Topic 1: Data models and query languages Unit 4: Datalog Lecture 8

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
https://northeastern-datalab.github.io/cs7240/sp24/
2/6/2024

Where We Are

- Relational query languages we have seen so far:
- SQL
- Relational Calculus
- Relational Algebra
- They can express the same class of relational queries (ignoring extensions, such as grouping, aggregates, or sorting)
- How powerful are they? What kind of useful queries are missing?

Which are Relational Queries? Which are not? And Why?

- Given Friend (X, Y) : Find all people X whose number of friends is a prime number
- Find all people who are friends with everyone who is not a friend of Bob

- Partition all people into three sets $\mathrm{P} 1(\mathrm{X}), \mathrm{P} 2(\mathrm{X}), \mathrm{P} 3(\mathrm{X})$ s.t. any two friends are in different partitions

- Find all people who are direct or indirect friends with Alice (connected in arbitrary length)

Which are Relational Queries? Which are not? And Why?

- Given Friend (X, Y) : Find all people X whose number of friends is a prime number

NO: needs higher math; not possible with RA (unless we have access to a relation Prime (x)...)

- Find all people who are friends with everyone who is not a friend of Bob ?
- Partition all people into three sets $\mathrm{P} 1(\mathrm{X}), \mathrm{P} 2(\mathrm{X}), \mathrm{P} 3(\mathrm{X})$ s.t. any two friends are in different partitions

- Find all people who are direct or indirect friends with Alice (connected in arbitrary length)

Which are Relational Queries? Which are not? And Why?

- Given Friend (X, Y) : Find all people X whose number of friends is a prime number

NO: needs higher math; not possible with RA (unless we have access to a relation Prime (x)...)

- Find all people who are friends with everyone who is not a friend of Bob

$$
\text { YES: }\left\{x \mid \forall y \cdot\left(\neg F r i e n d\left(y,{ }^{\prime} \text { Bob' }\right) \Rightarrow \text { Friend }(x, y)\right\} \quad D I ?\right.
$$

- Partition all people into three sets $\mathrm{P} 1(\mathrm{X}), \mathrm{P} 2(\mathrm{X}), \mathrm{P} 3(\mathrm{X})$ s.t. any two friends are in different partitions

- Find all people who are direct or indirect friends with Alice (connected in arbitrary length)

Which are Relational Queries? Which are not? And Why?

- Given Friend (X, Y) : Find all people X whose number of friends is a prime number

NO: needs higher math; not possible with RA (unless we have access to a relation Prime (x)...)

- Find all people who are friends with everyone who is not a friend of Bob

$$
\begin{aligned}
& \text { YES: }\left\{x \mid \forall y \cdot\left(\neg \text { Friend }\left(y, ' B o b^{\prime}\right) \Rightarrow \text { Friend }(x, y)\right\}\right. \\
& \left\{x \mid \operatorname{Person}(x) \wedge \forall y \cdot\left[\operatorname{Person}(y) \wedge \neg \text { Friend }\left(y^{\prime}, B o b^{\prime}\right) \Rightarrow \text { Friend }(x, y)\right]\right\} \text { ? }
\end{aligned}
$$

- Partition all people into three sets $\mathrm{P} 1(\mathrm{X}), \mathrm{P} 2(\mathrm{X}), \mathrm{P} 3(\mathrm{X})$ s.t. any two friends are in different partitions

- Find all people who are direct or indirect friends with Alice (connected in arbitrary length)

Which are Relational Queries? Which are not? And Why?

- Given Friend (X, Y) : Find all people X whose number of friends is a prime number

NO: needs higher math; not possible with RA (unless we have access to a relation Prime (x)...)

- Find all people who are friends with everyone who is not a friend of Bob YES: $\{x \mid \forall y .(\neg$ Friend ($y, ~ ' B o b ') \Rightarrow$ Friend $(x, y)\}$

$$
\left\{x \mid \operatorname{Person}(x) \wedge \forall y \cdot\left[\operatorname{Person}(y) \wedge \neg \text { Friend }\left(y^{\prime}, \operatorname{Bob}^{\prime}\right) \Rightarrow \text { Friend }(x, y)\right]\right\}
$$

- Partition all people into three sets $\mathrm{P} 1(\mathrm{X}), \mathrm{P} 2(\mathrm{X}), \mathrm{P} 3(\mathrm{X})$ s.t. any two friends are in different partitions

NO: equivalent to 3-coloring; NP-complete

- Find all people who are direct or indirect friends with Alice (connected in arbitrary length)

Which are Relational Queries? Which are not? And Why?

- Given Friend (X, Y) : Find all people X whose number of friends is a prime number

NO: needs higher math; not possible with RA (unless we have access to a relation Prime (x)...)

