
1

Topic 2: Complexity of Query Evaluation
Unit 3: Provenance
Lecture 16

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
https://northeastern-datalab.github.io/cs7240/sp24/
3/15/2024

Updated 3/16/2024

https://northeastern-datalab.github.io/cs7240/sp24/

2Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Pre-class conversations

• Last class summary
• Projects: TUE 3/26 intermediate report
• Faculty candidate next week WED 3/20

• Today:
- a comment on multitasking
- provenance, semirings

https://northeastern-datalab.github.io/cs7240/

3Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A quizz

Which of the following lowers your measured IQ the most:
A. Smoking marijuana before taking test.
B. Responding to email/texting while taking test.
C. Losing a nights sleep before taking test.

https://northeastern-datalab.github.io/cs7240/

4Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A quizz

• You suck at multitasking!
• Everyone sucks at multitasking
Source: Courtesy of Michael D Smith (https://mds.heinz.cmu.edu/), http://news.bbc.co.uk/2/hi/uk_news/4471607.stm
(It is a bit of an over-simplification. Clarifications by the original author are here: http://www.drglennwilson.com/Infomania_experiment_for_HP.doc)

Which of the following lowers your measured IQ the most:
A. Smoking marijuana before taking test.
B. Responding to email/texting while taking test.
C. Losing a nights sleep before taking test.

Answer: B

https://northeastern-datalab.github.io/cs7240/
https://mds.heinz.cmu.edu/
http://news.bbc.co.uk/2/hi/uk_news/4471607.stm
http://www.drglennwilson.com/Infomania_experiment_for_HP.doc

5Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Multitasking

“multitasking adversely affects how you learn. Even if you learn while multitasking, that learning is
less flexible and more specialized, so you cannot retrieve the information as easily.” --Russell
Poldrack, UCLA Psychology Professor

“Our research offers neurological evidence that the brain cannot effectively do two things at
once.” -- Rene Marois, Dept. of Psychology, Vanderbilt

“The brain is a lot like a computer. You may have several screens open on your desktop, but you’re
able to think about only one at a time.” -- William Stixrud, Neuropsychologist

“Myth #3: Multitasking when it comes to paying attention, is a
myth… studies show that a person who is interrupted takes 50%
longer to accomplish a task. Not only that, he or she makes up to
50% more errors” -- John Medina (Brain rules)

“…multitasking is a lie. You’re asking me to switch attention, and
that makes me less productive.” -- Dave Crenshaw (The myth of
multitasking)

®

Source: Courtesy of Michael D Smith (https://mds.heinz.cmu.edu/)

https://northeastern-datalab.github.io/cs7240/
https://mds.heinz.cmu.edu/

6Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

PRELIMINARY

https://northeastern-datalab.github.io/cs7240/

7

Outline: T2-3: Provenance

• T2-3: Provenance
– Data Provenance
– The Semiring Framework for Provenance
– Algebra: Monoids and Semirings
– Query-rewrite-insensitive provenance

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

8Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: Green, Tannen. "The Semiring Framework for Database Provenance", PODS 2017: https://doi.org/10.1145/3034786.3056125

~ Explanations

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3034786.3056125

9Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: Michael I. Jordan: Machine Learning: Dynamical, Stochastic & Economic Perspectives, 2019: https://www.youtube.com/watch?v=-8yYFdV5SOc

II = Intelligent Infrastructure

https://northeastern-datalab.github.io/cs7240/
https://www.youtube.com/watch?v=-8yYFdV5SOc

10Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Provenance: “Where Did this Data Come from?”

• Whenever data is shared (e.g., science, Web) natural questions appear:
- How did I get this data?
- What operations were used to create the data?
- How much should I trust (believe) it?

• Provenance: describes the origins and history of data in its life cycle
• Two types of provenance
- Provenance inside a database: that's our focus
- Provenance outside databases: focus of ongoing research esp. in ML (causes, influence,

fairness); less well-defined; there is a standard OPM (Open Provenance Model)

• There are also questions for our focus, provenance inside DBMS:
- What is the "right data model" of provenance?
- How do we query it? What operations should we support?

Based upon: Zachary Ives's talk "Querying Data Provenance", SIGMOD 2010. https://doi.org/10.1145/1807167.1807269

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/1807167.1807269

11Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example of data provenance

• A typical question:
- For a given database 𝐷, a query 𝑄, and a tuple 𝑡 in the output of 𝑄(𝐷),

which parts of 𝐷 “contribute” to output tuple 𝑡?

- The question can be applied to attribute values, tables, rows, etc.

Emp Dept

Alice D01

Bob D01

Charly D02

R
Did Manager

D01 Dora

D02 Ema

D03 Felix

S

D

Q

SELECT R.Emp, S.Mgr
FROM R, S
WHERE R.Dept=S.Did

Emp Manager

Alice Dora

Bob Dora

Charly Ema

Q

https://northeastern-datalab.github.io/cs7240/

12Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

• Eager or annotation-based ("annotation propagation")
- Changes the transformation from 𝑄 to 𝑄′ to carry extra information
- Full source data not needed after transformation

• Lazy or non-annotation based
- 𝑄 is unchanged
- Recomputation and access to source required.
• Good when extra storage is an issue.

Two approaches

𝑄

𝑄′
Some extra
information

Conceptual distinction from: Cheney, Chiticariu, Tan. "Provenance in databases -- why, how, and where", 2009. https://doi.org/10.1561/1900000006

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1561/1900000006

13Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

5

3

4

Example graph problem, in 5 different variants

2

1

E

Q(z) :- E(1,y), E(y,z)

Q:

1 2
2 3
1 4
4 3
4 5

?

from to

https://northeastern-datalab.github.io/cs7240/

14Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

5

3

4

Example graph problem, in 5 different variants

2

1

E

Q(z) :- E(1,y), E(y,z)

Q: Points reachable in 2
hops, starting at node "1"

1 2
2 3
1 4
4 3
4 5

?
from to

https://northeastern-datalab.github.io/cs7240/

15Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

5

3

4

Example graph problem, in 5 different variants

2

1

Q

Q: Points reachable in 2
hops, starting at node "1"

1 2
2 3
1 4
4 3
4 5

3
5

Q(z) :- E(1,y), E(y,z)

E
from to

https://northeastern-datalab.github.io/cs7240/

16Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

5

1 2 yes
2 3 yes
1 4 no
4 3 yes
4 5 yes

3

4

Example variant 1

2

1

Q

Q: Points reachable in 2
hops, starting at node "1"

Now assume only certain edges are
available (available yes/no or true/false).
Which of the points remain reachable?

3
5 ?Q(z) :- E(1,y), E(y,z)

E
from to

https://northeastern-datalab.github.io/cs7240/

17Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

5

1 2 yes
2 3 yes
1 4 no
4 3 yes
4 5 yes

3

4

Example variant 1

2

1

3 yes
5 no

Q

Q: Points reachable in 2
hops, starting at node "1"

Now assume only certain edges are
available (available yes/no or true/false).
Which of the points remain reachable?

Q(z) :- E(1,y), E(y,z)

E
from to

https://northeastern-datalab.github.io/cs7240/

18Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

5

1 2 1
2 3 1
1 4 3
4 3 2
4 5 1

3

4

Example variant 2

2

1

3
5

Q

Q: Points reachable in 2
hops, starting at node "1"

Now assume passing along an edge needs
a certain security clearance (1<2<3).
What clearance do you need for reaching
each point?

3 1

21

1

?Q(z) :- E(1,y), E(y,z)

E
from to

https://northeastern-datalab.github.io/cs7240/

19Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

5

1 2 1
2 3 1
1 4 3
4 3 2
4 5 1

3

4

Example variant 2

2

1

3 1
5 3

Q

Q: Points reachable in 2
hops, starting at node "1"

Now assume passing along an edge needs
a certain security clearance (1<2<3).
What clearance do you need for reaching
each point?

3 1

21

1

Q(z) :- E(1,y), E(y,z)

E
from to

https://northeastern-datalab.github.io/cs7240/

20Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

5

1 2 1
2 3 1
1 4 3
4 3 2
4 5 1

3

4

Example variant 3

2

1

3
5

Q

Q: Points reachable in 2
hops, starting at node "1"

Now assume each edge has a weight.
What is the shortest path to reach each point?

3 1

21

1

?Q(z) :- E(1,y), E(y,z)

E
from to

https://northeastern-datalab.github.io/cs7240/

21Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

5

1 2 1
2 3 1
1 4 3
4 3 2
4 5 1

3

4

Example variant 3

2

1

3 2
5 4

Q

Q: Points reachable in 2
hops, starting at node "1"

3 1

21

1

Q(z) :- E(1,y), E(y,z)

Now assume each edge has a weight.
What is the shortest path to reach each point?

E
from to

https://northeastern-datalab.github.io/cs7240/

22Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

5

1 2 0.5
2 3 0.8
1 4 0.5
4 3 0.6
4 5 0.6

3

4

Example variant 4

2

1

3
5

Q

Q: Points reachable in 2
hops, starting at node "1"

Now assume each edge has a confidence
(probability of being available).
What is the probability of the most likely path?

0.5 0.6

0.60.5

0.8

?Q(z) :- E(1,y), E(y,z)

E
from to

https://northeastern-datalab.github.io/cs7240/

23Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

5

1 2 0.5
2 3 0.8
1 4 0.5
4 3 0.6
4 5 0.6

3

4

Example variant 4

2

1

3 0.4
5 0.3

Q

Q: Points reachable in 2
hops, starting at node "1"

0.5 0.6

0.60.5

0.8

Q(z) :- E(1,y), E(y,z)

Now assume each edge has a confidence
(probability of being available).
What is the probability of the most likely path?

E
from to

https://northeastern-datalab.github.io/cs7240/

24Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

5

1 2
2 3
1 4
4 3
4 5

3

4

Example variant 5

2

1

3
5

Q

Q: Points reachable in 2
hops, starting at node "1"

Q(z) :- E(1,y), E(y,z)

Finally assume we want to calculate the number of
paths to a node. How many are there? What is
even a reasonable way to calculate that in general?

E
from to

?

https://northeastern-datalab.github.io/cs7240/

25Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

5

1 2
2 3
1 4
4 3
4 5

3

4

Example variant 5

2

1

3 2
5 1

Q

Q: Points reachable in 2
hops, starting at node "1"

Q(z) :- E(1,y), E(y,z)

Finally assume we want to calculate the number of
paths to a node. How many are there? What is
even a reasonable way to calculate that in general?

E
from to

https://northeastern-datalab.github.io/cs7240/

26

Outline: T2-3: Provenance

• T2-3: Provenance
– Data Provenance
– The Semiring Framework for Provenance
– Algebra: Monoids and Semirings
– Query-rewrite-insensitive provenance

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Mainly slides by
Val Tannen 2017

https://northeastern-datalab.github.io/cs7240/

27Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

5/15/2017	 8	PODS	2017	

Do	it	once	and	use	it	repeatedly:		provenance	

Label	(annotate)	input	items	abstractly	with	provenance	tokens.	
Provenance	tracking:			propagate	expressions		(involving	tokens)																																																					

(to	annotate	intermediate	data	and,	finally,	outputs)	

Track	two	disTnct	ways	of	using	data	items	by	computaTon	primiTves:	

•  jointly																			(this	alone	is	basically	like	keeping	a	log)	

•  alterna/vely							(doing	both	is	essenTal;	think	trust)	

Input-output	composiTonal;		Modular	(in	the	primiTves)	

Later,	we	want	to	evaluate	the	provenance	expressions	to	obtain		

	 	 	binary	trust,					access	control,		

	 	 	confidence	scores,				data	prices,				etc.	

Source: Val Tannen. "The Semiring Framework for Database Provenance", PODS 2017 Test of Time Award talk : https://www.cis.upenn.edu/~val/15MayPODS.pdf

Positive relational algebra:

https://northeastern-datalab.github.io/cs7240/
https://www.cis.upenn.edu/~val/15MayPODS.pdf

28Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Algebraic		interpreta/on	for	RDB	

Set		X 	of	provenance	tokens.	
Space	of	annotaTons,	provenance	expressions		Prov(X)	

Prov(X)-relaTons:		
							every	tuple	is	annotated	with	some	element	from	Prov(X).				

Binary	operaTons	on	Prov(X):		

 · corresponds	to	joint	use	(join,	cartesian	product),																					
	 	+			corresponds	to	alternaTve	use	(union	and	projecTon).	

Special	annotaTons:	

	 	‘‘Absent’’	tuples	are	annotated	with	0.			
 1 is	a		‘‘neutral’’		annotaTon	(data	we	do	not	track).	

