Topic 2: Complexity of Query Evaluation Unit 1: Conjunctive Queries Lecture 14

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
https://northeastern-datalab.github.io/cs7240/sp24/
3/1/2024

Pre-class conversations

- Last class summary
- Clingo: can't export to CSV (in contrast to souffle)
- Faculty candidates (THU Feb 29, WED March 20)
- Today:
- Complexity of query evaluation
- Homomorphisms

Studying new material: "Under which study condition do you think you learn better?"

Domain, codomain, range = image

domain

A function f from X to Y. The blue oval Y 呐 is the codomain of f. The yellow oval inside Y is the image of f, and the red oval X is the domain of f.

- A codomain of a function is a set into which all of the output of the function is constrained to fall. It is the set Y in the notation $f: X \rightarrow Y$.
- The set of all elements of the form $f(x)$, where x ranges over the elements of the domain X, is called the image (sometimes called range) of f. The image of a function is a subset of its codomain so it might not coincide with it.
- A function that is not surjective has elements y in its codomain for which the equation $f(x)=y$ does not have a solution.

Topic 2: Complexity of Query Evaluation \& Reverse Data Management
 - Lecture 14 (Fri 3/1): T2-U1 Conjunctive Queries
 - Spring break (Tue 3/5, Fri 3/8)
 - Lecture 15 (Tue 3/12): T2-U1 / 2 Conjunctive \& Beyond Conjunctive Queries
 - Lecture 16 (Fri 3/15): T2-U1/2 Conjunctive \& Beyond Conjunctive Queries
 - Lecture 17 (Tue 3/19): T2-U3 Provenance
 - Lecture 18 (Fri 3/22): T2-U3 Provenance
 - Lecture 20 (Tue 3/26): T2-U4 Reverse Data Management

Pointers to relevant concepts \& supplementary material:

- Unit 1. Conjunctive Queries: Query evaluation of conjunctive queries (CQs), data vs. query complexity, homomorphisms, constraint satisfaction, query containment, query minimization, absorption: [Kolaitis, Vardi'00], [Vardi'00], [Kolaitis'16], [Koutris'19] L1 \& L2
- Unit 2. Beyond Conjunctive Queries: unions of conjunctive queries, bag semantics, nested queries, tree pattern queries: [Kolaitis'16], [Tan+'14], [Gatterbauer'11], [Martens'17]
- Unit 3. Provenance: [Buneman+'02], [Green+'07], [Cheney+'09], [Green,Tannen'17], [Kepner+16], [Buneman, Tan'18], [Simons'23], [Dagstuhl'24]
- Unit 4. Reverse Data Management: update propagation, resilience: [Buneman+'02], [Kimelfeld+'12], [Freire+'15], [Makhija+'24]

Outline: T2-1/2: Query Evaluation \& Query Equivalence

- T2-1: Conjunctive Queries (CQs)
- Query equivalence and containment (\& motivation of CQs)
- Graph homomorphisms
- Homomorphism beyond graphs
- CQ containment
- CQ minimization
- T2-2: Equivalence Beyond CQs
- Union of CQs, and inequalities
- Union of CQs equivalence under bag semantics
- Tree pattern queries
- Nested queries

Three Fundamental Algorithmic Problems about Queries
Let L be a database query language.

- The Query Evaluation Problem:

- The Query Equivalence Problem:

- The Query Containment Problem:

Three Fundamental Algorithmic Problems about Queries
Let L be a database query language.

- The Query Evaluation Problem:
- "Given a query q in L and a database instance D, evaluate $q(D)$ "
- That's the main problem in query processing.
- The Query Equivalence Problem:

- The Query Containment Problem:

Three Fundamental Algorithmic Problems about Queries

Let L be a database query language.

- The Query Evaluation Problem:
- "Given a query q in L and a database instance D, evaluate $q(D)$ "
- That's the main problem in query processing.
- The Query Equivalence Problem:
- "Given two queries q_{1} and q_{2} in L, is it the case that $q_{1} \equiv q_{2}$?"
- i.e., is it the case that, for all (infinitely many) database instances D, we have that $q_{1}(D)=q_{2}(D)$?
- This problem underlies query optimization: transform a given query to an equivalent more efficient one.
- The Query Containment Problem:

Let L be a database query language.

- The Query Evaluation Problem:

Is every answer A contained in q_{1} also contained in q_{2} ?

- "Given a query q in L and a database instance D, evaluate $q(D)$ "
- That's the main problem in query processing.
- The Query Equivalence Problem:
- "Given two queries q_{1} and q_{2} in L, is it the case that $q_{1} \equiv q_{2}$?"
- i.e., is it the case that, for all (infinitely many) database instances D, we have that $q_{1}(D)=q_{2}(D)$?
- This problem underlies query optimization: transform a given query to an equivalent more efficient one.

Boolean variant $q_{1} \Rightarrow q_{2}$:

- The Query Containment Problem:
for all D : if $D \vDash q_{1}$, then $D \vDash q_{2}$
- "Given two queries q_{1} and q_{2} in L, is it the case that $q_{1}(D) \subseteq q_{2}(D)$ for every D ?"

Why bother about Query Containment

- The Query Containment Problem and Query Equivalence Problem are closely related to each other:
- $q_{1} \equiv q_{2}$ if and only if
?
$-q_{1} \subseteq q_{2}$ if and only if

Why bother about Query Containment

- The Query Containment Problem and Query Equivalence Problem are closely related to each other:
- $q_{1} \equiv q_{2}$ if and only if
- $q_{1} \subseteq q_{2}$ and $q_{1} \supseteq q_{2}$

$-q_{1} \subseteq q_{2}$ if and only if

Why bother about Query Containment

- The Query Containment Problem and Query Equivalence Problem are closely related to each other:
- $q_{1} \equiv q_{2}$ if and only if
- $q_{1} \subseteq q_{2}$ and $q_{1} \supseteq q_{2}$
- $q_{1} \subseteq q_{2}$ if and only if
- $q_{1} \equiv\left(q_{1} \cap q_{2}\right)$

Complexity of Equivalence and Containment

- Thm: The Query Equivalence Problem for relational calculus (RC) queries is...
?

Complexity of Equivalence and Containment

- Thm: The Query Equivalence Problem for relational calculus (RC) queries is...
... undecidable $)^{\circ}$
A decision problem is undecidable if it is impossible to construct an algorithm that always leads to a correct yes-or-no answer.
- Proof: using Trakhtenbrot's Theorem (1949):
- The Finite Validity Problem (problem of validity in FOL on the class of all finite models) is undecidable. a formula is valid if it comes out as true (or "satisfied") under all admissible assignments of meaning to that formula within the intended semantics for the logical language

Tip: $A \leqslant B$: reduction from A to B.
what other problem
means: B could be used to solve A. But A is hard

Complexity of Equivalence and Containment

B

- Thm: The Query Equivalence Problem for relational calculus (RC) queries is...
... undecidable $:$ A decision problem is undecidable if it is impossible to construct an algorithm that always leads to a correct yes-or-no answer.
- Proof: using Trakhtenbrot's Theorem (1949):
- The Finite Validity Problem (problem of validity in FOL on the class of all finite models) is undecidable. ata is valid if it comes out as true (or "satisfied") under all admissible assignments of meaning to that formula within the intended semantics for the logical language
- Finite Validity Problem \preccurlyeq Query Equivalence Problem

- Corollary: The Query Containment Problem for RC is undecidable.

Complexity of Equivalence and Containment

- Thm: The Query Equivalence Problem for relational calculus (RC) queries is...
- Proof: using Trakhtenbrot's Theorem (1949):
- The Finite Validity Problem (problem of validity in FOL on the class of all finite models) is undecidable. a formula is valid if it comes ont as true (or "satisfied") under all admissible assignments of meaning to that formula within the intended semantics for the logical language
- Finite Validity Problem \preccurlyeq Query Equivalence Problem
- Take a fixed finitely valid RC sentence ψ, and assume you can solve the query equivalence problem.

Then for every RC sentence φ, we could solve validity: Tip: $A \preccurlyeq B$: reduction from A to B. φ is finitely valid $\Leftrightarrow \varphi \equiv \psi$. Means: B could be used to solve A. But A is hard

- Corollary: The Query Containment Problem for RC is undecidable.

Complexity of Equivalence and Containment

- Thm: The Query Equivalence Problem for relational calculus (RC) queries is...
- Proof: using Trakhtenbrot's Theorem (1949):
- The Finite Validity Problem (problem of validity in FOL on the class of all finite models) is undecidable. a formula is valid if it comes out as true (or "satisfied") under all admissible assignments of meaning to that formula within the intended semantics for the logical language
- Finite Validity Problem \preccurlyeq Query Equivalence Problem
- Take a fixed finitely valid RC sentence ψ, and assume you can solve the query equivalence problem.

Then for every RC sentence φ, we could solve validity: Tip: $A \leqslant B$: reduction from A to B. φ is finitely valid $\Leftrightarrow \varphi \equiv \psi$. Means: B could be used to solve A. But A is hard

- Corollary: The Query Containment Problem for RC is undecidable.
- Proof: Query Equivalence \leqslant Query Containment, since

$$
q_{1} \equiv q_{2} \Leftrightarrow\left(q_{1} \subseteq q_{2} \text { and } q_{2} \supseteq q_{1}\right)
$$

Complexity of the Query Evaluation Problem

- The Query Evaluation Problem for Relational Calculus (RC):
- Given a RC formula φ and a database instance D, find $\varphi^{\text {adom(}}$ (D).
- Theorem: The Query Evaluation Problem for Relational Calculus is ...
... PSPACE-complete.
- PSPACE: decision problems, can be solved using an amount of memory that is polynomial in the input length (\sim in polynomial amount of space).
- PSPACE-complete: PSPACE + every other PSPACE problem can be transformed to it in polynomial time (PSPACE-hard)
- Proof: We need to show both
- This problem is in PSPACE.
- This problem is PSPACE-hard. (We only focus on this task for Boolean RC queries)

Complexity of the Query Evaluation Problem

- Theorem: The Query Evaluation Problem for Boolean RC is PSPACE-hard.
- Reduction uses QBF (Quantified Boolean Formulas):
- Given QBF $\forall x_{1} \exists x_{2} \ldots . . \forall x_{k} \psi$, is it true or false
- (notice every variable is quantified = bound at beginning of sentence; no free variables)
- Proof shows that QBF \preccurlyeq Query Evaluation for Relational Calculus
- Given QBF $\forall x_{1} \exists x_{2} \ldots . . \forall x_{k} \psi$,
- Let V and P be two unary relations and D be the database instance with $V(0), V(1), P(1)$
- Obtain ψ^{*} from ψ by replacing every occurrence of x_{i} by $P\left(x_{i}\right)$, and $\neg x_{i}$ by $\neg P\left(x_{i}\right)$
- Then the following statements are equivalent:
- $\forall x_{1} \exists x_{2} \ldots . . \forall x_{k} \psi$ is true
- $\forall \mathrm{x}_{1}\left[\mathrm{~V}\left(\mathrm{x}_{1}\right) \rightarrow \exists \mathrm{x}_{2}\left[\mathrm{~V}\left(\mathrm{x}_{2}\right) \wedge \ldots \forall \mathrm{x}_{\mathrm{k}}\left[\mathrm{V}\left(\mathrm{x}_{\mathrm{k}}\right) \rightarrow \psi^{*}\right]\right] \ldots\right]$ is true on D

Vardi's Taxonomy of the Query Evaluation Problem

Definition: Let \mathbf{L} be a database query language.

- The combined complexity of \mathbf{L} is the decision problem $\mathbf{P}_{\varphi, \mathrm{D}}$:
- given an L-sentence φ and a database instance \mathbf{D}, is φ true on \mathbf{D} ?
- In symbols, does $\mathbf{D} \vDash \varphi$ (does \mathbf{D} satisfy φ)?

- The data complexit) of L is the family of the following decision problems \mathbf{P}_{φ}, where φ is a fixed L-sentence:
- given a database instance \mathbf{D}, does $\mathbf{D} \vDash \varphi$?
- The query complexity of \mathbf{L} is the family of the following decision problems \mathbf{P}_{D}, where \mathbf{D} is a fixed database instance:
- given an \mathbf{L}-sentence φ, does $\mathbf{D} \vDash \varphi$?

Vardi's Taxonomy of the Query Evaluation Problem

Vardi's "empirical" discovery:

- For most query languages L :
- The data complexity of L is of lower complexity than both the combined complexity of L and the query complexity of L.
- The query complexity of L can be as hard as the combined complexity of L.

Taxonomy of the Query Evaluation Problem for Relational Calculus

Complexity Classes

The Query Evaluation Problem for Relational Calculus

Problem	Complexity
Combined Complexity	PSPACE-complete
Query Complexity	• in PSPACE - can be PSPACE- complete
Data Complexity	In LOGSPACE

Sublanguages of Relational Calculus

- Question: Are there interesting sublanguages of relational calculus for which the Query Containment Problem and the Query Evaluation Problem are "easier" than the full relational calculus?
- Answer:
- Yes, the language of Conjunctive Queries (CQs) is such a sublanguage.
- Think about a single "SELECT FROM WHERE" query block in SQL.
- Usually only equijoins (but no comparison predicates like "R.A < S.B")are allowed
- Moreover, conjunctive queries are the most frequently asked queries against relational databases.

