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Pre-class conversations

e Last class summary

e Project: | hope Feedback was usefull
— Approach me with questions, or schedule office hours
— Latex template, missing line numbers on first page

e Scribes: Feedback yet to come

e Today:
— Why cycles change everything
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Acyclic graphs: @ D [ D y D Berge (a-acyclic graphs are D of others)

Triangle Beta triangle Gamma triangle Berge cycle
alpha cyclic acyclic acyclic acyclic
beta cyclic cyclic acyclic acyclic
gamma cyclic cyclic cyclic acyclic
Berge cyclic cyclic cyclic cyclic
Define a hypergraph as A hypergraph H is gamma acyclic if if it is beta acyclic and we
a set of nonempty sets. cannot find x,y, z s.t. {{x, ¥}, {y, z}, {x, y, 2}} € K [{x, y, z}],

the induced subhypergraph on the set {x, y, z}.

JH; is a subhypergraph (subset)
Of}[z |f,7'[1 C }[2.

A hypergraph H is Berge acyclic if the incidence X e
A hypergraph H is beta acyclic if graph {{x, e} | e € 7 and x € e} is acyclic. Y f
all its subhypergraphs are alpha acyclic.

Z

For definitions see: Brault-Baron. "Hypergraph Acyclicity Revisited". ACM Computing Surveys 2016. https://doi.org/10.1145/2983573
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"beta-triangle" is alpha-acyclic, but not its dual

H =1RXy),S¥ 2),Tx,z),W,y, 2)}

Join tree
W(x,y,z)
Yz
R(x,y) | |S(y,z) | |T(x,2)

DH) ={x(T,R,W),y(R,S,W),z(S, T, W) }

No join tree y(R,S, W)

(W)

m

®

2(8, T )W)

Gaifman graph of D(H)
(w/ attribute-connected
spawvivg tree)
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Outline: T3-2: Cyclic conjunctive queries

« T3-2: Cyclic conjunctive queries

Wolfgang Gatterbauer. Principles of scalable data management: 262
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Why cyclic queries (other than social networks)

Likes(person, drink)
Frequents (person, bar)
Serves (bar, drink, cost)

2. Specify or choose a Query Supported grammar

104 Bars: Persons who frequent some bar that serves some drink they like. H

Source: http://demo.queryvis.com
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Why cyclic queries (other than social networks)

Likes(person, drink)
Frequents (person, bar)
Serves (bar, drink, cost)

2. Specify or choose a Query Supported grammar

104 Bars: Persons who frequent some bar that serves some drink they like. [V

Serves

bar
bar
person person
drink
person

Source: http://demo.queryvis.com
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Why cyclic queries (other than social networks)

Likes(person, drink)

Frequents (person, bar)
Serves (bar, drink, cost)

2. Specify or choose a Query Supported grammar
104 Bars: Persons who frequent some bar that serves some drink they like. [T
SELECT Fl.person
FROM Frequents F1
WHERE exists
(SELECT *
FROM Serves S2
WHERE S2.bar = Fl.bar
AND exists
(SELECT *
FROM Likes L3
WHERE L3.person = Fl.person
AND S2.drink = L3.drink))
Source: http://demo.queryvis.com
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Joins in databases: one-at-a-time

How can we efficiently process multi-way joins with cycles?

Th ible pl ")
Q(x,y,z) - R(x,y), S(y,z), T(X,Z). : Eebz)cgjsbque plans déj
el LR
e (TXR)XS |
T(x,z) @ZY
Xyz
X / T(xz)

S(v2) N
® ®

R(x,y) « +there is o full semijoin reducer
* intermediate result size bigger than output

There is vo Join treel You can'+ fulfill

the running intersection property.. | |
Can we do better for cyclic queries? ©
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Outline: T3-2: Cyclic conjunctive queries

» [3-1: Acyclic conjunctive queries
» 13-2: Cyclic conjunctive queries
— 2SAT (a detour)
— Tree decompositions
— Hypertrees decompositions
— Duality in Linear programming (a not so quick primer)
— AGM bound (maximal result size for full CQs) and
Worst-case optimal joins for the triangle query
— Worst-case optimal joins & the 4-cycle
— Optimal joins & the 4-cycle

Wolfgang Gatterbauer. Principles of scalable data management: 270
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2SAT P = (X\/y)/\(—|y\/Z)/\(—|X\/—IZ)/\(Z\/y)

e Instance: A 2-CNF formula ¢
e Problem: To decide if ¢ is satisfiable

« Theorem: 2SAT is polynomial-time decidable.

— Proof: We’ll show how to solve this problem efficiently using
in graphs...

e Background: Given a graph G=(V,E) and two vertices s,teV, finding if
there is a fromstotin Gis linear-time decidable. Use some
search algorithm (DFS/BFS).
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2SAT: Graph Construction g = (xvy)A(—yvz)A(=xv—z)A(zvy)

e Vertex for each variable and a negation of a variable

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 272
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2SAT: Graph Construction g = (xvy)A(—yvz)A(=xv—z)A(zvy)

e Vertex for each variable and a negation of a variable

e Edge (—x—v) iff there exists a clause equivalent to (x\vy)
- Recall (xvvy) same as (—x=v) and (—y=x), thus also (—y—>x)
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2SAT: Graph Construction g = (xvy)A(—yvz)A(=xv—z)A(zvy)

e Vertex for each variable and a negation of a variable

e Edge iff there exists a clause equivalent to
— Recall same as and , thus also

e Claim: a 2-CNF formula ¢ is unsatisfiable
iff there exists a variable x, such that:

— there is a path from x to —x in the graph, and
— there is a path from —x to x in the graph
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2SAT: Graph Construction g = (xvy)A(—yvz)A(=xv—z)A(zvy)

e Vertex for each variable and a negation of a variable

e Edge iff there exists a clause equivalent to
— Recall same as and , thus also

e Claim: a 2-CNF formula ¢ is unsatisfiable
iff there exists a variable x, such that:

— there is a path from x to —x in the graph, and
— there is a path from —x to x in the graph

5 O~

KOV 2 wot evough,
T~ needs both directions!
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Correctness (1) O = (XVY)A(=yVZ)A(=xv—z)A(zVvY)

e Suppose there are paths x..—x and —x..x for some variable x, but
there’s also a satisfying assighment
- If
D—> . —@

— Similarly for

recall, needs +o hold in both directions!
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Correctness (2) O = (XVY)A(=yVZ)A(=xv—z)A(zVvY)

e Suppose there are no variables with such paths.
e Construct an assignment as follows:

1. pick an unassigned literal o, with no
path from o to —a, and assign it T

2. assign T to all reachable vertices

3. assign F to their negations

4. Repeat until all vertices are assigned
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2SATISINP

We get the following PTIME algorithm for
— For each variable x find if there is a path from x to —x and vice-versa.
— Reject if any of these tests succeeded.
— Accept otherwise.

— . B
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Outline: T3-2: Cyclic conjunctive queries

— Tree decompositions

Wolfgang Gatterbauer. Principles of scalable data management: 279
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Join Processing: two approaches

— binary joins, consider the sizes of input relations as to reduce the intermediate sizes
— commercial DBMSs: series of pairwise joins, system R (Selinger), join size estimation

— acylicity: Yannakakis, GYO algorithm, join tree

— bounded "width": query width, hypertree width (hw), generalized hw (ghw). All go back
to notion of (work by Robertson & Seymour on graph minors)

AGM: fractional hw (fhw):

— consider both statistics on
relations and query structure
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7 RS

Tree decomposition 7.

In graph theory, a tree decomposition is a mapping Dynamic programming [ edit]
of a graph into a tree that can be used to define the

' _ _ At the beginning of the 1970s, it was observed that a large class of
treewidth of the graph and speed up solving certain

combinatorial optimization problems defined on graphs could be

computational problems on the graph. efficiently solved by non-serial dynamic programming as long as the

Tree decompositions are also called junction trees, graph had a bounded dimension,[®! a parameter related to treewidth.

clique trees, or join trees. They play an important Later, several authors independently observed, at the end of the

role in problems like probabilistic inference, 1980s, 6] that many algorithmic problems that are NP-complete for

constraint satisfaction, query optimization, arbitrary graphs may be solved efficiently by dynamic programming for

[citation needed] gnd matrix decomposition. graphs of bounded treewidth, using the tree-decompositions of these
graphs.

