
254

Topic 3: Efficient query evaluation
Unit 2: Cyclic query evaluation
Lecture 22

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
https://northeastern-datalab.github.io/cs7240/sp24/
4/5/2024

Updated 4/6/2024

https://northeastern-datalab.github.io/cs7240/sp24/

255Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Pre-class conversations

• Last class summary
• Project: I hope Feedback was usefull
- Approach me with questions, or schedule office hours
- Latex template, missing line numbers on first page

• Scribes: Feedback yet to come

• Today:
- Why cycles change everything

https://northeastern-datalab.github.io/cs7240/

256Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Acyclic graphs: 𝛼 ⊃ 𝛽 ⊃ 𝛾 ⊃ Berge (𝛼-acyclic graphs are ⊃ of others)

𝑥

𝑦

𝑧 𝑥

𝑦

𝑧 𝑥

𝑦

𝑧

A hypergraph ℋ is beta acyclic if
all its subhypergraphs are alpha acyclic.

Triangle Beta triangle Gamma triangle Berge cycle
alpha
beta
gamma
Berge

acyclic acyclic
acyclic

acyclic
acyclic
acyclic

Define a hypergraph as
a set of nonempty sets.

ℋ! is a subhypergraph (subset)
of ℋ" if ℋ! ⊆ ℋ".

𝑥

𝑦

𝑧

A hypergraph ℋ is gamma acyclic if if it is beta acyclic and we
cannot find 𝑥, 𝑦, 𝑧 s.t. 𝑥, 𝑦 , 𝑦, 𝑧 , 𝑥, 𝑦, 𝑧 	⊆ ℋ 𝑥, 𝑦, 𝑧 ,
the induced subhypergraph on the set 𝑥, 𝑦, 𝑧 .

For definitions see: Brault-Baron. "Hypergraph Acyclicity Revisited". ACM Computing Surveys 2016. https://doi.org/10.1145/2983573

cyclic
cyclic
cyclic
cyclic

cyclic
cyclic
cyclic

cyclic
cyclic cyclic

A hypergraph H is Berge acyclic if the incidence
graph 𝑥, 𝑒 	 𝑒 ∈ ℋ	and	𝑥 ∈ 𝑒} is acyclic.

𝑒
𝑓

𝑓

𝑥
𝑦
𝑧

𝑒

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/2983573

257Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

"beta-triangle" is alpha-acyclic, but not its dual

𝑥

𝑦

𝑧

𝑥 𝑦

𝑧

𝑅 𝑆

𝑇

𝑊

𝑅

𝑆𝑇
𝑊

ℋ = 𝑅 𝑥, 𝑦 , 𝑆 𝑦, 𝑧 , 𝑇 𝑥, 𝑧 ,𝑊 𝑥, 𝑦, 𝑧

𝑊 𝑥, 𝑦, 𝑧

𝑅 𝑥, 𝑦 𝑆 𝑦, 𝑧 𝑇 𝑥, 𝑧

𝑥𝑦 𝑦𝑧 𝑥𝑧

𝒟(ℋ) = 𝑥 𝑇, 𝑅,𝑊 , 𝑦 𝑅, 𝑆,𝑊 , 𝑧(𝑆, 𝑇,𝑊)	

𝑥 𝑇, 𝑅,𝑊

𝑦 𝑅, 𝑆,𝑊

𝑧(𝑆, 𝑇,𝑊)

𝑅𝑊 𝑆𝑊

𝑥𝑦

𝑅

𝑆𝑇

𝑊
𝑦𝑧𝑥𝑧

𝑦𝑥

𝑧

Gaifman graph of 𝒟(ℋ)
(w/ attribute-connected
spanning tree) Dual 𝒟(ℋ)

Join tree

No join tree
L

https://northeastern-datalab.github.io/cs7240/

262

Outline: T3-2: Cyclic conjunctive queries

• T3-1: Acyclic conjunctive queries
• T3-2: Cyclic conjunctive queries

– 2SAT (a detour)
– Tree decompositions
– Hypertrees decompositions
– Duality in Linear programming (a not so quick primer)
– AGM bound (maximal result size for full CQs) and

Worst-case optimal joins for the triangle query
– Worst-case optimal joins & the 4-cycle
– Optimal joins & the 4-cycle

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

cycles make everything
more complicated L

https://northeastern-datalab.github.io/cs7240/

263Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Why cyclic queries (other than social networks)

Source: http://demo.queryvis.com

https://northeastern-datalab.github.io/cs7240/
http://demo.queryvis.com/

264Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Why cyclic queries (other than social networks)

Source: http://demo.queryvis.com

https://northeastern-datalab.github.io/cs7240/
http://demo.queryvis.com/

265Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Why cyclic queries (other than social networks)

Source: http://demo.queryvis.com

https://northeastern-datalab.github.io/cs7240/
http://demo.queryvis.com/

266Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Joins in databases: one-at-a-time
How can we efficiently process multi-way joins with cycles?

Three possible plans
• (R ⋈ S)⋈ T
• (S ⋈ T)⋈ R
• (T⋈ R)⋈ S

Can we do better for cyclic queries? J

Q(x,y,z) :- R(x,y), S(y,z), T(x,z).

R(x,y)

S(y,z)

T(x,z)

L

There is no join tree! You can't fulfill
the running intersection property...

Recall:

xyz

Q(xyz)

xy yz

R(xy) S(yz)

⋈y

⋈x,z

T(xz)

xz

query plan as
"query tree"

L
• there is no full semijoin reducer
• intermediate result size bigger than output

https://northeastern-datalab.github.io/cs7240/

270

Outline: T3-2: Cyclic conjunctive queries

• T3-1: Acyclic conjunctive queries
• T3-2: Cyclic conjunctive queries

– 2SAT (a detour)
– Tree decompositions
– Hypertrees decompositions
– Duality in Linear programming (a not so quick primer)
– AGM bound (maximal result size for full CQs) and

Worst-case optimal joins for the triangle query
– Worst-case optimal joins & the 4-cycle
– Optimal joins & the 4-cycle

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

271Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

2SAT

• Instance: A 2-CNF formula j
• Problem: To decide if j is satisfiable

• Theorem: 2SAT is polynomial-time decidable.
- Proof: We’ll show how to solve this problem efficiently using path searches

in graphs…

• Background: Given a graph G=(V,E) and two vertices s,tÎV, finding if
there is a path from s to t in G is linear-time decidable. Use some
search algorithm (DFS/BFS).

j = (xÚy)Ù(¬yÚz)Ù(¬xÚ¬z)Ù(zÚy)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

272Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

2SAT: Graph Construction

• Vertex for each variable and a negation of a variable

j = (xÚy)Ù(¬yÚz)Ù(¬xÚ¬z)Ù(zÚy)

x
y

¬x

¬z
z

¬y

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

273Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

2SAT: Graph Construction

• Vertex for each variable and a negation of a variable
• Edge (¬x→y) iff there exists a clause equivalent to (xÚy)
- Recall (xÚy) same as (¬x⇒y) and (¬y⇒x), thus also (¬y→x)

j = (xÚy)Ù(¬yÚz)Ù(¬xÚ¬z)Ù(zÚy)

x
y

¬x

¬z
z

¬y

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

274Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

2SAT: Graph Construction

• Vertex for each variable and a negation of a variable
• Edge (¬x→y) iff there exists a clause equivalent to (xÚy)
- Recall (xÚy) same as (¬x⇒y) and (¬y⇒x), thus also (¬y→x)

• Claim: a 2-CNF formula j is unsatisfiable
iff there exists a variable x, such that:
- there is a path from x to ¬x in the graph, and
- there is a path from ¬x to x in the graph

j = (xÚy)Ù(¬yÚz)Ù(¬xÚ¬z)Ù(zÚy)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

x
y

¬x

¬z
z

¬y

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

275Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

2SAT: Graph Construction

• Vertex for each variable and a negation of a variable
• Edge (¬x→y) iff there exists a clause equivalent to (xÚy)
- Recall (xÚy) same as (¬x⇒y) and (¬y⇒x), thus also (¬y→x)

• Claim: a 2-CNF formula j is unsatisfiable
iff there exists a variable x, such that:
- there is a path from x to ¬x in the graph, and
- there is a path from ¬x to x in the graph

j = (xÚy)Ù(¬yÚz)Ù(¬xÚ¬z)Ù(zÚy)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

x
y

¬x

¬z
z

¬y

not enough,
needs both directions!

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

276Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correctness (1)

• Suppose there are paths x..¬x and ¬x..x for some variable x, but
there’s also a satisfying assignment r.
- If r(x)=T:

- Similarly for r(x)=F...

j = (xÚy)Ù(¬yÚz)Ù(¬xÚ¬z)Ù(zÚy)

x
y

¬x

¬z
z

¬y

x ¬x ...

T T

recall, needs to hold in both directions!

