Topic 2: Complexity of Query Evaluation Unit 3: Provenance Lecture 16

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
https://northeastern-datalab.github.io/cs7240/sp24/
3/15/2024

Pre-class conversations

- Last class summary
- Projects: TUE 3/26 intermediate report
- Faculty candidate next week WED 3/20
- Today:
- a comment on multitasking
- provenance, semirings

A quizz

Which of the following lowers your measured IQ the most:
A. Smoking marijuana before taking test.
B. Responding to email/texting while taking test.
C. Losing a nights sleep before taking test.

Which of the following lowers your measured IQ the most:
A. Smoking marijuana before taking test.
B. Responding to email/texting while taking test.
C. Losing a nights sleep before taking test.

Answer: B

- You suck at multitasking!
- Everyone sucks at multitasking

Multitasking
"Myth \#3: Multitasking when it comes to paying attention, is a myth... studies show that a person who is interrupted takes 50\% longer to accomplish a task. Not only that, he or she makes up to 50\% more errors" -- John Medina (Brain rules)
"...multitasking is a lie. You're asking me to switch attention, and that makes me less productive." -- Dave Crenshaw (The myth of multitasking)
"multitasking adversely affects how you learn. Even if you learn while multitasking, that learning is less flexible and more specialized, so you cannot retrieve the information as easily." --Russell Poldrack, UCLA Psychology Professor
"Our research offers neurological evidence that the brain cannot effectively do two things at once." -- Rene Marois, Dept. of Psychology, Vanderbilt
"The brain is a lot like a computer. You may have several screens open on your desktop, but you're able to think about only one at a time." -- William Stixrud, Neuropsychologist

Topic 2: Complexity of Query Evaluation E Reverse Data Management
 - Lecture 14 (Fri 3/1): T2-U1 Conjunctive Queries
 - Spring break (Tue 3/5, Fri 3/8)
 - Lecture 15 (Tue 3/12): T2-U1 / 2 Conjunctive \& Beyond Conjunctive Queries
 - Lecture 16 (Fri 3/15): T2-U1/2 Conjunctive \& Beyond Conjunctive Queries
 - Lecture 17 (Tue 3/19): T2-U3 Provenance
 - Lecture 18 (Fri 3/22): T2-U3 Provenance
 - Lecture 20 (Tue 3/26): T2-U4 Reverse Data Management

Pointers to relevant concepts \& supplementary material:

- Unit 1. Conjunctive Queries: Query evaluation of conjunctive queries (CQs), data vs. query complexity, homomorphisms, constraint satisfaction, query containment, query minimization, absorption: [Kolaitis, Vardi'00], [Vardi'00], [Kolaitis'16], [Koutris'19] L1 \& L2
- Unit 2. Beyond Conjunctive Queries: unions of conjunctive queries, bag semantics, nested queries, tree pattern queries: [Kolaitis'16], [Tan+'14], [Gatterbauer'11], [Martens'17]
- Unit 3. Provenance: [Buneman+'02], [Green+'07], [Cheney+'09], [Green,Tannen'17], [Kepner+16], [Buneman, Tan'18], [Simons'23], [Dagstuhl'24]
- Unit 4. Reverse Data Management: update propagation, resilience: [Buneman+'02], [Kimelfeld+'12], [Freire+'15], [Makhija+'24]

Outline: T2-3: Provenance

- T2-3: Provenance
- Data Provenance
- The Semiring Framework for Provenance
- Algebra: Monoids and Semirings
- Query-rewrite-insensitive provenance

Data provenance. ~Explanations

Imagine a computational process that uses a complex input consisting of multiple items. The granularity and nature of "input item" can vary significantly. It can be a single tuple, a database table, or a whole database. It can a spreadsheet describing an experiment, a laboratory notebook entry, or another form of capturing annotation by humans in software. It can also be a file, or a storage system component. It can be a parameter used by a module in a scientific workflow. It can also be a configuration rule used in software-defined routing or in a complex network protocol. Or it can be a configuration decision made by a distributed computation scheduler (think map-reduce). Provenance analysis allows us to understand how these different input items affect the output of the computation. When done appropriately, such

Near-Term Challenges in II II = Int ligent Infrastructure

a. Error control for multiple decisions

- Systems that create markets
- Designing systems that can provide meaningful, calibrated notions of their uncertainty
- Achieving real-time performance goals
- Managing cloud-edge interactions
- Designing systems that can find abstractions quickly Provenance in systems that learn and predict Designing systems that can explain their decisions
- Finding causes and performing causal reasoning
- Systems that pursuetong-term-goats, and actively collect data in service of those goals
- Achieving fairness and diversity
- Robustness in the face of unexpected situations
- Robustness in the face of adversaries
- Sharing data among individuals and organizations
- Protecting privacy and issues of data ownership

Provenance: "Where Did this Data Come from?"

- Whenever data is shared (e.g., science, Web) natural questions appear:
- How did I get this data?
- What operations were used to create the data?
- How much should I trust (believe) it?

- Provenance: describes the origins and history of data in its life cycle
- Two types of provenance
- Provenance inside a database: that's our focus
- Provenance outside databases: focus of ongoing research esp. in ML (causes, influence, fairness); less well-defined; there is a standard OPM (Open Provenance Model)
- There are also questions for our focus, provenance inside DBMS:
- What is the "right data model" of provenance?
- How do we query it? What operations should we support?

Example of data provenance

- A typical question:

- For a given database D, a query Q, and a tuple t in the output of $Q(D)$, which parts of D "contribute" to output tuple t ?

- The question can be applied to attribute values, tables, rows, etc.

Two approaches

- Eager or annotation-based ("annotation propagation")
- Changes the transformation from Q to Q^{\prime} to carry extra information
- Full source data not needed after transformation

- Lazy or non-annotation based
- Q is unchanged
- Recomputation and access to source required.
- Good when extra storage is an issue.

Example graph problem, in 5 different variants

E

from	to
1	2
2	3
1	4
4	3
4	5

Example graph problem, in 5 different variants

E
from to

1	2
2	3
1	4
4	3
4	5

$$
Q(z):-E(1, y), E(y, z)
$$

Q: Points reachable in 2 hops, starting at node "1"

Example graph problem, in 5 different variants

E

from	to
1	2
2	3
1	4
4	3
4	5

$Q(z):-E(1, y), E(y, z) \longrightarrow$| 3 |
| :--- |
| |

Q: Points reachable in 2 hops, starting at node "1"

Now assume only certain edges are available (available yes/no or true/false). Which of the points remain reachable?

Q: Points reachable in 2 hops, starting at node "1"

Now assume only certain edges are available (available yes/no or true/false). Which of the points remain reachable?

Q: Points reachable in 2 hops, starting at node "1"

Example variant 2

Now assume passing along an edge needs a certain security clearance ($1<2<3$). What clearance do you need for reaching each point?

Q: Points reachable in 2 hops, starting at node "1"

Example variant 2

Now assume passing along an edge needs a certain security clearance ($1<2<3$). What clearance do you need for reaching each point?

$Q(z):-E(1, y), E(y, z)$	3

Q: Points reachable in 2 hops, starting at node "1"

Example variant 3

Now assume each edge has a weight. What is the shortest path to reach each point?

Q: Points reachable in 2 hops, starting at node "1"

Example variant 3

Now assume each edge has a weight. What is the shortest path to reach each point?

$Q(z):-E(1, y), E(y, z)$	3	2
5	4	

Q: Points reachable in 2 hops, starting at node "1"

Example variant 4

Example variant 4
0.3

Now assume each edge has a confidence (probability of being available). What is the probability of the most likely path?
E
from to

1	2
2	0.5
1	3
	0.8
4	3
	0.5
4	5
	0.6

Example variant 5

Finally assume we want to calculate the number of paths to a node. How many are there? What is even a reasonable way to calculate that in general?

E

from	to
1	2
2	3
1	4
4	3
4	5

$$
Q(z):-E(1, y), E(y, z) \longrightarrow \begin{array}{|c|}
\hline 3 \\
\hline 5 \\
\hline
\end{array}
$$

Q: Points reachable in 2 hops, starting at node "1"

Example variant 5

Finally assume we want to calculate the number of paths to a node. How many are there? What is even a reasonable way to calculate that in general?

E

from	to
1	2
2	3
1	4
4	3
4	5

$Q(z):-E(1, y), E(y, z) \longrightarrow$| 3 |
| :--- |

Q: Points reachable in 2 hops, starting at node "1"

Outline: T2-3: Provenance

- T2-3: Provenance
- Data Provenance
- The Semiring Framework for Provenance
- Algebra: Monoids and Semirings
- Query-rewrite-insensitive provenance

Mainly slides by
Val Tannen 2017

Do it once and use it repeatedly: provenance

Label (annotate) input items abstractly with provenance tokens. Provenance tracking: propagate expressions (involving tokens)
(to annotate intermediate data and, finally, outputs)
REASONMC

Track two distinct ways of using data items by computation primitives:

- jointly (this alone is basically like keeping a logi Λ ?
- alternatively (doing both is ossential; think trust)

Input-output compositional; Modular (in the primitives)

Later, we want to evaluate the provenance expressions to obtain

> binary trust, access control,
> confidence scores, data prices, etc.

Algebraic interpretation for RDB

Set X of provenance tokens.

Space of annotations, provenance expressions $\operatorname{Prov}(X)>\{x \cdot y \cdot y+z, z y, \ldots\}$
$\operatorname{Prov}(X)$-relations:
every tuple is annotated with some element from $\operatorname{Prov}(X)$.
Binary operations on $\operatorname{Prov}(X)$:

- corresponds to joint use (join, cartesian product),
+ corresponds to alternative use (union and projection).
Special annotations:
"Absent" tuples are annotated with 0.
1 is a "neutral" annotation (data we do not track).

K-Relational algebra

Algebraic laws of $(\operatorname{Prov}(X),+, \cdot 0,1)$? More generally, for annotations from a structure $\left(K_{,}+, \cdot 0,1\right)$?

K-relations. Generalize RA+ to (positive) K-relational algebra.
 $\left(K_{,}+, \cdot 0,1\right)$ is a commutative semiring.

Generalizes SPJU or UCQ or non-rec. Datalog set semantics $(\mathbb{B}, \vartheta, \wedge, \perp, T) \quad$ bag semantics $(\mathbb{N},+, \cdot 0,1)$ c-table-semantics [IL84] $\quad(\operatorname{Bool} \operatorname{Exp}(X), \vee, \wedge, \perp, T)$ event table semantics [FR97,Z97] $\quad(\mathcal{P}(\Omega), \cup, \cap, \emptyset, \Omega)$

What is a commutative semiring?

An algebraic structure $(K,+, \cdot 0,1)$ where:

- K is the domain
- + is associative, commutative, with 0 identity
- . is associative, with 1 identity - semiring
- distributes over +
- $a \cdot 0=0 \cdot a=0$
- . is also commutative

Unlike ring, no requirement for inverses to +

Provenance polynomials

$$
\mathbb{N}[\{x, y\}]=\left\{x y, x+y, 2 x y^{2}+x, 2 x y^{2}+x y+x, \ldots\right\}
$$

$(\mathbb{N}[X],+, \cdot 0,1)$ is the commutative semiring freely generated by X (universality property involving homomorphisms)

Provenance polynomials are PTIME-computable (data complexity).
(query complexity depends on language and representation)
ORCHESTRA provenance (graph representation) about 30\% overhead

Monomials correspond to logical derivations (proof trees in non-rec. Datalog)

Provenance reading of polynomails:
output tuple has provenance
three derivations of the tuple

$$
2 r^{2}+r s
$$

- two of them use r, twice,
- the third uses r and s, once each

Two kinds of semirings in this framework

Provenance semirings, e.g.,
($\mathbb{N}[X],+, \cdot, 0,1$) provenance polynomials [GKT07]
$(W h y(X), \cup, \cup, \emptyset,\{\emptyset\}) \quad$ witness why-provenance [BКТ01]

Application semirings, e.g.,
(A, min, max, 0, Pub) access control [FGT08]
$\mathbb{V}=([0,1]$, max, $\cdot, 0,1) \quad$ Viterbi semiring (MPE) [GKITO7]
Provenance specialization relies on

- Provenance semirings are freely generated by provenance tokens
- Query commutation with semiring homomorphisms

Some application semirings

```
Example 1:
Example 5:
Example 2:
Example 4:
Example 3:
(\mathbb{B},\wedge,\vee,T,\perp) binary trust
(\mathbb{N},+,\cdot,0,1) multiplicity (number of derivations)
(\mathbb{A},min, max, 0, Pub) access control
V = ([0,1], max, \cdot, 0, 1) Viterbi semiring (MPE) confidence scores
T}=([0,\infty],\operatorname{min},+,\infty,0
        tropical semiring (shortest paths) data pricing
\mathbb{F}=([0,1], max, min, 0, 1) "fuzzy logic" semiring
```


A Hierarchy of Provenance Semirings [G09, DMRT14]

A menagerie of provenance semirings

(Which $\left.(X), \cup, \cup^{*}, \emptyset, \emptyset^{*}\right)$ sets of contributing tuples "Lineage" (1) [CWwoo]
(Why $(X), \cup, \cup, \emptyset,\{\emptyset\})$ sets of sets of ... Witness why-provenance [ВКТО1]
(PosBool $(X), \wedge, \vee, T, \perp)$ minimal sets of sets of... Minimal witness whyprovenance [BKTO1] also "Lineage" (2) used in probabilistic dbs [SORK11]
(Trio(X), $+, \cdot, 0,1$) bags of sets of ... "Lineage" (3) [BDHT08,G09]
$(\mathbb{B}[X],+, \cdot, 0,1)$ sets of bags of ... Boolean coeff. polynomials [G09]
(Sorp $(X),+, \cdot, 0,1) \quad$ minimal sets of bags of ... absorptive polynomials [DMRT14]
$\frac{(\mathbb{N}[X],+, \cdot, 0,1) \quad \text { bags of bags of... universal provenance polynomials }}{[G K T 07]}$

Positive relational algebra: Join \bowtie

?

