, w and r are independent given d, so
I(W ;R |D) = 0. Using the chain rule twice, we have:

I(W ;D,R) = I(W ;D) (8.33)

and
I(W ;D,R) = I(W ;R) + I(W ;D |R), (8.34)

so
I(W ;R) − I(W ;D) ≤ 0. (8.35)

...
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are positive quantities. But as soon as we progress to three-variable ensembles,
we obtain a diagram with positive-looking areas that may actually correspond
to negative quantities. Figure 8.3 correctly shows relationships such as

H(X) + H(Z |X) + H(Y |X,Z) = H(X,Y,Z). (8.31)

But it gives the misleading impression that the conditional mutual information
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H(Y ) = 1 bit. Also H(Z) = 1 bit. And H(Y |X) = H(Y ) = 1 since the two
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zero. I(X;Y ) = 0. However, if z is observed, X and Y become dependent —
knowing x, given z, tells you what y is: y = z − xmod 2. So I(X;Y |Z) = 1
bit. Thus the area labelled A must correspond to −1 bits for the figure to give
the correct answers.

The above example is not at all a capricious or exceptional illustration. The
binary symmetric channel with input X, noise Y , and output Z is a situation
in which I(X;Y ) = 0 (input and noise are independent) but I(X;Y |Z) > 0
(once you see the output, the unknown input and the unknown noise are
intimately related!).

The Venn diagram representation is therefore valid only if one is aware
that positive areas may represent negative quantities. With this proviso kept
in mind, the interpretation of entropies in terms of sets can be helpful (Yeung,
1991).

Solution to exercise 8.9 (p.141). For any joint ensemble XY Z, the following
chain rule for mutual information holds.

I(X;Y,Z) = I(X;Y ) + I(X;Z |Y ). (8.32)

Now, in the case w → d → r, w and r are independent given d, so
I(W ;R |D) = 0. Using the chain rule twice, we have:

I(W ;D,R) = I(W ;D) (8.33)

and
I(W ;D,R) = I(W ;R) + I(W ;D |R), (8.34)

so
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conditional mutual inf.unconditional mutual inf.
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Figure 8.3. A misleading
representation of entropies,
continued.

that the random outcome (x, y) might correspond to a point in the diagram,
and thus confuse entropies with probabilities.

Secondly, the depiction in terms of Venn diagrams encourages one to be-
lieve that all the areas correspond to positive quantities. In the special case of
two random variables it is indeed true that H(X |Y ), I(X;Y ) and H(Y |X)
are positive quantities. But as soon as we progress to three-variable ensembles,
we obtain a diagram with positive-looking areas that may actually correspond
to negative quantities. Figure 8.3 correctly shows relationships such as

H(X) + H(Z |X) + H(Y |X,Z) = H(X,Y,Z). (8.31)

But it gives the misleading impression that the conditional mutual information
I(X;Y |Z) is less than the mutual information I(X;Y ). In fact the area
labelled A can correspond to a negative quantity. Consider the joint ensemble
(X,Y,Z) in which x ∈ {0, 1} and y ∈ {0, 1} are independent binary variables
and z ∈ {0, 1} is defined to be z = x + y mod2. Then clearly H(X) =
H(Y ) = 1 bit. Also H(Z) = 1 bit. And H(Y |X) = H(Y ) = 1 since the two
variables are independent. So the mutual information between X and Y is
zero. I(X;Y ) = 0. However, if z is observed, X and Y become dependent —
knowing x, given z, tells you what y is: y = z − xmod 2. So I(X;Y |Z) = 1
bit. Thus the area labelled A must correspond to −1 bits for the figure to give
the correct answers.

The above example is not at all a capricious or exceptional illustration. The
binary symmetric channel with input X, noise Y , and output Z is a situation
in which I(X;Y ) = 0 (input and noise are independent) but I(X;Y |Z) > 0
(once you see the output, the unknown input and the unknown noise are
intimately related!).

The Venn diagram representation is therefore valid only if one is aware
that positive areas may represent negative quantities. With this proviso kept
in mind, the interpretation of entropies in terms of sets can be helpful (Yeung,
1991).

Solution to exercise 8.9 (p.141). For any joint ensemble XY Z, the following
chain rule for mutual information holds.

I(X;Y,Z) = I(X;Y ) + I(X;Z |Y ). (8.32)

Now, in the case w → d → r, w and r are independent given d, so
I(W ;R |D) = 0. Using the chain rule twice, we have:

I(W ;D,R) = I(W ;D) (8.33)

and
I(W ;D,R) = I(W ;R) + I(W ;D |R), (8.34)

so
I(W ;R) − I(W ;D) ≤ 0. (8.35)
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that the random outcome (x, y) might correspond to a point in the diagram,
and thus confuse entropies with probabilities.

Secondly, the depiction in terms of Venn diagrams encourages one to be-
lieve that all the areas correspond to positive quantities. In the special case of
two random variables it is indeed true that H(X |Y ), I(X;Y ) and H(Y |X)
are positive quantities. But as soon as we progress to three-variable ensembles,
we obtain a diagram with positive-looking areas that may actually correspond
to negative quantities. Figure 8.3 correctly shows relationships such as

H(X) + H(Z |X) + H(Y |X,Z) = H(X,Y,Z). (8.31)

But it gives the misleading impression that the conditional mutual information
I(X;Y |Z) is less than the mutual information I(X;Y ). In fact the area
labelled A can correspond to a negative quantity. Consider the joint ensemble
(X,Y,Z) in which x ∈ {0, 1} and y ∈ {0, 1} are independent binary variables
and z ∈ {0, 1} is defined to be z = x + y mod2. Then clearly H(X) =
H(Y ) = 1 bit. Also H(Z) = 1 bit. And H(Y |X) = H(Y ) = 1 since the two
variables are independent. So the mutual information between X and Y is
zero. I(X;Y ) = 0. However, if z is observed, X and Y become dependent —
knowing x, given z, tells you what y is: y = z − xmod 2. So I(X;Y |Z) = 1
bit. Thus the area labelled A must correspond to −1 bits for the figure to give
the correct answers.

The above example is not at all a capricious or exceptional illustration. The
binary symmetric channel with input X, noise Y , and output Z is a situation
in which I(X;Y ) = 0 (input and noise are independent) but I(X;Y |Z) > 0
(once you see the output, the unknown input and the unknown noise are
intimately related!).

The Venn diagram representation is therefore valid only if one is aware
that positive areas may represent negative quantities. With this proviso kept
in mind, the interpretation of entropies in terms of sets can be helpful (Yeung,
1991).

Solution to exercise 8.9 (p.141). For any joint ensemble XY Z, the following
chain rule for mutual information holds.

I(X;Y,Z) = I(X;Y ) + I(X;Z |Y ). (8.32)

Now, in the case w → d → r, w and r are independent given d, so
I(W ;R |D) = 0. Using the chain rule twice, we have:

I(W ;D,R) = I(W ;D) (8.33)

and
I(W ;D,R) = I(W ;R) + I(W ;D |R), (8.34)

so
I(W ;R) − I(W ;D) ≤ 0. (8.35)

[Cover,Thomas'06] & [MacKay'02] on three-term entropies

PROBLEMS 49

(b) Calculate the average entropy H(p) when the probability p is
chosen uniformly in the range 0 ≤ p ≤ 1.

(c) (Optional ) Calculate the average entropy H(p1, p2, p3), where
(p1, p2, p3) is a uniformly distributed probability vector. Gen-
eralize to dimension n.

2.25 Venn diagrams . There isn’t really a notion of mutual information
common to three random variables. Here is one attempt at a defini-
tion: Using Venn diagrams, we can see that the mutual information
common to three random variables X, Y , and Z can be defined by

I (X;Y ; Z) = I (X;Y) − I (X;Y |Z) .

This quantity is symmetric in X, Y , and Z, despite the preceding
asymmetric definition. Unfortunately, I (X;Y ; Z) is not necessar-
ily nonnegative. Find X, Y , and Z such that I (X;Y ; Z) < 0, and
prove the following two identities:
(a) I (X;Y ; Z) = H(X, Y,Z) − H(X) − H(Y) − H(Z) +

I (X;Y) + I (Y ;Z) + I (Z;X).
(b) I (X;Y ; Z) = H(X, Y, Z) − H(X, Y ) − H(Y, Z) −

H(Z, X) + H(X) + H(Y) + H(Z).
The first identity can be understood using the Venn diagram analogy
for entropy and mutual information. The second identity follows
easily from the first.

2.26 Another proof of nonnegativity of relative entropy . In view of the
fundamental nature of the result D(p||q) ≥ 0, we will give another
proof.
(a) Show that ln x ≤ x − 1 for 0 < x < ∞.
(b) Justify the following steps:

−D(p||q) =
∑

x

p(x) ln
q(x)

p(x)
(2.176)

≤
∑

x

p(x)

(
q(x)

p(x)
− 1

)
(2.177)

≤ 0. (2.178)

(c) What are the conditions for equality?

2.27 Grouping rule for entropy . Let p = (p1, p2, . . . , pm) be a prob-
ability distribution on m elements (i.e., pi ≥ 0 and

∑m
i=1 pi = 1).

conditional mutual inf.unconditional mutual inf.
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[Yeung'08] disagrees and heavily uses "information diagrams"
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Interaction information
𝐽(𝑋; 𝑌; 𝑍) 

− 𝐻 𝑋, 𝑌 + 𝐻 𝑋, 𝑍 + 𝐻 𝑌, 𝑍  

• measures the influence of a variable 𝑍 on the amount of information 
shared between 𝑋 and 𝑌.* (And it is symmetric) 

• It is positive when 𝑍 inhibits (i.e., accounts for or explains some of) the 
correlation between 𝑋 and 𝑌 (that happens here).

• It is negative when 𝑍 facilitates or enhances the correlation (e.g., when 𝑋 
and 𝑌 are independent but not conditionally independent given 𝑍, that's 
our last example). 

𝐽 𝑋; 𝑌; 𝑍 = 𝐻 𝑋 + 𝐻 𝑌 + 𝐻 𝑍  

+𝐻(𝑋, 𝑌, 𝑍)

* Alternative notations include ℐ 𝑋; 𝑌; 𝑍 	and 𝑅 𝑋; 𝑌; 𝑍 . We don't recommend calling it "mutual information" and thus also replace the more common notation 𝐼 𝑋; 𝑌; 𝑍  with 𝐽 𝑋; 𝑌; 𝑍 . 
For more details, see https://en.wikipedia.org/wiki/Interaction_information . 

https://northeastern-datalab.github.io/cs7840/
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Entropy rates of
Markov Chains
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Markov Chain
.7

.2
.3 .1

.3

.5.6 .1
.2

B

M S

State transition matrix 𝐏:

.7 .2 .1

.3 .6 .1

.3 .2 .5
𝐏 =

B M S
B

M
S

𝑃A,B = ℙ 𝑋CD* = 𝑗	|𝑋C = 𝑖 : 
      probability of choosing 𝑗 after 𝑖

How to find the stationary distribution 𝛍?

EXAMPLE: restaurants

Σ
1
1
1

Σ 1.3 1.0 .7

𝐏A,: row vector (probability distribution)

row-stochastic

?ℙ M|B = 0.2

https://northeastern-datalab.github.io/cs7840/
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Markov Chain
.7

.2
.3 .1

.3

.5.6 .1
.2

B

M S

State transition matrix 𝐏:

.7 .2 .1

.3 .6 .1

.3 .2 .5
𝐏 =

B M S
B

M
S

𝑃A,B = ℙ 𝑋CD* = 𝑗	|𝑋C = 𝑖 : 
      probability of choosing 𝑗 after 𝑖

How to find the stationary distribution 𝛍?