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

277Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correctness (2)

• Suppose there are no variables with such paths.
• Construct an assignment as follows:

j = (xÚy)Ù(¬yÚz)Ù(¬xÚ¬z)Ù(zÚy)

x
y

¬x

¬z
z

¬y

1. pick an unassigned literal a, with no
path from a to ¬a, and assign it T

2. assign T to all reachable vertices

3. assign F to their negations

4. Repeat until all vertices are assigned

x
y

¬x

¬z
z

¬y

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

278Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

2SAT is in P

We get the following PTIME algorithm for 2SAT:
- For each variable x find if there is a path from x to ¬x and vice-versa.
- Reject if any of these tests succeeded.
- Accept otherwise.

Þ 2SATÎP. n

https://northeastern-datalab.github.io/cs7240/

279

Outline: T3-2: Cyclic conjunctive queries

• T3-1: Acyclic conjunctive queries
• T3-2: Cyclic conjunctive queries

– 2SAT (a detour)
– Tree decompositions
– Hypertrees decompositions
– Duality in Linear programming (a not so quick primer)
– AGM bound (maximal result size for full CQs) and

Worst-case optimal joins for the triangle query
– Worst-case optimal joins & the 4-cycle
– Optimal joins & the 4-cycle

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

280Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Join Processing: two approaches

1. Cardinality-based
- binary joins, consider the sizes of input relations as to reduce the intermediate sizes
- commercial DBMSs: series of pairwise joins, system R (Selinger), join size estimation

2. Structural approaches (next)
- acylicity: Yannakakis, GYO algorithm, join tree
- bounded "width": query width, hypertree width (hw), generalized hw (ghw). All go back

to notion of treewidth (work by Robertson & Seymour on graph minors)

AGM: fractional hw (fhw):
- consider both statistics on

relations and query structure

https://northeastern-datalab.github.io/cs7240/

281Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: https://en.wikipedia.org/wiki/Tree_decomposition

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Tree_decomposition

282Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Very incomplete history of treewdith
The treewidth of a graph is an important graph complexity parameter that determines the
runtime of practical algorithms. Intuitively measures how close a graph is to being a tree.

1970 1975 1980 1985 1990

Introduced in the context of
variable elimination orders by
Bertelé & Brioschi (1972) and
named "dimension" of a graph

Rediscovered
by Halin (1976)

Rediscovered in the context of
graph minors by Robertson &
Seymour (1984) and named
"tree-width"

Diestel (2017) provides a detailed history of what happened
afterwards but seems to be unaware of Bertelé & Brioschi
(1972). Bodlaender (1998) attributes the connection of
"dimension" with treewidth to Arnborg (1985) who actually
never uses the word "treewidth" nor references R&S (1984)...

Bertelè, Brioschi. Nonserial Dynamic Programming, 1972 (definition 2.7.8). https://dl.acm.org/doi/10.5555/578817 , Halin. S-functions for graphs, Journal of Geometry, 1976.
https://doi.org/10.1007%2FBF01917434 , Robertson, Seymour. Graph minors III: Planar tree-width, Journal of Combinatorial Theory, 1984 https://doi.org/10.1016%2F0095-
8956%2884%2990013-3 , Diestel. Graph theory, 5th ed, 2017 (section 12). https://doi.org/10.1007/978-3-662-53622-3 , Bodlaender. A partial k-arboretum of graphs with bounded treewidth
(tutorial), Theoretical Computer Science, 1998. https://doi.org/10.1016/S0304-3975(97)00228-4 , Arnborg. Efficient algorithms for combinatorial problems on graphs with bounded
decomposability -- a survey, BIT, 1985. https://dl.acm.org/doi/abs/10.5555/3765.3773

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/10.5555/578817
https://doi.org/10.1007%2FBF01917434
https://doi.org/10.1016%2F0095-8956%2884%2990013-3
https://doi.org/10.1016%2F0095-8956%2884%2990013-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1016/S0304-3975(97)00228-4
https://dl.acm.org/doi/abs/10.5555/3765.3773

284Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Definition of an attribute-connected tree

AB

EHCD

BC AE

EF

FG

DEFINITION: A tree is attribute-
connected if the subtree induced
by each attribute is connected

Same as the running intersection property
from join trees (also known as junction tree)

Also called "coherence"

https://northeastern-datalab.github.io/cs7240/

285Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition
A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T	that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/

286Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 1: a tree

a b c ?
tree decomposition

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T	that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

eab

ebc

https://northeastern-datalab.github.io/cs7240/

287Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 1: a tree

a b c 1 2

{a,b} {b,c}

That's why treewidth defined as max cardinality - 1

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T	that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

eab

ebc

b

https://northeastern-datalab.github.io/cs7240/

288Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 2

?
tree decomposition

Example from: https://en.wikipedia.org/wiki/Tree_decomposition

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T	that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Tree_decomposition

289Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 2

Treewidth = 2
Notice running intersection property

Example from: https://en.wikipedia.org/wiki/Tree_decomposition

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T	that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Tree_decomposition

290Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 3

?
tree decomposition

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T	that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

Example from: https://www.mi.fu-berlin.de/en/inf/groups/abi/teaching/lectures/lectures_past/WS0910/V____Discrete_Mathematics_for_Bioinformatics__P1/material/scripts/treedecomposition1.pdf

https://northeastern-datalab.github.io/cs7240/
https://www.mi.fu-berlin.de/en/inf/groups/abi/teaching/lectures/lectures_past/WS0910/V____Discrete_Mathematics_for_Bioinformatics__P1/material/scripts/treedecomposition1.pdf

291Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 3

Example from: https://www.mi.fu-berlin.de/en/inf/groups/abi/teaching/lectures/lectures_past/WS0910/V____Discrete_Mathematics_for_Bioinformatics__P1/material/scripts/treedecomposition1.pdf

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T	that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/
https://www.mi.fu-berlin.de/en/inf/groups/abi/teaching/lectures/lectures_past/WS0910/V____Discrete_Mathematics_for_Bioinformatics__P1/material/scripts/treedecomposition1.pdf

292Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 4: a cycle

?
tree decomposition

1

4 3

5 2

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T	that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/

293Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 4: a cycle

1

4 3

5 2 12 23 34 45 15

What about coherence?

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T	that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/

294Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 4: a cycle

1

4 3

5 2 12 123 134 145 15

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T	that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/

295Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 4: a cycle

1

4 3

5 2 123 134 145

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T	that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/

296Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 4: a cycle

5 2 123 134 145

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T	that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

1

4 3

triangulation

1,3 1,4

https://northeastern-datalab.github.io/cs7240/

297Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 5: the triangle

y

x z

?
tree decomposition

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T	that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/

298Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 5: the triangle

y

x z

xy xyz xz

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T	that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/

299Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 5: the triangle

y

x z

xyz

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T	that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

More generally, a Kd (d-clique)
has a minimal treewidth of d-1

https://northeastern-datalab.github.io/cs7240/

300Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 5: the triangle

y

x z

xyz

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T	that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

More generally, a Kd (d-clique)
has a minimal treewidth of d-1

https://northeastern-datalab.github.io/cs7240/

301Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 6: a longer tree

?
tree decomposition

3

m 5

4

2
1

6

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T	that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/

302Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 6: a longer tree

3

m 5

34
4

2
1

6
m4

m5 56m2
12

34

m4
m5 56m2

12

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T	that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

Tree decomposition Another tree decomposition

https://northeastern-datalab.github.io/cs7240/

303Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 6: a longer tree

3

m 5

34
4

2
1

6
m4

m5 56m2
12

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T	that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

Line graph L(G) ?Tree decompositionGraph G

• Nodes of L(G) are edges of G
• Edges of L(G) are drawn

between nodes that share
common endpoints in G

https://northeastern-datalab.github.io/cs7240/

304Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 6: a longer tree

3

m 5

34
4

2
1

6
m4

m5 56m2
12

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T	that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

Line graph L(G)Tree decompositionGraph G

34

m4
m5 56m2

12

https://northeastern-datalab.github.io/cs7240/

305Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 7

Example by: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

306Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 7

Example by: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

307Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 7

Example by: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

308Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 7

Example by: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

309Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 8

Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf

https://northeastern-datalab.github.io/cs7240/
http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf

310Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 8

Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf

https://northeastern-datalab.github.io/cs7240/
http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf

311Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 8

Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf

https://northeastern-datalab.github.io/cs7240/
http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf

313Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree Decompositions (TDs) for CSPs

• Solving CSP on a tree with k variables and domain size m is O(km2)
• TD algorithm: find all solutions within each supernode, which is O(mtw+1) where tw is the treewidth (= one

less than size of largest supernode). Recall treewidth of tree is 1, thus complexity O(m2)
• Then, use the tree-structured Yannakakis algorithm, treating the supernodes as new variables...
• Finding a tree decomposition of smallest treewidth is NP-complete, but good heuristic methods exist.

TD:
• If two variables are connected in the original

problem, they must appear together (along
with the constraint) in at least one supernode

• If a variable occurs in two supernodes in the TD,
it must appear in every supernode on the path
that connects the two (coherence)

• The only constraints between the supernodes
are that the variables take on the same values
across supernodes (like semi-join messages
from Yannakakis)

Figures: Fig 6.12 and 6.13 from Russell, Norvig. "Artificial intelligence: a modern approach". 3rd ed, 2010. https://dl.acm.org/doi/book/10.5555/1671238

Original CSP:
Map-coloring of Australia

Tree decomposition with
supernodes (sets of variables)

Notice here each node is a variable
with domain of size d (e.g. 3 colors)

Translates into O(ntw) where
n is size of constraints per
edge

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/book/10.5555/1671238

314Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Alternative definition of Tree decomposition (TD)

ALTERNATIVE DEFINITION:
A tree decomposition of graph 𝐺(𝑁, 𝐸) is a pair 𝑇, 𝜒 where 𝑇(𝑉, 𝐹) is a tree, and 𝜒 is a
labeling function assigning to each vertex 𝑣 ∊ 𝑉 a set of vertices 𝜒(𝑣) ⊆ 𝑁, s.t. above
conditions (2) and (3) are satisfied.