Conjunctive Queries (CQs)

- Definition: A CQ is a query expressible by a DRC formula in prenex normal form built from atomic formulas $R\left(y_{1}, \ldots, y_{n}\right)$, and \wedge and \exists only.
- $\left\{\left(x_{1}, \ldots, x_{k}\right) \mid \exists z_{1} \ldots \exists z_{m} \phi\left(x_{1}, \ldots, x_{k}, z_{1}, \ldots, z_{k}\right)\right\}$,
- where $\phi\left(x_{1}, \ldots, x_{k}, z_{1}, \ldots, z_{k}\right)$ is a conjunction of atomic formulas of the form $R\left(y_{1}, \ldots, y_{m}\right)$.
- Prenex formula: prefix (quantifiers \& bound variables), then quantifier-free part
- Equivalently, a $C Q$ is a query expressible by a RA expression of the form
- $\left.\Pi_{x} \times \partial_{s}\left(R_{1} \boxtimes \ldots \times R_{n}\right)\right)$, where
- Θ is a conjunction of equality atomic formulas (equijoin).
- Equivalently, a CQ is a query expressible by an SQL expression of the form
- SELECT <list of attributes>

FROM <list of relation names> no inequalities (those can change complexities)
WHERE <conjunction of equalities>
no selections (can be seen as preprocessing)

- Equivalently, a CQ can be written as a logic-programming (Datalog) rule:
- $Q\left(x_{1}, \ldots, x_{k}\right):-R_{1}\left(u_{1}\right), \ldots, R_{n}\left(u_{n}\right)$, where
- Each \mathbf{u}_{i} is a tuple of variables (not necessarily distinct). Each variable x_{i} occurs in the right-hand side of the rule. The variables occurring in the right-hand side (the body), but not in the left-hand side (the head) of the rule are existentially quantified (but the quantifiers are not displayed).

Conjunctive Queries (CQs)

- Every natural join is a conjunctive query with ...
... no existentially quantified variables
- Example: Given $R(A, B, C), S(B, C, D)$
$-R \bowtie S=\{(x, y, z, w): R(x, y, z) \wedge S(y, z, w)\}$
- $q(x, y, z, w):-R(x, y, z), S(y, z, w)$
(no variables are existentially quantified)
- SELECT R.A, R.B, R.C, S.D

FROM R, S
WHERER.B = S.B AND R.C=S.C

- Conjunctive queries are also known as SPJ-queries (SELECT-PROJECT-JOIN queries)

Examples of Conjunctive Queries
START + END VERTEX

- Return paths of Length 2: (binary output) DRC:

TRC:
RA:
Datalog:

- Return paths of Length 2: (binary output) DRC: $\{(x, y) \mid \exists z[E(x, z) \wedge E(z, y)]\}$ TRC:

RA:
Datalog:

- Return paths of Length 2: (binary output) DRC: $\{(x, y) \mid \exists z[E(x, z) \wedge E(z, y)]\}$ TRC:

RA:
Datalog:

$x \neq y$ not required! Homomorphism vs.
Isomorphism (more on that later)

- Return paths of Length 2: (binary output)

DRC: $\{(x, y) \mid \exists z[E(x, z) \wedge E(z, y)]\}$
TRC: $\left\{q \nmid \exists e_{1}, e_{2} \in E\left[e_{1} \cdot T=e_{2} . S \wedge q \cdot S=e_{1} \cdot S \wedge q \cdot T=e_{2} \cdot T\right]\right\}$
RA:
Datalog:

- Return paths of Length 2: (binary output)

DRC: $\{(x, y) \mid \exists z[E(x, z) \wedge E(z, y)]\}$
TRC: $\left\{q \mid \exists e_{1}, e_{2} \in E\left[e_{1} \cdot T=e_{2} . S \wedge q . S=e_{1} . S \wedge q . T=e_{2} \cdot T\right]\right\}$
RA: $\quad \pi_{\$ 1, \$ 4}\left(\sigma_{\$ 2=\$ 3}(E \times E)\right)$ unnamed perspective
Datalog:

- Return paths of Length 2: (binary output)

DRC: $\{(x, y) \mid \exists z[E(x, z) \wedge E(z, y)]\}$
TRC: $\left\{q \mid \exists e_{1}, e_{2} \in E\left[e_{1} \cdot T=e_{2} . S \wedge q . S=e_{1} \cdot S \wedge q . T=e_{2} \cdot T\right]\right\}$
RA: $\quad \pi_{\$ 1, \$ 4}\left(\sigma_{\$ 2=\$ 3}(E \times E)\right)$ unnamed perspective
Datalog: $Q(\mathrm{x}, \mathrm{y}):-E(x, z), E(z, y)$

- Is there a cycle of Length 3: (Boolean query) DRC:

Datalog:

- Return paths of Length 2: (binary output)

DRC: $\{(x, y) \mid \exists z[E(x, z) \wedge E(z, y)]\}$
TRC: $\left\{q \mid \exists e_{1}, e_{2} \in E\left[e_{1} \cdot T=e_{2} . S \wedge q . S=e_{1} \cdot S \wedge q . T=e_{2} \cdot T\right]\right\}$
RA: $\quad \pi_{\$ 1, \$ 4}\left(\sigma_{\$ 2=\$ 3}(E \times E)\right)$ unnamed perspective
Datalog: $Q(\mathrm{x}, \mathrm{y}):-E(x, z), E(z, y)$

- Is there a cycle of Length 3: (Boolean query) DRC: $\quad \exists x \exists y \exists z[E(x, y) \wedge E(y, z) \wedge E(z, x)]\}$ Datalog:
- Return paths of Length 2: (binary output)

DRC: $\{(x, y) \mid \exists z[E(x, z) \wedge E(z, y)]\}$
TRC: $\left\{q \mid \exists e_{1}, e_{2} \in E\left[e_{1} \cdot T=e_{2} . S \wedge q . S=e_{1} \cdot S \wedge q \cdot T=e_{2} \cdot T\right]\right\}$
RA: $\quad \pi_{\$ 1, \$ 4}\left(\sigma_{\$ 2=\$ 3}(E \times E)\right)$ unnamed perspective
Datalog: $Q(\mathrm{x}, \mathrm{y}):-E(x, z), E(z, y)$

- Is there a cycle of Length 3: (Boolean query) DRC: $\quad \exists x \exists y \exists z[E(x, y) \wedge E(y, z) \wedge E(z, x)]\}$ Datalog: $\quad Q:-E(x, y), E(y, z), E(z, x)$

- Relational Algebra (RA) and Relational Calculus (RC) have "essentially" the same expressive power (recall Codd's theorem from T1-U3)
- The Query Equivalence Problem for Relational Calculus is undecidable.
- Therefore also the Query Containment Problem
- The Query Evaluation Problem for Relational Calculus:
- Data Complexity is in LOGSPACE (and thus very efficient)
- Query Complexity and Combined Complexity are PSPACE-complete

Outline: T2-1/2: Query Evaluation \& Query Equivalence

- T2-1: Conjunctive Queries (CQs)
- Query equivalence and containment (\& motivation of CQs)
- Graph homomorphisms
- Homomorphism beyond graphs
- CQ containment
- CQ minimization
- T2-2: Equivalence Beyond CQs
- Union of CQs, and inequalities
- Union of CQs equivalence under bag semantics
- Tree pattern queries
- Nested queries

Injective, Surjective, and Bijective functions $\quad f: X \rightarrow Y$
injective

Function

Injective function

Surjective function

Bijective

function

$?$

Injective, Surjective, and Bijective functions
Function maps each argument (element from its domain) to exactly one image (element in its codomain) $\forall x \in X, \exists!y \in Y[y=f(x)]\}$
Injective function

Surjective

 function
Bijective

function

$$
\begin{aligned}
& \exists!y \in Y[P(y)] \\
& \exists y \in Y\left[P(y) \wedge \forall y^{\prime} \in Y\left[P\left(y^{\prime}\right) \Rightarrow y=y^{\prime}\right]\right] \\
& \exists y \in Y\left[P(y) \wedge \neg \exists y^{\prime} \in Y\left[P\left(y^{\prime}\right) \wedge y \neq y^{\prime}\right]\right]
\end{aligned}
$$

Injective, Surjective, and Bijective functions $\quad f: X \rightarrow Y$

injective

$$
\begin{aligned}
& \exists!y \in Y[P(y)] \\
& \exists y \in Y\left[P(y) \wedge \forall y^{\prime} \in Y\left[P\left(y^{\prime}\right) \Rightarrow y=y^{\prime}\right]\right] \\
& \exists y \in Y\left[P(y) \wedge \neg \exists y^{\prime} \in Y\left[P\left(y^{\prime}\right) \wedge y \neq y^{\prime}\right]\right]
\end{aligned}
$$

Source: https://en.wikipedia.org/wiki/Bijection, injection and surjection Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Function maps each argument (element from its domain) to exactly one image (element in its codomain) $\forall x \in X, \exists!y \in Y[y=f(x)]\}$

Injective function
logical transpose ("one-to-one"): each element of the codomain is mapped to by at most one element of the domain (i.e. distinct elements of the domain map to distinct elements in the codomain)
$\ldots \wedge \forall x, x^{\prime} \in X .\left[x \neq x^{\prime} \Rightarrow f(x) \neq f\left(x^{\prime}\right)\right]$ without inequality: $\ldots \wedge \forall x, x^{\prime} \in X .\left[f(x)=f\left(x^{\prime}\right) \Rightarrow x=x^{\prime}\right]$

Surjective function

Bijective function

Injective, Surjective, and Bijective functions

Function maps each argument (element from its domain) to exactly one image (element in its codomain) $\forall x \in X, \exists!y \in Y[y=f(x)]\}$
("one-to-one"): each element of the codomain is mapped to by at most one element of the domain (i.e. distinct elements of the domain map to distinct elements in the codomain)
$\ldots \wedge \forall x, x^{\prime} \in X .\left[x \neq x^{\prime} \Rightarrow f(x) \neq f\left(x^{\prime}\right)\right]$
("onto"): each element of the codomain is mapped to by at least one element of the domain (i.e. the image and the codomain of the function are equal) $\ldots \wedge \forall y \in Y, \exists x \in X[y=f(x)]$

Bijective

function
$\exists!y \in Y[P(y)]$
$\exists y \in Y\left[P(y) \wedge \forall y^{\prime} \in Y\left[P\left(y^{\prime}\right) \Rightarrow y=y^{\prime}\right]\right]$
$\exists y \in Y\left[P(y) \wedge \neg \exists y^{\prime} \in Y\left[P\left(y^{\prime}\right) \wedge y \neq y^{\prime}\right]\right]$

Injective function
logical transpose without inequality:

Surjective function
injective-only

general

Injective, Surjective, and Bijective functions

Function maps each argument (element from its domain) to exactly one image (element in its codomain) $\forall x \in X, \exists!y \in Y[y=f(x)]\}$

Injective function
logical transpose without inequality:
("one-to-one"):eatement of the codomain is mapped toby at most one element of the domain (i.e. distinct elements of the domain map to distinct elements in the codomain)
$\ldots \wedge \forall x, x^{\prime} \in X .\left[x \neq x^{\prime} \Rightarrow f(x) \neq f\left(x^{\prime}\right)\right]$ $\ldots \wedge \forall x, x^{\prime} \in X .\left[f(x)=f\left(x^{\prime}\right) \Rightarrow x=x^{\prime}\right]$

Surjective ("onto"): eachelement of the codomain is mapped function

Bijective
function
$\exists!y \in Y[P(y)]$
$\exists y \in Y\left[P(y) \wedge \forall y^{\prime} \in Y\left[P\left(y^{\prime}\right) \Rightarrow y=y^{\prime}\right]\right]$
$\exists y \in Y\left[P(y) \wedge \neg \exists y^{\prime} \in Y\left[P\left(y^{\prime}\right) \wedge y \neq y^{\prime}\right]\right]$
Source: https://en.wikipedia.org/wiki/Bijection, injection and surjection

Mappings: Injection, Surjection, and Bijection

Mappings: Injection, Surjection, and Bijection
not a mapping (or function)!

Mappings: Injection, Surjection, and Bijection

not a mapping (or function)!

injective function (or one-to-one): maps distinct elements of its domain to distinct elements of its codomain

Mappings: Injection, Surjection, and Bijection

not a mapping (or function)!

injective function (or one-to-one): maps distinct elements of its domain to distinct elements of its codomain
surjective (or onto): every element y in the codomain y of f has at least one element x in the domain that maps to it

Mappings: Injection, Surjection, and Bijection

not a mapping (or function)!

injective function (or one-to-one): maps distinct elements of its domain to distinct elements of its codomain
surjective (or onto): every element y in the codomain y of f has at least one element x in the domain that maps to it
injective \& surjective $=$ bijection

Mappings: Injection, Surjection, and Bijection

not a mapping (or function)!

injective function (or one-to-one): maps distinct elements of its domain to distinct elements of its codomain
surjective (or onto): every element y in the codomain y of f has at least one element x in the domain that maps to it
injective \& surjective = bijection
neighter

Mappings: Injection, Surjection, and Bijection

not a mapping (or function)!

injective function (or one-to-one): maps distinct elements of its domain to distinct elements of its codomain
surjective (or onto): every element y in the codomain y of f has at least one element x in the domain that maps to it
injective \& surjective = bijection

Bijection, Injection, and Surjection

Neither Injective or Surjective
Two elements in set A maps to the
same element in set B (not injective), and one element in set B is not in the image or range of the function that maps set A to B (not surjective).