5/15/2017	 PODS	2017	 9	

Source: Val Tannen. "The Semiring Framework for Database Provenance", PODS 2017 Test of Time Award talk : https://www.cis.upenn.edu/~val/15MayPODS.pdf

https://northeastern-datalab.github.io/cs7240/
https://www.cis.upenn.edu/~val/15MayPODS.pdf

29Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

K-Rela/onal	algebra	

Algebraic	laws		of		(Prov(X), +, ·, 0,1)?			More	generally,	for	annotaTons	

from	a	structure	(K, +, ·, 0,1)?	

K-relaTons.			Generalize		RA+		to		(posiTve)		K-rela/onal	algebra.	

						Desired	opTmizaTon	equivalences	of		K- relaTonal	algebra			iff	

	 (K, +, ·, 0,1) is	a	commuta/ve	semiring.	

Generalizes				SPJU	or	UCQ		or		non-rec.	Datalog	

								set	semanTcs							(B,Ç,	Æ,	?,>)															bag	semanTcs					(N,+,	·,	0,	1)	
								c-table-semanTcs	[IL84]										(BoolExp(X), Ç,	Æ,	?,>) 			
								event	table	semanTcs	[FR97,Z97]						(P(Ω),	[,	Å,	;,	Ω)	

5/15/2017	 PODS	2017	 10	

Source: Val Tannen. "The Semiring Framework for Database Provenance", PODS 2017 Test of Time Award talk : https://www.cis.upenn.edu/~val/15MayPODS.pdf

https://northeastern-datalab.github.io/cs7240/
https://www.cis.upenn.edu/~val/15MayPODS.pdf

30Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What	is	a	commuta/ve	semiring?	

An	algebraic	structure	(K,	+,	·,	0,	1)	where:	
•  			K		is	the	domain	

•  			+		is	associaTve,	commutaTve,	with	0	idenTty	

•  ·			is	associaTve,	with	1	idenTty																																semiring	
•  ·			distributes	over		+		
•  			a	·	0	=	0	·	a	=	0	

•  ·			is	also	commuta/ve	

Unlike	ring,	no	requirement	for	inverses	to		+	

11	5/15/2017	 PODS	2017	

Source: Val Tannen. "The Semiring Framework for Database Provenance", PODS 2017 Test of Time Award talk : https://www.cis.upenn.edu/~val/15MayPODS.pdf

https://northeastern-datalab.github.io/cs7240/
https://www.cis.upenn.edu/~val/15MayPODS.pdf

31Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Provenance	polynomials	

5/15/2017	 PODS	2017	 13	

(N[X],	+,	·,	0,	1)	is	the	commutaTve	semiring	freely	generated	by	X	
(universality	property	involving	homomorphisms)	

Provenance	polynomials	are	PTIME-computable	(data	complexity).		
(query	complexity	depends	on	language	and	representaTon)	

ORCHESTRA	provenance	(graph	representaTon)		about	30%	overhead	

Monomials	correspond	to	logical	deriva/ons	(proof	trees	in	non-rec.	Datalog)	

Provenance	reading	of	polynomails:		

output	tuple	has	provenance																	2r2 + rs
							three	derivaTons	of	the	tuple										-	two	of	them	use		r, twice,		
																																																																						-	the	third	uses r and s, once	each		

Source: Val Tannen. "The Semiring Framework for Database Provenance", PODS 2017 Test of Time Award talk : https://www.cis.upenn.edu/~val/15MayPODS.pdf

ℕ {𝑥, 𝑦} = {𝑥𝑦, 𝑥 + 𝑦, 2𝑥𝑦! + 𝑥, 2𝑥𝑦! + 𝑥𝑦 + 𝑥,… }

https://northeastern-datalab.github.io/cs7240/
https://www.cis.upenn.edu/~val/15MayPODS.pdf

32Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Two	kinds	of		semirings	in	this	framework	

5/15/2017	 PODS	2017	 17	

Provenance	semirings,	e.g.,			

(N[X],	+,	·,	0,	1)					provenance	polynomials		[GKT07]	

(Why(X),	[,	d,	;,	{;})				witness	why-provenance		[BKT01]	

Applica/on	semirings,	e.g.,	

(A,	min,	max,	0,	Pub)		access	control		[FGT08]	

V =	([0,1], max,	·,	0,	1)					Viterbi	semiring	(MPE)				[GKIT07]	

Provenance	specializa/on							relies	on	

-	Provenance	semirings	are	freely	generated	by	provenance	tokens	
- 	Query	commutaTon	with	semiring	homomorphisms

Source: Val Tannen. "The Semiring Framework for Database Provenance", PODS 2017 Test of Time Award talk : https://www.cis.upenn.edu/~val/15MayPODS.pdf

https://northeastern-datalab.github.io/cs7240/
https://www.cis.upenn.edu/~val/15MayPODS.pdf

33Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Some	applica/on	semirings	

5/15/2017	 PODS	2017	 16	

(B,	Æ,	Ç,	>,	?)									binary	trust	

(N,	+,	·,	0,	1)								mul(plicity	(number	of	deriva(ons)	

(A,	min,	max,	0,	Pub)							access	control	

V =	([0,1], max,	·,	0,	1)					Viterbi	semiring	(MPE)								confidence	scores	

T =	([0,	1],	min,	+,	1,	0)					
																											tropical	semiring	(shortest	paths)										data	pricing	

F =	([0,1], max,	min,	0,	1)					“fuzzy	logic”	semiring		

Source: Val Tannen. "The Semiring Framework for Database Provenance", PODS 2017 Test of Time Award talk : https://www.cis.upenn.edu/~val/15MayPODS.pdf

Example 1:

Example 2:

Example 5:

Example 4:

Example 3:

https://northeastern-datalab.github.io/cs7240/
https://www.cis.upenn.edu/~val/15MayPODS.pdf

35Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A	Hierarchy	of	Provenance	Semirings	[G09,	DMRT14]	

N[X]	

B[X]	 Trio(X)	

Why(X)	

Which(X)	PosBool(X)	

most	informaTve	

least	informaTve	

Example:	2x2y	+	xy	+	5y2	+	xz	

	+	=	"	

19	5/15/2017	 PODS	2017	

Sorp(X)	

surjecTve	semiring	homomorphism,	idenTty	on	X	

absorpTon	

absorpTon	(ab+a=a)	

	"		idemp.			+	idemp.	

	x2y	+	xy	+	y2	+	xz	 3xy	+	5y	+	xz	

y	+	xz	

xy	+	y2+	xz	

xyz	

	"		idemp.	

xy	+	y	+	xz	

	"		idemp.	 		+	idemp.	

Source: Val Tannen. "The Semiring Framework for Database Provenance", PODS 2017 Test of Time Award talk : https://www.cis.upenn.edu/~val/15MayPODS.pdf

𝑥𝑦 ∨ 𝑦! ∨ 𝑦𝑧

?

https://northeastern-datalab.github.io/cs7240/
https://www.cis.upenn.edu/~val/15MayPODS.pdf

36Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A	Hierarchy	of	Provenance	Semirings	[G09,	DMRT14]	

N[X]	

B[X]	 Trio(X)	

Why(X)	

Which(X)	PosBool(X)	

most	informaTve	

least	informaTve	

Example:	2x2y	+	xy	+	5y2	+	xz	

	+	=	"	

19	5/15/2017	 PODS	2017	

Sorp(X)	

surjecTve	semiring	homomorphism,	idenTty	on	X	

absorpTon	

absorpTon	(ab+a=a)	

	"		idemp.			+	idemp.	

	x2y	+	xy	+	y2	+	xz	 3xy	+	5y	+	xz	

y	+	xz	

xy	+	y2+	xz	

xyz	

	"		idemp.	

xy	+	y	+	xz	

	"		idemp.	 		+	idemp.	

Source: Val Tannen. "The Semiring Framework for Database Provenance", PODS 2017 Test of Time Award talk : https://www.cis.upenn.edu/~val/15MayPODS.pdf

𝑥𝑦 ∨ 𝑦! ∨ 𝑦𝑧

𝑦

Positive Boolean expressions

x2 = x⋅x=x
example: x∧x=x
But not true! Take:
(x+y)2 = x+xy+y != x+y

x+x=x
example: x∨x=x

just ignore exponents

https://northeastern-datalab.github.io/cs7240/
https://www.cis.upenn.edu/~val/15MayPODS.pdf

37Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A	Hierarchy	of	Provenance	Semirings	[G09,	DMRT14]	

N[X]	

B[X]	 Trio(X)	

Why(X)	

Which(X)	PosBool(X)	

20	5/15/2017	 PODS	2017	

Sorp(X)	

A	

T,V	

N	

B	

Source: Val Tannen. "The Semiring Framework for Database Provenance", PODS 2017 Test of Time Award talk : https://www.cis.upenn.edu/~val/15MayPODS.pdf

https://northeastern-datalab.github.io/cs7240/
https://www.cis.upenn.edu/~val/15MayPODS.pdf

38Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A	menagerie	of	provenance	semirings	

5/15/2017	 PODS	2017	 21	

(Which(X),	[,	[*, ;,	;*)	sets	of	contribuTng	tuples		“Lineage”	(1)	[CWW00]	

(Why(X),	[,	d,	;,	{;})	sets	of	sets	of	…		Witness	why-provenance	[BKT01]	

(PosBool(X),	Æ,	Ç,	>,	?)			minimal	sets	of	sets	of…		Minimal	witness	why-
provenance	[BKT01]	also	“Lineage”	(2)	used	in	probabilisTc	dbs	[SORK11]	

(Trio(X),	+,	·,	0,	1)									bags	of	sets	of	…		“Lineage”	(3)		[BDHT08,G09]	

(B[X],+,	·,	0,	1)							sets	of	bags	of	…	Boolean	coeff.	polynomials	[G09]	

(Sorp(X),+, ·,	0,	1)												minimal	sets	of	bags	of	…		absorpTve	
polynomials	[DMRT14]	

(N[X],	+,	·,	0,	1)					bags	of	bags	of…	universal		provenance	polynomials	
[GKT07]	

Source: Val Tannen. "The Semiring Framework for Database Provenance", PODS 2017 Test of Time Award talk : https://www.cis.upenn.edu/~val/15MayPODS.pdf

https://northeastern-datalab.github.io/cs7240/
https://www.cis.upenn.edu/~val/15MayPODS.pdf

39Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A B
1 1
2 1
2 2

R

Positive relational algebra: Join ⋈

B C
1 1
2 2
2 3

S

⋈

A B C
Q=R⋈S

?

https://northeastern-datalab.github.io/cs7240/

40Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A B
1 1
2 1
2 2

R

Positive relational algebra: Join ⋈

B C
1 1
2 2
2 3

S

⋈

A B C
1 1 1
2 1 1
2 2 2
2 2 3

Q=R⋈S

https://northeastern-datalab.github.io/cs7240/

41Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A B C
1 1 1
2 1 1
2 2 2
2 2 3

A B
1 1 r1
2 1 r2
2 2 r3

R

Positive relational algebra: Join ⋈

B C
1 1 s1
2 2 s2
2 3 s3

S

⋈

Q=R⋈S

?

https://northeastern-datalab.github.io/cs7240/

42Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A B C
1 1 1
2 1 1
2 2 2
2 2 3

A B
1 1 r1
2 1 r2
2 2 r3

R

Positive relational algebra: Join ⋈

B C
1 1 s1
2 2 s2
2 3 s3

S

⋈

A B C
1 1 1 r1	⋅	s1
2 1 1 r2	⋅	s1
2 2 2 r3	⋅	s2
2 2 3 r3	⋅	s3

Q=R⋈S

The annotation "r ⋅ s" means
joint use of data annotated by
r and data annotated by s

https://northeastern-datalab.github.io/cs7240/

43Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A B
1 1 r1
1 2 r2
2 1 r3
2 2 r4
2 3 r5

R

Positive relational algebra: Projection 𝜋

𝜋-B

A

?
Q=𝜋-BR=𝜋AR

https://northeastern-datalab.github.io/cs7240/

44Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A B
1 1 r1
1 2 r2
2 1 r3
2 2 r4
2 3 r5

R

Positive relational algebra: Projection 𝜋

𝜋-B

A
1
2

Q=𝜋-BR=𝜋AR

?

https://northeastern-datalab.github.io/cs7240/

45Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A B
1 1 r1
1 2 r2
2 1 r3
2 2 r4
2 3 r5

R

Positive relational algebra: Projection 𝜋

𝜋-B

A
1 r1	+	r2
2 r3	+	r4	+	r5

Q=𝜋-BR=𝜋AR

The annotation "r + s" means
alternative use of data

https://northeastern-datalab.github.io/cs7240/

46Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A B
1 1 r1
2 1 r2

R

Positive relational algebra: Union ⋃

A B
2 1 s1
2 2 s2

S

⋃

A B
Q=R⋃S

?

https://northeastern-datalab.github.io/cs7240/

47Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A B
1 1 r1
2 1 r2

R

Positive relational algebra: Union ⋃

A B
2 1 s1
2 2 s2

S

⋃

A B
1 1 r1
2 1 r2	+	s1
2 2 s2

Q=R⋃S

The annotation "r + s" means
alternative use of data

https://northeastern-datalab.github.io/cs7240/

48Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A B
1 1 r1
1 2 r2
2 1 r3
2 2 r4
2 3 r5

R

Positive relational algebra: Selection 𝜎

𝜎A=1

Q=𝜎A=1R
A B

?

https://northeastern-datalab.github.io/cs7240/

49Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A B
1 1 r1
1 2 r2
2 1 r3
2 2 r4
2 3 r5

R

Positive relational algebra: Selection 𝜎

𝜎A=1

Two options for filtering:
1. Remove the tuples filtered out.