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T	that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

Source of alternative definition: Gottlob, Leone, Scarcello. Hypertree decompositions: a survey. MFCS 2001. https://doi.org/10.1007/3-540-44683-4_5

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1007/3-540-44683-4_5

315Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Figure from: Otten, Dechter. Bounding Search Space Size via (Hyper)tree Decompositions. UAI 2008. https://arxiv.org/abs/1206.3284

Small decompositions allow to "compress" the search space

https://northeastern-datalab.github.io/cs7240/
https://arxiv.org/abs/1206.3284

316

Explaining
Treewidth with
cops & robbers

317Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Pursuit-evasion games

• Pursuit-evasion (sometimes called "cops and robber") is a family of
problems in which one group (cops) attempts to track down
members of another group (robbers) in some structured
environment, usually graphs.

• Related to pebble games and Ehrenfeucht–Fraïssé games

• Next: A variations of "Cops and Robber" can be used to describe the
treewidth of a graph

For more details see: https://en.wikipedia.org/wiki/Pursuit%E2%80%93evasion, https://en.wikipedia.org/wiki/Pebble_game,
https://en.wikipedia.org/wiki/Ehrenfeucht%E2%80%93Fra%C3%AFss%C3%A9_game, https://en.wikipedia.org/wiki/Cop_number#Special_classes_of_graphs

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Pursuit%E2%80%93evasion
https://en.wikipedia.org/wiki/Pebble_game
https://en.wikipedia.org/wiki/Ehrenfeucht%E2%80%93Fra%C3%AFss%C3%A9_game
https://en.wikipedia.org/wiki/Cop_number

318Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

THEOREM [Seymour & Thomas (1993)]
You have a winning strategy with 𝑘 cops iff
the tree-width of the graph is at most 𝑘−1.

can also take multiple steps

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

319Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

320Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

321Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

322Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

323Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

324Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

325Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

You can never catch the robber with only one cop L

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

326Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

?
What is the best move with a 2nd cop

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

327Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

One cop moves in on the robber, while others block escape.
Need to trap the robber in some "leaf"

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

328Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

329Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

330Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

331Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

332Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

333Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

?

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

334Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

got him!

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

335Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Robbers cannot escape on trees with 2 cops

7 8 9 10 11 12 13 14

3 4 5 6

1

0

2

Tree

https://northeastern-datalab.github.io/cs7240/

336Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Robbers cannot escape on trees with 2 cops

7 8 9 10 11 12 13 14

3 4 5 6

1

0

2

6,146,135,125,11

4,104,93,7 3,8

1,3 1,4 0,2

2,5 2,6

0,1

Tree Tree decomposition

https://northeastern-datalab.github.io/cs7240/

337Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Robbers cannot escape on trees with 2 cops

7 8 9 10 11 12 13 14

3 4 5 6

1

0

2

6,146,135,125,11

4,104,93,7 3,8

1,3 1,4 0,2

2,5 2,6

0,1

Tree Tree decomposition

Start at the root and
move in on the robber

https://northeastern-datalab.github.io/cs7240/

338Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Robbers cannot escape on trees with 2 cops

7 8 9 10 11 12 13 14

3 4 5 6

1

0

2

6,146,135,125,11

4,104,93,7 3,8

1,3 1,4 0,2

2,5 2,6

0,1

Tree Tree decomposition

Start at the root and
move in on the robber

https://northeastern-datalab.github.io/cs7240/

339Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Robbers cannot escape on trees with 2 cops

7 8 9 10 11 12 13 14

3 4 5 6

1

0

2

6,146,135,125,11

4,104,93,7 3,8

1,3 1,4 0,2

2,5 2,6

0,1

Tree Tree decomposition

Start at the root and
move in on the robber

https://northeastern-datalab.github.io/cs7240/

340Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

4,10

Robbers cannot escape on trees with 2 cops

7 8 9 10 11 12 13 14

3 4 5 6

1

0

2

6,146,135,125,11

4,93,7 3,8

1,3 1,4 0,2

2,5 2,6

0,1

Tree Tree decomposition

Start at the root and
move in on the robber

got him!

https://northeastern-datalab.github.io/cs7240/

341Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree_decomposition

Graph with treewidth = 2

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Tree_decomposition

342Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree_decomposition

Graph with treewidth = 2
You will need 3 cops

Tree decomposition

BG

EG

BE

CE

BC

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Tree_decomposition

343Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree_decomposition

Pick some root

Graph with treewidth = 2 Tree decomposition
You will need 3 cops

BG

EG

BE

CE

BC

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Tree_decomposition

344Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree_decomposition

Graph with treewidth = 2 Tree decomposition

Pick some rootYou will need 3 cops

And now move
in on the robber

BG

EG

BE

CE

BC

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Tree_decomposition

345Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree_decomposition

You will need 3 cops
Graph with treewidth = 2 Tree decomposition

BG

EG

BE

CE

BC

And now move
in on the robber

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Tree_decomposition

346Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree_decomposition

You will need 3 cops
Graph with treewidth = 2 Tree decomposition

BG

EG

BE

CE

BC

And now move
in on the robber

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Tree_decomposition

347Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree_decomposition

You will need 3 cops
Graph with treewidth = 2 Tree decomposition

got him!

And now move
in on the robber

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Tree_decomposition

348Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Robbers cannot hide from k=? cops on 4-cliques?

How many cops do we need
4-clique

A B

C D

?

https://northeastern-datalab.github.io/cs7240/

349Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Robbers cannot hide from k=3 cops on graph with treewidth=2

Let's try with 3 cops as before
4-clique

A B

C D

https://northeastern-datalab.github.io/cs7240/

350Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Robbers cannot hide from k=3 cops on graph with treewidth=2

We need 4 cops!
4-clique Tree decomposition

A B

C D

?

https://northeastern-datalab.github.io/cs7240/

351Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Robbers cannot hide from k=3 cops on graph with treewidth=2

Tree decomposition

A B
C D

We need 4 cops
4-clique

A B

C D

We need treewidth + 1 cops!

https://northeastern-datalab.github.io/cs7240/

383

Topic 3: Efficient query evaluation
Unit 2: Cyclic query evaluation
Lecture 23

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
https://northeastern-datalab.github.io/cs7240/sp24/
4/9/2024

Updated 4/9/2024

https://northeastern-datalab.github.io/cs7240/sp24/

384Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Pre-class conversations

• Last class summary
• Project: (P3: today FRI, 3/31)
• Scribes: half through
• Guest speaker on deep theory of set covering this THU 10am
• Today:
- Reducing cycles to trees (tree decompositions)
- Reducing cycles in CQs to trees based on the domain or based on atoms

(treewidth, query width hypertree decompositions)
- Linear Programming Duality

https://northeastern-datalab.github.io/cs7240/

385

Outline: T3-2: Cyclic conjunctive queries

• T3-1: Acyclic conjunctive queries
• T3-2: Cyclic conjunctive queries

– 2SAT (a detour)
– Tree decompositions
– Hypertrees decompositions
– Duality in Linear programming (a not so quick primer)
– AGM bound (maximal result size for full CQs) and

Worst-case optimal joins for the triangle query
– Worst-case optimal joins & the 4-cycle
– Optimal joins & the 4-cycle

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

387Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

• A join tree for a hypergraph H=(V,E) is a labeled tree T =(N,F,𝜆) such that:
- The nodes of T are formed by the hyperedges. In other words, 𝜆: N→E s.t. for each

hyperedge e ∈ E of H, there exists n ∈ N such that e = 𝜆(n)
- For each node u ∈ V of H, the set {n ∈ N | u ∈ 𝜆(n)} induces a connected subtree of T.

(also called: running intersection property)

Alpha-Acyclic Conjunctive Queries

x y

u

z

p w

R

W

S

T

U

U(z,p,w)

T(y,z,p) W(p,w,u)

R(x,y,z) S(y,p)

Q :- R(x,y,z), S(y,p), T(y,z,p), U(z,p,w), W(p,w,u).

https://northeastern-datalab.github.io/cs7240/

388Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

• A join tree for a hypergraph H=(V,E) is a labeled tree T =(N,F,𝜆) such that:
- The nodes of T are formed by the hyperedges. In other words, 𝜆: N→E s.t. for each

hyperedge e ∈ E of H, there exists n ∈ N such that e = 𝜆(n)
- For each node u ∈ V of H, the set {n ∈ N | u ∈ 𝜆(n)} induces a connected subtree of T.