Sources: http://mathonline.wikidot.com/injections-surjections-and-bijections,
https://www.intechopen.com/books/protein-interactions/relating-protein-structure-and-function-through-a-bijection-and-its-implications-on-protein-structur Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Bijection, Injection, and Surjection

NOT a Function
A has many B

General Function

○
Injective (not surjective)

Surjective (not injective) (injective, surjective) Every B has some $A \quad A$ to B, perfectly

A function not injective not surjective

An injective function not surjective

A surjective function not injective

A bijective function injective + surjective

Not a function

We make a detour to Graph matching

- Finding a correspondence between the nodes and the edges of two graphs that satisfies some (more or less stringent) constraints

Homomorphism

- A graph homomorphism h from graph $G\left(V_{G}, E_{G}\right)$ to $H\left(V_{H}, E_{H}\right)$, is a mapping from V_{G} to V_{H} such that $\{x, y\} \in E_{G}$ implies $\{h(x), h(y)\} \in E_{H}$
- "edge-preserving": if two nodes in G are linked by an edge, then they are mapped to two nodes in H that are also linked

G

H

Is there a homomorphism from G to H

Homomorphism

- A graph homomorphism h from graph $G\left(V_{G}, E_{G}\right)$ to $H\left(V_{H}, E_{H}\right)$, is a mapping from V_{G} to V_{H} such that $\{x, y\} \in E_{G}$ implies $\{h(x), h(y)\} \in E_{H}$
- "edge-preserving": if two nodes in G are linked by an edge, then they are mapped to two nodes in H that are also linked

Homomorphism

- A graph homomorphism h from graph $G\left(V_{G}, E_{G}\right)$ to $H\left(V_{H}, E_{H}\right)$, is a mapping from V_{G} to V_{H} such that $\{x, y\} \in E_{G}$ implies $\{h(x), h(y)\} \in E_{H}$
- "edge-preserving": if two nodes in G are linked by an edge, then they are mapped to two nodes in H that are also linked

G

G

$$
\begin{aligned}
& h:\{(\mathrm{a}, 1),(\mathrm{b}, 3),(\mathrm{c}, 4)\} \\
& \text { does not need to be surjective! }
\end{aligned}
$$

H

Is there a homomorphism from H to G

Homomorphism

- A graph homomorphism h from graph $G\left(V_{G}, E_{G}\right)$ to $H\left(V_{H}, E_{H}\right)$, is a mapping from V_{G} to V_{H} such that $\{x, y\} \in E_{G}$ implies $\{h(x), h(y)\} \in E_{H}$
- "edge-preserving": if two nodes in G are linked by an edge, then they are mapped to two nodes in H that are also linked

Graphs are homomorphically equivalent

G

H

G

$$
\begin{gathered}
h:\{(\mathrm{a}, 1),(\mathrm{b}, 3),(\mathrm{c}, 4)\} \\
\text { does not need to be surjective! }
\end{gathered}
$$

Graph Isomorphism

- Graphs $G\left(V_{G}, E_{G}\right)$ and $H\left(V_{H}, E_{H}\right)$ are isomorphic iff there is an invertible h from V_{G} to V_{H} s.t. $\{x, y\} \in E_{G}$ iff $\{h(u), h(v)\} \in E_{H}$
- We need to find a one-to-one correspondence

G

H

Is there an isomorphism from G to H
?

Graph Isomorphism

- Graphs $G\left(V_{G}, E_{G}\right)$ and $H\left(V_{H}, E_{H}\right)$ are isomorphic iff there is an invertible h from V_{G} to V_{H} s.t. $\{x, y\} \in E_{G}$ iff $\{h(u), h(v)\} \in E_{H}$
- We need to find a one-to-one correspondence

G

H

Is there an isomorphism from G to H? No!

They are homomorphically equivalent, but not isomorphic!

Graph Isomorphism

- Graphs $G\left(V_{G}, E_{G}\right)$ and $H\left(V_{H}, E_{H}\right)$ are isomorphic iff there is an invertible h from V_{G} to V_{H} s.t. $\{x, y\} \in E_{G}$ iff $\{h(u), h(v)\} \in E_{H}$
- We need to find a one-to-one correspondence

G

(e)

H

Is there an isomorphism from G to H ?

Graph Isomorphism

- Graphs $G\left(V_{G}, E_{G}\right)$ and $H\left(V_{H}, E_{H}\right)$ are isomorphic iff there is an invertible h from V_{G} to V_{H} s.t. $\{x, y\} \in E_{G}$ iff $\{h(u), h(v)\} \in E_{H}$
- We need to find a one-to-one correspondence

Outline: T2-1/2: Query Evaluation \& Query Equivalence

- T2-1: Conjunctive Queries (CQs)
- Query equivalence and containment (\& motivation of CQs)
- Graph homomorphisms
- Homomorphism beyond graphs
- CQ containment
- CQ minimization
- T2-2: Equivalence Beyond CQs
- Union of CQs, and inequalities
- Union of CQs equivalence under bag semantics
- Tree pattern queries
- Nested queries

Graph Homomorphism beyond graphs

Definition : Let G and H be graphs. A homomorphism of G to H is a function $f: V(G) \rightarrow V(H)$ such that

$$
(x, y) \in E(G) \Rightarrow(f(x), f(y)) \in E(H) .
$$

We sometimes write $\mathrm{G} \rightarrow \mathrm{H}(\mathrm{G} \rightarrow \mathrm{H}$) if there is a homomorphism (no homomorphism) of G to H

Definition of a homomorphism naturally extends to:

- digraphs (directed graphs)
- edge-colored graphs
- relational systems
- constraint satisfaction problems (CSPs)

An example

3 "colors" of the vertices

An example

An example

can this assignment be extended to a homomorphism?

An example

An example

Definition: Let G and H be graphs. A

 homom. of G to H is a function $f: V(G) \rightarrow$ $V(H)$ s.t. that

An example

Definition: Let G and H be graphs. A

 homom. of G to H is a function $f: V(G) \rightarrow$ $V(H)$ s.t. that

An example

Basically a partitioning problem!
The quotient set of the partition (set of equivalence classes of the partition) is a subgraph of H .

Some observations

When does $G \rightarrow K_{3}$ hold? $\left(K_{3}=3\right.$-clique $=$ triangle $)$

Some observations

When does $G \rightarrow K_{3}$ hold? ($K_{3}=3$-clique $=$ triangle $)$ iff G is 3 -colorable

When does $G \rightarrow K_{d}$ hold? ($K_{d}=d$-clique)

Some observations

When does $G \rightarrow K_{3}$ hold? $\left(K_{3}=3\right.$-clique = triangle $)$ iff G is 3 -colorable

When does $G \rightarrow K_{d}$ hold? $\left(K_{d}=d\right.$-clique $)$ iff G is d -colorable

Thus homomorphisms generalize colorings:
Notation: $\mathrm{G} \rightarrow \mathrm{H}$ is an H -coloring of G .
What is the complexity of testing for the existence of a homomorphism (in the size of G)?

Some observations

When does $G \rightarrow K_{3}$ hold? $\left(K_{3}=3\right.$-clique = triangle $)$ iff G is 3 -colorable

When does $G \rightarrow K_{d}$ hold? $\left(K_{d}=d\right.$-clique $)$ iff G is d -colorable

Thus homomorphisms generalize colorings:
Notation: $\mathrm{G} \rightarrow \mathrm{H}$ is an H -coloring of G .
What is the complexity of testing for the existence of a homomorphism (in the size of G)?

NP-complete

The complexity of H-coloring

H-coloring:
Let H be a fixed graph. Instance: A graph G.

Question: Does G admit an H-coloring?

Theorem [Hell, Nesetril'90]:
If H is bipartite or contains a self-loop, then H -coloring is polynomial time solvable; otherwise, H is NP-complete.

Repeated variable names

In sentences with multiple quantifiers, distinct variables do not need to range over distinct objects! (cp. homomorphism vs. isomorphism)

Repeated variable names

In sentences with multiple quantifiers, distinct variables do not need to range over distinct objects! (cp. homomorphism vs. isomorphism)

A more abstract (general) view on homomorphisms

Homomorphisms on Binary Structures

- Definition (Binary algebraic structure): A binary algebraic structure is a set together with a binary operation on it. This is denoted by an ordered pair (S, \star) in which S is a set and \star is a binary operation on S.
- Definition (homomorphism of binary structures): Let (S, \star) and $\left(S^{\prime}, \circ\right)$ be binary structures. A homomorphism from (S, \star) to $\left(S^{\prime}, \circ\right)$ is a map $h: S \longrightarrow S^{\prime}$ that satisfies, for all x, y in S :

$$
h(x \star y)=h(x) \circ h(y)
$$

- We can denote it by $h:(S, \star) \longrightarrow\left(S^{\prime}, \circ\right)$.

Example: from addition to multiplication

- Let $h(x)=\mathrm{e}^{x}$. Is h a homomorphism b/w two binary structures?
?

Example: from addition to multiplication

- Let $h(x)=\mathrm{e}^{x}$. Is h a homomorphism b / w two binary structures?
- Yes, from the real numbers with addition $(\mathbb{R},+)$ to $h(x+y)=h(x) \cdot h(y)$
- the positive real numbers with multiplication $\left(\mathbb{R}^{+}, \cdot\right) \quad h:(\mathbb{R},+) \rightarrow\left(\mathbb{R}^{+}, \cdot\right)$
- It is even an isomorphism!

The exponential map $\exp : \mathbb{R} \rightarrow \mathbb{R}^{+}$defined by $\exp (x)=e^{x}$, where e is the base of the natural logarithm, is an isomorphism from $(\mathbb{R},+)$ to $\left(\mathbb{R}^{+}, x\right)$. Exp is a bijection since it has an inverse function (namely $\log _{e}$) and exp preserves the group operations since $e^{x+y}=e^{x}, e^{y}$. In this example both the elements and the operations are different yet the two groups are isomorphic, that is, as groups they have identical structures.

- Let $g(x)=\mathrm{e}^{i x}$. Is g also a homomorphism?

Example: from addition to multiplication

- Let $h(x)=\mathrm{e}^{x}$. Is h a homomorphism b / w two binary structures?
- Yes, from the real numbers with addition $(\mathbb{R},+)$ to
$h(x+y)=h(x) \cdot h(y)$
- the positive real numbers with multiplication $\left(\mathbb{R}^{+}, \cdot\right) \quad h:(\mathbb{R},+) \longrightarrow\left(\mathbb{R}^{+}, \cdot\right)$
- It is even an isomorphism!

The exponential map $\exp : \mathbb{R} \rightarrow \mathbb{R}^{+}$defined by $\exp (x)=e^{x}$, where e is the base of the natural logarithm, is an isomorphism from $(\mathbb{R},+)$ to $\left(\mathbb{R}^{+}, x\right)$. Exp is a bijection since it has an inverse function (namely $\log _{e}$) and exp preserves the group operations since $e^{x+y}=e^{x} e^{y}$. In this example both the elements and the operations are different yet the two groups are isomorphic, that is, as groups they have identical structures.

- Let $g(x)=\mathrm{e}^{i x}$. Is g also a homomorphism?
- Yes, from the real numbers with addition ($\mathbb{R},+$) to
- the unit circle in the complex plane with rotation

Example: from addition to multiplication

$$
\begin{array}{cc}
G=\mathbb{R} \text { under }+ & f: G \rightarrow H \\
H=\{z \in \mathbb{C}:|z|=1\} & x \mapsto e^{i x} \\
=G r o u p \text { under } \times & \text { Show } f(x+y)=f(x) \times f(y) \\
& e^{i(x+y)}=e^{i x} \times e^{i y} \\
\text { Hint: } & e^{i x+i y}=e^{i x} \times e^{i y} \\
\text { Every } z \in \mathbb{C} \text { with }|z|=1 \\
\text { can be written as } z=e^{i \theta} . & f(0)=f(2 \pi)=1, f(2 \pi n)=1 \\
& f \text { is not } 1-1
\end{array}
$$

Example: from addition to multiplication

Isomorphism

- Definition: A homomorphism of binary structures is called an isomorphism iff the corresponding map of sets is:
- one-to-one (injective) and
- onto (surjective).

Some homomorphisms

- Homomorphism: preserves the structure (e.g. a homomorphism φ on \mathbb{Z}_{2} satisfies $\left.\varphi(g+h)=\varphi(g)+\varphi(h)\right)$
- Epimorphism: a homomorphism that is surjective (AKA onto)
- Monomorphism: a homomorphism that is injective (AKA one-to-one, 1-1, or univalent)
- Isomorphism: a homomorphism that is bijective (AKA 1-1 and onto); isomorphic objects are equivalent, but perhaps defined in different ways
- Endomorphism: a homomorphism from an object to itself
- Automorphism: a bijective endomorphism (an isomorphism from an object onto itself, essentially just a re-labeling of elements)

Epimorphism: surjective, AKA onto

Monomorphism: injective, AKA 1-1

Isomorphism: bijective, 1-1 and onto

Endomorphism: from a structure to itself

Automorphism: bijective endomorphism

Outline: T2-1/2: Query Evaluation \& Query Equivalence

- T2-1: Conjunctive Queries (CQs)
- Query equivalence and containment (\& motivation of CQs)
- Graph homomorphisms
- Homomorphism beyond graphs
- CQ containment
- CQ minimization
- T2-2: Equivalence Beyond CQs
- Union of CQs, and inequalities
- Union of CQs equivalence under bag semantics
- Tree pattern queries
- Nested queries

Query Containment

Two queries q_{1}, q_{2} are equivalent, denoted $q_{1} \equiv q_{2}$, if for every database instance D, we have $q_{1}(D)=q_{2}(D)$.

Query q_{1} is contained in query q_{2}, denoted $q_{1} \subseteq q_{2}$, if for every database instance D , we have $q_{1}(\mathrm{D}) \subseteq q_{2}(\mathrm{D})$

Corollary

$q_{1} \equiv q_{2}$ is equivalent to ($q_{1} \subseteq q_{2}$ and $q_{1} \supseteq q_{2}$)

If queries are Boolean, then query containment $=$ logical implication:
$q_{1} \Leftrightarrow q_{2}$ is equivalent to

Query Containment

Two queries q_{1}, q_{2} are equivalent, denoted $q_{1} \equiv q_{2}$, if for every database instance D , we have $q_{1}(\mathrm{D})=q_{2}(\mathrm{D})$.

Query q_{1} is contained in query q_{2}, denoted $q_{1} \subseteq q_{2}$, if for every database instance D , we have $q_{1}(\mathrm{D}) \subseteq q_{2}(\mathrm{D})$

Corollary

$q_{1} \equiv q_{2}$ is equivalent to ($q_{1} \subseteq q_{2}$ and $q_{1} \supseteq q_{2}$)

If queries are Boolean, then query containment $=$ logical implication: $q_{1} \Leftrightarrow q_{2}$ is equivalent to ($q_{1} \Rightarrow q_{2}$ and $q_{1} \Leftarrow q_{2}$)

Query homomorphisms

A homomorphism h from Boolean CQs q_{1} to q_{2} is a function $h: \operatorname{var}\left(q_{1}\right) \rightarrow \operatorname{var}\left(q_{2}\right) \cup$ const $\left(q_{2}\right)$ such that: for every atom $\underbrace{R\left(x_{1}, x_{2}, \ldots\right)}$ in q_{1}, there is an atom $R\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots\right)$ in q_{2} need to be same relation!