- Find all people who are friends with everyone who is not a friend of Bob YES: $\{x \mid \forall y$. (- Friend ($y, ~ ' B o b ') \Rightarrow$ Friend $(x, y)\}$

$$
\left\{x \mid \operatorname{Person}(x) \wedge \forall y \cdot\left[\operatorname{Person}(y) \wedge \neg \text { Friend }\left(y^{\prime}, \operatorname{Bob}^{\prime}\right) \Rightarrow \text { Friend }(x, y)\right]\right\}
$$

- Partition all people into three sets $\mathrm{P} 1(\mathrm{X}), \mathrm{P} 2(\mathrm{X}), \mathrm{P} 3(\mathrm{X})$ s.t. any two friends are in different partitions

NO: equivalent to 3-coloring; NP-complete

- Find all people who are direct or indirect friends with Alice (connected in arbitrary length) NO: recursive query; PTIME yet not expressible in RA

Next: Datalog: extends monotone RA with recursion

Transitive closure (not expressible with RA)

Theorem: Datalog can express queries that RA (RC) cannot (e.g., transitive closure of a graph)

Transitive closure [edit]

Although relational algebra seems powerful enough for most practical purposes, there are some simple and natural operators on relations that cannot be expressed by relational algebra. One of them is the transitive closure of a binary relation. Given a domain D, let binary relation R be a subset of $D \times D$. The transitive closure R^{+}of R is the smallest subset of $D \times D$ that contains R and satisfies the following condition:

$$
\forall x \forall y \forall z\left((x, y) \in R^{+} \wedge(y, z) \in R^{+} \Rightarrow(x, z) \in R^{+}\right)
$$

It can be proved using the fact that there is no relational algebra expression $E(R)$ taking R as a variable argument that produces $R^{+} .{ }^{[7]}$

SQL however officially supports such fixpoint queries since 1999, and it had vendor-specific extensions in this direction well before that.

Appendix

In this appendix, we prove that the transitive closure of a relation cannot be couched as an expression of relational algebra. ${ }^{\dagger}$ It is interesting to note that both Bancilhon $[\mathrm{B}]$ andParedaens $[\mathrm{P}]$ in essence characterize relational algebra as equivalent to the set of mappings obeying principle 2 with respect to an empty set of predicates. However, transitive closure obeys this principle. There is no contradiction. In $[\mathrm{B}, \mathrm{P}]$ it is shown that for every relation r there is a relational algebra expression E such that $E(R)=R^{+}$, the transitive closure of R. What we show is that for no relational algebra expression E is $E(R)=R^{+}$ for all r.
Theorem 6. For an arbitrary binary relation R, there is no expression $E(R)$ in relational algebra equivalent to R^{+}, the transitive closure of R.
Suppose we have an expression $E(R)$ that is the transitive closure of R. Let $\Sigma_{l}=\left\{a_{1}, a_{2}, \ldots, a_{l}\right\}$ be a set of l arbitrary symbols. Let R_{I} be the finite relation $\left\{a_{1} a_{2}, a_{2} a_{3}, \ldots, a_{l-1} a_{l}\right\} . R_{l}$ represents the graph

We shall show that, for any relational expression E, there is some value of l for which $E\left(R_{l}\right)$ is not R_{l}^{+}. In particu-

Datalog \& ASP

- Datalog

$$
\begin{aligned}
& \text { Path }(x, y):-\operatorname{Arc}(x, y) . \\
& \text { Path }(x, z):-\operatorname{Arc}(x, y), \operatorname{Path}(y, z) . \\
& \operatorname{InCycle}(x):-\operatorname{Path}(x, x) .
\end{aligned}
$$

- Database query language designed in the 80's
- Simple, concise, elegant
- "Clean" (syntactic) restriction of Prolog with DB access
- Expressive \& declarative: Set-of-rules semantics, Independence of execution order, Invariance under logical equivalence
- Several open source implementations, mostly academic implementations

RelationalAI

- Recently a hot topic, beyond databases:
- network protocols, static program analysis, DB+ML

- Answer Set Programming (ASP):

- very powerful extension (with negation) that can model hard computational problems

Recursion with SQL server vs. Datalog

Listing 4.7 Using Common Table Expressions for Recursive Operations

USE AdventureWorks
WITH DirectReports (ManagerID, EmployeeID, EmployeeName, Title) AS
(
-- Anchor member definition
SELECT e.ManagerID, e.EmployeeID, c.FirstName + ' + + c.LastName, e.Title
FROM HumanResources.Employee AS e
INNER JOIN Person. Contact as c
ON e.ContactID = c.ContactID
WHERE ManagerID IS NULL
UNION ALL
-- Recursive member definition SELECT e.ManagerID, e.EmployeeID, c.FirstName + ' ' + c.LastName ,e.Title FROM HumanResources.Employee AS e
INNER JOIN DirectReports AS d
ON e.ManagerID = d.EmployeeID
INNER JOIN Person. Contact as c
ON e.ContactID = c.ContactID
)
-- Statement that executes the CTE
SELECT EmployeeID, EmployeeName, Title, ManagerID
FROM DirectReports
GO