(also called: running intersection property)

Alpha-Acyclic Conjunctive Queries

x y

u

z

p w

R

W

S

T

U

U(z,p,w)

T(y,z,p) W(p,w,u)

R(x,y,z) S(y,p)

https://northeastern-datalab.github.io/cs7240/

389Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

• A join tree for a hypergraph H=(V,E) is a labeled tree T =(N,F,𝜆) such that:
- The nodes of T are formed by the hyperedges. In other words, 𝜆: N→E s.t. for each

hyperedge e ∈ E of H, there exists n ∈ N such that e = 𝜆(n)
- For each node u ∈ V of H, the set {n ∈ N | u ∈ 𝜆(n)} induces a connected subtree of T.

(also called: running intersection property)

Alpha-Acyclic Conjunctive Queries

x y

u

z

p w

{z,p,w}

{y,z,p} {p,w,u}

{x,y,z} {y,p}

https://northeastern-datalab.github.io/cs7240/

390Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

• A join tree for a hypergraph H=(V,E) is a labeled tree T =(N,F,𝜆) such that:
- The nodes of T are formed by the hyperedges. In other words, 𝜆: N→E s.t. for each

hyperedge e ∈ E of H, there exists n ∈ N such that e = 𝜆(n)
- For each node u ∈ V of H, the set {n ∈ N | u ∈ 𝜆(n)} induces a connected subtree of T.

(also called: running intersection property)

Alpha-Acyclic Conjunctive Queries

1 2

4

3

5 6

{3,5,6}

{2,3,5} {4,5,6}

{1,2,3} {2,5}

https://northeastern-datalab.github.io/cs7240/

391Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

3

64
5

7 8

0

A

B

C

D E

F

G
H

9

For queries that are not acyclic, what bounds can we give
on the data complexity of query evaluation, considering
various structural properties of the query?

We will see:
- Coherence (as in TDs) is still a key structural criterion

for efficiency!
- But treewidth does not generalize the notion of

hypergraph acyclicity (because acyclic families of
hypergraphs may have unbounded treewidth: think of
a single relation of high arity L)

- What will help is the number of atoms needed to
cover sets of variables J.

- Reason: size of database is determined by number of
tuples n not domain size m

Cyclic Conjunctive Queries
Hypergraph

Example adopted from: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

392Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Q(x,y,z,w) :- R(x,y,z,w).

Issues with standard Treewidth (TW) for CQs

Hypergraph Clique graph

Treewidth:

Treewidth based on graphs.
TW of CQ is TW of its clique graph (i.e. replace each hyperedge with a clique)

? ?
?

a clique is a graph where where every
vertex is connected to every other vertex

https://northeastern-datalab.github.io/cs7240/

393Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Q(x,y,z,w) :- R(x,y,z,w).

Issues with standard Treewidth (TW) for CQs

Hypergraph Clique graph

Treewidth:

Treewidth based on graphs.
TW of CQ is TW of its clique graph (i.e. replace each hyperedge with a clique)

?
?

x y

z w

a clique is a graph where where every
vertex is connected to every other vertex

https://northeastern-datalab.github.io/cs7240/

394Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Q(x,y,z,w) :- R(x,y,z,w).

Issues with standard Treewidth (TW) for CQs

Hypergraph Clique graph

Treewidth:

Treewidth based on graphs.
TW of CQ is TW of its clique graph (i.e. replace each hyperedge with a clique)

?

x y

z w

x y

z w

a clique is a graph where where every
vertex is connected to every other vertex

https://northeastern-datalab.github.io/cs7240/

395Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Q(x,y,z,w) :- R(x,y,z,w).

x y

Issues with standard Treewidth (TW) for CQs

z w

Hypertree Clique graph

x y

z w

Resulting complexity bound O(m4)!

That's a pretty bad bound. We know
we can evaluate this query in O(n).

Treewidth based on graphs.
TW of CQ is TW of its clique graph (i.e. replace each hyperedge with a clique)

Treewidth: 3

This is actually the best tree decomposition: Nodes
of a clique need to appear in the same supernode

https://northeastern-datalab.github.io/cs7240/

396Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

R

T
x

y

z

S

W

Q1(x,y,z) :- R(x,y), S(y,z), T(x,z).
Q2(x,y,z) :- R(x,y), S(y,z), T(x,z), W(x,y,z).

R

T
x

y

z

S

H1 (Triangle) H2 (Beta-Triangle)

Issues with standard Treewidth (TW) for CQs
We also know that these two
queries have different maximal
output sizes: O(n1.5) vs. O(n).
But TW cannot distinguish them L

?

Clique graph

https://northeastern-datalab.github.io/cs7240/

397Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

R

T
x

y

z

S

W

Q1(x,y,z) :- R(x,y), S(y,z), T(x,z).
Q2(x,y,z) :- R(x,y), S(y,z), T(x,z), W(x,y,z).

R

T
x

y

z

S

x

y

z
Same clique graph. Therefore:
→ same TW 2.
→ same complexity bound O(m3)

Issues with standard Treewidth (TW) for CQs
We also know that these two
queries have different maximal
output sizes: O(n1.5) vs. O(n).
But TW cannot distinguish them L

Clique graphH1 (Triangle) H2 (Beta-Triangle)

https://northeastern-datalab.github.io/cs7240/

398Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Chekuri, Rajaraman. "Conjunctive query containment revisited", TCS 2000. https://doi.org/10.1016/S0304-3975(99)00220-0 (ICDT'97 conference paper, ICDT'16 test-of-time award)

"Query decomposition" [Chekuri, Rajaraman'97]
QUERY DECOMPOSITION
Tree decomposition with coherence conditions on both:
1) variables and 2) atoms.
Query width: max # of atoms in a supernode

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1016/S0304-3975(99)00220-0

399Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Important Observation 1

R(1,2,3), A(6,7)

B(1,7)

T(1,4,6), U(2,5,6)

C(2,7)

R(1,2,3), S(4,5,3)

Adopted from an example by Georg Gottlob

"Query decomposition" as defined by
[Chekuri, Rajaraman'97] is too strict
about atoms needing to be connected
and atoms not allowing projections

This decomposition would not be possible
for original "query decomposition"
because "3" is not connected.

But what if you project "3" away onto
𝑅′ 1,2 = 	𝜋!"𝑅(1,2,3)

Some decomposition

https://northeastern-datalab.github.io/cs7240/

400Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Important Observation 1

R'(1,2,_), A(6,7)

B(1,7)

T(1,4,6), U(2,5,6)

C(2,7)

R(1,2,3), S(4,5,3)

Adopted from an example by Georg Gottlob

Here the reuse of R(1,2,3) is harmless:
we could have added an atom R(1,2,_)
here without changing the query.

This leads to "generalized hypertree
decompositions" which define coherence only
based on variables, not atoms. More liberal
than "query decomposition", and thus can
give tighter bounds.

Idea: allow query atoms to be reused
partially (with projections) as long as
the full atom appears somewhere else.

Some decomposition

𝜋!"𝑅

https://northeastern-datalab.github.io/cs7240/

401Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

S(6,2,4,7,6), T(3,5,8,11,12)

R(1,2,3,4,5)

R(_,2,3,_,_), U(7,8,9) R(_,_,_,4,5), V(6,0,12)

A(2,9) B(3,9) E(5,0)C(4,0), D(6,_,0)

F(4,6,13) G(4,6,14)

Important Observation 2
One can avoid NP-hardness of finding a
minimal size decomposition by adding an
additional syntactic "descendant condition".
This leads to "hypertree decompositions"

Adopted from an example by Georg Gottlob

https://northeastern-datalab.github.io/cs7240/

402Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

S(6,2,4,7,6), T(3,5,8,11,12)

R(1,2,3,4,5)

R(_,2,3,_,_), U(7,8,9) R(1,2,3,4,5), V(6,0,12)

A(2,9) B(3,9) E(5,0)C(4,0), D(6,_,0)

F(4,6,13) G(4,6,14)

Important Observation 2
One can avoid NP-hardness of finding a
minimal size decomposition by adding an
additional syntactic "descendant condition".
This leads to "hypertree decompositions"

Each variable that
disappears at some
node, does not reappear
in the subtree rooted
at that node

Adopted from an example by Georg Gottlob

https://northeastern-datalab.github.io/cs7240/

403Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: Gottlob, Leone, Scarcello. "Hypertree decompositions and tractable queries." PODS 1999. https://doi.org/10.1145/303976.303979 (Gems of PODS 2016)

descendent condition

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/303976.303979

404Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

3

64
5

7 8

0

A

B

C

D E

F

G
H

9

1,3,4,6,0

3,4,6,9,0

4,6,8,9,0

4,5,6,7,8,0

1,2,3,6

How to check that this is
a valid tree decomposition? ?