𝛍 = 𝐏F𝛍

𝛍 =
1/2
1/3
1/6

EXAMPLE: restaurants

Σ
1
1
1

Σ 1.3 1.0 .7

𝐏A,: row vector (probability distribution)

row-stochastic

By finding the largest eigenvector of 𝐏, 
i.e. solving an equation system:

What would be the state transition matrix 𝐏′ with 
same stationary distribution 𝛍	if there was no 
memory: ℙ 𝑋6W% = 𝑗	|𝑋6 = 𝑖 = ℙ 𝑋6W% = 𝑗	

𝜇B = ∑A 𝜇A𝑃A,B for all 𝑗

1.460𝐻 𝛍 =

?

ℙ M|B = 0.2
transpose

https://northeastern-datalab.github.io/cs7840/
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Markov Chain
.7

.2
.3 .1

.3

.5.6 .1
.2

B

M S

State transition matrix 𝐏:

.7 .2 .1

.3 .6 .1

.3 .2 .5
𝐏 =

B M S
B

M
S

𝑃A,B = ℙ 𝑋CD* = 𝑗	|𝑋C = 𝑖 : 
      probability of choosing 𝑗 after 𝑖

How to find the stationary distribution 𝛍?

𝛍 =
1/2
1/3
1/6

EXAMPLE: restaurants

Σ
1
1
1

Σ 1.3 1.0 .7

𝐏A,: row vector (probability distribution)

row-stochastic

By finding the largest eigenvector of 𝐏, 
i.e. solving an equation system:

What would be the state transition matrix 𝐏′ with 
same stationary distribution 𝛍	if there was no 
memory: ℙ 𝑋6W% = 𝑗	|𝑋6 = 𝑖 = ℙ 𝑋6W% = 𝑗	

1/2 1/3 1/6
1/2 1/3 1/6
1/2 1/3 1/6

𝐏′ =

B M S
B

M
S

Σ
1
1
1

Σ 1.5 1.0 .5

𝑃A,B′ = 𝜇B 

𝜇B = ∑A 𝜇A𝑃A,B for all 𝑗

1.460𝐻 𝛍 =

ℙ M|B = 0.2 𝛍 = 𝐏F𝛍
transpose
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Markov Chain

Which one has a higher "entropy rate"?

How to find the stationary distribution 𝛍?
By finding the largest eigenvector of 𝐏, 
i.e. solving an equation system:.7

.2
.3 .1

.3

.5.6 .1
.2

ℙ M|B = 0.2 B

M S

State transition matrix 𝐏:

.7 .2 .1

.3 .6 .1

.3 .2 .5
𝐏 =

B M S
B

M
S

𝑃A,B = ℙ 𝑋CD* = 𝑗	|𝑋C = 𝑖 : 
      probability of choosing 𝑗 after 𝑖

EXAMPLE: restaurants

Σ
1
1
1

Σ 1.3 1.0 .7

𝐏A,: row vector (probability distribution)

row-stochastic

𝛍 =
1/2
1/3
1/6

𝜇B = ∑A 𝜇A𝑃A,B 

1.460𝐻 𝛍 =

?Code: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

𝛍 = 𝐏F𝛍
transpose

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb
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Markov Chains and information measures
𝑋 → 𝑌 → 𝑍 is a Markov chain if

𝑝 𝑥, 𝑦, 𝑧 = 
?

https://northeastern-datalab.github.io/cs7840/
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Markov Chains and information measures
𝑋 → 𝑌 → 𝑍 is a Markov chain if

𝑝 𝑥, 𝑦, 𝑧 = ?
𝑋 ⊥ 𝑍|𝑌 , and thus:

The future depends only on the current state 
(not the previous ones)

https://northeastern-datalab.github.io/cs7840/
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Markov Chains and information measures
𝑋 → 𝑌 → 𝑍 is a Markov chain if

𝑝 𝑥, 𝑦, 𝑧 = 

?𝑝 𝑥, 𝑧|𝑦 = 

In general, 𝑝 𝑥, 𝑦, 𝑧 = 𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑥, 𝑦)𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑦)
𝑋 ⊥ 𝑍|𝑌 , and thus:

The future depends only on the current state 
(not the previous ones)

https://northeastern-datalab.github.io/cs7840/
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Markov Chains and information measures
𝑋 → 𝑌 → 𝑍 is a Markov chain if

𝑝 𝑥, 𝑦, 𝑧 = 

?
𝑝 𝑥, 𝑧|𝑦 = 

In general, 𝑝 𝑥, 𝑦, 𝑧 = 𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑥, 𝑦)𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑦)

𝐼 𝑋; 𝑍 𝑌 = 

In general, 𝑝 𝑥, 𝑧|𝑦 =  𝑝(𝑥|𝑦) ⋅ 𝑝(𝑧|𝑥, 𝑦)𝑝(𝑥|𝑦) ⋅ 𝑝(𝑧|𝑦) 

𝑋 ⊥ 𝑍|𝑌 , and thus:
The future depends only on the current state 
(not the previous ones)

https://northeastern-datalab.github.io/cs7840/
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Markov Chains and information measures
𝑋 → 𝑌 → 𝑍 is a Markov chain if

𝑝 𝑥, 𝑦, 𝑧 = 

?

𝑝 𝑥, 𝑧|𝑦 = 

In general, 𝑝 𝑥, 𝑦, 𝑧 = 𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑥, 𝑦)𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑦)

𝐼 𝑋; 𝑍 𝑌 = 

In general, 𝑝 𝑥, 𝑧|𝑦 =  𝑝(𝑥|𝑦) ⋅ 𝑝(𝑧|𝑥, 𝑦)𝑝(𝑥|𝑦) ⋅ 𝑝(𝑧|𝑦) 

What does this mean for the interaction information 𝐽 𝑋; 𝑌; 𝑍 ?

0 

𝑋 ⊥ 𝑍|𝑌 , and thus:
The future depends only on the current state 
(not the previous ones)

https://northeastern-datalab.github.io/cs7840/
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Markov Chains and information measures

𝑝 𝑥, 𝑦, 𝑧 = 

𝑝 𝑥, 𝑧|𝑦 = 

𝐼 𝑋; 𝑍 𝑌 = 

𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑦)

What does this mean for the interaction information 𝐽 𝑋; 𝑌; 𝑍 ?

𝑝(𝑥|𝑦) ⋅ 𝑝(𝑧|𝑦) 
0 

• Recall: 𝐽 𝑋; 𝑍; 𝑌 	measures the influence of a variable 𝑌 on the amount of 
information shared between 𝑋 and 𝑍. 

𝐽 𝑋; 𝑍; 𝑌 = 𝐼 𝑋; 𝑍 − 𝐼 𝑋; 𝑍 𝑌 = 𝐼(𝑋; 𝑍) ≥ 0 

• It is positive when 𝑌 inhibits (i.e., accounts for or explains some of) the correlation 
between 𝑋 and 𝑍 (that happens here).

• It is negative when 𝑌 facilitates or enhances the correlation (e.g., when 𝑋 and 𝑌 are 
independent yet not conditionally independent given 𝑍, see earlier example). 

𝑋 → 𝑌 → 𝑍 is a Markov chain if
In general, 𝑝 𝑥, 𝑦, 𝑧 = 𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑥, 𝑦)
In general, 𝑝 𝑥, 𝑧|𝑦 =  𝑝(𝑥|𝑦) ⋅ 𝑝(𝑧|𝑥, 𝑦)

𝑋 ⊥ 𝑍|𝑌 , and thus:

= 0

The future depends only on the current state 
(not the previous ones)

https://northeastern-datalab.github.io/cs7840/
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Markov Chains and stationary stochastic processes

𝑝 𝑥, 𝑦, 𝑧 = 

𝑝 𝑥, 𝑧|𝑦 = 

𝐼 𝑋; 𝑍 𝑌 = 

𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑦)
𝑝(𝑥|𝑦) ⋅ 𝑝(𝑧|𝑦) 
0 

?
A discrete stochastic process (𝑋%, 𝑋$, … ) is a Markov chain if

𝑋 → 𝑌 → 𝑍 is a Markov chain if
In general, 𝑝 𝑥, 𝑦, 𝑧 = 𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑥, 𝑦)
In general, 𝑝 𝑥, 𝑧|𝑦 =  𝑝(𝑥|𝑦) ⋅ 𝑝(𝑧|𝑥, 𝑦)

𝑋 ⊥ 𝑍|𝑌 , and thus:

https://northeastern-datalab.github.io/cs7840/
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Markov Chains and stationary stochastic processes

𝑝 𝑥, 𝑦, 𝑧 = 

𝑝 𝑥, 𝑧|𝑦 = 

𝐼 𝑋; 𝑍 𝑌 = 

𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑦)
𝑝(𝑥|𝑦) ⋅ 𝑝(𝑧|𝑦) 
0 

A stochastic process 𝑋! = (𝑋%, 𝑋$, … ) is stationary if ...

?

A discrete stochastic process (𝑋%, 𝑋$, … ) is a Markov chain if each RV depends only on the 
one preceding it and is conditionally independent of all the other preceding RVs

ℙ 𝑥6W%|𝑥6, 𝑥6*%, … , 𝑥% = ℙ 𝑥6W%|𝑥6,	

𝑋 → 𝑌 → 𝑍 is a Markov chain if
In general, 𝑝 𝑥, 𝑦, 𝑧 = 𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑥, 𝑦)
In general, 𝑝 𝑥, 𝑧|𝑦 =  𝑝(𝑥|𝑦) ⋅ 𝑝(𝑧|𝑥, 𝑦)

𝑋 ⊥ 𝑍|𝑌 , and thus:

https://northeastern-datalab.github.io/cs7840/
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Markov Chains and stationary stochastic processes
𝑋 → 𝑌 → 𝑍 is a Markov chain if

𝑝 𝑥, 𝑦, 𝑧 = 

𝑝 𝑥, 𝑧|𝑦 = 

𝐼 𝑋; 𝑍 𝑌 = 

𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑦)
𝑝(𝑥|𝑦) ⋅ 𝑝(𝑧|𝑦) 
0 

A discrete stochastic process (𝑋%, 𝑋$, … ) is a Markov chain if each RV depends only on the 
one preceding it and is conditionally independent of all the other preceding RVs

ℙ 𝑥6W%|𝑥6, 𝑥6*%, … , 𝑥% = ℙ 𝑥6W%|𝑥6,	

A stochastic process 𝑋! = (𝑋%, 𝑋$, … ) is stationary if the joint distribution 
of any subsequence is invariant w.r.t. shifts in the time index

ℙ (𝑥%, 𝑥$, … , 𝑥X) = ℙ (𝑥%Wℓ, 𝑥$Wℓ, … , 𝑥XWℓ)

In general, 𝑝 𝑥, 𝑦, 𝑧 = 𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑥, 𝑦)
In general, 𝑝 𝑥, 𝑧|𝑦 =  𝑝(𝑥|𝑦) ⋅ 𝑝(𝑧|𝑥, 𝑦)

𝑋 ⊥ 𝑍|𝑌 , and thus:

https://northeastern-datalab.github.io/cs7840/


280Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Entropy rate for stationary Markov Chain

𝐻 𝒳 = where the conditional entropy is calculated using the 
stationary distribution (!) 