The concept of tree decomposition was originally
introduced by Rudolf Halin (1976). Later it was
rediscovered by Neil Robertson and Paul
Seymour (1984) and has since been studied by
many other authors.[']

¢ Robertson, Neil; Seymour, Paul D. (1984), "Graph minors lll: Planar tree-width", Journal of
Combinatorial Theory, Series B, 36 (1): 49-64, doi:10.1016/0095-8956(84)90013-3 3.

Source: https://en.wikipedia.org/wiki/Tree_decomposition
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Very incomplete history of treewdith

The treewidth of a graph is an important graph complexity parameter that determines the
runtime of practical algorithms. Intuitively measures how close a graph is to being a tree.

Introduced in the context of Rediscovered in the context of

variable elimination orders by graph minors by Robertson &

Bertelé & Brioschi (1972) and Seymour (1984) and named

named "dimension" of a graph "tree-width"

| 1970 1975 1980 11985 1990 t:>
/L Diestel (2017) provides a detailed history of what happened
Rediscovered afterwards but seems +o be unaware of Bertelé & Brioschi
by Halin (1976) (1G72). Bodlaender (149%) attributes +he connection of
"dimension” with treewidth to Arvborg (14%5) who actually

never uses the word "treewidth” vor references R&S (19494 )...

Bertele, Brioschi. Nonserial Dynamic Programming, 1972 (definition 2.7.8). https://dl.acm.org/doi/10.5555/578817 , Halin. S-functions for graphs, Journal of Geometry, 1976.
https://doi.org/10.1007%2FBF01917434 , Robertson, Seymour. Graph minors Ill: Planar tree-width, Journal of Combinatorial Theory, 1984 https://doi.org/10.1016%2F0095-
8956%2884%2990013-3 , Diestel. Graph theory, 51" ed, 2017 (section 12). https://doi.org/10.1007/978-3-662-53622-3 , Bodlaender. A partial k-arboretum of graphs with bounded treewidth
(tutorial), Theoretical Computer Science, 1998. https://doi.org/10.1016/5S0304-3975(97)00228-4 , Arnborg. Efficient algorithms for combinatorial problems on graphs with bounded
decomposability -- a survey, BIT, 1985. https://dl.acm.org/doi/abs/10.5555/3765.3773
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Definition of an attribute-connected tree

BC

CD

DEFINITION: A tree is attribute-
connected if the subtree induced

by each attribute is connected

-G

Same as the running intersection property
from join trees (also knoww as junction tree)

Also called "conerence”

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Tree decomposition

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T Y

(2) : For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 285
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Tree decomposition example 1: a tree

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T Y

(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

tree decomposition

. — . ‘ ;
Che
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Tree decomposition example 1: a tree

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T Y

(2) : For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

‘\\\\\\\\\ l\rw
C—H (b

\ {a,b} TSN,

That's why treewidth defined as max cardinality - 1
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Tree decomposition example 2

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T Y

(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

tree decomposition

(C © ..

Example from: https://en.wikipedia.org/wiki/Tree _decomposition
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Tree decomposition example 2

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertexin T N

(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

Treewidth =2
Notice running intersection property

Example from: https://en.wikipedia.org/wiki/Tree _decomposition
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 289



https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Tree_decomposition

Tree decomposition example 3

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T

(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

LI
. tree decomposition
@ - [t
0'0
(&)

|
Example from: https://www.mi.fu-berlin.de/en/inf/groups/abi/teaching/lectures/lectures past/\WWS0910/V Discrete Mathematics for Bioinformatics P1/material/scripts/treedecomposition1.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Tree decomposition example 3

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T

(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

g = v&
()
o%o
(2]

Example from: https://www.mi.fu-berlin.de/en/inf/groups/abi/teaching/lectures/lectures past/\WWS0910/V Discrete Mathematics for Bioinformatics P1/material/scripts/treedecomposition1.pdf
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Tree decomposition example 4: a cycle

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T

(2) : For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

u tree decomposition
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Tree decomposition example 4: a cycle

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T

(2) : For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

® @

What about coherence?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 293
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Tree decomposition example 4: a cycle

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T

(2) : For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one
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Tree decomposition example 4: a cycle

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T

(2) : For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

(23—(34—as
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Tree decomposition example 4: a cycle

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T

(2) : For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

triangulation

Y
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Tree decomposition example 5: the triangle

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T

(2) : For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

tree decomposition

?
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Tree decomposition example 5: the triangle

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T

(2) : For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

LN FeF
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Tree decomposition example 5: the triangle

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T

(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

)

Wore generally, a ¥, (d-clique)
has a wminimal treewidth of d-
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Tree decomposition example 5: the triangle

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T

(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

Wore generally, a ¥, (d-clique)
has a wminimal treewidth of d-
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Tree decomposition example 6: a longer tree

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T

(2) : For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

tree decomposition

?
920 |
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Tree decomposition example 6: a longer tree

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T

(2) : For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

Tree decomposition Avother tree decomposition

o
= o o
o
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Tree decomposition example 6: a longer tree

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T

(2) : For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

Tree decomposition Live graph L(G) ?

@ * Nodes of L((G) are edges of (4

* Edges of L(GA) are drawn

@ between wodes that share
e e @ @ common endpoints in G
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Tree decomposition example 6: a longer tree

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T

(2) . For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

Tree decomposition Live graph L(G)

34 34
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Tree decomposition example 7

/\

/\/\
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Example by: Markus Krotzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory (S52016)/en
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Tree decomposition example 7

Example by: Markus Krotzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory (S52016)/en
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Tree decomposition example 7

7 L\
M————-N
~» tree decomposition of width 3

Example by: Markus Krotzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory (S52016)/en
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Tree decomposition example 7

D/ E \G

~> tree decomposition of width 2 = treewidth of the example graph

Example by: Markus Krotzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory (S52016)/en
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Tree decomposition example 8

Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
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Tree decomposition example 8

Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
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Tree decomposition example 8

A subtree communicates with the outside world
only via the root of the subtree.

Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
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Tree Decompositions (TDs) for CSPs Netice here each wede is a variable
with dowmain of size d (€.9. 3 colors

TD:

« If two variables are connected in the original
problem, they must appear together (along
with the constraint) in at least one supernode

« If a variable occurs in two supernodes in the TD,
it must appear in every supernode on the path

& that connects the two (coherence)
« The only constraints between the supernodes
. are that the variables take on the same values

Original C5-P3 | . across supernodes (like semi-join messages
Map-coloring of Australia  supernodes (sets of variables) from Yannakakis)

Translates intg O(wtv] where

1S size of constraints per
e Solving CSP on a tree with k variables and domain size m is O(km? /Vl .S > f cons nrs p

e TD algorithm: find all solutions within each supernode, which is { ‘@a?l@here tw is the treewidth (= one

less than size of largest supernode). Recall treewidth of tree is I, Thus complexity 2
e Then, use the tree-structured Yannakakis algorithm, treating the supernodes as new variables...

e Finding a tree decomposition of smallest treewidth is NP-complete, but good heuristic methods exist.

Figures: Fig 6.12 and 6.13 from Russell, Norvig. "Artificial intelligence: a modern approach". 3rd ed, 2010. https://dl.acm.org/doi/book/10.5555/1671238
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Alternative definition of Tree decomposition (TD)

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T Y

(2) : For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

ALTERNATIVE DEFINITION:

A of graph G(N, E) is a pair (T, y) where T(V, F) is a tree, and y is a
labeling function assigning to each vertex v € V a set of vertices y(v) € N, s.t. above
conditions (2) and (3) are satisfied.

Source of alternative definition: Gottlob, Leone, Scarcello. Hypertree decompositions: a survey. MFCS 2001. https://doi.org/10.1007/3-540-44683-4 5
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Small decompositions allow to "compress" the search space

{A}
P(A)
() (b) (c)
Figure 1: Example belief network, its triangulated primal graph

along ordering d = A,B,C,D, E, F, and the corresponding
bucket tree decomposition.

