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Pre-class conversations

e Last class summary
e Projects: TUE 3/26 intermediate report
e Faculty candidate next week WED 3/20

e Today:
— a comment on multitasking

— provenance, semirings

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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A quizz

Which of the following lowers your measured 1Q the most:
A. Smoking marijuana before taking test.
B. Responding to email/texting while taking test.
C. Losing a nights sleep before taking test.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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A quizz

Which of the following lowers your measured 1Q the most:
A. Smoking marijuana before taking test.
B. Responding to email/texting while taking test.
C. Losing a nights sleep before taking test.

Answer: B

e You suck at multitasking!
e Everyone sucks at multitasking

Source: Courtesy of Michael D Smith (https://mds.heinz.cmu.edu/), http://news.bbc.co.uk/2/hi/uk _news/4471607.stm
(It is a bit of an over-simplification. Clarifications by the original author are here: http://www.drglennwilson.com/Infomania_experiment_for HP.doc)
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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L] L] NEW YORK TIMES BESTSELLER
l | t I t | f I n g UPDATED AND EXPANDED
“Words leap off the page.”
USA Today

“Myth #3: Multitasking when it comes to paying attention, is a
myth... studies show that a person who is interrupted takes 50%
longer to accomplish a task. Not only that, he or she makes up to st bt
50% more errors” -- John Medina (Brain rules) o Multitasking

DAVE CRENSHAW

J O H N MEDINA

“...multitasking is a lie. You’re asking me to switch attention, and
that makes me less productive.” -- Dave Crenshaw (The myth of .
multitasking)

“multitasking adversely affects how you learn. Even if you learn while multitasking, that learning is
less flexible and more specialized, so you cannot retrieve the information as easily.” --Russell
Poldrack, UCLA Psychology Professor

“Our research offers neurological evidence that the brain cannot effectively do two things at
once.” -- Rene Marois, Dept. of Psychology, Vanderbilt

“The brain is a lot like a computer. You may have several screens open on your desktop, but you’'re

able to think about only one at a time.” -- William Stixrud, Neuropsychologist

Source: Courtesy of Michael D Smith (https://mds.heinz.cmu.edu/)
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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PRELIMINARY

Topic 2: Complexity of Query Evaluation & Reverse Data Management

o Lecture 14 (Fri 3/1): T2-U1 Conjunctive Queries

« Spring break (Tue 3/5, Fri 3/8)

o Lecture 15 (Tue 3/12): T2-U1/2 Conjunctive & Beyond Conjunctive Queries
o Lecture 16 (Fri 3/15): T2-U1/2 Conjunctive & Beyond Conjunctive Queries
e Lecture 17 (Tue 3/19): T2-U3 Provenance

o Lecture 18 (Fri 3/22): T2-U3 Provenance

o Lecture 20 (Tue 3/26): T2-U4 Reverse Data Management

Pointers to relevant concepts & supplementary material:

o Unit 1. Conjunctive Queries: Query evaluation of conjunctive queries (CQs), data vs. query
complexity, homomorphisms, constraint satisfaction, query containment, query minimization,
absorption: [Kolaitis, Vardi'00], [Vardi'00], [Kolaitis'16], [Koutris'19] L1 & L2

o Unit 2. Beyond Conjunctive Queries: unions of conjunctive queries, bag semantics, nested
queries, tree pattern queries: [Kolaitis'16], [Tan+'14], [Gatterbauer'11], [Martens'17]

o Unit 3. Provenance: [Buneman+'02], [Green+'07], [Cheney+'09], [Green, Tannen'17],
[Kepner+16], [Buneman, Tan'18], [Simons'23], [Dagstuhl'24]

o Unit 4. Reverse Data Management: update propagation, resilience: [Buneman+'02],
[Kimelfeld+'12], [Freire+'15], [Makhija+'24]

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Outline: T2-3: Provenance

e [2-3: Provenance
— Data Provenance

Wolfgang Gatterbauer. Principles of scalable data management:
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Data provenance. ~ Explanations

Imagine a computational process that uses a complex in-
put consisting of multiple items. The granularity and nature
of “input item” can vary significantly. It can be a single tu-
ple, a database table, or a whole database. It can a spread-
sheet describing an experiment, a laboratory notebook entry,
or another form of capturing annotation by humans in soft-
ware. It can also be a file, or a storage system component. It
can be a parameter used by a module in a scientific workflow.
It can also be a configuration rule used in software-defined
routing or in a complex network protocol Or it can be a
configuration decision made b
scheduler (think map-reduce).\ Provenance analysis allpws
us to understand how these different input itemsaffect the

output of the computation. When done appropriately, such

Source: Green, Tannen. "The Semiring Framework for Database Provenance", PODS 2017: https://doi.org/10.1145/3034786.3056125
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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ligent Tufrastructure

Source: Michael I. Jordan: Machine Learning: Dynamical, Stochastic & Economic Perspectives, 2019: https://www.youtube.com/watch?v=-8yYFdV5SOc
Wolfgang Gatterbauer. Principles of scalable data management: northeastern-datalab.github.io/cs7240
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Provenance: “Where Did this Data Come from?”

« Whenever data is shared (e.g., science, Web) natural questions appear:

— How did | get this data?
— What operations were used to create the data?

— How much should | trust (believe) it?
: describes the origins and history of data in its life cycle

« Two types of provenance

— Provenance inside a database: that's our focus

— Provenance outside databases: focus of ongoing research esp. in ML (causes, influence,
fairness); less well-defined; there is a standard OPM (Open Provenance Model)

« There are also questions for our focus, provenance inside DBMS:

— What is the "right data model" of provenance?
— How do we query it? What operations should we support?

Based upon: Zachary lves's talk "Querying Data Provenance", SIGMOD 2010. https://doi.org/10.1145/1807167.1807269
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Example of data provenance

e A typical question:

— For a given database D, a query Q, and a tuple t in the output of Q(D),
which parts of D “contribute” to output tuple t?

R S A 3 > Q
Emp |Dept Did _|Manager _JEmp _Ma-nags t
D |{aice |[po1 )—]po1 |pora SELECT R.Emp, S.Mgr (_|Atice |Dora
N _,/ | ’
Bob  |DO1 D02 [Ema FROM R, S Bob[Dora.
Charly [D02 D03 |Felix WHERE R.Dept=S.Did Charly |Ema
N J

— The question can be applied to attribute values, tables, rows, etc.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/



https://northeastern-datalab.github.io/cs7240/

Two approaches

or annotation-based (" ")

— Changes the transformation from Q to Q' to carry extra information
— Full source data not needed after transformation

O—O
@ Sowme extra
E Q' B mformation

or non-annotation based

— () is unchanged

— Recomputation and access to source required.
* Good when extra storage is an issue.

Conceptual distinction from: Cheney, Chiticariu, Tan. "Provenance in databases -- why, how, and where", 2009. https://doi.org/10.1561/1900000006
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Example graph problem, in 5 different variants

L
2—@

E

from to
1]2 Q(Z) .~ E(lly)l E(ylz)
2| 3
1] 4 a )
413 -
4 |5
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 13
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Example graph problem, in 5 different variants

L
2—@

E

from to
1]2 O(2) - E(Ly), El2) = o
2|3 :
11| 4 Q: Points reachable in 2
4 | 3 hops, starting at node "1"
4 | 5

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 14
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Example graph problem, in 5 different variants

L
2—@

E

from to Q
1 2 Q(Z) .~ E(l,y), E(y,Z) g 3
2 |3 5
1| 4 Q: Points reachable in 2
4 | 3 hops, starting at node "1"
4 |5

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Example variant 1

Now assume only certain edges are
available (available yes/no or true/false).
Which of the points remain reachable?

E

from to Q
L[ 2] yes 0(2) - E(Ly), E(y2) -[3] n
2| 3 | ves 5 :
14| no Q: Points reachable in 2
4 | 3 | yes hops, starting at node "1"
4 | 5| ves

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

16
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Example variant 1

Now assume only certain edges are
available (available yes/no or true/false).
Which of the points remain reachable?

E

from to Q
1| 2| vyes O(z) - E(1,y), E(y,2) | 3 | ves
2 | 3| ves 5| no
14| no Q: Points reachable in 2
4 | 3 | yes hops, starting at node "1"
4 | 5| ves

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

17
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Example variant 2

Now assume passing along an edge needs
a certain security clearance (1<2<3).
What clearance do you need for reaching

each point?
E
from to Q
1 2 1 Q(Z) .~ E(lly)l E(ylz) g 3 ?
2| 3 1 5 =
11| 4 3 Q: Points reachable in 2
4 | 3 hops, starting at node "1"
4 |5 1

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 18
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Example variant 2

Now assume passing along an edge needs
a certain security clearance (1<2<3).
What clearance do you need for reaching

each point?
E
from to Q
1 2 1 Q(Z) .~ E(lly)l E(ylz) g 3 1
2 | 3 1 5 3
1| 4 3 Q: Points reachable in 2
4 | 3 hops, starting at node "1"
4 |5 1

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 19
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Example variant 3

Now assume each edge has a weight.
What is the shortest path to reach each point?

E

from to Q
1/2] 1 0(2) - E(Ly), Ely.2) -[3] o
2 |3 1 5 n
1| 4 3 Q: Points reachable in 2
4 | 3 2 hops, starting at node "1"
4 |5 1

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 20
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Example variant 3

Now assume each edge has a weight.
What is the shortest path to reach each point?

E

from to Q
1121 1 O(z) - E(Ly), E(y,2) | 3] 2
2|3 1 5 4
1| 4 3 Q: Points reachable in 2
4 | 3 2 hops, starting at node "1"
4 |5 1

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 21
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Example variant 4

0.6 6

0.5

Now assume each edge has a confidence

0.5 0.6 (probability of being available).
What is the probability of the most likely path?
0.8
E
from to Q

1 2 0.5 Q(Z) .~ E(l,y), E(y,Z) g 3 ?

2|1 3| 0.8 5 :

1141 05 Q: Points reachable in 2

4 131 0.6 hops, starting at node "1"

4 15| 0.6

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 22
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Example variant 4

E

from to
1|2
2 | 3
1| 4
4 | 3
4 |5

0.5
0.8
0.5
0.6
0.6

Now assume each edge has a confidence

(probability of being available).

What is the probability of the most likely path?

Q(Z) - E(l,y), E(y,Z) > | 3

Q: Points reachable in 2
hops, starting at node "1"

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

0.4
0.3

23
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Example variant 5

@
2

E

from to
1|2
2 | 3
1| 4
4 | 3
4 |5

(4)——(5
3

Finally assume we want to calculate the number of
paths to a node. How many are there? What is
even a reasonable way to calculate that in general?

Q(Z) - E(l,y), E(y,Z)

v
A YRON)

Q: Points reachable in 2
hops, starting at node "1"

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 24



https://northeastern-datalab.github.io/cs7240/

Example variant 5

@
2

E

from to
1|2
2 | 3
1| 4
4 | 3
4 |5

(4)——(5
3

Finally assume we want to calculate the number of
paths to a node. How many are there? What is
even a reasonable way to calculate that in general?

v
w
(NS

Q(Z) - E(l,y), E(y,Z)

Q: Points reachable in 2
hops, starting at node "1"

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 25
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Outline: T2-3: Provenance

— The Semiring Framework for Provenance

Wolfgang Gatterbauer. Principles of scalable data management:

26
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Positive relational algebra:
Do it once and use it repeatedly: provenance

Label (annotate) input items abstractly with provenance tokens.

Provenance tracking: propagate expressions (involving tokens)
(to annotate intermediate data and, finally, outputs)

Y <ASo) Mo

Track two distinct ways of using data items by computation primitives:

« jointly (this-alerestasically like keepinga-bg-)-j\
 alternatively  (deingboth-is-esserrtiatthimktrust) \/

Input-output compositional; Modular (in the primitives) (r-)

Later, we want to evaluate the provenance expressions to obtain
binary trust, access control,

confidence scores, data prices, etc.

5/15/2017 PODS 2017 8

Source: Val Tannen. "The Semiring Framework for Database Provenance", PODS 2017 Test of Time Award talk : https://www.cis.upenn.edu/~val/15MayPODS.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 27
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Algebraic interpretation for RDB

Set X of provenance tokens.

Space of annotations, provenance expressions Prov(X) — > {X DAYE , d 7/ - }

Prov(X)-relations:

every tuple is annotated with some element from Prov(X).

Binary operations on Prov(X):

corresponds to joint use (join, cartesian product),

+ corresponds to alternative use (union and projection).

Special annotations:
“Absent” tuples are annotated with 0. é

1 isa “neutral” annotation (data we do not track).

5/15/2017 PODS 2017 9

Source: Val Tannen. "The Semiring Framework for Database Provenance", PODS 2017 Test of Time Award talk : https://www.cis.upenn.edu/~val/15MayPODS.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 28
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K-Relational algebra

Algebraic laws of (Prov(X), +, -, 0,1)? More generally, for annotations
from a structure (K, +, -, 0,1)?

K-relations. Generalize RA+ to (positive) K-relational algebra.

L_Diire/doptimization eg_uiva,lgn.c;sf K- relational algebra iff

(K, +, -, 0,1) is a commutative semiring.