Example

$q_{1}:-R(s, u), R(u, w), R(s, v), R(v, w), R(u, v)$
$q_{2}:-R(x, y), R(y, y), R(y, z)$

Query homomorphisms

A homomorphism h from Boolean CQs q_{1} to q_{2} is a function $h: \operatorname{var}\left(q_{1}\right) \rightarrow \operatorname{var}\left(q_{2}\right) \cup$ const $\left(q_{2}\right)$ such that:
for every atom $\underbrace{R\left(x_{1}, x_{2}, \ldots\right)}$ in q_{1}, there is an atom $R\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots\right)$ in q_{2}
need to be same relation!

Example

$q_{1}:-R(s, u), R(u, w), R(s, v), R(v, w), R(u, v)$
$q_{2}:-R(x, y), R(y, y), R(y, z)$

Query homomorphisms

A homomorphism h from Boolean CQs q_{1} to q_{2} is a function $h: \operatorname{var}\left(q_{1}\right) \rightarrow \operatorname{var}\left(q_{2}\right) \cup$ const $\left(q_{2}\right)$ such that: for every atom $R\left(x_{1}, x_{2}, \ldots\right)$ in q_{1}, there is an atom $R\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots\right)$ in q_{2}

Example

$q_{1}:-R(s, u), R(u, w), R(s, v), R(v, w), R(u, v)$
q_{2} :- $R(x, y), R(y, y), R(y, z)$

$$
h_{1 \rightarrow 2}=\{(s, x),(u, y),(v, y),(w, z)\}
$$

$$
h_{2 \rightarrow 1}: \text { ? }
$$

Query homomorphisms

A homomorphism h from Boolean COs q_{1} to q_{2} is a function $h: \operatorname{var}\left(q_{1}\right) \rightarrow \operatorname{var}\left(q_{2}\right) \cup$ const $\left(q_{2}\right)$ such that: for every atom $R\left(x_{1}, x_{2}, \ldots\right)$ in q_{1}, there is an atom $R\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots\right)$ in q_{2}

Example

$q_{1}:-R(s, u), R(u, w), R(s, v), R(v, w), R(u, v)$
q_{2} :- $R(x, y), R(y, y), R(y, z)$

$$
h_{1 \rightarrow 2}=\{(s, x),(u, y),(v, y),(w, z)\}
$$

What about:

$$
h_{2 \rightarrow 1}:\{(x, s),(y, v),(z, w)\} \text { ? } \quad q_{2}(x)
$$

Query homomorphisms

A homomorphism h from Boolean CQs q_{1} to q_{2} is a function $h: \operatorname{var}\left(q_{1}\right) \rightarrow \operatorname{var}\left(q_{2}\right) \cup$ const $\left(q_{2}\right)$ such that: for every atom $R\left(x_{1}, x_{2}, \ldots\right)$ in q_{1}, there is an atom $R\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots\right)$ in q_{2}

Example

$$
\begin{aligned}
& q_{1}:-R(s, u), R(u, w), R(s, v), R(v, w), R(u, v), \\
& q_{2}:-R(x, y), R(y, y), R(y, z)
\end{aligned}
$$

Query homomorphisms and containment
A homomorphism h from Boolean CQs q_{1} to q_{2} is a function
$h: \operatorname{var}\left(q_{1}\right) \rightarrow \operatorname{var}\left(q_{2}\right) \cup$ const $\left(q_{2}\right)$ such that:
for every atom $R\left(x_{1}, x_{2}, \ldots\right)$ in q_{1}, there is an atom $R\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots\right)$ in q_{2}

$$
\begin{aligned}
& E(1,2) \text { Compare to our earlier example: } \quad E(1,1) \\
& \exists \mathrm{x} . \exists \mathrm{y} . \mathrm{E}(\mathrm{x}, \mathrm{y}) \rightleftharpoons \exists \mathrm{x} . \mathrm{E}(\mathrm{x}, \mathrm{x}) \\
& \begin{array}{l}
\text { Example } \\
q_{1}:-R(s, u), R(u, w), R(s, v), R(v, w), R(u, v)
\end{array} \\
& q_{2}:-R(x, y), R(y, y), R(y, z) \\
& \text { (s) } h_{1 \rightarrow 2}=\{(s, x),(u, y),(v, y),(w, z)\}
\end{aligned}
$$

Query homomorphisms and containment
A homomorphism h from Boolean CQs q_{1} to q_{2} is a function
$h: \operatorname{var}\left(q_{1}\right) \rightarrow \operatorname{var}\left(q_{2}\right) \cup$ const $\left(q_{2}\right)$ such that:
for every atom $R\left(x_{1}, x_{2}, \ldots\right)$ in q_{1}, there is an atom $R\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots\right)$ in q_{2}
$E(1,2)$ Compare to our earlier example: $\quad E(1,1)$
True $\exists \mathrm{x} . \exists \mathrm{y} . \mathrm{E}(\mathrm{x}, \mathrm{y}) \Leftarrow \exists \mathrm{x} . \mathrm{E}(\mathrm{x}, \mathrm{x}) \quad$ False
Example

$$
\begin{aligned}
& q_{1}:-R(s, u), R(u, w), R(s, v), R(v, w), R(u, v) \\
& q_{2}:-R(x, y), R(y, y), R(y, z)
\end{aligned}
$$

We will use homomorphisms to reason about query containment.

$$
\begin{aligned}
& h_{1 \rightarrow 2}=\{(s, x),(u, y),(v, y),(w, z)\} \\
& h_{2 \rightarrow 1}:\{(x, s),(z, w)\}
\end{aligned}
$$

$$
q_{1} \Leftarrow q_{2}
$$

$$
q_{1} \nRightarrow q_{2}
$$

Overview: "All homomorphisms" in one slide

Islands of Tractability of CQ Evaluation

- Major Research Program: Identify tractable cases of the combined complexity of conjunctive query evaluation.
- Over the years, this program has been pursued by two different research communities:
- The Database Theory community
- The Constraint Satisfaction community
- Explanation: Problems in those community are closely related:

$$
\begin{gathered}
\text { Constraint Satisfaction Problem } \equiv \begin{array}{c}
\text { © Homomorphism Problem } \equiv \text { CQ evaluation } \\
\text { [Feder, Vardi 1993] } \\
\text { [Chandra, Merlin 1977] }
\end{array}
\end{gathered}
$$

[Kolaitis, Vardi 2000]

Topic 2: Complexity of Query Evaluation Unit 1: Conjunctive Queries Lecture 15

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
https://northeastern-datalab.github.io/cs7240/sp24/
3/12/2024

Pre-class conversations

- Last class summary
- Scribes \& Projects: I hope you find the comments useful
- If you ever have questions, please ask me after class -> discussion
- 50% of class is over, $<15 \%$ of scribes submitted
- Today:
- Homomorphisms, Query Containment
- Equivalence beyond CQs

Outline: T2-1/2: Query Evaluation \& Query Equivalence

- T2-1: Conjunctive Queries (CQs)
- Query equivalence and containment (\& motivation of CQs)
- Graph homomorphisms
- Homomorphism beyond graphs
- CQ containment
- CQ minimization
- T2-2: Equivalence Beyond CQs
- Union of CQs, and inequalities
- Union of CQs equivalence under bag semantics
- Tree pattern queries
- Nested queries

Canonical database

Definition Canonical database

Given a conjunctive query q, the canonical database $D_{c}[\boldsymbol{q}]$ is the database instance where each atom in q becomes a fact in the database instance.

Example

$q_{2}(x):-R(x, y), R(y, y), R(y, z)$
$D_{c}\left[a_{2}\right]=$?

Canonical database

Definition Canonical database

Given a conjunctive query q, the canonical database $D_{c}[q]$ is the database instance where each atom in q becomes a fact in the database instance.

Example

$$
\begin{aligned}
q_{2}(x) & :- \\
D_{c}\left[\boldsymbol{q}_{2}\right] & =\left\{R(x, y), R(y, y \text { ' }, ' y \text { ' }), R\left(\text { 'y' }^{\prime}, ' \mathrm{y} '\right), R\left(\text { ' }^{\prime} \mathrm{y}^{\prime} \mathrm{z}^{\prime}\right)\right\} \\
& \equiv\{R(1,2), R(2,2), R(2,3)\} \\
& \equiv\{R(\mathrm{a}, \mathrm{~b}), R(\mathrm{~b}, \mathrm{~b}), R(\mathrm{~b}, \mathrm{c})\}
\end{aligned}
$$

Var	Const			
x	$\rightarrow a$			
y	$\rightarrow b$	$\quad R$	A	B
:---	:---			
a	b			
	b			

Just treat each variable as different constant ():

[Chandra and Merlin 1977]

Theorem (Query Containment)

Given two Boolean COs q_{1}, q_{2}, the following statements are equivalent:

1) $q_{1} \Leftarrow q_{2} \quad\left(q_{1} \supseteq q_{2}\right) \quad\left(q_{2}\right.$ is contained in $\left.q_{1}\right)$
2) There is a homomorphism $h_{1 \rightarrow 2}$ from q_{1} to q_{2}
3) $q_{1}\left(D_{C}\left[q_{2}\right]\right)$ is true

We will look at 2) $\Rightarrow 1$), and it is similar to 2) $\Rightarrow 3$)

$$
q_{1}:-E(x, y) q_{1} \xrightarrow[h]{G} \begin{array}{r}
G(1,1) \\
\text { Query evaluation } \\
G \vDash q_{2}
\end{array} q_{2} q_{2}:-E(x, x)
$$

[Chandra and Merlin 1977]
We show: If there is a homomorphism $h_{1 \rightarrow 2}$, then for any $\mathrm{D}: q_{1}(\mathrm{D}) \Leftarrow q_{2}(\mathrm{D})$

1. For $q_{2}(\mathrm{D})$ to hold, there is a valuation v s.t. $v\left(q_{2}\right) \in \mathrm{D}$
$g=v \circ h$
2. We will show that the composition $g=v \circ h$ is a valuation for $q_{1} \quad g(x)=v(h(x))$

Chandra, Merlin. "Optimal implementation of conjunctive queries in relational data bases." STOC 1977. https://doi.org/10.1145/800105.803397

[Chandra and Merlin 1977]

We show: If there is a homomorphism $h_{1 \rightarrow 2}$, then for any $\mathrm{D}: q_{1}(\mathrm{D}) \Leftarrow q_{2}(\mathrm{D})$

1. For $q_{2}(\mathrm{D})$ to hold, there is a valuation v s.t. $v\left(q_{2}\right) \in \mathrm{D}$
2. We will show that the composition $g=v \circ h$ is a valuation for $q_{1} \quad g(x)=v(h(x))$ 2a. By definition of h, for every $R\left(x_{1}, x_{2}, \ldots\right)$ in $q_{1}, R\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots\right)$ in q_{2} 2b. By definition of v, for every $R\left(x_{1}, x_{2}, \ldots\right)$ in $q_{1}, R\left(v\left(h\left(x_{1}\right)\right), v\left(h\left(x_{2}\right)\right), \ldots\right)$ in D

[Chandra and Merlin 1977]

We show: If there is a homomorphism $h_{1 \rightarrow 2}$, then for any $\mathrm{D}: q_{1}(\mathrm{D}) \Leftarrow q_{2}(\mathrm{D})$

1. For $q_{2}(\mathrm{D})$ to hold, there is a valuation v s.t. $v\left(q_{2}\right) \in \mathrm{D}$
2. We will show that the composition $g=v \circ h$ is a valuation for $q_{1} \quad g(x)=v(h(x))$ 2a. By definition of h, for every $R\left(x_{1}, x_{2}, \ldots\right)$ in $q_{1}, R\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots\right)$ in q_{2}
2b. By definition of v, for every $R\left(x_{1}, x_{2}, \ldots\right)$ in $q_{1}, R\left(v\left(h\left(x_{1}\right)\right), v\left(h\left(x_{2}\right)\right), \ldots\right)$ in D

Example

$q_{1}:-R(s, u), R(u, w), R(s, v), R(v, w), R(u, v)$
q_{2} :- $R(x, y), R(y, y), R(y, z)$

$$
h_{1 \rightarrow 2}=\{(s, x),(u, y),(v, y),(w, z)\}
$$

[Chandra and Merlin 1977]

We show: If there is a homomorphism $h_{1 \rightarrow 2}$, then for any $\mathrm{D}: q_{1}(\mathrm{D}) \Leftarrow q_{2}(\mathrm{D})$

1. For $q_{2}(\mathrm{D})$ to hold, there is a valuation v s.t. $v\left(q_{2}\right) \in \mathrm{D}$
2. We will show that the composition $g=v \circ h$ is a valuation for $q_{1} \quad g(x)=v(h(x))$ 2a. By definition of h, for every $R\left(x_{1}, x_{2}, \ldots\right)$ in $q_{1}, R\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots\right)$ in q_{2}
2b. By definition of v, for every $R\left(x_{1}, x_{2}, \ldots\right)$ in $q_{1}, R\left(v\left(h\left(x_{1}\right)\right), v\left(h\left(x_{2}\right)\right), \ldots\right)$ in D

Example

$q_{1}:-R(s, u), R(u, w), R(s, v), R(v, w), R(u, v)$
$q_{2}:-R(x, y), R(y, y), R(y, z)$

$$
v=\{(x, a),(y, b),(z, c)\}
$$

$$
h_{1 \rightarrow 2}=\{(s, x),(u, y),(v, y),(w, z)\}
$$

[Chandra and Merlin 1977]

We show: If there is a homomorphism $h_{1 \rightarrow 2}$, then for any $\mathrm{D}: q_{1}(\mathrm{D}) \Leftarrow q_{2}(\mathrm{D})$

1. For $q_{2}(\mathrm{D})$ to hold, there is a valuation v s.t. $v\left(q_{2}\right) \in \mathrm{D}$
2. We will show that the composition $g=v \circ h$ is a valuation for $q_{1} \quad g(x)=v(h(x))$ 2a. By definition of h, for every $R\left(x_{1}, x_{2}, \ldots\right)$ in $q_{1}, R\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots\right)$ in q_{2}
2b. By definition of v, for every $R\left(x_{1}, x_{2}, \ldots\right)$ in $q_{1}, R\left(v\left(h\left(x_{1}\right)\right), v\left(h\left(x_{2}\right)\right), \ldots\right)$ in D

Example

$q_{1}:-R(s, u), R(u, w), R(s, v), R(v, w), R(u, v)$
q_{2} :- $R(x, y), R(y, y), R(y, z)$

$$
v=\{(x, a),(y, b),(z, c)\}
$$

$$
\begin{aligned}
& h_{1 \rightarrow 2}=\{(s, x),(u, y),(v, y),(w, z)\} \\
& g=\{(s, a),(u, b),(v, b),(w, \mathrm{c})\}
\end{aligned}
$$

Combined complexity of CQC and CQE

Corollary:

The following problems are NP-complete (in the size of Q or Q^{\prime}):

1) Given two (Boolean) conjunctive queries Q and Q^{\prime}, is $Q \subseteq Q^{\prime}$?
2) Given a Boolean conjunctive query Q and an instance D, does $D \vDash Q$?