Manager(eid) :- Manages(_, eid)

DirectReports(eid, 0) :-
Employee(eid), not Manager(eid)

DirectReports(eid, level+1) :-
DirectReports(mid, level), Manages(mid, eid)

SQL Query vs. Datalog: which would you rather write?

Possible scribe: to fix that example :)

Smallest set of features that would make relational algebra Turing complete

Asked 8 years, 4 months ago Active 5 years, 5 months ago Viewed 296 times

You need just two things: new values and recursion/while.

4 New values means the ability to execute some external function that returns values that were not already to be found in the database. Obviously most implementations (including SQL) have that.

$$
C T E=\text { common Table Expession }=W I T H \text { clause }
$$

Recursion/while means the ability to execute a loop or iterative computation that may not terminate. The CTE RECURSIVE feature of SQL is one such.

SQL with CTE RECURSIVE is Turing Complete (without stored procedures).

See the Alice book http://webdam.inria.fr/Alice/ for a detailed treatment.

Share Cite Improve this answer Follow

Jan Hidders, Database researcher
Answered 2 years ago • Author has 615 answers and 840 K answer views
Why is SQL not Turing complete?
Some variants of SQL, including some of the ISO standards, are actually Turing complete.

The most obvious example is SQL:1999 with the SQL/PSM extension, which adds stored procedures and therefore recursive functions and programming constructs that were intended to turn SQL into a programming language.

A less obvious example is SQL:2003 without stored procedures. It can be shown to be Turing complete using a clever combination of recursive queries (using Common Table Expressions) and Windowing, the first introduced in SQL:1999 and the latter since SQL:2003. See: http://assets.en.oreilly.com/1/event /27/High\%20Performance\%20SQL\%20with\%20PostgreSQL\%20Presentation.pd f[주).

Nevertheless, it is true that the core of SQL was deliberately designed to be not Turing complete. The main reasons for this are:

1. By restricting the query language the programmer is encouraged to separate the computational task into a part that can be efficiently computed and optimised by the DBMS (namely the part that can be formulated in SQL) and a part that the programmer probably can better implement by themselves.
2. By restricting the query language to computations that always terminate and can be computed in polynomial time and logarithmic space, we can reduce the risk of burdening the database server with a workload that it cannot deal with.

Cyclic Tag System

```
This SQL query (requires PostgreSQL 8.4) forms a cyclic tag system (wikipedia (3), which is sufficient to demonstrate that
SQL is Turing-complete. It is written entirely in SQL:2003-conformant SQL.
Thanks to Andrew (RhodiumToad) Gierth, who came up with the concept and wrote the code.
The productions are encoded in the table "p" as follows:
    "iter" is the production number;
    "tag" is the bit value.
This example uses the productions
    110010000
The initial state is encoded in the non-recursive union arm, in this case just '1
The mod(r.iter, n) subexpression encodes the number of productions, which can be greater than the size of table "p", because empty productions are
ot included in the table.
Parameters:
    the content of "p"
```



```
"p" encodes the production rules; the non-recursive branch is the initial state, and the 3 is the number of rules
The result at each level is a bitstring encoded as }1\mathrm{ bit per row, with rnum as the index of the bit number.
t each iteration, bit 0 is removed, the remaining bits shifted up one, and if and only if bit 0 was a 1, the content of the current production rule is
appended at the end of the string.

\section*{Fun Snippets}

\section*{The initial state is encoded in the non-recursive union arm, in this case just ' 1}
```

mod(fiter, n) subexpression encodes the number of productions, which can be greater than the size of table "p", because empty productions are Parameters
the content of "p"
the content of
the content of the non-recursive branch
the 3 in mod $(r . i$ iter, 3)
" p " encodes the production rules; the non-recursive branch is the initial state, and the 3 is the number of rules
The result at each level is a bitstring encoded as 1 bit per row, with rnum as the index of the bit number.
and a me mithy

```
```

WITH RECURSTVE

```
WITH RECURSTVE
```

WITH RECURSTVE
p(iter, rum, tag) AS
p(iter, rum, tag) AS
p(iter, rum, tag) AS
VALUES
$(10,0,1),(0,1,1),(0,2,0)$,
$(1,1,1)$,
VALUES
$(10,0,1),(0,1,1),(0,2,0)$,
$(1,1,1)$,
VALUES
$(10,0,1),(0,1,1),(0,2,0)$,
$(1,1,1)$,
) $(2,0,0),(2,1,0),(2,2,0),(2,3,0)$

```
```

