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Let's gain some intuition for
‘'measures of information’

The following numeric examples with hats and 4 balls are based on Chapter 1.1 from [Moser'18]
Information Theory (lecture notes, 6th ed).https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it

https://northeastern-datalab.github.io/cs7840/
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Let's gain some intuition: What is information?

What is information? Let's look at some sentences with "information':

1. "It will rain tomorrow."
2. "It will snow tomorrow."
3. "The name of the next president of the USA will be...

a. ...Donald."
b. ... Donald Duck."

4. "Our university is called Northeastern University."

?

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Let's gain some intuition: What is information?

What is information? Let's look at some sentences with "information':

1. "It will rain tomorrow."
2. "It will snow tomorrow."
3. "The name of the next president of the USA will be...

a. ...Donald."
b. ... Donald Duck."

4. "Our university is called Northeastern University."

= Tuformation (in a sentence) is linked +o surprise (which is the
delta of knowledge before and after seeing the sentewce).

Let's next try to quantify "information” ©

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Let's try to quantify "information”

EXAMPLE 1: A gambler throws a fair die with 4 sides {7, B, C, D}. Q
— "Side C comes up."

— The "pure" message U, that we care about in our abstraction is ... ?

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Let's try to quantify "information”

EXAMPLE 1: A gambler throws a fair die with 4 sides {7, B, C, D}. Q

— "Side C comes up."

- message U, ="C"

EXAMPLE 2: A gambler throws a fair die with 6 sides {A, B, C, D, E, F}.

— "Side C comes up."
- message U, ="C" .

wWhat has chavged ?

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Let's try to quantify "information”

EXAMPLE 1: A gambler throws a fair die with 4 sides {7, B, C, D}. Q

— "Side C comes up."

- message U, ="C"

— There are 4 possible outcomes, each has a probability of Y.
EXAMPLE 2: A gambler throws a fair die with 6 sides {A, B, C, D, E, F}.

— "Side C comes up."

- message U, ="C" 2

— There are 6 possible outcomes, each has a probability of 1/6.

= 1) The number of possible outcomes should be linked to "ivformation”
(we need more space +o encode a messane)

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Let's try to quantify "information”

EXAMPLE 1: A gambler throws a fair die with 4 sides {A D} Q

— "Side C comes up." oo 01 10 11
- message U; ="C", or in above binary encoding U; = "10"

— There are 4 possible outcomes, each has a probability of Y.

EXAMPLE 2: A gambler throws a fair die with 6 sides {?, ?, (f, 1?, ?, E‘}.

e 1]
— "Side C comes up. 000 001 010 011 100 101

- message U, = "C", or in above binary encoding U, = "010" -

o N
— There are 6 possible outcomes, each has a probability of 1/6. ‘9

Q "

= 1) The number of possible outcomes should be linked to "ivformation”
(we need more space +o encode a messane)

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Let's try to quantify "information”

EXAMPLE 1: A gambler throws a fair die with 4 sides {A, B, C, D}. Q

— "Side C comes up."

- message U, ="C"

— There are 4 possible outcomes, each has a probability of 4.
EXAMPLE 3: The gambler throws the 4-sided die three times.

— "The sequence of sides are: (C, B, D)"
— The message U; = "CBD".

Notice "BCD" is not
How many outcomes do we have now ? e same 4 "CBD'

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 79
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Let's try to quantify "information”

EXAMPLE 1: A gambler throws a fair die with 4 sides {A, B, C, D}. Q

— "Side C comes up."

- message U, ="C"

— There are 4 possible outcomes, each has a probability of 4.
EXAMPLE 3: The gambler throws the 4-sided die three times.

— "The sequence of sides are: (C, B, D)"
— The message U; = "CBD".

— Now we had 64 = 4 - 4 - 4 = 43 possible outcomes.
;Y_J

16 +imes morel
How much wmore information did we learn in situation 37 ?

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 80
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Let's try to quantify "information”

EXAMPLE 1: A gambler throws a fair die with 4 sides {A, B, C, D}. Q

— "Side C comes up."

- message U, ="C"

— There are 4 possible outcomes, each has a probability of 4.
EXAMPLE 3: The gambler throws the 4-sided die three times.

— "The sequence of sides are: (C, B, D)"
— The message U; = "CBD".

— Now we had 64 = 4 - 4 - 4 = 43 possible outcomes.

we have 3 independent throws, the message U is 3 +imes as long,
despite 43 possible total outcomes. Our information is 3 +imes as much.

= 2.) Information is additive in some sense

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 81
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Hartley's measure of information [1928]

@

~

1 roll has 4 outcomes. log,(4) =1

.
Q%% 3rollshave 64 =4 -4 -4 = 43outcomes./ log,(64) = 3

Hartley's insight: use the logarithm of the number of possible
outcomes r +o measure the amount of information in an outcome.

Hartley's measure
of information

Hy(U) = log,(n)
<

~ 1 = number of outcomes

Ralph Hartley. Transmission of information, The Bell System Technical Journal, 1928. https://doi.org/10.1002/j.1538-7305.1928.tb01236.x
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 82
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Hartley's measure of information [1928]

&

~

roll has 4 outcomes. log,(4) =1
rolls have 64 = 4 - 4 - 4 = 4°outcomes. log,(64) =3

1

2 L E

Hartley's insight: use the logarithm of the number of possible
outcomes r +o measure the amount of information in an outcome.

Hartley's measure
of information

Hyo(U) = log,(n)
11 = number of outcomes

The basis b of the logarithm is not really important.
(just unit of information, like 1 km = 1000 m)

we will log,(c) = 1443 - log.(c)| 21443 = ¢ < 1.443 =log,(¢)
nse. lg(c)/ et = (21-443)2 — 21443z

Ralph Hartley. Transmission of information, The Bell System Technical Journal, 1928. https://doi.org/10.1002/j.1538-7305.1928.tb01236.x
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 83
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Hartley's measure of information [1928]

&

~

1 roll has 4 outcomes. log,(4) =1

.
Q%% 3rollshave 64 =4 -4 -4 = 43outcomes./ log,(64) = 3

Hartley's insight: use the logarithm of the number of possible
outcomes r +o measure the amount of information in an outcome.

Hartley's measure
of information

Hy(U) = log,(n)
<

~ 1 = number of outcomes

For k independent trials
’ log, (nF) = ?
the amount of information is: gb( ) o

Ralph Hartley. Transmission of information, The Bell System Technical Journal, 1928. https://doi.org/10.1002/j.1538-7305.1928.tb01236.x
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 84
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Hartley's measure of information [1928]

&

~

1 roll has 4 outcomes. log,(4) =1

.
Q%% 3rollshave 64 =4 -4 -4 = 43outcomes./ log,(64) = 3

Hartley's insight: use the logarithm of the number of possible
outcomes r +o measure the amount of information in an outcome.

Hartley's measure
of information

Hy(U) = log,(n)
<

~ 1 = number of outcomes

For k independent trials, N
the amount of information is: 05" (n*) = k- log, ()

the power of the logarithm ©

Ralph Hartley. Transmission of information, The Bell System Technical Journal, 1928. https://doi.org/10.1002/j.1538-7305.1928.tb01236.x
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 85
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Let's practice

EXAMPLE 4: A country has 1 million telephones. How long does the country's
telephone numbers need to be?

?

Sources: https://www.worldometers.info/world-population/
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Let's practice

EXAMPLE 4: A country has 1 million telephones. How long does the country's
telephone numbers need to be?

log,,(1,000,000) =6

With 6 digits (like "123 456") we can represent 10° different telephones.

ExampLE 5: The current world population is 8,174,891,806 (as of Sat,
September 7, 2024). How long must a binary telephone number be to
connect to every person? Atip: 232 = 4,294, .., ...

?

Sources: https://www.worldometers.info/world-population/
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Let's practice

EXAMPLE 4: A country has 1 million telephones. How long does the country's
telephone numbers need to be?

log,,(1,000,000) =6

With 6 digits (like "123 456") we can represent 10° different telephones.

ExampLE 5: The current world population is 8,174,891,806 (as of Sat,
September 7, 2024). How long must a binary telephone number be to
connect to every person? Atip: 232 = 4,294, .., ...

log,(8,174,891,806) =~ 32.93

With 33 bits we can uniquely identify every person on the planet (today).

Sources: https://www.worldometers.info/world-population/
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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A problem with F

EXAMPLE 6: we have two

indistinguishable black and white balls.
There are 4 balls total in each hat.

nats with

artley's information measure

A B

We randomly draw a ball from both hats. Let U,, Ug be the color of the ball.

What does Hartley's information measure +ell us ?
(maybe let's start+ with Uy )

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request _script.cgi?script=it
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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A problem with H

EXAMPLE 6: we have two

indistinguishable black and white balls.
There are 4 balls total in each hat.

nats with

artley's information measure

A B

We randomly draw a ball from both hats. Let U,, Ug be the color of the ball.

H,(U,) = lg(2) = 1 bit

HO(UB) — ?

(we have 2 equally likely colors)

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request _script.cgi?script=it
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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A problem with Hartley's information measure
A B

EXAMPLE 6: we have two hats with — —
indistinguishable black and white balls. J J
There are 4 balls total in each hat. L 1 0@ 000

We randomly draw a ball from both hats. Let U,, Ug be the color of the ball.

H,(U,) =1g(2) = 1 bit Problem: if U = black, then we get less
H,(Ug) =1g(2) = 1 bit mformation from Ug than from Uy
(since we somehow expected that outcome)

= 3) A proper measure of information should take into account
the (possibly different) probabilities of the various outcomes.

This was the key insight of Claude Shannon [1948]

umeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request _script.cgi?script=it
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 91
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"Fixing" Hartley's information measure
Let's analyze the possible outcomes for Ug:
Uy = white:

What does Hartley tell us about the information f?
we get after learning Ug=white f

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request _script.cgi?script=it
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 92
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"Fixing" Hartley's information measure

Let's analyze the possible outcomes for Ug:

Uy = white:
There is a p = % chance to draw a white ball.
That's the result of 1 out of n = 4 possible outcomes.

H,(Ug) = 777 f?

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request _script.cgi?script=it
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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"Fixing" Hartley's information measure

Let's analyze the possible outcomes for Ug:

Uy = white:
There is a p = % chance to draw a white ball.
That's the result of 1 out of n = 4 possible outcomes.

H,(Ug) = lg(4) = 2 bits

Up = black: g (+)
Har+ley does wot work directly. ?
what can we do? .

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request _script.cgi?script=it
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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"Fixing" Hartley's information measure

Let's analyze the possible outcomes for Ug:

Uy = white:
There is a p = % chance to draw a white ball.

That's the result of 1 out of n = 4 possible outcomes. /
Hy,(Ug) =1g(4) = 2 bits ? out of 7
Uz = black: g (%)

What is our chance p to draw a black ball? ?

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request _script.cgi?script=it
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 95
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"Fixing" Hartley's information measure

Let's analyze the possible outcomes for Ug: B
Uy = white: |
There is a p = % chance to draw a white ball. &L‘Q
That's the result of 1 out of n = 4 possible outcomes. /
Hy(Ug) = 1g(4) = 2 bits 3 out of 4
Up = black: g (+)

There is a p = 34 chance to draw a black ball.

What do we do with the 34 7 ?

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request _script.cgi?script=it
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 96
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"Fixing" Hartley's information measure

Let's analyze the possible outcomes for Ug: B
Uy = white: |
There is a p = % chance to draw a white ball. 9000
That's the result of 1 out of n = 4 possible outcomes. /
Hy,(Ug) =1g(4) = 2 bits 2 out of 4
1 =1 out of 4/3
Ug = black: lg (;)

There IS a p — BAI- Chance to draW d blaCk ba“ For -Hmf“HG\{ we veed to

That's the result of 1 out of n = 4 /3 possible outcomes. have 1 black ball (and have

"1 ont of r outcomes"). We
Hy (UB) — get +his by normalizing, i.e.
. dividivg by 2...

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request _script.cgi?script=it

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 97
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"Fixing" Hartley's information measure

Let's analyze the possible outcomes for Ug: B
Uy = white: |
There is a p = % chance to draw a white ball. &Q
That's the result of 1 out of n = 4 possible outcomes. /
Ho(Ug) =1g(4) =2bits 4 0 i) e/ ) 2 oo:r (:ij/
Us =black:  lg(5) #vlack balls - out ot 473

There is a p = 34 chance to drawa black ball.

That's the result of 1 out of = 4/3 possible outcomes.
Ho(Up) = log, () = 0.415 bits

How do we combine +hese two possible f?
outcomes to get one measure

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request _script.cgi?script=it
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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"Fixing" Hartley's information measure

Let's analyze the possible outcomes for Ug:

Uy = white:
There is a p = % chance to draw a white ball.
That's the result of 1 out of n = 4 possible outcomes.

H,(Ug) = 1g(4) = 2 bits
Up = black: g (+)
There is a p = 34 chance to draw a black ball.

That's the result of 1 out of n = 4/3 possible outcomes.

Ho(Ug) = 1g(3) = 0.415 bits

Let's do "in expectation" ©

E[Ho(Ug)l ==+ .. +-

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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/
2 out of 4

=1 out of 4/3
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"Fixing" Hartley's information measure

Let's analyze the possible outcomes for Ug: B

Uy = white: |
There is a p = % chance to draw a white ball. 9000

That's the result of 1 out of n = 4 possible outcomes.
H,(Ug) = 1g(4) = 2 bits
Up = black: g (+)
There is a p = 34 chance to draw a black ball.
That's the result of 1 out of n = 4/3 possible outcomes.

4 :
Ho(Up) = Ig (g) = 0.415 bits That's our expected amount
Let's do "in expectation": of ‘V‘ﬁy“"o"' we learv.

E[H,(Ug)] = i . 2 bits + % . 0.415 bits = 0.811 bits

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 100
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"Fixing" Hartley's information measure

Let's analyze the possible outcomes: A B

Uy = white: | |
There is a p = % chance to draw a white ball. 00 U 0000

That's the result of 1 out of n = 4 possible outcomes.
H,(Ug) = 1g(4) = 2 bits
Up = black: g (+)
There is a p = 34 chance to draw a black ball.
That's the result of 1 out of n = 4/3 possible outcomes.

Ho(Up) = Ig G) = 0.415 bits what would we get for ?
hat A instead of hat B

Let's do "in expectation":

E[H,(Ug)] = i . 2 bits + % . 0.415 bits = 0.811 bits

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 101
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"Fixing" Hartley's information measure

Let's analyze the possible outcomes: A B

Uy = white: | |
There is a p = % chance to draw a white ball. L0 9000

That's the result of 1 out of n = 4 possible outcomes.
H,(Ug) = 1g(4) = 2 bits

Up = black: g (+)
There is a p = 34 chance to draw a black ball.

That's the result of 1 out of n = 4/3 possible outcomes.

. 4\ . Notice that 1 bit was the min unit of
Ho(Ug) = 1g (5) = 0.415 bits information for the Hartley measure.

Expectation allowed us to go lower!

) ; 1 bit for hat A
E[H,(Ug)| = =- 2 bits +=- 0.415 bits = 0.811 bits hatB
o\UB 2 .,

Let's do "in expectation":

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request_script.cgi?script=it
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 102
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"Fixing" Hartley's information measure

Let's analyze the possible outcomes: A B

Uy = white: | |
There is a p = % chance to draw a white ball. 00 U 0000

That's the result of 1 out of n = 4 possible outcomes.
H,(Ug) = lg(4) = 2 bits

p = black: g (+)

There is a p = 34 chance to draw a black ball.

That's the result of 1 out of n = 4/3 possible outcomes.

H,(Ug) =1g (%) = 0.415 bits This is Clande Shanvon's

measure of information

Let's do "in expectation":

- - - 1 bit for hat A
E[Hy(Ug)] ==-1g(4) +--1g(- = (0.811 bits hatB
4 4 3

Numeric example from: Moser. Information Theory (lecture Notes, 6th ed). https://moser-isi.ethz.ch/cgi-bin/request _script.cgi?script=it
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 103
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Shannon's entropy

Shannon's measure of information as expected Hartley information (averaged
over all possible outcomes)

H(p) = ipz g (%) = _ipi 1g(pi) = E [lg (%)]

N J

I—IO(U) p; = probability of the i-+h possible outcome

Uncertainty: Normalized nvumber of outcomes,
for option i to be "1 out of ... outcomes"

By C. E. SHANNON

n
1948: | A Mathematical Theory of Communication H=—-K 2 Di log Di
1=1

Claude Shannon. A Mathematical Theory of Communication, The Bell System Technical Journal, 1948. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 104
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Shannon's entropy

Shannon's measure of information as expected Hartley information (averaged
over all possible outcomes)

H(p) = ipz g (%) = _ipi 1g(pi) = E [lg (%)]

N J

H, (U) p; = probability of the i-+h possible outcome

Uncertainty: Normalized nvumber of outcomes,
for option i to be "1 out of ... outcomes"

1928 Transmission of Information H = Kﬂ,
By R. V. L. HARTLEY H=n ]og [y

By C. E. SHANNON

n
1948: | A Mathematical Theory of Communication H=-K 2 Di log Di
1=1

Ralph Hartley. Transmission of information, The Bell System Technical Journal, 1928. https://doi.org/10.1002/j.1538-7305.1928.tb01236.x

Claude Shannon. A Mathematical Theory of Communication, The Bell System Technical Journal, 1948. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
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Shannon's entropy

Shannon's measure of information as expected Hartley information (averaged
over all possible outcomes)

H(p) = ipz g (%) = _ipi 1g(pi) = E [lg (%)]

N J

Ho (U)

p; = probability of the i-th possible outcome

Uncertainty: Normalized nvumber of outcomes,
for option i to be "1 out of ... outcomes"

~

1) The number of possible outcomes should be
linked to "information” -H,
2) Information is additive in some sense )

3) A proper measure of information should take into g
account the different probabilities of the outcomes.

Ralph Hartley. Transmission of information, The Bell System Technical Journal, 1928. https://doi.org/10.1002/j.1538-7305.1928.tb01236.x

Claude Shannon. A Mathematical Theory of Communication, The Bell System Technical Journal, 1948. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
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Pre-class conversations

e Last class recapitulation

e To be posted: Online Python notebook (feedback *very* welcome,
also possibly useful for your own scribes)

« Feedback on newly posted scribes on Piazza over weekend
« Any feedback on organization on course website (Canvas, Piazza)?

e Today:
— Keep pen & paper ready for hands-on calculus, logarithm

* also see Schneider's "Information Theory Primer, With an Appendix on Logarithms"
— Intuition behind entropy (and variants)

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 111
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Properties
of information (entropy)
oy example
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Shannon entropy for unbiased outcomes
EXAMPLE 1: What is the entropy in a roll of an unbiased 8-sided die? 9/ 3 ?

H(p) = ipi g (pl)

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 113
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Shannon entropy for unbiased outcomes

EXAMPLE 1: What is the entropy in a roll of an unbiased 8-sided die? 92 3

H(p) = Zpi-lg(%) =<Zr:pi)-lg(%)=lg(%) ? &

=1

1

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 114
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Shannon entropy for unbiased outcomes = Hartley measure

ExamMPLE 1: What is the entropy in a roll of an unbiased 8-sided die? .

H(p) = Zpi-lg(%) =<ipi)'lg(%) lg(%):Ho(%>

&
=1

- ? \

number of outcomes

Entropy is exactly the Hartley information measure for unbiased outcomes ©

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Shannon entropy for unbiased outcomes = Hartley measure

ExAMPLE 1: What is the entropy in a roll of an unbiased 8-sided die?

H(p) =

T

> vi-1g()
pPi 18\ —

i=1 Pi

|

> o) 16(2) = () = 0 (2)

=1

1 — 1g(8) = 3 \

73

&

number of outcomes

Entropy is exactly the Hartley information measure for unbiased outcomes ©

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Characterization of the Hartley information measure

Shannon entropy for uniform sampling from n choices.

1 : : S
H,(r) = H, (_) = lg(n) two malcpewd@wf uniformly distributed Rvs,
Di with alphabet size m and n

/|
The Hartley function only depends on the number of elements in a set, and hence can be
viewed as a function on natural numbers. Rényi showed that the Hartley function in base 2 is
the only function mapping natural numbers to real numbers that satisfies

1. Hdmn) — H((m) + I—{{n) (additivity) ]g(m ‘ n) — ]g(m) + ]g(n)
2. H{ym) < H{m + 1) (monotonicity)
3. H{2) = 1 (normalization)

Condition 1 says that the uncertainty of the Cartesian product of two finite sets A and B is the
sum of uncertainties of A and B. Condition 2 says that a larger set has larger uncertainty.

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 117
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Learning partial information ~

ExampLE 2: We roll an unbiased 8-sided die with sides {1,2, ...,8}. § 5

We then get a message with the information that the outcome of a roll is even.
How much information did we learn? f?

118

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/



https://northeastern-datalab.github.io/cs7840/

e

Learning partial information
3

ExampLE 2: We roll an unbiased 8-sided die with sides {1,2, ...,8}. § 5

We then get a message with the information that the outcome of a roll is even.
How much information did we learn?

« Before the message: f?
- After the message: d

119
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e

Learning partial information
3

ExampLE 2: We roll an unbiased 8-sided die with sides {1,2, ...,8}. § 5

We then get a message with the information that the outcome of a roll is even.

How much information did we learn?

o Before the message: There are 8 choices: {1,2,3,4,5,6,7,8}
o After the message: There are 4 choices: {2,4,6,8}

How much information did we have before? f?
How much information did we have after -

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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e

Learning partial information
ExaAMPLE 2: We roll an unbiased 8-sided die with sides {1,2, ...,8}. ¥ ‘93

We then get a message with the information that the outcome of a roll is even.
How much information did we learn?