Proof:

(a) Membership in NP follows from the Homomophism Theorem:
$\mathrm{Q} \subseteq \mathrm{Q}^{\prime}$ if and only if there is a homomorphism $\mathrm{h}: \mathrm{Q}^{\prime} \rightarrow \mathrm{Q}$
(b) NP-hardness follows from 3-Colorability:

G is 3 -colorable if and only if $\mathrm{Q}^{\mathrm{K}_{3}} \subseteq \mathrm{Q}^{\mathrm{G}}$.

The Complexity of Database Query Languages

	Relational Calculus	CQs
Query Eval.: Data Complexity	In LOGSPACE (hence, in P)	In LOGSPACE (hence, in P)
Query Eval.: Combined Compl.	PSPACE- complete	NP-complete
Query Equivalence \& Containment	Undecidable	NP-complete

Exercise: Find Homomorphisms

$$
\mathrm{a}_{1}:\{\mathrm{E}(\mathrm{x}, \mathrm{y}), \mathrm{E}(\mathrm{y}, \mathrm{z}), \mathrm{E}(\mathrm{z}, \mathrm{w})\}
$$

Order of subgoals in the query does not matter (thus written here as sets)
$q_{2}:\{E(x, y), E(y, z), E(z, x)\}$
$q_{3}:\{E(x, y), E(y, x)\}$

What is the containment relation
between these queries?

$$
\mathrm{q}_{4}:\{\mathrm{E}(\mathrm{x}, \mathrm{y}), \mathrm{E}(\mathrm{y}, \mathrm{x}), \mathrm{E}(\mathrm{y}, \mathrm{y})\}
$$

$q_{5}:\{E(x, x)\}$

Exercise: Find the Homomorphisms

$$
q_{1}:\{E(x, y), E(y, z), E(z, w)\}
$$

$$
x \longrightarrow y \longrightarrow z \longrightarrow w \text { Order of subgoals in the query does not }
$$ matter (thus written here as sets)

$$
\begin{gathered}
Q_{3}:\{E(x, y), E(y, x)\} \\
x \stackrel{\longleftrightarrow}{\longleftrightarrow}
\end{gathered}
$$

What is the containment relation
between these queries?

$$
\mathrm{q}_{4}:\{\mathrm{E}(\mathrm{x}, \mathrm{y}), \mathrm{E}(\mathrm{y}, \mathrm{x}), \mathrm{E}(\mathrm{y}, \mathrm{y})\}
$$

$\mathrm{q}_{5}:\{\mathrm{E}(\mathrm{x}, \mathrm{x})\}$

Exercise: Find the Homomorphisms

$$
\mathrm{a}_{4}:\{\mathrm{E}(\mathrm{x}, \mathrm{y}), \mathrm{E}(\mathrm{y}, \mathrm{x}), \mathrm{E}(\mathrm{y}, \mathrm{y})\}
$$

$\mathrm{q}_{5}:\{E(\mathrm{x}, \mathrm{x})\}$

Exercise: Find the Homomorphisms

$$
\mathrm{a}_{4}:\{\mathrm{E}(\mathrm{x}, \mathrm{y}), \mathrm{E}(\mathrm{y}, \mathrm{x}), \mathrm{E}(\mathrm{y}, \mathrm{y})\}
$$

Exercise: Find the Homomorphisms

Exercise: Find the Homomorphisms

Side-topic: Hasse diagram

The power set of a 2-element set ordered by inclusion

Power set of a 4element set ordered by inclusion \subseteq

Positive integers divisors of 12 ordered by divisibility

Query Homomorphism Practice

$$
\begin{array}{ll}
q_{1}(x, y):-R(x, u), R(v, u), R(v, y) & \operatorname{var}\left(q_{1}\right)=\{x, u, v, y\} \\
q_{2}(x, y):-R(x, u), R(v, u), R(v, w), R(t, w), R(t, y) & \operatorname{var}\left(q_{2}\right)=\{x, u, v, w, t, y\}
\end{array}
$$

Are these queries equivalent?

Query Homomorphism Practice

$$
\begin{aligned}
& \operatorname{var}\left(\mathrm{q}_{1}\right)=\{\mathrm{x}, \mathrm{u}, \mathrm{v}, \mathrm{y}\} \\
& \operatorname{var}\left(\mathrm{q}_{2}\right)=\{\dot{\mathrm{x}}, \dot{\mathrm{u}}, \dot{\mathrm{v}}, \dot{\mathrm{w}}, \mathrm{t}, \mathrm{y}\}
\end{aligned}
$$

$$
\mathrm{q}_{1} \longrightarrow \mathrm{q}_{2} \text { Thus }
$$

Query Homomorphism Practice

$\operatorname{var}\left(\mathrm{q}_{1}\right)=\{\mathrm{x}, \mathrm{u}, \mathrm{v}, \mathrm{y}\}$
$\operatorname{var}\left(q_{2}\right)=\{\dot{x}, \stackrel{\rightharpoonup}{u}, \stackrel{v}{v}, \stackrel{w}{w}, t, y\}$
$q_{1} \rightarrow q_{2}$ Thus $q_{1} \supseteq q_{2}!$

Query Homomorphism Practice

$$
\begin{array}{ll}
q_{1}(x, y):-R(x, u), R(v, u), R(v, y) & \operatorname{var}\left(q_{1}\right)=\{x, u, v, y\} \\
q_{2}(x, y):-R(x, u), R(v, u), R(v, w), R(t, w), R(t, y) & \operatorname{var}\left(q_{2}\right)=\{x, u, v, w, t, y\}
\end{array}
$$

Is there any homomorphism

$$
\mathrm{q}_{1} \leftarrow \mathrm{q}_{2} \text { Thus } \mathrm{q}_{1} \subseteq \mathrm{q}_{2}
$$

Query Homomorphism Practice

$$
\begin{aligned}
& \operatorname{var}\left(\mathrm{q}_{1}\right)=\{\mathrm{x}, \mathrm{u}, \mathrm{v}, \mathrm{y}\} \\
& \operatorname{var}\left(\mathrm{q}_{2}\right)=\{\mathrm{x}, \mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{t}, \mathrm{y}\}
\end{aligned}
$$

$$
91
$$

$$
\mathrm{q}_{1} \leftarrow \mathrm{q}_{2} \text { Thus } \mathrm{q}_{1} \subseteq \mathrm{q}_{2}
$$

Query Homomorphism Practice

$$
\begin{aligned}
& q_{1} \longrightarrow q_{2} \text { Thus } q_{1} \supseteq q_{2} \\
& q_{1} \longleftarrow q_{2} \text { Thus } q_{1} \subseteq q_{2}
\end{aligned}
$$

Thus equivalent!

Outline: T2-1/2: Query Evaluation \& Query Equivalence

- T2-1: Conjunctive Queries (CQs)
- Query equivalence and containment (\& motivation of CQs)
- Graph homomorphisms
- Homomorphism beyond graphs
- CQ containment
- CQ minimization
- T2-2: Equivalence Beyond CQs
- Union of CQs, and inequalities
- Union of CQs equivalence under bag semantics
- Tree pattern queries
- Nested queries

Minimizing Conjunctive Queries

- Goal: minimize the number of joins in a query
- Definition: A conjunctive query Q is minimal if...

Minimizing Conjunctive Queries

- Goal: minimize the number of joins in a query
- Definition: A conjunctive query Q is minimal if there is no other conjunctive query Q^{\prime} such that:

$\left.r()_{1}\right)=-R\left(t_{1}-\right)$

1. $Q \equiv Q^{\prime}$
2. Q^{\prime} has fewer atoms than Q

- The task of $C Q$ minimization is, given a conjunctive query Q, to $\pi\left(z_{l}-\right)$ compute a minimal one that is equivalent to Q

THEOREM: Given a CQ $\mathrm{Q}_{1}(\mathrm{x})$:- body $_{1}$ that is logically equivalent to a $C Q Q_{2}(x)$:- body y_{2} where \mid body $_{1}|>|$ body $_{2} \mid$ (in number of atoms). Then Q_{1} is equivalent to a $\mathrm{CQ}_{3}(\mathrm{x})$:- body $_{3}$ s.t. body ${ }_{1} \supseteq$ body $_{3}$

Intuitively, the above theorem states that to minimize a CQ, we simply need to remove some atoms from its body

Conjunctive query minimization algorithm

Minimize(Q(x) :- body)

Repeat \{

- Choose an atom $\alpha \in$ body; let Q^{\prime} be the new query after removing α from Q
$Q:-E(x, y), E(z, y)$
$Q^{\prime}:-E(x, y)$

1. We trivially know $Q \leftarrow Q^{\prime}\left(\right.$ Thus: $\left.Q \subseteq Q^{\prime}\right)$
until no atom can be removed\}

Conjunctive query minimization algorithm

Notice: the order in which we inspect subgoals doesn't matter

Minimize(Q(x) :- body)

Repeat \{

- Choose an atom $\alpha \in$ body; let Q^{\prime} be the new query after removing α from Q
- If there is a homomorphism from Q to Q^{\prime}, then body := body
{a\} }
until no atom can be removed $\}$
$Q:-E(x, y), E(z, y)$
$Q^{\prime}:-E(x, y)$

1. We trivially know $Q \longleftarrow Q^{\prime}$ (Thus: $Q \subseteq Q^{\prime}$)
2. This forward direction is non-trivial: $Q \longrightarrow Q^{\prime}$ (Thus: $Q \supseteq Q^{\prime}$)

Minimization Procedure: Example

$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are constants
$Q(x):-R(x, y), R(x, ' b '), R\left('^{\prime} a^{\prime}, ' b '\right), R(u, ' c '), R(u, v), S\left('^{\prime} '^{\prime}, c^{\prime}, ' d '\right)$

$$
Q(x):-R(x, y), R(x, ' b '), R\left('^{\prime}, ' b '\right), R(u, ' c '), R(u, v), S\left('^{\prime} '^{\prime}, ' c\right. \text { ', 'd') }
$$

$$
Q(x):-\quad R(x, ' b '), R\left('^{\prime} a^{\prime}, ' b '\right), R(u, ' c '), R(u, v), S\left(\text { ' }^{\prime} a^{\prime}, ' c '^{\prime}, ' d '\right)
$$

Minimization Procedure: Example

$$
Q(x):-R(x, y), R(x, ' b '), R\left(' a a^{\prime}, ' b '\right), R(u, ' c '), R(u, v), S\left(' a '^{\prime}, ' c ', ' d '\right)
$$

Is this query minimal
?

$$
Q(x):-R(x, y), R(x, ' b '), R\left(' a '^{\prime}, ' b '\right), R(u, ' c '), R(u, v), S\left(' a '^{\prime}, ' c ', ' d '\right)
$$

Is this query minimal

Is this query minimal
?
$Q(x):-R(x, y), R(x, ' b '), R\left(' a a^{\prime}, ' b '\right), R(u, ' c '), R(u, v), S\left(' a '^{\prime}, ' c ', ' d '\right)$

$Q(x)$:-	$R(x, ' b '), R(' a ', ' b '), R(u, ' c '), R(u, v), S\left(' a{ }^{\prime}, ' c{ }^{\prime}\right.$ ', 'd')		
\downarrow	\downarrow, \downarrow,	$\{v \rightarrow$ 'c'\}	
$Q(x)$:-	$\left.R(x, ' b '), R(' a)^{\prime}, b^{\prime}\right), R(u, ' c ')$,	S('a', 'c', 'd')	Minimal query
		- . $\{x$	
Q('a') :		S('a', 'c', 'd')	

Actually, we went too far: Mapping $x \rightarrow ' a$ ' is not valid since x is a head variable!

Uniqueness of Minimal Queries

Natural question: does the order in which we remove atoms from the body of the conjunctive query during minimization matter?
?