Positive relational algebra: Join \bowtie

$\mathrm{Q}=\mathrm{R} \bowtie \mathrm{S}$

A	B	C
1	1	1
2	1	1
2	2	2
2	2	3

Positive relational algebra: Join \bowtie

Positive relational algebra: Join \bowtie

The annotation " r • s " means joint use of data annotated by r and data annotated bys

$Q=R \bowtie S$		
A	B	C
1	1	1
2	1	1
2	2	2
2	2	3

Positive relational algebra: Projection π

Positive relational algebra: Projection π

Positive relational algebra: Projection π

The annotation " $r+s$ " means
alternative use of data

```
\pi
```

$\mathrm{Q}=\pi_{-B} \mathrm{R}=\pi_{A} \mathrm{R}$

Positive relational algebra: Union U

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{R} \cup \mathrm{~S} \\
& \begin{array}{|l|l}
\hline \mathrm{A} & \mathrm{~B} \\
\hline
\end{array}
\end{aligned}
$$

$?$

The annotation " $r+s$ " means alternative use of data

Positive relational algebra: Selection σ

$\sigma_{\text {A }=1}$	
R	
A	B
1	1
1	2
2	1
2	2
2	3

$$
\begin{aligned}
& \mathrm{Q}=\sigma_{\mathrm{A}=1} \mathrm{R} \\
& \begin{array}{|l|l|}
\hline \mathrm{A} & \mathrm{~B} \\
\hline
\end{array}
\end{aligned}
$$

?

Positive relational algebra: Selection σ

Two options for filtering:

1. Remove the tuples filtered out.

$\sigma_{\text {A }=1}$	
R	
A	B
1	1
1	2
2	1
2	2
2	3

$\mathrm{Q}=\sigma_{\mathrm{A}=1} \mathrm{R}$
A B 1 1
1

Positive relational algebra: Selection σ

Boolean Query Provenance

$$
Q:-R(x, y), S(y, z)
$$

Calculate the provenance, operator-by-operator, with two algebraically equivalent query plans:

A	B
y	
1	1
r_{1}	
2	2

B	C
1	1
1	2
2	3

Boolean Query Provenance

$$
Q:-R(x, y), S(y, z)
$$

Calculate the provenance, operator-by-operator, with two algebraically equivalent query plans:

A	B
y	
1	1
r_{1}	
2	2

B	C
1	
1	$\mathrm{~s}_{1}$
1	2
$\mathrm{~s}_{2}$	
2	3
$\mathrm{~s}_{2}$	

Query plan 1: $\pi_{-A, B, C}(\underbrace{R \bowtie S})$
Query plan $2: \pi_{-B}\left(\pi_{-A}(R) \bowtie \pi_{-C}(S)\right)$

$\pi_{-\mathrm{A}, \mathrm{B}, \mathrm{C}}(\ldots)$

Boolean Query Provenance

$$
Q:-R(x, y), S(y, z)
$$

Calculate the provenance, operator-by-operator, with two algebraically equivalent query plans:

A	B		B	C	
1	1	r_{1}	1	1	
2	2	r_{2}	1	2	
3	2		2	3	

Query plan 1: $\pi_{-A, B, C}(\underbrace{R \bowtie S})$

$R \bowtie S$| | A | B |
| :---: | :---: | :---: |

Query plan $2: \pi_{-B}\left(\pi_{-A}(R) \bowtie \pi_{-C}(S)\right)$

$\pi_{-A, B, C}(\ldots)$

Boolean Query Provenance

$$
Q:-R(x, y), S(y, z)
$$

Calculate the provenance, operator-by-operator, with two algebraically equivalent query plans:

Query plan $2: \pi_{-B}\left(\pi_{-A}(R) \bowtie \pi_{-C}(S)\right)$

$\mathrm{R} \bowtie \mathrm{S}$	A	B	C	
	1	1	1	$\mathrm{r}_{1} \cdot \mathrm{~s}_{1}$
	1	1	2	$\mathrm{r}_{1} \cdot \mathrm{~s}_{2}$
	2	2	3	$\mathrm{r}_{2} \cdot \mathrm{~s}_{3}$
	3	2	3	$\mathrm{r}_{3} \cdot \mathrm{~s}_{3}$

$\pi_{-A, B, C}(\ldots)$

SELECT EXISTS(\rightarrow SELECT * FROM R, S WHERE R.B = S.B)

Query plan 1: $\pi_{-A, B, C}(\underbrace{R \bowtie S})$

A	B
1	1
2	2
3	2

	B	C
$\mathrm{r}_{1}+$	1	1
r_{2}	1	2
r_{3}	2	3

$$
\mathrm{r}_{1} \cdot \mathrm{~s}_{1}+\mathrm{r}_{1} \cdot \mathrm{~s}_{2}+\mathrm{r}_{2} \cdot \mathrm{~s}_{3}+\mathrm{r}_{3} \cdot \mathrm{~s}_{3}
$$

Boolean Query Provenance

$$
Q:-R(x, y), S(y, z)
$$

Calculate the provenance, operator-by-operator, with two algebraically equivalent query plans:

A	B		B	C	
1	1	r_{1}	1	1	
2	2	r_{2}	1	2	
3	2		2	3	

Query plan 1: $\pi_{-A, B, C}(\underbrace{R \bowtie S})$

$R \bowtie S$| | A | B |
| :---: | :---: | :---: |

$$
\begin{aligned}
& \pi_{-A, B, C}(\ldots) \\
& \quad r_{1} \cdot s_{1}+r_{1} \cdot s_{2}+r_{2} \cdot s_{3}+r_{3} \cdot s_{3}
\end{aligned}
$$

Query plan $2: \pi_{-B}\left(\pi_{-A}(R) \bowtie \pi_{-C}(S)\right)$

Boolean Query Provenance

$$
Q:-R(x, y), S(y, z)
$$

Calculate the provenance, operator-by-operator, with two algebraically equivalent query plans:

Query plan 1: $\pi_{-A, B, C}(\underbrace{R \bowtie S})$

$\mathrm{R} \bowtie \mathrm{S}$	A	B	C	$r_{1} \cdot s_{1}$$r_{1} \cdot s_{2}$$r_{2} \cdot s_{3}$$r_{3} \cdot s_{3}$
	1	1	1	
	1	1	2	
	2	2	3	
	3	2	3	

Query plan 2: $\pi_{-B}(\underbrace{\pi_{-A}(R)} \bowtie \underbrace{\pi_{-C}(S)})$

Boolean Query Provenance

$$
Q:-R(x, y), S(y, z)
$$

Calculate the provenance, operator-by-operator, with two algebraically equivalent query plans:

Query plan 1: $\pi_{-A, B, C}(\underbrace{R \bowtie S})$

$\mathrm{R} \bowtie \mathrm{S}$	A	B	C	
	1	1	1	$\mathrm{r}_{1} \cdot \mathrm{~s}_{1}$
	1	1	2	$\mathrm{r}_{1} \cdot \mathrm{~s}_{2}$
	2	2	3	$\mathrm{r}_{2} \cdot \mathrm{~s}_{3}$
	3	2	3	$\mathrm{r}_{3} \cdot s_{3}$

$$
\begin{aligned}
& \pi_{-A, B, C}(\ldots) \\
& \quad r_{1} \cdot s_{1}+r_{1} \cdot s_{2}+r_{2} \cdot s_{3}+r_{3} \cdot s_{3}
\end{aligned}
$$

Query plan 2: $\pi_{-B}(\underbrace{}_{-A}(\mathrm{R}) \bowtie \pi_{-C}(\mathrm{~S}))$

$$
\begin{aligned}
& \pi_{-B}\left(R^{\prime} \bowtie S^{\prime}\right) \\
& \quad r_{1} \cdot\left(s_{1}+s_{2}\right)+\left(r_{2}+r_{3}\right) \cdot s_{3}
\end{aligned}
$$

Back to our Example: now with Semiring notation

Now assume we use semiring notation. Idea: keep the tuple identifiers abstract. Use provenance polynomials ($\mathbb{N}[X],+, \cdot, 0$, 1)

E	
1	2
2	3
1	4
4	3
4	5

$$
Q(z):-E(1, y), E(y, z) \longrightarrow \begin{array}{|c|}
\hline 3 \\
\hline 5 \\
\hline
\end{array}
$$

Q: Points reachable in 2 hops, starting at node "1"

Back to our Example: now with Semiring notation

Now assume we use semiring notation.
Idea: keep the tuple identifiers abstract. Use provenance polynomials $(\mathbb{N}[X],+, \cdot, 0,1)$

Q: Points reachable in 2 hops, starting at node "1"
$\mathbb{N}[X]=(\mathbb{N}[X],+, \cdot, 0,1)$: Provenance polynomials

$$
\underset{\text { olfagns Gatterbauer, Princijles of scalable }}{x}=\{p, q, \ldots, t\}
$$

Example variant 1 Provenance polynomials $(\mathbb{N}[X],+, \cdot, 0,1)$

Now assume only certain edges are available (available yes/no or true/false). Which of the points remain reachable?

$$
\begin{aligned}
& \begin{array}{l|l|l}
\mathrm{Q}(\mathrm{z}):-\mathrm{E}(1, \mathrm{y}), \mathrm{E}(\mathrm{y}, \mathrm{z}) \\
\mathrm{Q}: \text { Points reachable in 2 } \\
\text { hops, starting at node "1" }
\end{array} \\
& \{0,1\} \\
& \mathbb{B}=(\mathbb{B}, \vee, \wedge, 0,1) \text { : Boolean algebra }
\end{aligned}
$$

Example variant 2 Provenance polynomials $(\mathbb{N}[X],+, \cdot, 0,1)$

Now assume passing along an edge needs
a certain security clearance ($1<2<3$).
What clearance do you need for reaching
each point? infic sp prefi

$$
\min [\max [3,2], \max [1,1]]=1
$$

E

1	2	$\mathrm{p}=1$
2	3	
1	4	$\mathrm{r}=3$
$\mathrm{y}=1$	3	$\mathrm{~s}=2$
4	5	$\mathrm{t}=1$

$Q(z):-E(1, y), E(y, z)$
Q: Points reachable in 2 hops, starting at node "1"
$\max [3,1]=3$

Example variant 3 Provenance polynomials $(\mathbb{N}[\mathrm{X}],+, \cdot, 0,1)$

Now assume each edge has a weight.

What is the shortest path to reach each point?