A B
1 1 r1
1 2 r2

Q=𝜎A=1R

https://northeastern-datalab.github.io/cs7240/

50Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A B
1 1 r1
1 2 r2
2 1 r3
2 2 r4
2 3 r5

R

Positive relational algebra: Selection 𝜎

𝜎A=1

Two options for filtering:
1. Remove the tuples filtered out.
2. Or keep them around ...

A B
1 1 r1⋅1
1 2 r2⋅1
2 1 r3⋅0
2 2 r4⋅0
2 3 r5⋅0

Q=𝜎A=1R

https://northeastern-datalab.github.io/cs7240/

51Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A B
1 1 r1
2 2 r2
3 2 r3

RBoolean Query Provenance

Calculate the provenance, operator-by-operator,
with two algebraically equivalent query plans:

B C
1 1 s1
1 2 s2
2 3 s3

S

Q :- R(x,y), S(y,z)

? ?

Query plan 1: 𝜋-A,B,C(R⋈S) Query plan 2: 𝜋-B(𝜋-A(R)⋈𝜋-C(S))

https://northeastern-datalab.github.io/cs7240/

52Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A B
1 1 r1
2 2 r2
3 2 r3

RBoolean Query Provenance

Calculate the provenance, operator-by-operator,
with two algebraically equivalent query plans:

B C
1 1 s1
1 2 s2
2 3 s3

S

Query plan 1: 𝜋-A,B,C(R⋈S)

Q :- R(x,y), S(y,z)

Query plan 2: 𝜋-B(𝜋-A(R)⋈𝜋-C(S))

𝜋-A,B,C(...)

R⋈S

?

?

?

https://northeastern-datalab.github.io/cs7240/

53Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A B
1 1 r1
2 2 r2
3 2 r3

RBoolean Query Provenance

Calculate the provenance, operator-by-operator,
with two algebraically equivalent query plans:

B C
1 1 s1
1 2 s2
2 3 s3

S

Query plan 1: 𝜋-A,B,C(R⋈S)

Q :- R(x,y), S(y,z)

Query plan 2: 𝜋-B(𝜋-A(R)⋈𝜋-C(S))

𝜋-A,B,C(...)

R⋈S

?
A B C
1 1 1
1 1 2
2 2 3
3 2 3

r1⋅s1
r1⋅s2
r2⋅s3
r3⋅s3

?

https://northeastern-datalab.github.io/cs7240/

54Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A B
1 1 r1
2 2 r2
3 2 r3

RBoolean Query Provenance

Calculate the provenance, operator-by-operator,
with two algebraically equivalent query plans:

B C
1 1 s1
1 2 s2
2 3 s3

S

Query plan 1: 𝜋-A,B,C(R⋈S)

Q :- R(x,y), S(y,z)

Query plan 2: 𝜋-B(𝜋-A(R)⋈𝜋-C(S))

𝜋-A,B,C(...)

R⋈S A B C
1 1 1
1 1 2
2 2 3
3 2 3

r1⋅s1+r1⋅s2+r2⋅s3+r3⋅s3

r1⋅s1
r1⋅s2
r2⋅s3
r3⋅s3

SELECT EXISTS(
 SELECT *
 FROM R, S
 WHERE R.B = S.B)

450

https://northeastern-datalab.github.io/cs7240/

55Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A B
1 1 r1
2 2 r2
3 2 r3

RBoolean Query Provenance

Calculate the provenance, operator-by-operator,
with two algebraically equivalent query plans:

B C
1 1 s1
1 2 s2
2 3 s3

S

Query plan 1: 𝜋-A,B,C(R⋈S)

Q :- R(x,y), S(y,z)

Query plan 2: 𝜋-B(𝜋-A(R)⋈𝜋-C(S))

𝜋-A,B,C(...)

R⋈S

?
A B C
1 1 1
1 1 2
2 2 3
3 2 3

r1⋅s1+r1⋅s2+r2⋅s3+r3⋅s3

r1⋅s1
r1⋅s2
r2⋅s3
r3⋅s3

https://northeastern-datalab.github.io/cs7240/

56Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A B
1 1 r1
2 2 r2
3 2 r3

RBoolean Query Provenance

Calculate the provenance, operator-by-operator,
with two algebraically equivalent query plans:

B C
1 1 s1
1 2 s2
2 3 s3

S

Query plan 1: 𝜋-A,B,C(R⋈S)

Q :- R(x,y), S(y,z)

A B C
1 1 1 r1⋅s1
1 1 2 r1⋅s2
2 2 3 r2⋅s3
3 2 3 r3⋅s3

r1⋅s1+r1⋅s2+r2⋅s3+r3⋅s3

Query plan 2: 𝜋-B(𝜋-A(R)⋈𝜋-C(S))

𝜋-A,B,C(...) 𝜋-B(R'⋈S')

R⋈S 𝜋-A(R) 𝜋-C(S)

? ?

?

https://northeastern-datalab.github.io/cs7240/

57Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A B
1 1 r1
2 2 r2
3 2 r3

RBoolean Query Provenance

Calculate the provenance, operator-by-operator,
with two algebraically equivalent query plans:

B
1 r1
2 r2+r3

B C
1 1 s1
1 2 s2
2 3 s3

S

Query plan 1: 𝜋-A,B,C(R⋈S)

Q :- R(x,y), S(y,z)

A B C
1 1 1 r1⋅s1
1 1 2 r1⋅s2
2 2 3 r2⋅s3
3 2 3 r3⋅s3

r1⋅s1+r1⋅s2+r2⋅s3+r3⋅s3

Query plan 2: 𝜋-B(𝜋-A(R)⋈𝜋-C(S))

B
1 s1+s2
2 s3

r1⋅(s1+s2)+(r2+r3)⋅s3

𝜋-A,B,C(...) 𝜋-B(R'⋈S')

R⋈S 𝜋-A(R) 𝜋-C(S)

https://northeastern-datalab.github.io/cs7240/

58Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

5

1 2
2 3
1 4
4 3
4 5

3

4

Back to our Example: now with Semiring notation

2

1

3
5

E Q

Q: Points reachable in 2
hops, starting at node "1"

Now assume we use semiring notation.
Idea: keep the tuple identifiers abstract.
Use provenance polynomials (ℕ[X], +, ·, 0,
1)

Q(z) :- E(1,y), E(y,z)

https://northeastern-datalab.github.io/cs7240/

59Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

5

1 2 p
2 3 q
1 4 r
4 3 s
4 5 t

3

4

Back to our Example: now with Semiring notation

2

1

3 r⋅s+p⋅q
5 r⋅t

E Q

Q: Points reachable in 2
hops, starting at node "1"

r t

sp

q

ℕ[X]=(ℕ[X], +, ⋅, 0, 1): Provenance polynomials

Now assume we use semiring notation.
Idea: keep the tuple identifiers abstract.
Use provenance polynomials (ℕ[X], +, ·, 0, 1)

Q(z) :- E(1,y), E(y,z)

https://northeastern-datalab.github.io/cs7240/

60Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

5

1 2 p
2 3 q
1 4 r
4 3 s
4 5 t

3

4

Example variant 1

2

1

3 r⋅s+p⋅q
5 r⋅t

E Q

Q: Points reachable in 2
hops, starting at node "1"

r t

sp

q

Q(z) :- E(1,y), E(y,z)=	1
=	1
=	0
=	1
=	1

Now assume only certain edges are
available (available yes/no or true/false).
Which of the points remain reachable?

𝔹=(𝔹, ∨, ∧ , 0, 1): Boolean algebra

(0∧1) ∨ (1∧1) = 1

=	1
=	0

(0∧1) = 0

Provenance polynomials (ℕ[X], +, ·, 0, 1)

https://northeastern-datalab.github.io/cs7240/

61Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

5

3

4

Example variant 2

2

1

E Q

Q: Points reachable in 2
hops, starting at node "1"

3 1

21

1

({1,2,3,∞}, min, max, ∞,1)

Q(z) :- E(1,y), E(y,z)

Now assume passing along an edge needs
a certain security clearance (1<2<3).
What clearance do you need for reaching
each point?

1 2 p
2 3 q
1 4 r
4 3 s
4 5 t

=	1
=	1
=	3
=	2
=	1

=	1
=	3

3 r⋅s+p⋅q
5 r⋅t

min[max[3,2], max[1,1]] = 1

max[3,1] = 3

Provenance polynomials (ℕ[X], +, ·, 0, 1)

https://northeastern-datalab.github.io/cs7240/

62Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

5

3

4

Example variant 3

2

1

E Q

Q: Points reachable in 2
hops, starting at node "1"

3 1

21

1

Q(z) :- E(1,y), E(y,z)1 2 p
2 3 q
1 4 r
4 3 s
4 5 t

=	1
=	1
=	3
=	2
=	1

=	2
=	4

3 r⋅s+p⋅q
5 r⋅t

min[3+2,1+1] = 2

3+1 = 4

Now assume each edge has a weight.
What is the shortest path to reach each point?

𝕋=(ℝ%∞,min,+,∞,0): Tropical semiring

Provenance polynomials (ℕ[X], +, ·, 0, 1)

https://northeastern-datalab.github.io/cs7240/

63Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

5

=	0.5
=	0.8
=	0.5
=	0.6
=	0.6

3

4

Example variant 4

2

1

=	0.4
=	0.3

E Q

Q: Points reachable in 2
hops, starting at node "1"

Now assume each edge has a confidence
(probability of being available).
What is the probability of the most likely path?

0.5 0.6

0.60.5

0.8

𝕍=([0,1],max, · ,0,1): Viterbi semiring (max likely sequence)

Q(z) :- E(1,y), E(y,z)1 2 p
2 3 q
1 4 r
4 3 s
4 5 t

3 r⋅s+p⋅q
5 r⋅t

max[0.5⋅0.6,0.5⋅0.8] = 0.4

0.5⋅0.6 = 0.3

Provenance polynomials (ℕ[X], +, ·, 0, 1)

https://northeastern-datalab.github.io/cs7240/

64Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

5

3

4

Example variant 5

2

1

E Q

Q: Points reachable in 2
hops, starting at node "1"

1 1

11

1

Q(z) :- E(1,y), E(y,z)1 2 p
2 3 q
1 4 r
4 3 s
4 5 t

=	1
=	1
=	1
=	1
=	1

=	2
=	1

3 r⋅s+p⋅q
5 r⋅t

1⋅1+1⋅1 = 2

Finally assume we want to calculate the number
of paths to a node. We start by annotating the
tuples in the database with their duplicity
(which is 1 to start with)

(ℕ, +, ⋅, 0, 1): Counting derivations / bag semantics

1⋅1 = 1

Provenance polynomials (ℕ[X], +, ·, 0, 1)

https://northeastern-datalab.github.io/cs7240/

65

Topic 2: Complexity of Query Evaluation
Unit 3: Provenance
Lecture 17

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
https://northeastern-datalab.github.io/cs7240/sp24/
3/19/2024

Updated 3/19/2024

https://northeastern-datalab.github.io/cs7240/sp24/

66Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Pre-class conversations

• Last class summary
• Projects: TUE 3/26 intermediate report
• Faculty candidate tomorrow WED 3/20

• Today:
- provenance, semirings

https://northeastern-datalab.github.io/cs7240/

67Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

PRELIMINARY

https://northeastern-datalab.github.io/cs7240/

68Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A more complex example with exponents

Q(R)	=	𝜋AC(𝜋ABR	⋈	𝜋BCR		⋃		𝜋ACR	⋈	𝜋BCR)

A B C
a b c
d b e
f g e

R
A B C
𝜋ABR⋈𝜋BCR

A B C
𝜋ACR⋈𝜋BCR

A B C
Q1	⋃	Q2

A C
Q

? ? ? ?