=A
!
𝜇! ⋅ 𝐻(𝑋$|𝑋% = 𝑖)

= −A
!
𝜇! ⋅ 𝑃!Z ⋅ lg(𝑃!Z)

= 𝔼!~\[𝐻(𝐏!:)]=A
!
𝜇! ⋅ 𝐻(𝐏!:)

𝐻(𝑋$|𝑋%)

For stationary Markov Chain, the entropy rate is

𝐻 𝑋%, 𝑋$, … , 𝑋6 → 𝑛 ⋅ 𝐻(𝒳)  𝐻 𝒳 = 

The entropy rate of a stochastic process {𝑋!} is the average entropy per symbol:

For a stationary stochastic process, this is equal to the rate of information innovation

lim
6→_

	
1
𝑛 ⋅ 𝐻(𝑋%, 𝑋$, … , 𝑋6)

lim
6→_

𝐻(𝑋6|𝑋6*%, … , 𝑋%)𝐻 𝒳 = 

https://northeastern-datalab.github.io/cs7840/
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Markov Chain (cont.) How to find the stationary distribution 𝛍?
By finding the largest eigenvector of 𝐏, 
i.e. solving an equation system:.7

.2
.3 .1

.3

.5.6 .1
.2

ℙ M|B = 0.2 B

M S

State transition matrix 𝐏:

.7 .2 .1

.3 .6 .1

.3 .2 .5
𝐏 =

B M S
B

M
S

𝑃A,B = ℙ 𝑋CD* = 𝑗	|𝑋C = 𝑖 : 
      probability of choosing 𝑗 after 𝑖

EXAMPLE: restaurants

Σ
1
1
1

Σ 1.3 1.0 .7

𝐏A,: row vector (probability distribution)

row-stochastic

𝛍 =
1/2
1/3
1/6

𝜇B = ∑A 𝜇A𝑃A,B 

1.460𝐻 𝛍 =

𝐻 𝐏 = 

Entropy rate of 𝐏:

?
Code: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

𝛍 = 𝐏F𝛍
transpose

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb


282Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Markov Chain (cont.) How to find the stationary distribution 𝛍?
By finding the largest eigenvector of 𝐏, 
i.e. solving an equation system:.7

.2
.3 .1

.3

.5.6 .1
.2

ℙ M|B = 0.2 B

M S

State transition matrix 𝐏:

.7 .2 .1

.3 .6 .1

.3 .2 .5
𝐏 =

B M S
B

M
S

𝑃A,B = ℙ 𝑋CD* = 𝑗	|𝑋C = 𝑖 : 
      probability of choosing 𝑗 after 𝑖

EXAMPLE: restaurants

Σ
1
1
1

Σ 1.3 1.0 .7

𝐏A,: row vector (probability distribution)

row-stochastic

𝛍 =
1/2
1/3
1/6

𝜇B = ∑A 𝜇A𝑃A,B 

1.460𝐻 𝛍 =

𝐻 𝐏 = 

Entropy rate of 𝐏:
𝔼A~G[𝐻(𝐏A:)]

= 1.258=`
A
𝜇A ⋅ 𝐻(𝐏A:)

Code: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

𝛍 = 𝐏F𝛍
transpose

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb
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Markov Chain

𝑝

𝐏 =

EXAMPLE: A simple two-state Markov Chain

𝑝̅ = 1 − 𝑝
𝑝̅

𝑝̅
1 2 𝑝

?

https://northeastern-datalab.github.io/cs7840/
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Markov Chain

𝑝

𝑝 𝑝̅ 
𝑝̅ 𝑝𝐏 =

EXAMPLE: A simple two-state Markov Chain

𝑝̅ = 1 − 𝑝
𝑝̅

𝑝̅
1 2 𝑝

𝛍 = ?

https://northeastern-datalab.github.io/cs7840/
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Markov Chain

𝑝

𝑝 𝑝̅ 
𝑝̅ 𝑝𝐏 =

EXAMPLE: A simple two-state Markov Chain

𝑝̅ = 1 − 𝑝
𝑝̅

𝑝̅
1 2 𝑝

𝛍 = 0.5
0.5

𝐻 𝛍 = ?

𝑝 = 0.95:

𝑝 = 0.05:

Code: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb
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Markov Chain

𝑝

𝑝 𝑝̅ 
𝑝̅ 𝑝𝐏 =

EXAMPLE: A simple two-state Markov Chain

𝑝̅ = 1 − 𝑝
𝑝̅

𝑝̅
1 2 𝑝

𝛍 = 0.5
0.5

1𝐻 𝛍 = 

𝑝 = 0.95:

𝑝 = 0.05:

𝐻 𝐏 = ?
Code: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

https://northeastern-datalab.github.io/cs7840/
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Markov Chain

𝑝

𝑝 𝑝̅ 
𝑝̅ 𝑝𝐏 =

EXAMPLE: A simple two-state Markov Chain

𝑝̅ = 1 − 𝑝
𝑝̅

𝑝̅
1 2 𝑝

𝛍 = 0.5
0.5

1𝐻 𝛍 = 

𝑝 = 0.95:

𝑝 = 0.05:

𝐻 𝐏 = 

= 𝐻B 𝑝

𝔼A~G[𝐻(𝐏A:)] 

Code: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb 

𝐻B 𝑝 = 0.286

https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb
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Data Processing
Inequality

https://northeastern-datalab.github.io/cs7840/
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Intuitively, the data processing inequality states that no clever transformation of a received 
representation 𝑌 can increase the information about the original information 𝑋.

Data Processing Inequality for 𝑋 → 𝑌 → 𝑍

THEOREM: Suppose we have a Markov chain 𝑋 → 𝑌 → 𝑍 (and thus 𝑋 ⊥ 𝑍|𝑌), then

≤ or ≥

?𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍)

https://northeastern-datalab.github.io/cs7840/
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Intuitively, the data processing inequality states that no clever transformation of a received 
representation 𝑌 can increase the information about the original information 𝑋.

Data Processing Inequality for 𝑋 → 𝑌 → 𝑍

THEOREM: Suppose we have a Markov chain 𝑋 → 𝑌 → 𝑍 (and thus 𝑋 ⊥ 𝑍|𝑌), then

𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍)≥

COROLLARY: If 𝑍 = 𝑓(𝑌), then 𝐼 𝑋; 𝑌 ≥ 𝐼 𝑋; 𝑓 𝑌 . Thus functions of 𝑌	cannot increase the 
information about 𝑋. In other words, no processing of 𝑌, deterministic or random, can increase 
the information that 𝑌 contains about 𝑋 (unless you add additional outside information).

This follows from 𝑋 → 𝑌 → 𝑓(𝑌) forming a Markov chain.

https://northeastern-datalab.github.io/cs7840/
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Intuitively, the data processing inequality states that no clever transformation of a received 
representation 𝑌 can increase the information about the original information 𝑋.

Data Processing Inequality for 𝑋 → 𝑌 → 𝑍

THEOREM: Suppose we have a Markov chain 𝑋 → 𝑌 → 𝑍 (and thus 𝑋 ⊥ 𝑍|𝑌), then

𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍)≥

𝐼 𝑋; 𝑌, 𝑍 = 
PROOF:

𝐼 𝑋; (𝑌, 𝑍)  

?

https://northeastern-datalab.github.io/cs7840/
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Intuitively, the data processing inequality states that no clever transformation of a received 
representation 𝑌 can increase the information about the original information 𝑋.

Data Processing Inequality for 𝑋 → 𝑌 → 𝑍

THEOREM: Suppose we have a Markov chain 𝑋 → 𝑌 → 𝑍 (and thus 𝑋 ⊥ 𝑍|𝑌), then

𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍)≥

𝐼 𝑋; 𝑌, 𝑍 = 
PROOF:

𝐻 𝑋 − 𝐻(𝑋|𝑌, 𝑍) = 𝐻 𝑋 + −𝐻 𝑋 𝑍 + 𝐻 𝑋 𝑍 − 𝐻(𝑋|𝑌, 𝑍) 

=	𝐼 𝑋; (𝑌, 𝑍)  𝐼 𝑋|(𝑌, 𝑍)  ? + ?

https://northeastern-datalab.github.io/cs7840/
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Intuitively, the data processing inequality states that no clever transformation of a received 
representation 𝑌 can increase the information about the original information 𝑋.

Data Processing Inequality for 𝑋 → 𝑌 → 𝑍

THEOREM: Suppose we have a Markov chain 𝑋 → 𝑌 → 𝑍 (and thus 𝑋 ⊥ 𝑍|𝑌), then

𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍)≥

𝐼 𝑋; 𝑌, 𝑍 = 
PROOF:

𝐻 𝑋 − 𝐻(𝑋|𝑌, 𝑍) = 𝐻 𝑋 + −𝐻 𝑋 𝑍 + 𝐻 𝑋 𝑍 − 𝐻(𝑋|𝑌, 𝑍) 

= 	 𝐼 𝑋; 𝑍  

(similarly, 
from symmetry)

𝐼 𝑋; (𝑌, 𝑍)  𝐼 𝑋|(𝑌, 𝑍)  

?

𝐼(𝑋; 𝑌|𝑍) + 

= 	 𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍|𝑌) + 

https://northeastern-datalab.github.io/cs7840/
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Intuitively, the data processing inequality states that no clever transformation of a received 
representation 𝑌 can increase the information about the original information 𝑋.

Data Processing Inequality for 𝑋 → 𝑌 → 𝑍

THEOREM: Suppose we have a Markov chain 𝑋 → 𝑌 → 𝑍 (and thus 𝑋 ⊥ 𝑍|𝑌), then

𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍)≥

𝐼 𝑋; 𝑌, 𝑍 = 
PROOF:

𝐻 𝑋 − 𝐻(𝑋|𝑌, 𝑍) = 

= 	 𝐼 𝑋; 𝑍  

(similarly, 
from symmetry)

𝐼 𝑋; (𝑌, 𝑍)  𝐼 𝑋|(𝑌, 𝑍)  𝐼(𝑋; 𝑌|𝑍) + 

= 	 𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍|𝑌) + 

𝐼 𝑋; 𝑌 = 𝐼 𝑋; 𝑍 + 𝐼(𝑋; 𝑌|𝑍) 

?

= 0
⇒

𝐻 𝑋 + −𝐻 𝑋 𝑍 + 𝐻 𝑋 𝑍 − 𝐻(𝑋|𝑌, 𝑍) 

https://northeastern-datalab.github.io/cs7840/
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Intuitively, the data processing inequality states that no clever transformation of a received 
representation 𝑌 can increase the information about the original information 𝑋.

Data Processing Inequality for 𝑋 → 𝑌 → 𝑍

THEOREM: Suppose we have a Markov chain 𝑋 → 𝑌 → 𝑍 (and thus 𝑋 ⊥ 𝑍|𝑌), then

𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍)≥

𝐼 𝑋; 𝑌, 𝑍 = 
PROOF:

𝐻 𝑋 − 𝐻(𝑋|𝑌, 𝑍) = 

= 	 𝐼 𝑋; 𝑍  

(similarly, 
from symmetry)

𝐼 𝑋; (𝑌, 𝑍)  𝐼 𝑋|(𝑌, 𝑍)  𝐼(𝑋; 𝑌|𝑍) + 

= 	 𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍|𝑌) + 

𝐼 𝑋; 𝑌 = 𝐼 𝑋; 𝑍 + 𝐼(𝑋; 𝑌|𝑍) 
= 0

⇒

≥ 0
since mutual information is 
always non-negative𝐼 𝑋; 𝑌 ≥ 𝐼 𝑋; 𝑍  ⇒

𝐻 𝑋 + −𝐻 𝑋 𝑍 + 𝐻 𝑋 𝑍 − 𝐻(𝑋|𝑌, 𝑍) 

https://northeastern-datalab.github.io/cs7840/
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Data Processing Inequality for 𝑋 → 𝑌 → 𝑍
𝐻 𝑋 𝐻 𝑍

𝐻 𝑌

𝐼 𝑋; 𝑌, 𝑍 = 𝐻 𝑋 − 𝐻(𝑋|𝑌, 𝑍) = 

since mutual information is 
always non-negative

𝐼 𝑋; (𝑌, 𝑍)  𝐼 𝑋|(𝑌, 𝑍)  

?