E

1	2	$\mathrm{p}=1$
2	3	$\mathrm{q}=1$
1	4	$\mathrm{r}=3$
4	3	$\mathrm{s}=2$
4	5	$\mathrm{t}=1$

$$
\mathbb{T}=\left(\mathbb{R}_{+}^{\infty}, \text { min },+, \infty, 0\right) \text { : Tropical semiring }
$$

Example variant 4 Provenance polynomials $(\mathbb{N}[X],+, \cdot, 0,1)$

Now assume each edge has a confidence (probability of being available).
What is the probability of the most likely path?

$$
\mathbb{V}=([0,1], \text { max, • , 0,1): Viterbi semiring (max likely sequence) }
$$

Example variant 5 Provenance polynomials $(\mathbb{N}[X],+, \cdot, 0,1)$

Finally assume we want to calculate the number of paths to a node. We start by annotating the tuples in the database with their duplicity (which is 1 to start with)

$(\mathbb{N},+, \cdot, 0,1)$: Counting derivations / bag semantics

Topic 2: Complexity of Query Evaluation Unit 3: Provenance Lecture 17

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
https://northeastern-datalab.github.io/cs7240/sp24/
3/19/2024

Pre-class conversations

- Last class summary
- Projects: TUE 3/26 intermediate report
- Faculty candidate tomorrow WED 3/20
- Today:
- provenance, semirings

Topic 2: Complexity of Query Evaluation \& Reverse Data Management
 - Lecture 14 (Fri 3/1): T2-U1 Conjunctive Queries
 - Spring break (Tue 3/5, Fri 3/8)
 - Lecture 15 (Tue 3/12): T2-U1/2 Conjunctive \& Beyond Conjunctive Queries
 - Lecture 16 (Fri 3/15): T2-U1/2 Conjunctive \& Beyond Conjunctive Queries
 - Lecture 17 (Tue 3/19): T2-U3 Provenance
 - Lecture 18 (Fri 3/22): T2-U3 Provenance
 - Lecture 20 (Tue 3/26): T2-U4 Reverse Data Management

Pointers to relevant concepts \& supplementary material:

- Unit 1. Conjunctive Queries: Query evaluation of conjunctive queries (CQs), data vs. query complexity, homomorphisms, constraint satisfaction, query containment, query minimization, absorption: [Kolaitis, Vardi'00], [Vardi'00], [Kolaitis'16], [Koutris'19] L1 \& L2
- Unit 2. Beyond Conjunctive Queries: unions of conjunctive queries, bag semantics, nested queries, tree pattern queries: [Kolaitis'16], [Tan+'14], [Gatterbauer'11], [Martens'17]
- Unit 3. Provenance: [Buneman+'02], [Green+'07], [Cheney+'09], [Green,Tannen'17], [Kepner+16], [Buneman, Tan'18], [Simons'23], [Dagstuhl'24]
- Unit 4. Reverse Data Management: update propagation, resilience: [Buneman+'02], [Kimelfeld+'12], [Freire+'15], [Makhija+'24]

A more complex example with exponents

$\mathrm{Q}(\mathrm{R})=\pi_{\mathrm{AC}}\left(\pi_{\mathrm{AB}} \mathrm{R} \bowtie \pi_{\mathrm{BC}} \mathrm{R} \cup \pi_{\mathrm{AC}} \mathrm{R} \bowtie \pi_{\mathrm{BC}} \mathrm{R}\right)$
R

A	B	C
a	b	c
d	b	e
f	g	e

?

A more complex example with exponents

$$
\mathrm{Q}(\mathrm{R})=\pi_{\mathrm{AC}}\left(\pi_{\mathrm{AB}} \mathrm{R} \bowtie \pi_{\mathrm{BC}} \mathrm{R} \cup \pi_{\mathrm{AC}} \mathrm{R} \bowtie \pi_{\mathrm{BC}} \mathrm{R}\right)
$$

R		
A	B	C
a	b	c
d	b	e
f	g	e

	R	$凶 \pi^{1}$	${ }_{B C} \mathrm{R}$				
A	B	C		A	B	C	
a	b	c		a	b	c	
a	b	e		d	b	e	$?$
d	b	c		d	g	e	
d	b	e		f	b	e	
f	g	e		f	g	e	

$\mathrm{Q}_{1} \cup \mathrm{Q}_{2}$

A	B	c
a	b	c
a	b	e
d	b	c
d	b	e
d	g	e
f	b	e
f	g	e

A more complex example with exponents

$\mathrm{Q}(\mathrm{R})=\pi_{\mathrm{AC}}\left(\pi_{\mathrm{AB}} \mathrm{R} \bowtie \pi_{\mathrm{BC}} \mathrm{R} \cup \pi_{\mathrm{AC}} \mathrm{R} \bowtie \pi_{\mathrm{BC}} \mathrm{R}\right)$

R		
A	B	C
a	b	c
d	b	e
f	g	e

				$\underbrace{\downarrow}_{\pi_{\mathrm{AC}} R \bowtie \pi_{\mathrm{BC}} \mathrm{R}}$			
A	B	C		A	B	C	
a	b	c	X^{2}	a	b	C	
a	b	e	XY	d	b	e	$?$
d	b	c	XY	d	g	e	
d	b	e	Y^{2}	f	b	e	
f	g	e	Z^{2}	f	g	e	

$\mathrm{Q}_{1} \cup \mathrm{Q}_{2}$

A	B	c
a	b	c
a	b	e
d	b	c
d	b	e
d	g	e
f	b	e
f	g	e

A more complex example with exponents

$\mathrm{Q}(\mathrm{R})=\pi_{\mathrm{AC}}\left(\pi_{\mathrm{AB}} \mathrm{R} \bowtie \pi_{\mathrm{BC}} \mathrm{R} \cup \pi_{\mathrm{AC}} \mathrm{R} \bowtie \pi_{\mathrm{BC}} \mathrm{R}\right)$

R		
A	B	C
a	b	c
d	b	e
f	g	e

$\pi_{A B} R \bowtie \pi_{B C} R$				$\underbrace{\downarrow}_{\pi_{\mathrm{AC}} \mathrm{R} \bowtie \pi_{\mathrm{BC}} \mathrm{R}}$			
A	B	C		A	B		
a	b	C	X^{2}	a	b	c	X^{2}
a	b	e	XY	d	b	e	Y^{2}
d	b	c	XY	d	g	e	YZ
d	b	e	Y^{2}	f	b	e	YZ
f	8	e	Z^{2}	f	g	e	Z^{2}

$\mathrm{Q}_{1} \cup \mathrm{Q}_{2}$

A	B	c
a	b	c
a	b	e
d	b	c
d	b	e
d	g	e
f	b	e
f	g	e

A more complex example with exponents

$\mathrm{Q}(\mathrm{R})=\pi_{\mathrm{AC}}\left(\pi_{\mathrm{AB}} \mathrm{R} \bowtie \pi_{\mathrm{BC}} \mathrm{R} \cup \pi_{\mathrm{AC}} \mathrm{R} \bowtie \pi_{\mathrm{BC}} \mathrm{R}\right)$

R		
A	B	C
a	b	c
d	b	e
f	g	e

$\pi_{A B} R \bowtie \pi_{B C} R$				$\overbrace{\pi_{\mathrm{AC}} \mathrm{R} \stackrel{\downarrow}{\Delta \pi_{\mathrm{BC}} \mathrm{R}}}$			
A	B	C		A	B	C	
a	b	C	X^{2}	a	b	C	X^{2}
a	b	e	XY	d	b	e	Y^{2}
d	b	c	XY	d	g	e	YZ
d	b	e	Y^{2}	f	b	e	YZ
f	g	e	Z^{2}	f	g	e	Z^{2}

$\mathrm{Q}_{1} \cup \mathrm{Q}_{2}$

A	B	C	
a	b	c	
a	b	e	XY
d	b	c	XY
d	b	e	$2 \mathrm{Y}^{2}$
d	g	e	YZ
f	b	e	YZ
f	g	e	$2 \mathrm{Z}^{2}$

A more complex example with exponents

$\mathrm{Q}(\mathrm{R})=\pi_{\mathrm{AC}}\left(\pi_{\mathrm{AB}} \mathrm{R} \bowtie \pi_{\mathrm{BC}} \mathrm{R} \cup \pi_{\mathrm{AC}} \mathrm{R} \bowtie \pi_{\mathrm{BC}} \mathrm{R}\right)$

R		
A	B	C
a	b	c
d	b	e
f	g	e

$\overbrace{\pi_{A B} R \bowtie \pi_{B C} R}$			$\underbrace{\downarrow}_{\pi_{\mathrm{AC}} \mathrm{R} \bowtie \pi_{\mathrm{BC}} \mathrm{R}}$				$\mathrm{Q}_{1} \cup \mathrm{Q}_{2}$			
A	B	C	A	B	C		A	B	C	
a	b	c X^{2}	a	b	C	X^{2}	a	b	c	$2 \mathrm{X}^{2}$
a	b	e XY	d	b	e	Y^{2}	a	b	e	XY
d	b	c XY	d	g	e	YZ	d	b	c	XY
d	b	e Y^{2}	f	b	e	YZ	d	b	e	$2 Y^{2}$
f	g	e Z^{2}	f	g	e	Z ${ }^{2}$	d	g	e	YZ
							f	b	e	YZ
							1	g	e	$2 Z^{2}$

Q		
A	C	
a	C	$2 X^{2}$
a	e	XY
d	c	XY
d	e	$2 Y^{2}+Y Z$
f	e	$\mathrm{YZ}+2 \mathrm{Z}^{2}$

A more complex example with exponents

$\mathrm{Q}(\mathrm{R})=\pi_{\mathrm{AC}}\left(\pi_{\mathrm{AB}} \mathrm{R} \bowtie \pi_{\mathrm{BC}} \mathrm{R} \cup \pi_{\mathrm{AC}} \mathrm{R} \bowtie \pi_{\mathrm{BC}} \mathrm{R}\right)$

A	B	C		A	B		
a	b	c	X^{2}	a	b		X^{2}
a	b	e	XY	d	b		Y^{2}
d	b	c	XY	d	g		YZ
d	b	e	Y^{2}	f	b		YZ
f	g	e	Z^{2}	f	g	e	Z^{2}

Let's assume bag semantics and duplicities in the input. How many?

$\mathrm{Q}_{1} \cup \mathrm{Q}_{2}$			
A	B	C	
a	b	c	$2 X^{2}$
a	b	e	XY
d	b	c	XY
d	b	e	$2 Y^{2}$
d	g	e	YZ
f	b	e	YZ
f	g	e	$2 Z^{2}$

Q		
A	C	
a	C	$2 \mathrm{X}^{2}$
a	e	XY
d	C	XY
d	e	$2 Y^{2}+Y Z$
f	e	YZ $+2 \mathrm{Z}^{2}$

$(\mathbb{N},+, \cdot, 0,1)$: Counting derivations / bag semantics

A more complex example with exponents

$$
\mathrm{Q}(\mathrm{R})=\pi_{\mathrm{AC}}\left(\pi_{\mathrm{AB}} \mathrm{R} \bowtie \pi_{\mathrm{BC}} \mathrm{R} \cup \pi_{\mathrm{AC}} \mathrm{R} \bowtie \pi_{\mathrm{BC}} \mathrm{R}\right)
$$

 duplicities in the input. How many output tuples do we get?
$(\mathbb{N},+, \cdot, 0,1)$: Counting derivations / bag semantics

A more complex example with exponents

$\mathrm{Q}(\mathrm{R})=\pi_{\mathrm{AC}}\left(\pi_{\mathrm{AB}} \mathrm{R} \bowtie \pi_{\mathrm{BC}} \mathrm{R} \cup \pi_{\mathrm{AC}} \mathrm{R} \bowtie \pi_{\mathrm{BC}} \mathrm{R}\right)$
$\mathrm{R} \quad \pi_{\text {R.A,R.B,R2.C }}\left(\mathrm{R} \bowtie_{\text {R.B }=\text { R2.B }} \rho_{\mathrm{R} \rightarrow \mathrm{R} 2} \mathrm{R}\right) \quad \pi_{\text {R.A,R2.B,R.C }}\left(\mathrm{R} \bowtie_{\text {R.C=R2.C }} \rho_{\mathrm{R} \rightarrow \mathrm{R} 2} \mathrm{R}\right)$

A	B	C	
a	b	C	$X=2$
d	b	e	$Y=5$
f	g	e	$Z=1$

SELECT A, C, COUNT (*)
FROM (
SELECT R.A, R.B, R2.C
FROM R, R R2
WHERE R. B $=$ R2.B
UNION ALL
SELECT R.A, R2.B, R.C
FROM R, R R2
WHERE R.C $=$ R2.C) X
GROUP BY A, C
ORDER BY A, C

4	a character varying	C character varying	count. bigint
1	a	c	8
2	a	e	10
3	d	c	10
4	d	e	55
5	f	e	7

Outline: T2-3: Provenance

- T2-3: Provenance
- Data Provenance
- The Semiring Framework for Provenance
- Algebra: Monoids and Semirings
- Query-rewrite-insensitive provenance

Logic and Algebra for Query Evaluation

About

The workshop will discuss semantics of logic programs over general semirings: constraints over semirings, query complexity with semiring semantics, termination conditions of logic programs over semirings. The connection between semirings and logic is a relatively new development in database theory (since 2007), and this area has high potential for major innovation. Some of the problems discussed at the workshop will be inspired by systems, others will be purely theoretical in nature, such as the quest for finding appropriate extensions of Pebble Games to semiring semantics.