Example from Section 2 of Green, Karvounarakis, Val Tannen. "Provenance Semirings", PODS 2007. https://doi.org/10.1145/1265530.1265535

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/1265530.1265535

69Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A more complex example with exponents

Q(R)	=	𝜋AC(𝜋ABR	⋈	𝜋BCR		⋃		𝜋ACR	⋈	𝜋BCR)

A B C
a b c
d b e
f g e

R
A B C
a b c
a b e
d b c
d b e
f g e

𝜋ABR⋈𝜋BCR
A B C
a b c
d b e
d g e
f b e
f g e

𝜋ACR⋈𝜋BCR
A B C
a b c
a b e
d b c
d b e
d g e
f b e
f g e

Q1	⋃	Q2
A C
a c
a e
d c
d e
f e

Q

X
Y
Z ? ? ? ?

Example from Section 2 of Green, Karvounarakis, Val Tannen. "Provenance Semirings", PODS 2007. https://doi.org/10.1145/1265530.1265535

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/1265530.1265535

70Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A more complex example with exponents

Q(R)	=	𝜋AC(𝜋ABR	⋈	𝜋BCR		⋃		𝜋ACR	⋈	𝜋BCR)

A B C
a b c
d b e
f g e

R
A B C
a b c
a b e
d b c
d b e
f g e

𝜋ABR⋈𝜋BCR
A B C
a b c
d b e
d g e
f b e
f g e

𝜋ACR⋈𝜋BCR
A B C
a b c
a b e
d b c
d b e
d g e
f b e
f g e

Q1	⋃	Q2
A C
a c
a e
d c
d e
f e

Q

X
Y
Z ? ? ?

Example from Section 2 of Green, Karvounarakis, Val Tannen. "Provenance Semirings", PODS 2007. https://doi.org/10.1145/1265530.1265535

X2
XY
XY
Y2
Z2

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/1265530.1265535

71Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A more complex example with exponents

Q(R)	=	𝜋AC(𝜋ABR	⋈	𝜋BCR		⋃		𝜋ACR	⋈	𝜋BCR)

A B C
a b c
d b e
f g e

R
A B C
a b c
a b e
d b c
d b e
f g e

𝜋ABR⋈𝜋BCR
A B C
a b c
d b e
d g e
f b e
f g e

𝜋ACR⋈𝜋BCR
A B C
a b c
a b e
d b c
d b e
d g e
f b e
f g e

Q1	⋃	Q2
A C
a c
a e
d c
d e
f e

Q

X
Y
Z ?

Example from Section 2 of Green, Karvounarakis, Val Tannen. "Provenance Semirings", PODS 2007. https://doi.org/10.1145/1265530.1265535

X2
XY
XY
Y2
Z2

X2
Y2
YZ
YZ
Z2

?

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/1265530.1265535

72Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A more complex example with exponents

Q(R)	=	𝜋AC(𝜋ABR	⋈	𝜋BCR		⋃		𝜋ACR	⋈	𝜋BCR)

A B C
a b c
d b e
f g e

R
A B C
a b c
a b e
d b c
d b e
f g e

𝜋ABR⋈𝜋BCR
A B C
a b c
d b e
d g e
f b e
f g e

𝜋ACR⋈𝜋BCR
A B C
a b c
a b e
d b c
d b e
d g e
f b e
f g e

Q1	⋃	Q2
A C
a c
a e
d c
d e
f e

Q

X
Y
Z ?

Example from Section 2 of Green, Karvounarakis, Val Tannen. "Provenance Semirings", PODS 2007. https://doi.org/10.1145/1265530.1265535

X2
XY
XY
Y2
Z2

X2
Y2
YZ
YZ
Z2

2X2
XY
XY
2Y2
YZ
YZ
2Z2

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/1265530.1265535

73Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A more complex example with exponents

Q(R)	=	𝜋AC(𝜋ABR	⋈	𝜋BCR		⋃		𝜋ACR	⋈	𝜋BCR)

A B C
a b c
d b e
f g e

R
A B C
a b c
a b e
d b c
d b e
f g e

𝜋ABR⋈𝜋BCR
A B C
a b c
d b e
d g e
f b e
f g e

𝜋ACR⋈𝜋BCR
A B C
a b c
a b e
d b c
d b e
d g e
f b e
f g e

Q1	⋃	Q2
A C
a c
a e
d c
d e
f e

Q

X
Y
Z

X2
XY
XY
Y2
Z2

X2
Y2
YZ
YZ
Z2

2X2
XY
XY
2Y2
YZ
YZ
2Z2

2X2
XY
XY

2Y2+YZ
YZ+2Z2

Example from Section 2 of Green, Karvounarakis, Val Tannen. "Provenance Semirings", PODS 2007. https://doi.org/10.1145/1265530.1265535

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/1265530.1265535

74Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A more complex example with exponents

Q(R)	=	𝜋AC(𝜋ABR	⋈	𝜋BCR		⋃		𝜋ACR	⋈	𝜋BCR)

A B C
a b c
d b e
f g e

R
A B C
a b c
a b e
d b c
d b e
f g e

𝜋ABR⋈𝜋BCR
A B C
a b c
d b e
d g e
f b e
f g e

𝜋ACR⋈𝜋BCR
A B C
a b c
a b e
d b c
d b e
d g e
f b e
f g e

Q1	⋃	Q2
A C
a c
a e
d c
d e
f e

Q

X
Y
Z

X2
XY
XY
Y2
Z2

X2
Y2
YZ
YZ
Z2

2X2
XY
XY
2Y2
YZ
YZ
2Z2

2X2
XY
XY

2Y2+YZ
YZ+2Z2

=2
=5
=1

Let's assume bag semantics and
duplicities in the input. How many
output tuples do we get?

(ℕ, +, ⋅, 0, 1): Counting derivations / bag semantics

?
Example from Section 2 of Green, Karvounarakis, Val Tannen. "Provenance Semirings", PODS 2007. https://doi.org/10.1145/1265530.1265535

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/1265530.1265535

75Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A more complex example with exponents

Q(R)	=	𝜋AC(𝜋ABR	⋈	𝜋BCR		⋃		𝜋ACR	⋈	𝜋BCR)

A B C
a b c
d b e
f g e

R
A B C
a b c
a b e
d b c
d b e
f g e

𝜋ABR⋈𝜋BCR
A B C
a b c
d b e
d g e
f b e
f g e

𝜋ACR⋈𝜋BCR
A B C
a b c
a b e
d b c
d b e
d g e
f b e
f g e

Q1	⋃	Q2
A C
a c
a e
d c
d e
f e

Q

X
Y
Z

X2
XY
XY
Y2
Z2

X2
Y2
YZ
YZ
Z2

2X2
XY
XY
2Y2
YZ
YZ
2Z2

2X2
XY
XY

2Y2+YZ
YZ+2Z2

=2
=5
=1

=8
=10
=10
=55
=7

Let's assume bag semantics and
duplicities in the input. How many
output tuples do we get?

(ℕ, +, ⋅, 0, 1): Counting derivations / bag semantics
Example from Section 2 of Green, Karvounarakis, Val Tannen. "Provenance Semirings", PODS 2007. https://doi.org/10.1145/1265530.1265535

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/1265530.1265535

76Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A more complex example with exponents

Q(R)	=	𝜋AC(𝜋ABR	⋈	𝜋BCR		⋃		𝜋ACR	⋈	𝜋BCR)
617

A B C
a b c
d b e
f g e

R
A C
a c
a e
d c
d e
f e

Q

Example from Section 2 of Green, Karvounarakis, Val Tannen. "Provenance Semirings", PODS 2007. https://doi.org/10.1145/1265530.1265535

X
Y
Z

2X2
XY
XY

2Y2+YZ
YZ+2Z2

=2
=5
=1

=8
=10
=10
=55
=7

SELECT A, C, COUNT(*)
FROM (
 SELECT R.A, R.B, R2.C
 FROM R, R R2
 WHERE R.B = R2.B
 UNION ALL
 SELECT R.A, R2.B, R.C
 FROM R, R R2
 WHERE R.C = R2.C) X
GROUP BY A, C
ORDER BY A, C

𝜋R.A,R.B,R2.C(R⋈R.B=R2.B𝜌R⟶R2R) 𝜋R.A,R2.B,R.C(R⋈R.C=R2.C𝜌R⟶R2R)

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/1265530.1265535
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

78

Outline: T2-3: Provenance

• T2-3: Provenance
– Data Provenance
– The Semiring Framework for Provenance
– Algebra: Monoids and Semirings
– Query-rewrite-insensitive provenance

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

79Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/workshops/logic-algebra-query-evaluation#simons-tabs

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/workshops/logic-algebra-query-evaluation

80Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Why algebra? Think abstraction and generalization

• Abstraction:

• Generalization:

https://northeastern-datalab.github.io/cs7240/

81Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Why algebra? Think abstraction and generalization

• Abstraction: an emphasis on the
idea and properties rather than the
particulars (hiding irrelevant details)
- main goal in "Abstract algebra"
- e.g. groups in group theory

• Generalization:

Example on the right from: https://matheducators.stackexchange.com/questions/10949/what-is-abstraction-and-generalization/10957

https://northeastern-datalab.github.io/cs7240/
https://matheducators.stackexchange.com/questions/10949/what-is-abstraction-and-generalization/10957

82Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Why algebra? Think abstraction and generalization

• Abstraction: an emphasis on the
idea and properties rather than the
particulars (hiding irrelevant details)
- main goal in "Abstract algebra"
- e.g. groups in group theory

• Generalization: a broadening of
application to several objects with
similar functions.
- e.g. Algorithms: finding the shortest

path not just in one graph but any
graph

Example on the right from: https://matheducators.stackexchange.com/questions/10949/what-is-abstraction-and-generalization/10957

https://northeastern-datalab.github.io/cs7240/
https://matheducators.stackexchange.com/questions/10949/what-is-abstraction-and-generalization/10957

83Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Let's start with groups! Why groups?

• Groups are one of the most important structures studied in abstract
algebra

• What is so special about groups?

https://northeastern-datalab.github.io/cs7240/

84Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Groups have the minimum properties needed to solve equations

Screenshot from: Socratica: Abstract Algebra: Motivation for the definition of a group, https://www.youtube.com/watch?v=yHq_yzYZV6U

Can you solve that ?

https://northeastern-datalab.github.io/cs7240/
https://www.youtube.com/watch?v=yHq_yzYZV6U

85Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Groups have the minimum properties needed to solve equations

Screenshot from: Socratica: Abstract Algebra: Motivation for the definition of a group, https://www.youtube.com/watch?v=yHq_yzYZV6U

(ℤ,+, 0): Integers under addition

https://northeastern-datalab.github.io/cs7240/
https://www.youtube.com/watch?v=yHq_yzYZV6U

86Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Why something weaker than groups?

• For some important computational problems like Dynamic
Programming, we don't need to "solve equations".
- Thus we don't need an inverse ("we don't need to go back")

• Let's look at weaker structures

...

Screenshot from: Gondran, Minoux. "Graphs, Dioids and Semirings: New Models and Algorithms", 2008. https://www.springer.com/gp/book/9780387754499

https://northeastern-datalab.github.io/cs7240/
https://www.springer.com/gp/book/9780387754499

87Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Group-like structures
Set S

Magma (S,⊕)

1. Closed binary operation ⊕:
If x,yÎS then the image (x⊕y)ÎS

+

Figure credits: https://www.euclideanspace.com/maths/discrete/groups/monoid/index.htm ,
https://en.wikibooks.org/wiki/Abstract_Algebra/Group_Theory/Group/Definition_of_a_Group

(also "total")

https://northeastern-datalab.github.io/cs7240/
https://www.euclideanspace.com/maths/discrete/groups/monoid/index.htm
https://en.wikibooks.org/wiki/Abstract_Algebra/Group_Theory/Group/Definition_of_a_Group

88Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Group-like structures
Set S

Magma (S,⊕)

Semigroup (S,⊕)

1. Closed binary operation ⊕:
If x,yÎS then the image (x⊕y)ÎS

2. Associativity:
x⊕(y⊕z) = (x⊕y)⊕z

+

+

Figure credits: https://www.euclideanspace.com/maths/discrete/groups/monoid/index.htm , https://ncatlab.org/nlab/show/associativity ,
https://en.wikibooks.org/wiki/Abstract_Algebra/Group_Theory/Group/Definition_of_a_Group

"In a category associativity is the condition that the two ways to use binary
composition of morphisms to compose a sequence of three morphisms are equal"

https://northeastern-datalab.github.io/cs7240/
https://www.euclideanspace.com/maths/discrete/groups/monoid/index.htm
https://ncatlab.org/nlab/show/associativity
https://en.wikibooks.org/wiki/Abstract_Algebra/Group_Theory/Group/Definition_of_a_Group

89Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Group-like structures
Set S

Magma (S,⊕)

Semigroup (S,⊕)

Monoid (S,⊕,e)