Generalizes SPJU or UCQ or non-rec. Datalog
set semantics , A, L,T) bag semantics , -, 0,1)
c-table-semantics IL84] (BoolExp(X), V, A, L, T)
event table semantics [FR97,297] (P(Q), U, N, ), Q)

5/15/2017 PODS 2017 10

Source: Val Tannen. "The Semiring Framework for Database Provenance", PODS 2017 Test of Time Award talk : https://www.cis.upenn.edu/~val/15MayPODS.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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() (H7 TN

What is a commutative semiring?

An algebraic structure (K, +, -, 0, 1) where:

K is the domain

* + is associative, commutative, with O identity

————S

* - isassociative, with 1 identity

distributes over +
a-0=0-a0=0

. - is also commutative

Unlike ring, no requirement for inverses to +

5/15/2017 PODS 2017

Source: Val Tannen. "The Semiring Framework for Database Provenance", PODS 2017 Test of Time Award talk : https://www.cis.upenn.edu/~val/15MayPODS.pdf

- semiring

11

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

pe

~/“T/_

30


https://northeastern-datalab.github.io/cs7240/
https://www.cis.upenn.edu/~val/15MayPODS.pdf

Provenance polynomials
N[{x,v}] = {xy,x +y,2xy* + x, 2xy* + xy + x, ...}

(N[X], +, -, 0, 1) is the commutative semiring freely generated by X
(universality property involving homomorphisms)

Provenance polynomials are PTIME-computable (data complexity).
(query complexity depends on language and representation)

ORCHESTRA provenance (graph representation) about 30% overhead

Monomials correspond to logical derivations (proof trees in non-rec. Datalog)

Provenance reading of polynomails:
output tuple has provenance 2r7 + rs
three derivations of the tuple - two of them use r, twice,
- the third uses rand S, once each

5/15/2017 PODS 2017 13

Source: Val Tannen. "The Semiring Framework for Database Provenance", PODS 2017 Test of Time Award talk : https://www.cis.upenn.edu/~val/15MayPODS.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Two kinds of semirings in this framework

Provenance semirings, e.g.,
(N[X], +,-,0,1) provenance polynomials [GKT07]
(Why(X), U, U, 0, {#}) witness why-provenance [BKTO01]

Application semirings, e.g.,
(A, min, max, 0, Pub) access control [FGTO08]

V =([0,1], max, -, 0, 1) Viterbi semiring (MPE) [GKITO7]

Provenance specialization  relies on

- Provenance semirings are freely generated by provenance tokens
- Query commutation with semiring homomorphisms

—

5/15/2017 PODS 2017 17

Source: Val Tannen. "The Semiring Framework for Database Provenance", PODS 2017 Test of Time Award talk : https://www.cis.upenn.edu/~val/15MayPODS.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Some application semirings

EXﬂlVV\PlC’/ 1: (B, A, V, T, 1) binary trust
Exavnple 5. (N, +,-,0,1) multiplicity (number of derivations)
Example 2. (A, min, max, 0, Pub)  access control
Exampl@ 4: V =([0,1], max, -, 0, 1)  Viterbi semiring (MPE) confidence scores
Example 3. T = ([0, o], min, +, oo, 0)
tropical semiring (shortest paths) data pricing

£ =([0,1], max, min, 0, 1) “fuzzy logic” semiring

5/15/2017 PODS 2017 16

Source: Val Tannen. "The Semiring Framework for Database Provenance", PODS 2017 Test of Time Award talk : https://www.cis.upenn.edu/~val/15MayPODS.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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(AAR) N(R)
g/@z_ A Hierarchy of Provenance Semirings [Go9, DMRT14]
— L/»\/ Q_/\/

2\ vy ‘P—:"i\k\

Y Xy Vy“Vyz Example: 2x2y + xy + 5y? + xz
ﬁ vm%7 \/ C) N[X] most informative
+ idey \@Fﬁp \‘F \/ \{/\
> X2y + Xy + y? + xz B[X] Trio(X) 3xy + 5y +xz \\__,\‘_/
absorption (ab+a=V- iw /demp.
N
A X xy +y*+xz Sorp(X) Why(X) xy+y+xz
‘1 y g Id>ﬂ°:0\ ﬁsorpﬁN'
C % & ) l\(><> least informative
' f y+xz PosBool(X) Which(X) xvz
el L el
AR surjective semiring homomorphism, identity on X
] ‘} \ (\/(\/j J g P Y
]g ( 5/15/2d17 PODS 2017 19

Source: Val Tannen. "The Semiring Framework for Database Provenance", PODS 2017 Test of Time Award talk : https://www.cis.upenn.edu/~val/15MayPODS.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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X% = X*X=X
. . . example: XAx=x
A Hierarchy of Provenance Semirings [G09, DMRT14
g/@? y 85 | ] But not true! Take:

(X4y)Z = X4xy+y 1= X4y
Vyz Example: 2x2y + xy + 5y2 + xz

most informative

l NI[X]
+ idey <!
A Y Just ignose expovients
Xy A xy +y?+xz BX] Trio(X) 3xy + 5y + xz
>N o

absorption (ab+a=a) 6X0lVV\P[6: XVX=X

xy +y*+xz Sorp(X) Why(X) xy+y+xz

absorption
least informative

Which(X) xvz
Positive Boolean expressions
surjective semiring homomorphism, identity on X

5/15/2017 PODS 2017 19

Source: Val Tannen. "The Semiring Framework for Database Provenance", PODS 2017 Test of Time Award talk : https://www.cis.upenn.edu/~val/15MayPODS.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 36
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A Hierarchy of Provenance Semirings [G09, DMRT14]

NI[X]

B[X] N Trio(X)
Sorp(X) Why(X)
ﬁT,V \ / \
PosBool(X) Which(X)
A B
5/15/2017 PODS 2017 20

Source: Val Tannen. "The Semiring Framework for Database Provenance", PODS 2017 Test of Time Award talk : https://www.cis.upenn.edu/~val/15MayPODS.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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A menagerie of provenance semirings

(Which(X), U, U", 0, 0F) sets of contributing tuples “Lineage” (1) [cww00]
(Why(X), U, U, 0, {0}) sets of sets of ... Witness why-provenance [BKTO01]

(PosBool(X), A, V, T, L) minimal sets of sets of... Minimal witness why-
provenance [BKT01] also “Lineage” (2) used in probabilistic dbs [SORK11]

(Trio(X), +, -, 0, 1) bags of sets of ... “Lineage” (3) [BDHT08,G09]
(B[X],+, -,0,1) sets of bags of ... Boolean coeff. polynomials [G09]

(Sorp(X),+, -, 0, 1) minimal sets of bags of ... absorptive
polynomials [DMRT14]

(N[X], +,-,0,1) bags of bags of... universal provenance polynomials
[GKTO7]

5/15/2017 PODS 2017 21

Source: Val Tannen. "The Semiring Framework for Database Provenance", PODS 2017 Test of Time Award talk : https://www.cis.upenn.edu/~val/15MayPODS.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Positive relational algebra: Join

/N

(\S)
—
(\)
(\S)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Positive relational algebra: Join

N | N
N | =
N | N
W[ N

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

NN =

NN ==

WIN|(F|F—
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Positive relational algebra: Join

N

R S Q=RmxS

1 "\ o |
A1 11 4 11D
2 1175 2 [ 2]s, 2[1]1]
221‘342353 2 212 !
2 1213

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 41
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Positive relational algebra: Join

The awnotation "r - s" means
joint use of data anvotated by

/ X \ r and data anotated by s
R S

Q=RXS
1 1 I‘1 1 1 Sl 1 1 1 I‘1 * Sl
2 1 rz 2 2 Sz 2 1 1 rz * Sl
2 2 I‘3 2 3 S3 2 2 2 I‘3 * SZ
2 2 3 I‘3 * S3

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 42
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Positive relational algebra: Projection i

R Q=m zsR=m,R

ry ?

rz u

N[N R -
WIN| RN -
-

w

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Positive relational algebra: Projection i

R Q=m zsR=m,R

ry 1 ?

rz 2 .

N[N R -
WIN| RN -
-

w

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Positive relational algebra: Projection i

The annotation "r + s" means
alternative use of data

It.p

R Q=m gR=m,R
1] 1 Iy = 1 |r;+r,

112 |r, 2 |r3+7r,+r¢
N

2|12 |1, \J

2|3 |rs [ WVt ¢ [ S

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 45
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Positive relational algebra: Union U

/N

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Positive relational algebra: Union U

The annotation "r + s" means
alternative use of data

/ \ {S m (Zz(yS - (Z,l)n‘*‘él

Q=RUS

111 |y 211 |s; 111 |y
211 |, 2|2 |s, 2|1 |r,+s;

2| 2 |s,

VS (‘(fz RAG

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github. |o/cs7240/ 47
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Positive relational algebra: Selection o

0x—1R

N[N R -
WIN| RN -
-

w

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

48


https://northeastern-datalab.github.io/cs7240/

Positive relational algebra: Selection o

Two options for filtering:

1. Remove the tuples filtered ount.

N[N R -
WIN| RN -
-

w

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Positive relational algebra: Selection o

Two options for filtering:

1. Remove the tuples filtered ount.
Oa=1 2. Or keep them arouvnd ...

R
1|1 |y
1|2 |,
2|11 |r;
2|12 |1,
2| 3 |rs

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

-

NN

WIN PRI

ri-1
ry-1
el
ry 0
rs-0
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Boolean Query Provenance R S

Q .~ R(X,y), S(y,Z) 1 1 ry 1 1 S4
2|2 |r, 112 ]s,
Calculate the provenance, operator-by-operator,
: : : 312 |r; 2 | 3|53
with two algebraically equivalent duery plans:
Query plan 1: 7, 5 (RS) Query plan 2: T s(m ,(R)xm +(S))

? ?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 51
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Boolean Query Provenance R S

Q .~ R(X,y), S(y,Z) 1 1 ry 1 1 S4
2|2 |r, 112 ]s,
Calculate the provenance, operator-by-operator,
: : : 312 |r; 2 | 3|53
with two algebraically equivalent duery plans:
Query plan 1: 7, 5 o(RS) Query plan 2: T s(m ,(R)xm +(S))
N————

RS

?

T ppc() ?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 52
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Boolean Query Provenance R S

Q :- R(le)l S(ylz)

Calculate the provenance, operator-by-operator,
with two algebraically equivalent duery plans:

Query plan 1: 7, 5 o(RS) Query plan 2: T s(m ,(R)xm +(S))
N———
RS
1 1]1]rs
1[1]2]rs,
2 | 2| 3] 1ys; ?
3|2 |3 ]| r38; )

T ppc() ?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 53
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Boolean Query Provenance R S

Q :- R(le)i S(ylz)

Calcnlate the provenance, operator-by-operator, 2| 2 '~ 12
with two algebraically equivalent duery plans:

Query plan 1: 7, 5 o(RS) Query plan 2: T s(m ,(R)xm +(S))
N———
RS
1]11]rs
1]1]2]rs,
2|2 ]3| 1,53 SELECT EXISTS(
312 |3

I'3S3 SELECT e
/ FROM R’ S j‘> 1 t:I’UeI
T[-A,B,C('") WHERE R.B = S-B)

I{:Sq+I{'Sy,+I»*S3+TI3'S3

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 54
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Boolean Query Provenance R S

Q :- R(le)l S(ylz)

Calculate the provenance, operator-by-operator,
with two algebraically equivalent duery plans:

Query plan 1: 7, 5 o(RS) Query plan 2: T s(m ,(R)xm +(S))
————
RS
1 1]1]rs
1[1]2]rs,
2 | 2|3 | 1ys; ?
3|2 |3 ]| r38; )
T_ppc(-)

I{:Sq+I{'Sy,+I»*S3+TI3'S3

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 55
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Boolean Query Provenance R S

Q :- R(le)l S(ylz)

Calculate the provenance, operator-by-operator,
with two algebraically equivalent duery plans:

Query plan 1: 7, 5 o(RS) Query plan 2: T s(m ,(R)xm +(S))
N———— — ————
RS T_5(R) T_c(S)
1111 r;s,
1|11]2]|r:s, ? ?
2 2 3 rz'Sg
3 2 3 r3'53
T agc(e) T g(R'™S")
I{:Sq+I{'Sy,+I»*S3+TI3'S3 ?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 56
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Boolean Query Provenance R S

Q :- R(le)l S(ylz)

Calculate the provenance, operator-by-operator,
with two algebraically equivalent duery plans:

Query plan 1: 7, 5 o(RS) Query plan 2: T s(m ,(R)xm +(S))
N———— — ————
RNS T[_A(R) ﬂ_c(S)
1 1 1 F1'81 1 I‘1 1 Sl+SZ
1 1 2 r1'82 2 I‘2+r‘3 2 53
2 2 3 F2'83
3 2 3 r3'53
T agc(e) T g(R'™S")
r{-S{+r;-Sy+Tr,-S3+TI3-S3 ri-(s1+s,)+(r,+r3)-S3

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 57
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Back to our Example: now with Semiring notation

@ @ 6 Now assume we use semiring notation.
. |dea: keep the tuple identifiers abstract.