Hypertree decomposition: full example
Hypergraph Tree decomposition

https://northeastern-datalab.github.io/cs7240/

405Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decompositionHypergraph

1,3,4,6,0

3,4,6,9,0

4,6,8,9,0

4,5,6,7,8,0

1,2,3,6

Hypertree decomposition: full example

1 2

3

64
5

7 8

0

A

B

C

D E

F

G
H

9

TREE DECOMPOSITION (ALTERNATIVE)
1. Hyperedge coverage: For

every hyperedge h of H,
there is a vertex in T	that
contains all its variables

2. Coherence

What is its width ?

https://northeastern-datalab.github.io/cs7240/

406Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition
(width 5)

Hypergraph

1,3,4,6,0

3,4,6,9,0

4,6,8,9,0

4,5,6,7,8,0

1,2,3,6

Hypertree decomposition: full example

1 2

3

64
5

7 8

0

A

B

C

D E

F

G
H

9

TREE DECOMPOSITION (ALTERNATIVE)
1. Hyperedge coverage: For

every hyperedge h of H,
there is a vertex in T	that
contains all its variables

2. Coherence

tree width = 5:
= size of largest supernode - 1

guarantees evaluation in O(m6)
where m is the domain size or O(n5)
where n is size of largest relation

https://northeastern-datalab.github.io/cs7240/

407Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1

1,3,4,6,0

3,4,6,9,0

4,6,8,9,0

4,5,6,7,8,0

2

3

64
5

7 8

0

1,2,3,6

9

TREE DECOMPOSITION

1. Edge coverage: For every edge
e of G, there is a vertex in
T	that contains both ends of e

2. Coherence

Hypertree decomposition: full example
Clique graph of Hypergraph
(also primal or Gaifman graph)

Tree decomposition
(width 5)

identical definition, because:
• hyperedge = clique in clique graph
• each clique needs to be contained

in one supernode of the TD

https://northeastern-datalab.github.io/cs7240/

408Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition
(width 5)

Hypergraph

Hypertree decomposition: full example
Generalized hypertree decomp.

(width 2)

Is this a valid "generalized
hypertree decomposition"; ?

1 2

3

64
5

7 8

0

A

B

C

D E

F

G
H

9

1,3,4,6,0

3,4,6,9,0

4,6,8,9,0

4,5,6,7,8,0

1,2,3,6

Example adopted from: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

A{1,2}, F{2,3,6}

C{1,4,0}, F{2,3,6}

B{4,5,6}, H{3,9,0}

C{1,4,0}, E{6,8,9}

B{4,5,6}, G{7,8,0}

Where is D?

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

409Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

3

64
5

7 8

0

A

B

C

D E

F

G
H

9

Hypergraph

Hypertree decomposition: full example
Generalized hypertree decomp.

(width 2)

GENERALIZED HT DECOMP.
1. Hyperedge coverage: For

every hyperedge h of H,
there is a vertex in T	that
contains all its variables

2. Coherence

Basically identical to tree decomposition.
Just the width measure is different!

Tree decomposition
(width 5)

Example adopted from: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

A{1,2}, F{2,3,6}

C{1,4,0}, F{2,3,6}

B{4,5,6}, H{3,9,0}

C{1,4,0}, E{6,8,9}

B{4,5,6}, G{7,8,0}

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

410Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

3

64
5

7 8

0

A

B

C

D E

F

G
H

9

Hypergraph

Hypertree decomposition: full example
Generalized hypertree decomp.

(width 2)

GENERALIZED HT DECOMP.
1. Hyperedge coverage: For

every hyperedge h of H,
there is a vertex in T	that
contains all its variables

2. Coherence

A{1,2}, F{2,3,6}

C{1,4,0}, F{2,3,6}

B{4,5,6}, H{3,9,0}

C{1,4,0}, E{6,8,9}

B{4,5,6}, G{7,8,0}

Tree decomposition
(width 5)

Example adopted from: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

B and G together contain
all variables from D

Basically identical to tree decomposition.
Just the width measure is different!

Final algorithm O(n2) preprocessing
(materializing the vertices of the
decomposition), then Yannakakis O(r)

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

411Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 A{1,2}, F{2,3,6}

C{1,4,0}, F{2,3,6}

B{4,5,6}, H{3,9,0}

C{1,4,0}, E{6,8,9}

B{4,5,6}, G{7,8,0}

2

3

64
5

7 8

0

A

B

C

D E

F

G
H

9

Hypergraph

Hypertree decomposition: full example
Generalized hypertree decomp.

(width 2)

GENERALIZED HT DECOMP.
1. Hyperedge coverage: For

every hyperedge h of H,
there is a vertex in T	that
contains all its variables

2. Coherence

Example adopted from: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

Is this also a valid
"hypertree decomposition"?

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

412Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

3

64
5

7 8

0

A

B

C

D E

F

G
H

9

Hypergraph

Hypertree decomposition: full example
Generalized hypertree decomp.

(width 2)

HT DECOMP.
1. Hyperedge coverage: For

every hyperedge h of H,
there is a vertex in T	that
contains all its variables

2. Coherence
3. Descendant condition:

Variables projected away
from a hyperedge can
not reappear in the
subtree below

A condition to limit the search
space of valid HD decompositions

Example adopted from: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

A{1,2}, F{2,3,6}

C{1,4,0}, F{2,3,6}

B{4,5,6}, H{3,9,0}

C{1,4,0}, E{6,8,9}

B{4,5,6}, G{7,8,0}

Is this also a valid
"hypertree decomposition"?

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

413Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

3

64
5

7 8

0

A

B

C

D E

F

G
H

9

Hypergraph

Hypertree decomposition: full example
Generalized hypertree decomp.

(width 2)

HT DECOMP.
1. Hyperedge coverage: For

every hyperedge h of H,
there is a vertex in T	that
contains all its variables

2. Coherence
3. Descendant condition:

Variables projected away
from a hyperedge can
not reappear in the
subtree below

A{1,2}, F{2,3,6}

C{1,4,0}, F{2,3,6}

B{4,5,6}, H{3,9,0}

C{1,4,0}, E{6,8,9}

B{4,5,6}, G{7,8,0}

No: "5" got projected away,
but reappears below. Also
"1" in other direction

A condition to limit the search
space of valid HD decompositions

Example adopted from: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

414Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

3

64
5

7 8

0

A

B

C

D E

F

G
H

9

Hypergraph

Hypertree decomposition: full example
Hypertree decomposition

HT DECOMP.
1. Hyperedge coverage: For

every hyperedge h of H,
there is a vertex in T	that
contains all its variables

2. Coherence
3. Descendant condition:

Variables projected away
from a hyperedge can
not reappear in the
subtree below

A{1,2}, C{1,4,0}, F{2,3,6}

B{4,5,6}, D{5,7}, E{6,8,9},
G{7,8,0}, H{3,9,0}

Example adopted from: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

415Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

3

64
5

7 8

0

A

B

C

D E

F

G
H

9

Hypergraph

Hypertree decomposition: full example
Hypertree decomposition

A{1,2}, C{1,4,0}, F{2,3,6}

What should be the "width"
of this HTD, i.e. what is the
complexity of materializing
this last supernode ?

B{4,5,6}, D{5,7}, E{6,8,9},
G{7,8,0}, H{3,9,0}

Example adopted from: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

416Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

3

64
5

7 8

0

A

B

C

D E

F

G
H

9

Hypergraph

Hypertree decomposition: full example
Hypertree decomposition

A{1,2}, C{1,4,0}, F{2,3,6}

Notice that 3 relations alone "cover" all the variables.
The join can only be a subset of those tuples.

B{4,5,6}, D{5,7}, E{6,8,9},
G{7,8,0}, H{3,9,0}B(4,5,6)⋈G(7,8,0)⋈H(3,9,0)

([(B(4,5,6) ⋈ G(7,8,0)) ⋈ H(3,9,0)]
⋉D(5,7)) ⋉E(6,8,9)

O(n3)

n... maximal size of relations
Example adopted from: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

417Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Hypergraph

Hypertree decomposition: full example
Hypertree decomposition

(width 3)

C,F: {1,2,3,4,6,0}

B,G,H:{3,4,5,6,7,8,9,0}

With of HTD = maximal width of any super node.
With of supernode = minimal number of relations
to cover all variables. Here covered by B⋈G⋈H

Results in a modified database and modified
acyclic query. Then perform Yannakakis: O(n3)

1 2

3

64
5

7 8

0

A

B

C

D E

F

G
H

9

B⋈G⋈H

Example adopted from: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

418Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: Gottlob, Leone, Scarcello. "Hypertree decompositions: a survey." MFCS 2001. https://dl.acm.org/doi/10.5555/645730.668191

descendent condition

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/10.5555/645730.668191

419Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: Adler, Gottlob, Grohe. "Hypertree width and related hypergraph invariants." European Journal of Combinatorics 2007 (EuroComp 2005). https://doi.org/10.1016/j.ejc.2007.04.013

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1016/j.ejc.2007.04.013

420Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: Gottlob, Miklos, Schwentick. "Generalized Hypertree decompositions: NP-hardness and tractable variants.", PODS 2007. https://doi.org/10.1145/1265530.1265533

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/1265530.1265533

421Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Generalized Hypertree Decomposition (GHD)
[Gottlob, Leone, Scarcello 2001]

Hypertree Decompositions and friends

Hypertree Decomposition (HD)
[Gottlob, Leone, Scarcello 1999]

Query decomposition
[Chekuri, Rajaraman 1997] NP-complete to find the optimum

PTIME to find the optimum

towards tighter bounds
(below is better)

NP-complete to find the optimum

towards tighter bounds
(below is better)