1. Closed binary operation ⊕:
If x,yÎS then the image (x⊕y)ÎS

2. Associativity:
x⊕(y⊕z) = (x⊕y)⊕z

3. Identity element:
$eÎS. "xÎS. [e⊕x = x⊕e = x]

+

+

+

Figure credits: https://www.euclideanspace.com/maths/discrete/groups/monoid/index.htm ,
https://en.wikibooks.org/wiki/Abstract_Algebra/Group_Theory/Group/Definition_of_a_Group

https://northeastern-datalab.github.io/cs7240/
https://www.euclideanspace.com/maths/discrete/groups/monoid/index.htm
https://en.wikibooks.org/wiki/Abstract_Algebra/Group_Theory/Group/Definition_of_a_Group

90Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Group-like structures
Set S

Magma (S,⊕)

Semigroup (S,⊕)

Monoid (S,⊕,e)

Group (S,⊕,e)

1. Closed binary operation ⊕:
If x,yÎS then the image (x⊕y)ÎS

2. Associativity:
x⊕(y⊕z) = (x⊕y)⊕z

3. Identity element:
$eÎS. "xÎS. [e⊕x = x⊕e = x]

4. Inverse:
"xÎS. $x-1ÎS. [x-1⊕x = x⊕x-1 = e]

+

+

+

+

Figure credits: https://www.euclideanspace.com/maths/discrete/groups/monoid/index.htm

https://northeastern-datalab.github.io/cs7240/
https://www.euclideanspace.com/maths/discrete/groups/monoid/index.htm

91Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Group-like structures
Set S

Magma (S,⊕)

Semigroup (S,⊕)

Monoid (S,⊕,e)

Group (S,⊕,e) Abelian Group (S,⊕,e)

Commutative Monoid (S,⊕,e)

1. Closed binary operation ⊕:
If x,yÎS then the image (x⊕y)ÎS

2. Associativity:
x⊕(y⊕z) = (x⊕y)⊕z

3. Identity element:
$eÎS. "xÎS. [e⊕x = x⊕e = x]

4. Inverse:
"xÎS. $x-1ÎS. [x-1⊕x = x⊕x-1 = e]

4.
5. Commutativity: x⊕y = y⊕x

5.

+

+

+

+ +
+

+

?

?
What are intuitive examples for:
• a group

• monoids (that are not groups)

• semigroups (that are not monoids)?

?

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

92Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Group-like structures
Set S

Magma (S,⊕)

Semigroup (S,⊕)

Monoid (S,⊕,e)

Group (S,⊕,e) Abelian Group (S,⊕,e)

Commutative Monoid (S,⊕,e)

1. Closed binary operation ⊕:
If x,yÎS then the image (x⊕y)ÎS

2. Associativity:
x⊕(y⊕z) = (x⊕y)⊕z

3. Identity element:
$eÎS. "xÎS. [e⊕x = x⊕e = x]

4. Inverse:
"xÎS. $x-1ÎS. [x-1⊕x = x⊕x-1 = e]

4.
5. Commutativity: x⊕y = y⊕x

5.

+

+

+

+ +
+

+

- (ℤ,+, 0): Integers under addition

?

What are intuitive examples for:
• a group

• monoids (that are not groups)

• semigroups (that are not monoids)?

?

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

93Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What are intuitive examples for:
• a group

• monoids (that are not groups)

• semigroups (that are not monoids)?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Group-like structures
Set S

Magma (S,⊕)

Semigroup (S,⊕)

Monoid (S,⊕,e)

Group (S,⊕,e) Abelian Group (S,⊕,e)

Commutative Monoid (S,⊕,e)

1. Closed binary operation ⊕:
If x,yÎS then the image (x⊕y)ÎS

2. Associativity:
x⊕(y⊕z) = (x⊕y)⊕z

3. Identity element:
$eÎS. "xÎS. [e⊕x = x⊕e = x]

4. Inverse:
"xÎS. $x-1ÎS. [x-1⊕x = x⊕x-1 = e]

4.
5. Commutativity: x⊕y = y⊕x

5.

+

+

+

+ +
+

+

- (ℤ,+, 0): Integers under addition

?

- (ℕ,+, 0): Natural numbers under add. {0, 1, ...}
- (ℝ,min,∞): minimum has no inverse
- String concatenation with null string ε
- Square matrices under matrix multiplication
- (𝛲(S),∪): Power set under union

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

94Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Group-like structures
Set S

Magma (S,⊕)

Semigroup (S,⊕)

Monoid (S,⊕,e)

Group (S,⊕,e) Abelian Group (S,⊕,e)

Commutative Monoid (S,⊕,e)

1. Closed binary operation ⊕:
If x,yÎS then the image (x⊕y)ÎS

2. Associativity:
x⊕(y⊕z) = (x⊕y)⊕z

3. Identity element:
$eÎS. "xÎS. [e⊕x = x⊕e = x]

4. Inverse:
"xÎS. $x-1ÎS. [x-1⊕x = x⊕x-1 = e]

4.
5. Commutativity: x⊕y = y⊕x

5.

What are intuitive examples for:
• a group

• monoids (that are not groups)

• semigroups (that are not monoids)?

+

+

+

+ +
+

+

- (ℤ,+, 0): Integers under addition

- (ℕ,+, 0): Natural numbers under add. {0, 1, ...}
- (ℝ,min,∞): minimum has no inverse
- String concatenation with null string ε
- Square matrices under matrix multiplication
- (𝛲(S),∪): Power set under union

- (ℕ1,+): Positive integers under add. {1, 2, ...}
- Even numbers under multiplication
- String concatenation without null string

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

97Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What do we exactly lose by not having an inverse?

• Let's take a quick detour and look at some examples to illustrate
what we lose by having monoids instead of groups

https://northeastern-datalab.github.io/cs7240/

98Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Monoids vs. Groups: Examples

• Commutative group (with inverse)
- (ℝ, +, 0) ?e.g., 3 + 3-1 =

https://northeastern-datalab.github.io/cs7240/

99Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Monoids vs. Groups: Examples

• Commutative group (with inverse)
- (ℝ, +, 0)
- (ℝ\{0}, · , 1)

e.g., 3 + 3-1 =
e.g., 3 · 3-1 = ?

3 + (-3) = 0 recall: inverse w.r.t. (+, 0)

https://northeastern-datalab.github.io/cs7240/

100Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Monoids vs. Groups: Examples

• Commutative group (with inverse)
- (ℝ, +, 0)
- (ℝ\{0}, · , 1)

• Commutative monoid (w/o inverse)
- ({0,1},∧,1) ... logical conjunction
• identity element 1: x∧1 = 1∧x=x
• What is the inverse 0-1 s.t. 0∧0-1 = 1

3 + (-3) = 0
3 · (1/3) = 1

e.g., 3 + 3-1 =
e.g., 3 · 3-1 =

recall: inverse w.r.t. (+, 0)

?

https://northeastern-datalab.github.io/cs7240/

101Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Monoids vs. Groups: Examples

• Commutative group (with inverse)
- (ℝ, +, 0)
- (ℝ\{0}, · , 1)

• Commutative monoid (w/o inverse)
- ({0,1},∧,1) ... logical conjunction
• identity element 1: x∧1 = 1∧x=x
• What is the inverse 0-1 s.t. 0∧0-1 = 1

- (ℝ∞,min,∞)
• identity element ∞: min[x,∞] =x
• What is the inverse 3-1 s.t. min[3,3-1] = ∞

3 + (-3) = 0
3 · (1/3) = 1

e.g., 3 + 3-1 =
e.g., 3 · 3-1 =

recall: inverse w.r.t. (+, 0)

There is no such inverse L

?

https://northeastern-datalab.github.io/cs7240/

102Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Monoids vs. Groups: Examples

• Commutative group (with inverse)
- (ℝ, +, 0)
- (ℝ\{0}, · , 1)

• Commutative monoid (w/o inverse)
- ({0,1},∧,1) ... logical conjunction
• identity element 1: x∧1 = 1∧x=x
• What is the inverse 0-1 s.t. 0∧0-1 = 1

- (ℝ∞,min,∞)
• identity element ∞: min[x,∞] =x
• What is the inverse 3-1 s.t. min[3,3-1] = ∞

3 + (-3) = 0
3 · (1/3) = 1

e.g., 3 + 3-1 =
e.g., 3 · 3-1 =

recall: inverse w.r.t. (+, 0)

There is no such inverse L

There is no such inverse L

https://northeastern-datalab.github.io/cs7240/

103Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The power of groups (i.e. of having an inverse)

• Assume(x,y,z) s.t. x⊕y=z
- Given y and z (and knowing that z was calculated), deduce x

• (ℝ,+,0) and (x,y,z)=(1,2,3)
- x+2=3

What is x? ?

https://northeastern-datalab.github.io/cs7240/

104Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The power of groups (i.e. of having an inverse)

• Assume(x,y,z) s.t. x⊕y=z
- Given y and z (and knowing that z was calculated), deduce x

• (ℝ,+,0) and (x,y,z)=(1,2,3)
- x+2=3

• ({0,1},∧,1) and (x,y,z)=(1,0,0)
- x∧0=0

x=z+y-1=3+(-2)=1What is x?

What is x? ?

https://northeastern-datalab.github.io/cs7240/

105Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The power of groups (i.e. of having an inverse)

• Assume(x,y,z) s.t. x⊕y=z
- Given y and z (and knowing that z was calculated), deduce x

• (ℝ,+,0) and (x,y,z)=(1,2,3)
- x+2=3

• ({0,1},∧,1) and (x,y,z)=(1,0,0)
- x∧0=0

• (ℝ∞,min,∞) and (x,y,z)=(3,2,2)
- x min 2 = 2

x=z+y-1=3+(-2)=1What is x?

x could be 0 or 1What is x?

What is x? ?

https://northeastern-datalab.github.io/cs7240/

106Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The power of groups (i.e. of having an inverse)

• Assume(x,y,z) s.t. x⊕y=z
- Given y and z (and knowing that z was calculated), deduce x

• (ℝ,+,0) and (x,y,z)=(1,2,3)
- x+2=3

• ({0,1},∧,1) and (x,y,z)=(1,0,0)
- x∧0=0

• (ℝ∞,min,∞) and (x,y,z)=(3,2,2)
- x min 2 = 2

x=z+y-1=3+(-2)=1What is x?

x could be 0 or 1What is x?

x can be anything in [2,∞]What is x?

https://northeastern-datalab.github.io/cs7240/

112Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Rings and Semirings: what we get from two operators

• Groups and group-like structures consider a set and one binary
operator (with various properties)

• Rings and ring-like structures consider a set and two operators (with
various properties and "interactions" like the distributive law)

https://northeastern-datalab.github.io/cs7240/

113Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

(Commutative) Semirings

• Semiring (S,⊕,⊗,0,1)
1. (S,⊕,0) is commutative monoid
2. (S,⊗,1) is (commutative) monoid
3. ⊗ distributes over ⊕: (x⊕y) ⊗ z = (x⊗z) ⊕ (y⊗z)
4. 0 annihilates ⊗: 0 ⊗ x = 0

thus semirings are rings
w/o the additive inverse

Commutative semirings
e.g.: matrix multiplication
is not commutative

two operators w/ neutral elements

Figure credits: https://en.wikipedia.org/wiki/Distributive_property

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Distributive_property

114Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Figure credits: https://en.wikipedia.org/wiki/Distributive_property

(Commutative) Semirings

• Semiring (S,⊕,⊗,0,1)
1. (S,⊕,0) is commutative monoid
2. (S,⊗,1) is (commutative) monoid
3. ⊗ distributes over ⊕: (x⊕y) ⊗ z = (x⊗z) ⊕ (y⊗z)
4. 0 annihilates ⊗: 0 ⊗ x = 0

• Examples
1. 𝕋=(ℝ"∞,min,+,∞,0) Shortest-distance: min[x,y] + z = min[(x+z),(y+z)]

 min-sum semiring, also called tropical semiring: sum distributes over min:
 min[x+y]+z = min[x+z,y+z]; e.g. min[3+4]+5 = min[3+5, 4+5] = 8
 not the other way: min[x+y,z] ≠ min[x,z] + min[y,z]; e.g. min[3+4,5] = 5 ≠ 7 =min[3,5] + min[4,5]

2. ℝ=(ℝ,+, · ,0,1) Ring of real numbers
3. 𝔹=({0,1},∨,∧,0,1) Boolean (set semantics)
4. ℕ=(ℕ,+, · ,0,1) Number of paths (bag semantics)
5. 𝕍=([0,1],max, · ,0,1) Probability of best derivation (Viterbi)

thus semirings are rings
w/o the additive inverse

Commutative semirings
e.g.: matrix multiplication
is not commutative

two operators w/ neutral elements

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Distributive_property

115Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Ring-like structures

Figure credits: https://kevinbinz.com/2014/11/16/goodman-semiring-parsing/,
https://math.stackexchange.com/questions/2361889/graphically-organizing-the-interrelationships-of-basic-algebraic-structures

annihilator,
missing on the left

https://northeastern-datalab.github.io/cs7240/
https://kevinbinz.com/2014/11/16/goodman-semiring-parsing/
https://math.stackexchange.com/questions/2361889/graphically-organizing-the-interrelationships-of-basic-algebraic-structures

116Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Ring-like structures
ℚ (rational numbers)
ℤ/5ℤ (integers mod 5)
!(#)
%(#)

 field of rational fcts

except 0

sometimes called
ring w/o identity

sometimes called
ring w/ identity

𝔹=(𝔹, ∨, ∧ , 0, 1): Boolean semiring
1 + 1 = 1, thus ∨ has no inverse

(ℕ, +, ⋅ , 0, 1): Natural numbers
no inverses

Polynomials with semiring
coefficients (e.g. ℕ[x])

(rng) (rig)

2ℤ: Even integers

ℝ[x] real polynomials
ℤ/4ℤ (integers mod 4)

𝑎 𝑏
𝑐 𝑑 |𝑎, 𝑏, 𝑐, 𝑑	are	integers

non-zero
elements
form an

Figure credits: https://kevinbinz.com/2014/11/16/goodman-semiring-parsing/,
https://math.stackexchange.com/questions/2361889/graphically-organizing-the-interrelationships-of-basic-algebraic-structures

annihilator,
missing on the left

https://northeastern-datalab.github.io/cs7240/
https://kevinbinz.com/2014/11/16/goodman-semiring-parsing/
https://math.stackexchange.com/questions/2361889/graphically-organizing-the-interrelationships-of-basic-algebraic-structures

121Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Rings and Semiring homomorphisms

• We have seen homomorphisms for structures with 1 operator:
- graphs
- conjunctive queries
- groups
- general binary structures

• Semiring homomorphisms generalize this to two operators

https://northeastern-datalab.github.io/cs7240/

122Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RECALL Homomorphisms on Binary Structures

• Definition (Binary algebraic structure): A binary algebraic structure
is a set together with a binary operation on it. This is denoted by an
ordered pair (S,⋆) in which S is a set and ⋆ is a binary operation on S.

• Definition (homomorphism of binary structures): Let (S,⋆) and (S’,∘)
be binary structures. A homomorphism from (S,⋆) to (S’,∘) is a map
h: S ⟶ S’ that satisfies, for all x, y in S:
 h(x ⋆ y) = h(x) ∘ h(y)

• We can denote it by h: (S,⋆) ⟶ (S’,∘).

https://northeastern-datalab.github.io/cs7240/

123Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Homomorphisms now for ring-like structures

• A homomorphism between two semirings is a function between
their underlying sets that preserves the two operations of addition
and multiplication and also their identities.

• Definition (homomorphism between semirings): Let (R,+,•) and
(S,⋆,∘) be semirings. A homomorphism from (R,+,•) to (S,⋆,∘) is a
map h: S ⟶ S’ that satisfies, for all x, y in S:
- h(x + y) = h(x) ⋆ h(y) addition preserving
- h(x • y) = h(x) ∘ h(y) multiplication preserving
- h(1R) = 1S multiplicative identity preserving
- h(0R) = 0S additive identify preserving

https://northeastern-datalab.github.io/cs7240/

124Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A partial provenance hierarchy

Source: Todd J. Green, "Containment of Conjunctive Queries on Annotated Relations", ICDT 2009. https://doi.org/10.1145/1514894.1514930

N[X]

B[X] Trio(X)

Why(X)

Lin(X) PosBool(X)

most informative

least informative

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/1514894.1514930

125Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Using homomorphisms to relate models

Example: 2x2y + xy + 5y2 + z

drop exponents
3xy + 5y + z

drop coefficients
x2y + xy + y2 +z

collapse terms
xyz

drop both exp. and coeff.
xy + y + z

apply absorption
(ab + b = b)

y + z

A path downward from K1 to K2 indicates that there exists an
onto (surjective) semiring homomorphism h : K1 → K2
Furthermore, notice that for these homomorphisms h(x)= x

Source: Todd J. Green, "Containment of Conjunctive Queries on Annotated Relations", ICDT 2009. https://doi.org/10.1145/1514894.1514930

N[X]

B[X] Trio(X)

Why(X)

Lin(X) PosBool(X)

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/1514894.1514930

129Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: Val Tannen. "The Semiring Framework for Database Provenance", PODS 2017 Test of Time Award talk : https://www.cis.upenn.edu/~val/15MayPODS.pdf

https://northeastern-datalab.github.io/cs7240/
https://www.cis.upenn.edu/~val/15MayPODS.pdf

142Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The power of Semirings is rediscovered again and again

• Semirings are not "as famous" as rings or groups in abstract algebra,
but form the basis of efficient algorithms
- we often don't need an inverse for the semiring addition
- we calculate "forward" not backwards (we don't solve equations)

• Thus they are "rediscovered" again and again in various branches of
computer science

https://northeastern-datalab.github.io/cs7240/

143Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Power of semirings is rediscovered again and again

1. Bistarelli, Montanari, Rossi. Semiring-Based Constraint Satisfaction
and Optimization. JACM 1997 (cited > 800 times, 3/2020)

"We introduce a general framework for constraint satisfaction and
optimization where classical CSPs, fuzzy CSPs, weighted CSPs, partial
constraint satisfaction, and others can be easily cast. The framework is
based on a semiring structure, where the set of the semiring specifies the
values to be associated with each tuple of values of the variable domain,
and the two semiring operations (1 and 3) model constraint projection and
combination respectively. Local consistency algorithms, as usually used for
classical CSPs, can be exploited in this general framework as well..."

Paper: Bistarelli, Montanari, Rossi. Semiring-Based Constraint Satisfaction and Optimization. JACM 1997. https://doi.org/10.1145/256303.256306

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/256303.256306

144Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Power of semirings is rediscovered again and again

2. Aji, McEliece: The generalized distributive law. IEEE Transactions
on Information Theory 2000 (cited >950 times in 3/2020)

"... we discuss a general message passing algorithm,
which we call the generalized distributive law (GDL).
The GDL is a synthesis of the work of many authors
in the information theory, digital communications,
signal processing, statistics, and artificial intelligence
communities. It includes as special cases ... Although
this algorithm is guaranteed to give exact answers
only in certain cases (the “junction tree” condition),
... much experimental evidence, and a few
theorems, suggesting that it often works
approximately even when it is not supposed to.

Paper: Aji, McEliece: The generalized distributive law. IEEE Transactions on Information Theory, 2000. https://doi.org/10.1109/18.825794

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1109/18.825794

145Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Power of semirings is rediscovered again and again

3. Mohri: Semiring frameworks and algorithms for shortest-distance
problems. Journal of Automata, Languages and Combinatorics.
2002 (cited 290 times in 3/2020)

"We define general algebraic frameworks for shortest-distance problems
based on the structure of semirings. We give a generic algorithm for finding
single-source shortest distances in a weighted directed graph when the
weights satisfy the conditions of our general semiring framework.
... Classical algorithms such as that of Bellman-Ford [4, 17] are specific
instances of this generic algorithm ... The algorithm of Lawler [24] is a specific
instance of this algorithm."

Paper: Mohri. Semiring frameworks and algorithms for shortest-distance problems. Journal of Automata, Languages and Combinatorics, 2002. https://doi.org/10.25596/jalc-2002-321

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.25596/jalc-2002-321

147Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Power of semirings is rediscovered again and again

4. Green, Karvounarakis, Tannen. Provenance semirings. PODS 2007.
(PODS 2017 test-of-time award)

Paper: Green, Karvounarakis, Tannen. Provenance semirings. PODS 2007. https://doi.org/10.1145/1265530.1265535 , Figure credit: Val Tannen's EDBT 2010 keynote.

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/1265530.1265535

148Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Power of semirings is rediscovered again and again

5. Khamis, Ngo, Rudra. FAQ: Questions Asked Frequently. PODS 2016
(PODS 2016 best paper award)

"We define and study the Functional Aggregate
Query (FAQ) problem, which encompasses
many frequently asked questions in constraint
satisfaction, databases, matrix operations,
probabilistic graphical models and logic. This is
our main conceptual contribution... We then
present a simple algorithm called InsideOut to
solve this general problem. InsideOut is a
variation of the traditional dynamic
programming approach for constraint
programming based on variable elimination."

Paper: Khamis, Ngo, Rudra. FAQ: Questions Asked Frequently. PODS 2016. https://doi.org/10.1145/2902251.2902280

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/2902251.2902280

149Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Power of semirings is rediscovered again and again

6. Tziavelis+. Optimal Algorithms for Ranked Enumeration of Answers to Full
Conjunctive Queries. PVLDB 2020

Paper: Tziavelis, Ajwani, Gatterbauer, Riedewald, Yang. Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries. PVLDB 2020. https://dl.acm.org/doi/10.14778/3397230.3397250

Ranked results

Time

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/10.14778/3397230.3397250

150Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Power of semirings is rediscovered again and again

6. Tziavelis+. Optimal Algorithms for Ranked Enumeration of Answers to Full
Conjunctive Queries. PVLDB 2020

Paper: Tziavelis, Ajwani, Gatterbauer, Riedewald, Yang. Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries. PVLDB 2020. https://dl.acm.org/doi/10.14778/3397230.3397250

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/10.14778/3397230.3397250

151Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Power of semirings is rediscovered again and again

7. Atserias, Kolaitis. Structure and Complexity of Bag Consistency.
PODS 2021, SIGMOD record 2022.

Papers: Atserias, Kolaitis. Structure and Complexity of Bag Consistency. SIGMOD record 2022. https://doi.org/10.1145/3542700.3542719 ,
Atserias, Kolaitis. Consistency, Acyclicity, and Positive Semirings. https://arxiv.org/abs/2009.09488

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3542700.3542719
https://arxiv.org/abs/2009.09488

152Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Multiplying 2´2 matrices

8 multiplications
4 additions

Works over any semi-ring!

Strassen. Gaussian Elimination is not Optimal. Numerical Mathematics, 1969. https://doi.org/10.1007/BF02165411
https://en.wikipedia.org/wiki/Strassen_algorithm, https://en.wikipedia.org/wiki/Matrix_multiplication_algorithm

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1007/BF02165411
https://en.wikipedia.org/wiki/Strassen_algorithm
https://en.wikipedia.org/wiki/Matrix_multiplication_algorithm

153Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Strassen’s 2´2 algorithm

11 11 11 12 21

12 11 12 12 22

21 21 11 22 21

22 21 12 22 22

C A B A B
C A B A B
C A B A B
C A B A B

= +
= +
= +
= +

1 11 22 11 22

2 21 22 11

3 11 12 22

4 22 21 11

5 11 12 22

6 21 11 11 12

7 12 22 21 22

()()
()
()
()

()
()()
()()

M A A B B
M A A B
M A B B
M A B B
M A A B
M A A B B
M A A B B

-

-

= + +
= +
=

=
= +

=

= +

- +

-
11 1 4 5 7

12 3 5

21 2 4

22 1 2 3 6

C M M M M
C M M
C M M
C M M M M

= + +
=

=

-

+-

+
= +

+ 7 multiplications
18 additions/subtractionsWorks over any ring!

(requirees additive inverse, but does not assume multiplication to be commutative)

Subtraction!

Matrix multiplication exponent 𝜔

𝜔<2.4

Strassen. Gaussian Elimination is not Optimal. Numerical Mathematics, 1969. https://doi.org/10.1007/BF02165411
https://en.wikipedia.org/wiki/Strassen_algorithm, https://en.wikipedia.org/wiki/Matrix_multiplication_algorithm

"galactic"

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1007/BF02165411
https://en.wikipedia.org/wiki/Strassen_algorithm
https://en.wikipedia.org/wiki/Matrix_multiplication_algorithm

154Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Strassen_algorithm

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Strassen_algorithm

155Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Song, Dongarra, Moore. Experiments with Strassens' Algorithm: from sequential to parallel. PDCS 2006. https://scholar.google.com/scholar?cluster=11243079065050760755

https://northeastern-datalab.github.io/cs7240/
https://scholar.google.com/scholar?cluster=11243079065050760755

156Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Scott, Holtz, Schwartz. Matrix Multiplication I/O-Complexity by Path Routing, SPAA 2015. https://doi.org/10.1145/2755573.2755594

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/2755573.2755594

158Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Ballard, Carson, Demmel, Hoemmen, Knight, Schwartz. "Communication lower bounds and optimal algorithms for numerical linear algebra." Acta numerica 2014. https://doi.org/10.1017/S0962492914000038
Ballard, Demmel, Holtz, Schwartz. "Graph Expansion and Communication Costs of Fast Matrix Multiplication." ACM 2012. https://doi.org/10.1145/2395116.2395121

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1017/S0962492914000038
https://doi.org/10.1145/2395116.2395121

168

Topic 2: Complexity of Query Evaluation
Unit 3: Provenance
Lecture 18

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
https://northeastern-datalab.github.io/cs7240/sp24/
3/22/2024

Updated 3/23/2024

https://northeastern-datalab.github.io/cs7240/sp24/

169Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Pre-class conversations

• Last class summary
• Projects: TUE 3/26 intermediate report

• Today:
- provenance at different granularities (cell level)
- reverse data management

https://northeastern-datalab.github.io/cs7240/

170

Outline: T2-3: Provenance

• T2-3: Provenance
– Data Provenance
– The Semiring Framework for Provenance
– Algebra: Monoids and Semirings
– Query-rewrite-insensitive provenance

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

171Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1.1 Why, How and Where: An Overview 383

Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone
BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate

Queries & provenance

1.1 Why, How and Where: An Overview 383

Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone
BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate

1.1 Why, How and Where: An Overview 383

Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone
BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate

Example taken from “Provenance in databases: why, how, and where” by Cheney, Chiticariu, Tan, 2009. https://doi.org/10.1561/1900000006

?