@ 9 Use provenance polynomials (N[X], +, -, O,
1)
E Q
1 2 Q(Z) .~ E(lly)l E(ylz) g 3
2|3 5
1| 4 Q: Points reachable in 2
4 | 3 hops, starting at node "1"
4 |5

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Back to our Example: now with Semiring notation

Now assume we use semiring notation.
|dea: keep the tuple identifiers abstract.
Use provenance polynomials (N[X], +, -, 0, 1)

D &
, /e IN(K)

E
L]2]p O(z) - E(Ly), Ely,2) -3
213 |q 5| rt
114 |r Q: Points reachable in 2
4 1 3| s hops, starting at node "1"
4 | 5|t
= + - ‘
“ < {P,ﬁ,v--,ts N[X]=(N[X], +, -, 0, 1): Provenance polynomials

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 59
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Example variant 1

E
1
2
1
4
4

~+ »n 1 QO T
I

U1|w |||
N S L« = T e S SN

Provenance polynomials (N[X], +, -, 0, 1)

Now assume only certain edges are

available (available yes/no or true/false).
Which of the points remain reachable?

(OA1)V (1A1) = 1

Q|

O(2) - E(L,y), E(y,2) » | 3 | rstpq =1
5| rt =0
Q: Points reachable in 2 \
hops, starting at node "1 (OA1) =0
Jos

B=(B, vV, A, O, 1): Boolean algebra

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Example variant 2 Provenance polynomials (N[X], +, -, 0, 1)

each point?

Now assume passing along an edge needs
a certain security clearance (1<2<3).
What clearance do you need for reaching

a/f)\ /\»F{U\

min[max|[3,”], max[1,1]] =

B Q
1]2 P= . Q(Z) -~ E(l,y), E(y,Z) 3
2 13| qg=1 5
1|14 | r=3 Q: Points reachable in 2

4 1 3| s hops, starting at node "1"

4 |5 t=1 \C \

({1,2,3,}, min, max, e=,1)
~ Y

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

/

r-s+p-q =1
r-t =3
max|[3,1] =3
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Example variant 3 Provenance polynomials (N[X], +, -, 0, 1)

Now assume each edge has a weight.
What is the shortest path to reach each point?

min[3+/,1+1] =

E 0 /

112 p=1 Q(z) - E(1,y), E(y,2) > | 3 | r'stpq
213 qg=1 5| rt = 4
14| r=3 Q: Points reachable in 2 \

4 1 3| s hops, starting at node "1" 341 =4

4 15| t=1

T=(R5",min,+,,0): Tropical semiring

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Example variant 4 Provenance polynomials (N[X], +, -, 0, 1)

— 9.6 (5) Now assume each edge has a confidence
0.6 (probability of being available).
What is the probability of the most likely path?

max[0.5-0.6,0.5-0.8] = 0.4

: 0. |

12| p=05 Q(Z) = E(]_,y), E(y}z) »| 3 | r's+p-q =04
2 13| g=0.8 5| rt =0.3
14| r=05 Q: Points reachable in 2 \

4 13| s=0.6 hops, starting at node "1" 05.06=03
4 |5 t=0.6

V=([0,1],max, - ,0,1): Viterbi semiring (max likely sequence)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 63
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Example variant 5 Provenance polynomials (N[X], +, -, 0, 1)

P= Q(Z) - E(l,y), E(y,Z)

Q: Points reachable in 2

LD
U W |||
—
|l

S = hops, starting at node "1"

Finally assume we want to calculate the number
of paths to a node. We start by annotating the
tuples in the database with their duplicity
(which is 1 to start with)

1-1+1-1=2
r-s+p-q =2
r-t =1
1-1=1

(N, +, -, 0, 1): Counting derivations / bag semantics

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Topic 2: Complexity of Query Evaluation
Unit 3: Provenance
Lecture 17/

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
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Pre-class conversations

e Last class summary
e Projects: TUE 3/26 intermediate report
e Faculty candidate tomorrow WED 3/20

e Today:

— provenance, semirings

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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PRELIMINARY

Topic 2: Complexity of Query Evaluation & Reverse Data Management

o Lecture 14 (Fri 3/1): T2-U1 Conjunctive Queries

« Spring break (Tue 3/5, Fri 3/8)

o Lecture 15 (Tue 3/12): T2-U1/2 Conjunctive & Beyond Conjunctive Queries
o Lecture 16 (Fri 3/15): T2-U1/2 Conjunctive & Beyond Conjunctive Queries
e Lecture 17 (Tue 3/19): T2-U3 Provenance

o Lecture 18 (Fri 3/22): T2-U3 Provenance

o Lecture 20 (Tue 3/26): T2-U4 Reverse Data Management

Pointers to relevant concepts & supplementary material:

o Unit 1. Conjunctive Queries: Query evaluation of conjunctive queries (CQs), data vs. query
complexity, homomorphisms, constraint satisfaction, query containment, query minimization,
absorption: [Kolaitis, Vardi'00], [Vardi'00], [Kolaitis'16], [Koutris'19] L1 & L2

o Unit 2. Beyond Conjunctive Queries: unions of conjunctive queries, bag semantics, nested
queries, tree pattern queries: [Kolaitis'16], [Tan+'14], [Gatterbauer'11], [Martens'17]

o Unit 3. Provenance: [Buneman+'02], [Green+'07], [Cheney+'09], [Green, Tannen'17],
[Kepner+16], [Buneman, Tan'18], [Simons'23], [Dagstuhl'24]

o Unit 4. Reverse Data Management: update propagation, resilience: [Buneman+'02],
[Kimelfeld+'12], [Freire+'15], [Makhija+'24]

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 67
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A more complex example with exponents

Q(R) — T[AC(\T[ABR X nBch U \nAcR X ﬂBcRJ)

N Yo

L

L
R magRXMTEcR - mpcRMTECR Q. UQ,

Q.
o
(gv)

? ? ?

e | | |

=
0Q

Example from Section 2 of Green, Karvounarakis, Val Tannen. "Provenance Semirings", PODS 2007. https://doi.org/10.1145/1265530.1265535

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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A more complex example with exponents

Q(R) = nAC(nABR X nBCRj U \nACR X nBCR)

N Yo

L

R magRXMTEcR - mpcRMTECR Q. UQ, Q

alb|c|X a C a C alc

d{blel|Y a e? d e? ? ae?

flglel|Z d c|"® d el " - djic| *
d e f e d|e
f e f e fle

oo (T|T|T | T
oo | T 00 | T |T

Y e IR T e T F @ P H O I b
oo |TC'lQ |TC|T|T| T
D (DID|D OO|ID O

Example from Section 2 of Green, Karvounarakis, Val Tannen. "Provenance Semirings", PODS 2007. https://doi.org/10.1145/1265530.1265535
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 69
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A more complex example with exponents

Q(R) = nAC(nABR X nBCRj U \nACR X nBCR)

N Yo

L

R magRXMTEcR - mpcRMTECR Q. UQ,

al/b|c|X al|b|c|X? alb|c alb|c
d{blel|Y alb|e XY dbe? abe?
flglel|Z d| b|c|XY digle|" di{b|c| "
d|{b|e|Y? f|ble d|b|e

flg|e|Z? f|lgle dig|e

flb|e

flg|e

Example from Section 2 of Green, Karvounarakis, Val Tannen. "Provenance Semirings", PODS 2007. https://doi.org/10.1145/1265530.1265535

-~ L QLD |

CHICEIeoEEICEEe!

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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A more complex example with exponents

Q(R) = nAC(nABR X nBCRj U \nACR X nBCR)

R nABRJFanBCR
al/b|cl|X alb|c|X?
d b|lel|Y al|b|e|XY
flglel|Z d| b|c|XY
d{b|e|Y?
f|lg|e|Z?

Example from Section 2 of Green, Karvounarakis, Val Tannen. "Provenance Semirings", PODS 2007. https://doi.org/10.1145/1265530.1265535

| QLD

oo | T 00 | T |T

CHEEICEEICEECEEe!

XZ
YZ
YZ
YZ
ZZ

Q UQ,

-~ L QLD |

CHICEIeoEEICEEe!

Y e IR T e T F @ P H O I b

09 |T[0Q | T|T|T|CT

@ || (D[ |O

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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A more complex example with exponents

Q(R) = nAC(nABR X nBCRj U \nACR X nBCR)

L
R TagR™TgcR - mycRamgcR QU Q, Q
al|b X al|b|c|X? al|b|c|X? al|b|c|2X? alc
d|b Y alb|e|XY d|b|e|Y? al/b|e|XY ale
f|lg Z d|{b]|c|XY djig|e|YZ d||b | c|XY d|c
d|{b|e|Y? f | ble|YZ d| b| el/2Y? d|e
f|lg|e|Z? f|g|e|Z? di g|e\YZ f|e
flblelYZ
f|g|el|2Z°

Example from Section 2 of Green, Karvounarakis, Val Tannen. "Provenance Semirings", PODS 2007. https://doi.org/10.1145/1265530.1265535
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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A more complex example with exponents

Q(R) = nAC(nABR X nBCRj U \nACR X nBCR)

L
R TagRXTEcR - mycRamgcR Q; U Q, Q
al/b|c|X al|b|c|X? al|b|c|X? al|b|c|2X? alc| 2X?
d| blel|Y alb|e|XY d|b|e|Y? al/b|e|XY ale XY
flglel|Z d| b|c|XY d|g|e|YZ d{b|c|XY djic| XY
d|{b|e|Y? f|b|lel|YZ d| b|e|2Y d| e |2Y%+YZ
flg|le|Z? flgle|Z? dlig|e|YZ f|e|YZ42Z7
flble|YZ
f|g|e|2Z?

Example from Section 2 of Green, Karvounarakis, Val Tannen. "Provenance Semirings", PODS 2007. https://doi.org/10.1145/1265530.1265535
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A more complex example with exponents

Q(R) = nAC(nABR X nBCRj U \nACR X nBCR)

N Yo

R T[ABR\I;(]T[BCR macRXmgcR - QU Q;
alb|c|X=2 |a|b]|c]|X? alb|c|X a|b|c|2X?
d{b|e|Y=5 |a|b]|e|XY d|(b|e]|Y? alb|e|XY
flgle|Z=1 |d|b]|c|XY d|g|e|YZ d{b|c|XY
d|b|e|Y? f|ble|YZ d|b|e|2Y?
f|lg|e|Z? f|g|e|Z? digle|YZ
\ : f|ble|YZ
Let's assume bag semantics and f gl e 222

duplicities in the input. How many ?
output tuples do we get7?

-~ L QLD |

CHICEIeoEEICEEe!

2X?

XY

XY
2Y?+YZ
YZ+272

(N, +, -, 0, 1): Counting derivations / bag semantics

Example from Section 2 of Green, Karvounarakis, Val Tannen. "Provenance Semirings", PODS 2007. https://doi.org/10.1145/1265530.1265535
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A more complex example with exponents

Q(R) = nAC(nABR X nBCRj U \nACR X nBCR)

R magRMTE R mycRMmgcR QU Q;
alb|c|X=2 |a|b]|c]|X? alb|c|X a|b|c|2X?
d{b|e|Y=5 |a|b]|e|XY d|(b|e]|Y? alb|e|XY
flgle|Z=1 |d|b]|c|XY d|g|e|YZ d{b|c|XY
d|b|e|Y? f|ble|YZ d|b|e|2Y?
f|lg|e|Z? f|g|e|Z? digle|YZ
\ : f|ble|YZ
Let's assume bag semantics and f gl e 222

duplicities in the input. How many
output tuples do we get7?

-~ L QLD |

CHICEIeoEEICEEe!

2X? =8

XY =10

XY =10
2Y?4+YZ =55
YZ+27%=7

(N, +, -, 0, 1): Counting derivations / bag semantics

Example from Section 2 of Green, Karvounarakis, Val Tannen. "Provenance Semirings", PODS 2007. https://doi.org/10.1145/1265530.1265535

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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A more complex example with exponents

Q(R) = nAC(nABR X nBCRj U \nACR X nBCR)

TraRBR2.C(RXRp=r2.8PR—R2R) TrAR2BRC(RXR c=r2.cPR—R2R)

R Q

SELECT A, C, COUNT (%)
alb|c|X=2 FROM ( 2lcl| 2xX2 =g
dlblely=5  SELECT R.A, R.B, R2.C el XY =10
flgle|lz=1  FROM R, RR. d[c| Xy =10
WHERE R.B = R2.B Tl 2y2ryZ s
NToR ALL f|e|YZ+222=7
SELECT R.A, R2.B, R.C
FROM R, R R2 4 Sroractervarynd Charactervanyind® g
WHERE R.C = R2.C) X 1 - : |
GROUP BY A, C 2t e "
ORDER BY A, C s ;

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Example from Section 2 of Green, Karvounarakis, Val Tannen. "Provenance Semirings", PODS 2007. https://doi.org/10.1145/1265530.1265535
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Outline: T2-3: Provenance

— Algebra: Monoids and Semirings
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\\

SIMONS Logic and Algebra for Query
'\ gy INSTITUTE

°
for the Theory of Computing Evalu atlon

Program Logic and Algorithms in Database Theory and Al

Date Monday, Nov. 13 - Friday, Nov. 17, 2023
About

The workshop will discuss semantics of logic programs over general semirings: constraints over semirings, query complexity with
semiring semantics, termination conditions of logic programs over semirings. The connection between semirings and logic is a
relatively new development in database theory (since 2007), and this area has high potential for major innovation. Some of the
problems discussed at the workshop will be inspired by systems, others will be purely theoretical in nature, such as the quest for
finding appropriate extensions of Pebble Games to semiring semantics.