 Before the message: There are 8 choices: {1,2,3,4,5,6,7,8} H,(8) = 3 bits
« After the message: There are 4 choices: {2,4,6,8} H,(4) = 2 bits

Let's think about encodings ~ (vinard encoding with
atypical 1-indexing)

Before: 11, 2, 3, 4, 5, 6, 7, 8} Do you notice something

ool
?

000 001 010 011 100 101 110 111
After: { , 2 , 4 , 6, , 8} =

| | i l

001 011 101 111

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 121



https://northeastern-datalab.github.io/cs7840/

e

Learning partial information
ExaAMPLE 2: We roll an unbiased 8-sided die with sides {1,2, ...,8}. ¥ 6,3

We then get a message with the information that the outcome of a roll is even.
How much information did we learn?

 Before the message: There are 8 choices: {1,2,3,4,5,6,7,8} H,(8) = 3 bits
« After the message: There are 4 choices: {2,4,6,8} H,(4) = 2 bits

Let's think about encodings We have learned 1 bit! 2 ? 1

Before: {1, 2, 3, 4, 5, 6, 7, 8}
S S T T S A A

000 001 010 011 100 101 110 111 ’ : W s s :
Grouping rule”: Dividing the ontcomes into

two (last bit), randomly choose one group
After: {,2 ,4 ,6 , 8} (€.9.1), and thew randowmly pick av element

l l i l from that group (€.9.10), does ot change
001 011 101 111 the entropy

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 122



https://northeastern-datalab.github.io/cs7840/

e

Learning partial information
ExaAMPLE 2: We roll an unbiased 8-sided die with sides {1,2, ...,8}. ¥ ‘93

We then get a message with the information that the outcome of a roll is even.
How much information did we learn?

 Before the message: There are 8 choices: {1,2,3,4,5,6,7,8} H,(8) = 3 bits
« After the message: There are 4 choices: {2,4,6,8} H,(4) = 2 bits

Recall: information is additive:

:'c‘))
1 flip of a 2-sided coin has 2 outcomes. H% lg(2) =1

:".@)\;) :':@)5) >+1 b|t
2 flips have 2% = 4 outcomes. [[5 [[A_?’ lg(4) = 2

-‘"—Q‘\;) :':@‘5) :".@‘5) >+1 b|t
3 flips have 23 = 8 outcomes. H/)?/ [[/)?/ [[Ls/»' lg(8) = 3

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 123
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e

Learning partial information
ExaAMPLE 2: We roll an unbiased 8-sided die with sides {1,2, ...,8}. ¥ 6,3

We then get a message with the information that the outcome of a roll is even.
How much information did we learn?

 Before the message: There are 8 choices: {1,2,3,4,5,6,7,8} H,(8) = 3 bits
« After the message: There are 4 choices: {2,4,6,8} H,(4) = 2 bits

The power of the logarithm: transform multiplication into addition

Uncertainty before — Uncertainty after -
1g(8) — lg(4) ()

h Information content in a message
8 : U that reduces the wumber of

1 (—) ~ 1g(2) = 1 bi .

5 4 g( ) bit unbiased ontcomes from n +to m

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 124
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Learning partial information
ExampLE 3: We roll an unbiased 8-sided die with sides {1,2, ...,8}. § 5

We then get 4 messages, one after the other: U; = "The outcome of the roll is
notl", U, ="...not3", U; ="...not5", U, ="... not 7".
How much information do we learn from each individual message? ?

H(U1) =
H(U,|Uy) = These are called "conditional entropies’!

H(U3 Ul,Z) —

N N NI

H(U4 U1—3) —

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 125
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e

Learning partial information
3

ExampLE 3: We roll an unbiased 8-sided die with sides {1,2, ...,8}. § 5

We then get 4 messages, one after the other: U; = "The outcome of the roll is
notl", U, ="...not3", U; ="...not5", U, ="... not 7".
How much information do we learn from each individual message?

HUD = 1g(2)= 0193 bits
H(Uz U1) — ?

H(U3 Ul,Z) — ?

H(U4 U1—3) — ?

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/

126


https://northeastern-datalab.github.io/cs7840/

e

Learning partial information
ExaAMPLE 3: We roll an unbiased 8-sided die with sides {1,2, ...,8}. ¥ 6,3

We then get 4 messages, one after the other: U; = "The outcome of the roll is
notl", U, ="...not3", U; ="...not5", U, ="... not 7".

How much information do we learn from each individual message?
... and all of them together? ?

H(U,) = 1g (%) = 0.193 bits
H(U|U) = 1g(3) = 0.222 bits
H(Us|U,) = 1g(%) = 0.263 bits
H(U4|Uy—3) =g G) — 0.322 bits

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Learning partial information
ExaAMPLE 3: We roll an unbiased 8-sided die with sides {1,2, ...,8}. ¥ 6,3

e

We then get 4 messages, one after the other: U; = "The outcome of the roll is
notl", U, ="...not3", U; ="...not5", U, ="... not 7".

How much information do we learn from each individual message?
.. and all of them together?

H(U,) = 0.193 bits

)

[—
aQ
N N 77N

Sl Loy VI N1

How come +hat +he SUM of +hese numbers
+urns out to be soooo nice?

0.263 bits f?

I
<
N
N
N
o
—~
wn

H(Uz U1) =
H(U3 Ul,Z) = lg

H(U4|U;-3) —lg(
H({U, Uz, U3, Us}) = 1bit

|
=
Lo
N
N
o
—~+
%p)

N’ e e NS
|

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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e

Learning partial information
ExaAMPLE 3: We roll an unbiased 8-sided die with sides {1,2, ...,8}. ¥ 6,3

We then get 4 messages, one after the other: U; = "The outcome of the roll is
notl", U, ="...not3", U; ="...not5", U, ="... not 7".

How much information do we learn from each individual message?
.. and all of them together?

HUD = 1g(3)=0193bits |[H({UL, Uy, Us, U}

H(U,;|U) = g (g) = (0.222 bits = H(U,) + H(U,|Uy) + H(U3|Uy2) + H(U4|U;—3)
H(U3|U ) = 1g (g) — 0.263 bits This is called the "chaiv rule”

H(U4|Uy—3) =g G) — 0.322 bits

H({Uy, Uy, U3, U}) = 1bit

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 129
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e

Learning partial information
ExaAMPLE 3: We roll an unbiased 8-sided die with sides {1,2, ...,8}. ¥ 6,3

We then get 4 messages, one after the other: U; = "The outcome of the roll is
notl", U, ="...not3", U; ="...not5", U, ="... not 7".

How much information do we learn from each individual message?
.. and all of them together?

0.193 bits | H({Uy, U, U3, Us})
= H(Uy) + H(U3|Uy) + H(U3|Uy ) + H(U4|Uz—3)

0.263 bits lg()+lg()+lg()+lg()
-7

)

[—
aQ
N N 77N

Sl Loy VI N1

H(Ul) —
H(Uz U1) —
H(Us|Uy ) = g

H(U4|U;-3) —lg(
H({U1, Uz, U3, Us}) = 1bit

I
<
N
N
N
o
—~
wn

N’ e e NS
|

|
=
Lo
N
N
o
2.
%p)
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e

Learning partial information
ExaAMPLE 3: We roll an unbiased 8-sided die with sides {1,2, ...,8}. ¥ 03

We then get 4 messages, one after the other: U; = "The outcome of the roll is
notl", U, ="...not3", U; ="...not5", U, ="... not 7".

How much information do we learn from each individual message?
.. and all of them together?

0.193 bits | H({Uy, U, U3, Us})
= H(Uy) + H(U3|Uy) + H(U3|Uy ) + H(U4|Uz—3)

H(Us|Uy,) = g 0.263 bits = lg( )+lg( )+lg( )+lg( )

H(U4|U; - 3)—1g( 'E,'E,E{)—l ()—1bit

H({U1, U, U3,Us}) =1 bit Again, the logarithm ©

)

[—
aQ
N N 77N

Sl Loy VI N1

H(Ul) —

H(Uz U1) =

I
<
N
N
N
o
—~
wn

N’ e e NS
|

|l
)
w
(N
(N
O
:I-.
wn
|l
p—u
gl
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Maximum Entropy
distributions
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Binary Entropy Function  gi,c.4 coin fiin: .8

(D, ifx=1

X is a Bernoulli RV with p(x) = 11 —p,ifx =0

Hy(p) = P

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 133
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Binary entropy function

Binary Entropy Function 2
y l-}/) 1.0——— .HB(p).
rp, ifx =1 ﬂ% o

X is a Bernoulli RV with p(x) = 11 _p,ifx =0

Hg(p) = —p-1g(p) — (1 —p) - 1g(1 — p) 05|

oo+ %
0.0 0.5 1.0

134

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT illustration.ipynb
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Binary Entropy Function . Binary entropy function

> _» _HB('D)_

(p, ifx=1 T
1-pitx=0 |

Hg(p) = —p-1g(p) — (1 —p) - 1g(1 — p) 05|

How to choose p in order to maximize entropy ?

X is a Bernoulli RV with p(x) =+

oo+ %
0.0 0.5 1.0

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT illustration.ipynb
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 135
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Binary Entropy Function o.  Binary entropy function

) Hg(p)
( : 1.0
| o C(p, ifx=1 1% "
X is a Bernoulli RV with p(x) = 11 pifx =0 |
Hg(p) = —p -1g(p) — (1 —p) - 1g(1 — p) 0.5{.

How to choose p in order to maximize entropy?

dH f? .05
dp

[ |

Understanding "chavge of basis” Calculus | =

nderstanding law(?) of ba OEM“‘ n(x) .

]g(x) = log, (x) = IE sheet lg(x) r _ (Inlx _
(2) // | (ln(Z))
? (x ) lg(x)) = ?
u lg(l — x), = -

((1-x)-1g(1—x)) =

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT illustration.ipynb
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 136
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Binary Entropy Function o.  Binary entropy function

) Hg(p)
( : 1.0
| o C(p, ifx=1 1% "
X is a Bernoulli RV with p(x) = 11 pifx =0 |
Hg(p) = —p -1g(p) — (1 —p) - 1g(1 — p) 0.5{.

How to choose p in order to maximize entropy?

dH £ > 0'0610'
dp -

|
Understanding "chavnge of basis” Calculus In(x) ' =
In() theat Gy

lg(x) = log,(x) = n2) definition sl/\%' lg(x)’ = (ln(Z)) —

i%' E‘ apply n(...) — (x . lg(x))’ =
270821 = x ov both sides ?
In(2!°829) = In(x) (") = b tn(a) lg(1-x)' = -

log,(x) - In(2) = In(x) (1-x) -1 —x)' =

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT illustration.ipynb
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 137
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Binary Entropy Function
( .
. . . _\p, ifx =1
X is a Bernoulli RV with p(x) = 11 _pifx =0

Hg(p) = —p-lglp) —(1—p)-1g(1 —p)

How to choose p in order to maximize entropy?

“_ D

dp_ -

Binary entropy function
) He(p)

Calculus In(x)’ = =

cheat p '

sheet lg(x) " = ngi) - x-l;(z)
(x - 1g(x))’ = xmi(z) +l1g(x)
lg(1—x) = - (1—x)1-1n(2)

(1=x)-1g1 —x))" = _ﬁ ~ st

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT illustration.ipynb

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Binary Entropy Function
( .
. . . _\p, ifx =1
X is a Bernoulli RV with p(x) = 11 _pifx =0

Hg(p) = —p -lg(p) —(1 —p) -1g(1 —p)

How to chooselp in order tolmaximize entropy?

dH 4 A A4 - N\
= ey 180 75 +18(1 —p)

Binary entropy function
) He(p)

Calculus In(x)’ = L
x
gm?i lo(x) ' = (ln(x))’ 1
5 ~ \In(2)/ = xIn(2)

(- 1g(0)" = % + 18 (%)
1

X

g1 —%)" = o

((1=x)-1g1 =) = — = —lg(1 = )

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT illustration.ipynb

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Binary Entropy Function
( .
. . . _\p, if x
X is a Bernoulli RV with p(x) = 11 i x

Hg(p) = —p -lg(p) —(1 —p) -1g(1 —p)

How to chooselp in order tolmaximize entropy?

-

dH
dp

olg(=2)=0e(=)=1e

d?H

dp?

n(2)

» ~18(p) + 725 +18(1 —p)

-1 %

0

N | =

p p

?

0

Binary entropy function
Hg(p)

o
sz WY

1.0

0.57

0.0+

0.0
Calculus In(x)’ = L
theat gl -~ )
sheet r — (X

lg(x) B (n(z)) x-In(2)

(x - 1g(x))" = « - n(z) +1g(x)

lg(1 —x)" = — 72 x) In(2)
(=) 1g(l =)' = — =~ 1g(1 = )

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT illustration.ipynb
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Binary Entropy Function
( .
. . . _\p, if x
X is a Bernoulli RV with p(x) = 11 i x

Hg(p) = —p -lg(p) —(1 —p) -1g(1 —p)

-1 %

0

How to chooselp in order tolmaximize entropy?

dH 8 > X \
= o 8@ +==+1g(1-p) =0

:}lg(p)—O@(p) 1 |p =2
a’H _ 1 1 <0

Binary entropy function
Hg(p)

o
sz WY

1.0

0.57

0.04—

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT illustration.ipynb

0.0

Caleulns In(x)' = =

cheat p !

sheet lg(x) " = ng) - x-l;(z)
(x - Ig(x))’ = xmi(z) +1g(x)
lg(1—x) = - (1—x)1-1n(2)

(A —x)- 181 —x))" = —377 —1g(1l —x)
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Asking ChatGPT for help

Can you calculate step-by-step the derivative for p of:

H(p)==p-19(p)-(1-p) -1g [(1-p)]

Repeat but assume log is to the basis 2 instead of e

Sure! Let's differentiate the function
H(p) = —p-logy(p) — (1 — p) - logy(1 — p),

where log2 denotes the logarithm base 2. The process is similar to before, so let's go through it
step-by-step.

Step 1: Rewrite the Function
The function is already clear:
H(p) = —plogy(p) — (1 — p) log,(1 — p)-
Step 2: Differentiate H (p)
We will differentiate each term separately.

Term 1: Differentiate —p log, (p)

Using the product rule:

d 1 L
%[*plogz(p)] =- (1052(1’) +p- m) =~ loga(p) - In(2)’

Term 2: Differentiate —(1 — p) log,(1 — p)

Again, using the product rule:

d -1 1
=P oms =] = = (“lom =)+ -0 ) <Tom(1 ) -

Step 3: Combine the Derivatives
Now we can combine the derivatives of both terms:

1

H'(p) = —logy(p) — S logy(1 — p) — @)

In(2)

Step 4: Simplify

Combining the constant terms and rearranging gives:

H'(p) = loga(1 — p) — logy(p) — .

This can also be expressed using properties of logarithms:

H'(p) = log, (%) S

Final Result
Thus, the derivative of H (p) with respect to p is:

1) =tom (4, 7) - oy

Interaction with https://chatgpt.com/ (ChatGPT 40 mini, 9/2024)
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/

Chat@GPT made the *same™ mistake as wmel
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Asking ChatGPT for help

Can you calculate step-by-step the derivative for p of:

H(p)==p-19(p)-(1-p) -1g [(1-p)]

Repeat but assume log is to the basis 2 instead of e

Sure! Let's differentiate the function
H(p) = —p-logy(p) — (1 —p) - logy(1 — p),

where log2 denotes the logarithm base 2. The process is similar to before, so let's go through it
step-by-step.

Step 1: Rewrite the Function
The function is already clear:
H(p) = —plogy(p) — (1 — p) log,(1 - p).
Step 2: Differentiate H (p)
We will differentiate each term separately.

Term 1: Differentiate —p log, (p)

Using the product rule:

d 1 L
ap|Plos(p)] =~ (108;2(1’) tr m) = ~loa®) ~ gy

Term 2: Differentiate —(1 — p) log,(1 — p)

Again, using the product rule:
2 (-0~ p) = — (~loga1 )+ (1-p) - ) = logy(1.
dp p)log; p)l = 082 p p 1 - p)In(2) = logy

Step 3: Combine the Derivatives
Now we can combine the derivatives of both terms:

H'() = ~108a(0) — 155 + 1081~ ) — oo

Nad

Step 4: Simplify

Combining the constant terms and rearranging gives:

H'(p) = logy(1 — p) — logy(p) — ﬁ

This can also be expressed using properties of logarithms:

Final Result

Thus, the derivative of H (p) with respect to p is:

H'(p) = log, (%) N

Interaction with https://chatgpt.com/ (ChatGPT 40 mini, 9/2024)

You had some error in earlier step 2 term 2. Plea
minuses

Let's go through the differentiation of the term —(1 — p) log,(1 — p) again carefully to ens

we get the signs correct.

Step 1: Differentiate —(1 — p) log,(1 — p)

Using the product rule, we have:

- pogy(1 - )] - - (dipu ~ ) logy(1-p) + (1) 1 flogs(1 ,p)]) .

1. The derivative of 1 — pis —1.

2. The derivative of log,(1 — p) is:

d 1
d—p[log2(1 -p)l= T (1-p)n(2)

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Step 2: Apply the Product Rule

Putting it all together:

dile —p)logy(1 —p)] = — (* logy(1 —p) + (1= p)- (*m» '

Step 3: Simplify the Expression
This simplifies to:

1
log,(1 — o)

Final Result for the Derivative of H (p)
Now, let's combine everything correctly for the overall derivative H’(p):

1. The derivative of the first term —plog,(p):
—lo =
82 (p) ln(2)
2. The corrected derivative of the second term —(1 — p) logy(1 — p):

1
logy (1 —p) + —=-

In(2)
Combining these:

#'0) = (~1oms0) ~ 155 ) + (10wt -) + s )

The 7ﬁ and +ﬁ cancel out, leading to:
H'(p) = logy(1 — p) — logy(p).-

properties of logarithms:
1-p
H'(p) = log, (T) :

Final Result

f H(p) is:
H'(p) = log, (%) -

Thank you for your patience, and | apologize for the confusion earlier!

Thus, the corrected derivati
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Maximum Entropy distribution for nonbinary discrete RV

Entropy of a discrete distribution with n outcomes H(p) = 2 p; - lg(py)

Which choice of p = (p4, ..., ) maximizes the entropy? =1

?
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Maximum Entropy distribution for nonbinary discrete RV

Entropy of a discrete distribution with n outcomes H(p) = 2 p; - lg(py)

Which choice of p = (p4, ..., ) maximizes the entropy? =1 n

Can be solved with constrained optimization: max [H(p)] s.t. z p; =1
P i=1

Form the Lagrangian: ?

145
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Maximum Entropy distribution for nonbinary discrete RV

Entropy of a discrete distribution with n outcomes H(p) = 2 p; - lg(py)

Which choice of p = (py, ..., Pp) Maximizes the entropy? '~

n

Can be solved with constrained optimization: mr?x [H(p)] s-t. 2 p; =1
Form the Lagrangian: t=1

n n
J(p,A) = —Zm -1g(p;) +/1<zpi - 1)
P i=1 i=1
—] = Calculus In(x)' = 1
P o exercise p

lg(x)" = (“‘(’”) = T
(x -1g(x))" = +lg(x)
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Maximum Entropy distribution for nonbinary discrete RV

Entropy of a discrete distribution with n outcomes H(p) = 2 p; - lg(py)

Which choice of p = (py, ..., Pp) Maximizes the entropy? '~

n
Can be solved with constrained optimization: max [H(p)] s.t. 2 p; =1
— p —
Form the Lagrangian: P =1
N N 22 Splen
](p,/l)=—Zm-lg(pi)+/1<zpi—1 oA /
i= =1
0 1
—] = — — lg(pl) +A1A =0 Calculus ln(x) ' 1
op; In(2) exercise xln(x)
B [y E——— Ig(x) " = ( ) = —
o lglp) =1 - e p=2 @ * ( )
In(2) f? (x - 1g(x))" = {15 +18()
What vext?
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Maximum Entropy distribution for nonbinary discrete RV

Entropy of a discrete distribution with n outcomes H(p) = 2 p; - lg(py)

Which choice of p = (p4, ..., ) maximizes the entropy? =1 N
Can be solved with constrained optimization: mr?x [H(p)] s-t. 2 p; =1
Form the Lagrangian: =1

n n
J(p, ) = —Zm -1g(p:) +/1<2 pi — 1)

i=1 =1
d 1
—] = — — lg(pl) +A1A =0 Calculus ln(x) ' 1
op; In(2) exercise 0o

P —— lg(x)' = ( — ) =
< lgp) =1 - © p=2 @ =( ’”“(2)
In(2) (x - 1g(x))" = {15 +18()
we are dove ©, all p; are identicall

1
Epl—l @Z:C—l S C——
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Pre-class conversations

e Last class recapitulation

e Today:
— Intuition behind entropy with examples continued
— Together with the general principles of entropy
— Then we are changing back to compression

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 158
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Properties
of information (entropy)
oy example (continued)
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Learning partial information ) gw W
EXxAMPLE 4: We again roll the unbiased 8-sided die with sides X'={1,2, ...,8}.

We get two messages: U, that the outcome of a roll is even, U, that the outcome
of the same roll is < 4. How much information did we learn after each message?

H(U1) — ’7 ?

H(Uz) — ’7
H(U2|U1) = ’7

160
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e

Learning partial information S
ExAMPLE 4: We again roll the unbiased 8-sided die with sides X'={1,2, ...,8}.

We get two messages: U, that the outcome of a roll is even, U, that the outcome
of the same roll is < 4. How much information did we learn after each message?

f)

8 .
Hw = 1g(3) = 1o H(U,|Uy) = H(U,) = 1

HUy) = 1g(3)=1bit | /

H(U,|Uy) = 1g (g) = 1 bit j

161
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e

Learning partial information &

&

ExAMPLE 4: We again roll the unbiased 8-sided die with sides X'={1,2, ...,8}.