Chairs/Organizers

Sudeepa Roy. (Duke University; co-chair)

Dan Suciu (University of Washington; co-chair)

Wolfgang Gatterbauer (Northeastern University)
Val Tannen (University of Pennsylvania)

Why algebra? Think abstraction and generalization

- Abstraction:
- Generalization:

Why algebra? Think abstraction and generalization

For instance, consider the following three objects:

- Abstraction: an emphasis on the idea and properties rather than the particulars (hiding irrelevant details)
- main goal in "Abstract algebra"
- e.g. groups in group theory
- Generalization:

1. The set of functions A, B, C defined on the set $\{1,2,3\}$ by

$$
\begin{aligned}
& A(1)=1, \quad A(2)=2, \quad A(3)=3, \\
& B(1)=2, B(2)=3, B(3)=1, \\
& C(1)=3, \quad C(2)=1, \quad C(3)=2,
\end{aligned}
$$

2. The set of complex numbers $a=1, b=e^{i 2 \pi / 3}, c=e^{i 4 \pi / 3}$.
3. The set of matrices $\alpha=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \beta=\left(\begin{array}{cc}0 & -1 \\ -1 & -1\end{array}\right), \gamma=\left(\begin{array}{cc}-1 & -1 \\ -1 & 0\end{array}\right)$

Consider these notations: $A B$ means $A(B(x)), a b$ is ordinary multiplication of complex numbers, and $\alpha \beta$ means ordinary matrix multiplication. Verify the following "multiplication" tables:

Notice that these tables are identical. Then let us by abstraction define an abstract object which is the set of three elements $\left\{e, g, g^{-1}\right\}$ paired with a binary operator • such that set acts on itself in the following manner with respect to the operator:

\cdot	e	g	g^{-1}
e	e	g	g^{-1}
g	g	g^{-1}	e
g^{-1}	g^{-1}	e	g

In Group Theory an object with such structure is called the cyclic group of order three. Then the examples above are representations of this abstract object. It is an abstract object because while we have now given it a definition, notice that it is itself a stand-in for a variety of objects that have the properties that it demonstrates. You might even consider the abstract object to be more of a set

Why algebra? Think abstraction and generalization

For instance, consider the following three objects:

- Abstraction: an emphasis on the idea and properties rather than the
particulars (hiding irrelevant details)
- main goal in "Abstract algebra"

1. The set of functions A, B, C defined on the set $\{1,2,3\}$ by

$$
\begin{aligned}
& A(1)=1, \quad A(2)=2, \quad A(3)=3 \\
& B(1)=2, \quad B(2)=3, \quad B(3)=1 \\
& C(1)=3, \quad C(2)=1, \quad C(3)=2
\end{aligned}
$$

2. The set of complex numbers $a=1, b=e^{i 2 \pi / 3}, c=e^{i 4 \pi / 3}$.
3. The set of matrices $\alpha=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \beta=\left(\begin{array}{cc}0 & -1 \\ -1 & -1\end{array}\right), \gamma=\left(\begin{array}{cc}-1 & -1 \\ -1 & 0\end{array}\right)$

Consider these notations: $A B$ means $A(B(x))$, $a b$ is ordinary multiplication of complex numbers, and $\alpha \beta$ means ordinary matrix multiplication. Verify the following "multiplication" tables:

Notice that these tables are identical. Then let us by abstraction define an abstract object which is the set of three elements $\left\{e, g, g^{-1}\right\}$ paired with a binary operator • such that set acts on itself in the following manner with respect to the operator:

\cdot	e	g	g^{-1}
e	e	g	g^{-1}
g	g	g^{-1}	e
g^{-1}	g^{-1}	e	g

In Group Theory an object with such structure is called the cyclic group of order three. Then the examples above are representations of this abstract object. It is an abstract object because while we have now given it a definition, notice that it is itself a stand-in for a variety of objects that have the properties that it demonstrates. You might even consider the abstract object to be more of a set

Let's start with groups! Why groups?

- Groups are one of the most important structures studied in abstract algebra
- What is so special about groups?

Groups have the minimum properties needed to solve equations

Equation

$$
x+3=5
$$

Can you solve that $?$

Groups have the minimum properties needed to solve equations

 $(\mathbb{Z},+, 0)$: Integers under addition$$
\begin{aligned}
& x+3=5 \\
& {[x+3]+(-3)=5+(-3)} \\
& {[x+3]+(-3)=2} \\
& x+[3+(-3)]=2 \\
& x+0=2 \\
& x=2 \\
& (1 b)+c \\
& 0 \downharpoonleft(b \div r)
\end{aligned}
$$

Why something weaker than groups?

- For some important computational problems like Dynamic Programming, we don't need to "solve equations".
- Thus we don't need an inverse ("we don't need to go back")
- Let's look at weaker structures

Michel Gondan
Minel Minoux

Graphs, Dioids and Semirings Nen Nods mand hominm

Preface

During the last two or three centuries, most of the developments in science (in particular in Physics and Applied Mathematics) have been founded on the use of classical algebraic structures, namely groups, rings and fields. However many situations can be found for which those usual algebraic structures do not necessarily provide the
©Springer most appropriate tools for modeling and problem solving.

Group-like structures

Group-like structures

Set S

$+1 . \begin{aligned} & \text { llosed binary operation } \oplus: \\ & \text { If } x, y \in S \text { then the image }(x \oplus y) \in S\end{aligned}$
Magma (S, \bigoplus)
$+2 . \begin{aligned} & \text { Associativity: } \\ & x \oplus(y \oplus z)=(x \oplus y) \oplus z\end{aligned}$

Semigroup (S, \oplus)

"In a category associativity is the condition that the two ways to use binary composition of morphisms to compose a sequence of three morphisms are equal"

Group-like structures

Set S

$+1 . \begin{aligned} & \text { Closed binary operation } \oplus: \\ & \text { If } x, y \in S \text { then the image }(x \oplus y) \in S\end{aligned}$
Magma (S, \oplus)
$+2 . \begin{aligned} & \text { Associativity: } \\ & x \oplus(y \oplus z)=(x \oplus y) \oplus z\end{aligned}$

Semigroup (S, \oplus)

$$
\text { +3. } \left\lvert\, \begin{aligned}
& \text { Identity element: } \\
& \exists \mathrm{e} \in \mathrm{~S} . \forall \mathrm{x} \in \mathrm{~S} .[\mathrm{e} \oplus \mathrm{x}=\mathrm{x} \oplus \mathrm{e}=\mathrm{x}]
\end{aligned}\right.
$$

Monoid (S, \oplus, e)

Group-like structures

Set S

$+1 . \begin{aligned} & \text { llosed binary operation } \oplus: \\ & \text { If } x, y \in S \text { then the image }(x \oplus y) \in S\end{aligned}$
Magma (S, \oplus)
$+2 . \begin{aligned} & \text { Associativity: } \\ & x \oplus(y \oplus z)=(x \oplus y) \oplus z\end{aligned}$
Semigroup (S, \oplus)
+3. $\left\{\begin{array}{l}\text { Identity element: } \\ \exists \mathrm{e} \in \mathrm{S} . \forall \mathrm{x} \in \mathrm{S} .[\mathrm{C} \oplus \mathrm{x}=\mathrm{x} \oplus \mathrm{e}=\mathrm{x}]\end{array}\right.$
Monoid ($\mathrm{S}, \oplus, \mathrm{e}$)

$+4 .$| Inverse: |
| :--- |
| $\forall x \in S . \exists x^{-1} \in S .\left[x^{-1} \oplus x=x \oplus x^{-1}=e\right]$ |

Group $(\mathrm{S}, \oplus, \mathrm{e})$

Group-like structures

Set S
+1. $\begin{aligned} & \text { llosed binary operation } \oplus: \\ & \text { If } x, y \in S \text { then the image }(x \oplus y) \in S\end{aligned}$
Magma (S, \oplus)

$+2$	Associativity: $x \oplus(y \oplus z)=(x \oplus y) \oplus z$
Semigroup (S, \oplus)	
$+3 .$	Identity element: $\exists \mathrm{e} \in \mathrm{~S} . \forall \mathrm{x} \in \mathrm{~S} .[\mathrm{e} \oplus \mathrm{x}=$

What are intuitive examples for:

- a group

- monoids (that are not groups)

- semigroups (that are not monoids)?

Monoid (S, \bigoplus, e)

$\operatorname{Group}(\mathrm{S}, \oplus, \mathrm{e}) \xrightarrow[+5]{ }$ Abelian Group $(\mathrm{S}, \oplus, \mathrm{e})$

Group-like structures

Set S
+1. $\begin{aligned} & \text { llosed binary operation } \oplus: \\ & \text { If } x, y \in S \text { then the image }(x \oplus y) \in S\end{aligned}$
Magma (S, \oplus)

$+2$	Associativity: $x \oplus(y \oplus z)=(x \oplus y) \oplus z$
Semigroup (S, \oplus)	
$+3 .$	Identity element: $\exists \mathrm{e} \in \mathrm{~S} . \forall \mathrm{x} \in \mathrm{~S} .[\mathrm{e} \oplus \mathrm{x}=$

What are intuitive examples for:

- a group
- ($\mathbb{Z},+, 0)$: Integers under addition
- monoids (that are not groups)

- semigroups (that are not monoids)?

Monoid (S, \bigoplus, e)

$\operatorname{Group}(\mathrm{S}, \oplus, \mathrm{e}) \xrightarrow[+5]{\longrightarrow}$ Abelian Group $(\mathrm{S}, \oplus, \mathrm{e})$

Group-like structures

Set S

+ 1. Closed binary operation \oplus :
If $x, y \in S$ then the image $(x \oplus y) \in S$
Magma (S, \oplus)
$+2 . \begin{aligned} & \text { Associativity: } \\ & x \oplus(y \oplus z)=(x \oplus y) \oplus z\end{aligned}$
Semigroup (S, \oplus)

$+3 .$| Identity element: |
| :--- |
| $\exists \mathrm{e} \in \mathrm{S}$. |
| $\mathrm{x} \in \mathrm{S} .[\mathrm{e} \oplus \mathrm{x}=\mathrm{x} \oplus \mathrm{e}=\mathrm{x}]$ |

What are intuitive examples for:

- a group
- (Z,+, 0): Integers under addition
- monoids (that are not groups)
- ($\mathbb{N},+, 0)$: Natural numbers under add. $\{0,1, \ldots\}$
- ($\mathbb{R}, \min , \infty)$: minimum has no inverse
- String concatenation with null string ε
- Square matrices under matrix multiplication
- (P(S),U): Power set under union
- semigroups (that are not monoids)?

Commutative Monoid (S, \oplus, e)
Monoid (S, \oplus, e)

Group (S, \oplus, e)

$$
+5 .
$$

Group-like structures

Set S

+ 1. Closed binary operation \oplus :
If $x, y \in S$ then the image $(x \oplus y) \in S$
Magma (S, \oplus)
$+2 . \begin{aligned} & \text { Associativity: } \\ & x \oplus(y \oplus z)=(x \oplus y) \oplus z\end{aligned}$
Semigroup (S, \oplus)
$+3 .\left\{\begin{array}{l}\text { Identity element: } \\ \exists \mathrm{e} \in \mathrm{S} . \forall \mathrm{x} \in \mathrm{S} .[\mathrm{e} \oplus \mathrm{x}=\mathrm{x} \oplus \mathrm{e}=\mathrm{x}]\end{array}\right.$

What are intuitive examples for:

- a group
- (Z,+, 0): Integers under addition
- monoids (that are not groups)
- ($\mathbb{N},+, 0)$: Natural numbers under add. $\{0,1, \ldots\}$
- ($\mathbb{R}, \min , \infty)$: minimum has no inverse
- String concatenation with null string ε
- Square matrices under matrix multiplication
- (P(S),U): Power set under union
- semigroups (that are not monoids)?
- $\left(\mathbb{N}_{1},+\right)$: Positive integers under add. $\{1,2, \ldots\}$
- Even numbers under multiplication
- String concatenation without null string

Monoid $(S, \bigoplus, e) \longrightarrow$ Commutative Monoid (S, \bigoplus, e) +4.
$\forall \begin{aligned} & \text { Inverse: 5. Commutativity: } \mathrm{x} \oplus \mathrm{y}=\mathrm{y} \oplus \mathrm{x} \\ & \forall \mathrm{x} \in \mathrm{S} . \exists \mathrm{x}^{-1} \in \mathrm{~S} .\left[\mathrm{x}^{-1} \oplus \mathrm{x}=\mathrm{x} \oplus \mathrm{x}^{-1}=\mathrm{e}\right]\end{aligned}$
$\operatorname{Group}(\mathrm{S}, \oplus, \mathrm{e}) \xrightarrow[+5]{ }$

What do we exactly lose by not having an inverse?