Chairs/Organizers

a Sudeepa Roy (Duke University; co-chair)

Wolfgang Gatterbauer (Northeastern University) g Val Tannen (University of Pennsylvania)

= Dan Suciu (University of Washington; co-chair)

https://simons.berkeley.edu/workshops/logic-algebra-query-evaluation#fsimons-tabs
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Why algebra? Think abstraction and generalization

e Abstraction:

e Generalization:

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Why algebra? Think abstraction and generalization

» Abstraction: an emphasis on the
idea and properties rather than the
particulars (hiding irrelevant details)

— main goal in "Abstract algebra”

e.g. groups in group theory —_—

e Generalization:

For instance, consider the following three objects:

1. The set of functions A, B, C defined on the set {1,2,3} by
A) =1, AQ)=2, A(3) =3,
B(1)=2, B2)=3, B(3) =1,
C1)=3,C2)=1, C3) =2,

2. The set of complex numbersa = 1,b = e

_ 1 0 0 -1 -1 -1
3. The set of matrices a = P = ,Y =
0 1 -1 -1 -1 0

Consider these notations: AB means A(B(x)), ab is ordinary multiplication of complex numbers, and
aff means ordinary matrix multiplication. Verify the following "multiplication" tables:

213 ¢ — gi4nl3.

A B C a b ¢ | a f v
A|A B C ala b c ala B vy
B|B C A b|b ¢ a blP v «a
C|C A B clc a b yly a f

Notice that these tables are identical. Then let us by abstraction define an abstract object which is
the set of three elements {e, g, g_1 } paired with a binary operator - such that set acts on itself in
the following manner with respect to the operator:

e g g
e e g -1
g | g g

In Group Theory an object with such structure is called the cyclic group of order three. Then the
examples above are representations of this abstract object. It is an abstract object because while
we have now given it a definition, notice that it is itself a stand-in for a variety of objects that have
the properties that it demonstrates. You might even consider the abstract object to be more of a set

Example on the right from: https://matheducators.stackexchange.com/questions/10949/what-is-abstraction-and-generalization/10957

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Why algebra? Think abstraction and generalization

: an emphasis on the
idea and properties rather than the
particulars (hiding irrelevant details)

— main goal in "Abstract algebra”

e.g. groups in group theory —_—

: a broadening of
application to several objects with
similar functions.

— e.g. Algorithms: finding the shortest
path not just in one graph but any
graph

For instance, consider the following three objects:

1. The set of functions A, B, C defined on the set {1,2,3} by
A) =1, AQR) =2, AQ3) =3,
B(1)=2, B2)=3, B(3) =1,
C1)=3,C2)=1, C3) =2,

2. The set of complex numbers a = 1, b = 23 c = ¢
0 0o -1 -1 -1

B = Y =
1 -1 -1 -1 0
Consider these notations: AB means A(B(x)), ab is ordinary multiplication of complex numbers, and
aff means ordinary matrix multiplication. Verify the following "multiplication" tables:

i4z/3

1
3. The set of matrices a = ( 0

A B C a b ¢ a p vy
A|lA B C ala b c ala B vy
B|B C A b|b ¢ a blP v «a
C|C A B clc a b yly a f

Notice that these tables are identical. Then let us by abstraction define an abstract object which is
the set of three elements {e, g, g_1 } paired with a binary operator - such that set acts on itself in
the following manner with respect to the operator:

e g g
e e g -1
g | g g

In Group Theory an object with such structure is called the cyclic group of order three. Then the
examples above are representations of this abstract object. It is an abstract object because while
we have now given it a definition, notice that it is itself a stand-in for a variety of objects that have

the properties that it demonstrates. You might even consider the abstract object to be more of a set

Example on the right from: https://matheducators.stackexchange.com/questions/10949/what-is-abstraction-and-generalization/10957

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Let's start with groups! Why groups?

e Groups are one of the most important structures studied in abstract
algebra

« What is so special about groups?

https://northeastern-datalab.github.io/cs7240/
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Groups have the minimum properties needed to solve equations

Can you solve that ?

Screenshot from: Socratica: Abstract Algebra: Motivation for the definition of a group, https://www.youtube.com/watch?v=yHqg yzYZV6U
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 84
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Groups have the minimum properties needed to solve equations
(Z,+, 0): Integers under addition

vs(_'/@) ~C
0 J ((,\‘c*)

Screenshot from: Socratica: Abstract Algebra: Motivation for the definition of a group, https://www.youtube.com/watch?v=yHg yzYZV6U
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 85
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Why something weaker than groups?

« For some important computational problems like Dynamic
Programming, we don't need to "solve equations".

— Thus we don't need an inverse ("we don't need to go back")

e Let's look at weaker structures

Graphs, Dioids

and Semirings

New Models and Algorithms

Preface

During the last two or three centuries, most of the developments in science (in par-
ticular in Physics and Applied Mathematics) have been founded on the use of classical
algebraic structures, namely groups, rings and fields. However many situations can
be found for which those usual algebraic structures do not necessarily provide the
most appropriate tools for modeling and problem solving.

Screenshot from: Gondran, Minoux. "Graphs, Dioids and Semirings: New Models and Algorithms", 2008. https://www.springer.com/gp/book/9780387754499
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Group-like structures

(also "total"
Set S slso Hotald

+ 1. | Closed binary operation @:
If x,yeS then the image (x@y)eS

Magma (S, D)

Magma

Binary Operation
Closure

Semigroup

3*.‘.-/

ey

Figure credits: https://www.euclideanspace.com/maths/discrete/groups/monoid/index.htm,
https://en.wikibooks.org/wiki/Abstract Algebra/Group Theory/Group/Definition_of a_Group
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Magma
Binary Operation
Closure
Semigroup

Group-like structures

Set S

+ 1. | Closed binary operation @:
If x,yeS then the image (x@y)eS

Associativity

Monoid
Identity Element

Group
Inverse

Magma (S, D)

+ 2.| Associativity:

xD(yDz) = (xDy)Dz

"In a category associativity is the condition that the two ways to use binary
composition of morphisms to compose a seduence of three morphisms are edqual”

Semigroup (S,D)

ho(gof)

Figure credits: https://www.euclideanspace.com/maths/discrete/groups/monoid/index.htm , https://ncatlab.org/nlab/show/associativity ,

https://en.wikibooks.org/wiki/Abstract Algebra/Group Theory/Group/Definition_of a_Group
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Group-like structures

Magma
Binary Operation

Set S Closure

Semigroup

+ 1. | Closed binary operation @:
If x,yeS then the image (x@y)eS

Magma (S, D)

+ 2.| Associativity:

xD(yDz) = (xDy)Dz
Semigroup (S,D)

+ 3. | Identity element:
JeeS. VxeS. [e@x = xPe =x]

Monoid (S,D,e)

Figure credits: https://www.euclideanspace.com/maths/discrete/groups/monoid/index.htm,
https://en.wikibooks.org/wiki/Abstract Algebra/Group Theory/Group/Definition_of a_Group
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Group-like structures

Set S

+ 1. | Closed binary operation @:
If x,yeS then the image (x@y)eS

Magma (S, D)

+ 2.1 Associativity:
xD(yDz) = (xDy)Dz

Semigroup (S,D)

+ 3. | Identity element:
JeeS. VxeS. [e@x = xPe =x]

Monoid (S,D,e)

Inverse:
VxeS. IxteS. [x1Px =xPx! =e]

Group (S,ED,e)

Figure credits: https://www.euclideanspace.com/maths/discrete/groups/monoid/index.htm

Magma
Binary Operation
Closure

Semigroup

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Group-like structures

Set S

+ 1. | Closed binary operation @:
If x,yeS then the image (x@y)eS

Magma (S, D)

+ 2.1 Associativity:
xD(yDz) = (xDy)Dz

Semigroup (S,D)

+ 3. | Identity element:
JeeS. VxeS. [e@x = xPe =x]

Monoid (S,D,e)

What are intuitive examples for:
* agroup f?

* owoids (that are ot groups)

?

* semigroups (that are not monoids)?

?

.| Inverse:
VxeS. AxteS. [x1Px =xPx' =e]

+ 5. Commutativity: x@y = yDx

» Commutative Monoid (S,D,e)

Group (S,ED,e)
+ 5.

= Abelian Group (S,D,e)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Group-like structures

Set S

+ 1. | Closed binary operation @:
If x,yeS then the image (x@y)eS

Magma (S, D)
+ 2.1 Associativity:
xD(yDz) = (xDy)Dz
Semigroup (S,D)

+ 3. | Identity element:
JeeS. VxeS. [e@x = xPe =x]

What are intuitive examples for:
* A group

- (Z,+, 0): Integers under addition
* owoids (that are ot groups)

?

* semigroups (that are not monoids)?

?

Monoid (S,D,e)

.| Inverse:
VxeS. AxteS. [x1Px =xPx' =e]

+ 5. Commutativity: x@y = yDx

» Commutative Monoid (S,D,e)

Group (S,ED,e)
+ 5.

= Abelian Group (S,D,e)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Group-like structures

Set S

+ 1. | Closed binary operation @:
If x,yeS then the image (x@y)eS

Magma (S, D)

+ 2.1 Associativity:
xD(yDz) = (xDy)Dz

Semigroup (S,D)

+ 3. | Identity element:
JeeS. VxeS. [e@x = xPe =x]

Monoid (S,D,e)

What are intuitive examples for:

* A 9gronp
- (Z,+, 0): Integers under addition

* owoids (that are ot groups)
- (N,+, 0): Natural numbers under add. {0, 1, ...}
- (IR,min,e=): minimum has no inverse

String concatenation with null string €

Square matrices under matrix multiplication

(P(S),U): Power set under union
* semigroups (that are not monoids)?

?

Inverse:
VxeS. AxteS. [x1Px =xPx' =e]

» Commutative Monoid (S,D,e)
+ 5. Commutativity: x@y = yDx

Group (S,ED,e)
+ 5.

= Abelian Group (S,D,e)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Group-like structures
Set S

+ 1. | Closed binary operation @:
If x,yeS then the image (x@y)eS
Magma (S,D)

+ 2.1 Associativity:
xD(yDz) = (xDy)Dz

Semigroup (S,D)

3. | ldentity element:
JeeS. VxeS. [e@x = xPe =x]

What are intuitive examples for:
* A group

- (Z,+, 0): Integers under addition
* owoids (that are ot groups)

- (IR,min,e=): minimum has no inverse
- String concatenation with null string €
- Square matrices under matrix multiplication
(P(S),U): Power set under union

. sevm@romps (that are not mowoids)?
- (N,+): Positive integers under add. {1, 2, ...}
- Even numbers under multiplication
- String concatenation without null string

- (N,+, 0): Natural numbers under add. {0, 1, ..

.}

Monoid (S,D,e)

Inverse:
VxeS. AxteS. [x1Px =xPx' =e]

+ 5. Commutativity: x@y = yDx

» Commutative Monoid (S,D,e)

Group (S,ED,e)
+ 5.

= Abelian Group (S,D,e)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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What do we exactly lose by not having an inverse?

e Let's take a quick detour and look at some examples to illustrate
what we lose by having monoids instead of groups

https://northeastern-datalab.github.io/cs7240/
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Monoids vs. Groups: Examples

« Commutative group (with inverse)
- (R, +, 0) eg,3+31= 7

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 98
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Monoids vs. Groups: Examg%s

« Commutative group (with inverse
- (R, +, 0) e.g., 3 f;®=3 +(-3)=0 recall: inverse w.rt. (+, 0)
- (R\{0},-,1) eg,3-3t= 7

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 99
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Monoids vs. Groups: Examples

« Commutative group (With/m/verse
- (R, +, 0) e.g., 3 f;®=3 +(-3)=0 recall: inverse w.rt. (+, 0)
- (R\{0},-,1) eg.,3:-31=3:(1/3)=1

« Commutative monoid (w/o inverse)

- ({0,1},A,1) ... logical conjunction
* identity element 1: xA1 = 1Ax=x
e Whatistheinverse 0ls.t.0ON0O1=1 ?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 100
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Monoids vs. Groups: Examples

« Commutative group (with inverse)
- (R, +, 0) e.g.,3+31=3+(-3)=0 recall: inverse w.rt. (+, D)
- (R\{0},-,1) eg.,3:-31=3:(1/3)=1

« Commutative monoid (w/o inverse)
- ({0,1},A,1) ... logical conjunction
* identity element 1: xA1 = 1Ax=x
e Whatisthe inverse 01s.t. O 1 There is vo such inverse ®
— (R*°,min, o)
R * identity element eo: min[x,o°] =x
S ‘Q@Q\g What is the inverse 3-1s.t. min[3,31] = oo ?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 101
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Monoids vs. Groups: Examples

« Commutative group (with inverse)
- (R, +, 0) e.g.,3+31=3+(-3)=0 recall: inverse w.rt. (+, D)
- (R\{0},-,1) eg.,3:-31=3:(1/3)=1

« Commutative monoid (w/o inverse)
- ({0,1},A,1) ... logical conjunction

* identity element 1: xA1 = 1Ax=x
« Whatistheinverse 01s.t.0A01=1 There is vo such inverse @