We get two messages: U, that the outcome of a roll is even, U, that the outcome
of the same roll is < 4. How much information did we learn after each message?

3 ind dont How do the messages
H(Ul) = lg (Z) = 1 bit messages are independen reduce the possible

R H(U |U ) — H(U ) =1 outcomes?
Hup = 1g(B=1bi |/ ’ ?

H(U,|Uy) = 1g (g) = 1 bit j

SN O Ww e
(o o B o ) ' ~ NN \V)
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e

Learning partial information &

&

ExAMPLE 4: We again roll the unbiased 8-sided die with sides X'={1,2, ...,8}.

We get two messages: U, that the outcome of a roll is even, U, that the outcome
of the same roll is < 4. How much information did we learn after each message?

U

H(U,) = Ig G) — 1 bit messages are independent _>21
3 . H(U,|U;) =H(Uz) =1

H(Uz) = g (Z) = 1 bit / 4

H(U2|U1)=lg(§)=1bit | g
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e

Learning partial information S
ExAMPLE 4: We again roll the unbiased 8-sided die with sides X'={1,2, ...,8}.

We get two messages: U, that the outcome of a roll is even, U, that the outcome
of the same roll is < 4. How much information did we learn after each message?

Uy
H(U,) = Ig 8\ = 1 bit messages are independent —

1 (g) . H(U,|U) = H(Uz) =1 2 I
HU) = 1g(3)=1bit | / A
H(U,|Uy) =g (g) = 1bit the eveuts are iwdepewdgvﬁ'

p(U;|Uy) = p(U3) = >
%_/

probability of +he event X < 4

164
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e

Learning partial information &

&

ExAMPLE 4: We again roll the unbiased 8-sided die with sides X'={1,2, ...,8}.

We get two messages: U, that the outcome of a roll is even, U, that the outcome
of the same roll is < 4. How much information did we learn after each message?

Uy
H(U,) = Ig 8\ = 1 bit messages are independent —

1 (g) . H(U,|U) = H(Uz) =1 2 I
HU) = 1g(3)=1bit | / A
H(U,|Uy) =g (g) = 1bit the eveuts are iwdcpewdgvr{-

p(U;|Uy) = p(U3) = >
%_/

probability of +he event X < 4
H({U,Uz}) = H(U;y) + H(U,|Uy)

= H(U;) + H(U,) {
001 011
U; avd U, are independent 0?1

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 165
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Properties
of information (entropy)
Qbstracted

https://northeastern-datalab.github.io/cs7840/



https://northeastern-datalab.github.io/cs7840/

Entropy

Given a discrete RV X with probability mass function (PMF) p(x) = P|X = x],
for x € X. Entropy is defined as:

1 Altervative notation: p(X) = py(x). Also:
H(X) — E [lg( (X))] — Z p(x) -lg (m) Ep[...] or Ex[...] or [EXNP[...]‘for‘+ha‘6x1>co+ad

value operator w.r. to the distribution p

Entropy is label-invariant, meaning that it depends only on the probability
distribution and not on the actual values that the random variable X can take.

Figure source: https://www.amoebasisters.com/parameciumparlorcomics/dna-alphabet
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 167
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JOi nt E ntro py treat (X,V) just like a single vector-valued RV Z = (X,Y)
Given two RVs X and Y with PMF p(X,Y), their joint entropy is:

1 1 O+ther notation: p(X,Y) = py v (x, 7).
H X, Y = [E [l ( )] — X, ] ( ) ) ’ X,y (X
(X,Y) g > (X.7) Ex Ey p(x,y)-1g ot/ | Ao BrvplTor ExyoplTor Byl

If X and Y are independent:
HX,Y)= HX)+ H(Y)

How can we prove that? ?

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 168
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Joint Entropy

Given two RVs X and Y with PMF p(X,Y), their joint entropy is:

) = 8oy - 2 o

p(x,y)

Other wotation: p(X,Y) = pyy(x,¥).
Alsor Exyp[...]or Exy p[...]or Ey[...]

If X and Y are independent:
HX,Y)= HX)+ H(Y)

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 169
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Conditional Entropy, Chain rule of Entropy
Given two RVs X and Y with PMF p(X,Y), their joint entropy is:

HX,Y) = E|lg (p(Xl, Y))] ) Z Zy: peoy) e <p(x1, y))

If X and Y are not independent:

what do we
H(X,Y) = H( Y) need +oodo? ?

If X and Y are not independent, observing X might
contain already some information about Y, so simply
adding the information from each would overcount.

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 170
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Conditional Entropy, Chain rule of Entropy
Given two RVs X and Y with PMF p(X,Y), their joint entropy is:

HX,Y) = E[lg (p(Xl, Y))] ) Zzyzp(%y)qg (p(xl,y))

If X and Y are not independent:

HX,Y) = Zzp(x' v)-lg <p(xl, y)>
X y

H(X,Y) = H(X) + H(Y|X)

) ZZM 201 185 o)

Conditional entropy H(Y|X): the expected = ZZp(x) p(yIx) - 1g (ﬁ) +ZZp(x) p(y|x) - Ig (p(yllx))
amount of information needed to describe x Y 1 X Y 1
the outcome of RV Y given that the value =\Zp(x) e (@j) '\;p(y'x;“zp(x) ';p(y'x) e (p(ylx)/)
of another RV X is known O b HYIX = 2)
~ '
H(Y|X) = -H(Y|X = DEFINITION of _ V) - !
¥1X) Zp(x) (Y] x) conditional entropy HYX) ;p( ) 1g(P(3/|X))

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 171
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Chain rule for entropy

... obvious generalization to

HX,Y,Z)=HX)+H(Y|X)+ H(Z|X,Y) a chain of (not necessarily

independent) observations

If not independent:

H(X,Y) = HX) + H(Y|X)

conditional entropy

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 173
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Learning partial information
ExAMPLE 5: We again roll the unbiased 8-sided die with sides X'={1,2, ...,8}. § 5

We then get a message U: "The outcome of the roll is even, and by the way, the
next president of the US will be ...". Assuming two equally likely outcomes for
the election, how much information did we learn?

?

3

174
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e

Learning partial information
3

ExAMPLE 5: We again roll the unbiased 8-sided die with sides X'={1,2, ...,8}. § 5

We then get a message U: "The outcome of the roll is even, and by the way, the
next president of the US will be ...". Assuming two equally likely outcomes for
the election, how much information did we learn?

e We still learn 3-2=1 bit about the roll of the die X. We learned 2 bits
e We also learn 1 bit about the election outcome. (U contains 2 bits)

Wasn't information supposed to be additive?

?

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 175
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e

Learning partial information
EXxAMPLE 5: We again roll the unbiased 8-sided die with sides X'={1,2, ...,8}. ¥ 6,3

We then get a message U: "The outcome of the roll is even, and by the way, the
next president of the US will be ...". Assuming two equally likely outcomes for
the election, how much information did we learn?

e We still learn 3-2=1 bit about the roll of the die X. We learned 2 bits
e We also learn 1 bit about the election outcome. (U contains 2 bits)

Wasn't information supposed to be additive?

Uncertaintyinthe — Tuformation contained
outcome of the roll X ?H(X) 3 H(U)=2 in message U
Uncertainty X after / : =

we see the message U

Inspired by Fig 8.1 in "MacKay. Information Theory, Inference, and learning Algorithms. Cambridge University Press, 2002." https://www.inference.org.uk/itprnn/book.pdf
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 176
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e

Learning partial information
EXxAMPLE 5: We again roll the unbiased 8-sided die with sides X'={1,2, ...,8}. ¥ 6,3

We then get a message U: "The outcome of the roll is even, and by the way, the
next president of the US will be ...". Assuming two equally likely outcomes for
the election, how much information did we learn?

e We still learn 3-2=1 bit about the roll of the die X. We learned 2 bits
e We also learn 1 bit about the election outcome. (U contains 2 bits)

Wasn't information supposed to be additive?

Uncertaintyinthe — Tuformation contaived

ountcome of the roll X alg=s in message U
H(X|U)=2 HU)=2

Uncertainty X after /

we see the message U ?

Inspired by Fig 8.1 in "MacKay. Information Theory, Inference, and learning Algorithms. Cambridge University Press, 2002." https://www.inference.org.uk/itprnn/book.pdf
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e

Learning partial information
EXxAMPLE 5: We again roll the unbiased 8-sided die with sides X'={1,2, ...,8}. ¥ 6,3

We then get a message U: "The outcome of the roll is even, and by the way, the
next president of the US will be ...". Assuming two equally likely outcomes for
the election, how much information did we learn?

e We still learn 3-2=1 bit about the roll of the die X. We learned 2 bits
e We also learn 1 bit about the election outcome. (U contains 2 bits)

Wasn't information supposed to be additive?

Uncertaintyinthe H(X)=3 Tuformation contained

outcome of the roll X H(Xl U) 5 H(U) 5 i message U

Uncertainty X after - = Additional informatiow

we see +h6wvnassa@6 U / I1(X;U)=1 ? iy m?sia i U ;—hm“ is
A warelated +o

WMutual information between X and U: what
we learn about X after seeing U (or v.V.)

Inspired by Fig 8.1 in "MacKay. Information Theory, Inference, and learning Algorithms. Cambridge University Press, 2002." https://www.inference.org.uk/itprnn/book.pdf
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e

Learning partial information
EXxAMPLE 5: We again roll the unbiased 8-sided die with sides X'={1,2, ...,8}. ¥ 6,3

We then get a message U: "The outcome of the roll is even, and by the way, the
next president of the US will be ...". Assuming two equally likely outcomes for
the election, how much information did we learn?

e We still learn 3-2=1 bit about the roll of the die X. We learned 2 bits
e We also learn 1 bit about the election outcome. (U contains 2 bits)

Wasn't information supposed to be additive?

Uncertaintyinthe ) — Tuformation contained

ountcome of the roll X HX) U)HEX) S H(U)=2 in message U

Uncertainty X after — — Additional information

We See 'l‘l/\&wm@Sf;@@ U/ I(X;U)=1 HU|X)=1«— iu vn?sia iU;hm“ is
/4 unrelated +o

WMutual information between X and U: what
we learn about X after seeing U (or v.V.)

Inspired by Fig 8.1 in "MacKay. Information Theory, Inference, and learning Algorithms. Cambridge University Press, 2002." https://www.inference.org.uk/itprnn/book.pdf
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 179
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Mutual information

Given two RVs X and Y, mutual information is the amount of information
that Y provides about X (thus when Y is observed, but X is not).

I(X;Y):=HX)—H(X|Y) | Isthisfunction symmetricin X and Y ?

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 180
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Mutual information

Given two RVs X and Y, mutual information is the amount of information
that Y provides about X (thus when Y is observed, but X is not).

I(X;Y): = H(X) — H(X|Y) _

\ Conditional entropy: the amount of information needed to describe

= H (X) — (H (X, Y) — H (Y)) the outcome of RV Y given that we know the value of another RV X.

=HX)+H(Y)—-HX,Y) symmetric in X and Y
Thus, I(X;Y) = I(Y: X)

= H(Y) — H(Y|X)

That's why it is called "mutual" information (it does not "prefer" X orY).
Reduction of the uncertainty of one RV once we observe the other.

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 181
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Entropy, conditional entropy, mutual information

joint entropy

H(X,Y)

individual (or marginal) entropy

H(Y)

H(X)

mutual
information

1(X;Y)

conditional entropy

H(X|Y)

169 _
e H(X,Y) = H(X) + H(Y|X)

H{X|Y) 1(X;Y) H{Y|X)
H(Y) HX,Y)=HX)+HY)-I(X;Y)

The bar diagrams are inspired by Fig 8.1 in "MacKay. Information Theory, Inference, and learning Algorithms. Cambridge University Press, 2002." https://www.inference.org.uk/itprnn/book.pdf.

In particular, see the Interesting discussion and explanation in the solution to exercise 8.8 for why VENN diagrams (with more than 2 variables) can be misleading.
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Entropy, conditional entropy, mutual information

K A
' ! o1 E
i i I :

: H(xly) | ! VH(y)
HOF o j
E i[(x,y):channel capacity i
v 4 v

MNMWWWW Channel s WM’WWWWW

Input x Output y = x + noise

INFORMATION

SOURCE TRANSMITTER RECEIVER DESTINATION
=
IGNA RECEIVED
S L SIGNAL | _
ME SSAGE ME SSAGE

NOISE
SOURCE

Fig. 1—Schematic diagram oi a general communication system.

Figure sources: https://en.wikipedia.org/wiki/Mutual information / Shannon. A Mathematical Theory of Communication. 1948. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 83
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Self-information
What is I(X; X) ? How much does X tell us about itself?

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 184
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Self-information
Whatis I(X; X)? How much does X tell us about itself?

1(X; X) = H(X) — H(X|X)

N\

= 0 no uncertainty (entropy) left)

[(X;X) = H(X) We learn from X everything about X
Entropy is "self-information”.

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 185
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Relative entropy
= KL divergence
(# Cross-Entropy)

https://northeastern-datalab.github.io/cs7840/
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Relative Entropy = KL divergence (# Cross-Entropy)

The (or KL divergence) of a distribution p with respect to a
distribution g defined on the alphabet X of RV X is:

X p(x) E,[...] also written as Ex_,[...]
DKL(pl |q) = E, llg (p( ))] z p(x)-lg ( ) ﬁfr the expected value o;i@?m-or
q(X) q(x) w.r. to the distribution p

It measures the inefficiency for assuming a distribution g instead of a true distribution p for RV.

If we use g to construct a binary code, the expected message length is called cross-entropy:

H(p| |CI) — DKL(pl |CI) + H(p) my surprise for seeing x,

given my assumption of q(x)

=E ’lg( (X))]=\;p(x)-lg($)J ZEI;?M) D(pllq)

o~
my expected surprise given p as the true distribution

Cross-entropy is usually written as H(p, q), but that notation hides its asymmetry and looks too similar to joint entropy. We prefer the notation H(p||q) which captures the asymmetry with a

similar notation as Dg.(p||q). Another non-standard notation is H (q) which shows that p is the true distribution, whereas g determines the surprise.
Gatterbauer, Aslam. Foundations and Applications of Information Theory https://northeastern-datalab.github. |o/cs7840/ 187
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Compressing messages via variable length codes

* Assume we have the following symbol frequency: New expected length :

) ()

Bl A e 0 vl 0 Yo 1
B 10
pi —>
Ya B C code 110 Ya 1 0 -2 =1.75 bits!
%l C AN 1 0 Ye- 3
Vel L ), \111/ A 1 1 Y- 3
frequency symbols codewords ot 2 bt > bt
Encoding size
Entropy H(p) := — Zipi . lg(pi) = 1.75 bits!
* What if we assume following distribution: What is our expected message length per symbol ?
if we use that code, but p is the actual distribution ™
S A 110
%l B B 0
qi I
C code |10

AL C D 111
sl D \ J . /
frequency symbols codewords

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 188
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Compressing messages via variable length codes

* Assume we have the following symbol frequency: New expected length : lg (1) __q
2
/ N\ / N\ 1
A 0 lg(;) = -2
B 10 &\s
Pi —> |
Va B C code 110 Ya 1 0 Va-2 =1.75 bits!
%l C AN 1 0 Ye- 3
Vel L ), \111/ AN 1 1 Y- 3
frequency symbols codewords ot 2 bt > bt
Encoding size
Entropy H(p) := — Zipi . lg(pi) = 1.75 bits!
* What if we assume following distribution: Our new expected message length per symbol:
%[ A ) ()
A 110 ul 1 1 0
%| B B 0
qi S ,
y = C code 10 Pi Ya 0
‘ A 0 ]
wD P N, P s |
frequency symbols codewords 1ot 2ot 3 bt

Encoding size
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Compressing messages via variable length codes

* Assume we have the following symbol frequency: New expected length :
) ()
%l A & 0 vl 0 Va1
B 10
Pi — >
Ya B C code 110 Ya 1 0 Va-2 =1.75 bits!
%l C AN 1 0 Ye- 3
Vel L ), \111/ A 1 1 Y- 3
frequency symbols codewords ot 2 b > b
Encoding size
Entropy H(p) := — Zipi . lg(pi) = 1.75 bits!
* What if we assume following distribution: Our new expected message length per symbol:
— — log(g;)
%[ A
A e Z 1 0 What is the formula ?
%l B B 0
a; — | we need to evaluate 4
y = C code 10 Pi Ya 0
4 Va1 0 |
w D P 11y P s |
frequency symbols codewords 1 o 2 bt > bt

Encoding size

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 190
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Compressing messages via variable length codes

* Assume we have the following symbol frequency: New expected length :
) ()
%l A & 0 vl 0 Va1
B 10
pi —>

Ya B C code 110 Ya 1 0 Va-2 =1.75 bits!

%l C AN 1 0 % -3

Vel L ), \111/ A 1 1 Y- 3

frequency symbols codewords ot 2 b > b
Encoding size

Entropy H(p) := — Zipi . lg(pi) = 1.75 bits!
* What if we assume following distribution: Our new expected message length per symbol:
— — log(g;)
%[ A
& LLL Vol 1 1 0 = 2.375 bits!
%| B B 0
@ e |10 ) — 2 pi - 1g(q;)

7l C o1 0] i

WD D ) 111 i 1 7—1  Whatis this formula called

frequency symbols codewords 1 ot _ 2 bt > bt
Encoding size

|
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Compressing messages via variable length codes

* Assume we have the following symbol frequency: New expected length :
) ()
%l A e 0 %l 0 Va1
B 10
pi EE—
Ya B C code 110 Va 1 0 Va-2 =1.75 bits!
%l C AN 1 0 % -3
Vel L ki/ \]il/ Va1 1 1 Ve 3
frequency symbols codewords ot 2 bt -
Encoding size
Entropy H(p) := — Zipi . lg(pi) = 1.75 bits!
* What if we assume following distribution: Our new expected message length per symbol:
log(q;)
%[ A ) ()
& Ll Vol 1 1 0 = 2.375 bits!
% B B 0
q; - E’ 10 I —2;bi - 1g(q;)
ol C D 111 Vel 1 0 |
%D ), N, w11 1 ] Crossentropy H(p||lq) ©
frequency symbols codewords 1 ot _ 2 b > b
Encoding size Which distribution g

minimizes H(p||q) .

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 192
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Compressing messages via variable length codes

* Assume we have the following symbol frequency: New expected length : lg (1) __q
2
/ N\ / N\ 1
A 0 lg(;) = -2
2l A I Va1 lg (1) _ _3
B 10 8
Pi —> |
Va B C code 110 Ya 1 0 Va-2 =1.75 bits!
%l C AN 1 0 Ye- 3
Vel L ), \111/ AN 1 1 Y- 3
1 bit 2 bit 3 bit
frequency symbols codewords

Encoding size
Entropy H(p) := — Zipi . lg(pi) = 1.75 bits!

* What if we assume following distribution: Our new expected message length per symbol:
— — log(q;)
%[ A
& L4b Vol 1 1 0 = 2.375 bits!
%l B B 0
@ e |10 ) — 2 pi - 1g(q;)
ol C D 111 Va1 0 |
%[ D =/ N, w11 1 ] Crossentropy H(p||lq) ©
frequency symbols codewords ot 2 b > b

Encoding size q = p minimizes H(p||q)
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Properties of Relative Entropy = KL divergence

1. Relative entropy is asymmetric (does not satisfy triangle inequality,
thus not a metric):

Di.(pllq) # Dy (qllp)

, (0.5 _ (P — 4
EXAMPLE : u = (0.5) p = (}5) p = p
Dy .(p||w) | Dy (ul|p)
p=05 ? ?
p=0 ? ?
p = 0.01 ? ?