- Let's take a quick detour and look at some examples to illustrate what we lose by having monoids instead of groups

Monoids vs. Groups: Examples

- Commutative group (with inverse)
$-(\mathbb{R},+, 0) \quad$ e.g., $3+3^{-1}=$?

Monoids vs. Groups: Examples

- Commutative group (with hiverse)
- $(\mathbb{R},+, 0)$
e.g., $3+3^{-1}=3+(-3)=0$
recall: inverse w.r.t. $(+, 0)$
- $(\mathbb{R} \backslash\{0\}, \cdot, 1)$ e.g., $3 \cdot 3^{-1}=$?

Monoids vs. Groups: Examples

- Commutative group (with hiverse)
- $(\mathbb{R},+, 0)$
e.g., $3+3^{(-1)}=3+(-3)=0$
- $(\mathbb{R} \backslash\{0\}, \cdot, 1)$ e.g., $3 \cdot 3^{-1}=3 \cdot(1 / 3)=1$
- Commutative monoid (w/o inverse)
- (\{0,1\}, $\wedge, 1)$... logical conjunction
- identity element 1: $\mathrm{x} \wedge 1=1 \wedge \mathrm{x}=\mathrm{x}$
- What is the inverse 0^{-1} s.t. $0 \wedge 0^{-1}=1$

Monoids vs. Groups: Examples

- Commutative group (with inverse)
$\begin{array}{lll}\text { - }(\mathbb{R},+, 0) & \text { e.g., } 3+3^{-1}=3+(-3)=0 & \text { recall: inverse w.r.t. }(+, 0) \\ \text { - }(\mathbb{R} \backslash\{0\}, \cdot, 1) & \text { e.g., } 3 \cdot 3^{-1}=3 \cdot(1 / 3)=1 & \end{array}$
- Commutative monoid (w/o inverse)
- (\{0,1\},^,1) ... logical conjunction - identity element 1: $x \wedge 1=1 \wedge x=x$
- What is the inverse 0^{-1} s.t. $0 \times 0^{-1}=1 \quad$ There is no such inverse : $:$
- $\left(\mathbb{R}^{\infty}, \min , \infty\right)$
- identity element ∞ : $\min [x, \infty]=x$

What is the inverse 3^{-1} s.t. $\min \left[3,3^{-1}\right]=\infty$

Monoids vs. Groups: Examples

- Commutative group (with inverse)
$\begin{array}{lll}\text { - }(\mathbb{R},+, 0) & \text { e.g., } 3+3^{-1}=3+(-3)=0 & \text { recall: inverse w.r.t. }(+, 0) \\ \text { - }(\mathbb{R} \backslash\{0\}, \cdot, 1) & \text { e.g., } 3 \cdot 3^{-1}=3 \cdot(1 / 3)=1 & \end{array}$
- Commutative monoid (w/o inverse)
- $(\{0,1\}, \wedge, 1)$... logical conjunction
- identity element 1: $x \wedge 1=1 \wedge x=x$
- What is the inverse 0^{-1} s.t. $0 \wedge 0^{-1}=1$

There is no such inverse : $:$

- ($\left.\mathbb{R}^{\infty}, \min , \infty\right)$
- identity element ∞ : $\min [x, \infty]=x$

What is the inverse 3^{-1} s.t. $\min \left[3,3^{-1}\right]=\infty$ There is no such inverse :()

The power of groups (i.e. of having an inverse)

- Assume(x, y, z) s.t. $x \bigoplus y=z$
- Given y and z (and knowing that z was calculated), deduce x
- $(\mathbb{R},+, 0)$ and $(x, y, z)=(1,2,3)$
- $x+2=3$ What is x ? ?

The power of groups (i.e. of having an inverse)

- Assume(x, y, z) s.t. $x \bigoplus y=z$
- Given y and z (and knowing that z was calculated), deduce x
- $(\mathbb{R},+, 0)$ and $(x, y, z)=(1,2,3)$
- $x+2=3$

What is $x ? x=z+y^{-1}=3+(-2)=1$

- $(\{0,1\}, \wedge, 1)$ and $(x, y, z)=(1,0,0)$
- x^0=0

What is x ?

The power of groups (i.e. of having an inverse)

- Assume(x, y, z) s.t. $x \bigoplus y=z$
- Given y and z (and knowing that z was calculated), deduce x
- $(\mathbb{R},+, 0)$ and $(x, y, z)=(1,2,3)$
- $x+2=3$

What is $x ? x=z+y^{-1}=3+(-2)=1$

- $(\{0,1\}, \wedge, 1)$ and $(x, y, z)=(1,0,0)$
- x^0=0

$$
x \wedge 0=1
$$

What is x ? x could be 0 or 1

- $\left(\mathbb{R}^{\infty}, \min , \infty\right)$ and $(x, y, z)=(3,2,2)$
$-\mathrm{x} \min 2=2$
What is x ?

The power of groups (i.e. of having an inverse)

- Assume(x, y, z) s.t. $x \bigoplus y=z$
- Given y and z (and knowing that z was calculated), deduce x
- $(\mathbb{R},+, 0)$ and $(x, y, z)=(1,2,3)$
- $x+2=3$

What is $x ? x=z+y^{-1}=3+(-2)=1$

- $(\{0,1\}, \wedge, 1)$ and $(x, y, z)=(1,0,0)$
- x^0=0

What is x ? x could be 0 or 1

- $\left(\mathbb{R}^{\infty}, \min , \infty\right)$ and $(x, y, z)=(3,2,2)$
- $\mathrm{x} \min 2=2$

What is x ? x can be anything in $[2, \infty$]

Rings and Semirings: what we get from two operators

- Groups and group-like structures consider a set and one binary operator (with various properties)
- Rings and ring-like structures consider a set and two operators (with various properties and "interactions" like the distributive law)

(Commutative) Semirings

two operators w/ neutral elements

- Semiring $(S, \oplus, \otimes, 0,1)$

1. $(S, \oplus, 0)$ is commutative monoid
2. $(S, \otimes, 1)$ is (commutative) monoid
3. \otimes distributes over $\oplus:(x \oplus y) \otimes z=(x \otimes z) \oplus(y \otimes z)$
4. 0 annihilates $\otimes: 0 \otimes x=0$
thus semirings are rings w/o the additive inverse ($=$ GROUP) commutative semirings e.g.: matrix multiplication is not commutative

(Commutative) Semirings
two operators w/ neutral elements

- Semiring ($\mathrm{S}, \oplus, \otimes, 0,1$)

1. $(S, \oplus, 0)$ is commutative monoid
2. $(S, \otimes, 1)$ is (cpmmutative) monoid
3. \otimes distributes over $\oplus:(x \oplus y) \otimes z=(x \otimes z) \oplus(y \otimes z)$
4. 0 annihilates $\otimes: 0 \otimes x=0$

- Examples

TROPICAL ADDITION

1. $\mathbb{T}=\left(\mathbb{R}_{+}^{\infty}, \min ,+, \infty, 0\right)$ Shortest-distance: $\min [x, y]+z=\min [(x+z),(y+z)]$ min-sum semiring, also called tropical semiring: sum distributes over min: $\min [x+y]+z=\min [x+z, y+z] ;$ e.g. $\min [3+4]+5=\min [3+5,4+5]=8$
thus semirings are rings w/o the additive inverse ($=$ GROUP) commutative semirings e.g.: matrix multiplication is not commutative not the other way: $\min [x+y, z] \neq \min [x, z]+\min [y, z] ;$ e.g. $\min [3+4,5]=5 \neq 7=\min [3,5]+\min [4,5]$
2. $\mathbb{R}=(\mathbb{R},+, \cdot, 0,1) \quad$ Ring of real numbers
3. $\mathbb{B}=(\{0,1\}, \vee, \wedge, 0,1) \quad$ Boolean (set semantics)
4. $\mathbb{N}=(\mathbb{N},+, \cdot, 0,1) \quad$ Number of paths (bag semantics)

5. $\mathbb{V}=([0,1], \max , \cdot, 0,1)$ Probability of best derivation (Viterbi)

Ring-like structures

This graphic describes the interrelationships
between various Group-like algebraic
and between various Group-like algebraic
structures. Structures are connected by
arrows that low downward arrows that flow downward and in the direction
of more axioms and increasing specificty. The
amows themselves are labeled with the of more axioms and increasing specificity.
anows themselves are labeled with the
axiom(s) trat need to be added to the axiom(s) mat eed to be added to the
upstream structure inorder to produce the upstream structure inperder to produce the
downstream structure. This os done in a way
that respects symmetry so that the that serspent structure. This sisdone in a way
always necessary AND so that the axioms are
and always necessary AND sufficient for producing
the downstream structure. In the language of $\begin{aligned} & \text { he downstream structure. In the language of } \\ & \text { symbolic cogici, if structure } S \text { is downwardly }\end{aligned} \quad+\quad+$ associative, zero exists (+ is monoid),
associative ((is semigroup) connected to structure T thru axiom A, then
S and $A \ll T$

* "Reciprocal" means multiplicative inverse. Defined on all non-zero elements.
Also, saying ". is a group" means $"$ ". is a group on the non-zero elements".

Figure credits: https://kevinbinz.com/2014/11/16/goodman-semiring-parsing/,
https://math.stackexchange.com/questions/2361889/graphically-organizing-the-interrelationships-of-basic-algebraic-structures Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Ring-like structures

Field	
Closure	Abelian Group (+)
Associativity	
Identity Eloment	
Inverse Element	
Commutativity	
Closure	non-zero elements form an Abelian Group ${ }^{\prime} \times$ except
Associativity	
Identity Element	
Inverse Element 4	
Commutativity	
Left Distributivity	Distributivity
Right Distributivity	

Pseudo-Ring (rug)	
Closure \quad K	
Associativity	
Identity Element	
Inverse Element	
Commutativity	
Closure	Semi-Group sometibles called ring w/o identit
Associativity	
Identity Element	
Inverse Element	
Commutativity	
Left Distributivity	
Right Distributivity	

This graphic describes the interrelationships
between various Group-like algebraic between various Group-like algebraic
structures. Structures are connected by
arrow that
of mow tow downwar anioms in the eirection
ond increasing specificty. The of more axioms and increasing specificitity.
arrows themselves are labeled with the
axiom(s) trat needd to be axiom(s) intineed to be added to the upstream structure iinarderd tod prodeduce the
downstream structure. Thisis done in a way downstream structure. Thistiodone in a way
that respects symmetry so that the axioms are
always neeessary AND always necessary AND suffificient for producuccing
he downstream structure. In the language of the downstream structure. In the language of connected to structure T thru axiom A, hen S and $A \ll T$
Graphically, this Graphically, this also means that it it's possible
ot travel from one structure to another by otravicl from one structure to to another by
consistently following the arrows oonsistently going against the arow, orvs, then the

bigher structure contains the lower structure | orsistenty going against the arrows, then |
| :--- |
| higher structure contains the lower structure | as a special case, and everv inctance of tio

lower is also an inglatice of the higher.
$\mathbb{R}[x]$ real polynomials $\mathbb{Z} / 4 \mathbb{Z}$ (integers mod 4)
$\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a, b, c, d\right.$ are integers $\}$
$\mathbb{B}=(\mathbb{B}, \vee, \wedge, 0,1)$: Boolean semiring
\mathbb{Q} (rational numbers) $\mathbb{Z} / 5 \mathbb{Z}$ (integers mod 5) $\frac{f(x)}{g(x)}$ field of rational fcts $\mathbb{R}[x]$ real polynomials
$1+1=1$, thus \vee has no inverse
$(\mathbb{N},+, \cdot, 0,1)$: Natural numbers no inverses

Polynomials with semiring coefficients (e.g. $\mathbb{N}[x]$)

2Z: Even integers
annihilator,

Adding Axioms
(more specific) (more specific)

Figure credits: https://kevinbinz.com/2014/11/16/goodman-semiring-parsing/
https://math.stackexchange.com/questions/2361889/graphically-organizing-the-interrelationships-of-basic-algebraic-structures Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Rings and Semiring homomorphisms

- We have seen homomorphisms for structures with 1 operator:
- graphs
- conjunctive queries
- groups
- general binary structures
- Semiring homomorphisms generalize this to two operators

RECALL Homomorphisms on Binary Structures

- Definition (Binary algebraic structure): A binary algebraic structure is a set together with a binary operation on it. This is denoted by an ordered pair (S, \star) in which S is a set and \star is a binary operation on S.
- Definition (homomorphism of binary structures): Let (S, \star) and $\left(S^{\prime}, \circ\right)$ be binary structures. A homomorphism from (S, \star) to $\left(S^{\prime}, \circ\right)$ is a map $h: S \longrightarrow S^{\prime}$ that satisfies, for all x, y in S :

$$
h(x \star y)=h(x) \circ h(y)
$$

- We can denote it by $h:(S, \star) \longrightarrow\left(S^{\prime}, \circ\right)$.