- (R*,min,oo)
R * identity element eo: min[x,o°o] =x
 Whatisthe inverse 31s.t. min[3,31] = There is o such inverse @
U Q@Q\

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 102
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The power of groups (i.e. of having an inverse)

o Assume(x,y,z) s.t. xpy=z
- Given y and z (and knowing that z was calculated), deduce x
« (R,+,0)and (x,y,z)=(1,2,3)
- X+2=3
Whatisx? P

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 103
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The power of groups (i.e. of having an inverse)

o Assume(x,y,z) s.t. xpy=z
- Given y and z (and knowing that z was calculated), deduce x
« (R,+,0)and (x,y,z)=(1,2,3)
- X+2=3
What 1s X7 x=z+y1=3+(-2)=1
e ({0,1},A,1) and (x,y,2)=(1,0,0)
- XxA0=0
wWhat isx? P

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 104
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The power of groups (i.e. of having an inverse)

o Assume(x,y,z) s.t. xpy=z
- Giveny and z (and knowing that z was calculated), deduce x
« (R,+,0)and (x,y,z)=(1,2,3)
- X+2=3
What 1s X7 x=z+y1=3+(-2)=1
e ({0,1},A,1) and (x,y,z)=(1,0,0)
~ XA0=0 A0 F)
What is X7 x could be O or 1
e (R>,min,*=) and (x,y,z)=(3,2,2)
- Xmin2=2
wWhat isx? P

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 105
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The power of groups (i.e. of having an inverse)

Assume(x,y,z) s.t. xPy=z
- Giveny and z (and knowing that z was calculated), deduce x
« (R,+,0)and (x,y,z)=(1,2,3)
— X+2=3
What 1s X7 x=z+y1=3+(-2)=1
e ({0,1},A,1) and (x,y,2)=(1,0,0)
— xA0=0
What is X7 x could be O or 1
e (R>,min,*=) and (x,y,z)=(3,2,2)
- Xmin2=2
What 1s X7 x can be anything in [2,9°]
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https://northeastern-datalab.github.io/cs7240/

Rings and Semirings: what we get from two operators

e Groups and group-like structures consider a set and one binary
operator (with various properties)

e Rings and ring-like structures consider a set and two operators (with
various properties and "interactions" like the )

https://northeastern-datalab.github.io/cs7240/
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(Commutative) Semirings

two \?p@erors w/ veutral elements thus semirings are rivgs
. e w/o the additive inverse
1. (S,,0) is commutative monoid . 7
, _ - Commutative semirings
(5,&,1) is (commutative) monoid .9 matrix multiplication

2.
3. @ distributes over @: (xBy) @ z=(xQz) D (Yy®z) ic ot commutative
4. 0 annihilates ®:0 X x=0

ab + ac a(b+c)

Figure credits: https://en.wikipedia.org/wiki/Distributive property
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 113
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(Commutative) Semirings

two operators w/ neutral elements thus semirings are rivgs
(S ) 0,1) w/o the additive inverse
4 ) 1> ~ 6 &OU{;)

1. (S,,0) is commutative monoid . .
, . _ - Commutative semirings
. ($,®,1) fis (cpmmutative) monoid - e.0.: matrix multiplication
3. ® over @: (x®y) @ z=(x2) © (YQ2) s vt commutative
4. 0 annihilates ®:0 X x=0 é:sr—
o Example TROP/CAC ADDIT 10y AVLTIpcicaTION &
1. T=(R%,min,+,,0) Shortest-distance: mdfn[x,y] +z = min[(x+z),(y+2z)]
min-sum semiring, also called tropical semiring: sum distributes over min: N ‘IL‘
min[x+y]+z = min[x+z,y+z]; e.g. min[3+4]+5 = min[3+5, 4+5] = 8 7
not the other way: min[x+y,z] # min[x,z] + min[y,z]; e.g. min[3+4,5] =5 # 7 =min[3,5] + min[4,5]
2. R=(R,+ -,0,1) Ring of real numbers
3. B=({0,1},v,A,0,1) Boolean (set semantics) . TP : - I, C
4. N=(N,+, -,0,1) Number of paths (bag semantics) zp + ac = a(b+0)

5. V=([0,1],max, -,0,1) Probability of best derivation (Viterbi)

Figure credits: https://en.wikipedia.org/wiki/Distributive property
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 114
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Ring-like structures

“— imissivg on the le

Field

Ring

Commutative Ring

Identity Element

Abelian Group (+)

Inverse Element

Identity Element

Abelian Group (+)

Inverse Element

Identity Element

Inverse Element

Abelian Group (+)

amihilator,

This graphic describes the interrelationships
between various Group-like algebraic
structures. Structures are connected by
arrows that flow downward and in the direction
of more axioms and increasing specificity. The
themselves are labeled with the
axiom(s) ed to be added to the
upstream structuréin~arder to produce the

the downstream structure. In the language of
symbolic logic, if structure S is downwardly
connected to structure T thru axiom A, then
Sand A<=>T

Graphically, this also means that if it's possible
to travel from one structure to another by
consistently following the arrows, or

+, - closed,
- distributes over +

Ringoid

"Crooked
Semirng" (crg)

Removing Axioms
(more general)

Closure Closure Closure downstream structure. This ne in a way

that respects symmetry so that the axiems are
Associativity Associativity Associativity always necessary AND sufficient for produci + associative, zero exists (+ is monoid), Adding Axioms
- associative (- is semigroup),
Ox=x0=0

(more specific)

" : " : Reciprocals*
! ) ' ' tative M P!
Identity Element Abelian Group (+) Identity Element Commula(tlv)e Ronclc Identity Element connd a(l\;e cnc Commutative (- is group)
Ring
Inverse Element Inverse Element Inverse Element Reciprocals*
- is idempotent - commutes (- is group)
Commutativity Commutativity Commutativity (xx =x) Zero Product
Property
Closure Closure Closure ) X Boolean Integral Division
 Reciprocals Ring Domain Ring
Associativity Associativity Associativity (+is Abelian group)
X i . ) i - commutes
Identity Element el Identity Element =2 Al Identity Element oo M Reciprocals* (- is Abelian group)
(- is Abelian group) -
Finite set

Inverse Element Inverse Element Inverse Element @
Commutativity Commutativity Commutativity Finite set
Left Distributivity Left Distributivity Left Distributivity

Distributivity Distributivity Distributivity Finite
Right Distributivity Right Distributivity Right Distributivity Field

CarisiEiviiy Sonutalivity Commutativity consistently going against the arrows, then the
: : + commutes
higher structure contains the lower structure . . .
Closure Closure Closure as a special case, and everyi f the One exists (- is monoid)
lower is also an i e of the higher. i
o e o " " Semirng
Associativity Associativity Associativity Crooked (rg)
— & I — Semiring (crig)
" . " lonol . Oommutative Monol
Identity Element Abelian Group })( Identity Element ) Identity Element " Negatives One exists Negatives
(+ is group) (- is monoid) : .
Inverse Element Inverse Element Inverse Element (+ is Abelian group)
- - . Semiring

Commutativity Commutativity Commutativity (rig) h
Left Distributivity Left Distributivity Left Distributivity Negatives

Distributivity Distributivity Distributivity + commutes (+ is Abelian group) One exists
Right Distributivity Right Distributivity Right Distributivity (+is Abelian) (- is monoid)

Pseudo-Ring Semi-Ring Commutative Semi-Ring @
Closure Closure Closure
(- commutes) Zero Product

Associativity Associativity Associativity Property

* "Reciprocal" means multiplicative inverse. Defined on all non-zero elements.
Also, saying " is a group" means "- is a group on the non-zero elements".

Figure credits: https://kevinbinz.com/2014/11/16/goodman-semiring-parsing/,

https://math.stackexchange.com/questions/2361889/graphically-organizing-the-interrelationships-of-basic-algebraic-structures
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Ring-like structures

“— imissivg on the le

This graphic describes the interrelationships
between various Group-like algebraic
structures. Structures are connected by
arrows that flow downward and in the direction
of more axioms and increasing specificity. The

amihilator,

+, - closed,
- distributes over +

Ringoid

{D-

+ associative, zero exists (+ is monoid),

- associative (- is semigroup),

Ox=x0=

One exists (- is monoid)

"Crooked

. . . . al themselves are labeled with the
Field Ring Commutative Ring axiom(s) ed to be added to the
H | b upstream structure er to produce the
Closure Closure Cl rat | O n a n U m e rS downstream structure. ThisT e in a way
<— that respects symmetry so that the axi are
o o g 1 always necessary AND sufficient for produci
Associativity Associativity Associativity Z / 5 Z ( | nte ge r's mo d 5 ) the downstream structure. In the language of
symbolic logic, if structure Sis downwardly
Identity Element Abelian Group (+) Identity Element Abglian Group (+) Identity Element Abelian Group (+) f (X) fi e I d Of ra t i o n a | fcts connected to structure T thru axiom A, then
— Sand A<=>T
Inverse Element Inverse Element Inverse Element g ( x) Graphically, this also means that if it's possible
to travel from one structure to another by
. . NN - consistently following the arrows, or
Comtiativit] Commuiativity ommutativity consistently going against the arrows, then the
. higher structure contains the lower structure
Closure NoNn-zero Closure Closure ]:R [X] rea I p (0] |y nomia | S as a special case, and eve z f the
| lower is also an i e of the higher.
Associativity elements Associativity Associativity Z / 4Z ( | ntegers mo d 4)
form an ) g
Identity Element Abelian Group Identity Element Mond Identity Element Negatives
| coment cent o oot sometimes callgd | oo (+ s group)
nverse element 4— nverse Element . . . nverse Element
24 ep ring w/ identit ™~ a b b d .
Commuttty Commuttiy Commuttviy J |a, b, c,d are integers; (Rearring>
Left Distributivity Left Distributivity Left Distributivity
Distributivity Distributivity Distributivity + commutes
Right Distributivity Right Distributivity Right Distributivity (+ is Abelian)

Pseudo-Ring (rm@) Semi-Ring (r]@)

Commutative Semi-Ring

AN

Closure Closure

Associativity Associativity Associativity

Commutative Monoid

Identity Element Abelian Group (+) )

I~ Identity Element

Inverse ent

Identity Element /

Inverse Element Inverse Element i

Commutative Monoid

Commutativity Commutativity Commutativity ha

Closure Closure Closure

Associativity Associativity

[dentity Element Ser?i-'Group Identity Element CM Monoid Commutalive Monoid
sometifes called (

Inverse Element rin 9w /o identi \ | Inverse Element Inverse Element
Commutativity Commutativity Commutativity
Left Distributivity Left Distributivity Left Distributivity
Distributivity Distributivity Distributivity
Right Distributivity Right Distributivity Right Distributivity

B=(B, V, A, 0, 1): Boolean semiring

Semiring (¢

(rig)

"Crooked
Semirng" (crg)

Semiring

0

rig)

One exists

D

Negatives
(+ is Abelian group)

1+1=1, thusV has no inverse

(+ is monoid)

Removing Axioms
(more general)

Adding Axioms
(more specific)

+ commutes

Semirng
(rg)

Negatives

(+ is Abelian group)

One exists
(- is monoid)

(- commutes)

Commutative
Ring

- is idempotent
(xx =X)

Reci | Boolean
eciprocals™ Rin
(- is Abelian group) 9

Property

(N, +, -, 0, 1): Natural numbers
no inverses

Zero Product
Property

Integral
Domain

Polynomials with semiring
coefficients (e.g. N[x])

Zero Product

- commutes

Reciprocals*
(- is group)

Reciprocals*
(- is Abelian group)

Reciprocals*
(- is group)

Division
Ring

- commutes
(- is Abelian group)

27.: Even integers

* "Reciprocal" means multiplicative inverse. Defined on all non-zero elements.

Also, saying " is a group" means " is a group on the non-zero elements".

Figure credits: https://kevinbinz.com/2014/11/16/goodman-semiring-parsing/,

https://math.stackexchange.com/questions/2361889/graphically-organizing-the-interrelationships-of-basic-algebraic-structures
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Rings and Semiring homomorphisms

« We have seen homomorphisms for structures with 1 operator:
— graphs
— conjunctive queries
— groups
— general binary structures

e Semiring homomorphisms generalize this to two operators

https://northeastern-datalab.github.io/cs7240/
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RECALL Homomorphisms on Binary Structures

« Definition (Binary algebraic structure): A binary algebraic structure
is a set together with a binary operation on it. This is denoted by an
ordered pair (S,*) in which S is a set and x is a binary operation on S.

e Definition (homomorphism of binary structures): Let (S,x) and (5,0)
be binary structures. A homomorphism from (S,*) to (5’,2) is a map
h: S — S’ that satisfies, for all x, y in S:

hix * y) = h(x) o h(y)

« We can denote it by h: (5,x) — (5,0).