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 195
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Properties of Relative Entropy = KL divergence

1. Relative entropy is asymmetric (does not satisfy triangle inequality,
thus not a metric):

Di.(pllq) # Dy (qllp)

, (0.5 _ (P — 4
EXAMPLE : u = (0.5) p = (}5) p = p
Dy .(p||w) | Dy (ul|p)
p =05 0 0
p=0 ? ?
p = 0.01 ? ?
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Properties of Relative Entropy = KL divergence

1. Relative entropy is asymmetric (does not satisfy triangle inequality,
thus not a metric):

Di.(pllq) # Dy (qllp)

, (0.5 _ (P — 4
EXAMPLE : u = (0.5) p = (}5) p = p
Dy .(p||w) | Dy (ul|p)
p =05 0 0
p=20 1 co
p = 0.01 ? ?
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Properties of Relative Entropy = KL divergence

1. Relative entropy is asymmetric (does not satisfy triangle inequality,
thus not a metric):

DKL(p”q) * DKL(q”p) What about cross entropies ?
H(pl||u) and H(p||u) a
_ . 0.5 . p —_ 4 | Dy (pl|u) and Dg, (u]|p)
EXAMPLE: u = (0.5) p = (}5) p=1—-p ZZ
Dy (p||w) | Dk (u||p) 20]
p =0.5 0 0 15 | |
p=10 1 &0 10 |
p = 0.01 0.92 2.33 0_5\<L(pu) /
01ig(F)+.991(%) | Sla(s) +51e(5) RED SEEr e
—0.06 0.96 282  —0.49 0.0 0b5 1.0

Figure source: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT illustration.ipynb
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 198
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Properties of Relative Entropy = KL divergence

1. Relative entropy is asymmetric (does not satisfy triangle inequality,
thus not a metric):

Di.(pllq) # Dy (qllp)

2. Dy (pllp) = ’7

202

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/



https://northeastern-datalab.github.io/cs7840/

Properties of Relative Entropy = KL divergence

1. Relative entropy is asymmetric (does not satisfy triangle inequality,
thus not a metric):

Di.(pllq) # Dy (qllp)

2. Dy (pllp) = 0

3. Dk (pllq) = O for all distributions p, q (equality only holds for p = q)

We will prove that next (with Jensen's inequality)

203
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Commuting functions: an apparent digression

* Do functions commute with f?
Elf(X)| = f(E|X
taking the expectation? [F O] = f(ELX]) ‘

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 204
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Commuting functions: an apparent digression

e Do functions commute with
Elf(X E|X
taking the expectation? £ ( (ELX])

* No! This only holds for f(x)=ax+b
linear functions: Elax + b] = aE[x] + b
* Jensen's inequality for convex f: ?
[ |

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Commuting functions: an apparent digression

* Do functions commute with
Elf(X E|X
taking the expectation? 7 (ELX])
* No! This only holds for f(x)=ax+b
linear functions: Elax + b] = aE[x] + b

for f: | Ef (X)) = F(E[X])

. Example f(x) = x?: 1
Consider the interval 0 < x < 1;
fFEXD = 7
E[fC0]l = P |
- 0 1

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 206
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Commuting functions: an apparent digression

* Do functions commute with
Elf(X E|X
taking the expectation? 7 (ELX])
* No! This only holds for f(x)=ax+b
linear functions: Elax + b] = aE[x] + b

for f: | Ef (X)) = F(E[X])

. Example f(x) = x?:
Consider the interval 0 < x < 1:

fEXD = FCEX]D = f(0.5) =025 (33

BLFO01 = 212 =2

1 _
' =0.33 0

0 0.5 1

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 207
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Background: Convex / Concave function
g(-)- 9(-) 4

Convex Concave

7

N

N

. I
r Y

Definition 6.3
Consider a function g : I - R, where I is an interval in R. We say that g is a convex function
if, for any two points x and y in I and any a € [0, 1], we have

glax + (1 —a)y) < ag(x) + (1 — 2)g(y).

We say that g is concave if

glax + (1 — a)y) = ag(x) + (1 — a)g(y).

Figure source: https://www.probabilitycourse.com/chapter6/6 2 5 jensen%27s_inequality.php
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 208
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Information inequality D,; (p||q) =

Ingredients:

1. —lg(x) is convex
2. Jensen's inequality E[f(X)] = f(E|X])

Di.(pllg) = E [l (ZEXD]

?

Fig source; https://flexbooks.ck12.org/cbook/ck-12-interactive-algebra-2/section/5.5/related/lesson/graphing-logarithmic-functions-alg-ii/
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 212
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Information inequality D, (p||q) = 0

Ingredients:

1. —lg(x) is convex
2. Jensen's inequality E[f(X)]| = f(E|X])

Dy, (pllQ) = E, :lg (%)]

-5 [ (i)

(s 5] o(Zrr ) -

Dy (pllq) = 0iff 7

Fig source; https://flexbooks.ck12.org/cbook/ck-12-interactive-algebra-2/section/5.5/related/lesson/graphing-logarithmic-functions-alg-ii/
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 213
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Information inequality D, (p||q) = 0

Ingredients:

1. —lg(x) is convex
2. Jensen's inequality E[f(X)]| = f(E|X])

Dy, (pllQ) = E, :lg (%)]

Dy, (pllg) = 0iff g(x) = p(x) for all x.

Fig source; https://flexbooks.ck12.org/cbook/ck-12-interactive-algebra-2/section/5.5/related/lesson/graphing-logarithmic-functions-alg-ii/
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Mutual information as relative entropy and thus = 0

Given two RVs X and Y, is the amount of
information that Y provides about X when Y is observed, but X is not.

I(X;Y):=H(X)—-HX|Y)| =0 ? notationx € X,y e Y

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 218
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Mutual information as relative entropy and thus = 0

Given two RVs X and Y, is the amount of
information that Y provides about X when Y is observed, but X is not.

I(X;Y):= H(X) — HX|Y)

= zp(x) g (p(—lx)) —Zp(x,y) - lg(p(ily))
Zp(x y) - lg(p(x)) Zp(x y) - lg(p(xlly))
= ;p(x, y)-lg (p;(g))

=Zp(x,y) lg( Pt )) ) = ?

p(x) - p(y) -

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/

notation x € X,y € Y
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Mutual information as relative entropy and thus = 0

Given two RVs X and Y, is the amount of
information that Y provides about X when Y is observed, but X is not.

I(X;Y):=H(X) — HX|Y) notation x € X,y € Y

B me ‘g (p(—lx)) —ZPM 8 (p(xlly))
Ep(x y) - lg(p(x)) Ep(x 2 lg(p(xlly)) Whew 60[010\!1‘[‘\(?
= ;P(’“ v)-le (p;(l))/)) ./ |

_ , p(x,y) _ '
- 2 e(o50) = DG lip@) - p)) = 0

Mutual information is the relative entropy between joint distribution and
product of their marginal distributions!

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 220
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Mutual information as relative entropy and thus = 0

Given two RVs X and Y, is the amount of
information that Y provides about X when Y is observed, but X is not.

I(X;Y):=H(X) — HX|Y) notation x € X,y € Y
1 1
=z'p(x)-lg(@) _zp(x'y).lg(p(xw))
1 edquality when X and Y
zp(x e (P(x)) zp(x e (P(xb’)) are independent!
= z p(x,y) - lg (p( *ly )) alternative notatiown:
Xy p(x) D (pxy!px - y)

_ , p(x,y) _ '
- 2 e(o50) = DG lip@) - p)) = 0

Mutual information is the relative entropy between joint distribution and
product of their marginal distributions!

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 221
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Conditioning reduces entropy, in expectation

H(X|Y) < H(X) (follows from I(X;Y) = H(X) — H(X|Y) = 0)

The implies that on average the
entropy of X conditioned on the observation Y = y is < than the

entropy of X (which intuitively makes sense: getting more information
only reduces uncertainty, in expectation).

But importantly, the inequality is applied to averaged quantities. Q
It is still possible that there is new rare evidence y for which:

H(X) < H(X|Y = y)

Example: in a court case, specific new evidence might increase uncertainty,
but on the average evidence decreases uncertainty.

Example taken from Cover, Thomas. Elements of Information Theory (book, 2nd ed). Theorem 2.6.5. https://doi.org/10.1002/047174882X
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 222
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But new concrete evidence may increase entropy i

EXAMPLE 6: Consider the joint ensemble (X, Y) with Boolean y y
domains X = Y = {0,1} and following joint distribution. p(x,¥)| 0 1 01
0| % Y% o m
* 110 % * 1 |
H(X) = ?

HX|y =0) = ?
HXly=1)=

HX|) = 7

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 223
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=
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But new concrete evidence may increase entropy ¢

EXAMPLE 6: Consider the joint ensemble (X, Y) with Boolean y y
domains X = Y = {0,1} and following joint distribution. p(x,y)|0 1 > 0 1
0|% % 3+ Ol
X X
1[0 % w4 1 H
H(X) = 21g(3) +71g(4) = 0.811 B
HX|y=0)=0

HX|Y) < H(X) < H(X|y = 1)

1 1
H(X|Y) = EI;I(X|y= 03+EI;I(X|}/= 12 = 0.5
g v

0 1
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Pre-class conversations

e Last class recapitulation

« Slide decks: more overall consistent updates coming
e Next scribe correct towards end of week

e Python scripts also coming soon

e Today so far: compression

e Today next:
— Multi-variate entropies
— Markov Chains & Data Processing inequality
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Three-term (multivariate) entropies,
conditional mutual information,

interaction information


https://northeastern-datalab.github.io/cs7840/

Conditioning & chain rules

. Conditional entropy H(Y|X): the expected amount of
H(le) o 2 p(x) - HY|X = x) information needed to describe the outcome of RVY, given
X

that the value of another RV X is known

? Two-variable chain rule

H(X,Y)

228
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Conditioning & chain rules

. Conditional entropy H(Y|X): the expected amount of
H(le) o 2 p(x) - HY|X = x) information needed to describe the outcome of RVY, given
X

that the value of another RV X is known

H(X,Y) = H(X) + H(Y|X) Two-variable chain rule

H(X,Y|Z) = ? Conditional chain rule.

IE[H()\(KY)|Z] — Notice the implied precedence rule

Conditional joint entropy H(X,Y|Z): expected joint
entropy of X and Y together, given that Z is known

229
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Conditioning & chain rules

. Conditional entropy H(Y|X): the expected amount of
H(le) o 2 p(x) - HY|X = x) information needed to describe the outcome of RVY, given
X

that the value of another RV X is known

H(X,Y) = H(X) + H(Y|X) Two-variable chain rule

HX,Y|Z)=HX|Z)+ H(Y|X,Z) Conditional chain rule.
& )
IE[H()\(,KY)IZ] +— Notice the implied precedence rule Conditioning on an event creates a new probability

Conditional joint entropy H (X, Y|Z): expected joint SPace where the same probability concepts apply.
entropy of X and Y together, given that Z is known

H(X,Y|Z) ? H(X|Z) + H(Y|Z)

<or=
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Conditioning & chain rules

. Conditional entropy H (Y |X): the expected amount of
H(le) o 2 p(x) - HY|X = x) information needed to describe the outcome of RVY, given
X

that the value of another RV X is known

H(X,Y) = H(X) + H(Y|X) Two-variable chain rule

HX,Y|Z)=HX|Z)+ H(Y|X,Z) Conditional chain rule.
& )
IE[H()\(,KY)IZ] +— Notice the implied precedence rule Conditioning on an event creates a new probability

Conditional joint entropy H (X, Y|Z): expected joint SPace where the same probability concepts apply.
entropy of X and Y together, given that Z is known

H(X,Y|Z) < HX|Z)+ H(Y|Z)  Equality holds if X and Y are conditionally independent,

given Z (Proof similar to unconditional case).

HX,Y,Z) = ? Three-variable chain rule
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Conditioning & chain rules

. Conditional entropy H (Y |X): the expected amount of
H(le) o 2 p(x) - HY|X = x) information needed to describe the outcome of RVY, given
X

that the value of another RV X is known

H(X,Y) = H(X) + H(Y|X) Two-variable chain rule

HX,Y|Z)=HX|Z)+ H(Y|X,Z) Conditional chain rule.
& )
IE[H()\(,KY)IZ] +— Notice the implied precedence rule Conditioning on an event creates a new probability

Conditional joint entropy H (X, Y|Z): expected joint SPace where the same probability concepts apply.
entropy of X and Y together, given that Z is known

H(X,Y|Z) < HX|Z)+ H(Y|Z)  Equality holds if X and Y are conditionally independent,

given Z (Proof similar to unconditional case).
HX,Y,Z)=HX)+HYI|X)+ H(Z|X,Y) Three-variable chain rule
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Conditional mutual information & interaction information

I(X;Y|Z) = ? Conditional mutual information I(X; Y|Z):
— - expected mutual information of X and Y,
E[I(X;Y)|Z] given Z is known
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Conditional mutual information & interaction information

I(X;Y|Z)=HX|Z)+ HXY|Z) — H(X Y|Z) Conditional mutual information I(X; Y|Z):

~— ~ < expected mutual information of X and Y,
E[I(X;Y)|Z] H(Y|Z) + H(X|Y,Z) given Z is known

H(X|Z) — H(X|Y,Z)

](X; Y: Z) — ? Interaction information (often also called "mutual
- information"*): measures the influence of a variable Z
on the amount of information shared between X and Y.

* Alternative notations include 7(X;Y; Z) and R(X;Y; Z). We don't recommend calling it "mutual information" and thus also replace the more common notation I(X;Y; Z) with J(X;Y; Z).
Some sources prefer not to even define that measure at all (we will discuss the reasons in a bit) https://en.wikipedia.org/wiki/Interaction _information .
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 234
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Pre-class conversations

e Last class recapitulation

 Slide decks: please continue checking for errors / inconsistencies /
unclear details

« Your own Python scripts could be part of your next scribes!

e Today:
— Multi-variate entropies
— Markov Chains, Data Processing inequality, sufficient statistics

— Possibly starting with Part 2: axioms
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Three-term (multivariate) entropies,
conditional mutual information,

interaction information
(continued)
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Conditional mutual information & interaction information

I(X;Y|Z) = ? Conditional mutual information I(X; Y|Z):
— - expected mutual information of X and Y,
E[I(X;Y)|Z] given Z is known
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Conditional mutual information & interaction information

I(X;Y|Z)=HX|Z)+ HXY|Z) — H(X Y|Z) Conditional mutual information I(X; Y|Z):

~— ~ < expected mutual information of X and Y,
E[I(X;Y)|Z] H(Y|Z) + H(X|Y,Z) given Z is known

H(X|Z) - H(X|Y,Z) HEIY,2)

](X; Y: Z) — ? Interaction information (often also called "mutual
- information"*): measures the influence of a variable Z
on the amount of information shared between X and Y.

* Alternative notations include 7(X;Y; Z) and R(X;Y; Z). We don't recommend calling it "mutual information" and thus also replace the more common notation I(X;Y; Z) with J(X;Y; Z).

Some sources prefer not to even define that measure at all (we will discuss the reasons in a bit) https://en.wikipedia.org/wiki/Interaction _information .
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 239
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Conditional mutual information & interaction information

I(X;Y|Z)=HX|Z)+ HXY|Z) — H(X Y|Z) Conditional mutual information I(X; Y|Z):

~— ~ < expected mutual information of X and Y,
E[I(X;Y)|Z] H(Y|Z) + H(X|Y,Z) given Z is known

H(X|Z) — H(X|Y,Z)

J(X;Y;Z) =1(X;Y) —I(X;Y|Z) |Interaction information (often also called "mutual

information"*): measures the influence of a variable Z
on the amount of information shared between X and Y.

Is it symmetric in all the variables ?

* Alternative notations include 7(X;Y; Z) and R(X;Y; Z). We don't recommend calling it "mutual information" and thus also replace the more common notation I(X;Y; Z) with J(X;Y; Z).

Some sources prefer not to even define that measure at all (we will discuss the reasons in a bit) https://en.wikipedia.org/wiki/Interaction _information .
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 240
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Conditional mutual information & interaction information

I(X Y|Z) = HX|Z)+HY|Z) — H(X Y|Z) Conditional mutual information I(X; Y|Z):

~ ~ < expected mutual information of X and Y,
E[I(X;Y)|Z] H(Y|Z) + H(X|Y,Z) given Z is known

H(X|Z) — H(X|Y,Z)

](X; Y: Z) — [(X; Y) — [(X; Y|Z) Interaction information (often also called "mutual
information"*): measures the influence of a variable Z
\ \ on the amount of information shared between X and Y.
N N
4 N\ 4 I
= H(X) - HX[Y) — (HX|Z) — H(X|Y, Z))
P
=H(X) - HX|Z) — (HXI|Y) — HX|Y, Z))
=I1X;Z2)—-1(X;Z|Y) (...) thus symmetric in all 3 variables!

* Alternative notations include 7(X;Y; Z) and R(X;Y; Z). We don't recommend calling it "mutual information" and thus also replace the more common notation I(X;Y; Z) with J(X;Y; Z).
Some sources prefer not to even define that measure at all (we will discuss the reasons in a bit) https://en.wikipedia.org/wiki/Interaction _information .
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 241
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Interaction information example

EXAMPLE: Consider the joint ensemble (X, Y, Z) with Boolean domains X = X V|z
Y =2 =1{0,1}. X and Y are independent uniform binary variables. And let 0 0|0
Z be the XOR of X and Y: z = XOR(x, y), or equally, z = x + y mod 2. 0 1|1
1 0|1
1 1|0

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 242
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Interaction information example

EXAMPLE: Consider the joint ensemble (X, Y, Z) with Boolean domains X = X Y|z p
Y =2 ={0,1}. X and Y are independent uniform binary variables. And let 0 0|0 u
Z be the XOR of X and Y: z = XOR(x, y), or equally, z = x + y mod 2. 0 1|1
1 0|1 =

Thus any 2 variables functionally 1110 %

determine the 31, e.9. (x,z) > y! 00 1 8
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Interaction information example

EXamMPLE: Consider the joint ensemble (X, Y, Z) with Boolean domains X =
Y =2 =1{0,1}. X and Y are independent uniform binary variables. And let
Z bethe XOR of X and Y: z = XOR(x, y), or equally, z = x + y mod 2.

H(X) = ?

Thus awy 2 variables fuvctionally

" determive the 3, e.9. (x,2z) > y !
H(XY) = »
I(X;Y) = 2
H(X|Y,Z) =
1(X;Y|Z) = ?
vy = P

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Interaction information example

EXamMPLE: Consider the joint ensemble (X, Y, Z) with Boolean domains X =

X Y|Z p
Y =2 ={0,1}. X and Y are independent uniform binary variables. And let 0 0|0
Z be the XOR of X and Y: z = XOR(x, y), or equally, z = x + y mod 2. 0 1|1
1 0|1 %
1 1|0
HX)=1 Similarly, H(Y) =1and H(Z) =1

H(X|Y)=H(X)=1  Similarly, all variables are pairwise independent
I(X;Y)= 0

HX|Y,Z)= 0 Thus, if Z is observed, then X and Y become dependent:

I(X;Y|Z)= 1 (knowing X = x and Z = z, tellsyou what Y is: y = z — x mod 2)
Thus the conditional mutual information is bigger than the
unconditional mutual information: I(X;Y|Z) > I(X;Y)

JX;Y;Z) = 1(X;Y) —1(X;Y|Z) =—1
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When VENN diagrams confuse more than help (?)

EXamMPLE: Consider the joint ensemble (X, Y, Z) with Boolean domains X =

X y|zZ p

Y =2 ={0,1}. X and Y are independent uniform binary variables. And let 0 0|0 w

Z be the XOR of X and Y: z = XOR(x, y), or equally, z = x + y mod 2. 0 1|1
1 0|1 %
1 1|0 u

HX)=1 I(X;Y)?

H(X)=1 - H(Y)

HX|Y)= HX) =1

I(X;Y)= 0

HX|Y,Z)= 0

I(X;Y|Z)= 1

H(Z)

JX;Y;Z) = 1(X;Y) —1(X;Y|Z) =—1
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When VENN diagrams confuse more than help (?)

EXamMPLE: Consider the joint ensemble (X, Y, Z) with Boolean domains X =

X y|zZ p

Y =2 ={0,1}. X and Y are independent uniform binary variables. And let 0 0|0 u

Z be the XOR of X and Y: z = XOR(x, y), or equally, z = x + y mod 2. 0 1|1
1 0|1 =
1 1|0 =

HX)=1 I1(X;Y)=0

H(X)=1 H(Y)

HX|Y)= HX) =1

I(X;Y)= 0

HX|Y,Z)= 0

I(X;Y|Z)= 1

H(Z)

JX;Y;Z) = 1(X;Y) —1(X;Y|Z) =—1
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When VENN diagrams confuse more than help (?)

EXamMPLE: Consider the joint ensemble (X, Y, Z) with Boolean domains X =

X y|zZ p

Y =2 ={0,1}. X and Y are independent uniform binary variables. And let 0 0|0 u

Z be the XOR of X and Y: z = XOR(x, y), or equally, z = x + y mod 2. 0 1|1
1 0|1 =
1 1|0 =

HX)=1 I1(X;Y)=0

H(X)=1 H(Y)

HX|Y)= HX) =1

I(X;Y)= 0

HX|Y,Z)= 0

I(X;Y|Z)= 1

H(Z)

JX;Y;Z) = 1(X;Y) —1(X;Y|Z) =—1
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When VENN diagrams confuse more than help (?)

EXamMPLE: Consider the joint ensemble (X, Y, Z) with Boolean domains X =

X y|zZ p
Y =2 ={0,1}. X and Y are independent uniform binary variables. And let 0 0|0
Z be the XOR of X and Y: z = XOR(x, y), or equally, z = x + y mod 2. 0 1|1
1 0|1 %
1 1|0
HX)=1

HX|Y) = H(X) =1

I(X;Y)= 0
HX|Y,Z) = 0
I(X;Y|1Z)= 1

JX;Y;Z) = 1(X;Y) —1(X;Y|Z) =—1
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When VENN diagrams confuse more than help (?)

EXamMPLE: Consider the joint ensemble (X, Y, Z) with Boolean domains X =

X y|zZ p
Y =2 ={0,1}. X and Y are independent uniform binary variables. And let 0 0|0
Z be the XOR of X and Y: z = XOR(x, y), or equally, z = x + y mod 2. 0 1|1
1 0|1 %
1 1|0
HX)=1

HX|Y) = H(X) =1

I(X;Y)= 0
HX|Y,Z) = 0
I(X;Y|1Z)= 1

JX;Y;Z) = 1(X;Y) —1(X;Y|Z) =—1
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When VENN diagrams confuse more than help (?)

EXamMPLE: Consider the joint ensemble (X, Y, Z) with Boolean domains X =

X y|zZ p
Y =2 ={0,1}. X and Y are independent uniform binary variables. And let 0 0|0
Z be the XOR of X and Y: z = XOR(x, y), or equally, z = x + y mod 2. 0 1|1
1 0|1 %
1 1|0
HX)=1 HX|Y)=1 I(X;Y)=0

HX|Y) = H(X) =1

I(X;Y)= 0
HX|Y,Z) = 0
I(X;Y|1Z)= 1

= VENN diagrams applied to joint ewtropies
JX;Y:2) = IXGY) - 1(X;Y|2) =—1 with = 2 variables can mislead

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 251
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[MacKay'02] on VENN diagrams and three-term entropies

| H(X,Y) |

Figure 8.1. The relationship
between joint information, ‘ H(X) |

marginal entropy, conditional ‘ H(Y) |
entropy and mutual entropy.

| HX|Y)  JI&Y) | HYLX) |

N
H(Y)
Figure 8.2. A misleading
representation ol entropies
(contrast with figure 8.1).
H(X) >

Exercise 8.8.1% P-143] Many texts draw figure 8.1 in the form of a Venn diagram
(figure 8.2). Discuss why this diagram is a misleading representation
of entropies. Hint: consider the three-variable ensemble XY Z in which
x € {0,1} and y € {0,1} are independent binary variables and z € {0,1}
is defined to be z = z + y mod 2.