𝐼 𝑋; 𝑌 = 𝐼 𝑋; 𝑍 + 𝐼(𝑋; 𝑌|𝑍) 

≥ 0

⇒

𝐼 𝑋; 𝑌 ≥ 𝐼 𝑋; 𝑍  ⇒

= 	 𝐼 𝑋; 𝑍  

(similarly, 
from symmetry)

𝐼(𝑋; 𝑌|𝑍) + 

= 	 𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍|𝑌) + 

= 0

𝐻 𝑋 + −𝐻 𝑋 𝑍 + 𝐻 𝑋 𝑍 − 𝐻(𝑋|𝑌, 𝑍) 

https://northeastern-datalab.github.io/cs7840/
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Data Processing Inequality for 𝑋 → 𝑌 → 𝑍
𝐻 𝑋 𝐻 𝑍

𝐻 𝑌

𝐼 𝑋; 𝑌, 𝑍 = 𝐻 𝑋 − 𝐻(𝑋|𝑌, 𝑍) = 
𝐼 𝑋; (𝑌, 𝑍)  𝐼 𝑋|(𝑌, 𝑍)  

𝐻 𝑌, 𝑍

since mutual information is 
always non-negative

?

𝐼 𝑋; 𝑌 = 𝐼 𝑋; 𝑍 + 𝐼(𝑋; 𝑌|𝑍) 

≥ 0

⇒

𝐼 𝑋; 𝑌 ≥ 𝐼 𝑋; 𝑍  ⇒

= 	 𝐼 𝑋; 𝑍  

(similarly, 
from symmetry)

𝐼(𝑋; 𝑌|𝑍) + 

= 	 𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍|𝑌) + 

= 0

𝐻 𝑋 + −𝐻 𝑋 𝑍 + 𝐻 𝑋 𝑍 − 𝐻(𝑋|𝑌, 𝑍) 

https://northeastern-datalab.github.io/cs7840/
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Data Processing Inequality for 𝑋 → 𝑌 → 𝑍
𝐻 𝑋 𝐻 𝑍

𝐻 𝑌

𝐼 𝑋; 𝑌, 𝑍 = 𝐻 𝑋 − 𝐻(𝑋|𝑌, 𝑍) = 
𝐼 𝑋; (𝑌, 𝑍)  𝐼 𝑋|(𝑌, 𝑍)  

𝐻 𝑌, 𝑍
𝐼 𝑋; 𝑌, 𝑍

since mutual information is 
always non-negative

𝐼 𝑋; 𝑌 = 𝐼 𝑋; 𝑍 + 𝐼(𝑋; 𝑌|𝑍) 

≥ 0

⇒

𝐼 𝑋; 𝑌 ≥ 𝐼 𝑋; 𝑍  ⇒

= 	 𝐼 𝑋; 𝑍  

(similarly, 
from symmetry)

𝐼(𝑋; 𝑌|𝑍) + 

= 	 𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍|𝑌) + 

= 0

𝐻 𝑋 + −𝐻 𝑋 𝑍 + 𝐻 𝑋 𝑍 − 𝐻(𝑋|𝑌, 𝑍) 

https://northeastern-datalab.github.io/cs7840/
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Data Processing Inequality for 𝑋 → 𝑌 → 𝑍
𝐻 𝑋 𝐻 𝑍

𝐻 𝑌

𝐻 𝑋 𝐻 𝑍

𝐻 𝑌

𝐼 𝑋; 𝑌, 𝑍 = 𝐻 𝑋 − 𝐻(𝑋|𝑌, 𝑍) = 
𝐼 𝑋; (𝑌, 𝑍)  𝐼 𝑋|(𝑌, 𝑍)  

since mutual information is 
always non-negative

𝐼 𝑋; 𝑌, 𝑍

𝐼 𝑋; 𝑌 = 𝐼 𝑋; 𝑍 + 𝐼(𝑋; 𝑌|𝑍) 

≥ 0

⇒

𝐼 𝑋; 𝑌 ≥ 𝐼 𝑋; 𝑍  ⇒

= 	 𝐼 𝑋; 𝑍  

(similarly, 
from symmetry)

𝐼(𝑋; 𝑌|𝑍) + 

= 	 𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍|𝑌) + 

= 0

𝐻 𝑋 + −𝐻 𝑋 𝑍 + 𝐻 𝑋 𝑍 − 𝐻(𝑋|𝑌, 𝑍) 

https://northeastern-datalab.github.io/cs7840/
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Data Processing Inequality for 𝑋 → 𝑌 → 𝑍
𝐻 𝑋 𝐻 𝑍

𝐻 𝑌

𝐻 𝑋 𝐻 𝑍

𝐻 𝑌

𝐼 𝑋; 𝑌, 𝑍 = 𝐻 𝑋 − 𝐻(𝑋|𝑌, 𝑍) = 
𝐼 𝑋; (𝑌, 𝑍)  𝐼 𝑋|(𝑌, 𝑍)  

since mutual information is 
always non-negative

𝐼 𝑋; 𝑌, 𝑍

?
?
?

?

𝐼 𝑋; 𝑌 = 𝐼 𝑋; 𝑍 + 𝐼(𝑋; 𝑌|𝑍) 

≥ 0

⇒

𝐼 𝑋; 𝑌 ≥ 𝐼 𝑋; 𝑍  ⇒

= 	 𝐼 𝑋; 𝑍  

(similarly, 
from symmetry)

𝐼(𝑋; 𝑌|𝑍) + 

= 	 𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍|𝑌) + 

= 0

𝐻 𝑋 + −𝐻 𝑋 𝑍 + 𝐻 𝑋 𝑍 − 𝐻(𝑋|𝑌, 𝑍) 

https://northeastern-datalab.github.io/cs7840/
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Data Processing Inequality for 𝑋 → 𝑌 → 𝑍
𝐻 𝑋 𝐻 𝑍

𝐻 𝑌

𝐻 𝑋 𝐻 𝑍

𝐻 𝑌

𝐼 𝑋; 𝑌, 𝑍 = 𝐻 𝑋 − 𝐻(𝑋|𝑌, 𝑍) = 
𝐼 𝑋; (𝑌, 𝑍)  𝐼 𝑋|(𝑌, 𝑍)  

since mutual information is 
always non-negative

𝐼 𝑋; 𝑌, 𝑍

𝐼 𝑋; 𝑍
𝐼 𝑋; 𝑍|𝑌

𝐼 𝑋; 𝑌
𝐼 𝑋; 𝑌|𝑍

𝐼 𝑋; 𝑌 = 𝐼 𝑋; 𝑍 + 𝐼(𝑋; 𝑌|𝑍) 

≥ 0

⇒

𝐼 𝑋; 𝑌 ≥ 𝐼 𝑋; 𝑍  ⇒

= 	 𝐼 𝑋; 𝑍  

(similarly, 
from symmetry)

𝐼(𝑋; 𝑌|𝑍) + 

= 	 𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍|𝑌) + 

= 0

𝐻 𝑋 + −𝐻 𝑋 𝑍 + 𝐻 𝑋 𝑍 − 𝐻(𝑋|𝑌, 𝑍) 

https://northeastern-datalab.github.io/cs7840/
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Data Processing Inequality for 𝑋 → 𝑌 → 𝑍
𝐻 𝑋 𝐻 𝑍

𝐻 𝑌

𝐻 𝑋 𝐻 𝑍

𝐻 𝑌

𝐼 𝑋; 𝑌, 𝑍 = 𝐻 𝑋 − 𝐻(𝑋|𝑌, 𝑍) = 
𝐼 𝑋; (𝑌, 𝑍)  𝐼 𝑋|(𝑌, 𝑍)  

since mutual information is 
always non-negative

𝐼 𝑋; 𝑌, 𝑍

𝐼 𝑋; 𝑍

𝐼 𝑋; 𝑌
𝐼 𝑋; 𝑌|𝑍

𝐼 𝑋; 𝑍|𝑌

𝐼 𝑋; 𝑌 = 𝐼 𝑋; 𝑍 + 𝐼(𝑋; 𝑌|𝑍) 

≥ 0

⇒

𝐼 𝑋; 𝑌 ≥ 𝐼 𝑋; 𝑍  ⇒

= 	 𝐼 𝑋; 𝑍  

(similarly, 
from symmetry)

𝐼(𝑋; 𝑌|𝑍) + 

= 	 𝐼 𝑋; 𝑌  𝐼(𝑋; 𝑍|𝑌) + 

= 0

𝐻 𝑋 + −𝐻 𝑋 𝑍 + 𝐻 𝑋 𝑍 − 𝐻(𝑋|𝑌, 𝑍) 

= 0

https://northeastern-datalab.github.io/cs7840/
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Pre-class conversations

• Last class recapitulation
• Please use our anonymous feedback to let us know which parts 

were too fast or unclear
• Web page & readings
• Today:
- Sufficient statistics, 
- Information inequalities
- (3 project ideas)

• Next time:
- We skip forward from part 1 to part 3: practical applications for a bit, 

before later coming back to more theory and the axiomatic approach

https://northeastern-datalab.github.io/cs7840/
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Knowledge Distillation from NN

Screenshots from https://en.wikipedia.org/wiki/Knowledge_distillation , https://www.scaler.com/topics/nlp/distilbert/, 
https://medium.com/@aadityaura_26777/quantization-vs-distillation-in-neural-networks-a-comparison-8ef522e4fbec , 

https://northeastern-datalab.github.io/cs7840/
https://en.wikipedia.org/wiki/Knowledge_distillation
https://www.scaler.com/topics/nlp/distilbert/
https://medium.com/@aadityaura_26777/quantization-vs-distillation-in-neural-networks-a-comparison-8ef522e4fbec
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Knowledge Distillation from NN

Screenshots from https://en.wikipedia.org/wiki/Knowledge_distillation , https://www.scaler.com/topics/nlp/distilbert/, 
https://medium.com/@aadityaura_26777/quantization-vs-distillation-in-neural-networks-a-comparison-8ef522e4fbec , 

https://northeastern-datalab.github.io/cs7840/
https://en.wikipedia.org/wiki/Knowledge_distillation
https://www.scaler.com/topics/nlp/distilbert/
https://medium.com/@aadityaura_26777/quantization-vs-distillation-in-neural-networks-a-comparison-8ef522e4fbec
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Bottleneck 𝑋 → 𝑌 → 𝑍

Example 2.16 from: [Cover, Thomas'06]. Elements of Information Theory (book, 2nd ed). https://doi.org/10.1002/047174882X 

EXAMPLE: suppose a (non-stationary) Markov chain starts in one of 𝑛 states, necks down 
to 𝑘 < 𝑛 states, and then fans back to 𝑚 > 𝑘 states. 

𝑋
1

2

3

𝑛 

𝑌

1

𝑘 

𝑍
1

2

𝑚 

How can we upper bound 𝐼 𝑋; 𝑍 ?

In other words, 𝑋 → 𝑌 → 𝑍 with 
𝑝 𝑥, 𝑦, 𝑧 = 𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑦), and 𝑥 ∈ 𝑛 , 𝑦 ∈ 𝑘 , 𝑧 ∈ 𝑚 .