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1561/1900000006

172Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1.1 Why, How and Where: An Overview 383

Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone
BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate

Queries & provenance

1.1 Why, How and Where: An Overview 383

Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone
BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate

1.1 Why, How and Where: An Overview 383

Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone
BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate

1.1 Why, How and Where: An Overview 383

Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone
BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate

Lineage	=

Definition Lineage:
Lineage for an output tuple t is a subset of the input tuples which are relevant to the output tuple

?

Example taken from “Provenance in databases: why, how, and where” by Cheney, Chiticariu, Tan, 2009. https://doi.org/10.1561/1900000006

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1561/1900000006

173Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1.1 Why, How and Where: An Overview 383

Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone
BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate

Queries & provenance

1.1 Why, How and Where: An Overview 383

Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone
BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate

1.1 Why, How and Where: An Overview 383

Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone
BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate

1.1 Why, How and Where: An Overview 383

Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone
BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate

Lineage	=	{t1,	t5,	t6}

Definition Lineage:
Lineage for an output tuple t is a subset of the input tuples which are relevant to the output tuple

Problem: Not very precise.
e.g., lineage above does not specify that t5 and t6 do not both need to exist.

Example taken from “Provenance in databases: why, how, and where” by Cheney, Chiticariu, Tan, 2009. https://doi.org/10.1561/1900000006

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1561/1900000006

174Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1.1 Why, How and Where: An Overview 383

Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone
BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate

“Why Provenance” & Witnesses

1.1 Why, How and Where: An Overview 383

Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone
BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate

1.1 Why, How and Where: An Overview 383

Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone
BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate

1.1 Why, How and Where: An Overview 383

Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone
BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate

Lineage	=	{t1,	t5,	t6}

Definition Witness of t:
Any subset of the database sufficient to reconstruct tuple t in the query result

Witness basis:
Leaves of the “proof tree” showing how result tuple t is generated

{{t1,	t5},	{t1,	t6}}

{t1,	t5}			{t1,	t6}			{t1,	t2,	t6,	t8}

Example taken from “Provenance in databases: why, how, and where” by Cheney, Chiticariu, Tan, 2009. https://doi.org/10.1561/1900000006

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1561/1900000006

175Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Minimality &
query
rewriting

1.1 Why, How and Where: An Overview 385

Instance I:
R

A B
t: 1 2
t′: 1 3
t′′: 4 2

Two equivalent queries:
Q : Ans(x,y) :− R(x,y).
Q′ : Ans(x,y) :− R(x,y),R(x,z).

Output of
Q(I), Q′(I):

A B
1 2
1 3
4 2

Fig. 1.2 Example queries, input and output.

Instance I:
R

A B
t: 1 2
t′: 1 3
t′′: 4 2

Output of
Q(I)

A B why
1 2 {{t}}
1 3 {{t′}}
4 2 {{t′′}}

Output of
Q′(I)

A B why
1 2 {{t},{t, t′}}
1 3 {{t′},{t, t′}}
4 2 {{t′′}}

Fig. 1.3 Example showing that why-provenance is sensitive to query rewriting.

t5, while the second uses the tuples t1 and t6. Observe that {t1, t5, t6} is
not a minimal witness, since the query Q1 requires witnesses to consist
of exactly one tuple from Agencies, and one tuple from ExternalTours
according to the FROM clause of Q1.

The preceding discussion suggests that the witness basis may be
tied to the structure of the query and it is therefore sensitive to how
a query is formulated. To illustrate, consider the instance I and two
equivalent queries Q and Q′ shown in Figure 1.2. For conciseness, we
use the Datalog conjunctive query notation to express Q and Q′ here
and throughout the paper as convenient. Consider the output tuple
(1,2) in the result of Q (and Q′) applied to I shown in Figure 1.3.
The witness basis of this output tuple is {{t}}, according to Q and I.
However, even though Q′ is equivalent to Q, the witness basis of the
output tuple (1,2) according to Q′ and I is {{t},{t, t′}}.

Although equivalent queries may have different witness bases,
Buneman et al. [13] showed that a subset of the witness basis, called
the minimal witness basis, is invariant under equivalent queries. The
minimal witness basis consists of all the minimal witnesses in the wit-
ness basis, where a witness is minimal if none of its proper subinstances
is also a witness in the witness basis. For example, {t} is a minimal wit-
ness for the output tuple (1,2) in Figure 1.2. However, {t, t′} is not a

1.1 Why, How and Where: An Overview 387

Instance I:
R

A B
t: 1 2
t′: 1 3
t′′: 4 2

Output of
Q(I)

A B how
1 2 t
1 3 t′

4 2 t′′

Output of
Q′(I)

A B how
1 2 t2 + t · t′

1 3 (t′)2 + t · t′

4 2 (t′′)2

Fig. 1.5 Example showing that how-provenance is sensitive to query rewriting.

provenance semirings. Intuitively, the provenance of the output tuple
(San Francisco, 415-1200) is represented as a polynomial, which for
this example is t21 + t1 × t3. The polynomials for each output tuple are
shown on the right of the result of Q2. The polynomial hints at the
structure of the proofs by which the output tuple is derived. In this
example, the polynomial describes that the output tuple is witnessed
in two distinct ways: once using t1 twice, and the other using t1 and t3.
As we shall show, one can derive the why-provenance of an output tuple
from its how-provenance polynomial. However, this example shows that
the converse is not always possible.

It is easy to see that how-provenance is also sensitive to query for-
mulations, since how-provenance is more general than why-provenance.
Going back to our example queries shown on the top of Figure 1.2,
Figure 1.5 illustrates that the how-provenance of the tuple (1,2) in
the output of Q(I) is t according to Q, and respectively, t2 + t × t′

according to Q′.
Green et al. [43] formalize a notion of how-provenance for relational

algebra in terms of an appropriate “provenance semiring”, and extend
their approach to handle recursive datalog. Subsequently, an interest-
ing application of how-provenance appears in the context of ORCHES-
TRA [42, 44], a collaborative data sharing system in a network of peers
interconnected through schema mappings. An extension of the semiring
model of Green et al. [43] to schema mappings is used in ORCHESTRA
to efficiently support trust-based filtering of updates, and incremental
maintenance of peers’ databases with updates in the system.

Earlier, Chiticariu and Tan proposed a notion of provenance over
schema mappings called routes [21], and used it as a basis for SPIDER,
a system for debugging schema mappings [3]. Given a schema mapping
that relates a source and a target schema, routes describe how data in

Minimal witness basis:
Minimal witnesses in the
witness basis

Figures from Cheney, Chiticariu, Tan. Provenance in databases: why, how, and where. Foundations and trends in databases 2009. https://dl.acm.org/doi/abs/10.1561/1900000006

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/abs/10.1561/1900000006

176Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Fixing query-
rewrite
sensitivity for
where
provenance

1.1 Why, How and Where: An Overview 385

Instance I:
R

A B
t: 1 2
t′: 1 3
t′′: 4 2

Two equivalent queries:
Q : Ans(x,y) :− R(x,y).
Q′ : Ans(x,y) :− R(x,y),R(x,z).

Output of
Q(I), Q′(I):

A B
1 2
1 3
4 2

Fig. 1.2 Example queries, input and output.

Instance I:
R

A B
t: 1 2
t′: 1 3
t′′: 4 2

Output of
Q(I)

A B why
1 2 {{t}}
1 3 {{t′}}
4 2 {{t′′}}

Output of
Q′(I)

A B why
1 2 {{t},{t, t′}}
1 3 {{t′},{t, t′}}
4 2 {{t′′}}

Fig. 1.3 Example showing that why-provenance is sensitive to query rewriting.

t5, while the second uses the tuples t1 and t6. Observe that {t1, t5, t6} is
not a minimal witness, since the query Q1 requires witnesses to consist
of exactly one tuple from Agencies, and one tuple from ExternalTours
according to the FROM clause of Q1.

The preceding discussion suggests that the witness basis may be
tied to the structure of the query and it is therefore sensitive to how
a query is formulated. To illustrate, consider the instance I and two
equivalent queries Q and Q′ shown in Figure 1.2. For conciseness, we
use the Datalog conjunctive query notation to express Q and Q′ here
and throughout the paper as convenient. Consider the output tuple
(1,2) in the result of Q (and Q′) applied to I shown in Figure 1.3.
The witness basis of this output tuple is {{t}}, according to Q and I.
However, even though Q′ is equivalent to Q, the witness basis of the
output tuple (1,2) according to Q′ and I is {{t},{t, t′}}.

Although equivalent queries may have different witness bases,
Buneman et al. [13] showed that a subset of the witness basis, called
the minimal witness basis, is invariant under equivalent queries. The
minimal witness basis consists of all the minimal witnesses in the wit-
ness basis, where a witness is minimal if none of its proper subinstances
is also a witness in the witness basis. For example, {t} is a minimal wit-
ness for the output tuple (1,2) in Figure 1.2. However, {t, t′} is not a

1.1 Why, How and Where: An Overview 391

Annotated
instance Ia:
R

A B
t: 1a1 2a2

t′: 1a3 3a4

t′′: 4a5 2a6

Output of Q(Ia)
(DEFAULT
propagation):

A B

1a1 2a2

1a3 3a4

4a5 2a6

Output of Q′(Ia)
(DEFAULT
propagation):

A B

1a1,a3 2a2

1a1,a3 3a4

4a5 2a6

Output of Q(Ia), Q′(Ia)
(DEFAULT-ALL
propagation):

A B

1a1,a3 2a2,a6

1a1,a3 3a4

4a5 2a2,a6

Fig. 1.6 Example showing that where-provenance is sensitive to query rewriting.

Q and respectively, Q′ on Ia under the default propagation scheme pro-
duces the two annotated instances shown in Figure 1.6. In the output
of Q, the annotation a1 propagates from the value “1” of the source
tuple t to the output value “1” of (1, 2) in Q(Ia). This is because the
value “1” of (1, 2) in Q(Ia) is copied from the value “1” of t according
to Q. In the case of Q′, however, the value “1” of (1, 2) in Q′(Ia) is
copied from “1” of t or “1” of t′ in Ia. Hence, two annotations, a1 and
a3, appear with the value “1” of (1, 2) in Q′(Ia). This simple example
illustrates once more that where-provenance is sensitive under equiva-
lent query formulations: while Q and Q′ are equivalent, they produce
different annotated results. In fact, the query Q′′: Ans(x,y) :− R(x,y),
R(z,y) is also equivalent to Q and it propagates both a2 and a6 to the
values “2” in the output, whereas the two copies of value “1” in the
output is annotated with a1 and respectively, a3.

If a query Q propagates annotations under the default-all propaga-
tion scheme in DBNotes, then equivalent formulations of Q are guaran-
teed to produce identical annotated results. In the default-all scheme,
annotations are propagated based on where data is copied from accord-
ing to all equivalent queries of Q. Hence, this propagation scheme can be
perceived as a “better” method for propagating annotations for Q. The
result of executing Q (or Q′ or Q′′) on Ia under the default-all scheme is
shown in Figure 1.6. Observe that all annotations relevant for an out-
put value are associated under the same output value in the default-all
behavior, regardless of how the query is formulated. For this exam-
ple, both “1”s in the default-all output are associated with a1 and a3.
This is because Q′, which is an equivalent query of Q, associates both
annotations with the value “1”. Similarly, both “2”s in the default-all
output are associated with a2 and a6. This is because Q′′ associates

1.1 Why, How and Where: An Overview 391

Annotated
instance Ia:
R

A B
t: 1a1 2a2

t′: 1a3 3a4

t′′: 4a5 2a6

Output of Q(Ia)
(DEFAULT
propagation):

A B

1a1 2a2

1a3 3a4

4a5 2a6

Output of Q′(Ia)
(DEFAULT
propagation):

A B

1a1,a3 2a2

1a1,a3 3a4

4a5 2a6

Output of Q(Ia), Q′(Ia)
(DEFAULT-ALL
propagation):

A B

1a1,a3 2a2,a6

1a1,a3 3a4

4a5 2a2,a6

Fig. 1.6 Example showing that where-provenance is sensitive to query rewriting.