Source: Section 8 from [MacKay'02]. Information Theory, Inference, and learning Algorithms. Cambridge University Press, 2002." https://www.inference.org.uk/itprnn/book.pdf
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 252
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MacKay'02] on VENN diagrams and three-term entropies

I(X Y1Z) conditional mutual inf.

unconditional mutual inf. 1(X;Y)

| H(X.Y) |
Figure 8.1. The relationship ) ) )
between joint information, ‘ H(X) | Figure 8.3. A mlsleadlng H c
marginal entropy, conditional ‘ HY) | representation of entropies,
entropy and mutual entropy. continued.
HX|Y) | Ix:Y) ] HY|X) | H(X)
H( Y)
Zgll:;eifatﬁ% Secondly, the depiction in terms of Venn diagrams encourages one to be-
(cgntras t with feure 8? lieve that all the areas correspond to positive quantities. In the special case of
& two random variables it is indeed true that H(X |Y), I(X;Y) and H(Y | X)
H(X)> are positive quantities. But as soon as we progress to three-variable ensembles,
we obtain a diagram with positive-looking areas that may actually correspond
to negative quantities. Figure 8.3 correctly shows relationships such as
HX)+H(Z|X)+H(Y|X,Z)=H(X,Y,Z). (8.31)
But it gives the misleading impression that the conditional mutual information
] (3, p.143] ) ) ; is less than the mutual information I(X;Y). In fact the area
Exercise 8.8."" Many texts draw figure 8.1 in the form of a Venn diagram ( labelled A ¢ correspond to a negative quantity. Consider the joint ensemble

(figure 8.2). Discuss why this diagram is a misleading representation
of entropies. Hint: consider the three-variable ensemble XY Z in which
x € {0,1} and y € {0,1} are independent binary variables and z € {0,1}
is defined to be z = z + y mod 2.

m which € {0,1} and y € {0,1} are independent binary variables
and z € {0,1} is defined to be z = x 4+ ymod2. Then clearly H(X) =
H(Y) =1 bit. Also H(Z) =1 bit. And H(Y | X) = H(Y) = 1 since the two
variables are independent. So the mutual information between X and Y is
zero. I(X;Y) = 0. However, if z is observed, X and Y become dependent —
knowing z, given z, tells you what y is: y = 2 — zmod2. So I[(X;Y |Z) =1
R bit. Thus the area labelled A must correspond to —1 bits for the figure to give
the correct answers.

The above example is not at all a capricious or exceptional illustration. The
Solution to exercise 8.8 (p.141). The depiction of entropies in terms of Venn

binary symmetric channel with input X, noise Y, and output Z is a situation
diagrams is misleading for at least two reasons.

in which I(X;Y) = 0 (input and noise are independent) but I(X;Y | Z) > 0

First, one is used to thinking of Venn diagrams as depicting sets; but what
are the ‘sets’” H(X) and H(Y) depicted in figure 8.2, and what are the objects
that are members of those sets? I think this diagram encourages the novice
student to make inappropriate analogies. For example, some students imagine
that the random outcome (x,y) might correspond to a point in the diagram,
and thus confuse entropies with probabilities.

(once you see the output, the unknown input and the unknown noise are
intimately related!).
The Venn diagram representation is therefore valid only if one is aware

that positive areas may represent negative quantities. With this proviso kept
in mind, the mterpretation of entropies in terms of sets can be helpful (Yeung,
1991).

Source: Section 8 from [MacKay'02]. Information Theory, Inference, and learning Algorithms. Cambridge University Press, 2002." https://www.inference.org.uk/itprnn/book.pdf
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[Cover,Thomas'06] & [MacKay'02] on three-term entropies

unconditional mutual inf. 1Y) I(X;Y/Z) conditional mutual inf.

Figure 8.3. A misleading

: . H :
representation ol entropies,
continued.
H(X)

2.25 Venn diagrams. There isn’t really a notion of mutual information
common to three random variables. Here is one attempt at a defini-
tion: Using Venn diagrams, we can see that the mutual information
common to three random variables X, Y, and Z can be defined by

The conditional mutual information between X and Y given 7 is
the average over z of the above conditional mutual information.

I(X;Y;2)=1(X;Y)—-1(X;Y|Z2).

This quantity is symmetric in X, Y, and Z, despite the preceding
asymmetric definition. Unfortunately, /(X; Y; Z) is not necessar-
ily nonnegative. Find X, Y, and Z such that /(X;Y; Z) < 0, and
prove the following two identities:

(@ I(X;Y;Z)=H(X,Y,Z)-H(X)—-HY)—-H(Z) +

I(X;Y|2)=H(X|Z) - HX|Y, Z). (8.10)

No other ‘three-term entropies’ will be defined. For example, expres-
sions such as I(X;Y;Z) and I(X |Y;Z) are illegal. But you may put
conjunctions of arbitrary numbers of variables in each of the three spots

IX;Y) +1(Ys 2) + 1(Z; X). in the expression I(X;Y | Z) — for example, I(A,B;C,D | E, F) is fine:
(b) I(X;Y,;Z)=H(X,Y,Z2)-HX,Y)—H(Y,Z) — it measures how much information on average c and d convey about a
H(Z, X)+ HX)+ HY)+ H(Z). and b, assuming e and f are known.

The first identity can be understood using the Venn diagram analogy
for entropy and mutual information. The second identity follows
easily from the first.

Sources: Left: [Cover, Thomas'06]. Elements of Information Theory (book, 2nd ed). Theorem 2.6.5. https://doi.org/10.1002/047174882X

Right: Section 8 from [MacKay'02]. Information Theory, Inference, and learning Algorithms. Cambridge University Press, 2002." https://www.inference.org.uk/itprnn/book.pdf
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 254
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[Yeung'O8] disagrees and heavily uses "information diagrams”

3.5 Information Diagrams

We have established in Section 3.3 a one-to-one correspondence between Shan-
non’s information measures and set theory. Therefore, it is valid to use an
information diagram, which is a variation of a Venn diagram, to represent the
relationship between Shannon’s information measures.

I(X;;X5;X5)

I(X; X2] X5) H (X, X,)
1

H(X)

H(X,| X5, X3) I(X,;X5)

Fig. 3.4. The generic information diagram for X;, X2, and Xs.

Sources: Yeung, Information Theory and Network Coding, 2008. Section 3.5 Information Diagrams. http://iest2.ie.cuhk.edu.hk/~whyeung/tempo/main2.pdf
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 255
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Interaction information

J(X;Y;Z) * measures the influence of a variable Z on the amount of information
shared between X and Y.* (And it is symmetric)

* It is positive when Z inhibits (i.e., accounts for or explains some of) the
correlation between X and Y (that happens here).

* |t is negative when Z facilitates or enhances the correlation (e.g., when X
and Y are independent but not conditionally independent given Z, that's

our last example).

JX;Y;Z)=HX)+HY)+H(Z)
—(HX,Y)+H(X,Z) + H(Y,Z))
+H(X,Y,Z)

* Alternative notations include 7(X;Y;Z) and R(X;Y; Z). We don't recommend calling it "mutual information" and thus also replace the more common notation I(X;Y; Z) with J(X;Y; Z).

For more details, see https://en.wikipedia.org/wiki/Interaction _information .
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 256
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Entropy rates of
Markov Chains


https://northeastern-datalab.github.io/cs7840/

Markov Chain

EXAMPLE: restaurants

P[M[B] = 02—, ?

How to find the stationary distribution p?

State transition matrix P:

B S 2
7 2 1\ D

P = 3 .6 .1) 1 row-stochastic
S\.3 .2 5/1

2 13 10 .7

Pii =P|Xpt1 =J | Xq =i]:
probability of choosing j after i
P; . row vector (probability distribution)

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Markov Chain

EXAMPLE: restaurants

State transition matrix P:

B 2
Br.7 2 1\ 1

P = (.3 .6 .1) 1 row-stochastic
3 .2 .5/1

> 1.3 1.0 .7
Pii =P|Xpt1 =J | Xq =i]:
probability of choosing j after i
P; . row vector (probability distribution)

How to find the stationary distribution n?

By finding the largest eigenvector of P,

i.e. solving an equation system:
«—transpose

n="Php
1/2

-
1/6

What would be the state transition matrix P’ with
same stationary distr!bution 1 if there was no
memory: P[Xpq = j |Xn = 1] = P[Xp41 =J ]

?

uj = L uiP;j forallj

H(p) = 1.460

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Markov Chain

EXAMPLE: restaurants

State transition matrix P:

B 2
Br.7 2 1\ 1

P = (.3 .6 .1) 1 row-stochastic
3 .2 .5/1

> 1.3 1.0 .7
Pii =P|Xpt1 =J | Xq =i]:
probability of choosing j after i
P; . row vector (probability distribution)

How to find the stationary distribution n?

By finding the largest eigenvector of P,

i.e. solving an equation system:
«—transpose

n="Php
1/2

-
1/6

What would be the state transition matrix P’ with
same stationary distr!bution 1 if there was no
memory: P[Xpq = j |Xn = 1] = P[Xp41 =J ]

uj = L uiP;j forallj

H(p) = 1.460

B 5
B/1/2 1/3 1/6\ 1
P = (1/2 1/3 1/6) 1
1/2 1/3 1/6/ 1
2 1.5 1.0 .5

Pij' =1

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Markov Chain

EXAMPLE: restaurants

B

2

S
B/7 2 1\ 1
P = 3 .6 .1]1 row-stochastic
S\.3 .2 .5/1
> 13 10 .7

Pii =P|Xpt1 =J | Xq =i]:
probability of choosing j after i
P; . row vector (probability distribution)

How to find the stationary distribution n?
By finding the largest eigenvector of P,

i.e. solving an equation system:

«—transpose

P
1/2
1/3
1/6

n

n

A random sample:

BSSSSSSBBBBBBBBMMMMMMMBMMMMMMBMBMBBBBBBBBBSSMMB
BBBBBBBBBBBBBBBMBBBBBBBBBBBSBBBSSBMMBBBBBBSMMM
BBBBBBBBBBSSSBBSBBSSSSBBMMBSBBSSSBBSSSSSBBMMMM
MBBBBSSSMBBSBBBMMMMMMMMBBSSMMBSBMMMMBBBBMBSSBM
MBBBBBMMMMMBBBSSBBBBSBBBBMMMMMMBBBBSBBMSMMMBBB
BBMSBBBBBSBBMBBBMBBMBBMMMBBMBBBBMBBBBBBMSSMMBB
SSSBBBMMMSBBBBBMMBBSBMMMMMSBBBBBSSSMSBBBBMBBSB
BBBBBBBBBMMMMBBBBBMMSSSSMSSBMBBBBMBBMBSSBSSSSS
SSSSSBBBBSMMMMMMMBMBMMMMBBBBBBBSSSMMMBSBMBBBMM
MMSSBMBSMBBSSSSBBMMBMMMMMMMMBMMMBBBBBBBMMBBBMM
MMMMBMSMMBBBBBBBBBBBBBBMMMMMSBBBBMBBBBBBMBBBBB
BMMMSSSBBBBBMMMMBSMBBMMMBSSBMBMBBBSSBBBSBMMMMS
MMBMMBMMMMBMMBSSBBBMMBMMMBBBBSBBBBBBBBBBSSMMMM
MMMMSBBBSBBBBBBMMBBBBBBBBBBBBSSMBMMMBMSBBBSSBB
BBBBBBBBBBBBBMMMMBMBBBBBMMMBBMMMBBBMMBBBBBSMBS
MMMMBSSSBBMMBBBBBSSMMBBBBSMBBBBBBBBBBSBBMMSSBS
SSBBBBBBBBBBBBMMMMMMMMMMMBBMBBBBBBSBSSRBBBBBBS

BMMBBBMMMMSMBMSSBBBBMMMMBBSSBMBMBBBBBBEEBBBBBM
MMMBBBBBBBBBMMBBBMMMMBMMMSSSMMMBBBSSMMBBBBSMBM
BBBBMMMMBBBBSBBBBMMBMMBMBBMBBBBBBBMMMSSBBBMMMS

Code: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT illustration.ipynb

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/

Hj = NPy
H(uw) = 1.460

A random sample:

SBSMBBBBBMBBBBSBBBBBMBMBBMMMMBBBMBBBBMBBMBSMBBM
BBMBBBSMMSSBSSMMSBBSMBBMMBMSBBMMMMBMMBBMSSMBBM
MMBSSSBSBMBBBMMBBBBSMBBBMMBBBBBBBMSBBMMBBBBMBB
BSBMBBMBMBMBSSBBMSMBSMBMBBBMBMSMBMS SMBBBMSMMBB
SBBSBMBBBBBSMBBMBMMBBSMBMMMBBMSBMMSBBMBBSBMBBM
MSSBMMMBBBBMBBBMBBBBBMBMMSBSBBBBBSMBSMBMMBBMBB
BMSSMMBMBBMMMMMSBSSSBMMBBSBSMBMBSSBMBBBSMMBBMM
BBBMBMBMSMSMSMMBMBBSMMBBMMMBMSBBBBMBMSMMSBBBMM
BBBMSMBMBSMMSSBBBMMBMMMMBSSBBMMMBBMBBBSBBMSSSM
MMSMBSBMSBBMSMBBBMMMBBBBBBBBBSBMBSMMMBBSBMBBBB
MMSMBMBBMBBMMBBBMSMMBSBMMMBBSSMMBBBBMMMMBMBBBM
SBMMBBMBBBMBBMBMBSSMBMSMSBBBMMMBMBBBBBMBBBBBSB
MBMMSMBBBMBMBMMBBMBBBMSBMMBMBMBBBBSSMBBMBBBBBS
BMMMMSBMMMBMMSSMBSBMBMMBSMSBBMMMBBBMBMBMBBMBMM
MBBMBMSMBBSMSBBBMBMBBMMMBBSMMMBBSSBMBBSMBBBBMB
BBBMMBSBMBSBMMBSBBSBBMMBMBS SMMBMMMMBMBBMSBMMMB
BBSMBBBBBMBMMBBBBBBBBBMMBBBMSMMBMBMMSBMBMSBBBB
BMSBMSMMBMSSBSBBBMSSBMBSSBSBMBSBBBMMSBBBMBSMBB
SMMSMSSMBMMBSBMBBMSBBMBBMMBSSSBBBBBMMMMMMBSSBB
MSMSBMMMMSMBBBBMBMMMBBBBMMBBSBMBSBMBSMSBBSMBMB
BMMMBBMBBBBMMBBSSSBMMBMBBBBBMBBMBBBBSMBBSBBBBM

Which one has a higher "entropy rate"?
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Markov Chains and information measures

X - Y - Zisa Markov chain if ?
p(x,y,z) =

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 271
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Markov Chains and information measures

, o The future depends only on the current state
X =Y = ZisaMarkov chainif[X L Z|Y|, and thus: (,,+ +)r¢ previous ones)

p(x,y,2) = P

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 272
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Markov Chains and information measures

, o The future depends only on the current state
X =Y = ZisaMarkov chainif|X L Z|Y|, and thus: (,,+ +)re previous ones)

p(x,y,z) = p(x) - py|x) - p(z]y) In general, p(x,y,z) = p(x) - p(y¥|x) - p(z|x, y)
p(xzly)= P

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 273
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Markov Chains and information measures

, o The future depends ovly on the current state
X =Y = ZisaMarkov chainif|X 1 Z]Y|, and thus: (,,+ +)1e previous ones)

p(x,y,z) = p(x) - py|x) - p(z]y) In general, p(x,y,z) = p(x) - p(y¥|x) - p(z|x, y)
p(x,zly) = p(x|y) - p(zly) In general, p(x, z|y) = p(x|y) - p(z|x,y)
1XZ)) = P

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 274
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Markov Chains and information measures

The future depends only on the current state

X—>Y—>Zisa if | X" L Z|Y], and thus: (,5+ +he previous ones)
p(x,y,z) = p(x) - p(yIx) - p(z|y) In general, p(x,y,z) = p(x) - p(y|x) - p(z]x, y)
p(x,z|y) = p(xly) - p(z]y) In general, p(x, z|y) = p(x|y) - p(z]x,y)
I(X;Z|Y) =0

What does this mean for the interaction information J(X;Y; Z)?

?

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 275
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Markov Chains and information measures

The future depends ounly on the current state

X—->Y->Zisa if | X" L Z|Y], and thus: (,5+ +he previous ones)
p(x,y,z) = p(x) - p(yIx) - p(z|y) In general, p(x,y,z) = p(x) - p(y|x) - p(z]x, y)
p(x,z|y) = p(xly) - p(z]y) In general, p(x, z|y) = p(x|y) - p(z]x,y)
I(X;Z|Y) =0

What does this mean for the interaction information J(X;Y; Z)?

JX;Z;Y) = 1062) = 1QGZIY) = [(X;Z) = 0

=0
* Recall: J(X; Z;Y) measures the influence of a variable Y on the amount of
information shared between X and Z.

* It is positive when Y inhibits (i.e., accounts for or explains some of) the correlation
between X and Z (that happens here).

* It is negative when Y facilitates or enhances the correlation (e.g., when X and Y are
independent yet not conditionally independent given Z, see earlier example).

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Markov Chains and stationary stochastic processes

X—->Y—>Zisa if| X L Z|Y|, and thus:
p(x,y,2) = p(x) - p(y|x) - p(2]y) In general, p(x,y,z) = p(x) - p(y|x) - p(z]x,y)
p(x,z|y) = p(xly) - p(z|y) In general, p(x, z|y) = p(x|y) - p(z|x,y)
I(X;Z|Y) =0

A discrete stochastic process (X4,X5,...) isa if

?

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 277
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Markov Chains and stationary stochastic processes

X—->Y—>Zisa if| X L Z|Y|, and thus:
p(x,y,2) = p(x) - p(y|x) - p(2]y) In general, p(x,y,z) = p(x) - p(y|x) - p(z]x,y)
p(x,z|y) = p(xly) - p(z|y) In general, p(x, z|y) = p(x|y) - p(z|x,y)
I(X;Z|Y) =0

A discrete stochastic process (X4,X5,...) isa if each RV depends only on the

one preceding it and is conditionally independent of all the other preceding RVs

IP[xn+1|xn: Xn—1 v Xq] = IP)[xn+1|xn»]

A stochastic process {X;} = (X, X5, ...) is if ...

?

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 278
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Markov Chains and stationary stochastic processes

X—->Y—>Zisa if| X L Z|Y|, and thus:
p(x,y,z) = p(x) - p(y|x) - p(z|y) In general, p(x,y,z) = p(x) - p(¥|x) - p(z]x, y)
p(x,z|y) = p(x|y) - p(z|y) In general, p(x, z|y) = p(x|y) - p(z|x,y)
I(X;Z|Y) =0

A discrete stochastic process (X4,X5,...) isa if each RV depends only on the

one preceding it and is conditionally independent of all the other preceding RVs

IP)[xn+1|xn: Xn—1 v Xq] = IP)[xn+1|xn»]

A stochastic process {X;} = (X1, X5, ...) is if the joint distribution
of any subsequence is invariant w.r.t. shifts in the time index

Pl(x1, X2, ooy Xk)] = PL(X140, X240 e Xit)]

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 279
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Entropy rate for stationary Markov Chain

The of a stochastic process {X;} is the average entropy per symbol:
1
H(X) = 1%1_{130 ~ H(X1, X5, ..., X)) H(X{, X5, ...,X,) > n-H(X)
For a stochastic process, this is equal to the rate of information innovation

H(X) — Tlli_)n.}oH(anxn—li "'1X1)

For , the entropy rate is

H(X) = H(X,|X;) where the conditional entropy is calculated using the
stationary distribution (!)

= zilii -H(X5| Xy =1) = Ei‘ui “H(Py) = E;_,[H(Py)]
= _zi#i - Pij - 1g(Pyj)

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 280
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Markov Chain (cont.)

State transition matrix P:
B 5

S
B/7 2 1\ 1
P = 3 .6 .1]1 row-stochastic
S\.3 .2 .5/1
> 13 10 .7

Pii =P|Xpt1 =J | Xq =i]:
probability of choosing j after i
P; . row vector (probability distribution)

How to find the stationary distribution n?

By finding the largest eigenvector of P,
i.e. solving an equation system:

«—transpose

P
1/2
1/3
1/6

n

n

A random sample:

BSSSSSSBBBBBBBBMMMMMMMBMMMMMMBMBMBBBBBBBBBSSMMB
BBBBBBBBBBBBBBBMBBBBBBBBBBBSBBBSSBMMBBBBBBSMMM
BBBBBBBBBBSSSBBSBBSSSSBBMMBSBBSSSBBSSSSSBBMMMM
MBBBBSSSMBBSBBBMMMMMMMMBBSSMMBSBMMMMBBBBMBSSBM
MBBBBBMMMMMBBBSSBBBBSBBBBMMMMMMBBBBSBBMSMMMBBB
BBMSBBBBBSBBMBBBMBBMBBMMMBBMBBBBMBBBBBBMSSMMBB
SSSBBBMMMSBBBBBMMBBSBMMMMMSBBBBBSSSMSBBBBMBBSB
BBBBBBBBBMMMMBBBBBMMSSSSMSSBMBBBBMBBMBSSBSSSSS
SSSSSBBBBSMMMMMMMBMBMMMMBBBBBBBSSSMMMBSBMBBBMM
MMSSBMBSMBBSSSSBBMMBMMMMMMMMBMMMBBBBBBBMMBBBMM
MMMMBMSMMBBBBBBBBBBBBBBMMMMMSBBBBMBBBBBBMBBBBB
BMMMSSSBBBBBMMMMBSMBBMMMBSSBMBMBBBSSBBBSBMMMMS

Entropy rate of P:

HP) = r?