) \((2,0,0),(2,1,0),(2,2,0),(2,3,0)\)
    ```
```

) \((2,0,0),(2,1,0),(2,2,0),(2,3,0)\)
    ```
```



```
```

 union all
    ```
```

 union all
    ```
```

 union all
 \(\underset{\text { SELECT }}{\text { UNION ALL }}\) r.iter +1 ,
 \(\underset{\text { SELECT }}{\text { UNION ALL }}\) r.iter +1 ,
 \(\underset{\text { SELECT }}{\text { UNION ALL }}\) r.iter +1 ,
 WHEN r.rnum=0 THEN p.rnum + max(r. rnum) OVER ()
 ELSE r. rnum-1
WHEN r.rnum=0 THEN p.rnum + max(r. rnum) OVER ()
ELSE r. rnum-1
WHEN r.rnum=0 THEN p.rnum + max(r. rnum) OVER ()
ELSE r. rnum-1
END,
END,
END,
WHEN r.rnum=0 THEN p.tag
ELSE r.tag
WHEN r.rnum=0 THEN p.tag
ELSE r.tag
WHEN r.rnum=0 THEN p.tag
ELSE r.tag
END
END
END
FROM

```
```

 FROM
    ```
```

 FROM
    ```
```



```
```

 WHERE
    ```
```

 WHERE
    ```
```

 WHERE
 or. rnum>0 p . iter IS Not null
 or. rnum>0 p . iter IS Not null
 or. rnum>0 p . iter IS Not null
 SELECT iter, rnum, tag
SELECT iter, rnum, tag
SELECT iter, rnum, tag
FROM r iter, rnum, tas
FROM r iter, rnum, tas
FROM r iter, rnum, tas
${ }_{\text {ORDER }}^{\text {PROM }}{ }^{r}$ BY iter, rnum;

```
\({ }_{\text {ORDER }}^{\text {PROM }}{ }^{r}\) BY iter, rnum;
```

${ }_{\text {ORDER }}^{\text {PROM }}{ }^{r}$ BY iter, rnum;

```
```

 r
    ```
    r
```

 r
 WHERE
    ```
    WHERE
```

 WHERE
    ```
 Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Cyclic tag systems
[ edit]

\section*{Cyclic Tag System}

A cyclic tag system is a modification of the original tag system. The alphabet consists of only two symbols, \(\mathbf{0}\) and \(\mathbf{1}\), and the production rules comprise a list of productions considered sequentially, cycling back to the beginning of the list after considering the "last" production on the list. For each production, the leftmost symbol of the word is examined-if the symbol is \(\mathbf{1}\), the current production is appended to the right end of the word; if the symbol is \(\mathbf{0}\), no characters are appended to the word; in either case, the leftmost symbol is then deleted. The system halts if and when the word becomes empty.

\section*{Example [edit}
```

Cyclic Tag System
Productions: (010, 000, 1111)

| Computation
 Initial Word:
 Production | |
| :---: | :--- |
| 01001 | Word |
| 000 | -11001 |
| 1111 | 1001010 |
| 010 | 001010000 |
| 000 | 01010000 |
| 1111 | 1010000 |
| 010 | 010000000 |
| . | 10000000 |
| . | . |

```

Cyclic tag systems were created by Matthew Cook and were used in Cook's demonstration that the Rule 110 cellular automaton is universal. A key part of the demonstration was that cyclic tag systems can emulate a Turingcomplete class of tag systems.
```

This SQL query (requires PostgreSQL 8.4) forms a cyclic tag system (wikipedia (अ), which is sufficient to demonstrate that
SQL is Turing-complete. It is written entirely in SQL:2003-conformant SQL.
Thanks to Andrew (RhodiumToad) Gierth, who came up with the concept and wrote the code.
The productions are encoded in the table "p" as follows:
"iter" is the production number;
"rnum" is the index of
This example uses the productions:

```

Fun Snippets
Cyclic Tag Syste
Works with PostgreSQL
8.4

\section*{Written in}
sQL
Depends on Nothing
```

xample uses the productions:

```

\section*{10010000 \\ 110010000}

The initial state is encoded in the non-recursive union arm, in this case just ' 1 '
The mod(r.iter, n) subexpression encodes the number of productions, which can be greater than the size of table " p ", because empty productions are ot included in the table.
Parameters:
\[
\begin{aligned}
& \text { the content of ""p" } \\
& \text { the content of the non-recursive branch } \\
& \text { the } 3 \text { in mod }(r \text {. iter, } 3)
\end{aligned}
\]
"p" encodes the production rules; the non-recursive branch is the initial state, and the 3 is the number of rules
The result at each level is a bitstring encoded as 1 bit per row, with rnum as the index of the bit number.
At each iteration, bit 0 is removed, the remaining bits shifted up one, and if and only if bit 0 was a 1 , the content of the current production rule is appended at the end of the string.
```

WITH RECURSIVE
(iter, rnum, tag
p (iter, rnum, tag) A
VALUES $(0,0,1),(0,1,1),(0,2,0)$,

```
SELECT iter, rnum, tag
SELECT iter, rnum, tas
FROMr
ORDER \({ }^{\text {BY }}\) iter, rnum;
```



```
```

 UNION ALL
 SELECT
CASE
C.iter

```
```

 UNION ALL
 SELECT
CASE
C.iter
WHEN r.rnum=0 THEN p. rnum + max (r. rnum) OVER ()
ELSE
r. rnumm-1
WHEN r.rnum=0 THEN p. rnum + max (r. rnum) OVER ()
ELSE
r. rnumm-1
EAD,
EAD,
WLSN r.rnum=0 THEN p.tag
WLSN r.rnum=0 THEN p.tag
END ELSE r.tag
END ELSE r.tag
FROM
FROM
LeFT Jo

```
```

 LeFT Jo
    ```
```



```
```

 WHERE
    ```
```

 WHERE
 OR p. iter IS NOT NULL
 OR p. iter IS NOT NULL
    ```
) \((2,0,0),(2,1,0),(2,2,0),(2,3,0)\)
```

```
) \((2,0,0),(2,1,0),(2,2,0),(2,3,0)\)
```

https://www.quora.com/Why-is-relational-algebra-not-Turing-complete, https://wiki.postgresql.org/wiki/Cyclic Tag System ,https://en.wikipedia.org/wiki/Tag system\#Cyclic tag systems

Query Language Design

Query language design is still a popular topic, especially for graphs. See e.g. https://www.tigergraph.com/gsql/

And the slides
https://courses.cs.washington.edu/courses/csed516/20au/le ctures/lecture05-advanced-query-evaluation.pdf from "DATA516/CSED516: Scalable Data Systems and Algorithms!" Dan Suciu
https://courses.cs.washington.edu/courses/csed516/20au/

Outline: T1-4: Datalog \& ASP

- Datalog
- Datalog rules
- Datalog vs. RA
- Recursion
- Recursion in SQL [moved here from T1-U1: SQL]
- Semantics
- Naive and Semi-naive evaluation (Incremental View Maintenance)
- Chase Procedure (and Decompositions=Factorizations)
- Datalog \urcorner : Datalog with stratified negation
- Datalog ${ }^{ \pm}$
- Answer Set Programming (ASP)

Datalog: Facts and Rules

Facts: tuples in the database
Actor(344759,"Douglas", "Fowley"). Plays(344759, 7909). Plays(344759, 29000). Movie(7909, "A Night in Armour", 1910). Movie(29000, "Arizona", 1940). Movie(29445, "Ave Maria", 1940).

Schema
Actor(id, fname, Iname) Plays(aid, mid)
Movie(id, name, year)
Rules: queries
(notice position matters: unnamed perspective)
Q1(y) :- Movie(x, y, z), $z=1940$.

?

$$
\begin{array}{r}
\text { Q3(f,I) :- Actor(z,f,l), Plays(z,x1), Movie(x1,y1,1910), } \\
\text { Plays(z,x2), Movie(x2,y2,1940). }
\end{array}
$$

Datalog: Facts and Rules

Facts: tuples in the database
Actor(344759,"Douglas", "Fowley"). Plays(344759, 7909). Plays(344759, 29000). Movie(7909, "A Night in Armour", 1910). Movie(29000, "Arizona", 1940). Movie(29445, "Ave Maria", 1940).

Schema
Actor(id, fname, Iname) Plays(aid, mid)
Movie(id, name, year)

Rules: queries

(notice position matters: unnamed perspective)
Q1(y) :- Movie(x,y,z), z=1940.

Find movies from 1940
Q2(f,I) :- Actor(u,f,I), Plays(u,x),
Movie $(x, y, z), z<1940$.

$$
\begin{array}{r}
\text { Q3(f,I) :- Actor(z,f,l), Plays(z,x1), Movie(x1,y1,1910), } \\
\text { Plays(z,x2), Movie(x2,y2,1940). }
\end{array}
$$

Datalog: Facts and Rules

Facts: tuples in the database
Actor(344759,"Douglas", "Fowley"). Plays(344759, 7909). Plays(344759, 29000). Movie(7909, "A Night in Armour", 1910). Movie(29000, "Arizona", 1940). Movie(29445, "Ave Maria", 1940).