Chekuri, Rajaraman. "Conjunctive query containment revisited", TCS 2000. https://doi.org/10.1016/S0304-3975(99)00220-0 (ICDT'97 conference paper, ICDT'16 test-of-time award)
Gottlob, Leone, Scarcello. "Hypertree decompositions and tractable queries." PODS 1999. https://doi.org/10.1145/303976.303979 (Gems of PODS 2016)
Gottlob, Leone, Scarcello. "Hypertree decompositions: a survey." MFCS 2001. https://dl.acm.org/doi/10.5555/645730.668191

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1016/S0304-3975(99)00220-0
https://doi.org/10.1145/303976.303979
https://dl.acm.org/doi/10.5555/645730.668191

422Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1. Generalized Hypertree Decomposition (GHD):
explores the whole search space of valid decompositions
(illustrated here with a non-convex search space 𝑆 in blue)

Hypertree Decomposition: an unfortunate naming

2. Hypertree Decomposition (HD):
limits the search space in a way that makes it tractable
to find the optimal solution within that limited subspace
(illustrated here with a convex search space 𝑆′⊆𝑆)

Better names would be:
1. Hypertree Decomposition (HD) instead of GHD
2. Restricted Hypertree Decomposition (RHD) instead of HD

𝑆

𝑆′

https://northeastern-datalab.github.io/cs7240/

443

Outline: T3-2: Cyclic conjunctive queries

• T3-1: Acyclic conjunctive queries
• T3-2: Cyclic conjunctive queries

– 2SAT (a detour)
– Tree decompositions
– Hypertrees decompositions
– Duality in Linear programming (a not so quick primer)
– AGM bound (maximal result size for full CQs) and

Worst-case optimal joins for the triangle query
– Worst-case optimal joins & the 4-cycle
– Optimal joins & the 4-cycle

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

444Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Topic Duality in Linear Programming (LP)

• Subtopics
- Connections between (max) set packing and (min) set covers in graphs
- Linear Programming (LP) and duality gaps
- LP relaxations of ILP problems (Integer Linear Programming)
- Duality b/w independent vertex sets and edge covers

What is "duality"?

https://northeastern-datalab.github.io/cs7240/

445Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Duality
• Duality in linear programming: Intuitively, every Linear Program has a dual problem with the same optimal solution,

but the variables in the dual problem correspond to constraints in the primal problem and vice versa.
• But the notion of duality is more general:

https://www.jstor.org/stable/j.ctt7sd01.7 https://fme.upc.edu/ca/arxius/butlleti-digital/riemann/071218_conferencia_atiyah-d_article.pdf

https://northeastern-datalab.github.io/cs7240/
https://www.jstor.org/stable/j.ctt7sd01.7
https://fme.upc.edu/ca/arxius/butlleti-digital/riemann/071218_conferencia_atiyah-d_article.pdf

446Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Let's use graphs to explain duality in LP (Linear Programming)

• (max) Packing problems: max number of disjoint subsets
- max set packing: max number of subsets that are pairwise disjoint
- max independent (vertex) set: max number of vertices not sharing edges
- max independent edge set = matching: maximum number of edges that don't share any

nodes (every vertex can be in max one matching)

• (min) Coverings problems: min number of subsets to cover all elements
- min set cover: min number of subsets to cover the entire domain
- min vertex cover: min number of vertices to cover all edges
- min edge cover: min number of edges to cover all vertices

• Some packing problem is the dual problem of some covering problem
- Min Vertex Cover (VC) is the dual of Max matching (independent edge set)
- Max Independent Set (IS) is the dual of Min edge cover

https://northeastern-datalab.github.io/cs7240/

447Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Independent set

1 2

5 4

6 7 3

Independent set (IS): set of vertices
that are not connected (white)

max

https://northeastern-datalab.github.io/cs7240/

448Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

5 4

6 7 3

VC vs. Ind set ?

Vertex cover (VC): set of vertices
that covers all edges

Independent set (IS): set of vertices
that are not connected (white)

?

Assume you are given an independent set.
How do you find a vertex cover?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

max

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

449Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

5 4

6 7 3

VC =c Ind set

Set S is a VC iff the complement Vc = V − S is an IS

Proof: for each edge at most one vertex is in Vc.
Thus at least one vertex is in Set S.

Vertex cover (VC): set of vertices
that covers all edges (orange)

Independent set (IS): set of vertices
that are not connected (white)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

max

min

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

450Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

5 4

6 7 3

Matching vs. VC?

Vertex cover (VC): set of vertices
that covers all edges (orange)

Matching (Ind edge set): set of
edges w/o common vertices (red)

?

What is a possible connection between VC and matchings

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

min

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

451Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Thus, any VC has at least the size of any matching
⇒ Size of any matching ≤ any VC

A VC needs to cover at least each edge from
any matching

1 2

5 4

6 7 3

Matching ≤ VC

Vertex cover (VC): set of vertices
that covers all edges (orange)

Matching (Ind edge set): set of
edges w/o common vertices (red)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

That turns out to be the
dual: Max Matching ≤ Min VC

max

min

That is called "weak duality"
Any feasible solution to the minimization problem is at least
as large as any feasible solution to the maximization problem

1 2 3 4 5 6 70

VCsmatchings ≤

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

452Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

5 4

6 7 3

Matching ≤ VC =c Ind set (summary so far)

Vertex cover (VC): set of vertices
that covers all edges (orange)

Matching (Ind edge set): set of
edges w/o common vertices (red)

Independent set (IS): set of vertices
that are not connected (white)

?What intuitive problem is missing

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

max

min

max

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

453Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

5 4

6 7 3

Cover problems: set of subsets that cover all elements

Packing problems: set of disjoint subsets

Matching ≤ VC =c Ind set (summary so far)

Vertex cover (VC): set of vertices
that covers all edges (orange)

Matching (Ind edge set): set of
edges w/o common vertices (red)

Independent set (IS): set of vertices
that are not connected (white)

e1

e2

e3

e4

e5

e6 e7

e8

e1 e2 e3 e4 e5 e6
1
2
3
4
5
6

o
o o

o
o

o
o

e7 e8

o
o

o
o

o o

7 o o

o

?What intuitive problem is missing

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Edges = Sets

Ve
rt

ic
es

 =
 e

le
m

en
ts

max

min

max

Incidence matrix

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

454Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

5 4

6 7 3

Matching ≤ VC =c Ind set vs. Edge cover

Vertex cover (VC): set of vertices
that covers all edges (orange)

Matching (Ind edge set): set of
edges w/o common vertices (red)

Independent set (IS): set of vertices
that are not connected (white)

e1

e2

e3

e4

e5

e6 e7

e8

e1 e2 e3 e4 e5 e6
1
2
3
4
5
6

o
o o

o
o

o
o

e7 e8

o
o

o
o

o o

7 o o

o

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Edges = Sets

Ve
rt

ic
es

 =
 e

le
m

en
ts

Cover problems: set of subsets that cover all elements
(min set cover: min vertex cover, min edge cover)

Packing problems: set of disjoint subsets
(max set packing: max ind set, max matching)

Edge cover: set of edges that cover
all vertices (blue)?

What is its
connection
to IS

max

min

max

min

Incidence matrix

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

455Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

5 4

6 7 3

Matching ≤ VC =c Ind set ≤ Edge cover

Vertex cover (VC): set of vertices
that covers all edges (orange)

Matching (Ind edge set): set of
edges w/o common vertices (red)

Independent set (IS): set of vertices
that are not connected (white)

e1

e2

e3

e4

e5

e6 e7

e8

e1 e2 e3 e4 e5 e6
1
2
3
4
5
6

o
o o

o
o

o
o

e7 e8

o
o

o
o

o o

7 o o

o

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Edges = Sets

Ve
rt

ic
es

 =
 e

le
m

en
ts

Edge cover: set of edges that cover
all vertices (blue)

Thus, any IS is lower bound to the size of any edge cover
⇒ Size of min edge cover ≥ max IS (duality)

An edge cover needs to cover at least each
vertex from any IS

max

min

max

min

Incidence matrix

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

456Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

4 graph problems in the incidence matrix

Set
Cover

Set
Packing

Choose Vertices Choose Edges1 2

5 4

6 7 3

e1

e2

e3

e4

e5

e6 e7

e8

e1 e2 e3 e4 e5 e6
1
2
3
4
5
6

o
o o

o
o

o
o

e7 e8

o
o

o
o

o o

7 o o

o

Edges = Sets

Ve
rt

ic
es

 =
 e

le
m

en
ts

? ?