{A,B}
P(B|A)

{A,B,C} {A,B,E}
P(C|A) P(E|A)

eB.L, L} {B,E,F}
| P(DIB.C) | | F(FIBE) |

H@0-0) @

Figure from: Otten, Dechter. Bounding Search Space Size via (Hyper)tree Decompositions. UAI 2008. https://arxiv.org/abs/1206.3284
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Explaining
Treewidth with
cops & robbers



Pursuit-evasion games

(sometimes called " ") is a family of
problems in which one group (cops) attempts to track down
members of another group (robbers) in some structured
environment, usually graphs.

e Related to games and games

e Next: A variations of "Cops and Robber" can be used to describe the
of a graph

For more details see: https://en.wikipedia.org/wiki/Pursuit%E2%80%93evasion, https://en.wikipedia.org/wiki/Pebble game,
https://en.wikipedia.org/wiki/Ehrenfeucht%E2%80%93Fra%C3%AFss%C3%A9 game, https://en.wikipedia.org/wiki/Cop number#Special classes of graphs
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Treewidth with Cops and robber

k cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:

(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.

(3) Then the cop lands. com also take multiple steps
THEOREM [Seymour & Thomas (1993)] o o
You have a winning strategy with k cops iff ® © ® ©
the tree-width of the graph is at most k-1. N’ e

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027
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Treewidth with Cops and robber

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027
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Treewidth with Cops and robber

(1) A cop flies off the graph in a helicopter and announces a new landing vertex.

O—@0—00—8& 60600

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027
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Treewidth with Cops and robber

(2) While the cop flies, the robber can move quickly along the edges and escape.

<>
c

O—0—0—0—8&—6—0

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027
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Treewidth with Cops and robber

(3) Then the cop lands.

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 322



https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

Treewidth with Cops and robber

(1) A cop flies off the graph in a helicopter and announces a new landing vertex.

O—0—0—0—8&—6—0

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027
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Treewidth with Cops and robber

(2) While the cop flies, the robber can move quickly along the edges and escape.
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Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027
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Treewidth with Cops and robber

(3) Then the cop lands.

VYou can never cateh the robber with owly ove cop @

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027
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Treewidth with Cops and robber

k cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:

(1) A cop flies off the graph in a helicopter and announces a new landing vertex.

(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

What is the best move with a 2ud cop
< ?

“—
® ©
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Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 326



https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

Treewidth with Cops and robber

k cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:

(1) A cop flies off the graph in a helicopter and announces a new landing vertex.

(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

Owie cop moves in on the robber, while others block escape.
e 8 Need to trap the robber in some "leaf”

“—
® ©

\ 4

—0—00—8@ TS0

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027
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Treewidth with Cops and robber

k cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:

(1) A cop flies off the graph in a helicopter and announces a new landing vertex.

(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.
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Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027
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Treewidth with Cops and robber

k cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:

(1) A cop flies off the graph in a helicopter and announces a new landing vertex.

(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.
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Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027
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Treewidth with Cops and robber

k cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:

(1) A cop flies off the graph in a helicopter and announces a new landing vertex.

(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027
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Treewidth with Cops and robber

k cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:

(1) A cop flies off the graph in a helicopter and announces a new landing vertex.

(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027
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Treewidth with Cops and robber

k cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:

(1) A cop flies off the graph in a helicopter and announces a new landing vertex.

(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

b
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Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027
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Treewidth with Cops and robber

k cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:

(1) A cop flies off the graph in a helicopter and announces a new landing vertex.

(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

b
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Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027
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Treewidth with Cops and robber

k cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:

(1) A cop flies off the graph in a helicopter and announces a new landing vertex.

(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

@ oo
=z — = —3—@0—06—6—@
got him!

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027
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Robbers cannot escape on trees with 2 cops
Co
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Robbers cannot escape on trees with 2 cops
Co

® ® «,
Tree =’ =’ Tree decomposition
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Robbers cannot escape on trees with 2 cops
<>

e
® ©

Tree =’ Tree decomposition

Start at the root and @
move in on the robber
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Robbers cannot escape on trees with 2 cops

Tree Tree decomposition

‘7.? Start at the root and

0,1
" move in on the robber

OEND &
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Robbers cannot escape on trees with 2 cops

Tree Tree decomposition

Start at the root and @
move in on the robber
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Robbers cannot escape on trees with 2 cops

Tree Tree decomposition

Start at the root and @
move in on the robber

(L (2 O &

b
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got him!
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Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph with treewidth =2

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree _decomposition
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 341
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Robbers cannot hide from k=3 cops on graph with treewidth=2

Tree decomposition

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree _decomposition
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 342
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Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph with treewidth =2 Tree decomposition

Pick some root

N

B F

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree _decomposition
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 343
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Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph with treewidth =2 Tree decomposition

ot Will nee co i
Vou will need 3 cops Pick some root

N

Aud vow move .
in on the robber [ B =

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree _decomposition
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 344
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Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph with treewidth =2 Tree decomposition
VYou will nveed 3 cops

And now wmove
i on the robber

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree _decomposition
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 345
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Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph with treewidth =2 Tree decomposition
VYou will nveed 3 cops

And now wmove
i on the robber

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree _decomposition
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 346
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Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph with treewidth =2 Tree decomposition
VYou will nveed 3 cops

@B And now move
in on the robber

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree _decomposition
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 347
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Robbers cannot hide from k=7 cops on 4-cliques?

4-clique
D
How many cops do we need ? o0

\ 4

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 348
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Robbers cannot hide from k=3 cops on graph with treewidth=2

4-clique
Let's +ry with 3 cops as before

S “—
® © ® ©
-’ -’

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 349
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Robbers cannot hide from k=3 cops on graph with treewidth=2

4-clique Tree decomposition
We need 4 cops! ~

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 350
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Robbers cannot hide from k=3 cops on graph with treewidth=2

4-clique Tree decomposition
We need 4 cops ~

A B
CD

We need treewidth + 1 cops!

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 351
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Topic 3: Efficient query evaluation
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Pre-class conversations

e Last class summary
e Project: (P3: today FRI, 3/31)
e Scribes: half through
e Guest speaker on deep theory of set covering this THU 10am
e Today:
— Reducing cycles to trees (tree decompositions)

— Reducing cycles in CQs to trees based on the domain or based on atoms
(treewidth, query width hypertree decompositions)

— Linear Programming Duality

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 384
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Outline: T3-2: Cyclic conjunctive queries

— Hypertrees decompositions

Wolfgang Gatterbauer. Principles of scalable data management: 385
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Alpha-Acyclic Conjunctive Queries

e A for a hypergraph H=(V,E) is a labeled tree T =(N,F,A) such that:

— The nodes of T are formed by the hyperedges. In other words, A: N=E s.t. for each
hyperedge e € E of H, there exists n € N such that e = A(n)

— Foreach node u €V of H, the set{n € N | u € A(n)} induces a connected subtree of T.
(also called: )

Q :- R(XI IZ)I S( V4 )I T( IZI )I U(ZI IW)I W( IWIu)'
I U(z,p,w)
R [x

Z ) /\
T( Z, ) W( IWIu)
W[u w}

S R(X, /Z) S( ’ )

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Alpha-Acyclic Conjunctive Queries

e A

for a hypergraph H=(V,E) is a labeled tree T =(N,F,A) such that:

— The nodes of T are formed by the hyperedges. In other words, A: N=E s.t. for each

hyperedge e € E of H, there exists n € N such that e = A(n)

— Foreach node u €V of H, the set{n € N | u € A(n)} induces a connected subtree of T.