Uniqueness of Minimal Queries

Natural question: does the order in which we remove atoms from the body of the conjunctive query during minimization matter?
 minimal conjunctive queries such that $\mathrm{Q}_{1} \equiv \mathrm{Q}$ and $\mathrm{Q}_{2} \equiv \mathrm{Q}$. Then, Q_{1} and Q_{2} are isomorphic (ie., they are the same up to variable renaming)
Church - rossera

Therefore, given a conjunctive query Q, the result of Minimization(Q) is unique (up to variable renaming) and is called the core of

Query Minimization for Views

```
NEU employees managed by NEU emp.:
CREATE VIEW NeuMentors AS
SELECT DISTINCT/E1.name,E1.manager
FROM Employee E1, Employee E2
WHERE E1.manager = E2.name
AND E1.university = 'Northeastern'
```

\leftarrow This query / view is minimal


```
NEU eMP, mahaged by NEC, emP. managed by NEU eMP::
SELECT DISTINCT N1.name
FROM NeuMentors N1, NeuMentors N2
WHERE N1.manager = N2.name
```

\leftarrow This query is minimal

Query Minimization for Views
 Employee(name, university, manager)
 611

NEU employees managed by NEU emp.:

CREATE VIEW NeuMentors AS
SELECT DISTINCT E1.name,E1.manager
FROM Employee E1, Employee E2
WHERE E1.manager = E2.name
AND E1.university = 'Northeastern'
\leftarrow This query / view is minimal

name	university	manager
Alice	Northeastern	Bob
Bob	Northeastern	Cecile
Cecile	Northeastern	
\ldots	\ldots	\ldots

NEU emp. managed by NECY emp. managed by NEU emp.: SELECT DISTINCT N1.name FROM NeuMentors N1, NeuMentors N2 WHERE N1.manager = N2.name
\leftarrow This query
is minimal

View expansion (when you run a SQL query on a view)

```
SELECT DISTINCT E1.name
FROM Employee E1, Employee E2, Employee E3, Employee E4
WHERE E1.manager = E2.name AND E1.manager = E3.name AND E3.manager = E4.name
AND E1.university = 'Northeastern' AND E2.university = 'Northeastern'
AND E3.university = 'Northeastern' AND E4.university = 'Northeastern'
```


Query Minimization for Views

name ${ }^{\text {university }}$ un manager				
SELECT DISTINCT E1. name, E1.manager	\leftarrow This query / view	Alice	Northeastern	Bob
FROM Employee E1, Employee E2		Bob	Northeastern	Cecile
WHERE E1.manager = E2.name		Cecile	Northeastern	...
AND E1.university = 'Northeastern'	

CREATE VIEW NeuMentors AS
SELECT DISTINCT E1.name,E1.manager
FROM Employee E1, Employee E2
WHERE E1.manager = E2.name
AND E2.university= 'Northeastern'

NEU emp. managed by NEU emp, managed by NEU emp.:
SELECT DISTINCT N1. name
FROM NeuMentors N1, NeuMentors N2
WHERE N1.manager $=$ N2. name
\leftarrow This query is minimal

View expansion (when you run a SQL query on a view)
SELECT DISTINCT E1.name
FROM Employee E1, Lmployee E2, Employee E3, Employee E4
WHERE E1.managet - E2. name ANO E1.manager = E3.name AND E3.manager = E4.name
AND E1.university = 'Northeastern' AND E2.umiversity = 'Northeastern'
AND E3.university = 'Northeastern' AND E4.university = 'Northeastern'

Outline: T2-1/2: Query Evaluation \& Query Equivalence

- T2-1: Conjunctive Queries (CQs)
- Query equivalence and containment (\& motivation of CQs)
- Graph homomorphisms
- Homomorphism beyond graphs
- CQ containment
- CQ minimization
- T2-2: Equivalence Beyond CQs
- Union of CQs, and inequalities
- Union of CQs equivalence under bag semantics
- Tree pattern queries
- Nested queries

Beyond Conjunctive Queries

- What can we say about query languages of intermediate expressive power between conjunctive queries and the full relational calculus?
- Conjunctive queries form the sublanguage of relational algebra obtained by using only cartesian product, projection, and selection with equality conditions.
- The next step would be to consider relational algebra expressions that also involve union.

Beyond Conjunctive Queries

- Definition:
- A Union of Conjunctive Queries (UCQ) is a query expressible by an expression of the form $q_{1} \cup q_{2} \cup \ldots \cup q_{m}$, where each q_{i} is a conjunctive query.
- A monotone query is a query expressible by a relational algebra expression which uses only union, cartesian product, projection, and selection (with equality condition only).
- Fact:
- Monotone queries are precisely the queries expressible by relational calculus expressions using $\wedge, ~ \vee$, and \exists only (also assuming restriction to equality here).
- Every UCQ is a monotone query.
- Every monotone query is equivalent to a UCQ
- but this normal form may have exponentially many disjuncts

$$
(a+b+c)(d+e+f)(g+h+j)=\ldots \text { how big as sum of products ? }
$$

Beyond Conjunctive Queries

- Definition:
- A Union of Conjunctive Queries (UCQ) is a query expressible by an expression of the form $q_{1} \cup q_{2} \cup \ldots \cup q_{m}$, where each q_{i} is a conjunctive query.
- A monotone query is a query expressible by a relational algebra expression which uses only union, cartesian product, projection, and selection (with equality condition only).
- Fact:
- Monotone queries are precisely the queries expressible by relational calculus expressions using $\wedge, ~ \vee$, and \exists only (also assuming restriction to equality here).
- Every UCQ is a monotone query.
- Every monotone query is equivalent to a UCQ
- but this normal form may have exponentially many disjuncts

$$
(a+b+c)(d+e+f)(g+h+j)=a d g+a d h+a d j+a e g+a e h+\ldots+c f j
$$

27 products

Unions of CQs and Monotone Queries
Union of Conjunctive Queries (UCQ)
Given edge relation $E(A, B)$, find paths of length 1 or 2
RA ? (unnamed RA) DRC?

Unions of CQs and Monotone Queries

Union of Conjunctive Queries (UCQ)
Given edge relation $E(A, B)$, find paths of length 1 or 2
RA $E \cup \pi_{\$ 1, \$ 4}\left(\sigma_{\$ 2=\$ 3}(E \times E)\right)$ (unnamed RA)
DRC?

Unions of CQs and Monotone Queries
Union of Conjunctive Queries (UCQ)
Given edge relation $E(A, B)$, find paths of length 1 or 2

$$
\begin{array}{ll}
\mathrm{RA} & E \cup \pi_{\$ 1, \$ 4}\left(\sigma_{\$ 2=\$ 3}(E \times E)\right) \\
\mathrm{DRC} & \{(x, y) \mid E(x, y) \vee \exists z[E(x, z) \wedge E(z, y)]\}
\end{array}
$$

Unions of CQs and Monotone Queries

Union of Conjunctive Queries (UCQ)
Given edge relation $E(A, B)$, find paths of length 1 or 2
RA $\quad E \cup \pi_{\$ 1, \$ 4}\left(\sigma_{\$ 2=\$ 3}(E \times E)\right)$
$\operatorname{DRC} \quad\{(x, y) \mid E(x, y) \vee \exists z[E(x, z) \wedge E(z, y)]\}$

Monotone Query

Assume schema $R(A, B), S(A, B), T(B, C), V(B, C)$
Is following query monotone ? $(R \cup S) \bowtie(T \cup V)$

Unions of CQs and Monotone Queries

Union of Conjunctive Queries (UCQ)
Given edge relation $E(A, B)$, find paths of length 1 or 2
RA $\quad E \cup \pi_{\$ 1, \$ 4}\left(\sigma_{\$ 2=\$ 3}(E \times E)\right)$
$\operatorname{DRC} \quad\{(x, y) \mid E(x, y) \vee \exists z[E(x, z) \wedge E(z, y)]\}$

Monotone Query

Assume schema $R(A, B), S(A, B), T(B, C), V(B, C)$
Following query is monotone: $\quad(R \cup S) \bowtie(T \cup V)$
Equal to a $\cup C Q$?
?

Unions of CQs and Monotone Queries

Union of Conjunctive Queries (UCQ)
Given edge relation $E(A, B)$, find paths of length 1 or 2
RA $\quad E \cup \pi_{\$ 1, \$ 4}\left(\sigma_{\$ 2=\$ 3}(E \times E)\right)$
$\operatorname{DRC} \quad\{(x, y) \mid E(x, y) \vee \exists z[E(x, z) \wedge E(z, y)]\}$

Monotone Query

Assume schema $R(A, B), S(A, B), T(B, C), V(B, C)$
Following query is monotone: $(R \cup S) \bowtie(T \cup V)$
Equal to following UCQ:
$(R \bowtie T) \cup(R \bowtie V) \cup(S \bowtie T) \cup(S \bowtie V)$

The Containment Problem for Unions of CQs

```
THEOREM [Sagiv, Yannakakis 1980]
Let }\mp@subsup{q}{1}{}\cup\mp@subsup{q}{2}{}\cup\cdots\cup\mp@subsup{q}{\textrm{m}}{}\mathrm{ and }\mp@subsup{q}{1}{\prime}\cup\mp@subsup{q}{2}{\prime}\cup\cdots\cup\mp@subsup{q}{n}{\prime}\mathrm{ be two UCQs.
Then the following are equivalent:
1) }\mp@subsup{q}{1}{}\cup\mp@subsup{q}{2}{}\cup\cdots\cup\mp@subsup{q}{\textrm{m}}{}\subseteq\mp@subsup{q}{1}{\prime}\cup\mp@subsup{q}{2}{\prime}\cup\cdots\cup\mp@subsup{q}{n}{\prime
2) For every i\leqm, there is j }\leqn\mathrm{ such that }\mp@subsup{q}{i}{}\subseteq\mp@subsup{q}{j}{\prime
```

Proof:
2. $\Rightarrow 1$. This direction is obvious.

1. $\Rightarrow 2$. Since $D_{c}\left[q_{i}\right] \vDash q_{i}$, we have that $D_{c}\left[q_{i}\right] \vDash q_{1} \cup q_{2} \cup \ldots \cup q_{m}$.

Because of containment, $D_{C}\left[q_{i}\right] \vDash q^{\prime}{ }_{1} \cup q^{\prime}{ }_{2} \cup \ldots \cup q_{n}^{\prime}$.
Thus there is some $\mathrm{j} \leq \mathrm{n}$ with $D_{\mathrm{c}}\left[q_{i}\right] \vDash \mathrm{q}^{\prime}$.
Thus from the CQ homomorphism Theorem $q_{i} \subseteq q^{\prime}{ }_{j}$.

The Complexity of Database Query Languages

	Relational Calculus	CQs	UCQs
Query Evaluation: Data Complexity	In LOGSPACE (hence, in P)	In LOGSPACE (hence, in P)	In LOGSPACE (hence, in P)
Query Evaluation: Combined Compl.	PSPACE- complete	NP-complete	NP-complete
Query Equivalence \& Containment	Undecidable	NP-complete	NP-complete

Monotone Queries

- Even though monotone queries have the same expressive power as unions of conjunctive queries, the containment problem for monotone queries has higher complexity than the containment problem for unions of conjunctive queries (syntax/complexity tradeoff)
- Theorem: Sagiv and Yannakakis - 1982

The containment problem for monotone queries is $\Pi_{2}{ }^{p-}$ complete.

- Note: The prototypical $\Pi_{2}{ }^{\mathrm{p}}$-complete problem is $\forall \exists$ SAT, i.e., the restriction of QBF to formulas of the form

$$
\forall \mathrm{x}_{1} \ldots \forall \mathrm{x}_{\mathrm{m}} \exists \mathrm{y}_{1} \ldots \exists \mathrm{y}_{\mathrm{n}} \phi .
$$

The Complexity of Database Query Languages

	Relational Calculus	CQs	UCQs	Monotone queries
Query Evaluation: Data Complexity	In LOGSPACE (hence, in P)			
Query Evaluation: Combined Compl.	PSPACE- complete	NP-complete	NP-complete	NP-complete
Query Equivalence \& Containment	Undecidable	NP-complete	NP-complete	$\Pi_{2}^{\mathrm{p} \text {-complete }}$

Conjunctive Queries with Inequalities

- Definition: Conjunctive queries with inequalities form the sublanguage of relational algebra obtained by using only cartesian product, projection, and selection with equality and inequality $(\neq,<, \leq)$ conditions.
- Example: $Q(x, y):--E(x, z), E(z, w), E(w, y), z \neq w, z<y$.
- Theorem: (Klug - 1988, van der Meyden - 1992)
- The query containment problem for conjunctive queries with inequalities is $\Pi_{2}{ }^{\mathrm{p}}$-complete.
- The query evaluation problem for conjunctive queries with inequalities in NP-complete.

The Complexity of Database Query Languages

	Relational Calculus	CQs	UCQs	Monotone queries / CQs with inequalities
Query Evaluation: Data Complexity	In LOGSPACE (hence, in P)			
Query Evaluation: Combined Compl.	PSPACE- complete	NP-complete	NP-complete	NP-complete
Query Equivalence \& Containment	Undecidable	NP-complete	NP-complete	$\Pi_{2}{ }^{\mathrm{p}}$-complete

Outline: T2-1/2: Query Evaluation \& Query Equivalence

- T2-1: Conjunctive Queries (CQs)
- Query equivalence and containment (\& motivation of CQs)
- Graph homomorphisms
- Homomorphism beyond graphs
- CQ containment
- CQ minimization
- T2-2: Equivalence Beyond CQs
- Union of CQs, and inequalities
- Union of CQs equivalence under bag semantics
- Tree pattern queries Following slides are literally from Phokion Kolaitis's
- Nested queries

Liar Paradox

Pinocchios Nase wächst bekanntlich genau dann, wenn er lügt. Was passiert aber, wenn er sagt „Meine Nase wächst gerade"?

In philosophy and logic, the classical liar paradox or liar's paradox or antinomy of the liar is the statement of a liar that they are lying: for instance, declaring that "I am lying". If the liar is indeed lying, then the liar is telling the truth, which means the liar just lied. In "this sentence is a lie" the paradox is strengthened in order to make it amenable to more rigorous logical analysis.

Logic and Databases

Phokion G. Kolaitis
UC Santa Cruz \& IBM Research - Almaden

Lecture 4 - Part 1

Thematic Roadmap

\checkmark Logic and Database Query Languages

- Relational Algebra and Relational Calculus
- Conjunctive queries and their variants
- Datalog
\checkmark Query Evaluation, Query Containment, Query Equivalence
- Decidability and Complexity
\checkmark Other Aspects of Conjunctive Query Evaluation
- Alternative Semantics of Queries
- Bag Databases: Semantics and Conjunctive Query Containment
- Probabilistic Databases: Semantics and Dichotomy Theorems for Conjunctive Query Evaluation
- Inconsistent Databases: Semantics and Dichotomy Theorems

Alternative Semantics

- So far, we have examined logic and databases under classical semantics:
- The database relations are sets.
- Tarskian semantics are used to interpret queries definable be first-order formulas.
- Over the years, several different alternative semantics of queries have been investigated. We will discuss three such scenarios:
- The database relations can be bags (multisets).
- The databases may be probabilistic.
- The databases may be inconsistent.