Schema
Actor(id, fname, Iname) Plays(aid, mid)
Movie(id, name, year)

Rules: queries

(notice position matters: unnamed perspective)
Q1(y) :- Movie(x,y,z), z=1940.

Find movies from 1940

$$
\begin{aligned}
\text { Q2(f,l) :- } & \text { Actor(u,f,l), Plays(u,x), } \\
& \operatorname{Movie}(x, y, z), z<1940 .
\end{aligned}
$$

Find actors who played in a movie before 1940

$$
\begin{array}{r}
\text { Q3(f,l) :- Actor(z,f,l), Plays(z,x1), Movie(x1,y1,1910), } \\
\text { Plays(z,x2), Movie(x2,y2,1940). }
\end{array}
$$

Datalog: Facts and Rules

Facts: tuples in the database
Actor(344759,"Douglas", "Fowley"). Plays(344759, 7909). Plays(344759, 29000). Movie(7909, "A Night in Armour", 1910). Movie(29000, "Arizona", 1940). Movie(29445, "Ave Maria", 1940).

Schema
Actor(id, fname, Iname) Plays(aid, mid) Movie(id, name, year)

Rules: queries

(notice position matters: unnamed perspective)
Q1(y) :- Movie(x,y,z), z=1940.

Find movies from 1940

$$
\begin{aligned}
\text { Q2(f,l) :- } & \text { Actor(u,f,l), Plays(u,x), } \\
& \operatorname{Movie}(x, y, z), z<1940 .
\end{aligned}
$$

Find actors who played in a movie before 1940

$$
\begin{array}{r}
\text { Q3(f,I) :- Actor(z,f,l), Plays(z,x1), Movie(x1,y1,1910), } \\
\text { Plays(z,x2), Movie(x2,y2,1940). }
\end{array}
$$

Find actors who played in a movie from 1910 and from 1940

Datalog: Facts and Rules

Facts: tuples in the database
Actor(344759,"Douglas", "Fowley"). Plays(344759, 7909). Plays(344759, 29000). Movie(7909, "A Night in Armour", 1910). Movie(29000, "Arizona", 1940). Movie(29445, "Ave Maria", 1940).

Schema
Actor(id, fname, Iname) Plays(aid, mid) Movie(id, name, year)

Rules: queries

(notice position matters: unnamed perspective)
Q1(y) :- Movie(x,y,z), z=1940.

Find movies from 1940

$$
\begin{aligned}
\text { Q2(f,l) :- } & \text { Actor(u,f,l), Plays(u,x), } \\
& \operatorname{Movie}(x, y, z), z<1940 .
\end{aligned}
$$

Find actors who played in a movie before 1940

$$
\begin{array}{r}
\text { Q3(f,I) :- Actor(z,f,l), Plays(z,x1), Movie(x1,y1,1910), } \\
\text { Plays(z,x2), Movie(x2,y2,1940). }
\end{array}
$$

Find actors who played in a movie from 1910 aydd from 1940

Datalog: Facts and Rules

Facts: tuples in the database
Actor(344759,"Douglas", "Fowley"). Plays(344759, 7909). Plays(344759, 29000). Movie(7909, "A Night in Armour", 1910). Movie(29000, "Arizona", 1940). Movie(29445, "Ave Maria", 1940).

Schema
Actor(id, fname, Iname) Plays(aid, mid)
Movie(id, name, year)
Rules: queries
(notice position matters: unnamed perspective)
Q1(y) :- Movie(x,y,z), z=1940.
Find movies from 1940

$$
\begin{aligned}
\text { Q2(f,l) :- } & \text { Actor(u,f,l), Plays(u,x), } \\
& \operatorname{Movie}(x, y, z), z<1940 .
\end{aligned}
$$

Find actors who played in a movie before 1940

```
Q4(f,I) :- Actor(z,f,I), Plays(z,x1), Movie(x1,y1,1910).
Q4(f,I) :- Actor(z,f,l), Plays(z,x2), Movie(x2,y2,1940).
```

Find actors who played in a movie from 1910 ayd from 1940
Extensional Database (EDB) predicates: Actor, Plays, Movie
Intensional Database (IDB) predicates: Q1, Q2, Q3, Q4

Example with Souffle command line if run from the same directory: souffle movie.dl

movie.dl

.decl) Actor(id:number, fname:symbol, Iname:symbol) .decl Plays(aid:number, mid:number) .decl Movie(id:number, name:symbol, year:number) Actor(344759,"Douglas", "Fowley"). Plays(344759, 7909).
Plays (344759, 29000).
Movie(7909, "A Night in Armour", 1910).
Movie (29000, "Arizona", 1940).
Movie (29445, "Ave Maria", 1940).
.decl Q2(fname:symbol, Iname:symbol)
 .output Q2