? ?
Incidence matrix

https://northeastern-datalab.github.io/cs7240/

457Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

4 graph problems in the incidence matrix

Set
Cover

Set
Packing

Choose Vertices Choose Edges

Independent
Set

Matching =
Ind. edge set

Vertex Cover Edge Cover

1 2

5 4

6 7 3

e1

e2

e3

e4

e5

e6 e7

e8

e1 e2 e3 e4 e5 e6
1
2
3
4
5
6

o
o o

o
o

o
o

e7 e8

o
o

o
o

o o

7 o o

o

Edges = Sets

Ve
rt

ic
es

 =
 e

le
m

en
ts

≥ dual

complement
≤ dual

min=3

max=4

min=4

max=3

Incidence matrix

https://northeastern-datalab.github.io/cs7240/

458Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

4 graph problems in the incidence matrix

Set
Cover

Set
Packing

Choose Vertices Choose Edges

Independent
Set

Matching =
Ind. edge set

Vertex Cover Edge Cover

1 2

5 4

6 7 3

e1

e2

e3

e4

e5

e6 e7

e8

e1 e2 e3 e4 e5 e6
1
2
3
4
5
6

o
o o

o
o

o
o

e7 e8

o
o

o
o

o o

7 o o

o

Edges = Sets

Ve
rt

ic
es

 =
 e

le
m

en
ts

≥ dual

complement

NP-complete PTIME

≤ dual

min=3

max=4

min=4

max=3

Incidence matrix

https://northeastern-datalab.github.io/cs7240/

459Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

4 graph problems in the incidence matrix

Set
Cover

Set
Packing

Choose Vertices Choose Edges

Independent
Set

Matching =
Ind. edge set

Vertex Cover Edge Cover

1 2

5 4

6 7 3

e1

e2

e3

e4

e5

e6 e7

e8

e1 e2 e3 e4 e5 e6
1
2
3
4
5
6

o
o o

o
o

o
o

e7 e8

o
o

o
o

o o

7 o o

o

Edges = Sets

Ve
rt

ic
es

 =
 e

le
m

en
ts

≥ dual

complement

NP-complete PTIME

≤ dual

𝜏=3 (min)

𝛼=4 (max)

𝜌=4 (min)

𝜇=3 (max)

Incidence matrix

https://northeastern-datalab.github.io/cs7240/

460Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Same 4 problems for hypergraphs

Source: Scheinerman, Ullman. "Fractional Graph Theory: A Rational Approach to the Theory of Graphs", 1997/2008. https://www.ams.jhu.edu/ers/books/fractional-graph-theory-a-rational-
approach-to-the-theory-of-graphs/

≥ dual

(min) vertex cover

(min) edge cover

(max) matching
(independent edge set)

(max) independent vertex set

≥ dual

(𝛼)(𝜌)

complement

Finding a maximum matching in a 3-uniform
hypergraph is NP-hard (3-dimensional matching),
but is in PTIME for simple (2-uniform) graphs.

hyperedge cover

vertex cover

https://northeastern-datalab.github.io/cs7240/
https://www.ams.jhu.edu/ers/books/fractional-graph-theory-a-rational-approach-to-the-theory-of-graphs/
https://www.ams.jhu.edu/ers/books/fractional-graph-theory-a-rational-approach-to-the-theory-of-graphs/

462Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Background: MAX independent (vertex) set ≤ MIN edge cover

• Assume graph G is connected. Thus, every vertex has at least one edge (unless just one vertex)
• Suppose 𝑆 is an independent set and 𝐸 is an edge cover.
• Then for each vertex 𝑣∈𝑆 there exists at least one edge 𝑒∈𝐸 incident with 𝑣.
• By definition of independent set no two 𝑢,𝑣∈𝑆, have a common edge in 𝐸.
• Therefore |𝑆|≤|𝐸|
Example from: http://www.csie.ntnu.edu.tw/~u91029/Domination.html

≤ dual

https://northeastern-datalab.github.io/cs7240/
http://www.csie.ntnu.edu.tw/~u91029/Domination.html

463Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

3

4

6

7

9

10

1

2

5

8

Matching ≤ VC: what changes in bipartite graphs?

Thus, min VC at least the size of any matching
⇒ Size of any matching ≤ any VC

A VC needs to cover at least each edge from
any matching

Vertex cover (VC): set of vertices
that covers all edges (orange)

Matching (Ind edge set): set of
edges w/o common vertices (red) max

min

𝐿 𝑅
Nodes are partitioned into Left and Right

https://northeastern-datalab.github.io/cs7240/

464Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

3

4

6

7

9

10

1

2

5

8

matching = VC ... in bipartite graphs!

Kőnig-Egeváry theorem for bipartite graphs:
Max matching equivalent to Min VC

Vertex cover (VC): set of vertices
that covers all edges (orange)

Matching (Ind edge set): set of
edges w/o common vertices (red)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

max

min

𝐿 𝑅

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

465Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

All for 4 problems become easy in bipartite graphs

Set
Cover

Set
Packing

Choose Vertices Choose Edges

Independent
Set

Matching =
Ind. edge set

Vertex Cover Edge Cover

= dual

complement

PTIME

= dual
3

4

6

7

9

10

1

2

5

8

𝐿 𝑅

https://northeastern-datalab.github.io/cs7240/

466Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Cuts and Flows in directed graphs G = (V, E)

3

4

6

7

9

10

1

2

5

8s t

𝐿 𝑅

https://northeastern-datalab.github.io/cs7240/

467Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Cuts and Flows in directed graphs G = (V, E)

3

4

6

7

9

10

1

2

5

8s t

1

1

1

1

Each edge (𝑢, 𝑣) has a capacity 𝑐56 which is the max amount of flow that can pass through it.

1

1

1

1

1

1

1

1

1
1 1

𝐿 𝑅

https://northeastern-datalab.github.io/cs7240/

468Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Cuts and Flows in directed graphs G = (V, E)

3

4

6

7

9

10

1

2

5

8s t

A flow is a mapping of edges to flows 𝑓: 𝐸 → ℝ7
s.t. that flows obey their capacities 𝑓56 ≤ 𝑐56 and
conservation laws. The value |𝑓|	of a flow is the
amount moved from 𝑆 to 𝑇 through the network.

Each edge (𝑢, 𝑣) has a capacity 𝑐56 = 1 which is the max amount of flow that can pass through it.

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

𝐿 𝑅

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

469Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Cuts and Flows in directed graphs G = (V, E)

3

4

6

7

9

10

1

2

5

8s t

1

0

1

0

Each edge (𝑢, 𝑣) has a capacity 𝑐56 = 1 which is the max amount of flow that can pass through it.

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

0

1

1

1

1

1

1

1

0
0 0

𝐿 𝑅

|𝑓|= 3

A flow is a mapping of edges to flows 𝑓: 𝐸 → ℝ7
s.t. that flows obey their capacities 𝑓56 ≤ 𝑐56 and
conservation laws. The value |𝑓|	of a flow is the
amount moved from 𝑆 to 𝑇 through the network.

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

470Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Cuts and Flows in directed graphs G = (V, E)

3

4

6

7

9

10

1

2

5

8s t

1

1

1

1

Each edge (𝑢, 𝑣) has a capacity 𝑐56 = 1 which is the max amount of flow that can pass through it.

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

1

1

1

1

1

1

1

1

0
0 0

𝐿 𝑅

|𝑓|= 4

A flow is a mapping of edges to flows 𝑓: 𝐸 → ℝ7
s.t. that flows obey their capacities 𝑓56 ≤ 𝑐56 and
conservation laws. The value |𝑓|	of a flow is the
amount moved from 𝑆 to 𝑇 through the network.

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

471Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Cuts and Flows in directed graphs G = (V, E)

A flow is a mapping of edges to flows 𝑓: 𝐸 → ℝ7
s.t. that flows obey their capacities 𝑓56 ≤ 𝑐56 and
conservation laws. The value |𝑓|	of a flow is the
amount moved from 𝑆 to 𝑇 through the network.

Each edge (𝑢, 𝑣) has a capacity 𝑐56 = 1 which is the max amount of flow that can pass through it.

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

An s-t cut 𝐶 = (𝑆, 𝑇) is a partition of 𝑉 s.t. 𝑠 ∈ 𝑆
and 𝑡 ∈ 𝑇. The cut-set 𝑋8 of a cut 𝐶 is the set of
edges that connect the source part of the cut to
the sink part. The capacity 𝑐(𝑆, 𝑇) of an s-t cut is
the sum of the capacities of the edges in its cut-set.

4

6

7

9

10

1

2

5

8 t

𝐿 𝑅

3s

Nodes to the left of the dashed line are in S, the rest in T.

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

472Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Cuts and Flows in directed graphs G = (V, E)

A flow is a mapping of edges to flows 𝑓: 𝐸 → ℝ7
s.t. that flows obey their capacities 𝑓56 ≤ 𝑐56 and
conservation laws. The value |𝑓|	of a flow is the
amount moved from 𝑆 to 𝑇 through the network.

Each edge (𝑢, 𝑣) has a capacity 𝑐56 = 1 which is the max amount of flow that can pass through it.

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

An s-t cut 𝐶 = (𝑆, 𝑇) is a partition of 𝑉 s.t. 𝑠 ∈ 𝑆
and 𝑡 ∈ 𝑇. The cut-set 𝑋8 of a cut 𝐶 is the set of
edges that connect the source part of the cut to
the sink part. The capacity 𝑐(𝑆, 𝑇) of an s-t cut is
the sum of the capacities of the edges in its cut-set.

4

6

7

9

10

1

2

5

8 t

𝐿 𝑅

Nodes to the left of the dashed line are in S, the rest in T.

This line is not in the cut-set
because it goes from T to S!