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1002/047174882X
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Bottleneck 𝑋 → 𝑌 → 𝑍

Example 2.16 from: [Cover, Thomas'06]. Elements of Information Theory (book, 2nd ed). https://doi.org/10.1002/047174882X 

𝐼 𝑋; 𝑍 ≤	

How can we upper bound 𝐼 𝑋; 𝑍 ?

𝐻 𝑌 − 𝐻(𝑌|𝑋)
≤ 𝐻(𝑌) 
≤ lg(𝑘) 

⇒ The dependence between 𝑋	and 𝑍 is limited by the 
size 𝑘	of the bottleneck.

What if 𝑘 = 1

𝐼 𝑋; 𝑌 = 

?

EXAMPLE: suppose a (non-stationary) Markov chain starts in one of 𝑛 states, necks down 
to 𝑘 < 𝑛 states, and then fans back to 𝑚 > 𝑘 states. In other words, 𝑋 → 𝑌 → 𝑍 with 
𝑝 𝑥, 𝑦, 𝑧 = 𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑦), and 𝑥 ∈ 𝑛 , 𝑦 ∈ 𝑘 , 𝑧 ∈ 𝑚 .

𝑋
1

2

3

𝑛 

𝑌

1

𝑘 

𝑍
1

2

𝑚 

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1002/047174882X
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Bottleneck 𝑋 → 𝑌 → 𝑍

Example 2.16 from: [Cover, Thomas'06]. Elements of Information Theory (book, 2nd ed). https://doi.org/10.1002/047174882X 

𝐼 𝑋; 𝑍 ≤	

How can we upper bound 𝐼 𝑋; 𝑍 ?

𝐻 𝑌 − 𝐻(𝑌|𝑋)
≤ 𝐻(𝑌) 
≤ lg(𝑘) 

⇒ The dependence between 𝑋	and 𝑍 is limited by the 
size 𝑘	of the bottleneck.

⇒ 𝐼 𝑋; 𝑍 ≤ lg 1 = 0. ⇒ 𝑋 and 𝑍 are independent.

𝐼 𝑋; 𝑌 = 

EXAMPLE: suppose a (non-stationary) Markov chain starts in one of 𝑛 states, necks down 
to 𝑘 < 𝑛 states, and then fans back to 𝑚 > 𝑘 states. In other words, 𝑋 → 𝑌 → 𝑍 with 
𝑝 𝑥, 𝑦, 𝑧 = 𝑝(𝑥) ⋅ 𝑝(𝑦|𝑥) ⋅ 𝑝(𝑧|𝑦), and 𝑥 ∈ 𝑛 , 𝑦 ∈ 𝑘 , 𝑧 ∈ 𝑚 .

𝑋
1

2

3

𝑛 

𝑌

1

𝑍
1

2

𝑚 

What if 𝑘 = 1?

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1002/047174882X
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Sufficient statistics
Following part builds on text, notation and examples from several sources, in particular:
[Casella,Berger'24] Statistical inference (2nd ed), 2024: Ch 6 Principles of Data Reduction. https://doi.org/10.1201/9781003456285 
[Fithian'24] Statistics 210a: Theoretical Statistics, Berkeley, 2014: Lecture 4 sufficiency. https://stat210a.berkeley.edu/fall-
2024/reader/sufficiency.html 
[Scott'11] EECS 564: Estimation, Filtering, and Detection, University of Michigan, 2011: Lecture 5 Sufficient statistics. 
https://web.eecs.umich.edu/~cscott/past_courses/eecs564w11/index.html  
[Cover,Thomas'06] Elements of Information Theory (2nd ed), 2006: Ch 2.9 Sufficient Statistics. https://www.doi.org/10.1002/047174882X

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1201/9781003456285
https://stat210a.berkeley.edu/fall-2024/reader/sufficiency.html
https://stat210a.berkeley.edu/fall-2024/reader/sufficiency.html
https://web.eecs.umich.edu/~cscott/past_courses/eecs564w11/index.html
https://www.doi.org/10.1002/047174882X
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Parameter estimation
Suppose the probability distribution of a random variable 𝑋	is determined by a parameter 𝜃:

𝑋~𝑓 (𝑥)

EXAMPLE: If 𝑋	is a discrete Bernoulli RV, then its pmf 
(probability mass function) is parameterized by 𝑝:

𝑓& 𝑥 = 

Think of this as a conditional distribution: 𝑓; 𝑥 = 𝑝(𝑥|𝜃)

?

https://northeastern-datalab.github.io/cs7840/
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Parameter estimation
Suppose the probability distribution of a random variable 𝑋	is determined by a parameter 𝜃:

𝑋~𝑓 (𝑥)

EXAMPLE: If 𝑋	is a discrete Bernoulli RV, then its pmf 
(probability mass function) is parameterized by 𝑝:

𝑓& 𝑥 = |𝑝	 if	𝑥 = 1
𝑝̅	 if	𝑥 = 0  

0 1

𝑝
𝑝̅

EXAMPLE: If 𝑋	is a continuous Normal RV, then its pdf 
(probability density function) is parameterized by (𝜇, 𝜎$):

𝑓(\,a!) 𝑥 =

Think of this as a conditional distribution: 𝑓; 𝑥 = 𝑝(𝑥|𝜃)

The parameter can 
also be a vector

?

𝑝̅ ≔ 1 − 𝑝 

https://northeastern-datalab.github.io/cs7840/
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Parameter estimation
Suppose the probability distribution of a random variable 𝑋	is determined by a parameter 𝜃:

𝑋~𝑓 (𝑥)

EXAMPLE: If 𝑋	is a discrete Bernoulli RV, then its pmf 
(probability mass function) is parameterized by 𝑝:

𝑓& 𝑥 = |𝑝	 if	𝑥 = 1
𝑝̅	 if	𝑥 = 0  

0 1

𝑝
𝑝̅

In statistical inference, we assume the functional form of 𝑓 is known, but 𝜃 is hidden. We 
then observe a realization (a sample) 𝐱 of iid RV's 𝐗 and want to guess 𝜃 ("estimate 𝜃").

EXAMPLE: If 𝑋	is a continuous Normal RV, then its pdf 
(probability density function) is parameterized by (𝜇, 𝜎$):

𝑓(\,a!) 𝑥 =

𝜇

2𝜎

Think of this as a conditional distribution: 𝑓; 𝑥 = 𝑝(𝑥|𝜃)

0 1

.3

0 1

.6

%
$ba!

𝑒*
"#$ !	
!&!  

𝐱 = (1,1,0,1,1,1,0,0,1,1) 

The parameter can 
also be a vector

Independent and Identically Distributed

?

https://northeastern-datalab.github.io/cs7840/
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Parameter estimation
Suppose the probability distribution of a random variable 𝑋	is determined by a parameter 𝜃:

𝑋~𝑓 (𝑥)

EXAMPLE: If 𝑋	is a discrete Bernoulli RV, then its pmf 
(probability mass function) is parameterized by 𝑝:

𝑓& 𝑥 = |𝑝	 if	𝑥 = 1
𝑝̅	 if	𝑥 = 0  

0 1

𝑝
𝑝̅

In statistical inference, we assume the functional form of 𝑓 is known, but 𝜃 is hidden. We 
then observe a realization (a sample) 𝐱 of iid RV's 𝐗 and want to guess 𝜃 ("estimate 𝜃").

EXAMPLE: If 𝑋	is a continuous Normal RV, then its pdf 
(probability density function) is parameterized by (𝜇, 𝜎$):

𝑓(\,a!) 𝑥 =

𝜇

2𝜎

Think of this as a conditional distribution: 𝑓; 𝑥 = 𝑝(𝑥|𝜃)

0 1

.3

0 1

.6

-4 -2 0 2 4 6 8 10

0,1 4,4%
$ba!

𝑒*
"#$ !	
!&!  

𝐱 = (1,1,0,1,1,1,0,0,1,1) 

𝐱 = (5.2, 2.5, 0.3, 4.2) 

The parameter can 
also be a vector

Independent and Identically Distributed

?

?

https://northeastern-datalab.github.io/cs7840/
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Sufficient statistics
If the sample 𝒙 = (𝑥%, … , 𝑥6) and unknown parameter 𝜃, we would like to compress the 
measurements 𝒙	into a low-dimensional statistic without affecting the quality of the possible 
inference about 𝜃 (i.e. we do not want to loose relevant information about 𝜃).

In other words, we are interested in whether there exists a sufficient statistic 𝑇 𝐗  where the 
dimension of 𝐭 = 𝑇 𝐱  is 𝑚 < 𝑛, s.t. 𝐭	carries all the useful information from 𝐱 about 𝜃.

If such a sufficient statistic exists, then for the purpose of studying 𝜃, we could discard the raw 
measurement 𝐱 and retain only the compressed statistic 𝐭.

Figure credit: Clayton Scott, EECS 564: Estimation, Filtering, and Detection, University of Michigan, 2011. https://web.eecs.umich.edu/~cscott/past_courses/eecs564w11/index.html 

measured 
data 𝐱 

hidden
parameter 𝜃

sampling

estimate

https://northeastern-datalab.github.io/cs7840/
https://web.eecs.umich.edu/~cscott/past_courses/eecs564w11/index.html
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Sufficient statistics
If the sample 𝒙 = (𝑥%, … , 𝑥6) and unknown parameter 𝜃, we would like to compress the 
measurements 𝒙	into a low-dimensional statistic without affecting the quality of the possible 
inference about 𝜃 (i.e. we do not want to loose relevant information about 𝜃).

In other words, we are interested in whether there exists a sufficient statistic 𝑇 𝐗  where the 
dimension of 𝐭 = 𝑇 𝐱  is 𝑚 < 𝑛, s.t. 𝐭	carries all the useful information from 𝐱 about 𝜃.

If such a sufficient statistic exists, then for the purpose of studying 𝜃, we could discard the raw 
measurement 𝐱 and retain only the compressed statistic 𝐭.

Figure credit: Clayton Scott, EECS 564: Estimation, Filtering, and Detection, University of Michigan, 2011. https://web.eecs.umich.edu/~cscott/past_courses/eecs564w11/index.html 

compressed 
sample data 𝐭 

"sufficient statistic" 𝑇(𝐗) 

measured 
data 𝐱 

hidden
parameter 𝜃

sampling

estimate

https://northeastern-datalab.github.io/cs7840/
https://web.eecs.umich.edu/~cscott/past_courses/eecs564w11/index.html
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Sufficient statistics in the eyes of information theory
Given a family of distributions {𝑓 (𝑥)} indexed a parameter 𝜃. Let 𝐗 = (𝑋%, … , 𝑋6) be an iid 
sample from 𝑓 , and 𝑇(𝐗) be a statistic (a quantity computed from the values in the sample). 

𝜃 → 𝐗 → 𝑇(𝐗) 

From the data processing inequality, we thus know

forms a Markov chain

can also be a vector

Then

?

https://northeastern-datalab.github.io/cs7840/
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Sufficient statistics in the eyes of information theory
Given a family of distributions {𝑓 (𝑥)} indexed a parameter 𝜃. Let 𝐗 = (𝑋%, … , 𝑋6) be an iid 
sample from 𝑓 , and 𝑇(𝐗) be a statistic (a quantity computed from the values in the sample). 

𝜃 → 𝐗 → 𝑇(𝐗) 

From the data processing inequality, we thus know
𝐼(𝜃; 𝑇 𝐗 ) ≤ 

A statistic is sufficient for 𝜃 if it preserves all the information in 𝐗 about 𝜃:

forms a Markov chain

can also be a vector

Then

𝐼(𝜃; 𝐗) 

?

https://northeastern-datalab.github.io/cs7840/
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Sufficient statistics in the eyes of information theory
Given a family of distributions {𝑓 (𝑥)} indexed a parameter 𝜃. Let 𝐗 = (𝑋%, … , 𝑋6) be an iid 
sample from 𝑓 , and 𝑇(𝐗) be a statistic (a quantity computed from the values in the sample). 