Homomorphisms now for ring-like structures

- A homomorphism between two semirings is a function between their underlying sets that preserves the two operations of addition and multiplication and also their identities.
- Definition (homomorphism between semirings): Let ($R,+, \bullet$) and (S, \star, \circ) be semirings. A homomorphism from ($R,+, \bullet$) to (S, \star, \circ) is a map $h: S \rightarrow S^{\prime}$ that satisfies, for all x, y in S :
$-h(x+y)=h(x) \star h(y) \quad$ addition preserving
- $h(x \cdot y)=h(x) \circ h(y) \quad$ multiplication preserving
- $h\left(1_{R}\right)=1_{S} \quad$ multiplicative identity preserving
- $h\left(0_{R}\right)=0_{S} \quad$ additive identify preserving

A partial provenance hierarchy

most informative

Using homomorphisms to relate models

$$
\text { Example: } 2 x^{2} y+x y+5 y^{2}+z
$$

A path downward from K_{1} to K_{2} indicates that there exists an onto (surjective) semiring homomorphism $h: K_{1} \rightarrow K_{2}$ Furthermore, notice that for these homomorphisms $h(x)=x$

The power of Semirings is rediscovered again and again

- Semirings are not "as famous" as rings or groups in abstract algebra, but form the basis of efficient algorithms
- we often don't need an inverse for the semiring addition
- we calculate "forward" not backwards (we don't solve equations)
- Thus they are "rediscovered" again and again in various branches of computer science

Power of semirings is rediscovered again and again

1. Bistarelli, Montanari, Rossi. Semiring-Based Constraint Satisfaction and Optimization. JACM 1997 (cited > 800 times, 3/2020)

"We introduce a general framework for constraint satisfaction and optimization where classical CSPs, fuzzy CSPs, weighted CSPs, partial constraint satisfaction, and others can be easily cast. The framework is based on a semiring structure, where the set of the semiring specifies the values to be associated with each tuple of values of the variable domain, and the two semiring operations (1 and 3) model constraint projection and combination respectively. Local consistency algorithms, as usually used for classical CSPs, can be exploited in this general framework as well..."

Power of semirings is rediscovered again and again

2. Aji, McEliece: The generalized distributive law. IEEE Transactions on Information Theory 2000 (cited >950 times in 3/2020)

TABLE I
Some Commutative Semirings. Here A
Denotes an Arbitrary Commutative Ring, S Is an Arbitrary Finite
SEt, and Λ Denotes an Arbitrary Distributive Lattice

	K	$"(+, 0) "$	$"(\cdot, 1) "$	short name
1.	A	$(+, 0)$	$(\cdot, 1)$	
2.	$A[x]$	$(+, 0)$	$(\cdot, 1)$	
3.	$A[x, y, \ldots]$	$(+, 0)$	$(\cdot, 1)$	
4.	$[0, \infty)$	$(+, 0)$	$(\cdot, 1)$	sum-product
5.	$(0, \infty]$	(\min , ∞)	$(\cdot, 1)$	min-product
6.	$[0, \infty)$	$(\max , 0)$	$(\cdot, 1)$	max-product
7.	$(-\infty, \infty]$	(\min , ∞)	$(+, 0)$	min-sum
8.	$[-\infty, \infty)$	$(\max ,-\infty)$	$(+, 0)$	max-sum
9.	$\{0,1\}$	$(\mathrm{OR}, 0)$	$($ AND, 1$)$	Boolean
10.	2^{S}	(\cup, \emptyset)	(\cap, S)	
11.	Λ	$(\vee, 0)$	$(\wedge, 1)$	
12.	Λ	$(\wedge, 1)$	$(\mathrm{V}, 0)$.	

"... we discuss a general message passing algorithm, which we call the generalized distributive law (GDL). The GDL is a synthesis of the work of many authors in the information theory, digital communications, signal processing, statistics, and artificial intelligence communities. It includes as special cases ... Although this algorithm is guaranteed to give exact answers only in certain cases (the "junction tree" condition), ... much experimental evidence, and a few theorems, suggesting that it often works approximately even when it is not supposed to.

Power of semirings is rediscovered again and again

3. Mohri: Semiring frameworks and algorithms for shortest-distance problems. Journal of Automata, Languages and Combinatorics. 2002 (cited 290 times in 3/2020)

"We define general algebraic frameworks for shortest-distance problems based on the structure of semirings. We give a generic algorithm for finding single-source shortest distances in a weighted directed graph when the weights satisfy the conditions of our general semiring framework.
... Classical algorithms such as that of Bellman-Ford [4, 17] are specific instances of this generic algorithm ... The algorithm of Lawler [24] is a specific instance of this algorithm."

$$
\text { the system }(\mathbb{K}, \oplus, \otimes) \text { is a semiring }
$$ (PODS 2017 test-of-time award)

Conclusions and Further Work
General and versatile framework.
Dare I call it "semiring-annotated databases"?
Many apparent applications.
We clarified the hazy picture of multiple models for database
provenance.
Essential component of the data sharing system Orchestra.
- Dealing with negation (progress: [Geerts\&Poggi 08, GI\&T ICDT 09])
- Dealing with aggregates (progress: [T ProvWorkshop 08])
- Dealing with order (speculations...)

Power of semirings is rediscovered again and again

5. Khamis, Ngo, Rudra. FAQ: Questions Asked Frequently. PODS 2016 (PODS 2016 best paper award)

"We define and study the Functional Aggregate Query (FAQ) problem, which encompasses many frequently asked questions in constraint satisfaction, databases, matrix operations, probabilistic graphical models and logic. This is our main conceptual contribution... We then present a simple algorithm called InsideOut to solve this general problem. InsideOut is a variation of the traditional dynamic

Problem	FAQ formulation	Previous Algo.	Our Algo.				
\#QCQ	$\begin{gathered} \sum_{\left(x_{1}, \ldots, x_{f}\right)} \oplus_{x_{s+1}}^{(f+1)} \cdots \oplus_{x_{n}}^{(n)} \prod_{S \in \mathcal{E}} \psi_{s}\left(\mathbf{x}_{s}\right) \\ \text { where } \oplus^{(i)} \in\{\max , \times\} \end{gathered}$	No non-trivial algo	$\bar{O}\left(N^{\left(\operatorname{losavx}\left(v^{\prime}\right)\right.}+\|\varphi\|\right)$				
QCQ	$\begin{aligned} & \oplus_{x_{j+1}}^{(S+1)} \cdots \oplus_{x_{n}}^{(2)} \prod_{S \in E} \psi_{S}\left(\mathbf{x}_{s}\right) \\ & \quad \text { where } \oplus^{(i)} \subset\{\text { max }, \times\} \end{aligned}$	$\tilde{O}\left(N^{\text {PWW}}(\mathcal{H})+\\|\dot{\vartheta}\\|\right)[24]$	$\tilde{O}\left(N^{\text {畨(}(\dot{p})}+\\| \varphi \mid\right)$				
$\# C Q$	$\sum_{\left(x_{1}, \ldots, x_{f}\right)} \max _{x_{F+1}} \cdots \max _{x_{n}} \prod_{s_{G} \mathcal{E}} \psi_{s}\left(\mathbf{x}_{S}\right)$	$\bar{O}\left(N^{\text {DM (}}\right.$ ($\left.)+\\|; \sim\\|\right)[34]$	$\bar{O}\left(N^{\operatorname{taqug}(\varphi)}+\|\varphi\|\right)$				
Joins	$U_{\mathrm{x}} \cap_{s \varepsilon \varepsilon} \psi_{s}\left(\mathrm{x}_{s}\right)$	$\bar{O}\left(N^{\text {nitw/ } / \mathcal{H})}+\\|\varphi\\|\right)[46]$	$\bar{O}\left(\mathrm{~N}^{\text {ntap(}}(\mathcal{H})+\\|; \mathcal{l}\\|\right)$				
Marginal	$\sum_{\left(w_{f+1} \cdots, w_{n}\right)} \prod_{S \in E} \psi_{s}\left(\mathbf{x}_{s}\right)$	$\tilde{O}\left(N^{\tan (\varphi)}+\\|\varphi\\|\right\rangle[54]$	$\tilde{O}\left(N^{\operatorname{togv}(\hat{p})}+\\| \varphi \mid\right)$				
MAP	$\max _{\left(x_{s+1}, \ldots, w_{n}\right)} \prod_{s \in E} \psi_{s}\left(x_{s}\right)$	$\bar{O}\left(N^{\text {has }}(\varphi)+\\|\varphi\\|\right)[51]$	$\bar{O}\left(N^{\operatorname{togus}(\dot{p})}+\\|\varphi\\|\right)$				
MCM	$\sum_{x_{2}, \ldots, w_{n}} \prod_{i=1}^{n} \psi_{k, i+1}\left(x_{i}, x_{i-1}\right)$	DP bound [28]	DP bound				
DFT	$\sum_{\left(y_{n}, \ldots, y_{m-1}\right) \in \mathbb{Z}_{p}^{m}} b_{y} \cdot \prod_{0<j+k<m} e^{i 2 \pi \frac{x_{2} \cdot y_{j}}{p^{m} j_{j}}{ }_{c}}$	$O\left(N \log _{p} N\right)[27]$	$O\left(N \log _{p} N\right)$	programming approach for constraint programming based on variable elimination."			

Power of semirings is rediscovered again and again

6. Tziavelis+. Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries. PVLDB 2020

ABSTRACT

We study ranked enumeration of join-query results according to very general orders defined by selective dioids. Our main contribution is a framework for ranked enumeration over a class of dynamic programming problems that generalizes seemingly different problems that had been studied in isolation. To this end, we extend classic algorithms that find the k-shortest paths in a weighted graph. For full conjunctive queries, including cyclic ones, our approach is optimal in terms of the time to return the top result and the delay between resyits. These optimality prqperties are de-

Generality. Our approach supports any selective dioid, including less obvious cases such as lexicographic ordering where two output tuples are first compared on their R_{1} component, and if equal then on their R_{2} component, and so on.

k-shortest paths. The literature is rich in algorithms for finding the k-shortest paths in general graphs [$10,17,34$, $35,53,56,57,59,65,68,67,93]$. Many of the subtleties of the variants arise from issues caused by cyclic graphs whose structure is more general than the acyclic multi-stage graphs in our DP problems. Hoffman and Pavley [53] introduces the concept of "deviations" as a sufficient condition for finding the $k^{\text {th }}$ shortest path. Building on that idea, Dreyfus [34] proposes an algorithm that can be seen as a modification to the procedure of Bellman and Kalaba [17]. The Recursive Enumeration Algorithm (REA) [57] uses the same set of equations as Dreyfus, but applies them in a top-down recursive manner. Our anyK-rec builds upon REA. To the best of our knowledge, prior work has ignored the fact that this algorithm reuses computation in a way that can asymptotically outperform sorting in some cases. In another line of research, Lawler [65] generalizes an earlier algorithm of Murty [70] and applies it to k-shortest paths. Aside from k shortest paths, the Lawler procedure has been widely used for a variety of problems in the database community [40]. Along with the Hoffman-Pavley deviations, they are one of the main ingredients of our ANYK-PART approach. Eppstein's algorithm $[35,56]$ achieves the best known asymptotical complexity, albeit with a complicated construction whose practical performance is unknown. His "basic" version of the algorithm has the same complexity as Eager, while our Taкe2 algorithm matches the complexity of the "advanced" version for our problem setting where output tuples are materialized explicitly.