Schema
Actor(id, fname, Iname) Plays(aid, mid)
Movie(id, name, year)
movie

[^0]Datalog example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
also allows to specify specific input and output directories
souffle - - D. movie.dl

Topic 1: Data models and query languages Unit 4: Datalog Lecture 9

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
https://northeastern-datalab.github.io/cs7240/sp24/
2/9/2024

Pre-class conversations

- Last class summary
- Project discussions (in 1 weeks: Fri 2/16: first project ideas)
- today:
- Recursion (Datalog)
- next week:
- what happens if we add negation? Answer: it depends on how we do it.
- Datalog with stratified negation
- Datalog with more genal negation (stable models), leads to ASP

Syntax of rules

- evaluates to true when relation R_{i} contains the tuple described by argsi
- e.g. Actor(344759,"Douglas","Fowley") is true
$\mathrm{R}_{\mathrm{i}}\left(\operatorname{args}_{\mathrm{i}}\right)$: relational predicate with arguments (= atom / subgoal)

Q2(f,l) :- Actor(u,f,l), Plays(u,x), Movie(x,y,z), z<1940.
head
(or consequent)
single IDB atom
body
(or antecedent)
conjunction of atoms
$\{f, \mid\}$: head variables $\{u, x, y, z\}$: existential variables

Logical interpretation of a single rule
Q(y) :- Movie(x, y, z), $z<1940$.
Actor(id, fname, Iname) Plays(aid, mid)
Movie(id, name, year)

Meaning of a Datalog rule is a logical statement:

Logical interpretation of a single rule
Q(y) :- Movie(x, y, z), $z<1940$.
Actor(id, fname, Iname) Plays(aid, mid)
Movie(id, name, year)

Meaning of a Datalog rule is a logical statement:
For all x, y, z : if $(x, y, z) \in$ Movies and $z<1940$ then y is in Q (i.e. is part of the answer)
$\forall x, y, z[(\operatorname{Movie}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \wedge \mathrm{z}<1940) \Rightarrow \mathrm{Q}(\mathrm{y})]$

Ignoring the case of an empty movie table, logically equivalent to

Logical interpretation of a single rule
Q(y) :- Movie(x, y, z), $z<1940$.
Actor(id, fname, Iname) Plays(aid, mid)
Movie(id, name, year)

Meaning of a Datalog rule is a logical statement:
For all x, y, z : if $(x, y, z) \in$ Movies and $z<1940$ then y is in Q (i.e. is part of the answer)
$\forall x, y, z[(M o v i e(x, y, z) \wedge z<1940) \Rightarrow Q(y)]$

Ignoring the case of an empty movie table, logically equivalent to
$\forall y[\exists x, z[\operatorname{Movie}(x, y, z) \wedge z<1940] \Rightarrow Q(y)]$
Thus, non-head variables are called "existential variables"
compare with DRC

Logical interpretation of a single rule
Q(y) :- Movie(x, y, z), $z<1940$.
Actor(id, fname, Iname) Plays(aid, mid)
Movie(id, name, year)

Meaning of a Datalog rule is a logical statement:
For all x, y, z : if $(x, y, z) \in$ Movies and $z<1940$ then y is in Q (i.e. is part of the answer)
$\forall x, y, z[(\operatorname{Movie}(x, y, z) \wedge z<1940) \Rightarrow Q(y)]$

Ignoring the case of an empty movie table, logically equivalent to

$$
\{(\mathrm{y}) \mid \exists \mathrm{x}, \mathrm{z}[\operatorname{Movie}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \wedge \mathrm{z}<1940]\}
$$

Logical interpretation of a single rule
Q(y) :- Movie(x, y, z), $z<1940$.

Meaning of a Datalog rule is a logical statement:
For all x, y, z : if $(x, y, z) \in$ Movies and $z<1940$ then y is in Q (i.e. is part of the answer)
$\forall x, y, z[(\operatorname{Movie}(x, y, z) \wedge z<1940) \Rightarrow Q(y)]$

Ignoring the case of an empty movie table, logically equivalent to

$$
\forall y[\exists x, z[\operatorname{Movie}(x, y, z) \wedge z<1940]=Q(y)] \quad \begin{aligned}
& \text { Thus, non-head variables are } \\
& \text { called "existential variables" }
\end{aligned}
$$

We want the smallest set Q
compare with DRC

$$
\{(\mathrm{y}) \mid \exists \mathrm{x}, \mathrm{z}[\operatorname{Movie}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \wedge \mathrm{z}<1940]\}
$$