𝜃 → 𝐗 → 𝑇(𝐗) 

From the data processing inequality, we thus know
𝐼(𝜃; 𝑇 𝐗 ) ≤ 

A statistic is sufficient for 𝜃 if it preserves all the information in 𝐗 about 𝜃:
𝐼 𝜃; 𝑇 𝐗 = 𝐼(𝜃; 𝐗) 

PRACTICAL DEFINITION: A function 𝑇(𝐗) is said to be a sufficient statistic relative to the 
family {𝑓 (𝑥)} if the conditional distribution of 𝐗 given 𝑇(𝐗) is independent of 𝜃:

𝜃 → 𝑇(𝐗) → 𝐗

forms a Markov chain

also forms a Markov chain

can also be a vector

Then

𝐼(𝜃; 𝐗) 

𝜃 ⊥ 𝐗|𝑇(𝐗) In other words, 
A possibly helpful way to think about this process is to 
use a new sample variable: 𝜃 → 𝐗 → 𝑇 𝐗 = 𝑇(𝐗′) → 𝐗′

https://northeastern-datalab.github.io/cs7840/
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Example Sufficient statistics
EXAMPLE: Given a sample 𝐱	of 𝑛 iid Bernoulli RVs 𝑋%, … , 𝑋6 with unknown ℙ 𝑋! = 1 = 𝑝. 

This is the parameter 𝜃

Then, given a fixed 𝑛, what could be a sufficient statistic 𝑇 𝐗  for 𝑝 ? 0 1

𝑝
𝑝̅

0 1

https://northeastern-datalab.github.io/cs7840/
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Example Sufficient statistics
EXAMPLE: Given a sample 𝐱	of 𝑛 iid Bernoulli RVs 𝑋%, … , 𝑋6 with unknown ℙ 𝑋! = 1 = 𝑝. 

This is the parameter 𝜃

Then 𝑘 = 𝑇 𝐗 = ∑!	 𝑋! is a sufficient statistic for 𝜃 (assuming 𝑛 is fixed).

PROOF:
0 1

𝑝
𝑝̅

0 1

https://northeastern-datalab.github.io/cs7840/
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Example Sufficient statistics
EXAMPLE: Given a sample 𝐱	of 𝑛 iid Bernoulli RVs 𝑋%, … , 𝑋6 with unknown ℙ 𝑋! = 1 = 𝑝. 

This is the parameter 𝜃

Then 𝑘 = 𝑇 𝐗 = ∑!	 𝑋! is a sufficient statistic for 𝜃 (assuming 𝑛 is fixed).

PROOF: We know that 𝑝 → 𝐗 → 𝑘 forms a Markov chain from the fact that 𝑘 is calculated from 𝐗. To 
prove that 𝑘 is a sufficient statistic for 𝑝, it is enough to show that 𝑝 → 𝑘 → 𝐗 also forms a Markov chain.

We prove that by showing that the conditional distribution of 𝐗 given 𝑇 𝐗 = 𝑘 is independent of 𝜃.

ℙ. 𝐗 = 𝐱|𝑇 𝐗 = 𝑘 = 

ℙ. 𝑇 𝐗 = 𝑘 = 

?
?
?
?

0 1

𝑝
𝑝̅

0 1

ℙ. 𝐗 = 𝐱 = 

ℙ. 𝐗 = 𝐱 ∧ 𝑇 𝐗 = 𝑘 = 
joint probability

This is a particular sample e.g. 𝐱=(1, 0, 0, 1, 0, 1, 1)

https://northeastern-datalab.github.io/cs7840/
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We know that 𝑝 → 𝐗 → 𝑘 forms a Markov chain from the fact that 𝑘 is calculated from 𝐗. To 
prove that 𝑘 is a sufficient statistic for 𝑝, it is enough to show that 𝑝 → 𝑘 → 𝐗 also forms a Markov chain.

Example Sufficient statistics
EXAMPLE: Given a sample 𝐱	of 𝑛 iid Bernoulli RVs 𝑋%, … , 𝑋6 with unknown ℙ 𝑋! = 1 = 𝑝. 

We prove that by showing that the conditional distribution of 𝐗 given 𝑇 𝐗 = 𝑘 is independent of 𝜃.

ℙ. 𝐗 = 𝐱 = ∏#
& 𝑝Q, 1 − 𝑝 RQ, =   𝑝S 1 − 𝑝 &(S 

ℙ. 𝐗 = 𝐱|𝑇 𝐗 = 𝑘 = 

This is the parameter 𝜃

Then 𝑘 = 𝑇 𝐗 = ∑!	 𝑋! is a sufficient statistic for 𝜃 (assuming 𝑛 is fixed).

ℙ. 𝑇 𝐗 = 𝑘 = 

ℙ. 𝐗 = 𝐱 ∧ 𝑇 𝐗 = 𝑘 = 
joint probability

Very important later: Notice that the density 
ℙ* 𝐗 = 𝐱   depends on 𝐱 only through 𝑘 = 𝑇 𝐗 .
Thus, ℙ* 𝐗 = 𝐱  could be written as some function 
𝑔(𝑇 𝐱 , 𝜃), which is key to what happens next.

PROOF:
0 1

𝑝
𝑝̅

0 1

https://northeastern-datalab.github.io/cs7840/


330Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

We know that 𝑝 → 𝐗 → 𝑘 forms a Markov chain from the fact that 𝑘 is calculated from 𝐗. To 
prove that 𝑘 is a sufficient statistic for 𝑝, it is enough to show that 𝑝 → 𝑘 → 𝐗 also forms a Markov chain.

Example Sufficient statistics
EXAMPLE: Given a sample 𝐱	of 𝑛 iid Bernoulli RVs 𝑋%, … , 𝑋6 with unknown ℙ 𝑋! = 1 = 𝑝. 

We prove that by showing that the conditional distribution of 𝐗 given 𝑇 𝐗 = 𝑘 is independent of 𝜃.

ℙ. 𝐗 = 𝐱 = ∏#
& 𝑝Q, 1 − 𝑝 RQ, =   𝑝S 1 − 𝑝 &(S 

ℙ. 𝐗 = 𝐱|𝑇 𝐗 = 𝑘 = �
C
H
,*	 if	 ∑AC 𝑥A = 𝑘

0	 otherwise	

This is the parameter 𝜃

Then 𝑘 = 𝑇 𝐗 = ∑!	 𝑋! is a sufficient statistic for 𝜃 (assuming 𝑛 is fixed).

ℙ. 𝑇 𝐗 = 𝑘 = &
S ⋅ 𝑝S 1 − 𝑝 &(S 

ℙ. 𝐗 = 𝐱 ∧ 𝑇 𝐗 = 𝑘 = 

ℙ< 𝐗$𝐱,W 𝐗 $S
ℙ< S

= 

|ℙ& 𝐗 = 𝐱 	 if	 ∑AC 𝑥A = 𝑘	
0	 otherwise	

Thus, we have shown that ℙ. X|𝑘 = ℙ X|𝑘  is independent of 𝑝. 
Concretely, all sequences x with 𝑘 1’s (and n−𝑘 0's) are equally likely.

joint probability

X- %(X ./-

.
- ⋅X- %(X ./- = 

Very important later: Notice that the density 
ℙ* 𝐗 = 𝐱   depends on 𝐱 only through 𝑘 = 𝑇 𝐗 .
Thus, ℙ* 𝐗 = 𝐱  could be written as some function 
𝑔(𝑇 𝐱 , 𝜃), which is key to what happens next.

PROOF:

binomial distribution

0 1

𝑝
𝑝̅

0 1

https://northeastern-datalab.github.io/cs7840/
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Factorization Theorem
In the previous example, we had to guess the sufficient statistic and work out the conditional pmf 
ℙ 𝐗|𝑇 𝐗 = 𝑇 𝐱 	by hand. This can become quite difficult in general. 

As we will see next, we didn’t really need to go to the trouble of calculating the conditional 
distribution. Once we noticed that the density ℙ` 𝐗 = 𝐱  (also 𝑓I(𝐱)) depends on 𝐱 only through 
𝑇 𝐱 , we could have concluded that the statistics 𝑇 𝐗  was sufficient.

The easiest way to identify and verify sufficient statistics is to show that the density 𝑓Y(𝐱) factorizes 
into a part that involves only the parameter 𝜃 and 𝑇(𝐱), and a part that involves only 𝐱. This can be 
used as a working definition of sufficiency.

THEOREM: Let 𝑓 (𝐱) (or 𝑓(𝐱|𝜃)) denote the joint distribution of a data set 𝐗, given parameter 𝜃. 
A statistic 𝑇(𝐗) is a sufficient statistic for 𝜃 if and only if there exist functions 𝑔(𝑇 𝐱 , 𝜃)	and 
ℎ(𝐱) such that, for all sample points 𝐱 and all parameter points 𝜃, 𝑓 (𝐱) factorizes into:

𝑓 (𝐱) = 𝑔(𝑇 𝐱 , 𝜃) ⋅ ℎ(𝐱) Notice that the unknown parameter 𝜃 interacts with the data 𝐱 
only via the statistic 𝑇 𝐱 , and ℎ(𝐱) is independent of 𝜃.

This was ℙ& 𝐗 = 𝐱 = 𝑝H 1 − 𝑝 C,H in the previous example.

https://northeastern-datalab.github.io/cs7840/


332Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

EXAMPLE: Given a sample of 𝑛 iid Bernoulli RVs 𝑋%, … , 𝑋6 with unknown ℙ 𝑋! = 1 = 𝑝. 

Example Sufficient statistics via factorization

We prove that by showing that the conditional distribution of 𝐗 given 𝑇 𝐗 = 𝑘 is independent of 𝜃.

ℙ. 𝐗 = 𝐱|𝑇 𝐗 = 𝑘 = �
C
H
,*	 if	 ∑AC 𝑥A = 𝑘

0	 otherwise	

ℙ. 𝑇 𝐗 = 𝑘 = &
S ⋅ 𝑝S 1 − 𝑝 &(S 

ℙ< 𝐗$𝐱,W 𝐗 $S
ℙ< S

= 

Thus, we have shown that ℙ. X|𝑘 = ℙ X|𝑘  is independent of 𝑝. 

X- %(X ./-

.
- ⋅X- %(X ./- = 

Then 𝑘 = 𝑇 𝐗 = ∑!	 𝑋! is a sufficient statistic for 𝜃 (assuming 𝑛 is fixed).

Can you find the factorization 𝑓&(𝐱) = 𝑔(𝑇 𝐱 , 𝑝) ⋅ ℎ(𝐱) in our earlier proof ?

ℙ. 𝐗 = 𝐱 = ∏#
& 𝑝Q, 1 − 𝑝 RQ, =   𝑝S 1 − 𝑝 &(S 

ℙ. 𝐗 = 𝐱 ∧ 𝑇 𝐗 = 𝑘 = |ℙ& 𝐗 = 𝐱 	 if	 ∑AC 𝑥A = 𝑘	
0	 otherwise	

https://northeastern-datalab.github.io/cs7840/
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EXAMPLE: Given a sample of 𝑛 iid Bernoulli RVs 𝑋%, … , 𝑋6 with unknown ℙ 𝑋! = 1 = 𝑝. 

Example Sufficient statistics via factorization

We prove that by showing that the conditional distribution of 𝐗 given 𝑇 𝐗 = 𝑘 is independent of 𝜃.