(also called: running intersection property)

U(z,p,w)

~

(x| [y | ) N

/ / U T(y,z,p)

S R(x,y,2) S(y,p)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Alpha-Acyclic Conjunctive Queries
e« A for a hypergraph H=(V,E) is a labeled tree T =(N,F,A) such that:

— The nodes of T are formed by the hyperedges. In other words, A: N=E s.t. for each
hyperedge e € E of H, there exists n € N such that e = A(n)

— Foreach node u €V of H, the set{n € N | u € A(n)} induces a connected subtree of T.
(also called: running intersection property)

//\ {lelw}
X

v | N

e / tv,z,p} {o,w,u}

{x,y,z} {y,p}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Alpha-Acyclic Conjunctive Queries
e« A for a hypergraph H=(V,E) is a labeled tree T =(N,F,A) such that:

— The nodes of T are formed by the hyperedges. In other words, A: N=E s.t. for each
hyperedge e € E of H, there exists n € N such that e = A(n)

— Foreach node u €V of H, the set{n € N | u € A(n)} induces a connected subtree of T.
(also called: running intersection property)

p {3,5,6}
[1 2 /3/% /\
/
4 57 6
{1,2,3} {2,5}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

390


https://northeastern-datalab.github.io/cs7240/

Cyclic Conjunctive Queries

For queries that are not acyclic, what bounds can we give
on the data complexity of query evaluation, considering
various structural properties of the query?

Hypergraph

We will see:

is still a key structural criterion
for efficiency!

q - But
5 (because acyclic families of
hypergraphs may have unbounded treewidth: think of
5 3 a single relation of high arity ®)
- What will help is the
©.
0 - Reason: size of database is determined by number of

not

Example adopted from: Markus Krotzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database _Theory (S52016)/en
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 391
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Issues with standard Treewidth (TW) for CQs

Treewidth based on graphs.
TW of CQ is TW of its clioue graph (i.e. replace each hyperedge with a clique)

a clique is a graph where w@v@\/m
vertex is counected to every other vertex

Q(XIyIZIW) . R(XIyIZIW) .

Hypergraph Clique graph
? ?

Treewidth: 7

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 392
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Issues with standard Treewidth (TW) for CQs

Treewidth based on graphs.
TW of CQ is TW of its clioue graph (i.e. replace each hyperedge with a clique)

a clique is a graph where w@v@\mw
vertex is counected to every other vertex

Q(XIyIZIW) . R(XIyIZIW) .

Hypergraph Clique graph
4 )
X Yy
?
Z W
g /

Treewidth: 7

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 393
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Issues with standard Treewidth (TW) for CQs

Treewidth based on graphs.
TW of CQ is TW of its (i.e. replace each hyperedge with a clique)

a clique is a graph where where every
vertex is counected to every other vertex

Q(XIyIZIW) . R(XIyIZIW) .

Hypergraph Clique graph
4 N

X Y >‘< Y

Z W Z \lv
\_ J

Treewidth: 7

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 394
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Issues with standard Treewidth (TW) for CQs

Treewidth based on graphs.
TW of CQ is TW of its clioue graph (i.e. replace each hyperedge with a clique)

This is actually the best tree decomposition: Nodes
of a clique need to appear iv the same supervode

Q(XIyIZIW) . R(XIyIZIW) .

Hypertree Clique graph

g X yj X y Resulting complexity bound O (m#)!
‘ ‘ That's a pretty bad bound. wWe know
Z W Z W we can evaluate this query in O(n).

Treewidth: 3

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 395
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ssues with standard Treewidth (TW) for CQs

Q,(x,y,2) - R(x,y), S(y,2), T(x,2). We also know that +hese +wo

. dueries have different maximal
QZ(XIyIZ) o R(X,y), S(ylz)l T(XIZ)I W(X,y,Z). OM"'P(A“' Si'z’a@SI O(V]'\E) VS, O(VI).

But TW cannot distinguish them @

H, (Triangle) Clique graph H, (Beta-Triangle)

e

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 396
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ssues with standard Treewidth (TW) for CQs

Q4(x,y,2) :- R(x,y), S(y,2), T(x,z). We also know that +hese +wo

. dueries have different maximal
QZ(XIyIZ) o R(le)l S(ylz)l T(XIZ)I W(X,y,Z). OM"'P(A“' SiZa@S: O(V]'\E) VS, O(VI).

But TW cannot distinguish them @

H, (Triangle) Clique graph H, (Beta-Triangle)
v S e
(x/ \z) ¥ z

T Sawme clidque graph. Therefore:
— same TW 2.
— same complexity bound O(m?3)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 397



https://northeastern-datalab.github.io/cs7240/

"Query decomposition” [Chekuri, Rajaraman'97]

QUERY DECOMPOSITION
Tree decomposition with coherence conditions on both:
1) variables and 2) atoms.

in a supernode

A query decomposition of Q is a tree T =([,F), with a set X (i) of subgoals and
arguments associated with each vertex i€/, such that the following conditions are
satisfied:

e For each subgoal s of Q, there is an i €7 such that s € X (7).
e For each subgoal s of Q, the set {ie/ | s€ X (i)} induces a (connected) subtree

of T.

e For each argument 4 of Q, the set

{iel |AeX(i)}U{iel | A appears in a subgoal s such that s € X(i)}

induces a (connected) subtree of 7.
The width of the query decomposition is max,;c; [X(¢Z)|. The query width of Q is
the minimum width over all its query decompositions.

Chekuri, Rajaraman. "Conjunctive query containment revisited", TCS 2000. https://doi.org/10.1016/50304-3975(99)00220-0 (ICDT'97 conference paper, ICDT'16 test-of-time award)
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 398
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Important Observation 1

"Query decomposition” as defined by

Some decomposition [Chekuri, Rajaraman'd7] is too strict
| about atoms needivg to be conmected

R(1,2 )\'S( 45.3) and atoms not allowing projections
~—
T(1,4,6), U(2,5,6)

P s decomposition would vot be possible
( R(1,2,3)YA(6,7) for oriqiv‘r‘al"“qmem decomposition”
becaunse "3" is not cowmected.

B(1,7) ‘ C(2,7) But what if you project "3" away onto
R'(1,2) = m1,R(1,2,3)

N, -

-

Adopted from an example by Georg Gottlob
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 399
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Im portant Observation 1 Here the reuse of R(1,2,3) is harmless:

we could have added an atom R(A,2,.)

Some decomposition here without changing the duery.
: 2 all
R(1,2,3)\, 5(4.5,3) Ideq allow query q+oms to be reunsed
partially (with projections) as long as
~
the full atom appears somewhere else.
T(1,4,6), U(2,5,6)

T, R T
¢ [R'(1,2, ))A(6,7) l

This leads to "geveralized hypertree

decompositions" which define coherewnce ovly
based on variables, wot atoms. WMore liberal
than "query decomposi+tion”, and thus can
give tighter bounds.

B(1,7) | C(2,7)

- ~ - ~

Adopted from an example by Georg Gottlob
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 400
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Important Observation 2 | |
Owne can avoid NP-hardness of finding a

minimal size decomposition by adding an
additional
R(1,2,3,4,5) This leads to "

S(6,2,4,7,6), T(3,5,8,11,12)

=

R(,2,3,_,_), U(7,8,9) \R@)\/({Az)

A(2,9) B(3,9) C(4,0), D(6,_,0) E(5,0)
F(4,6,13) G(4,6,14)
Adopted from an example by Georg Gottlob
401
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Important Observation 2

R(1,2,3,4,5)

Owne can avoid NP-hardness of finding a
minimal size decomposition by adding an
additional syntactic "descendant condition”,
This leads to "hypertree decompositions”

S(6,2,4,7,6), T(3,5,8,11,12)

Each variable that

disappears at some

- P = \ node, does ot reappear
R(,,2,3,_,_), U(7,8,9) ,/ |R(%,2,2,4,5),V(6,0,12) \ in the subtree rooted
/\ // / \ \ ot that vode
A(2,9) B(3,9) / C(4,0), D(6,_,0) E(5,0)

Adopted from an example by Georg Gottlob
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 402
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HYPERTREE DECOMPOSITIONS AND TRACTABLE QUERIES *

Georg Gottlob Nicola Leone

Inst. fiir Informationssysteme Inst. fiir Informationssysteme
Technische Universitat Wien  Technische Universitat Wien
A-1040 Vienna, Austria
leone@dbai.tuwien.ac.at

A-1040 Vienna, Austria
gottlob@dbai.tuwien.ac.at

Abstract

Several important decision problems on conjunctive queries
(CQs) are NP-complete in general but become tractable,
and actually highly parallelizable, if restricted to acyclic
or nearly acyclic queries. Examples are the evaluation of
Boolean CQs and query containment. These problems were
shown tractable for conjunctive queries of bounded treewid*h
[9], and of bounded degree of cyclicity {24, 23]. The so for
most general concept of nearly acyclic queries was the notion
of queries of bounded query-width introduced by Chekuri
and Rajaraman [9]. While CQs of bounded query-width are
tractable, 1t remained unclear whether such queries are e’-
ficiently recognizable. Chekuri and Rajaraman [9] stated
as an open problem whether for each constant k it can be
determined in polynomial time if a query has query width
< k. We give a negative answer by proving this problem NP-
complete (specifically, for k = 4). In order to circumvent this
difficulty, we introduce the new concept of hypertree decom-
position of a query and the corresponding notion of hyper-
tree width. We prove: (a) for each k, the class of queries with
query width bounded by k is properly contained in the class
of queries whose hypertree width is bounded by k; (b) un-
like query width, constant hypertree-width is efficiently rec-

ognizable; (c) Boolean queries of constant hypertrce-width
can pbe emciently evaluated.