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 122
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Homomorphisms now for ring-like structures

« A homomorphism between two semirings is a function between
their underlying sets that preserves the two operations of addition
and multiplication and also their identities.

e Definition (homomorphism between semirings): Let (R,+,¢) and
(S,*,0) be semirings. A homomorphism from (R,+,¢) to (S,*,o) is a
map h: S — §’ that satisfies, for all x, y in S:

- h(x +y) = h(x) * h(y) addition preserving
— h(x ® y) = h(x) o h(y) multiplication preserving
- h(1g) = 1 multiplicative identity preserving

- h(0g) = O additive identify preserving

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 123
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A partial provenance hierarchy

most informative

N[X]

/N
Trio(X)

BIX]
NS

Why(X)

N

Lin(X) PosBool(X) least informative

Source: Todd J. Green, "Containment of Conjunctive Queries on Annotated Relations", ICDT 2009. https://doi.org/10.1145/1514894.1514930
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Using homomorphisms to relate models

Example: 2x2y + xy + Sy2 + z

N[X]
drop coefficients / \ drop exponents
X2y +Xxy+y2+z _ 3xy + 5y +z
B[X] Trio(X)
drop both exp. and coeff. \ /
Xy+y+z Why(X)
apply absorption
collapse terms / \ (ab + b =b)
Xyz Lin(X) PosBool(X) y+z

A path downward from K to K, indicates that there exists an
onto (surjective) semiring homomorphism h : K, - K,
Furthermore, notice that for these homomorphisms h(x)=x

Source: Todd J. Green, "Containment of Conjunctive Queries on Annotated Relations", ICDT 2009. https://doi.org/10.1145/1514894.1514930
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Source: Val Tannen. "The Semiring Framework for Database Provenance", PODS 2017 Test of Time Award talk : https://www.cis.upenn.edu/~val/15MayPODS.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 129
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The power of Semirings is rediscovered again and again

e Semirings are not "as famous" as rings or groups in abstract algebra,
but form the basis of efficient algorithms

— we often don't need an inverse for the semiring addition

— we calculate "forward" not backwards (we don't solve equations)

« Thus they are "rediscovered" again and again in various branches of
computer science

https://northeastern-datalab.github.io/cs7240/
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Power of semirings is rediscovered again and again

1. Bistarelli, Montanari, Rossi.
and Optimization. JACM 1997 (cited > 800 times, 3/2020)

"We introduce a general framework for constraint satisfaction and
optimization where classical CSPs, fuzzy CSPs, weighted CSPs, partial
constraint satisfaction, and others can be easily cast. The framework is
based on a , Where the set of the semiring specifies the
values to be associated with each tuple of values of the variable domain,
and the two semiring operations (1 and 3) model constraint projection and
combination respectively. , as usually used for
classical CSPs, can be exploited in this general framework as well..."

Paper: Bistarelli, Montanari, Rossi. Semiring-Based Constraint Satisfaction and Optimization. JACM 1997. https://doi.org/10.1145/256303.256306
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 143
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Power of semirings is rediscovered again and again

2. Aji, McEliece: The . I[EEE Transactions
on Information Theory 2000 (cited >950 times in 3/2020)

TABLE 1

SOME COMMUTATIVE SEMIRINGS. HERE A "--- We dlscuss a ’
DE 'S AN A COoMN 'E RING, S' | A F 3 . . . . .
O Gir, AND A DENOTES AN ArBITRARY Distrisurve Larmce. | Which we call the generalized distributive law (GDL).
K “(+,09  “~1)" short name The GDL is a synthesis of the work of many authors
: Af[i] Ej:g; Eg in the information theory, digital communications,
w ! .'. . . . . . . . . .
3. Azl (R0 (41 signal processing, statistics, and artificial intelligence
4 [0, 00) (+,0) (1)  sum-product - i .
5. (0,00] (mimoo) (1) min-product communities. It includes as special cases ... Although
6 [0, 00) (max, 0) (-,1) max-product hi | ith . d .
T doel (inos) 0] | mikiswn this algorithm is guaranteed to give exact answers
8. [—oo, - ,0 . . . .
i [{‘(’fﬁ) (m(‘ﬁ‘&o;’") (g‘gb}) ey only in certain cases (the “ ” condition),
10 25 (U, 0) (N, S) . .
e Vo (A ... much experimental evidence, and a few
S S Ly G0 theorems, suggesting that it often works

approximately even when it is not supposed to.

Paper: Aji, McEliece: The generalized distributive law. IEEE Transactions on Information Theory, 2000. https://doi.org/10.1109/18.825794
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 144
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Power of semirings is rediscovered again and again

3. Mobhri: and algorithms for shortest-distance
problems. Journal of Automata, Languages and Combinatorics.
2002 (cited 290 times in 3/2020)

"We define general algebraic frameworks for shortest-distance problems

based on the structure of semirings. We give a generic algorithm for finding
single-source shortest distances in a weighted directed graph when the
weights satisfy the conditions of our general semiring framework.

... Classical algorithms such as that of [4, 17] are specific

instances of this generic algorithm ... The [24] is a specific
instance of this algorithm."

the system (K, @, ®) is a semiring

Paper: Mohri. Semiring frameworks and algorithms for shortest-distance problems. Journal of Automata, Languages and Combinatorics, 2002. https://doi.org/10.25596/jalc-2002-321
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Power of semirings is rediscovered again and again

4. Green, Karvounarakis, Tannen. Provenance semirings. PODS 2007.
(PODS 2017 test-of-time award)

Conclusions and Further Work

General and versatile framework.
Dare lcall it “semiring-annotated databases”?
Many apparent applications.

We clarified the hazy picture of multiple models for database
provenance.

Essential component of the data sharing system Orchestra.

* Dealing with negation (progress: [Geerts&Poggi 08, GI&T ICDT 09])

* Dealing with aggregates (progress: [T ProvWorkshop 08])
* Dealing with order (speculations...)

Paper: Green, Karvounarakis, Tannen. Provenance semirings. PODS 2007. https://doi.org/10.1145/1265530.1265535 , Figure credit: Val Tannen's EDBT 2010 keynote.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 147
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Power of semirings is rediscovered again and again

5. Khamis, Ngo, Rudra. FAQ: Questions Asked Frequently. PODS 2016

(PODS 2016 best paper award)

"We define and study the Functional Aggregate

Problem

FAQ formulation

Previous Algo.

Our Algo.

Query (FAQ) problem, which encompasses
many frequently asked questions in constraint
satisfaction, databases, matrix operations,
probabilistic graphical models and logic. This is
our main conceptual contribution... We then
present a simple algorithm called InsideOut to
solve this general problem. InsideQOut is a
variation of the traditional

for constraint
programming based on

#QCQ

#CQ

Joins

Marginal

MAP

MCM

DFT

(F+1} (nl (e
Y @U@ [[ vslxs)
(2], )

seE
where @' € {max. x}

&1+ @ [T vsxe)
ScE

whoere ei‘? C {max, x}

E TNAX ++ ¢ THRX I I Yiz{xg)
2 x b ‘

{1 vrzg) L ™ Sce

Paper: Khamis, Ngo, Rudra. FAQ: Questions Asked Frequently. PODS 2016. https://doi.org/10.1145/2902251.2902280

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Power of semirings is rediscovered again and again

6. Tziavelis+. Optimal Algorithms for Ranked Enumeration of Answers to Full

Conjunctive Queries. PVLDB 2020

ABSTRACT

We study ranked enumeration of join-query results accord-
ing to very general orders defined by selective dioids. Our
main contribution is a framework for ranked enumeration
over a class of dynamic programming problems that gener-
alizes seemingly different problems that had been studied
in isolation. To this end, we extend classic algorithms that
find the k-shortest paths in a weighted graph. For full con-
junctive queries, including cyclic ones, our approach is op-
timal in terms of theti the top result and the
delay between regifits. These optimality properties are de-

Generality. Our approach supports any selective dioid,
including less obvious cases such as lezxicographic ordering
where two output tuples are first compared on their R; com-
ponent, and if equal then on their Rs component, and so on.

Paper: Tziavelis, Ajwani, Gatterbauer, Riedewald, Yang. Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries. PVLDB 2020. https://dl.acm.org/doi/10.14778/3397230.3397250
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k-shortest paths. The literature is rich in algorithms
for finding the k-shortest paths in general graphs [10, 17, 34,
35, 53, 56, 57, 59, 65, 68, 67, 93]. Many of the subtleties of
the variants arise from issues caused by cyclic graphs whose
structure is more general than the acyclic multi-stage graphs
in our DP problems. Hoffman and Pavley [53] introduces the
concept of “deviations” as a sufficient condition for finding
the k'™ shortest path. Building on that idea, Dreyfus [34]
proposes an algorithm that can be seen as a modification
to the procedure of Bellman and Kalaba [17]. The Recur-
sive Enumeration Algorithm (REA) [57] uses the same set
of equations as Dreyfus, but applies them in a top-down re-
cursive manner. Our ANYK-REC builds upon REA. To the
best of our knowledge, prior work has ignored the fact that
this algorithm reuses computation in a way that can asymp-
totically outperform sorting in some cases. In another line
of research, Lawler [65] generalizes an earlier algorithm of
Murty [70] and applies it to k-shortest paths. Aside from k-
shortest paths, the Lawler procedure has been widely used
for a variety of problems in the database community [40].
Along with the Hoffman-Pavley deviations, they are one of
the main ingredients of our ANYK-PART approach. Epp-
stein’s algorithm [35, 56] achieves the best known asymp-
totical complexity, albeit with a complicated construction
whose practical performance is unknown. His “basic” ver-
sion of the algorithm has the same complexity as EAGER,
while our TAKE2 algorithm matches the complexity of the
“advanced” version for our problem setting where output
tuples are materialized explicitly.
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Power of semirings is rediscovered again and again

Tziavelis+. Optimal Algorithms for Ranked Enumeration of Answers to Full

Conjunctive Queries. PVLDB 2020

2.2 Ranked Enumeration Problem

We want to order the results of a full CQ based on the
weights of their corresponding witnesses. For maximal gen-
erality, we define ordering based on selective dioids [41],
which are semirings with an ordering property:

DEFINITION 3 (SEMIRING). A monoid is a S-tuple
(W, ®,0) where W is a non-empty set, ® : W x W — W
is an associative operation, and 0 is the identity element,
ie, YVt € W :2®0 =002 = z. In a commutative
monoid, ® is also commutative. A semiring is a 5-tuple
(W,®,®,0,1), where (W,®,0) is a commutative monoid,
(W,®,1) is a monoid, ® distributes over @, i.e., Vx,y,z €
W:(z0y)®z=(z®2)® (y® 2), and 0 is absorbing for
®, i.e,VaeW:a®0=0®a=0.

DEFINITION 4 (SELECTIVE DIOID). A selective dioid is a
semiring for which @ 1is selective, i.e., it always returns one
of the inputs: Ve, y e W : (z@y=2)V(c Dy =1y).

Note that @ being selective induces a total order on W
by setting x < y iff x ® y = x. We define result weight as
an aggregate of input-tuple weights using ®:

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Ranked enumeration. Both [26] and [90] provide any-
k algorithms for graph queries instead of the more general
CQs; they describe the ideas behind LAZY and ALL respec-
tively. [60] gives an any-k algorithm for acyclic queries with
polynomial delay. Similar algorithms have appeared for the
equivalent Constraint Satisfaction Problem (CSP) [44, 50].
These algorithms fit into our family ANYK-PART, yet do not
exploit common structure between sub-problems hence have
weaker asymptotic guarantees for delay than any of the any-
k algorithms discussed here. After we introduced the general
idea of ranked enumeration over cyclic CQs based on mul-
tiple tree decompositions [91], an unpublished paper [33] on
arXiv proposed an algorithm for it. Without realizing it,
the authors reinvented the REA algorithm [57], which cor-
responds to RECURSIVE, for that specific context. We are
the first to guarantee optimal time-to-first result and optimal
delay for both acyclic and cyclic queries. For instance, we re-
turn the top-ranked result of a 4-cycle in O(n'-®), while [33]
requires O(n?). Furthermore, our work (1) addresses the
more general problem of ranked enumeration for DP over a
union of trees, (2) unifies several approaches that have ap-
peared in the past, from graph-pattern search to k-shortest
path, and shows that neither dominates all others, (3) pro-
vides a theoretical and experimental evaluation of trade-offs
including algorithms that perform best for small k, and (4)
is the first to prove that it is possible to achieve a time-to-
last that asymptotically improves over batch processing by
exploiting the stage-wise structure of the DP problem.

Paper: Tziavelis, Ajwani, Gatterbauer, Riedewald, Yang. Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries. PVLDB 2020. https://dl.acm.org/doi/10.14778/3397230.3397250
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Power of semirings is rediscovered again and again

Atserias, Kolaitis. Structure and Complexity of Bag Consistency.

PODS 2021, SIGMOD record 2022.

Consistency, Acyclicity, and Positive Semirings

Albert Atserias! and Phokion G. Kolaitis?