ℙ. 𝐗 = 𝐱|𝑇 𝐗 = 𝑘 = �
C
H
,*	 if	 ∑AC 𝑥A = 𝑘

0	 otherwise	

ℙ< 𝐗$𝐱,W 𝐗 $S
ℙ< S

= 

Thus, we have shown that ℙ. X|𝑘 = ℙ X|𝑘  is independent of 𝑝. 

X- %(X ./-

.
- ⋅X- %(X ./- = 

Then 𝑘 = 𝑇 𝐗 = ∑!	 𝑋! is a sufficient statistic for 𝜃 (assuming 𝑛 is fixed).

ℙ. 𝐗 = 𝐱 = ∏#
& 𝑝Q, 1 − 𝑝 RQ, =   𝑝S 1 − 𝑝 &(S 

ℙ. 𝐗 = 𝐱 ∧ 𝑇 𝐗 = 𝑘 = ⋯ 

ℙ. 𝑇 𝐗 = 𝑘 = &
S ⋅ 𝑝S 1 − 𝑝 &(S 

⋅ 1
𝑔(𝑘, 𝑝) ℎ(𝐱)

Can you find the factorization 𝑓&(𝐱) = 𝑔(𝑇 𝐱 , 𝑝) ⋅ ℎ(𝐱) in our earlier proof ?

https://northeastern-datalab.github.io/cs7840/
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Proof Factorization Theorem (1/2)

FIRST DIRECTION sufficient statistics ⇒ factorization:

𝑓 𝐱 = since 𝑇	is a function of 𝐗, and as long as 𝑡 = 𝑇(𝐗)

by the definition of sufficient statistics 𝜃 ⊥ 𝐱|𝑡

Assume 𝑇 𝐗  to be a sufficient statistics, i.e. 𝜃 ⊥ 𝐗|𝑇(𝐗).
Let 𝑓 (𝐱, 𝑇(𝐱) = 𝑡) be the joint pdf of ℙ` 𝐗 = 𝐱	, 𝑇 𝐗 = 𝑡 .

chain rule

PROOF (DISCRETE CASE): sufficient statistics ⇔ factorization 𝑓 (𝐱) = 𝑔(𝑇 𝐱 , 𝜃) ⋅ ℎ(𝐱)

?

because 𝑡 is a function of 𝐱: 𝑡 = 𝑇(𝐱)

https://northeastern-datalab.github.io/cs7840/
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= 𝑔`(𝑡) ⋅ ℎ`(𝐱|𝑡)
= 𝑔`(𝑡) ⋅ ℎ(𝐱|𝑡)

𝑔(𝑇 𝐱 , 𝜃) 
ℎ(𝐱) 

Proof Factorization Theorem (1/2)

FIRST DIRECTION sufficient statistics ⇒ factorization:

𝑓 𝐱 = since 𝑇	is a function of 𝐗, and as long as 𝑡 = 𝑇(𝐗)𝑓 (𝐱, 𝑡)

by the definition of sufficient statistics 𝜃 ⊥ 𝐱|𝑡

Assume 𝑇 𝐗  to be a sufficient statistics, i.e. 𝜃 ⊥ 𝐗|𝑇(𝐗).
Let 𝑓 (𝐱, 𝑇(𝐱) = 𝑡) be the joint pdf of ℙ` 𝐗 = 𝐱	, 𝑇 𝐗 = 𝑡 .

chain rule

PROOF (DISCRETE CASE): sufficient statistics ⇔ factorization 𝑓 (𝐱) = 𝑔(𝑇 𝐱 , 𝜃) ⋅ ℎ(𝐱)

because 𝑡 is a function of 𝐱: 𝑡 = 𝑇(𝐱)

This was ℙ& 𝐗 = 𝐱 = ∏A
C 𝑝$= 1 − 𝑝 J$= = 𝑝H 1 − 𝑝 C,H in the previous example.

https://northeastern-datalab.github.io/cs7840/
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Proof Factorization Theorem (2/2)
OTHER DIRECTION: factorization ⇒ sufficient statistics:
Assume 𝑓 (𝐱) = 𝑔(𝑡, 𝜃) ⋅ ℎ(𝐱).
We need to show that the conditional probability distribution 𝑓 (𝐱|𝑡) of 𝐗 given 𝑇(𝐗) is 
independent of 𝜃, i.e. 𝑓 𝐱 𝑡 = 𝑓 𝐱 𝑡 .

𝑓 𝐱|𝑡 =

𝑓 𝑡 = ?

?
does not depend on 𝜃, hence 𝑇 is a sufficient statistic

definition of marginal probability distribution

since 𝑡 is a function of 𝐱

definition of conditional probability distribution

using our assumption

factoring out a common factor

https://northeastern-datalab.github.io/cs7840/


337Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Proof Factorization Theorem (2/2)
OTHER DIRECTION: factorization ⇒ sufficient statistics:
Assume 𝑓 (𝐱) = 𝑔(𝑡, 𝜃) ⋅ ℎ(𝐱).
We need to show that the conditional probability distribution 𝑓 (𝐱|𝑡) of 𝐗 given 𝑇(𝐗) is 
independent of 𝜃, i.e. 𝑓 𝐱 𝑡 = 𝑓 𝐱 𝑡 .

𝑓 𝐱|𝑡 =
𝑓 𝐱, 𝑡
𝑓 𝑡

=
𝑓 𝐱
𝑓 𝑡

=
𝑔(𝑡, 𝜃) ⋅ ℎ(𝐱)

𝑔(𝑡, 𝜃) ⋅ ∑𝐱:d 𝐱 5e ℎ(𝐱)
does not depend on 𝜃, hence 𝑇 is a sufficient statistic

= ∑𝐱:d 𝐱 5e 𝑓 𝐱  

= ∑𝐱:d 𝐱 5e𝑔(𝑡, 𝜃) ⋅ ℎ(𝐱) 
= 𝑔(𝑡, 𝜃) ⋅ ∑𝐱:d 𝐱 5e ℎ(𝐱) 

definition of marginal probability distribution

since 𝑡 is a function of 𝐱

definition of conditional probability distribution

𝑓 𝑡 = ∑𝐱:d 𝐱 5e 𝑓 𝐱, 𝑡  

using our assumption

factoring out a common factor

https://northeastern-datalab.github.io/cs7840/
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Sufficient Statistics & Factorization Theorem

The factorization theorem is also varyingly called:
• Fisher's factorization theorem
• Fisher-Neyman factorization theorem
• Neyman-Fisher factorization theorem
• Halmos-Savage factorization theorem

Sir Ronald Fisher (1890–1962)

The concept of sufficient statistics is due to Sir Ronald Fisher around 1920, 
thus before the advent of information theory.

Fisher, "On the mathematical foundations of theoretical statistics", Philosophical Transactions of the Royal Society A, 1922. https://doi.org/10.1098/rsta.1922.0009 . See also 
https://en.wikipedia.org/wiki/Sufficient_statistic, and references in https://encyclopediaofmath.org/wiki/Factorization_theorem

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1098/rsta.1922.0009
https://en.wikipedia.org/wiki/Sufficient_statistic
https://encyclopediaofmath.org/wiki/Factorization_theorem
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Normal (Gaussian) distribution: (𝜇, 𝜎!) are sufficient statistics 

[Casella,Berger'24] Statistical inference (2nd ed), 2024: Ch 6 Principles of Data Reduction. https://doi.org/10.1201/9781003456285  

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1201/9781003456285
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Exponential Family

Source: https://en.wikipedia.org/wiki/Exponential_family 

https://northeastern-datalab.github.io/cs7840/
https://en.wikipedia.org/wiki/Exponential_family
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Aggregates in Databases

Gray et al. "Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals", ICDE 1996, DMKD 1997. https://doi.org/10.1023/A:1009726021843 , 
https://tc.computer.org/tcde-demo/icde-steering-committee/influential-papers/ 

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1023/A:1009726021843
https://tc.computer.org/tcde-demo/icde-steering-committee/influential-papers/
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Information Inequalities

Best reference:
[Yeung'08] Yeung, Information Theory and Network Coding, 2008. Ch 2.6, 2.7, 13, 14, 15  
http://iest2.ie.cuhk.edu.hk/~whyeung/tempo/main2.pdf 

https://northeastern-datalab.github.io/cs7840/
http://iest2.ie.cuhk.edu.hk/~whyeung/tempo/main2.pdf
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Basic inequalities
Shannon’s information measures refer to entropy, conditional entropy, mutual information, and 
conditional mutual information (but not interaction information!).
They can be expressed as linear combinations of entropies:

𝐻 𝑋|𝑌 =
𝐼 𝑋; 𝑌 =
𝐼 𝑋; 𝑌|𝑍 =

?
?
?

https://northeastern-datalab.github.io/cs7840/
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Basic inequalities
Shannon’s information measures refer to entropy, conditional entropy, mutual information, and 
conditional mutual information (but not interaction information!).

They are also special cases of conditional mutual information.
𝐻 𝑋 = Assume 𝜑 to be degenerate RV that takes on a 

constant value with probability 1 𝐻 𝑋|𝑍 =
𝐼 𝑋; 𝑌 =

𝐻 𝑋|𝑌 = 𝐻 𝑋, 𝑌 − 𝐻(𝑌)
𝐼 𝑋; 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 − 𝐻(𝑋, 𝑌)
𝐼 𝑋; 𝑌|𝑍 = 𝐻 𝑋, 𝑍 + 𝐻 𝑌, 𝑍 − 𝐻 𝑋, 𝑌, 𝑍 − 𝐻(𝑍)

by repeated expansion of 
conditional entropies; also holds 
if we replace variables with 
sets of variables

They can be expressed as linear combinations of entropies:

?
?
?
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Basic inequalities
Shannon’s information measures refer to entropy, conditional entropy, mutual information, and 
conditional mutual information (but not interaction information!).

𝐼 𝑈; 𝑉|𝑊 ≥ 0

They are also special cases of conditional mutual information.
𝐻 𝑋 = 𝐼 𝑋; 𝑋|𝜑 Assume 𝜑 to be degenerate RV that takes on a 

constant value with probability 1 𝐻 𝑋|𝑍 = 𝐼 𝑋; 𝑋|𝑍
𝐼 𝑋; 𝑌 = 𝐼 𝑋; 𝑌|𝜑

With the basic inequalities we refer to the fact that all Shannon’s information 
measures are non-negative (because conditional mutual information is ≥ 0).

𝑈, 𝑉,𝑊 can be arbitrary joint entropies

𝐻 𝑋|𝑌 = 𝐻 𝑋, 𝑌 − 𝐻(𝑌)
𝐼 𝑋; 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 − 𝐻(𝑋, 𝑌)
𝐼 𝑋; 𝑌|𝑍 = 𝐻 𝑋, 𝑍 + 𝐻 𝑌, 𝑍 − 𝐻 𝑋, 𝑌, 𝑍 − 𝐻(𝑍)

also holds if we replace variables 
with sets of variables

They can be expressed as linear combinations of entropies:

https://northeastern-datalab.github.io/cs7840/
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Shannon-type inequalities Γ" (and constraints)
Shannon-type inequalities are inequalities on information measures implied by the basic 
inequalities and possibly additional constraints on the joint distribution of the RVs involved.