1

1

1

1

1

𝑐(𝑆, 𝑇)	= 5

3s

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

473Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Cuts and Flows in directed graphs G = (V, E)

A flow is a mapping of edges to flows 𝑓: 𝐸 → ℝ7
s.t. that flows obey their capacities 𝑓56 ≤ 𝑐56 and
conservation laws. The value |𝑓|	of a flow is the
amount moved from 𝑆 to 𝑇 through the network.

Each edge (𝑢, 𝑣) has a capacity 𝑐56 = 1 which is the max amount of flow that can pass through it.

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

An s-t cut 𝐶 = (𝑆, 𝑇) is a partition of 𝑉 s.t. 𝑠 ∈ 𝑆
and 𝑡 ∈ 𝑇. The cut-set 𝑋8 of a cut 𝐶 is the set of
edges that connect the source part of the cut to
the sink part. The capacity 𝑐(𝑆, 𝑇) of an s-t cut is
the sum of the capacities of the edges in its cut-set.

Nodes to the left of the dashed line are in S, the rest in T.

4

6

7

9

10

1

2

5

8 t

𝐿 𝑅

1

1

1

1

𝑐(𝑆, 𝑇)	= 4

3s

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

474Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Cuts and Flows in directed graphs G = (V, E)

A flow is a mapping of edges to flows 𝑓: 𝐸 → ℝ7
s.t. that flows obey their capacities 𝑓56 ≤ 𝑐56 and
conservation laws. The value |𝑓|	of a flow is the
amount moved from 𝑆 to 𝑇 through the network.

Each edge (𝑢, 𝑣) has a capacity 𝑐56 = 1 which is the max amount of flow that can pass through it.

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

An s-t cut 𝐶 = (𝑆, 𝑇) is a partition of 𝑉 s.t. 𝑠 ∈ 𝑆
and 𝑡 ∈ 𝑇. The cut-set 𝑋8 of a cut 𝐶 is the set of
edges that connect the source part of the cut to
the sink part. The capacity 𝑐(𝑆, 𝑇) of an s-t cut is
the sum of the capacities of the edges in its cut-set.

3

4

6

7

9

10

1

2

5

8s t

𝐿 𝑅

𝑐(𝑆, 𝑇)	= 4

|𝑓|= 4

MAX-FLOW MIN-CUT THEOREM.
The maximum value of an s-t flow is equal to the minimum capacity over all s-t cuts.

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

475Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Proof Kőnig-Egeváry: outline

3

4

6

7

9

10

1

2

5

8s t

Proof outline:
Consider the flow graph to the left with capacities
chosen to avoid a cut between 𝐿 and 𝑅. We will show:
1. every integral flow ⇔ some matching
2. every (finite capacity) cut ⇔ some VC
3. Then we know that max matching = min VC,

from the max-flow min-cut theorem

∞1 1
Notice the now infinite capacities in the middle:

𝐿 𝑅

https://northeastern-datalab.github.io/cs7240/

476Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Proof Kőnig-Egeváry 1: matching = flow

3

4

6

7

9

10

1

2

5

8s t

∞1 1
1. A matching of size 𝑥 corresponds to an
integral flow of same value.

𝐿 𝑅

#VC = 5

https://northeastern-datalab.github.io/cs7240/

477Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Proof Kőnig-Egeváry 1: matching = flow

3

4

6

7

9

10

1

2

5

8s t

∞1 1
1. A matching of size 𝑥 corresponds to an
integral flow of same value.

𝐿 𝑅

https://northeastern-datalab.github.io/cs7240/

478Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Proof Kőnig-Egeváry 1: matching = flow

3

4

6

7

9

10

1

2

5

8s t

∞1 1
1. A matching of size 𝑥 corresponds to an
integral flow of same value.

𝐿 𝑅

https://northeastern-datalab.github.io/cs7240/

479Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Proof Kőnig-Egeváry 2: VC = cut

∞1 1

3

4

6

7

9

10

1

2

5

8s t

𝐿 𝑅
1. A matching of size 𝑥 corresponds to an
integral flow of same value.

2. Any VC of size 𝑥 defines a cut of same capacity.

Then define: 𝑆 ≔ 𝑠 	⋃ 𝐿 − 𝐶 𝐿 	⋃	 𝐶(𝑅)
𝑇 ≔ 𝑡 	⋃ 𝑅 − 𝐶 𝑅 	⋃	 𝐶(𝐿)

Let 𝐶 be the VC, 𝐶 𝐿 = 𝐶 ∩ 𝐿, 𝐶 𝑅 = 𝐶 ∩ 𝑅.

#VC = 5

https://northeastern-datalab.github.io/cs7240/

480Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Proof Kőnig-Egeváry 2: VC = cut

1. A matching of size 𝑥 corresponds to an
integral flow of same value.

∞1 1

2. Any VC of size 𝑥 defines a cut of same capacity.

3

4

6

7

9

10

1

2

5

8s t Then define:

𝐿 𝑅

𝑆 ≔ 𝑠 	⋃ 𝐿 − 𝐶 𝐿 	⋃	 𝐶(𝑅)
𝑇 ≔ 𝑡 	⋃ 𝑅 − 𝐶 𝑅 	⋃	 𝐶(𝐿)

Let 𝐶 be the VC, 𝐶 𝐿 = 𝐶 ∩ 𝐿, 𝐶 𝑅 = 𝐶 ∩ 𝑅.

#VC = 𝑐(𝑆, 𝑇)	= 5

Nodes to the left of the dashed
line are in S, the rest in T

This line is not in the cut-set
because it goes from T to S!

https://northeastern-datalab.github.io/cs7240/

481Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Proof Kőnig-Egeváry 2: VC = cut

∞1 1

3

4

6

7

9

10

1

2

5

8s t

𝐿 𝑅
1. A matching of size 𝑥 corresponds to an
integral flow of same value.

2. Any VC of size 𝑥 defines a cut of same capacity.

Then define: 𝑆 ≔ 𝑠 	⋃ 𝐿 − 𝐶 𝐿 	⋃	 𝐶(𝑅)
𝑇 ≔ 𝑡 	⋃ 𝑅 − 𝐶 𝑅 	⋃	 𝐶(𝐿)

Let 𝐶 be the VC, 𝐶 𝐿 = 𝐶 ∩ 𝐿, 𝐶 𝑅 = 𝐶 ∩ 𝑅.

Nodes to the left of the dashed
line are in S, the rest in T

#VC = 𝑐(𝑆, 𝑇)	= 5This line is not in the cut-set
because it goes from T to S!

https://northeastern-datalab.github.io/cs7240/

482Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Proof Kőnig-Egeváry 2: VC = cut

∞1 1

3

4

6

7

9

10

1

2

5

8s t

𝐿 𝑅
1. A matching of size 𝑥 corresponds to an
integral flow of same value.

2. Any VC of size 𝑥 defines a cut of same capacity.

Then define: 𝑆 ≔ 𝑠 	⋃ 𝐿 − 𝐶 𝐿 	⋃	 𝐶(𝑅)
𝑇 ≔ 𝑡 	⋃ 𝑅 − 𝐶 𝑅 	⋃	 𝐶(𝐿)

Let 𝐶 be the VC, 𝐶 𝐿 = 𝐶 ∩ 𝐿, 𝐶 𝑅 = 𝐶 ∩ 𝑅.

#VC = 𝑐(𝑆, 𝑇)	= 4

Nodes to the left of the dashed
line are in S, the rest in T

https://northeastern-datalab.github.io/cs7240/

483Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Proof Kőnig-Egeváry 2: VC = cut

∞1 1

2. Any VC of size 𝑥 defines a cut of same capacity.

3

4

6

7

9

10

1

2

5

8s t Then define:

𝐿 𝑅

𝑆 ≔ 𝑠 	⋃ 𝐿 − 𝐶 𝐿 	⋃	 𝐶(𝑅)
𝑇 ≔ 𝑡 	⋃ 𝑅 − 𝐶 𝑅 	⋃	 𝐶(𝐿)

Let 𝐶 be the VC, 𝐶 𝐿 = 𝐶 ∩ 𝐿, 𝐶 𝑅 = 𝐶 ∩ 𝑅.

1. A matching of size 𝑥 corresponds to an
integral flow of same value.

#VC = 𝑐(𝑆, 𝑇)	= 4

https://northeastern-datalab.github.io/cs7240/

484Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Proof Kőnig-Egeváry 3: max-flow = min-cut
 ⇒ max matching = min VC

∞1 1

2. Any VC of size 𝑥 defines a cut of same capacity.

3

4

6

7

9

10

1

2

5

8s t Then define:

𝐿 𝑅

𝑆 ≔ 𝑠 	⋃ 𝐿 − 𝐶 𝐿 	⋃	 𝐶(𝑅)
𝑇 ≔ 𝑡 	⋃ 𝑅 − 𝐶 𝑅 	⋃	 𝐶(𝐿)

Let 𝐶 be the VC, 𝐶 𝐿 = 𝐶 ∩ 𝐿, 𝐶 𝑅 = 𝐶 ∩ 𝑅.

1. A matching of size 𝑥 corresponds to an
integral flow of same value.

3. Since max flow = min cut, therefore also
 max matching = min VC

#VC = 𝑐(𝑆, 𝑇)	= 4
#matching = |𝑓|	= 4

https://northeastern-datalab.github.io/cs7240/