'Universitat Politécnica de Catalunya
2University of California Santa Cruz and IBM Research

September 20, 2020

Structure and Complexity of Bag Consistency

Phokion G. Kolaitis
UC Santa Cruz and IBM Research

Albert Atserias
Universitat Politécnica de Catalunya
Barcelona, Catalonia Santa Cruz, California

Spain .. USA
atserias@cs.upc.edu kolaitis@ucsc.edu

It appears that Beeri et al. [9] were unaware of Vorob’ev
work, but later on Vorob’ev’s work was cited in a survey
of database theory by Yannakakis |27]. In recent years, the
interplay between local consistency and global consistency
has been explored at great depth in the setting of quantum
information by Abramsky and his collaborators (see, e.g.,
[3} 14, 5]). In that setting, the interest is in contextuality
phenomena, which are situations where collections of mea-
surements are locally consistent but globally inconsistent -
Bell’s celebrated theorem [10] is an instance of this. The
similarities between these different settings (probability dis-
tributions, relational databases, and quantum mechanics)
were pointed out explicitly by Abramsky |1 2|. This also
raised the question of developing a unifying framework in
which, among other things, the results by Vorob’ev and the
results by Beeri et al. are special cases of a single result.
Using a relaxed notion of consistency, we established such a
result for relations over semirings [6]. For the bag semiring,
however, the relaxed notion of consistency that we studied in
[6] is essentially equivalent to the consistency of probability
distributions with rational values (and not to the consistency
of bags). This left open the question of exploring the inter-
play between (the standard notions of) local consistency and
global consistency for bags, which is what we set to do in
the present paper.

Papers: Atserias, Kolaitis. Structure and Complexity of Bag Consistency. SIGMOD record 2022. https://doi.org/10.1145/3542700.3542719,
Atserias, Kolaitis. Consistency, Acyclicity, and Positive Semirings. https://arxiv.org/abs/2009.09488
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 151
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Multiplying 2x2 matrices

(@ &)-Cape) )|
21 022 A21 } AQZ# a'%/l jBQQ

Q
|

A11B11 + A12Bo;

Ci1o = A11B12 + A19B99 VV\Ml‘l'iPlica‘l‘iows
_ L 4 additions

Co1 = Ao1Bi1 + AseBog

Coo = A1 Bio + AgoBao

b R
Works over any semi-ring! & O/L’ >

Strassen. Gaussian Elimination is not Optimal. Numerical Mathematics, 1969. https://doi.org/10.1007/BF02165411
https://en.wikipedia.org/wiki/Strassen_algorithm, https://en.wikipedia.org/wiki/Matrix_multiplication algorithm
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Strassen’s 2x2 a |gO rithm WMatrix multiplication expovent w

C,=4,B,+4,B8, M, =(4,+4,)(B, +B,,)

C, =48, + 4,5, M, = (4, + 4,)B,, w<2.4

C, =4,B,+4,B, M, =4, (3168 ) g

C,=A,B,+A,B, M, = 4, (B,(-B,  Yalastic
M. =(4,+A,)B, Subtraction!

C,=M+M,-M;+M, M, =(A4, —4,)(B,, +B5,)

Cpo = M5+ M, M; = (4, = 4, )(B,, + By,) O (I,’(’O)
C,,=M,+M,

Cpy = M{ M, + M, + M, 7 mattiplications

Works over any riug! 19 additions/subtractions
(reduirees additive inverse, but does wot assume multiplication +o be commutative)

Strassen. Gaussian Elimination is not Optimal. Numerical Mathematics, 1969. https://doi.org/10.1007/BF02165411
https://en.wikipedia.org/wiki/Strassen_algorithm, https://en.wikipedia.org/wiki/Matrix_multiplication algorithm
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M1 M2 M3 M4 M5 M6

ALLT ARITATI AT

i ML) T 11 (177 7777 ﬂ
.. T

.

https://en.wikipedia.org/wiki/Strassen algorithm
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Table 1. Strassen’s Algorithm

Phase 1 = All + A22 T6 = Bll =+ Bzz
= Az1 + A2 T7 = B1a — B
= A1+ A2 T3 = By — By

Ty = A1 — A1n Ty = B11 + Byo
= A2 — A2 Ti0 = Ba21 + B2

Phase2 Q1 =11 xTg Qs =15 X Boo

Q2=T>x B11 Qe=TyxTy
Qs =An xTr Q7=T5xTiy
Q4 = Ao X T3

Phase 3 = Q1+ Q4 = Q3+ @1
=Q5—Q7r Ti=Q2— Qs

Phase4 Cyi=T1-T> Ci2=@Q3+Qs

Co1=Q2+ Qs Co=T3-Ty

Song, Dongarra, Moore. Experiments with Strassens' Algorithm: from sequential to parallel. PDCS 2006. https://scholar.google.com/scholar?cluster=11243079065050760755

Figure 4. Task graph of Strassen’s Algorithm.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Figure 1: The base graph G; of Strassen’s algorithm
for multiplying two 2 x 2 matrices A and B. Here
b="1.

vertices

Multiplication

Scott, Holtz, Schwartz. Matrix Multiplication I/O-Complexity by Path Routing, SPAA 2015. https://doi.org/10.1145/2755573.2755594
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 156
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Dec,C
11 12 21 22

| n? |
I C g
Dec, ,C :I:Ig n
l¢ n® <
[~ ol
Enc,g nA ErlcIg nB
A B

(c) (d)

Figure 4.1. The computation graph of Strassen’s algorithm (see
Algorithm 4.1): (a) Dec; C, (b) Hi, (c) Decigp, C, (d) Hign.

Ballard, Carson, Demmel, Hoemmen, Knight, Schwartz. "Communication lower bounds and optimal algorithms for numerical linear algebra." Acta numerica 2014. https://doi.org/10.1017/50962492914000038
Ballard, Demmel, Holtz, Schwartz. "Graph Expansion and Communication Costs of Fast Matrix Multiplication." ACM 2012. https://doi.org/10.1145/2395116.2395121
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Topic 2: Complexity of Query Evaluation
Unit 3: Provenance
Lecture 18

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
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Pre-class conversations

e Last class summary
e Projects: TUE 3/26 intermediate report

e Today:
— provenance at different granularities (cell level)

— reverse data management

169

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Outline: T2-3: Provenance

— Query-rewrite-insensitive provenance

Wolfgang Gatterbauer. Principles of scalable data management: 170
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Queries & provenance

ExternalTours

Agencies name destination type price
name based_in phone t3: | BayTours San Francisco | cable car $50

t1: | BayTours San Francisco | 415-1200 ta: | BayTours Santa Cruz bus 3100
ta: | HarborCruz | Santa Cruz 831-3000 ts: | BayTours Santa Cruz boat $250
te: | BayTours Monterey boat $400

t7: | HarborCruz | Monterey boat $200

ts: | HarborCruz | Carmel train $90

PV e T

Qn:

SELECT|a.name, a.phone

FROM Agencies a, ExternalTours e

WHERE  aname =  ename AND ?
e.type=‘boat’ °

Example taken from “Provenance in databases: why, how, and where” by Cheney, Chiticariu, Tan, 2009. https://doi.org/10.1561/1900000006
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Queries & provenance

ExternalTours
Agencies name destination type price
name based_in phone t3: | BayTours San Francisco | cable car $50
t1: | BayTours San Francisco | 415-1200 ta: | BayTours Santa Cruz bus 3100
t2: | HarborCruz | Santa Cruz 831-3000 ts: | Baylours Santa Cruz boat 3250
te: | BayTours Monterey boat $400
t7: | HarborCruz | Monterey boat $200
ts: | HarborCruz | Carmel train $90
Q1
SELECT a.name, a.phone Result of ();:
FROM Agencies a, ExternalTours e — phone
WHERE  aname = ename AND Lineage = ?
e.type:‘boat’ HarborCruz 831-3000 ®

Definition Lineage:
Lineage for an output tuple t is a subset of the input tuples which are relevant to the output tuple

Example taken from “Provenance in databases: why, how, and where” by Cheney, Chiticariu, Tan, 2009. https://doi.org/10.1561/1900000006
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 172
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Queries & provenance

to:

Agencies
name based_in phone
HarborCruz | Santa Cruz 831-3000

1

SELECT a.name, a.phone
FROM Agencies a, ExternalTours e

WHERE

e.type=*‘boat’

a.name =

Definition Lineage:
Lineage for an output tuple t is a subset of the input tuples which are relevant to the output tuple

Problem: Not very precise.
e.g., lineage above does not specify that ts and ts do not both need to exist.

e.namnie

AND

ExternalTours

name destination type price
BayTours San Francisco | cable car $50
BayTours Santa Cruz bus $100

BayTours
BayTours

Santa Cruz
Monterey

HarborCruz | Monterey poat p200
HarborCruz | Carmel train $90
Result of Q::
name phone

HarborCruz

BayTours 415-1200

831-3000

Example taken from “Provenance in databases: why, how, and where” by Cheney, Chiticariu, Tan, 2009. https://doi.org/10.1561/1900000006
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Lineage = {t, t;, t;}
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“Why Provenance” & Witnesses

to:

Agencies
name based_in phone
HarborCruz | Santa Cruz 831-3000

1

SELECT a.name, a.phone
FROM Agencies a, ExternalTours e

WHERE

e.type=*‘boat’

a.name =

Definition Witness of t:
Any subset of the database sufficient to reconstruct tuple t in the query result

Witness basis:

Leaves of the “proof tree” showing how result tuple t is generate

e.namnie

AND

ExternalTours

name destination type price
BayTours San Francisco | cable car $50
BayTours Santa Cruz bus $100

BayTours
BayTours

Santa Cruz
Monterey

HarborCruz | Monterey poat p200

HarborCruz | Carmel train $90
Result of Q::

name phone

HarborCruz

BayTours 415-1200

831-3000

{t1,t5} {t1,t6} {tl,t2,t6,t8)

Example taken from “Provenance in databases: why, how, and where” by Cheney, Chiticariu, Tan, 2009. https://doi.org/10.1561/1900000006
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

{{t1, t5}, {t1, t6}}

Lineage = {t, t;, t;}
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Mini

que
rew

mality &
B

riting

Minimal witness basis:
Minimal witnesses in the
witnhess basis

Instance I: Output/ of
R QU), Q'(I):

A B Two equivalent queries: A | B
" 1 19 Q/: Ans(x,y) :— R(x,y). T3
. |1 |3 | @:Ans(zy):— R(ﬂf,y |3
t": 4 | 2 XMJ 4 |9
Fig. 1.2 Example queries, input arﬁ output.

Instance I: Output of Output of
R Q) Q')

A | B A | B | why A | B | why
b1 ]2 T2 | {th T2 | {th it}
13 13 | {t'H 13 | {t'H{ttH
;|4 |2 4 ]2 | e 4 ]2 | e

Fig. 1.3 Example showing that why-provenance is sensitive to query rewriting.

Instance I: Output of Output of
R QU) Q'(1)

A B A | B | how A | B | how
| 1] 2 1 [2|¢ 1 [2 | &#+t-t
t | 1|3 1|3 |¢ 1|3 | ()2 +t-t
" 4 2 4 2 t 4 2 (t//)Q

Fig. 1.5 Example showing that how-provenance is sensitive to query rewriting.

Figures from Cheney, Chiticariu, Tan. Provenance in databases: why, how, and where. Foundations and trends in databases 2009. https://dl.acm.org/doi/abs/10.1561/1900000006
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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FIXINng query-
rewrite
sensitivity for
where
provenance

s sl

N

Instance I: Output of

R , , QU), Q'(I):

A B Two equivalent queries: A | B
t: 1 2 Q : Ans(aj,y) - R(xay)

/ 1 2

t- 1 3 Q IATZS(CE,y) " R(Qf,y),R(SU,Z)- 1 3
t’: | 4 2 4 9
Fig. 1.2 Example queries, input and output.
Annotated Output of Q(/%) Owutput of Q'(I*) Output of Q(I%), Q' (I*)
instance J%: (DEFAULT (DEFAULT (DEFAULT-ALL
R propagation): propagation): propagation):

A B A B A B A B
t: 191 292 121 202 141,43 2a2 141,03 2a2,a6
t/Z 193 3a4 143 3a4 141,03 3CL4 1¢1:a3 3CL4
t”: 495 296 45 206 495 206 495 2a2,a6

Fig. 1.6 Example showing that where-provenance is sensitive to query rewriting.

&”'b)’%lf a query () propagates annotations under the default-all propaga-
tion scheme in DBNotes, then equivalent formulations of () are guaran-

teed to produce identical annotated results. In the default-all scheme,
annotations are propagated based on where data is copied from accord-

ing to all equivalent queries of (). Hence, this propagation scheme can be
perceived as a “better” method for propagating annotations for (). The

Figures from Cheney, Chiticariu, Tan. Provenance in databases: why, how, and where. Foundations and trends in databases 2009. https://dl.acm.org/doi/abs/10.1561/1900000006
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Default-all /

Where provenance /
Query rewriting



The DEFAULT Scheme

Propagate annotations % % _~° S %
according to where glal|plel] |,Ld)], gl
data is copied from ADE s | 3Lf]

3 5 6 4|E|
SELECT DISTINCT B
FROM R r | | Result
PROPAGATE DEFAULT|r.B TO B

, [c]g]

UNION :
SELECT DISTINCT B 4 [e]
FROM S s

PROPAGATE DEFAULT|s.B TO B

Natural semantics for tracing the provenance of data

Source: Laura Chiticariu. "Systems for tracing the provenance of data". Talk at University of Washington, 2008.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Annotation Propagation under
the DEFAULT Scheme

R A B S B C

1 2E| ZIIl 3

0;:
SELECT DISTINCT r.A,|r.B) s.C

FROM R r, S s

WHERE r.B[=_|s.B OQuiput of 0,
PROPAGATE DEFAULT 1 2Iil 3
\
Versus equivalent queries,
0,: but different

annotated output
SELECT DISTINCT * Outputon%/ P

FROM R‘NATURAL JOIN |S 51T
PROPAGATE DEFAULT 1

3 9

Source: Laura Chiticariu. "Systems for tracing the provenance of data". Talk at University of Washington, 2008.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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The DEFAULT-ALL scheme

Propagate annotations according to where data is
copied from according to all equivalent
formulations of the given query

User Query 0:

SELECT DISTINCT r.A, s.B, s.C
FROM R r, S s

WHERE r.B = s.B

PROPAGATE DEFAULT-ALL

«the SOL query
() )
corresponding to QO

Compute the results of O on a database D - idea:

m E(Q) denotes the set of all queries that are equivalent to
O (more precisely, (%).

m Execute each query in E(Q) on the database D under the
DEFAULT scheme, then combine the results under u,.