Sets vs. Multisets

Relation EMPLOYEE(name, dept, salary)

- Relational Algebra Expression:

$$
\pi_{\text {salary }}\left(\sigma_{\text {dept }=\text { cs }}(\text { EMPLOYEE })\right)
$$

- SQL query:

$$
\begin{array}{ll}
\text { SELECT } & \text { salary } \\
\text { FROM } & \text { EMPLOYEE } \\
\text { WHERE } & \text { dpt = 'CS' }
\end{array}
$$

- SQL returns a bag (multiset) of numbers in which a number may appear several times, provided different faculty had the same salary.
- SQL does not eliminate duplicates, in general, because:
- Duplicates are important for aggregate queries (e.g., average)
- Duplicate elimination takes nlogn time.

Relational Algebra Under Bag Semantics

Operation	Multiplicity	- R_{1}	A B
Union $R_{1} \cup R_{2}$	$\mathrm{m}_{1}+\mathrm{m}_{2}$		$\begin{array}{ll} 1 & 2 \\ 1 & 2 \\ 2 & 3 \end{array}$
Intersection $\mathrm{R}_{1} \cap \mathrm{R}_{2}$	$\min \left(\mathrm{m}_{1}, \mathrm{~m}_{2}\right)$	- R_{2}	$\frac{B C}{24}$
Product $R_{1} \times R_{2}$	$\mathrm{m}_{1} \times \mathrm{m}_{2}$	- $\left(\mathrm{R}_{1} \bowtie \mathrm{R}_{2}\right)$	A B C
Projection and Selection	Duplicates are not eliminated		$\begin{array}{lll} 1 & 2 & 4 \\ 1 & 2 & 4 \\ 1 & 2 & 5 \\ 1 & 2 & 5 \end{array}$

Conjunctive Queries Under Bag Semantics

Chaudhuri \& Vardi - 1993
Optimization of Real Conjunctive Queries

- Called for a re-examination of conjunctive-query optimization under bag semantics.
- In particular, they initiated the study of the containment problem for conjunctive queries under bag semantics.
- This problem has turned out to be much more challenging than originally perceived.

PROBLEMS

Problems worthy of attack prove their worth
by hitting back.
in: Grooks by Piet Hein (1905-1996)

Query Containment Under Set Semantics

Class of Queries	Complexity of Query Containment
Conjunctive Queries	NP-complete Chandra \& Merlin - 1977
Unions of Conjunctive Queries	NP-complete Sagiv \& Yannakakis - 1980
Conjunctive Queries with \neq, \leq, \geq	$\Pi_{2}{ }^{\mathrm{p}}$-complete Klug 1988, van der Meyden -1992
First-Order (SQL) queries	Undecidable Trakhtenbrot - 1949

Bag Semantics vs. Set Semantics

- For bags $\mathrm{R}_{1}, \mathrm{R}_{2}$: $R_{1} \subseteq_{B A G} R_{2}$ if $m\left(a, R_{1}\right) \leq m\left(a, R_{2}\right)$, for every tuple \mathbf{a}.
- $Q^{B A G}(D)$: Result of evaluating Q on (bag) database D.
- $Q_{1} \subseteq_{B A G} Q_{2}$ if for every (bag) database D, we have that

$$
\mathrm{Q}_{1}{ }^{\mathrm{BAG}}(\mathrm{D}) \subseteq_{\mathrm{BAG}} \mathrm{Q}_{2}{ }^{\mathrm{BAG}}(\mathrm{D})
$$

Fact:

- $Q_{1} \subseteq_{\text {BAG }} Q_{2}$ implies $Q_{1} \subseteq Q_{2}$.
- The converse does not always hold.

Bag Semantics vs. Set Semantics

Fact: $\mathrm{Q}_{1} \subseteq \mathrm{Q}_{2}$ does not imply that $\mathrm{Q}_{1} \subseteq_{\mathrm{BAG}} \mathrm{Q}_{2}$.

Example:

- $Q_{1}(x)$:- $P(x), T(x)$
- $Q_{2}(x)$:- $P(x)$
- $\mathrm{Q}_{1} \subseteq \mathrm{Q}_{2}$ (obvious from the definitions)
- $Q_{1} \ddagger_{\mathrm{BAG}} \mathrm{Q}_{2}$
- Consider the (bag) instance $\mathrm{D}=\{\mathrm{P}(\mathrm{a}), \mathrm{T}(\mathrm{a}), \mathrm{T}(\mathrm{a})\}$. Then:
- $Q_{1}(D)=\{a, a\}$
- $Q_{2}(D)=\{a\}$, so $Q_{1}(D) \nsubseteq Q_{2}(D)$.

Query Containment under Bag Semantics

- Chaudhuri \& Vardi - 1993 stated that: Under bag semantics, the containment problem for conjunctive queries is $\Pi_{2}{ }^{\mathrm{p}}$-hard.
- Problem:
- What is the exact complexity of the containment problem for conjunctive queries under bag semantics?
- Is this problem decidable?

Query Containment Under Bag Semantics

- 23 years have passed since the containment problem for conjunctive queries under bag semantics was raised.
- Several attacks to solve this problem have failed.
- At least two technically flawed PhD theses on this problem have been produced.
- Chaudhuri and Vardi have withdrawn the claimed $\Pi_{2}{ }^{\mathrm{p}}$-hardness of this problem; no one has provided a proof.

Query Containment Under Bag Semantics

- The containment problem for conjunctive queries under bag semantics remains open to date.
- However, progress has been made towards the containment problem under bag semantics for the two main extensions of conjunctive queries:
- Unions of conjunctive queries
- Conjunctive queries with \neq

Unions of Conjunctive Queries

Theorem (loannidis \& Ramakrishnan - 1995):
Under bag semantics, the containment problem for unions of conjunctive queries is undecidable.
Hint of Proof:
Reduction from Hilbert's $10^{\text {th }}$ Problem.

Hilbert's $10^{\text {th }}$ Problem

- Hilbert's $10^{\text {th }}$ Problem - 1900 ($10^{\text {th }}$ in Hilbert's list of 23 problems)

Find an algorithm for the following problem:
Given a polynomial $P\left(x_{1}, \ldots, x_{n}\right)$ with integer coefficients, does it have an all-integer solution?

- Y. Matiyasevich - 1971
(building on M. Davis, H. Putnam, and J. Robinson)
- Hilbert's $10^{\text {th }}$ Problem is undecidable, hence no such algorithm exists.

Hilbert's $10^{\text {th }}$ Problem

- Fact: The following variant of Hilbert's $10^{\text {th }}$ Problem is undecidable:
- Given two polynomials $p_{1}\left(x_{1}, \ldots x_{n}\right)$ and $p_{2}\left(x_{1}, \ldots x_{n}\right)$ with positive integer coefficients and no constant terms, is it true that $p_{1} \leq p_{2}$? In other words, is it true that $p_{1}\left(a_{1}, \ldots, a_{n}\right) \leq$ $p_{2}\left(a_{1}, \ldots a_{n}\right)$, for all positive integers a_{1}, \ldots, a_{n} ?
- Thus, there is no algorithm for deciding questions like:
- Is $3 x_{1}{ }^{4} x_{2} x_{3}+2 x_{2} x_{3} \leq x_{1} 6+5 x_{2} x_{3}$?

Unions of Conjunctive Queries

Theorem (loannidis \& Ramakrishnan - 1995):
Under bag semantics, the containment problem for unions of conjunctive queries is undecidable.

Hint of Proof:

- Reduction from the previous variant of Hilbert's $10^{\text {th }}$ Problem:
- Use joins of unary relations to encode monomials (products of variables).
- Use unions to encode sums of monomials.

Unions of Conjunctive Queries

Example: Consider the polynomial $3 x_{1}{ }^{4} x_{2} x_{3}+2 x_{2} x_{3}$

- The monomial $x_{1}{ }^{4} x_{2} x_{3}$ is encoded by the conjunctive query

$$
P_{1}(w), P_{1}(w), P_{1}(w), P_{1}(w), P_{2}(w), P_{3}(w) .
$$

- The monomial $x_{2} x_{3}$ is encoded by the conjunctive query $\mathrm{P}_{2}(\mathrm{w}), \mathrm{P}_{3}(\mathrm{w})$.
- The polynomial $3 x_{1}{ }^{4} x_{2} x_{3}+2 x_{2} x_{3}$ is encoded by the union having:
- three copies of $P_{1}(w), P_{1}(w), P_{1}(w), P_{1}(w), P_{2}(w), P_{3}(w)$ and
- two copies of $\mathrm{P}_{2}(\mathrm{w}), \mathrm{P}_{3}(\mathrm{w})$.

Complexity of Query Containment

Class of Queries	Complexity - Set Semantics	Complexity - Bag Semantics
Conjunctive queries	NP -complete CM -1977	
Unions of conj. queries	NP -complete SY-1980	Undecidable IR - 1995
Conj. queries with \neq, \leq, \geq	Π_{2}^{p}-complete $\mathrm{vdM}-1992$	
First-order (SQL) queries	Undecidable Trakhtenbrot -1949	Undecidable

Conjunctive Queries with \neq

Theorem (Jayram, K ..., Vee - 2006):
Under bag semantics, the containment problem for conjunctive queries with \neq is undecidable.

In fact, this problem is undecidable even if

- the queries use only a single relation of arity 2 ;
- the number of inequalities in the queries is at most some fixed (albeit huge) constant.

Complexity of Query Containment

Class of Queries	Complexity - Set Semantics	Complexity - Bag Semantics
Conjunctive queries	NP-complete CM - 1977	Open
Unions of conj. queries	NP-complete SY-1980	Undecidable IR - 1995
Conj. queries with \neq, \leq, \geq	$\Pi_{2}^{\mathrm{p}-c o m p l e t e ~}$ vdM - 1992	Undecidable JKV - 2006
First-order (SQL) queries	Undecidable Trakhtenbrot - 1949	Undecidable

Subsequent Developments

- Some progress has been made towards identifying special classes of conjunctive queries for which the containment problem under bag semantics is decidable.
- Afrati, Damigos, Gergatsoulis - 2010
- Projection-free conjunctive queries.
- Kopparty and Rossman - 2011
- A large class of boolean conjunctive queries on graphs.

Outline: T2-1/2: Query Evaluation \& Query Equivalence

- T2-1: Conjunctive Queries (CQs)
- Query equivalence and containment (\& motivation of CQs)
- Graph homomorphisms
- Homomorphism beyond graphs
- CQ containment
- CQ minimization
- T2-2: Equivalence Beyond CQs
- Union of CQs, and inequalities
- Union of CQs equivalence under bag semantics
- Tree pattern queries
- Nested queries

Tree pattern queries

Does the query on the left have a match on in the data on the right (i.e. is there a homomorphism from left to

Notice that " a ", "b", "c" are labels (not node ids), thus
like constants in a query, or like predicates (colored edges)

Tree pattern queries

Figure 1: A graph database (as a property graph), inspired on a fragment of WikiData

Figure 2: A tree pattern finding the artists who were born in the United States. The query returns the person names and the cities where they were born. (Fully circled nodes are return nodes.)

Figure 1: A graph database (as a property graph), inspired on a fragment of WikiData

Figure 1: A graph database (as a property graph), inspired on a fragment of WikiData

Optimizing tree patterns

How are those two tree patterns related to each other?

?

Optimizing tree patterns

Tree Pattern Minimization
Given: \quad A tree pattern p and $k \in \mathbb{N}$
Question: Is there a tree pattern q, equivalent to p, such that its size is at most k ?

Minimality =? Nonredundancy

1.4 History of the Problem

Although the patterns we consider here have been widely studied $[14,24,36,15,22,1,9,4,32]$, their minimization problem remained elusive for a long time. The most important previous work for their minimization was done by Kimelfeld and Sagiv [22] and by Flesca, Furfaro, and Masciari $[14,15]$.

The key challenge was understanding the relationship between minimality (M) and nonredundancy (NR). Here, a tree pattern is minimal if it has the smallest number of nodes among all equivalent tree patterns. It is nonredundant if none of its leaves (or branches ${ }^{2}$) can be deleted while remaining equivalent. The question was if minimality and nonredundancy are the same ([22, Section 7$]$ and [15, p. 35]):

$$
\text { M } \stackrel{?}{=} \text { NR PROBLEM: }
$$

Is a tree pattern minimal if and only if it is nonredundant?

Notice that a part of the $M \stackrel{?}{=}$ NR problem is easy to see a minimal pattern is trivially also nonredundant (that is, M $\subseteq \mathrm{NR}$). The opposite direction is much less clear.

If the problem would have a positive answer, it would mean that the simple algorithmic idea summarised in Algorithm 1 correctly minimizes tree patterns. Therefore, the $\mathrm{M} \stackrel{?}{=} \mathrm{NR}$ problem is a natural question about the design of minimization algorithms for tree patterns.

```
Algorithm 1 Computing a nonredundant subpattern
Input: A tree pattern \(p\)
Output: A nonredundant tree pattern \(q\), equivalent to \(p\)
    while a leaf of \(p\) can be removed
                                    (remaining equivalent to \(p\) ) do
        Remove the leaf
    end while
    return the resulting pattern
```

The $\mathrm{M} \stackrel{?}{=}$ NR problem is also a question about complexity. The main source of complexity of the nonredundancy algorithm lies in testing equivalence between a pattern p and a pattern p^{\prime}, which is generally coNP-complete [24]. If $\mathrm{M} \stackrel{\text { ? }}{=}$ NR has a positive answer, then Tree Pattern MinimizaTION would also be coNP-complete.

In fact, the problem was claimed to be coNP-complete in 2003 [14, Theorem 2], but the status of the minimizationand the $\mathrm{M} \stackrel{?}{=}$ NR problems were re-opened by Kimelfeld and Sagiv [22], who found errors in the proofs. Flesca et al.'s journal paper then proved that $\mathrm{M}=\mathrm{NR}$ for a limited class of tree patterns, namely those where every wildcard node has at most one child [15]. Nevertheless, for tree patterns,
(a) the status of the $\mathrm{M} \stackrel{?}{=}$ NR problem and
(b) the complexity of the minimization problem remained open.