Code: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT illustration.ipynb

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/

Hj = NPy
H(uw) = 1.460

A random sample:

SBSMBBBBBMBBBBSBBBBBMBMBBMMMMBBBMBBBBMBBMBSMBBM
BBMBBBSMMSSBSSMMSBBSMBBMMBMSBBMMMMBMMBBMSSMBBM
MMBSSSBSBMBBBMMBBBBSMBBBMMBBBBBBBMSBBMMBBBBMBB
BSBMBBMBMBMBSSBBMSMBSMBMBBBMBMSMBMS SMBBBMSMMBB
SBBSBMBBBBBSMBBMBMMBBSMBMMMBBMSBMMSBBMBBSBMBBM
MSSBMMMBBBBMBBBMBBBBBMBMMSBSBBBBBSMBSMBMMBBMBB
BMSSMMBMBBMMMMMSBSSSBMMBBSBSMBMBSSBMBBBSMMBBMM
BBBMBMBMSMSMSMMBMBBSMMBBMMMBMSBBBBMBMSMMSBBBMM
BBBMSMBMBSMMSSBBBMMBMMMMBSSBBMMMBBMBBBSBBMSSSM
MMSMBSBMSBBMSMBBBMMMBBBBBBBBBSBMBSMMMBBSBMBBBB
MMSMBMBBMBBMMBBBMSMMBSBMMMBBSSMMBBBBMMMMBMBBBM
SBMMBBMBBBMBBMBMBSSMBMSMSBBBMMMBMBBBBBMBBBBBSB
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Markov Chain (cont.)

State transition matrix P:

B
B/.7

P=WM|.3
.3
Y 1.3

2
.6
2
1.0

2

AN\ 1

.1 ] 1 row-stochastic
5/ 1

7

Pii =P|Xpt1 =J | Xq =i]:
probability of choosing j after i

P; . row vector (probability distribution)

Code: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT illustration.ipynb

How to find the stationary distribution n?

By finding the largest eigenvector of P,
i.e. solving an equation system:

«—transpose

P
1/2
1/3
1/6

n

n

A random sample:

BSSSSSSBBBBBBBBMMMMMMMBMMMMMMBMBMBBBBBBBBBSSMMB
BBBBBBBBBBBBBBBMBBBBBBBBBBBSBBBSSBMMBBBBBBSMMM
BBBBBBBBBBSSSBBSBBSSSSBBMMBSBBSSSBBSSSSSBBMMMM
MBBBBSSSMBBSBBBMMMMMMMMBBSSMMBSBMMMMBBBBMBSSBM
MBBBBBMMMMMBBBSSBBBBSBBBBMMMMMMBBBBSBBMSMMMBBB
BBMSBBBBBSBBMBBBMBBMBBMMMBBMBBBBMBBBBBBMSSMMBB
SSSBBBMMMSBBBBBMMBBSBMMMMMSBBBBBSSSMSBBBBMBBSB
BBBBBBBBBMMMMBBBBBMMSSSSMSSBMBBBBMBBMBSSBSSSSS
SSSSSBBBBSMMMMMMMBMBMMMMBBBBBBBSSSMMMBSBMBBBMM
MMSSBMBSMBBSSSSBBMMBMMMMMMMMBMMMBBBBBBBMMBBBMM
MMMMBMSMMBBBBBBBBBBBBBBMMMMMSBBBBMBBBBBBMBBBBB
BMMMSSSBBBBBMMMMBSMBBMMMBSSBMBMBBBSSBBBSBMMMMS

Entropy rate of P:

HP) = E;,[H(P;.)]

Hj = NPy
H(uw) = 1.460

A random sample:

SBSMBBBBBMBBBBSBBBBBMBMBBMMMMBBBMBBBBMBBMBSMBBM
BBMBBBSMMSSBSSMMSBBSMBBMMBMSBBMMMMBMMBBMSSMBBM
MMBSSSBSBMBBBMMBBBBSMBBBMMBBBBBBBMSBBMMBBBBMBB
BSBMBBMBMBMBSSBBMSMBSMBMBBBMBMSMBMS SMBBBMSMMBB
SBBSBMBBBBBSMBBMBMMBBSMBMMMBBMSBMMSBBMBBSBMBBM
MSSBMMMBBBBMBBBMBBBBBMBMMSBSBBBBBSMBSMBMMBBMBB
BMSSMMBMBBMMMMMSBSSSBMMBBSBSMBMBSSBMBBBSMMBBMM
BBBMBMBMSMSMSMMBMBBSMMBBMMMBMSBBBBMBMSMMSBBBMM
BBBMSMBMBSMMSSBBBMMBMMMMBSSBBMMMBBMBBBSBBMSSSM
MMSMBSBMSBBMSMBBBMMMBBBBBBBBBSBMBSMMMBBSBMBBBB
MMSMBMBBMBBMMBBBMSMMBSBMMMBBSSMMBBBBMMMMBMBBBM
SBMMBBMBBBMBBMBMBSSMBMSMSBBBMMMBMBBBBBMBBBBBSB

- Z-“i H(P,) = 1.258
l

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Markov Chain

EXAMPLE: A simple two-state Markov Chain

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 283
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Markov Chain

EXAMPLE: A simple two-state Markov Chain

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 284
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Markov Chain
p — O 95 A random sample:
’ ' AAAAAAABBBBBBBAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAA

EXAMPLE: A Simple two-state Markov Chain AAAAAAAAAAAAABBBBBBBBBBAAAAAAAAAAAABBBBBBABBBBBBBBAAABAAAABBEEB

BBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

I) AAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBAAAAAAAAAAAAAABBBBA

_ AABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAABB

p p p = 1 —_— p BBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAABBBBBABBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBEBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAA

— AAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBB

BBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAABBBBBBBBBBBBBBBBBBAAAABBAAAAAAAAAABBBBBBBBBBBBBBBBB

%Y BBBAAAAAAAAABBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

[) — Z) Z) AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBAAAAAAAAAAAAAAAAAAAAAA

i; 19 AAAAAAAAAABBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBB

-
|
/N
oo
U1l Ul
—

— O 05_ A random sample:

Z’ - Y *  ABABABABABABABABABABABABABABABABABABABAABABAABABABABABABABABABAB
AAABABABABABABABABABABABABABABABABABABABABAABABABABABABABABABAB
ABABABABABABABABABABABABABABAAABABABABABABABABBABABABABAABABABA
H(I'l) = BABABABABABABABABAABABABABABABABABABABABABABABBABABABABABABABAB
ABABBABABABABAABAABABABABABABABABABABABABABBAABABABABABABABABAB
ABABABABABBABABABABABABABABABABABABABABABABABABBABABABABABABABA
BABABABABABABABABABABBABABAABABABAABABBABABABABABABABABABABABAB
ABABABABABABABABABABABABABABABABABBABABABABABABABABABABABABABAB
AABABABABABBABABABABABABABABABABABABABABABAABABABBABABABABABABA
BBABABABABABABABABABABABABABABABABABABABABABABABABABABABABABABB
ABABABAABABABABABABABABABABABABABABABABABABBABABABABABABABABBAB
ABAABABABBAABABABABABABABABABABABABABABABABABABABABABABABABBABA
BABABABABABABABABABABAABABABABABABABABAABABABABABABABABAABBABAB
ABABABABABABABABAABABABABABABABABABABABABABABABABABABAABABABABA
BABABABBABABABABABABABABABABABABABABABBABABABABABABABABABABABAB

ABABABABABAABABBABABABABABABABAABABABABABABABABABABABAB

Code: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT illustration.ipynb
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 285



https://northeastern-datalab.github.io/cs7840/
https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT_illustration.ipynb

Markov Chain
p — O 95 A random sample:
’ ' AAAAAAABBBBBBBAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAA

EXAMPLE: A Simple two-state Markov Chain AAAAAAAAAAAAABBBBBBBBBBAAAAAAAAAAAABBBBBBABBBBBBBBAAABAAAABBEEB

BBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

p AAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBAAAAAAAAAAAAAABBBBA

_ AABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAABB

p p p = 1 —_— p BBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAABBBBBABBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBEBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAA

— AAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBB

BBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAABBBBBBBBBBBBBBBBBBAAAABBAAAAAAAAAABBBBBBBBBBBBBBBBB

%Y BBBAAAAAAAAABBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

P — p p AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBAAAAAAAAAAAAAAAAAAAAAA

ﬁ p AAAAAAAAAABBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBB

-
|
/N
oo
U1l Ul
—

— O 05_ A random sample:

p - Y *  ABABABABABABABABABABABABABABABABABABABAABABAABABABABABABABABABAB
AAABABABABABABABABABABABABABABABABABABABABAABABABABABABABABABAB
ABABABABABABABABABABABABABABAAABABABABABABABABBABABABABAABABABA

H(I'l) = 1 BABABABABABABABABAABABABABABABABABABABABABABABBABABABABABABABAB

ABABBABABABABAABAABABABABABABABABABABABABABBAABABABABABABABABAB
ABABABABABBABABABABABABABABABABABABABABABABABABBABABABABABABABA
BABABABABABABABABABABBABABAABABABAABABBABABABABABABABABABABABAB
H(P) - ? ABABABABABABABABABABABABABABABABABBABABABABABABABABABABABABABAB
- AABABABABABBABABABABABABABABABABABABABABABAABABABBABABABABABABA
. BBABABABABABABABABABABABABABABABABABABABABABABABABABABABABABABB
ABABABAABABABABABABABABABABABABABABABABABABBABABABABABABABABBAB
ABAABABABBAABABABABABABABABABABABABABABABABABABABABABABABABBABA
BABABABABABABABABABABAABABABABABABABABAABABABABABABABABAABBABAB
ABABABABABABABABAABABABABABABABABABABABABABABABABABABAABABABABA
BABABABBABABABABABABABABABABABABABABABBABABABABABABABABABABABAB
ABABABABABAABABBABABABABABABABAABABABABABABABABABABABAB

Code: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT illustration.ipynb
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Markov Chain
p — O 95 A random sample:
’ ' AAAAAAABBBBBBBAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAA

EXAMPLE: A Simple two-state Markov Chain AAAAAAAAAAAAABBBBBBBBBBAAAAAAAAAAAABBBBBBABBBBBBBBAAABAAAABBEEB

BBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBAAAAAAAAAAAAAABBBBA

I) _ AABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAABB

p p p = 1 —_— p BBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAABBBBBABBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBEBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAA

ii AAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAABBBBBBBBBBBBBBBBBBAAAABBAAAAAAAAAABBBBBBBBBBBBBBBBB

{p ﬁ \ BBBAAAAAAAAABBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
[) — AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBAAAAAAAAAAAAAAAAAAAAAA
\}5- 19‘/ AAAAAAAAAABBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
—_— AAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBB
Hy(p) = 0.286

= (82) Hg(p) | . A randon sample:

1.0 p — 0'05' ABABABABABABABABABABABABABABABABABABABAABABAABABABABABABABABABAB
AAABABABABABABABABABABABABABABABABABABABABAABABABABABABABABABAB
ABABABABABABABABABABABABABABAAABABABABABABABABBABABABABAABABABA
BABABABABABABABABAABABABABABABABABABABABABABABBABABABABABABABAB
ABABBABABABABAABAABABABABABABABABABABABABABBAABABABABABABABABAB
ABABABABABBABABABABABABABABABABABABABABABABABABBABABABABABABABA
BABABABABABABABABABABBABABAABABABAABABBABABABABABABABABABABABAB
ABABABABABABABABABABABABABABABABABBABABABABABABABABABABABABABAB
AABABABABABBABABABABABABABABABABABABABABABAABABABBABABABABABABA
BBABABABABABABABABABABABABABABABABABABABABABABABABABABABABABABB
ABABABAABABABABABABABABABABABABABABABABABABBABABABABABABABABBAB
ABAABABABBAABABABABABABABABABABABABABABABABABABABABABABABABBABA
0.0+ : . BABABABABABABABABABABAABABABABABABABABAABABABABABABABABAABBABAB
0.0 0.5 1.0 ABABABABABABABABAABABABABABABABABABABABABABABABABABABAABABABABA

p BABABABBABABABABABABABABABABABABABABABBABABABABABABABABABABABAB

ABABABABABAABABBABABABABABABABAABABABABABABABABABABABAB

Hw =1

0.57

H(P) = IEi~u |H(P;.)]
= Hg(p)

Code: https://github.com/northeastern-datalab/cs7840-activities/blob/main/notebooks/IT illustration.ipynb
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Data Processing
Inequality


https://northeastern-datalab.github.io/cs7840/

Data Processing Inequality for X = Y —» 72

Intuitively, the states that no clever transformation of a received
representation Y can increase the information about the original information X.

THEOREM: Suppose we have a Markov chain X =Y — Z (and thus X 1 Z|Y), then

1Y) 2 1% 2)

< or=

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 292
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Data Processing Inequality for X = Y —» 72

Intuitively, the states that no clever transformation of a received
representation Y can increase the information about the original information X.

THEOREM: Suppose we have a X—->Y > Z(andthus X 1L Z|Y), then
I(X;Y) = I(X;2)

CoROLLARY: If Z = f(Y), then I(X;Y) = I(X; f(Y)). Thus functions of Y cannot increase the
information about X. In other words, no processing of Y, deterministic or random, can increase
the information that Y contains about X (unless you add additional outside information).

This follows from X — Y — f(Y) forming a Markov chain.

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 293
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Data Processing Inequality for X = Y —» 72

Intuitively, the states that no clever transformation of a received
representation Y can increase the information about the original information X.

THEOREM: Suppose we have a Markov chain X =Y — Z (and thus X 1 Z|Y), then

I(X;Y) = I(X;Z2)

PROOF:
\I(X; Y,Z)j= ‘_?
v

I1(X; (Y, Z))

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 294
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Data Processing Inequality for X = Y —» 72

Intuitively, the states that no clever transformation of a received
representation Y can increase the information about the original information X.

THEOREM: Suppose we have a Markov chain X =Y — Z (and thus X 1 Z|Y), then

I(X;Y) =2 1(X;2)

PROOF:
\I(X;\}/,Z)/= H(X) —\I—I(X\LY,Z) ={1(X) ~+ E:H(XIZ) +\H(X|Z)) :/H(X|Y,Z)J
I1(X; (Y, 2)) I(X|(Y,2)) _ ) + .

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Data Processing Inequality for X = Y —» 72

Intuitively, the states that no clever transformation of a received
representation Y can increase the information about the original information X.

THEOREM: Suppose we have a Markov chain X =Y — Z (and thus X 1 Z|Y), then

I(X;Y) = I(X;Z2)

PROOF:
\I(Xg,Z)j= H(X) —\H(X\LY,Z) ={—I(X) + g:H(XlZ) +\H(X|Z)) :/H(X|Y,Z)J
1(X;(Y,2)) I(X|(Y,Z)) — I(X'Z) + I(X' YlZ)
= 1(X;Y) + 1(X;Z]Y) (similarly,
" from symmetry)

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 296
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Data Processing Inequality for X = Y —» 72

Intuitively, the states that no clever transformation of a received
representation Y can increase the information about the original information X.

THEOREM: Suppose we have a X—->Y > Z(andthus X 1L Z|Y), then
I(X;Y) = I(X;2)

PROOF:
\I(X;\X,Z)j= H(X) —\I—I(X\LY,Z) ={—I(X) + E:H(X|Z) +\H(X|Z)) :/H(X|Y,Z)J
I1(X;(Y,Z)) 1(X|(Y,Z)) — I(X'Z) + I(X'YlZ)
= 1(X;Y) + \I (X;Z |Y)J (similarly,

VO from symmetry)
= 1(X;Y)=1X;2) +{(X;Y|Z)J

hd

?
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Data Processing Inequality for X = Y —» 72

Intuitively, the states that no clever transformation of a received
representation Y can increase the information about the original information X.

THEOREM: Suppose we have a Markov chain X =Y — Z (and thus X 1 Z|Y), then

I(X;Y) = I(X;Z2)

PROOF:
\I(X;\X,Z)j= H(X) —kH(X\LY,Z) ={—I(X) + E:H(X|Z) +\H(X|Z)) :/H(X|Y,Z)J
I1(X;(Y,Z)) 1(X|(Y,Z)) — I(X'Z) + I(X'YlZ)
= 1(X;Y) + \I (X;Z |Y)J (similarly,

VO from symmetry)
= 1(X;Y)=1X;2) +{(X;Y|Z)J

~ since mutual information is
=>I1(X;Y) =2 1(X;Z2) >0 always von-vegative

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 298
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Data Processing Inequality for X = Y —» 72

H(X)\ H(Z)

-2

H(Y)

10GY,2) = HX) - HX|Y,Z) = H(X) + (-H(X|2) + H(X|2)) — H(X|Y, Z),

I(X; (Y, 2)) IX|Y,2)) 1(X:2) + I(X'\;/|Z)
= 1(X;Y) + \I (X; Z| Y)J (similarly,
e from symmetry)

= 1Y) = 1(X: 2) + [(X; Y|2)
“———— since mutual information is
=>11(X;Y) > 1(X;2) > (0 always von-negative

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 299
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Data Processing Inequality for X = Y —» 72

H(X) H(Z)

~—H(Y,Z)

?

HY)

10GY,2) = HX) - HX|Y,Z) = H(X) + (-H(X|2) + H(X|2)) — H(X|Y, Z),

I(X; (Y, 2)) IX|Y,2)) 1(X:2) + I(X'\;/|Z)
= 1(X;Y) + \I (X; Z| Y)J (similarly,

g 0 from symmetry)

= 1Y) = 1(X: 2) + [(X; Y|2)
——— since mutual information is
=>|I(X;Y) = 1(X;Z) >0  always von-negative

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 300
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Data Processing Inequality for X = Y —» 72

H(X) H(Z)

~—H(Y,Z)

I(X;Y,Z)
H(Y)

10GY,2) = HX) - HX|Y,Z) = H(X) + (-H(X|2) + H(X|2)) — H(X|Y, Z),

I(X; (Y, 2)) IX|Y,2)) 1(X:2) + I(X'\;/|Z)
= 1(X;Y) + \I (X; Z| Y)J (similarly,

g 0 from symmetry)

= 1Y) = 1(X: 2) + [(X; Y|2)
——— since mutual information is
=>|I(X;Y) = 1(X;Z) >0  always von-negative

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 301
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Data Processing Inequality forX »Y -7

HX) H(XO H(Z)

1(X;Y,2)
“NH(Y) TNH(Y)

10GY,2) = HX) - HX|Y,Z) = H(X) + (-H(X|2) + H(X|2)) — H(X|Y, Z),

I(X; (Y, 2)) IX|Y,2)) 1(X:2) + I(X'\;/|Z)
= 1(X;Y) + I (X;Z |Y) (similarly,
e from symmetry)

= 1Y) = 1(X: 2) + [(X; Y|2)
“———— since mutual information is
=>11(X;Y) > 1(X;2) > (0 always von-negative

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 302
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Data Processing Inequality for X = Y —» 72

HOO H(Z) HON H(Z)

& A’ I(X:Y,2)

H (Y)

10GY,2) = HX) - HX|Y,Z) = H(X) + (-H(X|2) + H(X|2)) — H(X|Y, Z),

I(X; (Y, 2)) IX|Y,2)) 1(X:2) + I(XX“Z)
= 1(X;Y) + \I (X; Z| Y)J (similarly,
e from symmetry)

= 1Y) = 1(X: 2) + [(X; Y|2)
——— since mutual information is
=>|I(X;Y) = 1(X;Z) >0  always von-negative

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Data Processing Inequality for X = Y —» 72

HOO H(Z) HON H(2)

m A’ I(X:Y,2)

H (Y)

10GY,2) = HX) - HX|Y,Z) = H(X) + (-H(X|2) + H(X|2)) — H(X|Y, Z),

I(X; (Y, 2)) IX|Y,2)) 1(X:2) + I(X'\;/|Z)
= 1(X;Y) + \I (X; Z| Y)J (similarly,
e from symmetry)

= 1Y) = 1(X: 2) + [(X; Y|2)
“———— since mutual information is
=>11(X;Y) > 1(X;2) > (0 always von-negative

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Data Processing Inequality for X = Y —» 72

HX) H(Z) HOXON /=0 H(2)

m A’ I(X:Y,2)

H (Y)

10GY,2) = HX) - HX|Y,Z) = H(X) + (-H(X|2) + H(X|2)) — H(X|Y, Z),

I(X; (Y, 2)) IX|Y,2)) 1(X:2) + I(XX“Z)
= 1(X;Y) + 1(X;Z|Y) (similarly,
" from symmetry)

= I1(XY) = 1(X: 2) + [(X; Y|2)
——— since mutual information is
=>|I(X;Y) = 1(X;Z) >0 always von-negative

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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[data processing inequality, sufficient statistics,
information inequalities]
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Pre-class conversations

e Last class recapitulation

e Please use our anonymous feedback to let us know which parts
were too fast or unclear

o Lecture 9 (Wed 10/2): Basics of information theory (5/6) [multivariate entropies, interaction
information, Markov chains, data processing inequality]

® We b p a g e & re a d I n gS o Lecture 10 (Mon 10/7): Basics of information theory (6/6) [data processing inequality,

sufficient statistics, information inequalities]

. TO d a y . o [Casella,Berger'24] Statistical inference (2nd ed), CRC press, 2024: Ch 6 Principles of data
reduction, Ch 6.2.1 Sufficient statistics.
—_ S Uffl C|e nt St at|St | CS’ o [Fithian'24] Statistics 210a: Theoretical Statistics (Lecture 4 sufficiency), Berkeley, 2014.

o [Yeung'08] Information Theory and Network Coding. 2008: Ch 2.6 The basic inequalities, Ch
2.7 Some Useful Information Inequalities, Ch 3.5 Information Diagrams, Ch 13 Information

- I nfO rmat | on | N eq ud I |t|es inequalities, Ch 14 Shannon-type inequalities, Ch 15 Beyond Shannon-type inequalities
— (3 project ideas)

e Next time:

— We skip forward from part 1 to part 3: practical applications for a bit,
before later coming back to more theory and the axiomatic approach

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 310
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Knowledge Distillation from NN

Concept of distillation edi)

Knowledge transfer from a large model to a small one somehow needs to teach the latter without loss of validity. If both models are
trained on the same data, the smaller model may have insufficient capacity to learn a concise knowledge representation compared to
the large model. However, some information about a concise knowledge representation is encoded in the pseudolikelihoods assigned
to its output: when a model correctly predicts a class, it assigns a large value to the output variable corresponding to such class, and
smaller values to the other output variables. The distribution of values among the outputs for a record provides information on how the
large model represents knowledge. Therefore, the goal of economical deployment of a valid model can be achieved by training only
the large model on the data, exploiting its better ability to learn concise knowledge representations, and then distilling such knowledge
into the smaller model, by training it to learn the soft output of the large model.!]