Francesco Scarcello
ISI-CNR
Via P. Bucci 41/C
[-87030 Rende, Italy

scarcello@si.deis.unical.it

Definition 3.1 A hypertree degomposition of a conjunctive
query () is a hypertree (7', x, X) for Q which satisfies all the
following conditions:

1. for each atom A
such that var(

toms(Q), there exists p € vertices(T')
C x(p);

2. for each varidble Y € var(Q), the set {p € vertices(T)
s.t. Y € x{p)} induces a (connected) subtree of T';

3. for egch vertex p € vertices(T), x(p) C var(A(p));

4. for each vertex p € vertices(T'), var(A(p)) N x(Tp) C
x(p)-

A hypertree decornposition (T, x, A) of @ is a complete
decomposition of @ if, for each atom A € atoms(Q), there
exists p € wvertices(T) such that var(A) C x(p) and A €
Alp)-

The width of the hypertree decomposition (T, x,A) is
MATpevertices(T)|A(P)|- The hypertree width hw(Q) of Q is
the minimum width over all its hypertree decompositions.

Source: Gottlob, Leone, Scarcello. "Hypertree decompositions and tractable queries." PODS 1999. https://doi.org/10.1145/303976.303979 (Gems of PODS 2016)
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Hypertree decomposition: full example

Hypergraph Tree decomposition

1,2,3,6
1,3,4,6,0
e

5 3,4,6,9,0

D
7 8 4,6,8,9,0

C G
. 4,5,6,7,8,0

O V4 7Y 2>

How to check that this is 9.
a valid tree decomposition? =

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 404
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Hypertree decomposition: full example

Hypergraph Tree decomposition
1 2)
1,2,3,6 TREE DECOMPOSITION (ALTERNATIVE)
3
: For
1,3,4,6,0
< D every hyperedge h of H,
o 346,90 there is a ve.rtex in. T that
contains all its variables
7 8 4,6,8,9,0
0 ) | ;7;810

wWhat is i+s width 7P

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 405
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Hypertree decomposition: full example s g o
vl <Y

Hypergraph Tree decomposition o
(width 5) RIRE
1) A
1,2,3,6 TREE DECOMPOSITION (ALTERNATIVE)
: For
1,3,4,6,0
< B every hyperedge h of H,
34690 there is a vertex in T that
D — contains all its variables
7 8 4,6,8,9,0 2. Coherence
C G
H L
0 ,5,6,7,80| guarantees evaluation in O(m®)
where w is the domain size or O(n>)
tree width = 5: where v is size of largest relation

= size of largest supervode - 1

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 406



https://northeastern-datalab.github.io/cs7240/

Hypertree decomposition: full example

Clique graph of Hypergraph Tree decomposition
(also primal or Gaifman graph) (width 5)
1 2
\ \ 1,2,3,6 TREE DECOMPOSITION
/3 13.4.6,0 1. Edge coverag.e: For ever.y edge
e of G, there is a vertex in

T that contains both ends of e

4 6
S~ \ 3.4.6,9.0

7 —é/ 4,6,8,9,0 2. Coherence
\/ 4,5,6,7,8,0| identical defivition, becaunse:

R * hyperedae = clidue in clique graph
* each clique needs to be contained
in one supervode of the TD

407

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Hypertree decomposition: full example

Hypergraph Tree decomposition Generalized hypertree decomp.
(width 5) (width 2)
1 A
1,2,3,6 A{1,2}, F{2,3,6}
1,3,4,6,0 C{1,4,0}, F{2,3,6}
| @
5 3,4,6,9,0 B{4,5,6}, H{3,9,0}
D
7 8 4,6,3,9,0 C{+,4,0}, £{6,8,9}
C G
H
O 41516I71810 B{41516}I G{71810}

Is this a valid "geveralized
hypertree decomposition”; ’?
Where is D7 "

Example adopted from: Markus Krotzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory (S52016)/en
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 408
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Hypertree decomposition: full example

Hypergraph Tree decomposition Generalized hypertree decomp.
(width 5) (width 2)
1 A
GENERALIZED HT DECOMP. A{1,2}, F{2,3,6}
: For
3 every hyperedge h of H, C{1,4,0}, F2,3,6}
< there is a vertex in T that
= contains all its variables 545,63, 113,90}
5 3 2. Coherence C{2,4,0}, £{6,8,9)
C G
H
O B{ | }) G{7;8;O}

Basically identical to tree decomposition.
Just the width measure is different!

Example adopted from: Markus Krotzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory (S52016)/en
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 409
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Hypertree decomposition: full example s s o v

decomposition), then Yawmakakis O(r)

Hypergraph Tree decomposition Generalized hypertree decomp.
(width 5) (width 2)
GENERALIZED HT DECOMP. A{1,2}, F{2,3,6}
: For

every hyperedge h of H, €{1,4,0}, H2,3,6}

there is a vertex in T that
contains all its variables

2. Coherence C{1,4,0}, £{6,8,9}

B{4,5,6}, H{3,9,0}

5{4,5,6}, G{7/,8,0}

™~/

Basically identical to tree decomposition. B and G together contain
Just the width measure is different! all variables from D

Example adopted from: Markus Krotzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory (S52016)/en
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 410
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Hypertree decomposition: full example

Hypergraph Generalized hypertree decomp.
(width 2)
1 A
GENERALIZED HT DECOMP. A{1,2}, F{2,3,6}
: For
2 3 every hyperedge h of H, C11,4,0}, F2,3,6}
< there is a vertex in T that
D5 contains all its variables 514,56}, F{3,9,0}
5 3 2. Coherence C{2,4,0}, £{6,8,9)
C G
H
= 3{4,5,6}, G{7,8,0}

Ts +his also a valid
"Wypertree decomposition” =

Example adopted from: Markus Krotzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory (S52016)/en
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 411
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Hypertree decomposition: full example

Hypergraph Generalized hypertree decomp.
(width 2)
1 A
HT DECOMP. A{1,2}, F{2,3,6}
: For
q 3 every hyperedge h of H, C{1,4,0}, F{2,3,6}
there is a vertex in T that
D5 contains all its variables 5{4,5,6}, H{3,9,0}
5 3 2. Coherence C{2,4,0}, £{6,8,9)
C G ¥ 3. Descendant condition:
0 v Variables projected away 8{4,5,6}, G{7,8,0}
from a hyperedge can
A condition to limit the search not reappear in the Ts +his also a valid
space of valid HD decompositions subtree below "nypertree decomposition” =

Example adopted from: Markus Krotzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory (S52016)/en
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 412
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Hypertree decomposition: full example

Hypergraph Generalized hypertree decomp.
(width 2)
1 A
HT DECOMP. A{1,2}, F{2,3,6}
: For
2 3 every hyperedge h of H, C{1,4,0}, F2,3,6}
< there is a vertex in T that
D5 contains all its variables 5{4,5,6}, H3,9,0}
5 3 2. Coherence C/@AO}, £{6,8,9)
C G TR
¥ 3. Descendant condition: /
0 v Variables projected away //B{ﬁvS,G}, G{7,8,0}
from a hyperedge can - ~
L - . No: "5" got projected away,
A condition to limit the search not reappear in the
£ valid 1D d e <Ubtree below but reappears below. Also
SP@C@ oT Vall 600W\POS| lons n,\n ivl O‘H/]@I" direo_ﬁom