From 𝐼 𝑋; 𝑍 𝑌 = 0 and basic inequalities, we derived 𝐼 𝑋; 𝑌 ≥ 𝐼(𝑋; 𝑍) 
EXAMPLE: data-processing inequality for 𝑋 → 𝑌 → 𝑍: 

EXAMPLE : 𝑛 = 3 variables with given 𝑘 = 2' − 1 = 	7 joint entropies:

𝐻 𝑋 𝐻 𝑍

𝐻 𝑌

𝐻 𝑋 = 2 
𝐻 𝑌 = 3 
𝐻 𝑍 = 4 

𝐻 𝑋, 𝑌 = 4	
𝐻 𝑋, 𝑍 = 4 
𝐻 𝑌, 𝑍 = 4 

𝐻 𝑋, 𝑌, 𝑍 = 5 

not a basic inequality

Information inequalities are the inequalities that govern the impossibilities in information 
theory. They imply that certain things cannot happen. For this reason, they are sometimes 
referred to as the laws of information theory.

Find 3 RVs that fulfill those constraints ?

https://northeastern-datalab.github.io/cs7840/
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Shannon-type inequalities Γ" (and constraints)
Shannon-type inequalities are inequalities on information measures implied by the basic 
inequalities and possibly additional constraints on the joint distribution of the RVs involved.

Almost all the information inequalities known to date are 
Shannon-type inequalities and thus implied by the basic inequalities.

From 𝐼 𝑋; 𝑍 𝑌 = 0 and basic inequalities, we derived 𝐼 𝑋; 𝑌 ≥ 𝐼(𝑋; 𝑍) 
EXAMPLE: data-processing inequality for 𝑋 → 𝑌 → 𝑍: 

EXAMPLE : 𝑛 = 3 variables with given 𝑘 = 2' − 1 = 	7 joint entropies:

𝐻 𝑋 𝐻 𝑍

𝐻 𝑌

−1 1

1
1

1

1

1𝐼 𝑋; 𝑌|𝑍 ≱0 
𝐻 𝑋 = 2 
𝐻 𝑌 = 3 
𝐻 𝑍 = 4 

𝐻 𝑋, 𝑌 = 4	
𝐻 𝑋, 𝑍 = 4 
𝐻 𝑌, 𝑍 = 4 

𝐻 𝑋, 𝑌, 𝑍 = 5 

Information inequalities are the inequalities that govern the impossibilities in information 
theory. They imply that certain things cannot happen. For this reason, they are sometimes 
referred to as the laws of information theory.

not possible L

not a basic inequality

https://northeastern-datalab.github.io/cs7840/
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Applications in Databases

Ngo, Porat, Re, Rudra. Worst-case Optimal Join Algorithms, JAC 2018 (PODS 2012). https://doi.org/10.1145/3180143 , 
Khamis, Kolaitis, Ngo, Suciu, "Decision Problems in Information Theory", ICALP 2020. https://doi.org/10.4230/LIPIcs.ICALP.2020.106 

ICALP'20PODS'12, JACM'18

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1145/3180143
https://doi.org/10.4230/LIPIcs.ICALP.2020.106


355Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 

Applications in Databases

Abo Khamis, Ngo, Suciu. What Do Shannon-type Inequalities, Submodular Width, and Disjunctive Datalog Have to Do with One Another? PODS 2017. https://doi.org/10.1145/3034786.3056105 

PODS'17

https://northeastern-datalab.github.io/cs7840/
https://doi.org/10.1145/3034786.3056105
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Applications in Databases

Suciu. Applications of Information Inequalities to Database Theory Problems, LICS keynote 2023. https://arxiv.org/pdf/2304.11996 , 
slides: https://homes.cs.washington.edu/~suciu/talk-lics-2023.pdf , 

LICS'23 keynote

https://northeastern-datalab.github.io/cs7840/
https://arxiv.org/pdf/2304.11996
https://homes.cs.washington.edu/~suciu/talk-lics-2023.pdf
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Source: Dan Suciu. CS294-248: Special topics in databases, Berkeley fall 2023. See also videos: https://berkeley-cs294-248.github.io/ 

Recap: AGM Bound Entropic Vectors Generalized Upper Bound Computing the Upper Bound Modular Functions

Information Inequalities v.s. Databases

Informally: h(XY ) ⇠ log |⇧XY (R)|. What do inequalities say about R?

h(X )  h(XY )  h(XYZ )
Says |⇧X (R)|  |⇧XY (R)|  |R |.

h(XY ) + h(Z ) � h(XYZ )
Says |⇧XY (R)| · |⇧Z (R)| � |R |.

h(XYZ |X ) � h(XYZ |XY )
Max frequency(X ) is � max frequency(XY ).

Careful! h(XZ ) + h(YZ ) � h(XYZ ) + h(Z ),
but |⇧XZ (R)|| {z }

3

· |⇧YZ (R)|| {z }
3

6� |R ||{z}
5

· |⇧Z (R)|| {z }
2

X Y Z
a x m
a y m
b x m
b y m
a x n
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Information inequalities Γ"∗
Information inequalities are the inequalities that govern the impossibilities in information 
theory. They imply that certain things cannot happen. For this reason, they are sometimes 
referred to as the laws of information theory.

Quoted from: [Yeung'08] Information Theory and Network Coding, 2008. http://iest2.ie.cuhk.edu.hk/~whyeung/tempo/main2.pdf  / [Zhang,Yeung'98]. On characterization of entropy function 
via information inequalities, 1998. https://doi.org/10.1109/18.681320 / For an accessible proof, see [Cramer, Fehr'15] The Mathematical Theory of Information, and Applications, lecture 
notes. https://staff.science.uva.nl/c.schaffner/courses/infcom/2014/notes/CramerFehr.pdf 

There exist laws in information theory that are not implied by the basic inequalities (called non-
Shannon-type inequalities). This celebrated result was published by [Zhang,Yeung'98]

PROPOSITION: The following information inequality always holds on any list of five random 
variables 𝑋, 𝑌, 𝑍, 𝑈, 𝑉, but is not implied by the basic inequalities:

𝐻 𝑋 + 𝐻 𝑌 + 𝐼 𝑈; 𝑉 𝑋 + 𝐼 𝑈; 𝑉 𝑌 + 2𝐼 𝑈; 𝑉 𝑍 + 𝐼(𝑈, 𝑉; 𝑍) ≥ 𝐻 𝑋, 𝑍 + 2𝐼 𝑈; 𝑉  

An information inequality or identity involves (linear combinations of) Shannon’s information 
measures only (and possibly with constant terms) and is said to always hold if it holds for any 
joint distribution for the random variables involved.

Key proof insight: 𝐼 𝑋𝑌; 𝑍 𝑈𝑉 = 0 can be assumed for a different argument

https://northeastern-datalab.github.io/cs7840/
http://iest2.ie.cuhk.edu.hk/~whyeung/tempo/main2.pdf
https://doi.org/10.1109/18.681320%20/
https://staff.science.uva.nl/c.schaffner/courses/infcom/2014/notes/CramerFehr.pdf
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A formalization of entropic vectors
• Given a set of 𝑛 RVs 𝛩 = 𝑋%, … , 𝑋6 , written as 𝛩 = 𝑋! , 𝑖 ∈ [𝑛]. 
• Associated with 𝛩 are 26 − 1 joint entropies 𝐻 𝑋% ,…, 𝐻 𝑋%, … , 𝑋6	 , written as 𝐻f 𝛼 =
𝐻 𝑋g  for any subset of [𝑛]. Call the function 𝐻f 𝛼 , 𝛼 ∈ 2[6] the entropy function of 𝛩. 

• Example: 𝐻 𝑋%, 𝑋$, 𝑋)  is 𝐻f 𝛼  for 𝛼 = {1,2,4}.
• Together, the joint entropies form a point in the 26 − 1 dimensional entropy space ℝ$'*%.
• In turn, a point in that space is called entropic if the point corresponds to the entropy 

function 𝐻f of some set 𝛩 of 𝑛 RVs. Let Γ6∗ ⊂ ℝ$'*% be the set of all entropic points. 
• How does that space Γ6∗ ⊂ ℝ$'*% look like?

Our earlier EXAMPLE: 𝑛 = 3, thus 𝑘 = 2' − 1 = 	7 joint entropies, representing a point in ℝ, 

𝐻 𝑋 = 2 
𝐻 𝑌 = 3 
𝐻 𝑍 = 4 

𝐻 𝑋, 𝑌 = 4	
𝐻 𝑋, 𝑍 = 4 
𝐻 𝑌, 𝑍 = 4 

𝐻 𝑋, 𝑌, 𝑍 = 5 

?

{1, 2, ... n}

https://northeastern-datalab.github.io/cs7840/
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Entropic vectors
• Given a set of 𝑛 RVs 𝛩 = 𝑋%, … , 𝑋6 , written as 𝛩 = 𝑋! , 𝑖 ∈ [𝑛]. 
• Associated with 𝛩 are 26 − 1 joint entropies 𝐻 𝑋% ,…, 𝐻 𝑋%, … , 𝑋6	 , written as 𝐻f 𝛼 =
𝐻 𝑋g  for any subset of [𝑛]. Call the function 𝐻f 𝛼 , 𝛼 ∈ 2[6] the entropy function of 𝛩. 

• Example: 𝐻 𝑋%, 𝑋$, 𝑋)  is 𝐻f 𝛼  for 𝛼 = {1,2,4}.
• Together, the joint entropies form a point in the 26 − 1 dimensional entropy space ℝ$'*%.
• In turn, a point in that space is called entropic if the point corresponds to the entropy 

function 𝐻f of some set 𝛩 of 𝑛 RVs. Let Γ6∗ ⊂ ℝ$'*% be the set of all entropic points. 
• How does that space Γ6∗ ⊂ ℝ$'*% look like?

Our earlier EXAMPLE: 𝑛 = 3, thus 𝑘 = 2' − 1 = 	7 joint entropies, representing a point in ℝ, 

𝐼 𝑋; 𝑌|𝑍 ≱0 
𝐻 𝑋 = 2 
𝐻 𝑌 = 3 
𝐻 𝑍 = 4 

𝐻 𝑋, 𝑌 = 4	
𝐻 𝑋, 𝑍 = 4 
𝐻 𝑌, 𝑍 = 4 

𝐻 𝑋, 𝑌, 𝑍 = 5 

Thus this point 2,3,4,4,4,5 ∉ Γ'∗?

https://northeastern-datalab.github.io/cs7840/
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A subtlety: entropic vectors Γ-∗ 	vs. almost entropic vectors ̅Γ-∗
Our earlier "parity example":

For details see: [Yeung'08] Yeung, Information Theory and Network Coding, 2008. Ch 15.1  http://iest2.ie.cuhk.edu.hk/~whyeung/tempo/main2.pdf  

However, a more careful analysis shows that all variables 𝑋, 𝑌, 𝑍 
need to be uniform for this example to work, which implies only 
discrete particular entropies as possible.

𝐻 𝑋|𝑌, 𝑍

𝐻 𝑋 = 1

𝐽 𝑋; 𝑌; 𝑍
𝐼 𝑋; 𝑌|𝑍

−1

𝐻 𝑌

𝐻 𝑍

1

0

0

1

−𝑎
0

𝑎

0

0

𝑎

𝑎

10

More generally (from basic inequalities):

𝐻 𝑋 = 𝑎 ∈ ℝD 𝐻 𝑌

𝐻 𝑍

Γ&∗  set of all entropic vectors
̅Γ&∗  set of all almost entropic vectors: 

defined as topological closure of Γ&∗

Γ&	 subset of vectors that fulfill the 
Shannon inequalities

Γ6∗  
Γ6	

̅Γ6∗  

The closure of a subset S 
of points in a topological 
space consists of all 
points in S together with 
all limit points of S.

Intuitively, it is possible 
to create a mixture model 
that models any rational 
number. The "closure" 
extends that to the real 
numbers.

https://northeastern-datalab.github.io/cs7840/
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