What is Knowledge Distillation? 1. Offline Distillation: Imagine an aspiring author learning from an already
Knowledge distillation is a powerful technique in machine learning that allows us to transfer knowledge from a published, successful book. The published book (the teacher model) is
large, complex model to a smaller, simpler one. By doing so, we can reduce the memory footprint and complete and fixed. The new writer (the student model) learns from this
computational requirements of the model without significant performance loss. book, attempting to write their own based on the insights gained. In the

context of neural networks, this is like using a fully trained, sophisticated
The fundamental idea behind knowledge distillation is to leverage the soft probabilities or logits of a larger "teacher

neural network to train a simpler, more efficient network. The student
network" along with the available class labels to train a smaller "student network". These soft probabilities provide pieh

network learns from the established knowledge of the teacher without

more information than just the class labels, enabling the student network to learn more effectively.

modifying it.

Screenshots from https://en.wikipedia.org/wiki/Knowledge distillation , https://www.scaler.com/topics/nlp/distilbert/,

https://medium.com/@aadityaura 26777/quantization-vs-distillation-in-neural-networks-a-comparison-8ef522e4fbec,
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 3 11
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Knowledge Distillation from NN

_\ >8

~—

G —

Screenshots from https://en.wikipedia.org/wiki/Knowledge distillation , https://www.scaler.com/topics/nlp/distilbert/,

https://medium.com/@aadityaura 26777/quantization-vs-distillation-in-neural-networks-a-comparison-8ef522e4fbec,
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Bottleneck X - Y —» 7

EXAMPLE: suppose a (non-stationary) Markov chain starts in one of n states, necks down
to k < n states, and then fans back to m > k states. In other words, X - Y — Z with

p(x,y,z) =p(x) - p(ylx) - p(zly),and x € [n],y € [k],z € [m].

X Y 7 How can we upper bound I(X; Z) ?

Example 2.16 from: [Cover, Thomas'06]. Elements of Information Theory (book, 2nd ed). https://doi.org/10.1002/047174882X
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 313
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Bottleneck X - Y —» 7

EXAMPLE: suppose a (non-stationary) Markov chain starts in one of n states, necks down
to k < n states, and then fans back to m > k states. In other words, X - Y — Z with

p(x,y,z) =p(x) - p(y|x) - p(zly),and x € [n],y € [k],z € [m].
e Y 7 How can we upper bound I(X; Z)?
1(X;2) < I(X;Y) = H(Y) — H(Y|X)
< H(Y)

= Ig(k)

= The dependence between X and Z is limited by the
size k of the bottleneck.

Whatif k =1 ?

Example 2.16 from: [Cover, Thomas'06]. Elements of Information Theory (book, 2nd ed). https://doi.org/10.1002/047174882X
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Bottleneck X - Y —» 7

EXAMPLE: suppose a (non-stationary) Markov chain starts in one of n states, necks down
to k < n states, and then fans back to m > k states. In other words, X - Y — Z with

p(x,y,z) =p(x) - p(ylx) - p(zly),and x € [n],y € [k],z € [m].

X Y 7 How can we upper bound I(X; Z)?

g W * I(X;Z2) < I(X;Y) =H(Y)—H(Y|X)
O < H(Y)

- < lg(k)

(@) (™) = 18

= The dependence between X and Z is limited by the
size k of the bottleneck.

Whatifk =1? =I1(X;Z)<Igl1=0. = X andZ areindependent.

Example 2.16 from: [Cover, Thomas'06]. Elements of Information Theory (book, 2nd ed). https://doi.org/10.1002/047174882X
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Sufficient statistics

Following part builds on text, notation and examples from several sources, in particular:

[Casella,Berger'24] Statistical inference (2"d ed), 2024: Ch 6 Principles of Data Reduction. https://doi.org/10.1201/9781003456285
[Fithian'24] Statistics 210a: Theoretical Statistics, Berkeley, 2014: Lecture 4 sufficiency. https://stat210a.berkeley.edu/fall-

2024 /reader/sufficiency.html

[Scott'11] EECS 564: Estimation, Filtering, and Detection, University of Michigan, 2011: Lecture 5 Sufficient statistics.
https://web.eecs.umich.edu/~cscott/past courses/eecs564wl11/index.html

[Cover,Thomas'06] Elements of Information Theory (2" ed), 2006: Ch 2.9 Sufficient Statistics. https://www.doi.org/10.1002/047174882X

https://northeastern-datalab.github.io/cs7840/
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Parameter estimation

Suppose the probability distribution of a random variable X is determined by a parameter 6:

X~fg(x)  Thiuk of this as a conditional distribution: fo(x) = p(x|0)

EXAMPLE: If X is a discrete Bernoulli RV, then its pmf
(probability mass function) is parameterized by p:

o) =7
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Parameter estimation

Suppose the probability distribution of a random variable X is determined by a parameter 6:

X~fg(x)  Thiuk of this as a conditional distribution: fo(x) = p(x|0)

EXAMPLE: If X is a discrete Bernoulli RV, then its pmf
(probability mass function) is parameterized by p:

£o(x) = {p ifx =1

p ifx=0 p=1-p

o BN
~ T

EXAMPLE: If X is a continuous Normal RV, then its pdf
(probability density function) is parameterized by (i, 0%):

fuony@ = P -~

The parameter caw
also be a vector
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Parameter estimation

Suppose the probability distribution of a random variable X is determined by a parameter 6:

X~fg(x)  Thiuk of this as a conditional distribution: fo(x) = p(x|0)
x = (1,1,0,1,1,1,0,0,1,1)

.6
II 3
01 0

1

EXAMPLE: If X is a discrete Bernoulli RV, then its pmf
(probability mass function) is parameterized by p:

£o(x) = {p ifx =1

p ifx=0

o BN
~ T

EXAMPLE: If X is a continuous Normal RV, then its pdf
(probability density function) is parameterized by (i, 0%):

_(x=w? el

_ 1
f(ﬂ:o'z)(x) o \/ZNTQ 207 The parameter cav 20
also be a vector
u
In , we assume the functional form of f is known, but @ is hidden. We
then observe a realization (a sample) x of iid RV's X and want to guess 6 (" 6").

AN Twdepevdent and Tdewtically Distributed
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Parameter estimation

Suppose the probability distribution of a random variable X is determined by a parameter 6:

X~fg(x)  Thiuk of this as a conditional distribution: fo(x) = p(x|0)
x = (1,1,0,1,1,1,0,0,1,1)

|I 3 o
01

01

EXAMPLE: If X is a discrete Bernoulli RV, then its pmf
(probability mass function) is parameterized by p:

fe0 ={2 2

p ifx=0

o BN
~ T

EXAMPLE: If X is a continuous Normal RV, then its pdf

(probability density functlon) is parameterized by (,u, : x =(52,2.5,03,4.2)
(x—p)?
fwery(x) = e 202 (O'y\
) > The Pamvncﬁ'er cam
Znaz also be a vector N\
-4 -2 0 2 4 6 810
In , we assume the functional form of f is known, but @ is hidden. We
then observe a realization (a sample) x of iid RV's X and want to guess 6 (" 6").

AN Twdepevdent and Tdewtically Distributed
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Sufficient statistics

If the sample x = (x4, ..., x;;) and unknown parameter 8, we would like to compress the
measurements x into a low-dimensional statistic without affecting the quality of the possible
inference about @ (i.e. we do not want to loose relevant information about 8).

In other words, we are interested in whether there exists a T (X) where the
dimensionoft =T(X)ism < n, s.t. t

If such a sufficient statistic exists, then for the purpose of studying 8, we could discard the raw
measurement X and retain only the compressed statistic t.

estimate

hidden * sampling  measured
parameter 0 > data x

Figure credit: Clayton Scott, EECS 564: Estimation, Filtering, and Detection, University of Michigan, 2011. https://web.eecs.umich.edu/~cscott/past_courses/eecs564w11/index.html
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Sufficient statistics

If the sample x = (x4, ..., x;;) and unknown parameter 8, we would like to compress the
measurements x into a low-dimensional statistic without affecting the quality of the possible
inference about @ (i.e. we do not want to loose relevant information about 8).

In other words, we are interested in whether there exists a T (X) where the
dimensionoft =T(X)ism < n, s.t. t

If such a sufficient statistic exists, then for the purpose of studying 8, we could discard the raw
measurement X and retain only the compressed statistic t.

estimate~"
"~ compressed
) —> sample data t

hidden sampling  measured @
parameter 0 > data x — "

"sufficient statistic" T'(X)

Figure credit: Clayton Scott, EECS 564: Estimation, Filtering, and Detection, University of Michigan, 2011. https://web.eecs.umich.edu/~cscott/past_courses/eecs564w11/index.html
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Sufficient statistics in the eyes of information theory

con also be a vector

Given a family of distributions {fg(x)} indexed a parameter 0 letX = (X4, ..., X,;) be aniid
sample from fg, and T (X) be a (a quantity computed from the values in the sample).

Then 6 - X - T(X) formsa Markov chain

From the data processing inequality, we thus know

?

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 323
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Sufficient statistics in the eyes of information theory

con also be a vector

Given a family of distributions {fg(x)} indexed a parameter 0 letX = (X4, ..., X,;) be aniid
sample from fg, and T (X) be a (a quantity computed from the values in the sample).

Then 6 - X - T(X) formsa Markov chain

From the data processing inequality, we thus know
1(6; T(X)) <1(6;X)

A statistic is for O if it preserves all the information in X about 0:

?

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 324
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Sufficient statistics in the eyes of information theory

con also be a vector

Given a family of distributions {fg(x)} indexed a parameter 0 letX = (X4, ..., X,;) be aniid
sample from fg, and T (X) be a (a quantity computed from the values in the sample).

Then 6 - X - T(X) formsa Markov chain

From the data processing inequality, we thus know
1(6; T(X)) <1(6;X)

A statistic is for G if it preserves all the information in X about 0:
1(6; T(X)) = 1(6;X)

PRACTICAL DEFINITION: A function T (X) is said to be a relative to the
family {fg(x)} if the conditional distribution of X given T (X) is independent of 6:

0 1 X|T(X)| Inotherwords, 6 - T(X) = X alsoformsa Markov chain

A possibly helpful way to think about this process is +o
use a new sample variable: 6 > X ->TX) =TX') - X’

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 325
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This is ¥he parameter 6

Example Sufficient statistics .

EXAMPLE: Given a sample x of n iid Bernoulli RVs X1, ..., X;, with unknown P[X; = 1] = p.
Then, given a fixed n, what could be a sufficient statistic T(X) for p ’)

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Example Sufficient statistics i the aramerer
o

EXAMPLE: Given a sample x of n iid Bernoulli RVs X1, ..., X;, with unknown P[X; = 1] = p.
Then k = T(X) = ); X; is a sufficient statistic for 8 (assuming n is fixed).

=3 8]
= s

PROOF:

327
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Example SUffICIGnt StatIStICS This is +he parameter 6 W '
PN

EXAMPLE: Given a sample x of n iid Bernoulli RVs X1, ..., X;, with unknown P[X; = 1] = p.
Then k = T(X) = ); X; is a sufficient statistic for 8 (assuming n is fixed).

PROOF: We know that p = X — k forms a Markov chain from the fact that k is calculated from X. To
prove that k is a sufficient statistic for p, it is enough to show that p = k — X also forms a Markov chain.

We prove that by showing that the conditional distribution of X given T (X) = k is independent of 4.
/Tl/l'ls is a particular sample e.9. x=(1, 0, 0,1, 0,1,1)

P,[X = x] = P,
PIX=xATX) =kl= 7
Joint probability -
P,[T(X) = k] = 7
P,[X = x|T(X) = k] = 7

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 328
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Example Sufficient statistics i the aramerer
.

EXAMPLE: Given a sample x of n iid Bernoulli RVs X1, ..., X;, with unknown P[X; = 1] = p.
Then k = T(X) = ); X; is a sufficient statistic for 8 (assuming n is fixed).

=3 8]
= s

PROOF: We know that p = X — k forms a Markov chain from the fact that k is calculated from X. To
prove that k is a sufficient statistic for p, it is enough to show that p = k — X also forms a Markov chain.

We prove that by showing that the conditional distribution of X given T (X) = k is independent of 4.

Very important later: Notice that the devsity
P,[X =x] depends on x only through k = T(X).

] Thus, P,[X = x] could be written as some fumction
X=xAT(X) =k| = g(T(x),8), which is key to what happens next.
Joint probability

T(X) =k]| =

P,[X =x] =|[['p¥(1 —p)*i= p*(1-—p)" K ——

P,[X = x|T(X) = k] =

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 329
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Example Sufficient statistics i the aramerer
.

EXAMPLE: Given a sample x of n iid Bernoulli RVs X1, ..., X;, with unknown P[X; = 1] = p.
Then k = T(X) = ).; X; is a sufficient statistic for 8 (assuming n is fixed).

=3 8]
= s

PROOF: We know that p = X — k forms a Markov chain from the fact that k is calculated from X. To
prove that k is a sufficient statistic for p, it is enough to show that p = k — X also forms a Markov chain.

We prove that by showing that the conditional distribution of X given T (X) = k is independent of 4.

X — =TI nXi(1 — p)¥i = pk(1 — )"k Very important later: Notice that the devsity
Pp X = x| Hl p (1 p) p ( P) ~— P,[X = x] depends o x ouly throngh k = T(X).

] — - n., — Thas, P,[X = X] could be written as sowme function
P,[X =XxA TX) =k] = {Pp X =x] if 2, xl_ k 9(T (%), g), which is key +o what happens vext.

Joint probability otherwise
P,[T(X) = k] = () -p*(1 —p)™* binomial distribution

PpX=xT(X)=k] _  pka—p™* _ (2)‘1 if Yx; = k
Pplk] (k) pEGa—p)F 0 otherwise

Thus, we have shown that P, [X|k] = PP[X]|k] is independent of p.
Concretely, all sequences x with k 1’s (and n—-k O's) are equally likely.

P,[X = x|T(X) = k] =

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 330
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Factorization Theorem

In the previous example, we had to guess the sufficient statistic and work out the conditional pmf
P[X|T(X) = T(x)] by hand. This can become quite difficult in general.

As we will see next, we didn’t really need to go to the trouble of calculating the conditional
distribution. Once we noticed that the density Pg[X = x] (also f(x)) depends on x only through
T (x), we could have concluded that the statistics T (X) was sufficient.

The easiest way to identify and verify sufficient statistics is to show that the density fg(X) factorizes
into a part that involves only the parameter 8 and T (X), and a part that involves only X. This can be
used as a working definition of sufficiency.

THEOREM: Let fg(X) (or f(Xx|8)) denote the joint distribution of a data set X, given parameter 6.
A statistic T'(X) is a sufficient statistic for 6 if and only if there exist functions g(T(x), 8) and
h(x) such that, for all sample points X and all parameter points 8, fg(X) factorizes into:

fo(x) = g(T(x),0) - h(x) Notice that the unknown parameter 8 interacts with the data x
only via the statistic T(x), and h(X) is independent of 6.

This was P,[X =x] = p*(1 — p)* % iu the previous example.

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 331
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Example Sufficient statistics via factorization

Can vou find the factorization f,(X) = g(T(X),p) - h(X) v our earlier proof ?

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 332
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Example Sufficient statistics via factorization

Can vou find the factorization f,(X) = g(T(X),p) - h(X) v our earlier proof ?

P,[X =x] =[[Ip*i(1 -p)¥i=p“1-p)"7* -1
7
glk,p)  h(®)
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Proof Factorization Theorem (1/2)

PROOF (DISCRETE CASE): sufficient statistics & factorization fg(x) = g(T(x),0) - h(X)

FIRST DIRECTION sufficient statistics = factorization:
Assume T (X) to be a sufficient statistics, i.e. 8 L X|T (X).
Let fo (X, T(X) = t) be the joint pdf of Pg[X = x,T(X) = t].

fo(x) = ? since T is a function of X, and as long as t = T'(X)

chain rule

by the definition of sufficient statistics 8 L x|t

because t is a function of X: t = T (x)

334
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Proof Factorization Theorem (1/2)

PROOF (DISCRETE CASE): sufficient statistics & factorization fg(x) = g(T(x),0) - h(X)

FIRST DIRECTION sufficient statistics = factorization:
Assume T (X) to be a sufficient statistics, i.e. 8 L X|T (X).
Let fo (X, T(X) = t) be the joint pdf of Pg[X = x,T(X) = t].

fo(X) = fo(x,t) since T is a function of X, and as long as t = T(X)

= gg(t) - hg(x|t) chainrule
= gp(t) - h(X[t) by the definition of sufficient statistics 8 L x|t

/ h(x) because tis a function of x: t = T(X)
9(T(x),0)

\

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/

This was P,[X = x] = [['p*i(1 — p)*i = p(1 — p)"* % in the previous example.
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Proof Factorization Theorem (2/2)

OTHER DIRECTION: factorization = sufficient statistics:

Assume fg(X) = g(t,0) - h(X).

We need to show that the conditional probability distribution fg (x|t) of X given T (X) is
independent of 9, i.e. f(x|t) = f(x]|t).

fo(t) = ? definition of marginal probability distribution

since t is a function of X
using our assumption

factoring out a common factor

fo(x|t) = ? definition of conditional probability distribution

does not depend on 8, hence T is a sufficient statistic

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 336



https://northeastern-datalab.github.io/cs7840/

Proof Factorization Theorem (2/2)

OTHER DIRECTION: factorization = sufficient statistics:
Assume fg(X) = g(t,0) - h(X).
We need to show that the conditional probability distribution fg (x|t) of X given T (X) is
independent of 9, i.e. f(x|t) = f(x]|t).
fo(t) = ZX:T(X):tfg (x,t) definition of marginal probability distribution
= 2xT=t fo(X) since t is a function of X
= 2xrx=t 9t 0) - h(X) using our assumption

=g(t,0) - ZX:T(X):t h(x) factoring out a common factor

foxt) _ fo(x)
fo(t)  fo(t)
g659) - h(x)

= does not depend on 8, hence T is a sufficient statistic
GEG) - Tt B(X)

definition of conditional probability distribution

fo(x|t) =
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Sufficient Statistics & Factorization Theorem

The concept of sufficient statistics is due to Sir Ronald Fisher around 1920,
thus before the advent of information theory.

The factorization theorem is also varyingly called:
e Fisher's factorization theorem

* Fisher-Neyman factorization theorem
 Neyman-Fisher factorization theorem

* Halmos-Savage factorization theorem

Sir Ronald Fisher (1890-1962)

Fisher, "On the mathematical foundations of theoretical statistics", Philosophical Transactions of the Royal Society A, 1922. https://doi.org/10.1098/rsta.1922.0009 . See also
https://en.wikipedia.org/wiki/Sufficient statistic, and references in https://encyclopediaofmath.org/wiki/Factorization theorem
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 338
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Normal (Gaussian) distribution: (u, 02) are sufficient statistics

Example 6.2.9 (Normal sufficient statistic, both parameters unknown) Again assume that
Xi,...,X, are 1id n([.L,O'Z) but, unlike Example 6.2.4, assume that both ¢ and 62 are unknown
so the parameter vector is @ = (i, 62). Now when using the Factorization Theorem, any part of
the joint pdf that depends on either 1 or 6> must be included in the g function. From (6.2.1)
it is clear that the pdf depends on the sample x only through the two values 7;(x) = X and
T(x) =s>=Y" ,(xi—X)?/(n—1). Thus, we can define h(x) = 1 and

g(tlo) = g(n,nlp,0’)
(2n6?) ™" ?exp (— (n(ti — p)* + (n—1)12) /(26?))..
Then it can be seen that
f(x|u,0?) = g(T1(x), T(x)| 1, 6%)A(x). (6.2.5)
Thus, by the Factorization Theorem, T'(X) = (T1(X),T>(X)) = (X,S?) is a sufficient statistic for

(i, %) in this normal model. |

Example 6.2.9 demonstrates that, for the normal model, the common practice of summariz-
ing a data set by reporting only the sample mean and variance is justified. The sufficient statistic
(X,S?) contains all the information about (i, c?) that is available in the sample.