Example adopted from: Markus Krotzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory (S52016)/en
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 413
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Hypertree decomposition: full example

Hypergraph
1 HT DECOMP.
: For
2 every hyperedge h of H,
< there is a vertex in T that
> contains all its variables
7 8
3. Descendant condition:

Variables projected away
from a hyperedge can
not reappear in the
subtree below

Hypertree decomposition

{1,2}, ¢{1,4,0}, F{2,3,6}

{4,5,6}, D{5,7}, £{6,8,9},
{7,8,0}, H{3,9,0}

Example adopted from: Markus Krotzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database _Theory (S52016)/en

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Hypertree decomposition: full example

Hypergraph Hypertree decomposition

A A1.2) C{1.4.0} F{2,3,6)
B{4,5,6}, D{5,7}, £{6,8,9},
4|1 B G{7,8,0}, H{3,9,0}
5
D
7 8 what should be the "width"
- © . of this HTD, i.e. what is +he
0 complexity of materializing

this last supervode r)

Example adopted from: Markus Krotzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory (S52016)/en
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Hypertree decomposition: full example

Hypergraph Hypertree decomposition

A{1,2}, C{1,4,0}, F{2,3,6}

5{4,5,6}, D{5,7}, £{6,8,9},
B(4,5,6)mG(7,8,0)5<(3,9,0) 17.8.00. 1143.9.01

Notice that 3 relations alove "cover" all +he variables.
The Join can only be a subset of +hose tuples.

([(B(4,5,6) x G(7,8,0)) ™ H(3,9,0)]«—— O(n?)
xD(5,7)) XE(6,8,9)

n... maximal size of relations

Example adopted from: Markus Krotzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory (S52016)/en
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 416
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Hypertree decomposition: full example

Hypergraph Hypertree decomposition
(width 3)

C,F:{1,2,3,4,6,0}

BxGiH B,G,H:{3,4,5,6,7,8,9,0}

AN

With of HTD = maximal width of any super wode.
With of supervode = mivimal number of relations
to cover all variables. Here covered by BraGxH

Results in a modified database and modified
acyclic query. Thew perform Yanakakis: O (n3)

Example adopted from: Markus Krotzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory (S52016)/en
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 417
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Hypertree Decompositions: A Survey

Georg Gottlob!, Nicola Leone?, and Francesco Scarcello®

descendent condition
generalized. For instance, let us define the /\x@f generalized hypertree de-

composition by just dropping condition®l from the definition of hypertree de-
composition (Def. 11). Correspondingly, we can introduce the concept of gen-
eralized hypertree width ghw(H) of a hypergraph H. We know that all classes
of Boolean queries having bounded ghw can be answered in polynomial time.
But we currently do not know whether these classes of queries are polynomially
recognizable. This recognition problem is related to the mysterious hypergraph

Source: Gottlob, Leone, Scarcello. "Hypertree decompositions: a survey." MFCS 2001. https://dl.acm.org/doi/10.5555/645730.668191
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 418
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Hypertree width and related hypergraph invariants

Isolde Adler?, Georg Gottlob?, Martin Grohe®

European Journal of Combinatorics 28 (2007) 2167-2181

ghw(H) <hw(H) <tw(H) + 1.
‘hw(H) <3-ghw(H) + 1

Source: Adler, Gottlob, Grohe. "Hypertree width and related hypergraph invariants." European Journal of Combinatorics 2007 (EuroComp 2005). https://doi.org/10.1016/].ejc.2007.04.013
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Generalized Hypertree Decompositions:
NP-Hardness and Tractable Variants

Georg Gottlob Zoltan Miklés Thomas Schwentick
University of Oxford University of Oxford and Universitat Dortmund
Computing Laboratory Technische Universitat Wien Lehrstuhl Informatik |
georg.gottlob@ zoltan.miklos@ thomas.schwentick@
comlab.ox.ac.uk udo.edu

comlab.ox.ac.uk

ABSTRACT

The generalized hypertree width GHW (H) of a hypergraph
H is a measure of its cyclicity. Classes of conjunctive queries
or constraint satisfaction problems whose associated hyper-
graphs have bounded GHW are known to be solvable in
polynomial time. However, it has been an open problem
for several years if for a fixed constant k£ and input hyper-
graph H it can be determined in polynomial time whether
GHW (H) < k. Here, this problem is settled by proving
that even for kK = 3 the problem is already NP-hard. On

Source: Gottlob, Miklos, Schwentick. "Generalized Hypertree decompositions: NP-hardness and tractable variants.", PODS 2007. https://doi.org/10.1145/1265530.1265533
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Hypertree Decompositions and friends

&‘:\Zrkyu‘:ie;‘;gi’:;';:"l'ggﬂ NP-complete to find the optimum

towards tighter bounds
(below is better)

v

Hypertree Decomposition (HD) . |
PTIME to find th t
[Gottlob, Leone, Scarcello 1999] O Tina the optimum

towards tighter bounds
(below is better)

v

Generalized Hypertree Decomposition (GHD)

NP-complete to find the opti
[Gottlob, Leone, Scarcello 2001] complete to find the optimum

Chekuri, Rajaraman. "Conjunctive query containment revisited", TCS 2000. https://doi.org/10.1016/S0304-3975(99)00220-0 (ICDT'97 conference paper, ICDT'16 test-of-time award)

Gottlob, Leone, Scarcello. "Hypertree decompositions and tractable queries." PODS 1999. https://doi.org/10.1145/303976.303979 (Gems of PODS 2016)
Gottlob, Leone, Scarcello. "Hypertree decompositions: a survey." MFCS 2001. https://dl.acm.org/doi/10.5555/645730.668191
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Hypertree Decomposition: an unfortunate naming

1. Generalized Hypertree Decomposition (GHD):

explores the whole search space of valid decompositions
(illustrated here with a non-convex search space )

2. Hypertree Decomposition (HD):

limits the search space in a way that makes it tractable
to find the optimal solution within that limited subspace
(illustrated here with a cS)

Better names would be:
1. Hypertree Decomposition (HD) instead of GHD
2. Restricted Hypertree Decomposition (RHD) instead of HD

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 422
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Outline: T3-2: Cyclic conjunctive queries

— Duality in Linear programming (a not so quick primer)

Wolfgang Gatterbauer. Principles of scalable data management: 443
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Topic Duality in Linear Programming (LP)

e Subtopics
— Connections between and in graphs
— Linear Programming (LP) an;/duality gaps

— LP relaxations of ILP problems (Integer Linear|Programming)
: \ ']
— Duality b/w and

/

wWhat is "duality"?

https://northeastern-datalab.github.io/cs7240/
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Duality

* Duality in linear programming: Intuitively, every Linear Program has a dual problem with the same optimal solution,
but the variables in the dual problem correspond to constraints in the primal problem and vice versa.

* But the notion of duality is more general:

DUALITY IN MATHEMATICS AND PHYSICS*

SIR MICHAEL F. ATTYAH

INTRODUCTORY REMARKS

Duality in mathematics is not a theorem, but a “principle”. It has a
simple origin, it is very powerful and useful, and has a long history going
back hundreds of years. Over time it has been adapted and modified
and so we can still use it in novel situations. It appears in many
subjects in mathematics (geometry, algebra, analysis) and in physics.
Fundamentally, duality gives two different points of view of looking at
the same object. There are many things that have two different points
of view and in principle they are all dualities.

https://fme.upc.edu/ca/arxius/butlleti-digital/riemann/071218 conferencia_atiyah-d article.pdf

The Princeton Companion to Mathematics

II.19 Duality

Duality is an important general theme that has manifes-
tations in almost every area of mathematics. Over and
over again, it turns out that one can associate with a
given mathematical object a related, “dual” object that
helps one to understand the properties of the object
one started with. Despite the importance of duality in
mathematics, there is no single definition that covers
all instances of the phenomenon. So let us look at a

https://www.jstor.org/stable/j.ctt7sd01.7

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Let's use graphs to explain duality in LP (Linear Programming)

problems: max number of disjoint subsets
: max number of subsets that are pairwise disjoint
- max : max number of vertices not sharing edges

— max independent edge set = : maximum number of edges that don't share any
nodes (every vertex can be in max one matching)

problems: min number of subsets to cover all elements
: min number of subsets to cover the entire domain
: min number of vertices to cover all edges
— min edge cover: min number of edges to cover all vertices
« Some packing problem is the dual problem of some covering problem
— Min Vertex Cover (VC) is the dual of Max matching (independent edge set)
— Max Independent Set (IS) is the dual of Min edge cover

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 446
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Independent set

Independent set (IS): set of vertices Q ax

@ 0 e that are not connected (white)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 447
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VC vs. Ind set ?