Czerwinski, Martens, Niewerth, Parys [PODS 2016\}
(a) There exists a tree pattern that is nonredundant but not minimal. Therefore, $M \neq$ NR.
(b) Tree Pattern Minimization is Σ_{2}^{P}-complete. This implies that even the main idea in Algorithm 1 cannot work unless coNP $=\Sigma_{2}^{P}$.

Tree pattern containment

Tree pattern containment

but $\nsupseteq!$

Figure 7: A non-redundant tree pattern p (right) and an equivalent tree pattern q that is smaller (left) $q \subseteq p$ follows from argument on previous page.
To be shown $q \supseteq p$, then equivalent. Idea: whenever p matches, then also q. Idea: $a=\star$ can be matched in 3 ways in a graph

(a) How q can be matched if p_{1} can be matched

(b) How q can be matched if p_{2} can be matched

(c) How q can be matched if p_{3} can be matched

Outline: T2-1/2: Query Evaluation \& Query Equivalence

- T2-1: Conjunctive Queries (CQs)
- Query equivalence and containment (\& motivation of CQs)
- Graph homomorphisms
- Homomorphism beyond graphs
- CQ containment
- CQ minimization
- T2-2: Equivalence Beyond CQs
- Union of CQs, and inequalities
- Union of CQs equivalence under bag semantics
- Tree pattern queries
- Nested queries

Equivalence of nested queries

- Query equivalence is one of the foundational questions in database theory (and practice?)
- touches on logics and decidability
- what modifications allow tractability
- Lots of work (and open questions) on query equivalence
- But not so much work on nested queries!
- Related to Relational Diagrams (https://relationaldiagrams.com/) and QueryVis projects (https://queryvis.com/) and two foundational questions on visual formalism:

1. When can visual formalism unambiguously express logical statements?
2. When can equivalent logical statements be transformed to each other by a sequence of visual transformations? (Query equivalence)

Diagrammatic reasoning systems and their expressiveness
 (1)
 $\neg P \quad Q$
 $-P v Q$

(1) $P \Rightarrow Q$
(2) $P \& Q$

(4) $\neg(P \& \neg Q)$

(3) $\neg \mathbb{Q}$

(2)

(3)

$P / R=S$

(2)

(3) ${ }_{P}{ }_{Q} \bar{Z}_{R} S$
(4)
$\begin{array}{lll} & = & \\ P & Q & B\end{array}$
(5)
(6) \qquad

Diagrams are widely used in reasoning about problems in physics, mathematics, and logic, but have traditionally been considered to be only heuristic tools and not valid elements of mathematical proofs. This book challenges this prejudice against visualization in the history of logic and mathematics and provides a formal foundation for work on natural reasoning in a visual mode.

The author presents Venn diagrams as a formal system of representation equipped with its own syntax and semantics and specifies rules of transformation that make this system sound and complete. The system is then extended to the equivalent of a first-order monadic language. The soundness of these diagrammatic systems refutes the contention that graphical representation is misleading in reasoning. The validity of the transformation rules ensures that the correct application of the rules will not lead to fallacies. The book concludes with a discussion of some fundamental differences between graphical systems and linguistic systems.
This groundbreaking work will have important influence on research in logic, philosophy, and knowledge representation.
objects. Conjunctive information is more naturally represented by diagrams than by linguistic formulæ. For example, a single Venn diagram can

Still, not all relations can be viewed as membership or inclusion. Shin has been careful throughout her book to restrict herself to monadic systems. Relations per se (polyadic predicates) are not considered. And while it may be true that the formation of a system (such as Venn-II) that is provably both sound and complete would help mitigate the prejudice
perception. In her discussion of perception she shows that disjunctive information is not representable in any system. In doing so she relies on

[^0]
Relational Diagrams / QueryVis

- Motivation: Can we create an automatic diagramming system that:
- unambiguously visualizes the logical intent of a relational query (thus no two different queries lead to an "identical" visualization; with "identical" to be formalized correctly)
- for some important subset of nested queries (later extensions from SQL)
- with visual diagrams that allow us to reason about logical SQL design patterns
- Related:
- Lot's of interest on conjunctive queries equivalence. Now: For what fragment of nested queries is equivalence decidable (under set semantics)?
- Suggestion:
- nested queries, with inequalities, without any disjunctions
- Strict superset of conjunctive queries

Logical SQL Patterns

Logical patterns are the building blocks of most SQL queries.

Patterns are very hard to extract from the SQL text.

A pattern can appear across different database schemas.

Think of queries like:

- Find sailors who reserved all red boats
- Find students who took all art classes
- Find actors who played in all movies by Hitchcock

What does this query return?

SELECT L1.drinker
FROM Likes L1
WHERE not exists
(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))
AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

What does this query return?
SELECT L1.drinker FROM Likes L1
WHERE not exists
(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker AND L4.beer = L3.beer))
AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

Likes(drinker,beer)

Relational Diagrams scoping

SELECT L1.drinker FROM Likes L1 WHERE not exists (SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker AND L4.beer = L3.beer))
AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker $=$ L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker AND L6.beer= L5.beer)))

Relational Diagrams scoping

Q: Finder drinkers with a unique beer taste

Likes(drinker,beer)
"Return any drinker, s.t.

- there does not exist any other drinker, s.t. there does not exist any beer liked by that other drinker that is not also liked by the returned drinker, and
- there does not exist any beer liked by the returned drinker that is not also liked by the same other drinker."

"Unique set query"

Q: Finder drinkers with a unique beer taste
Likes(drinker,beer)
SELECT L1.drinker FROM Likes L1 WHERE not exists
(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker AND L4.beer = L3.beer))
AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker AND L6.beer= L5.beer)))

Relational Diagrams scoping

Q: Finder drinkers with a unique beer taste

Likes(drinker,beer)
SELECT L1.drinker FROM Likes L1 WHERE not exists
(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker AND not exists (SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker AND L4.beer = L3.beer))
AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

Relational Diagrams scoping

SELECT L1.drinker from Likes L1 WHERE not exists
$\left[\begin{array}{l}\text { (SELECT * } \\ \text { FROM Likes L2 } \\ \text { WHERE L1. drink }\end{array}\right.$
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))
AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

SELECT L1.drinker
FROM Likes L1
WHERE not exists
$\left[\begin{array}{l}\text { (SELECT * } \\ \text { FROM Likes L2 } \\ \text { WHERE L1. drink }\end{array}\right.$
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker AND not exists

(SELECT *

FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))
AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker AND L6.beer= L5.beer)))

https://demo.queryvis.com

QueryViz

[^1]
Preregistered, randomized user study on AMT

$\mathrm{n}=50$ participants, preregistration: https://osf.io/4zpsk

Accuracy

Preregistered, randomized user study on AMT

n = 50 participants, preregistration: https://osf.io/4zpsk

DATA LAB @ NORTHEASTERN

The Data Lab @ Northeastern University is one of the leading research groups in data management and data systems. Our work spans the breadth of data management, from the foundations of data integration and curation, to large-scale and parallel data-centric computing. Recent research projects include query visualization, data provenance, data discovery, data lake management, and scalable approaches to perform inference over uncertain

https://queryvis.com

THE STORY OF QUERYVIS, NOT JUST ANOTHER VISUAL PROGRAMMING LANGUAGE

TUE 06.30.20 / YSABELLE KEMPE

https://www.khoury.northeastern.edu/the-story-of-queryvis-not-just-another-visual-programming-language/

Focus: one single nesting level

- We first restrict ourselves to
- equi-joins (no inequalities like T.A < T.B)
- paths (no siblings = every node can have only one nested child)
- one single nesting level
- Boolean queries
- no foreign predicates
- only binary relations (thus can be represented as graphs)
- only one single relation R
- (and as before only conjunctions)
- Given two such queries, what is a generalization of the homomorphism procedure that works for that fragment?

Simplifying notation

What will become handy, is a short convenient notation for queries

```
SELECT TRUE
FROM RR1,RR2, R R3
WHERE R1.B = R2.A
AND R2.B = R3.A
NOT EXISTS
    (SELECT *
    FROM R R4, R R5, R R6
    WHERE R4.B = R5.A
    AND R5.B = R6.A
    AND R4.A = R1.A
    AND R6.A = R2.B)
```

```
\exists R1, R2, R3 \in R
```

\exists R1, R2, R3 \in R
(R1.B=R2.A ^ R2.B=R3.A ^
(R1.B=R2.A ^ R2.B=R3.A ^
\# R4, R5, R6 \in R
\# R4, R5, R6 \in R
(R4.B=R5.A ^ R5.B=R6.A ^
(R4.B=R5.A ^ R5.B=R6.A ^
R4.A=R1.A ^ R6.A = R2.B)
R4.A=R1.A ^ R6.A = R2.B)
)

```
)
```

$$
\begin{aligned}
& q_{0}:-R(x, y), R(y, z), R(z, w) \\
& q_{1}(\mathrm{~s}, \mathrm{t}):-R(s, u), R(u, v), R(v, t), \mathrm{s}=\mathrm{x}, \mathrm{t}=\mathrm{y} \\
& q:-R(x, y), R(y, z), R(z, w), \neg q_{1}(x, z)
\end{aligned}
$$

$$
s=x, t=y
$$

Simplifying notation

What will become handy, is a short convenient notation for queries

```
SELECT TRUE
FROM RR1,RR2, R R3
WHERE R1.B = R2.A
AND R2.B = R3.A
NOT EXISTS
    (SELECT *
    FROM R R4, R R5, R R6
    WHERE R4.B = R5.A
    AND R5.B = R6.A
    AND R4.A = R1.A
    AND R6.A = R2.B)
```

```
\exists R1, R2, R3 \in R
```

\exists R1, R2, R3 \in R

```
\exists R1, R2, R3 \in R
    (R1.B=R2.A ^ R2.B=R3.A ^
    (R1.B=R2.A ^ R2.B=R3.A ^
    (R1.B=R2.A ^ R2.B=R3.A ^
        # R4, R5, R6 \in R
        # R4, R5, R6 \in R
        # R4, R5, R6 \in R
        (R4.B=R5.A ^ R5.B=R6.A ^
        (R4.B=R5.A ^ R5.B=R6.A ^
        (R4.B=R5.A ^ R5.B=R6.A ^
        R4.A=R1.A ^ R6.A = R2.B)
        R4.A=R1.A ^ R6.A = R2.B)
        R4.A=R1.A ^ R6.A = R2.B)
)
```

)

```
)
```

$$
\begin{gathered}
q_{0}:-R(x, y), R(y, z), R(z, w) \\
\neg q_{1}:-R(x, u), R(u, v), R(v, y)
\end{gathered}
$$

Simplifying notation

What will become handy, is a short convenient notation for queries

```
SELECT TRUE
FROM RR1,R R2, R R3
WHERE R1.B = R2.A
AND R2.B = R3.A
NOT EXISTS
    (SELECT *
    FROM R R4, R R5, R R6
    WHERE R4.B = R5.A
    AND R5.B = R6.A
    AND R6.A = R2.B)
```

```
\exists R1, R2, R3 \in R
```

\exists R1, R2, R3 \in R
(R1.B=R2.A ^R2.B=R3.A ^
(R1.B=R2.A ^R2.B=R3.A ^
\# R4, R5, R6 \in R
\# R4, R5, R6 \in R
(R4.B=R5.A ^ R5.B=R6.A ^
(R4.B=R5.A ^ R5.B=R6.A ^
R4.A=R1.A ^ R6.A = R2.B)
R4.A=R1.A ^ R6.A = R2.B)
)

```
)
```

 AND R4.A = R1.A Cartesian product: \(R^{\prime}(x, y, z, w)=\)

$R(x, y), R(y, z), R(z, w)$? can be expressed in guarded fragment of $F O L$ (with negation)? But single join already not guarded

See Barany, Cate, Segoufin, "Guarded negatation", JACM 2015
guardedness

Database D

Does the query below evaluate to true on above database?

Query q

Question

- Find two such nested queries (somehow leveraging the example below) that are equivalent (based on some simple reasoning)
- What is then the *structured* procedure to prove equivalence?

Example

$q_{1}(x):-R(x, y), R(y, y), R(y, z)$
$q_{2}(s):-R(s, u), R(u, w), R(s, v), R(u, w), R(u, v), R(v, v)$

Undecidability :

- Unfortunately, the following problem is already undecidable
- Consider the class of nested queries with maximal nesting level 2, no disjunctions, our safety restrictions from earlier, set semantics, arbitrary number of siblings
- Deciding whether any given query is finitely satisfiable is undecidable.
- This follows non-trivially from from following Arxiv paper:
- "Undecidability of satisfiability in the algebra of finite binary relations with union, composition, and difference" by Tony Tan, Jan Van den Bussche, Xiaowang Zhang, Corr 1406.0349. https://arxiv.org/abs/1406.0349

To see that e cannot be satisfied by any series-parallel graph, suppose (x, y) belongs to the result of evaluating e on some structure. Since $(x, y) \in a(a \cap a a)$, there exist edges $x \rightarrow u_{1} \rightarrow u_{2} \rightarrow y$ and $u_{1} \rightarrow y$ (we omit the labels on the edges which are all a). Since $(x, y) \notin(a a-a) a$, there must be an edge $x \rightarrow u_{2}$. If at least two of the four elements x, u_{1}, u_{2} and y are identical, the graph contains a cycle and is not series-parallel. If all four elements are distinct, we have a subgraph isomorphic to W above, so the structure is not series-parallel

$$
a(a a \cap a)-(a a-a) a
$$

Open question

[^0]: The logical status of diagrams, Sun-Joo Shin, Cambridge university press 1994. https://doi.org/10.1017/CBO9780511574696
 Sun-Joo Shin at Yale: https://philosophy.yale.edu/people/sun-ioo-shin
 Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

[^1]: Source: Danaparamita, Gatterbauer: QueryViz: Helping users understand SQL queries and their patterns. EDBT 2011. https://doi.org/10.14778/3402755.3402805 See also: Gatterbauer, Dunne, Jagadish, Riedewald: Principles of Query Visualization. IEEE Debull 2023. http://sites.computer.org/debull/A22sept/p47.pdf Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