Q and respectively, Q′ on Ia under the default propagation scheme pro-
duces the two annotated instances shown in Figure 1.6. In the output
of Q, the annotation a1 propagates from the value “1” of the source
tuple t to the output value “1” of (1, 2) in Q(Ia). This is because the
value “1” of (1, 2) in Q(Ia) is copied from the value “1” of t according
to Q. In the case of Q′, however, the value “1” of (1, 2) in Q′(Ia) is
copied from “1” of t or “1” of t′ in Ia. Hence, two annotations, a1 and
a3, appear with the value “1” of (1, 2) in Q′(Ia). This simple example
illustrates once more that where-provenance is sensitive under equiva-
lent query formulations: while Q and Q′ are equivalent, they produce
different annotated results. In fact, the query Q′′: Ans(x,y) :− R(x,y),
R(z,y) is also equivalent to Q and it propagates both a2 and a6 to the
values “2” in the output, whereas the two copies of value “1” in the
output is annotated with a1 and respectively, a3.

If a query Q propagates annotations under the default-all propaga-
tion scheme in DBNotes, then equivalent formulations of Q are guaran-
teed to produce identical annotated results. In the default-all scheme,
annotations are propagated based on where data is copied from accord-
ing to all equivalent queries of Q. Hence, this propagation scheme can be
perceived as a “better” method for propagating annotations for Q. The
result of executing Q (or Q′ or Q′′) on Ia under the default-all scheme is
shown in Figure 1.6. Observe that all annotations relevant for an out-
put value are associated under the same output value in the default-all
behavior, regardless of how the query is formulated. For this exam-
ple, both “1”s in the default-all output are associated with a1 and a3.
This is because Q′, which is an equivalent query of Q, associates both
annotations with the value “1”. Similarly, both “2”s in the default-all
output are associated with a2 and a6. This is because Q′′ associates

Figures from Cheney, Chiticariu, Tan. Provenance in databases: why, how, and where. Foundations and trends in databases 2009. https://dl.acm.org/doi/abs/10.1561/1900000006

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/abs/10.1561/1900000006

181

Default-all /
Where provenance /

Query rewriting

182Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: Laura Chiticariu. "Systems for tracing the provenance of data". Talk at University of Washington, 2008.

https://northeastern-datalab.github.io/cs7240/

183Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: Laura Chiticariu. "Systems for tracing the provenance of data". Talk at University of Washington, 2008.

https://northeastern-datalab.github.io/cs7240/

184Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: Laura Chiticariu. "Systems for tracing the provenance of data". Talk at University of Washington, 2008.

https://northeastern-datalab.github.io/cs7240/

185Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: Laura Chiticariu. "Systems for tracing the provenance of data". Talk at University of Washington, 2008.

https://northeastern-datalab.github.io/cs7240/

Default-all is dangerous!
Wolfgang Gatterbauer

Alexandra Meliou
Dan Suciu

http://db.cs.washington.edu/causality/
Database group
University of Washington

Version June 20, 2011

3rd USENIX Workshop on the Theory and Praxis of Provenance (Tapp'11)

Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395

https://arxiv.org/pdf/1105.4395

187

Overview Provenance Definitions
Why?

Why-provenance =
witness basis (αw)

Minimal
witness basis (αw

m)

Where-provenance =
propagation (αp)

Default-all
propagation (αp

d)

Where?
Naive

Provenance
definition

QRI definition
(Query-Rewrite-

Insensitive)

Witness "SQL interpretation"

Buneman et al. [ICDT’01]

Bhagwat et al. [VLDB’04]

Buneman et al. [PODS’02]

Buneman et al. [ICDT’01]

Minimal
propagation (αp

m)
Proposed in this paper!

Has problems if
one interprets
annotations on
attribute values

We do not discuss here whether QRI is
desirable (see also),
but merely point out that, if aiming for
QRI, care has to be taken about the
ramifications of the proposed semantics.

Glavic, Miller [Tapp'11]

Independent work presented at this WS
Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395

https://arxiv.org/pdf/1105.4395

188

Naive

Provenance
definition

QRI definition
(Query-Rewrite-

Insensitive)

Overview Provenance Definitions
Why?

Why-provenance =
witness basis (αw)

Minimal
witness basis (αw

m)

Where-provenance =
propagation (αp)

Default-all
propagation (αp

d)

Where?
Witness "SQL interpretation"

Buneman et al. [ICDT’01]

Bhagwat et al. [VLDB’04]

Buneman et al. [PODS’02]

Buneman et al. [ICDT’01]
Glavic, Miller [Tapp'11]

Note that Minimal propagation is
"stable", in contrast to Default-all

Minimal
propagation (αp

m)
Has problems if
one interprets
annotations on
attribute values Proposed in this paper!

Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395

https://arxiv.org/pdf/1105.4395

189

Example 1: Query-Rewrite-Insensitivity (QRI)

1a

1c

2e

A B
2b

3d

2f

1
1
2

A B
2
3
2

t1
t2
t3

1
1
2

A B
2
3
2

{{t1},{t1,t3}}
{{t2}}
{{t3},{t1,t3}}

{{t1}}
{{t2}}
{{t3}}

{t1,t3}
{t2}
{t1,t3}

Q1(x,y):-R(x,y)

1
1
2

A B
2
3
2

{{t1}}
{{t2}}
{{t3}}

R

Why
Query 1Input

Why-provenance = witness basis (αw)

Minimal witness basis (αw
m)

Lineage (αl)

Q2(x,y):-R(x,y),R(_,y)

Ra
Input

Where

1a

1c

2e

A B
2b

3d

2f

Q1(x,y):-Ra (x,y)
Query 1

1a

1c

2e

A B
2b,f

3d

2b,f

1a,c

1a,c

2e

A B
2b,f

3d

2b,f

Where-provenance = propagation (αp)

Q2(x,y):-Ra(x,y),Ra (_,y)
Query 2 ≡ Query 1

Default-all propagation (αp
d)

Example adapted from Cheney, Chiticariu, Tan. Provenance in databases: why, how, and where. Foundations and trends in databases 2009. https://dl.acm.org/doi/abs/10.1561/1900000006

1a

1c

2e

A B
2b

3d

2f

Minimal propagation (αp
m)

Query 2 ≡ Query 1

Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395

https://dl.acm.org/doi/abs/10.1561/1900000006
https://arxiv.org/pdf/1105.4395

190

Real example: Why Default-all is dangerous

Default-all propagation makes her drink the milk:

LF Milk
LF Milk
SC Water

Food Content
Cesium-137b

Calciumd

Cesium-137f

Bob, March 18, 2011
Don't drink, lots of Cesium!

Fuyumi, March 19, 2011
No Cesium, save to drink!

Ra

Content
Cesium-137???

Q (y):-Ra(‘LF Milk’,y)
b

f

Hanako queries a community DB for contents of LF-milk*:
Community Database Hanako's query

Content
Cesium-137bf

Minimal propagation (αp
m)Default-all propagation (αp

d)

Bob, March 18, 2011
Don't drink, lots of Cesium!

Fuyumi, March 19, 2011
No Cesium, save to drink!

b

f

Content
Cesium-137b

Bob, March 18, 2011
Don't drink, lots of Cesium!

b

* Note the one-to-one correspondence of this example with example 1 from previous page

Calciumd

CalciumdCalciumd
"semantically irrelevant
information": annota-
tions leak over from SC
Water tuple to LF Milk

"all relevant and only relevant"

Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395

https://arxiv.org/pdf/1105.4395

191

Definition Minimal propagation (αpm)

1a

1c

2e

A B
2b

3d

2f

t1
t2
t3

Ra

Example 1

1a

1c

2e

A B
2b,f

3d

2b,f

Q2(x,y):-Ra(x,y),Ra (_,y)

Intuition:
Return the intersection between:
• query-specific where-provenanc (αp)
• and QRI minimal witness basis (αw

m)

{{t1}}
{{t2}}
{{t3}}

Minimal witness basis (αw
m)

1a

1c

2e

A B
2b

3d

2f

am
p (t,A,Q) :=

[

t 02dam
w (t,Q)

A02attributes of t 0 propagating to cell(t,A)

ap
�
t 0,A0�

transforms 'sets of sets' into 'sets',
 hence something like QRI lineage
d

t4
t5
t6

am
p (t4,B,Q2) =

[

t �⇥{t1},A�
ap

�
t �,A��

= ap(t1,B) = {b}

Input Query 2
Where provenance (αp)

{t1}
{t2}
{t3}

αw
md

Minimal propagation (αp
m)

"all relevant ... and only relevant"

Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395

https://arxiv.org/pdf/1105.4395

192

Example 1: Illustration of "minimal" versus "all"

am
p (t4,A,Q1)=am

p (t4,A,Q2)

ad
p(t4,A,Q1)=ad

p(t4,A,Q2)

ap(Q2)ap(Q1)

ca

am
w (t4,Q1)=am

w (t4,Q2)

aw(t4,Q2)aw(t4,Q1)

{t1, t2}{t1}

Why-provenance

Where-provenance

Where-provenance (αp)

Minimal witness basis (αw
m)

Why-provenance (αw)

Minimal propagation (αp
m)

Default-all propagation (αp
d)

Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395

https://arxiv.org/pdf/1105.4395

193

Interpretation of Annotations 1: Attribute Value*

Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395

* Interpretation of annotations on entity attribute values favored by us and underlying our model

https://arxiv.org/pdf/1105.4395

194

Interpretation of Annotations 1: Attribute Value*

Annotations on values of an
attribute (here "population") for
a particular entity (here "Athens")

Argument: Interpreting cell annotations as relevant to the tuple (entity)
adds something that is not trivially modeled with normalized tables.

* Interpretation of annotations on entity attribute values favored by us and underlying our model
Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395

https://arxiv.org/pdf/1105.4395

195

Interpretation of Annotations 2: Domain Value*

* Alternative interpretation suggested by Wang-Chiew Tan (example created after conversation at Sigmod 2011)

1a

1c

2e

A B
2b

3d

2f

Input Ra:
Bob, March 18, 2011
This number is a prime number.

Fuyumi, March 19, 2011
Two is not a prime number
because it is even.

b

f

...

...

...

... Date
Dec 25
...
Dec 25

This is a holiday.b

This is a holiday too !!!f

Domain value annotations*

Input Sa:

Argument for default-all: If annotations
are on domain values, then retrieving
all annotations are relevant.

Counter-Argument: But then these anno-
tations can be modeled in a separate
table as normalized tables.

Alternative representation

2

2

B annotation
b: Bob, March 18, 2011
This number is a prime number.
f: Fuyumi, March 19, 2011

Two is not a prime number
because it is even

Annotation table Sa:

Dec 25

Date annotation

This is a holiday.

Annotation table Sa:

Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395

https://arxiv.org/pdf/1105.4395

196

am
p (t4,A,Q5) =

[

t �⇥{t1,t3,t4},A�
ap

�
t �,A��

= ap(t1,A) = {a}

αw
m (~QRI lineage)

Backup: Detailed Example 2

1a

1c

2e

A B
2b

3d

2f

t1
t2
t3

Ra

1a,c

2e,g

A B
2b,e,g

2e,f,g

Q5(x,y):-Ra(x,y),Ra(y,_),Ra(x,_)

Where-provenance (αp)

{{t1,t3},{t1,t2,t3},{t1,t4},{t1,t2,t4}}
{{t3},{t3,t4}}

{t1,t3,t4}
{t3}

Minimal witness basis (αw
m)

1a,c

2e,g

A B
2b,e,f,g

2b,e,f

{{t1,t3}, {t1,t4}}
{{t3}}

Why-provenance (αw) d

t5
t6

1a

2e

A B
2b,e,g

2e,f
t4
t5

Minimal propagation (αp
m)Default-all propagation (αp

d)

Q6(x,y):-Ra(x,y),Ra(y,_),Ra(x,_) ,Sa(_,y)
αp

d(t4,B,Q5) = αp(t4,B,Q6) with

am
p (t5,B,Q5) =

[

t �⇥{t3},A�
ap

�
t �,A��

= ap(t3,B)⇤ap(t3,A) = {e, f}

2g 4ht4

Note minimal propagation is not equivalent to just
evaluating the where-provenance for the query:
Q7(x,y):-Ra(x,y),Ra(y,_). E.g. αp(t5,B,Q7) = {e,f,g}

Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395

https://arxiv.org/pdf/1105.4395