Independent set (IS): set of vertices Q ax

@ 0 e that are not connected (white)

Vertex cover (VC): set of vertices

e e that covers all edges

Assume ou are given avn independent set.
How do vou find a vertex cover?

?

448
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VC =€ Ind set

Independent set (IS): set of vertices Q
Max
@ a 6 that are not connected (white)

Vertex cover (VC): set of vertices Q _
min

6 e that covers all edges (orange)

Set S is a VC iff the complement V¢ =V -Sisan IS

B VT
Proof: for each edge at most one vertex is in V¢,

B{ 7@ Thus at least one vertex is in Set

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Matching vs. VC?

Vertex cover (VC): set of vertices Q -
e e that covers all edges (orange)

Matching (Ind edge set): set of /

edges w/o common vertices (red)

What is a possible connection between VC and matchings

?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 450
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Matching < VC

That is called "weak duali+y"

Ay feasible solution to +he mivimization problewm is at least
as large as any feasible solution to +he maximization problem

£ Vertex cover (VC): set of vertices Q -
e e that covers all edges (orange)
Matching (Ind edge set): set of /
edges w/o common vertices (red) max

matchings <  VCs

— ( . A VC needs to cover at |least each edge from
01234567 any matching
That turns out +o be the Thus, any VC has at least the size of any matching

dual: Max Matching < WMin VC = Size of any matching < any VC

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 451
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Matching < VC =€ Ind set (summary so far)
What intuitive problem is missivg ?

Independent set (IS): set of vertices Q ax

@ 0 e that are not connected (white)

¢ Vertex cover (VC): set of vertices Q -
e e that covers all edges (orange)
Matching (Ind edge set): set of /
. Max
edges w/o common vertices (red)

452
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Matching < VC =€ Ind set (summary so far)
E  What intuitive problem is missing

Independent set (IS): set of vertices Q
Max
that are not connected (white)

¢ Vertex cover (VC): set of vertices Q -
I
that covers all edges (orange)
Matching (Ind edge set): set of
Edges = Sets edges W/go(commogn vert)ices (red) / max

w |€182€3€48585€7 g 5
S 1/0 0O 0
GEJ 210 O problems: set of subsets that cover all elements
< 3 OO0
n 4 O O
o 5 0 0 0 L
S problems: set of disjoint subsets
& 6 0O O
v / O O
= ! Tucidence matrix

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 453
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Matching < VC =€ Ind set vs. Edge cover

What | f Its Edge cover: set of edges that cover
€ conmecTion ? all vertices (blue)
+o0 IS -
Independent set (IS): set of vertices Q
Max
that are not connected (white)
¢ Vertex cover (VC): set of vertices Q -
I
that covers all edges (orange)
e
! Matching (Ind edge set): set of
Edges = Sets edges w/o common vertices (red) max
w |€182€3€48585€7 g 5
S 1/0 0O 0
GEJ 210 O problems: set of subsets that cover all elements
I?IJ Z © 8 5 ( set cover: min vertex cover, min edge cover)
V)
3 2 © g 5 0 problems: set of disjoint subsets
45 7 0 0O ( set packing: max ind set, max matching)
= ! Tucidence matrix

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 454
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Matching < VC =€ Ind set < Edge cover

Edge cover: set of edges that cover
all vertices (blue)

€1

Independent set (IS): set of vertices Q
Max
that are not connected (white)

Vertex cover (VC): set of vertices _
4 Q min
that covers all edges (orange)
e
£ 4_5 . Matching (Ind edge set): set of /
e e egeGS—e : Se o edges w/o common vertices (red) max
ﬂ 1 %~2 %3 %4 %5 %6 +~7 +8
S 1/0 0O 0
GEJ 210 O An edge cover needs to cover at least each
o 3 ©0 vertex from any IS
n 4 O O
o 5 0 0 0 . .
3 c o o Thus, any IS is lower bound to the size of any edge cover
S - o o = Size of min edge cover > max IS  (duality)
= ! Tucidence matrix

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 455
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4 graph problems in the incidence matrix

€4

Choose Vertices

Choose Edges

Edges = Sets
% €16, €e3€, €5 €€, Eg
S 1|0 0 O
£ 2100
()]
< 3 OO0
n 4 O O
0 5 0 0 0
— 6
= O O
v / i QO
= Twucidence matrix

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Set
Cover ? ?

Set
Packing ? ?
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4 graph problems in the incidence matrix

Vertices = elements

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

€1

€4

Edges = Sets
€1 €, €56, € € €, eg

NOOUT DS WN -

O O O
O O
OO0
O O
O O O

O O

i O O
Twcidence matrix

Choose Vertices

Choose Edges

min=3 min=4

Set Q /
Vertex Cover Edge Cover
| < /dnal

complement

max=4 Q / = dml/ max=>
Set Independent Matching =

Set Ind. edge set
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4 graph problems in the incidence matrix

Vertices = elements

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

€4

Edges = Sets
€1 €, €56, € € €, eg

NP-complete

Choose Vertices

PTIME

Choose Edges

NOOUT DS WN -

O O O
O O
OO0
O O
O O O

O O

i O O
Twcidence matrix

min=3 min=4

Set Q /
Vertex Cover Edge Cover
| < /dunal

complement

max=4 Q / > dlmal/ max=3
Set Independent Matching =

Set Ind. edge set
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4 graph problems in the incidence

matrix

NP-complete

Choose Vertices

PTIME

Choose Edges

=3 (win) p=4 (min)
Set Q /
o Vertex Cover Edge Cover
4
Pl
Edges = Sets L =/ dual

«w | 1626386, 65€E;€;Eg P
= a=4 (max) N dpal | B=3 (max)
£ 2/0 0 /
D
" 4 b o Set Independent Matching =
4 Set Ind. edge set
o
& 6 0O O
O . )
= | Twucidence matrix

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Same 4 problems for hypergraphs

Mathematical programming duality

e w{@c. cover (,0) . ((X)
Covering number, k = 44| Packing number, p
min # hyperedges to contain vertices max # vertices, no two in a hyperedge

min 1’x s.t. Mx = 1 (min) edoye cover /r{avx 1'% st. M'x < 1 (max) independent|yertex set
complement

Z .
Transversal number,T || Matching number, u

min # vertices to touch hyperedges > dugl max # pairwise disjoint hyperedges
min 1°x s.t. M'x = 1(min) vertex cover || max 1°x s.t. Mx < 1 (max) matchiug

(udependent zﬂio}m set)
Finding a maximum matching v a 2-uniform
hypergraph is NP-hard (3-dimewsional matchivg),
bt is in PTIWME for simple (2-uviform) araphs.

Hypergraph duality

vertex cover

Figure 1.1. The dualities between the covering, packing, transversal, and matching numbers of a hypergraph.

Source: Scheinerman, Ullman. "Fractional Graph Theory: A Rational Approach to the Theory of Graphs", 1997/2008. https://www.ams.jhu.edu/ers/books/fractional-graph-theory-a-rational-
approach-to-the-theory-of-graphs/
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 460
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Background: MAX independent (vertex) set < MIN edge cover

Independent Set

« Assume graph G is connected. Thus, every vertex has at least one edge (unless just one vertex)
e Suppose Sis an independent set and £ is an edge cover.

e« Then for each vertex vES there exists at least one edge e L incident with v.

e By definition of independent set no two u,vES, have a common edge in E.

e Therefore |5|<|E]

Example from: http://www.csie.ntnu.edu.tw/~u91029/Domination.html
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Matching < VC: what changes in bipartite graphs?
Nodes are partitioned into Left and Right

L R
1 6
2 I4

N Vertex cover (VC): set of vertices Q _
min
that covers all edges (orange)

Matching (Ind edge set): set of /
edges w/o common vertices (red) max

A VC needs to cover at least each edge from
any matching

Thus, min VC at least the size of any matching
= Size of any matching < any VC
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matching = VC ... in bipartite graphs!