10

Source: Laura Chiticariu. "Systems for tracing the provenance of data". Talk at University of Washington, 2008.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Computing the results of a
DEFAULT-ALL query

Question:

Given a pSOL query O with DEFAULT-ALL
propagation scheme and a database D,
can we compute the result of O(D)?

Problem:

There are infinitely many queries in E(Q). It is
therefore impossible to execute every query in
E(Q) in order to obtain the result of O(D).

Solution: Compute a finite basis of E(Q)
first.

11

Source: Laura Chiticariu. "Systems for tracing the provenance of data". Talk at University of Washington, 2008.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 185
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Version June 20, 2011

Default-all is dangerous!

Wolfgang Gatterbauer
Alexandra Meliou
Dan Suciu

34 USENIX Workshop on the Theory and Praxis of Provenance (Tapp'11)

Database group
University of Washington http://db.cs.washington.edu/causality/

Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395
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Overview Provenance Definitions

Why?% Where? roshn

Naive Witness "SQL interpretation”
Why-provenance = Where-provenance =
Provenance witness basis (a,,) propagation (a,)
definition
Buneman et al. [ICDT’01] Buneman et al. [PODS’02]
QRI definition Minimalb ' ) Qefault—a.ll ;
(Query-Rewrite- witness basis (a,,") propagation (a,°)
Insensitive) Buneman et al. [ICDT’01] Bhagwat et al. [VLDB’04]
Has problems if Minimal
We do not discuss here whether QRI is one interprets propagation (apm)

Proposed in this paper!

desirable (see also Glavic, Miller [Tapp'11]y), annotations on
but merely point out that, if aiming for attribute values
QRI, care has to be taken about the

\ramifications of the proposed Sema”ticsy\lndependent work presented at this WS

Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395 187
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Overview Provenance Definitions

Why? Where?
Naive Withess "SQL interpretation”
Why-provenance = Where-provenance =
Provenance witness basis (a,,) propagation (a,)
definition

Buneman et al. [ICDT’01]

(B pr——— =\
~
o
L g2 £ =
) ) o)
= & E £ =z
o Q n n ®
Semantics O 2 £ & &
Wit - X - X X X
Why Why - X - - X X
IWhy X X X X X
Where - - - - ? 4
Where IWhere | - - - X K -
How - X - - X
Lineage | X X - - - X
Lineage-based PI-CS X X - - - X
C-CS X - - - - X
Causality - X X X X X
= _/

Buneman et al. [PODS’02]

Default-all

(a,)  propagation (a,

DT'01]

Bhagwat et al. [VLDB’04]

/

Has problems if
one interprets

annotations on
attribute values

Minimal
propagation (a,™)
Proposed in this paper!

Note that Minimal propagation is
"stable", in contrast to Default-all

Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395
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Example 1: Query-Rewrite-Insensitivity (QRI)

Why Why-provenance = witness basis (a,,) Lineage (a))
Minimal witness basis (a,,™)
Input Query 1 Query 2 = Query 1
R Qi(x,y):-R(x,y) Qa(x,¥):-R(x,y),R(_,Y)
AlB AlB AlB !
ti| 1 ]2 12 [{{t:}} 112 [{{tih{t,t3}} {{t:}} {t1,t3}
tb| 13 1|3 [{{th 113 [{{th {t,}} {t,}
t3| 2| 2 2 | 2 [{{t:}} 2 | 2 |{{tsh{tyts}} {{t:}} {t1,t3}
Where Where-provenance = propagation (o) Minimal propagation (a,™)
Default-all propagation (o,
Input Query 1 Query 2 = Query 1
Re Qu(xy):-R?(xy)  Qalxy):-Re(xy),R*(_y)
A|B A|B A | B A | B AR
12 | 2b 12 | 2b 12 | 2b.f 1a.c| 2bf 1a | 2b
1¢ 3d 1¢ 3d 1¢ 3d 1a.c 3d 1¢ 3d
Je 2f Je 2f Je zb,f Je 2b,f Je 2f

Example adapted from Cheney, Chiticariu, Tan. Provenance in databases: why, how, and where. Foundations and trends in databases 2009. https://dl.acm.org/doi/abs/10.1561/1900000006
Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395
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Real example: Why Default-all is dangerous

Hanako queries a community DB for contents of LF-milk™:

Community Database

Ra
Food Content b [ Bob, March 18, 2011
LE Milk Cesium-137P Don't drink, lots of Cesium!
LF Milk | Calciumd f [ Fuyumi, March 19, 2011 |
SC Water Cesium-137fﬂ/ No Cesium, save to drink!

Hanako's query
Q(y):-R(‘LF Milk’y)

Content N
Cesium-131222)
Calciumd

Default-all propagation makes her drink the milk:

Default-all propagation (a,")

Content

Cesium-137bf
Calciumd

"semantically irrelevant
information": annota-
tions leak over from SC

b [ Bob, March 18, 2011
Don't drink, lots of Cesium!

Water tuple to LF Milk

f [ Fuyumi, March 19, 2011
No Cesium, save to drink!

e

Minimal propagation (o,™)

Content

Cesium-137b
Calciumd

b | Bob, March 18, 2011

Don't drink, lots of Cesium!

T

"all relevant and only relevant”

* Note the one-to-one correspondence of this example with example 1 from previous page
Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395
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Definition Minimal propagation (a,”)

o (t,A,Q) = o (1 A Intuition:
p( m ) ) U p( ’ ) Return the intersection between:
/ t E/@ay‘}(t’Q) * query-specific where-provenanc (a,)
A’ attributes of ¢ ting to cell(z,A . : ) P
SRR O cpagating to cell(7.) <- and QRI minimal witness basis (a,,M)
U transforms 'sets of sets' into 'sets’,

"all relevant ... and only relevant”
hence something like QRI lineage

Example 1
Where provenance (a)) Minimal propagation (a,™)
Input Query 2 ‘
Re QZ(X/y):_'?a(XIy)IRa (_;y)
A|B AlB, A Bai
ty | 12 2b 1a | 2bf {{tl}} {tl} th] 12C2 )OC?(M,B,QQ): U OCp(t/,A/)

N ———
t, | 1¢| 3d 1¢| 34 |{{t,}} {t,} tg| 1¢| 3d r'e{n} A
ty| 2¢| 2 2¢| 2060 {{ts}}  {ts} tg| 2¢| 2f =0, (11,B) = {b}

Minimal witness basis (a,,™)

Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395
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Example 1: lllustration of "minimal"” versus "all"

Why-provenance o (ta, 01) = 0" (ts, 0>)
W.hY-prove.nance (av.f) [ (1) {t1,12} }
Minimal witness basis (a,,™)

( N
Oy (24, 01) Oy (14,02)

Where-provenance
ag(m,A,Ql) :ag(m,A,Qz)
Where-provenance (a,) o (t4,A,01) =y (t4,A,02)
Default-all propagation (a,°)
Minimal propagation (a,™) [@ C }

( {
a,(01) op(02)

Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395 192
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Interpretation of Annotations 1: Attribute Value®

Go Ogdﬁ squared athens heraklion chania Square it || Add to this Square
labs
athens heraklion chania
Item Name Description Population Add columns Add
athens PIRAEUS (Athens) - HERAKLION

(Crete) - PIRAEUS (Athens) .
PIRAEUS (Athens) - CHANIA

(NentaN DIDACIIC /Aéhhanma)

heraklion Heraklion or Iraklion is the largest
city and capital of Crete. It is also
the 4th largest city in Greece.

Havaldiam in tha aanital AF

4 possible values

1 possible value

kania Chania confusingly is sometimes
written Hania though it can also be
written Khania, Cania, Canea and

Wania Aand in Meanls in Vanial

Crete A superb way of enjoying the 623,666
journey to Crete is to fly to Athens
and take the ferry from Piraeus

IDivana) tha mnart namiin~s Abhhanas

1 possible value

Mykonos Heraklion and Chania are 9,320
international airports, Sitia airport is
currently receiving domestic flights

Aanhis labhaviar flinhén Ava Avnantad o

Istanbul 14 Days - Depart USA, stops 8,260,000
include, Istanbul, Mount Athos,
_S_ki_thos, Sg_mos_, _}_(usat_igasi, pelos,

* Interpretation of annotations on entity attribute values favored by us and underlying our model
Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395 193
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Interpretation of Annotations 1: Attribute Value®

GO nge Sq uared athens heraklion chania Squareit | Add to this Square
labs
athens heraklion chania
Item Name Description Population — ' S
athens PIRAEUS (Athens) - HERAKLION Annotations on values of an
(Crete) - PIRAEUS (Athens) . attribute (here "population”) for
FIRAEUS (Alhene) - CHANIA a particular entity (here "Athens")
heraklion Heraklion or Iraklion is the large{ Possible values
city and capital of Crete. It is alsq O 750000 Low confidence
the 4th largest city in Greece. Greece. LOCATION. Offic4l Website:
Havalklinm in tha aanital AF http://www.cityofamens /. Populqtipn: 750000. Population
kania Chania confusingly is sometimeg ~ ©f Athens metropolitgffarea, 3.7 millio

. . R 2 sources
written Hania though it can also .

written Khania, Cania, Canea (0 22936, 24234 Low confidelpe

Wamina An Aim Oranls in Vanial Population for Athens
Crete A superb way of enjoying the

journey to Crete is to fly to Athel () 1,102 Low confidence

and take the ferry from Piraeus pop. for Athens

[Dirannl  tha nark ~aamine Adlhan www.citytowninfo.com
Mykonos Heraklion and Chania are

. . . e () 18,967 Low confidence
international airports, Sitia airpor| — pop. for Athens

currently receiving domestic fligh www.citytowninfo.com - all 2 sources »

Aanhis labhaviar flinhén Ava AvenantaAd

Search for more values »

Istanbul 14 Days - Depart USA, stops oo
include, Istanbul, Mount Athos,

Argument: Interpreting cell annotations as relevant to the tuple (entity)
adds something that is not trivially modeled with normalized tables.

* Interpretation of annotations on entity attribute values favored by us and underlying our model
Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395
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Interpretation of Annotations 2: Domain Value®

Domain value annotations”

Input Re:
A | B b
12 | 2P /
1c | 3d f
2e | of ¢/
Input 59

Date /b This is a holiday.

f | This is a holiday too !!!
Dec ZSﬂ/

[ Bob, March 18, 2011
This number is a prime number.

( Fuyumi, March 19, 2011

because it is even.

Two is not a prime number

Argument for default-all: If annotations
are on domain values, then retrieving
all annotations are relevant.

Alternative representation

Annotation table S°:
B | annotation

2 | b: Bob, March 18, 2011
This number is a prime number.

2 | f: Fuyumi, March 19, 2011
Two is not a prime number
because it is even

Annotation table S°:
Date annotation

Dec 25 | This is a holiday.

Counter-Argument: But then these anno-
tations can be modeled in a separate
table as normalized tables.

* Alternative interpretation suggested by Wang-Chiew Tan (example created after conversation at Sigmod 2011)
Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395
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Backup: Detailed Example 2

RG

Al B
t,| 12| 2P
t,| 1¢]| 3d
ty| 2¢| 2f
t,| 28| 4h

QS(X/ y):_Ra(X/ y)/ Ra(y/_)/ RG(X’_)

A

B

1a.c
e

2beg | {{ty,t3},{t,to, 3}, {ty, tah {ts, o, ta}} {{ty,t3}, {to,tal} {ty,t3,t4}

2¢fe | {{ts}h{ts,ta}}

}

Why-provenance (a,,)

Where-provenance (a))

{{ts1} {ts}
}

wa,™ (“QRI lineage)

Minimal witness basis (a,,™)

Default-all propagation (o)

A

B

1a.c (20818

Jeg

25,e,f

apd(t4/ B/ Q5) = ap(t4lB/ Q6) Wlth
Qg(X,y).'-Ra(X,y),Ra(y,_),Ra(X,_) /Sa(_/y)

Note minimal propagation is not equivalent to just
evaluating the where-provenance for the query:

Q(x,y):-R°(x,y),R(y,_). E.g. a,(t5,B,Q;) = {e,f,g} = >

Minimal propagation (a,™)

A B

t (T 207
ts| 28 (25

o' (t4,A,05) = | op(fA)

el i3ta},A

= ap(tlaA) - {a}

(Xg(l‘&B,Qs): U (Xp(l‘/,A/)
t'e{},A

Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395

> = Ocp(t3,B) UOCp(t3,A) = {eaf}
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