[Casella,Berger'24] Statistical inference (2nd ed), 2024: Ch 6 Principles of Data Reduction. https://doi.org/10.1201/9781003456285
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Exponential Family

The definition in terms of one real-number parameter can be extended to one real-vector parameter

0=1[601,0,,...,0,]".

A family of distributions is said to belong to a vector exponential family if the probability density function (or probability mass function,
for discrete distributions) can be written as

fx(@ | 6) = h(z) g(6) exp (n(6) - T(x))

 T(x) is a sufficient statistic of the distribution. For exponential families, the sufficient statistic is a function of the data that holds all
information the data x provides with regard to the unknown parameter values. This means that, for any data sets x and y, the

f(z;601)  f(y;61)

likelihood ratio is the same, that is = if 7(x) = T(y) . This is true even if x and y are not equal to each other.
f(z;02)  fly; 02)

The dimension of 7(x) equals the number of parameters of 8 and encompasses all of the information regarding the data related to
the parameter 6. The sufficient statistic of a set of independent identically distributed data observations is simply the sum of

individual sufficient statistics, and encapsulates all the information needed to describe the posterior distribution of the parameters,
given the data (and hence to derive any desired estimate of the parameters). (This important property is discussed further below.)

Exponential families have a large number of properties that make them extremely useful for statistical analysis. In many cases, it can
be shown that only exponential families have these properties. Examples:

o Exponential families are the only families with sufficient statistics that can summarize arbitrary amounts of independent identically
distributed data using a fixed number of values. (Pitman—Koopman—Darmois theorem)

Source: https://en.wikipedia.org/wiki/Exponential family
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Aggregates in Databases

Data Cube: A Relational Aggregation Operator
Generalizing Group-By, Cross-Tab, and Sub-Totals*

JIM GRAY Gray@Microsoft.com
SURAJIT CHAUDHURI SurajitC@Microsoft.com
ADAM BOSWORTH AdamB @Microsoft.com
ANDREW LAYMAN AndrewL@Microsoft.com
DON REICHART DonRei@Microsoft.com
MURALI VENKATRAO MuraliV@Microsoft.com

Microsoft Research, Advanced Technology Division, Microsoft Corporation, One Microsoft Way, Redmond,
WA 98052

FRANK PELLOW Pellow@vnet.IBM.com
HAMID PIRAHESH Pirahesh@ Almaden.IBM.com
IBM Research, 500 Harry Road, San Jose, CA 95120

ICDE Influential Paper Awards

ICDE 2006

Jim Gray, Adam Bosworth, Andrew Layman, Hamid Pirahesh
Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-
Tab, and Sub-Total, ICDE 1996

Citation: This seminal paper defined a simple SQL construct that enables one
to efficiently compute aggregations over all combinations of group-by
columns in a single query, where previous approaches required multiple
queries. This feature has had significant impact on industry and is now
incorporated in all major database systems.

Aggregate Values

Figure 2. The GROUP BY relational operator partitions a table into groups. Each group is then aggregated by a
function. The aggregation function summarizes some column of groups returning a value for each group.

Consider aggregating a two dimensional setof values {X;; |i=1,..., I; j=1, ..., J}.
Aggregate functions can be classified into three categories:

Distributive: Aggregate function F () is distributive if there is a function G() such that
F({X:jhD=G{F{X;;li=1,...,I)|j=1,...J}). cOUNT(), MINO, MAXQ),
SUM() are all distributive. In fact, F =G for all but COUNT(). G = suM() for the
COUNT() function. Once order is imposed, the cumulative aggregate functions also fit
in the distributive class.

Algebraic: Aggregate function F () is algebraic if there is an M-tuple valued function G()
and afunction H()suchthat F({X; ;}) = HUG({X;,; |i=1,...,I) | j=1,...,J}.
Average(), standard deviation, MaxN(), MinN(), center_of_mass() are all algebraic. For
Average, the function G () records the sum and count of the subset. The H () function
adds these two components and then divides to produce the global average. Similar
techniques apply to finding the N largest values, the center of mass of group of objects,
and other algebraic functions. The key to algebraic functions is that a fixed size result
(an M-tuple) can summarize the sub-aggregation.

Holistic: Aggregate function F () is holistic if there is no constant bound on the size of
the storage needed to describe a sub-aggregate. That is, there is no constant M, such
that an M-tuple characterizes the computation F({X; ; | i = 1,...,1}). Median(),
MostFrequent() (also called the Mode()), and Rank() are common examples of holistic
functions.

We know of no more efficient way of computing super-aggregates of holistic functions
than the 2" -algorithm using the standard GROUP BY techniques. We will not say more
about cubes of holistic functions.

Gray et al. "Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals", ICDE 1996, DMKD 1997. https://doi.org/10.1023/A:1009726021843 ,

https://tc.computer.org/tcde-demo/icde-steering-committee/influential-papers/
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Information Inequalities

Best reference:
[Yeung'08] Yeung, Information Theory and Network Coding, 2008. Ch 2.6, 2.7, 13, 14, 15
http://iest2.ie.cuhk.edu.hk/~whyeung/tempo/main2.pdf
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Basic inequalities

Shannon’s information measures refer to entropy, conditional entropy, mutual information, and
conditional mutual information (but not interaction information!).

They can be expressed as linear combinations of entropies:

Hx|y) = 7
I(X;Y) = ?
IX:Y|2)= 7

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 349
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Basic inequalities

Shannon’s information measures refer to entropy, conditional entropy, mutual information, and
conditional mutual information (but not interaction information!).

They can be expressed as linear combinations of entropies:
HX|Y) = HX,Y)—H(Y) |
by repeated expavsion of
IX;Y)= HX)+HY)—-HX,Y) / conditional entropies; also holds
I(X;Y|1Z)=HX,Z)+ H(Y,Z)—H(X,Y,Z) —H(Z) if we replace variables with

: sets of variables
They are also special cases of

H(X) — ? Assume @ to be degenerate RV that takes on a
HX|Z)= 7 constant value with probability 1
IX;Y)=

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 350
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Basic inequalities

refer to entropy, conditional entropy, mutual information, and
conditional mutual information (but not interaction information!).

They can be expressed as linear combinations of entropies:
H(X|Y) = H(X,Y)—H(Y) | |
also holds if we replace variables
IX;Y)= HMX)+HY) - H(X,Y) / with sets of variables
I(X;Y|Z)=HX,Z)+H(Y,Z)—HX,Y,Z) —H(Z)

They are also special cases of

H(X) = I(X; X §0) Assume ¢ to be degenerate RV that takes on a
HX|Z)= 1(X;X|2) constant value with probability 1
I(X;Y)= IX;Y|p)

With we refer to the fact that all Shannon’s information
measures are non-negative (because conditional mutual information is = 0).

I(U; VW) =0 U,V,W can be arbitrary joint entropies

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 351
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Shannon-type inequalities I',, (and constraints)

are inequalities on information measures implied by the basic
inequalities and possibly additional constraints on the joint distribution of the RVs involved.

EXAMPLE: data-processing inequality for X - Y — Z: L~ ot a basic inequality
From I(X; Z|Y) = 0 and basic inequalities, we derived I(X;Y) = I(X; Z)

are the inequalities that govern the impossibilities in information
theory. They imply that certain things cannot happen. For this reason, they are sometimes
referred to as the

EXAMPLE : n = 3 variables with given k = 23 — 1 = 7 joint entropies:
HX)=2 HXY)=4 HXY,Z)=5
HY)=3 HX,Z)=4
HZ)=4 H{,Z)=4

H(X) - H(Z)

AN
Find 3 RVs that fulfill those constraints ? H(Y)

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 352
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Shannon-type inequalities I',, (and constraints)

are inequalities on information measures implied by the basic
inequalities and possibly additional constraints on the joint distribution of the RVs involved.

EXAMPLE: data-processing inequality for X - Y — Z: L~ ot a basic inequality
From I(X; Z|Y) = 0 and basic inequalities, we derived I(X;Y) = I(X; Z)

are the inequalities that govern the impossibilities in information
theory. They imply that certain things cannot happen. For this reason, they are sometimes
referred to as the

EXAMPLE : n = 3 variables with given k = 23 — 1 = 7 joint entropies:
HX)=2 HXY)=4 HXY,Z)=5
HY)=3 HX,Z) =4 1(X;Y|2)20

HZ)=4 H(,Z) =4 .
not possible ®
\H(Y)

Almost all the information inequalities known to date are
Shannon-type inequalities and thus implied by the basic inequalities.

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 353
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Applications in Databases

Worst-case Optimal Join Algorithms

HUNG Q. NGO, University at Buffalo, SUNY
ELY PORAT, Bar-Ilan University
CHRISTOPHER RE, Stanford University
ATRI RUDRA, University at Buffalo, SUNY

PODS'12, JACM'18

Efficient join processing is one of the most fundamental and well-studied tasks in database research. In this
work, we examine algorithms for natural join queries over many relations and describe a new algorithm to
process these queries optimally in terms of worst-case data complexity. Our result builds on recent work
by Atserias, Grohe, and Marx, who gave bounds on the size of a natural join query in terms of the sizes
of the individual relations in the body of the query. These bounds, however, are not constructive: they rely
on Shearer’s entropy inequality, which is information-theoretic. Thus, the previous results leave open the
question of whether there exist algorithms whose runtimes achieve these optimal bounds. An answer to this
question may be interesting to database practice, as we show in this article that any project-join style plans,
such as ones typically employed in a relational database management system, are asymptotically slower than
the optimal for some queries. We present an algorithm whose runtime is worst-case optimal for all natural
join queries. Our result may be of independent interest, as our algorithm also yields a constructive proof of
the general fractional cover bound by Atserias, Grohe, and Marx without using Shearer’s inequality. This
bound implies two famous inequalities in geometry: the Loomis-Whitney inequality and its generalization,
the Bollobas-Thomason inequality. Hence, our results algorithmically prove these inequalities as well. Finally,
we discuss how our algorithm can be used to evaluate full conjunctive queries optimally, to compute a relaxed
notion of joins and to optimally (in the worst-case) enumerate all induced copies of a fixed subgraph inside
of a given large graph.

Decision Problems in Information Theory

Mahmoud Abo Khamis
relational Al, Berkeley, CA, USA

Phokion G. Kolaitis
UC Santa Cruz and IBM Research - Almaden, Santa Cruz, CA, USA

Hung Q. Ngo
relationalAl, Berkeley, CA, USA

Dan Suciu
University of Washington, Seattle, WA, USA

ICALP'20

B.2 Application to Relational Query Evaluation

The problem of bounding the number of copies of a graph inside of another graph has a long
and interesting history [17) 4} 14}, B5]. The subgraph homomorphism problem is a special
case of the relational query evaluation problem, in which case we want to find an upper
bound on the output size of a full conjunctive query. Using the entropy argument from [IQT
Shearer’s lemma in particular, Atserias, Grohe, and Marx [5] established a tight upper bound
on the answer to a full conjunctive query over a database. Note that Shearer’s lemma is a
Shannon-type inequality. Their result was extended to include functional dependencies and
more generally degree constraints in a series of recent work in database theory |19 [2] Ei All
these results can be cast as applications of Shannon-type inequalities. For a simple example,
let R(X,Y),S(Y,Z),T(Z,U) be three binary relations (tables), each with N tuples, then
their join R(X,Y)n S(Y,Z)nT(Z,U) can be as large as N2 tuples. However, if we further
know that the functional dependencies XZ — U and YU — X hold in the output, then one
can prove that the output size is < N*/2, by using the following Shannon-type information
inequality:

RXY) + k(Y Z) + (ZU) + H(X|YU) + h(U|X Z) > 2h(XY ZU) (24)

Ngo, Porat, Re, Rudra. Worst-case Optimal Join Algorithms, JAC 2018 (PODS 2012). https://doi.org/10.1145/3180143,

Khamis, Kolaitis, Ngo, Suciu, "Decision Problems in Information Theory", ICALP 2020. https://doi.org/10.4230/LIPIcs.ICALP.2020.106
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Applications in Databases

1.1 The problems

In the history of query evaluation in database, logic and constraint satisfaction areas, there are three research
threads which have yielded spectacular results recently.

Thread 1: size bound for conjunctive queries. From the seminal work of Grohe and Marx [33], Atserias,
Grohe, and Marx [8], and Gottlob, Lee, Valiant and Valiant [30], we now know of a deep connection between
the output size bound of a conjunctive query with (or without) functional dependencies (FD) and information
theory. In particular, we can derive tight output size bounds by solving a convex optimization problem
whose variables are marginal entropies. Briefly, the bound works as follows. Consider a conjunctive query
Q represented by a multi-hypergraph H = (V,£), where V' = [n] is identified with the set of variables
Ai,...,A,. To each hyperedge F € &£ there is an input relation Rr whose attributes are (4;)icr. A
function h : 2V — R, is called entropic if there exists a joint distribution on n variables such that h(F) is
the marginal entropy of the distribution on the variables in F', for every non-empty set F' C V'; by convention,
h(P) = 0. Let '}, denote the set of all n-variable entropic functions." Let CC denote the set of “cardinality
constraints” of the form Np = |Rp|, obtained from the input database instance. Let FD denote the set of
“FD constraints” of the form X — Y, where ) C X C Y C V.2 From the cardinality- and FD-constraints,
we define two classes of set functions:

What do Shannon-type Inequalities, Submodular Width,
and Disjunctive Datalog have to do with one another?

Mahmoud Abo Khamis Hung Q. Ngo Dan Suciu
LogicBlox Inc. LogicBlox Inc. LogicBlox Inc. and
University of Washington

ABSTRACT PODSI 17

Recent works on bounding the output size of a conjunctive
query with functional dependencies and degree bounds have
shown a deep connection between fundamental questions in
information theory and database theory. We prove analo-
gous output bounds for disjunctive datalog rules, and answer
several open questions regarding the tightness and looseness
of these bounds along the way. The bounds are intimately
related to Shannon-type information inequalities. We de-
vise the notion of a “proof sequence” of a specific class of
Shannon-type information inequalities called “Shannon flow
inequalities”. We then show how a proof sequence can be
used as symbolic instructions to guide an algorithm called
PANDA, which answers disjunctive datalog rules within the
size bound predicted. We show that PANDA can be used
as a black-box to devise algorithms matching precisely the
fractional hypertree width and the submodular width run-
times for aggregate and conjunctive queries with functional
dependencies and degree bounds.

Our results improve upon known results in three ways.
First, our bounds and algorithms are for the much more gen-
eral class of disjunctive datalog rules, of which conjunctive
queries are a special case. Second, the runtime of PANDA
matches precisely the submodular width bound, while the
previous algorithm by Marx has a runtime that is polyno-
mial in this bound. Third, our bounds and algorithms work
for queries with input cardinality bounds, functional depen-
dencies, and degree bounds.

Overall, our results showed a deep connection between
three seemingly unrelated lines of research; and, our results
on proof sequences for Shannon flow inequalities might be
of independent interest.

Abo Khamis, Ngo, Suciu. What Do Shannon-type Inequalities, Submodular Width, and Disjunctive Datalog Have to Do with One Another? PODS 2017. https://doi.org/10.1145/3034786.3056105
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/
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Applications of Information Inequalities
to Database Theory Problems *

Dan Suciu
University of Washington
Seattle, USA
suciu@cs.washington.edu

June 6, 2024

LICS'23 keynote

Abstract

The paper describes several applications of information inequalities to problems in database
theory. The problems discussed include: upper bounds of a query’s output, worst-case optimal join
algorithms, the query domination problem, and the implication problem for approximate integrity
constraints. The paper is self-contained: all required concepts and results from information
inequalities are introduced here, gradually, and motivated by database problems.

Suciu. Applications of Information Inequalities to Database Theory Problems, LICS keynote 2023. https://arxiv.org/pdf/2304.11996,
slides: https://homes.cs.washington.edu/~suciu/talk-lics-2023.pdf ,

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 356
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Recap: AGM Bound Entropic Vectors Generalized Upper Bound Computing the Upper Bound Modular Functions

OO000000 O00000e0 00000000 O00000 (o))

Information Inequalities v.s. Databases

Informally: h(XY) ~ log |Mxy(R)|. What do inequalities say about R?

o h(X) < h(XY) < h(XYZ)
Says [Mx(R)| < [Mxy(R)| < |R|.

o h(XY)+ h(Z) > h(XYZ)
Says |Mxy(R)| - [Nz(R)| = [R].

e h(XYZ|X) > h(XYZ|XY)
Max frequency(X) is > max frequency(XY).

L OO L L[ X
X <X XX X |
S 3 3 3 3|N

o Carefull h(XZ)+ h(YZ) > h(XYZ) + h(Z),
but |Mxz(R)|-|Myz(R)| 2 |R| -|Nz(R)
Y Ty X 3

Dan Suciu Topics in DB Theory: Unit 5 Fall 2023 15/32

Source: Dan Suciu. CS294-248: Special topics in databases, Berkeley fall 2023. See also videos: https://berkeley-cs294-248.github.io/
Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 357
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Information inequalities I,

are the inequalities that govern the impossibilities in information
theory. They imply that certain things cannot happen. For this reason, they are sometimes
referred to as the laws of information theory.

An information inequality or identity involves (linear combinations of) Shannon’s information
measures only (and possibly with constant terms) and is said to always hold if it holds for any
joint distribution for the random variables involved.

There exist laws in information theory that are not implied by the basic inequalities (called non-
Shannon-type inequalities). This celebrated result was published by [Zhang,Yeung'98]

PrROPOSITION: The following information inequality always holds on any list of five random
variables X, Y, Z,U,V, but is not implied by the basic inequalities:

HX) + HY) + [(U; V|X) + I(U; V|Y) + 21(U; V|Z) + [(U,V; Z) = H(X, Z) + 21(U; V)
Key proof insight: I(XY; Z|[UV) = 0 can be assumed for a different argument

Quoted from: [Yeung'08] Information Theory and Network Coding, 2008. http://iest2.ie.cuhk.edu.hk/~whyeung/tempo/main2.pdf / [Zhang,Yeung'98]. On characterization of entropy function
via information inequalities, 1998. https://doi.org/10.1109/18.681320 / For an accessible proof, see [Cramer, Fehr'15] The Mathematical Theory of Information, and Applications, lecture

notes. https://staff.science.uva.nl/c.schaffner/courses/infcom/2014/notes/CramerFehr.pdf
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A formalization of entropic vectors

* Givenasetof nRVs O = {Xq, ..., X,,}, written as ® = {X;},i € [n].
* Associated with @ are 2™ — 1 joint entropies H(X;),..., H(Xq, ..., X;; ), written as Hy(a) =

i1, 2, . 43

H(X,) for any subset of [n]. Call the function Hy(a), @ € 2™ the of 6.
* Example: H(X{,X5,X,) is Hy(a) for a = {1,2,4}.
 Together, the joint entropies form a point in the 2™ — 1 dimensional RZ"-1,
* Inturn, a pointin that space is called if the point corresponds to the entropy

function Hgy of some set @ of n RVs. Let [, C R2"~1 pe the
* How does that space I, € R2" 1 |ook like?

Our earlier ExampLE: n = 3, thus k = 23 — 1 = 7 joint entropies, representing a point in R’

HX)=2 HXY)=4 HXY,Z) =5

HY)=3 HX,Z2)=4 ?
HZ)=4 HWY,Z2)=4 .

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 362
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Entropic vectors

* Givenasetof nRVs O = {Xq, ..., X,,}, written as ® = {X;},i € [n].
* Associated with @ are 2™ — 1 joint entropies H(X;),..., H(Xq, ..., X;; ), written as Hy(a) =

H(X,) for any subset of [n]. Call the function Hy(a), @ € 2™ the of 6.
* Example: H(X{,X5,X,) is Hy(a) for a = {1,2,4}.
 Together, the joint entropies form a point in the 2™ — 1 dimensional RZ"-1,
* Inturn, a pointin that space is called if the point corresponds to the entropy

function Hgy of some set @ of n RVs. Let [, C R2"~1 pe the
* How does that space I, € R2" 1 |ook like?

Our earlier ExampLE: n = 3, thus k = 23 — 1 = 7 joint entropies, representing a point in R’

HX)=2 HXY)=4 HXY,Z)=5
HY)=3 HX,Z) =4 I(X;Y|Z)£0
HZ)=4 H({Y,Z)=4 Thus this point (2,3,4,4,4,5) & I5?

Gatterbauer, Aslam. Foundations and Applications of Information Theory: https://northeastern-datalab.github.io/cs7840/ 363



https://northeastern-datalab.github.io/cs7840/

A subtlety: entropic vectors [, vs. almost entropic vectors [,

Our earlier "parity example":

HX) =1
Qo2
(Z)

More generally (from basic inequalities):
H(X) =a €eR*

=

N0

H(Y)

p
>

H(Y)

p
5

However, a more careful analysis shows that all variables X, Y, Z
need to be uniform for this example to work, which implies only
discrete particular entropies as possible.

a=0 log2 log3 log4
W e e ®------- & -—---= > (7.a,a.0,2a.,24.2a)

Fig. 15.2. The values of a for which(q, a, a, 2a, 2a, 2a, 2a) is in 3.

[}, set of all entropic vectors ‘r;c he closure of a sf?bseJrls
= . of points in a topologica
[, set of all almost entropic vectors: space consists of P

defined as topological closure of [;,  peiuts in S together with
) all limit points of S.
[, subset of vectors that fulfill the

Shannon ineq ualities Iwntuitively, it is possible

to create a wmixture wmodel
that models any rational
number. The "closure”

r;kl extends that to the real
numbers.,

For details see: [Yeung'08] Yeung, Information Theory and Network Coding, 2008. Ch 15.1 http://iest2.ie.cuhk.edu.hk/~whyeung/tempo/main2.pdf
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