Power of semirings is rediscovered again and again

6. Tziavelis+. Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries. PVLDB 2020
 Ranked enumeration. Both [26] and [90] provide anyk algorithms for graph queries instead of the more general

2.2 Ranked Enumeration Problem

We want to order the results of a full CQ based on the weights of their corresponding witnesses. For maximal generality, we define ordering based on selective dioids [41], which are semirings with an ordering property:

> DEFINITION 3 (SEmIRING). A monoid is a 3-tuple $(W, \oplus, \overline{0})$ where W is a non-empty set, $\oplus: W \times W \rightarrow W$ is an associative operation, and $\overline{0}$ is the identity element, i.e., $\forall x \in W: x \oplus \overline{0}=\overline{0} \oplus x=x$. In a commutative monoid, \oplus is also commutative. A semiring is a 5-tuple $(W, \oplus, \otimes, \overline{0}, \overline{1})$, where $(W, \oplus, \overline{0})$ is a commutative monoid, $(W, \otimes, \overline{1})$ is a monoid, \otimes distributes over \oplus, i.e., $\forall x, y, z \in$ $W:(x \oplus y) \otimes z=(x \otimes z) \oplus(y \otimes z)$, and $\overline{0}$ is absorbing for \otimes, i.e., $\forall a \in W: a \otimes \overline{0}=\overline{0} \otimes a=\overline{0}$.

Definition 4 (Selective dioid). A selective dioid is a semiring for which \oplus is selective, i.e., it always returns one of the inputs: $\forall x, y \in W:(x \oplus y=x) \vee(x \oplus y=y)$.

Note that \oplus being selective induces a total order on W by setting $x \leq y$ iff $x \oplus y=x$. We define result weight as an aggregate of input-tuple weights using \otimes :

CQs; they describe the ideas behind LaZY and All respectively. [60] gives an any- k algorithm for acyclic queries with polynomial delay. Similar algorithms have appeared for the equivalent Constraint Satisfaction Problem (CSP) [44, 50]. These algorithms fit into our family anyK-Part, yet do not exploit common structure between sub-problems hence have weaker asymptotic guarantees for delay than any of the anyk algorithms discussed here. After we introduced the general idea of ranked enumeration over cyclic CQs based on multiple tree decompositions [91], an unpublished paper [33] on arXiv proposed an algorithm for it. Without realizing it, the authors reinvented the REA algorithm [57], which corresponds to Recursive, for that specific context. We are the first to guarantee optimal time-to-first result and optimal delay for both acyclic and cyclic queries. For instance, we return the top-ranked result of a 4 -cycle in $\mathcal{O}\left(n^{1.5}\right)$, while [33] requires $\mathcal{O}\left(n^{2}\right)$. Furthermore, our work (1) addresses the more general problem of ranked enumeration for DP over a union of trees, (2) unifies several approaches that have appeared in the past, from graph-pattern search to k-shortest path, and shows that neither dominates all others, (3) provides a theoretical and experimental evaluation of trade-offs including algorithms that perform best for small k, and (4) is the first to prove that it is possible to achieve a time-tolast that asymptotically improves over batch processing by exploiting the stage-wise structure of the DP problem.

Power of semirings is rediscovered again and again

7. Atserias, Kolaitis. Structure and Complexity of Bag Consistency.

 PODS 2021, SIGMOD record 2022.Consistency, Acyclicity, and Positive Semirings

Albert Atserias ${ }^{1}$ and Phokion G. Kolaitis ${ }^{2}$
${ }^{1}$ Universitat Politècnica de Catalunya
${ }^{2}$ University of California Santa Cruz and IBM Research

September 20, 2020

Structure and Complexity of Bag Consistency

Albert Atserias

Universitat Politècnica de Catalunya
Barcelona, Catalonia Spain
atserias@cs.upc.edu

Phokion G. Kolaitis
UC Santa Cruz and IBM Research
Santa Cruz, California
USA
kolaitis@ucsc.edu

It appears that Beeri et al. [9] were unaware of Vorob'ev work, but later on Vorob'ev's work was cited in a survey of database theory by Yannakakis [27]. In recent years, the interplay between local consistency and global consistency has been explored at great depth in the setting of quantum information by Abramsky and his collaborators (see, e.g., [3, 4, 5]). In that setting, the interest is in contextuality phenomena, which are situations where collections of measurements are locally consistent but globally inconsistent Bell's celebrated theorem [10] is an instance of this. The similarities between these different settings (probability distributions, relational databases, and quantum mechanics) were pointed out explicitly by Abramsky [1, 2. This also raised the question of developing a unifying framework in which, among other things, the results by Vorob'ev and the results by Beeri et al. are special cases of a single result. Using a relaxed notion of consistency, we established such a result for relations over semirings [6]. For the bag semiring, however, the relaxed notion of consistency that we studied in [6] is essentially equivalent to the consistency of probability distributions with rational values (and not to the consistency of bags). This left open the question of exploring the interplay between (the standard notions of) local consistency and global consistency for bags, which is what we set to do in the present paper.

Multiplying 2×2 matrices

Works over any semi-ring!

$$
\begin{array}{ll}
C_{11}=A_{11} B_{11}+A_{12} B_{21} & M_{1}=\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right) \\
C_{12}=A_{11} B_{12}+A_{12} B_{22} & M_{2}=\left(A_{21}+A_{22}\right) B_{11} \\
C_{21}=A_{21} B_{11}+A_{22} B_{21} & M_{3}=A_{11}\left(B_{1}-B_{22}\right) \\
C_{22}=A_{21} B_{12}+A_{22} B_{22} & M_{4}=A_{22}\left(B_{2}-B_{11}\right) \\
& M_{5}=\left(A_{11}+A_{12}\right) B_{22} \\
C_{11}=M_{1}+M_{4}-M_{5}+M_{7} & M_{6}=\left(A_{21}-A_{11}\right)\left(B_{11}+B_{12}\right) \\
C_{12}=M_{3}+M_{5} & M_{7}=\left(A_{12}-A_{22}\right)\left(B_{21}+B_{22}\right) \\
C_{21}=M_{2}+M_{4} & \\
C_{22}=M_{-}-M_{2}+M_{3}+M_{6} & \\
\text { works over any ring! } & 18 \text { additions/sultion! }
\end{array}
$$

Table 1. Strassen's Algorithm

Phase 1	$T_{1}=A_{11}+A_{22}$	$T_{6}=B_{11}+B_{22}$
	$T_{2}=A_{21}+A_{22}$	$T_{7}=B_{12}-B_{22}$
	$T_{3}=A_{11}+A_{12}$	$T_{8}=B_{21}-B_{11}$
	$T_{4}=A_{21}-A_{11}$	$T_{9}=B_{11}+B_{12}$
	$T_{5}=A_{12}-A_{22}$	$T_{10}=B_{21}+B_{22}$
Phase 2	$Q_{1}=T_{1} \times T_{6}$	$Q_{5}=T_{3} \times B_{22}$
	$Q_{2}=T_{2} \times B_{11}$	$Q_{6}=T_{4} \times T_{9}$
	$Q_{3}=A_{11} \times T_{7}$	$Q_{7}=T_{5} \times T_{10}$
	$Q_{4}=A_{22} \times T_{8}$	
Phase 3	$T_{1}=Q_{1}+Q_{4}$	$T_{3}=Q_{3}+Q_{1}$
	$T_{2}=Q_{5}-Q_{7}$	$T_{4}=Q_{2}-Q_{6}$
Phase 4	$C_{11}=T_{1}-T_{2}$	$C_{12}=Q_{3}+Q_{5}$
	$C_{21}=Q_{2}+Q_{4}$	$C_{22}=T_{3}-T_{4}$

Figure 4. Task graph of Strassen's Algorithm.

Figure 1: The base graph G_{1} of Strassen's algorithm for multiplying two 2×2 matrices A and B. Here $b=7$.

Figure 4.1. The computation graph of Strassen's algorithm (see Algorithm 4.1): (a) $\operatorname{Dec}_{1} C$, (b) H_{1}, (c) $\operatorname{Dec}_{\lg n} C$, (d) $H_{\lg n}$.

Topic 2: Complexity of Query Evaluation Unit 3: Provenance Lecture 18

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
https://northeastern-datalab.github.io/cs7240/sp24/
3/22/2024

Pre-class conversations

- Last class summary
- Projects: TUE 3/26 intermediate report
- Today:
- provenance at different granularities (cell level)
- reverse data management

Outline: T2-3: Provenance

- T2-3: Provenance
- Data Provenance
- The Semiring Framework for Provenance
- Algebra: Monoids and Semirings
- Query-rewrite-insensitive provenance

Queries \& provenance

Agencies

	name	based_in	phone
$t_{1}:$	BayTours	San Francisco	$415-1200$
$t_{2}:$	HarborCruz	Santa Cruz	$831-3000$

ExternalTours

	Externaliours			
$t_{3}:$	name	destination	type	price
$t_{4}:$	BayTours	San Francisco	cable car	$\$ 50$
$t_{5}:$	BayTours	Santa Cruz	bus	$\$ 100$
$t_{6}:$	BayTours	Monta Cruz	boat	$\$ 250$
$t_{7}:$	HarborCruz	Monterey	boat	$\$ 400$
$t_{8}:$	HarborCruz	Carmel	boat	$\$ 200$
		train	$\$ 90$	

Queries \& provenance

ExternalTours

Agencies

	name	based_in	phone
$t_{1}:$	BayTours	San Francisco	$415-1200$
$t_{2}:$	HarborCruz	Santa Cruz	$831-3000$

name	destination	type	price
BayTours	San Francisco	cable car	$\$ 50$
BayTours	Santa Cruz	bus	$\$ 100$
BayTours	Santa Cruz	boat	$\$ 250$
BayTours	Monterey	boat	$\$ 400$
HarborCruz	Monterey	boat	$\$ 200$
HarborCruz	Carmel	train	$\$ 90$

Q_{1} :
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name $=e$.name AND
e.type='boat'

Result of Q_{1} :

name	phone
BayTours	$4155-1200$
HarborCruz	$831-3000$

Definition Lineage:

Lineage for an output tuple t is a subset of the input tuples which are relevant to the output tuple

Queries \& provenance

Agencies

	name	based_in	phone
$t_{1}:$	BayTours	San Francisco	$415-1200$
$t_{2}:$	HarborCruz	Santa Cruz	$831-3000$

ExternalTours

ExternalTours				
	name	destination	type	price
$t_{3}:$	BayTours	San Francisco	cable car	$\$ 50$
$t_{4}:$	BayTours	Santa Cruz	bus	$\$ 100$
$t_{5}:$	BayTours	Santa Cruz	boat	$\$ 250$
$t_{6}:$	BayTours	Monterey	boat	$\$ 400$
$t_{7}:$	HarborCruz	Monterey	boat	$\$ 200$
$t_{8}:$	HarborCruz	Carmel	train	$\$ 90$

Q_{1} :
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name $=e$.name AND
e.type='boat'

Result of Q_{1} :

name	phone
BayTours	$415-1200$
HarborCruz	$831-3000$

Definition Lineage:

Lineage for an output tuple t is a subset of the input tuples which are relevant to the output tuple

Problem: Not very precise.

e.g., lineage above does not specify that $t 5$ and t 6 do not both need to exist.

"Why Provenance" \& Witnesses

Agencies

	name	based_in	phone
$t_{1}:$	BayTours	San Francisco	$415-1200$
$t_{2}:$	HarborCruz	Santa Cruz	$831-3000$

ExternalTours				
	name	destination	type	price
$t_{3}:$	BayTours	San Francisco	cable car	$\$ 50$
$t_{4}:$	BayTours	Santa Cruz	bus	$\$ 100$
$t_{5}:$	BayTours	Santa Cruz	boat	$\$ 250$
$t_{6}:$	BayTours	Monterey	boat	$\$ 400$
$t_{7}:$	HarborCruz	Monterey	boat	$\$ 200$
$t_{8}:$	HarborCruz	Carmel	train	$\$ 90$

Q_{1} :

SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name $=$.name AND
e. type='boat'

Result of Q_{1} :

name	phone
BayTours	$415-1200$
HarborCruz	$831-3000$

Definition Witness of t :

Any subset of the database sufficient to reconstruct tuple t in the query result
Witness basis:
Leaves of the "proof tree" showing how result tuple t is generated

Minimality \&
query
rewriting
Instance I :
R

Two equivalent queries:
$Q: \operatorname{Ans}(x, y):-R(x, y)$. $Q^{\prime}: \operatorname{Ans}(x, y):-R(x, y), R(x, z)$.