L R
6
. Vertex cover (VC): set of vertices Q -
~ that covers all edges (orange)
Matching (Ind edge set): set of /
edges w/o common vertices (red) max

K&nig-Egevary theorem for bipartite graphs:
Max matching equivalent to Min VC
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All for 4 problems become easy in bipartite %%Bhs

Choose Vertices | Choose Edges

Set Q /

Cover Vertex Cover Edge Cover

| \/ﬁal
complement
@ / %al /
Set Independent Matching =
Packing Set Ind. edge set
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Cuts and Flows in directed graphs G = (V, E)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 466
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Cuts and Flows in directed graphs G = (V, E)

Each edge (u, v) has a capacity c,,, which is the max amount of flow that can pass through it.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 467
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Cuts and Flows in directed graphs G = (V, E)

Each edge (u, v) has a capacity c¢,,, = 1 which is the max amount of flow that can pass through it.

A flow is a mapping of edges to flows f: E —» R*
s.t. that flows obey their capacities f,,, < ¢,, and
conservation laws. The value |f | of a flow is the
amount moved from S to T through the network.

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow _min-cut_theorem
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Cuts and Flows in directed graphs G = (V, E)

Each edge (u, v) has a capacity ¢,,, = 1 which is the max amount of flow that can pass through it.

A flow is a mapping of edges to flows f: E —» R*
s.t. that flows obey their capacities f,,, < ¢,, and

conservation laws. The value |f | of a flow is the
amount moved from S to T through the network.

fl=3

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow _min-cut_theorem
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Cuts and Flows in directed graphs G = (V, E)

Each edge (u, v) has a capacity ¢,,, = 1 which is the max amount of flow that can pass through it.

A flow is a mapping of edges to flows f: E —» R*
s.t. that flows obey their capacities f,,, < ¢,, and

conservation laws. The value |f | of a flow is the
amount moved from S to T through the network.

=4

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow _min-cut_theorem
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Cuts and Flows in directed graphs G = (V, E)

Each edge (u, v) has a capacity ¢,,, = 1 which is the max amount of flow that can pass through it.
. L R

~
~
-~
________________________________
~
N

@ @ @ Ans-tcut C = (5,T) is a partitionof Vst.s €S

----------------------------- and t € T. The cut-set X of a cut C is the set of

@ @ edges that connect the source part of the cut to
' the sink part. The capacity c(S,T) of an s-t cut is

@ the sum of the capacities of the edges in its cut-set.

Nodes to the left of the dashed live are in S, the rest in T.

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow _min-cut_theorem
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Cuts and Flows in directed graphs G = (V, E)

Each edge (u, v) has a capacity ¢,,, = 1 which is the max amount of flow that can pass through it.
. L R

Ans-tcut C = (5,T) is a partitionof Vst.s €S
and t € T. The cut-set X of a cut C is the set of
edges that connect the source part of the cut to
the sink part. The capacity c(S,T) of an s-t cut is
the sum of the capacities of the edges in its cut-set.

\ This live is not in the cut-set c(5,T)=5
becanse i+ goes from T +o Sl

Nodes to the left of the dashed live are in S, the rest in T.

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow _min-cut_theorem
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 472
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Cuts and Flows in directed graphs G = (V, E)

Each edge (u, v) has a capacity ¢,,, = 1 which is the max amount of flow that can pass through it.

Ans-tcut C = (5,T) is a partitionof Vst.s €S
and t € T. The cut-set X of a cut C is the set of
edges that connect the source part of the cut to
the sink part. The capacity c(S,T) of an s-t cut is
the sum of the capacities of the edges in its cut-set.

c(S,T)=4

Nodes to the left of the dashed live are in S, the rest in T.

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow _min-cut_theorem
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 473
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Cuts and Flows in directed graphs G = (V, E)

Each edge (u, v) has a capacity ¢,,, = 1 which is the max amount of flow that can pass through it.

A flow is a mapping of edges to flows f: E - R*
s.t. that flows obey their capacities f,,;, < ¢, and

conservation laws. The value |f| of a flow is the
amount moved from S to T through the network.

=4

Ans-tcut C = (5,T) is a partitionof Vst.s €S
and t € T. The cut-set X of a cut C is the set of
edges that connect the source part of the cut to
the sink part. The capacity c(S,T) of an s-t cut is
the sum of the capacities of the edges in its cut-set.

c(S,T)=4

IMAX-FLOW MIN-CUT THEOREM.
The maximum value of an s-t flow is equal to the minimum capacity over all s-t cuts.

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow _min-cut_theorem
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 474
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Proof K&nig-Egevary: outline
Notice the wow infivite capacities in the middle:

1
Proof outline:

Consider the flow graph to the left with capacities
chosen to avoid a cut between L and R. We will show:
1. every integral flow & some matching
2. every (finite capacity) cut © some VC
3. Then we know that max matching = min VC,

from the max-flow min-cut theorem

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 475



https://northeastern-datalab.github.io/cs7240/

Proof KOnig-Egevary 1: matching = flow

1. A matching of size x corresponds to an
integral flow of same value.

1

3
@

@ @
O

l

#VC

i

5
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Proof KOnig-Egevary 1: matching = flow

1. A matching of size x corresponds to an
integral flow of same value.

9
s
©

2
5
0
5
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Proof KOnig-Egevary 1: matching = flow

1. A matching of size x corresponds to an
integral flow of same value.

2
5
0
5
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Proof K&nig-Egevary 2: VC = cut

(B

2. Any VC of size x defines a cut of same capacity.

Let C betheVC,C(L) =CnNnL,C(R)=CnNR.
Then define: S := {s} U (L — C(L)) U C(R)
T:={t} U(R-C(R)) U C(L)

Q
©@ ® © @ O
@ @ @ @ @=
O

#VC

i

5
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Proof K&nig-Egevary 2: VC = cut

/e N “ Let C bethe VC,C(L) =CNL,C(R)=CNR.
] Then define: S :={s} U (L — C(L)) U C(R)
----------------------------------- T={}U(R-CR) U CWL)

\ This live is ot in the cut-set #Ce=c(S,T)=5

becanse i+ goes from T +o Sl

Nodes +o the left of the dashed
line are in S, the restin T
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Proof K&nig-Egevary 2: VC = cut

/e N “ Let C bethe VC,C(L) =CNL,C(R)=CNR.
] Then define: S :={s} U (L — C(L)) U C(R)
----------------------------------- T={}U(R-CR) U CWL)

\ This live is ot in the cut-set #Ce=c(S,T)=5

becanse i+ goes from T +o Sl

Nodes +o the left of the dashed
line are in S, the restin T
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2. Any VC of size x defines a cut of same capacity.
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Proof K&nig-Egevary 2: VC = cut

1, L o R 1
| e @ 2. Any VC of size x defines a cut of same capacity.
e . Let C be the VC, C(L) = C N L, C(R) = CNR.
@ Then define: S := {s} U (L — C(L)) U C(R)
,,,,,,, g T:={t} U(R-C(R)) U C(L)

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-

#NC=c(S,T)=4

Nodes +o the left of the dashed
line are in S, the restin T
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Proof K&nig-Egevary 2: VC = cut

2. Any VC of size x defines a cut of same capacity.

)
e \ Let C be the VC, C(L) = C N L, C(R) = CNR.

Then define: S:={s} U (L—C(L)) U C(R)

T:={t} U(R-C(R)) U C(L)

s’
’
-,
-,
-,
-
f’
-

-
-
-
-
-
-

#NC=c(S,T)=4
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Proof KOnig-Egevary 3: max-flow = min-cut
= max matching = min VC

3. Since max flow = min cut, therefore also
max matching = min VC

#matchivg = |f| = 4
#NC=c(S,T)=4
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