Output of

Fig. 1.2 Example queries, input and output.

Instance I :		Output of$Q(I)$			Output of $Q^{\prime}(I)$		
A	B	A	B	why	A	B	why
$t: 1$	2	1	2	$\{\{t\}\}$	1	2	$\left\{\{t\},\left\{t, t^{\prime}\right\}\right\}$
$t^{\prime}: 1$	3	1	3	$\left\{\left\{t^{\prime}\right\}\right\}$	1	3	$\left\{\left\{t^{\prime}\right\},\left\{t, t^{\prime}\right\}\right\}$
$t^{\prime \prime}: 4$	2	4	2	$\left\{\left\{t^{\prime \prime}\right\}\right\}$	4	2	$\left\{\left\{t^{\prime \prime}\right\}\right\}$

Fig. 1.3 Example showing that why-provenance is sensitive to query rewriting.

Instance I :			Output of$Q(I)$			Output of$Q^{\prime}(I)$		
	A	B	A	B	how	A	B	how
t :	1	2	1	2	t	1	2	$t^{2}+t \cdot t^{\prime}$
t^{\prime} :	1	3	1	3	t^{\prime}	1	3	$\left(t^{\prime}\right)^{2}+t \cdot t^{\prime}$
$t^{\prime \prime}$:	4	2	4	2	$t^{\prime \prime}$	4	2	$\left(t^{\prime \prime}\right)^{2}$

Fig. 1.5 Example showing that how-provenance is sensitive to query rewriting. Figures from Cheney, Chiticariu, Tan. Provenance in databases: why, how, and where. Foundations and trends in databases 2009. https://dl.acm.org/doi/abs/10.1561/19000000006 Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Fixing queryrewrite sensitivity for where provenance
 is clear

Instance I :
R

Output of
$Q(I), Q^{\prime}(I):$

A	B
1	2
1	3
4	2

Fig. 1.2 Example queries, input and output.

Fig. 1.6 Example showing that where-provenance is sensitive to query rewriting.
dy le if a query Q propagates annotations under the default-all propagatron scheme in DBNotes, then equivalent formulations of Q are guaranteed to produce identical annotated results. In the default-all scheme, annotations are propagated based on where data is copied from according to all equivalent queries of Q. Hence, this propagation scheme can be perceived as a "better" method for propagating annotations for \bar{Q}. The

Default-all /

Where provenance / Query rewriting

The DEFAULT Scheme

1 a	${ }_{2} \mathrm{C}$
2 b	3
3	5 h

4 d	29
5	${ }_{3} \mathrm{f}$
6	${ }_{4} \mathrm{e}$

FROM R r
PROPAGATE DEFAULT r.B TO B
UNION
SELECT DISTINCT B
FROM S s
PROPAGATE DEFAULT s.B TO B
Result

Natural semantics for tracing the provenance of data

Annotation Propagation under the DEFAULT Scheme

The DEFAULT-ALL scheme

\square Propagate annotations according to where data is copied from according to all equivalent formulations of the given query
\square User Query Q:

```
SELECT DISTINCT r.A, s.B, s.C
FROM R r, S s
WHERE r.B = s.B
*)}\mathrm{ the SQL query
corresponding to Q
PROPAGATE DEFAULT-ALL
```

\square Compute the results of Q on a database D - idea:

- $E(Q)$ denotes the set of all queries that are equivalent to Q (more precisely, (*)).
- Execute each query in $E(Q)$ on the database D under the DEFAULT scheme, then combine the results under \cup_{a}.

Computing the results of a DEFAULT-ALL query

\square Question:
Given a $p S Q L$ query Q with DEFAULT-ALL propagation scheme and a database D, can we compute the result of $Q(D)$?
\square Problem:
There are infinitely many queries in $E(Q)$. It is therefore impossible to execute every query in $E(Q)$ in order to obtain the result of $Q(D)$.
\square Solution: Compute a finite basis of $E(Q)$ first.

Default-all is dangerous!

Wolfgang Gatterbauer
 Alexandra Meliou Dan Suciu

$3^{\text {rd }}$ USENIX Workshop on the Theory and Praxis of Provenance (Tapp'11)
Tatabase group
http://db.cs.washington.edu/causality/

Overview Provenance Definitions

Overview Provenance Definitions

Example 1: Query-Rewrite-Insensitivity (QRI)

Why

Where

Input
R^{a}

A	B
1^{a}	2^{b}
1^{c}	3^{d}
2^{e}	2^{f}

Why-provenance $=\underline{\text { witness }}$ basis $\left(\alpha_{w}\right)$

Minimal witness basis $\left(\alpha_{w}{ }^{m}\right)$

Query $1 \quad$ Query 2 ミQuery 1

Lineage $\left(\alpha_{1}\right)$

Where-provenance $=$ propagation $\left(\alpha_{p}\right)$

Minimal propagation $\left(\alpha_{p}{ }^{m}\right)$

Default-all propagation ($\alpha_{p}{ }^{\text {d }}$)

Query 1
$Q_{1}(x, y):-R^{a}(x, y)$

A	B
1^{a}	2^{b}
1^{c}	3^{d}
2^{e}	2^{f}

Query 2 三 Query 1
$Q_{2}(x, y):-R^{a}(x, y), R^{a}(\ldots, y)$

A	B_{\square}
1^{a}	$2^{\mathrm{b}, \mathrm{f}}$
1^{c}	3^{d}
2^{e}	$2^{\mathrm{b}, \mathrm{f}}$

A	B
$1^{\mathrm{a}, \mathrm{c}}$	$2^{\mathrm{b}, \mathrm{f}}$
$1^{\mathrm{a}, \mathrm{c}}$	3^{d}
2^{e}	$2^{\mathrm{b}, \mathrm{f}}$

A	B
1^{a}	2^{b}
1^{c}	3^{d}
2^{e}	2^{f}

Real example: Why Default-all is dangerous

Hanako queries a community DB for contents of LF-milk*:

Community Database

R^{a}

Food	Content	Bob, March 18, 2011
LF Milk	Cesium-137 ${ }^{\text {b }}$	Don't drink, lots of Cesium!
LF Milk	Calcium ${ }^{\text {d }}$	Fuy
SC Water	Cesium-137 ${ }^{\text {f }}$	No Cesium, save to drink!

Hanako's query
$Q(y):-R^{a}(' L F ~ M i l k ', y)$

Content
Cesium-13
Calcium
d

Default-all propagation makes her drink the milk:

Default-all propagation $\left(\alpha_{p}{ }^{\text {d }}\right.$)

Content
Cesium-137 $^{\text {bf }}$
Calcium $^{\text {d }}$

b

```
Bob, March 18, 2011 Don't drink, lots of Cesium!
```

f Fuyumi, March 19, 2011 No Cesium, save to drink!
"semantically irrelevant information": annotations leak over from SC Water tuple to LF Milk

Minimal propagation $\left(\alpha_{p}{ }^{m}\right)$

* Note the one-to-one correspondence of this example with example 1 from previous page

Definition Minimal propagation $\left(\alpha_{p}{ }^{m}\right)$

$$
\alpha_{p}^{m}(t, A, Q):=\bigcup_{t^{\prime} \in 巴 \alpha_{w}^{m}(t, Q)} \alpha_{p}\left(t^{\prime}, A^{\prime}\right)
$$

Intuition:

Return the intersection between:

- query-specific where-provenanc (α_{p})
$A^{\prime} \in$ attributes of t^{\prime} propagating to $\operatorname{cell}(t, A)$

U transforms 'sets of sets' into 'sets', hence something like QRI lineage

- and QRI minimal witness basis $\left(\alpha_{w}{ }^{m}\right)$
"all relevant ... and only relevant"

Example 1

Where provenance $\left(\alpha_{p}\right)$

Input	
R^{a}	
 A t_{1} 1^{a} t_{2} 2^{b} I^{b} 3^{d} t_{3} 2^{e} 2^{f}	

Query 2
$Q_{2}(x, y):-R^{a}(x, y), R^{a}\left(_, y\right)$

Minimal propagation $\left(\alpha_{p}{ }^{m}\right)$

Minimal witness basis $\left(\alpha_{w}{ }^{m}\right)$

Example 1: Illustration of "minimal" versus "all"

Why-provenance

Why-provenance (α_{w})
Minimal witness basis ($\alpha_{w}{ }^{m}$)

Where-provenance

Where-provenance (α_{p})
Default-all propagation ($\alpha_{p}{ }^{\text {}}$)
Minimal propagation ($\alpha_{p}{ }^{m}$)

athens heraklion chania								
	Item Name	V	Description	X	Population	V X	Add columns	Add
X	athens		PIRAEUS (Crete) - P PIRAEUS icmental 口		4 possible values			
X	heraklion		Heraklion city and ca the 4th larg Lamalitinn		1 possible value			
X	kania		Chania co written Han written Kha Kanin and		1 possible value			
X	Crete		A superb w journey to and take th /Dimanl		623,666			
X	Mykonos		Heraklion internation currently r anle, Inhant		9,320			
X	Istanbul		14 Days include, Is Skithos, S		8,260,000			

* Interpretation of annotations on entity attribute values favored by us and underlying our model

Interpretation of Annotations 1: Attribute Value*

Argument: Interpreting cell annotations as relevant to the tuple (entity) adds something that is not trivially modeled with normalized tables.

* Interpretation of annotations on entity attribute values favored by us and underlying our mode

Interpretation of Annotations 2: Domain Value*

Domain value annotations*

Input R^{a} :

Input S^{a} :

Argument for default-all: If annotations are on domain values, then retrieving all annotations are relevant.

Alternative representation

Annotation table Sa:

B	annotation
2	b: Bob, March 18, 2011 This number is a prime number.
2	f: Fuyumi, March 19, 2011 Two is not a prime number because it is even

Annotation table Sa:

Date	annotation
Dec 25	This is a holiday.

Counter-Argument: But then these annotations can be modeled in a separate table as normalized tables.

* Alternative interpretation suggested by Wang-Chiew Tan (example created after conversation at Sigmod 2011)

Backup: Detailed Example 2

	R^{a}	
	A	B
t_{1}	$1^{\text {a }}$	$2^{\text {b }}$
t_{2}	$1{ }^{\text {c }}$	$3^{\text {d }}$
t_{3}	$2{ }^{\text {e }}$	2^{f}
t_{4}	28	$4^{\text {h }}$

$Q_{5}(x, y):-R^{a}(x, y), R^{a}\left(y,{ }_{2}\right), R^{a}\left(x,{ }_{-}\right)$

A	B
$1^{\mathrm{a}, \mathrm{c}}$	$2^{\mathrm{b}, \mathrm{e}, \mathrm{f}, \mathrm{g}}$
$2^{\mathrm{e}, \mathrm{g}}$	$2^{\mathrm{b}, \mathrm{e}, \mathrm{f}}$

Minimal propagation $\left(\alpha_{p}{ }^{m}\right)$

$$
\begin{aligned}
& \alpha_{p}{ }^{d}\left(t_{4}, B, Q_{5}\right)=\alpha_{p}\left(t_{4}, B, Q_{6}\right) \quad \text { with } \\
& \left.Q_{6}(x, y):-R^{a}(x, y), R^{a}(y,)^{2}\right), R^{a}\left(x, _\right), S^{a}\left(_, y\right)
\end{aligned}
$$

$$
\begin{aligned}
\alpha_{p}^{m}\left(t_{4}, A, Q_{5}\right) & =\bigcup_{\substack{t^{\prime} \in\left\{t_{1}, t_{3}, t_{4}\right\}, A^{\prime}}} \alpha_{p}\left(t^{\prime}, A^{\prime}\right) \\
& =\alpha_{p}\left(t_{1}, A\right)=\{a\}
\end{aligned}
$$

$$
\left.\begin{array}{l}
\text { Note minimal propagation is not equivalent to just } \\
\text { evaluating the where-provenance for the query: } \\
Q_{7}(x, y):-R^{a}(x, y), R^{a}(y, \ldots) \text {. E. g. } \alpha_{p}\left(t_{5}, B, Q_{7}\right)=\{e, f, g\}
\end{array}\right] \quad \alpha_{p}^{m}\left(t_{5}, B, Q_{5}\right)=\underset{\substack{t^{\prime} \in\left\{t_{3}\right\}, A^{\prime}}}{\bigcup} \alpha_{p}\left(t^{\prime}, A^{\prime}\right)
$$