Syntactic Constraints

$$
Q(x):-R_{1}\left(x_{1}, y_{1}\right), \ldots, R_{m}\left(x_{m}, y_{m}\right) .
$$

The rule stands for the following logical formula:

$$
\forall \mathrm{x}\left[\mathrm{Q}(\mathrm{x}) \Leftarrow \exists \mathrm{y}\left[\mathrm{R}_{1}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \wedge \cdots \wedge \mathrm{R}_{\mathrm{m}}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}}\right)\right]\right]
$$

head

Recall we want the smallest set Q with this property
Two restrictions:

1. Safety: every head variable should occur in the body at least once

$$
R(x, z):-S(x, y), R(y, x) .
$$

Syntactic Constraints

$$
Q(x):-R_{1}\left(x_{1}, y_{1}\right), \ldots, R_{m}\left(x_{m}, y_{m}\right) .
$$

$\mathrm{x}_{\mathrm{i}} \subseteq \mathrm{x}, \mathrm{y}_{\mathrm{i}} \subseteq \mathrm{y}$
(bold $=$ vector notation)

The rule stands for the following logical formula:

$$
\forall \mathrm{x}\left[\mathrm{Q}(\mathrm{x}) \Leftarrow \exists \mathrm{y}\left[\mathrm{R}_{1}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \wedge \cdots \wedge \mathrm{R}_{\mathrm{m}}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}}\right)\right]\right]
$$

Two restrictions:

1. Safety: every head variable should occur in the body at least once
```
R(x,z):-S(x,y),R(y,x). forbidden rule:z not in body
```

2. The head predicate must be an IDB (Intensional) predicate
(Body can include both EDBs and IDBs)

$$
\operatorname{Arc}(x, y):-\operatorname{Arc}(x, z), \operatorname{Arc}(z, y) .
$$

Souffié

Getting Started
Welcome

Install Soufflé
Build Souffié
A Simple Example
Run Soufflé
Examples
Tutorial
Source Code and Documentation
Developer Tutorial
Applications
Language
Advanced Topics
Publications

Welcome

() Edit me[B

Soufflé is a logic programming language inspired by Datalog. It overcomes some of the limitations in classical Datalog. For example, programmers are not restricted to finite domains, and the usage of functors (intrinsic, user-defined, records/constructors, etc.) is permitted. Soufflé has a component model so that large logic projects can be expressed. Soufflé was initially designed for crafting static analysis in logic at Oracle Labs. Since then, there have been many other applications written in the Soufflé language, including applications in reverse engineering, network analysis and data analytics.

Soufflé provides the ability to rapid prototype and make deep design space explorations possible. A wide range of applications have been implemented in the Soufflé language, e.g., static program analysis for Java DOOP [
 analysis for smart contracts Gigahorse[$\overline{3}$, Securify ${ }^{\top}$, Secuify V2.0[], VANDAL[3 . More applications are listed here.

Soufflé language project is led by Prof Bernhard Scholz[^, and commenced at Oracle Labs in Brisbane[̉. Soufflé was opensourced in March 2016. It is actively supported by universities and industrial research labs. The main contributors to this project have been The University of Sydney [\mathcal{J}, the University of Innsbruck[J, the University College London [$]$, the University of Athens[], Oracle Labs, Brisbane[], and many more.

One of the major challenges in logic programming is performance and scalability. Soufflé applies advanced compilation techniques for logic programs. We use a range of techniques to achieve high-performance: Futamura Projections, stagedcompilation with a new abstract machine, partial evaluation, and parallelization with highly-parallel data-structures.

[^1]
Introduction to Datalog

Overview

Datalog is a (declarative) logic-based query language, allowing the user to perform recursive queries. It adopts syntax in the style of Prolog. In its pure form, it is based on a decidable fragment of first-order logic (FOL). Here, the universe - the collection of elements by which computation can be performed within - is finite, and functors are not permitted. Applications of Datalog include program analysis, security, graph databases, and declarative networking.

Soufflé: The Language

Motivation

The syntax of Soufflé is inspired by implementations of Datalog, namely bddbddb \mathcal{B} and muZ in Z3[\mathcal{B}. There is no unified standard for the specification of Datalog syntax. Thus, each implementation of Datalog may differ. A principle goal of the Soufflé project is speed, tailoring program execution to multi-core servers with large amounts of memory. With this in mind, Soufflé provides software engineering features (components, for example) for large-scale logic-oriented programming. For practical usage, Soufflé extends Datalog to make it Turing-equivalent throug arithmetic functors. this results in the ability of the programmer to write programs that may never terminate. An example of non-termination is a program where the fact $A(0)$. and rule $A(i+1):-A(i)$. exist without additional constraints. This causes Soufflé to attempt to output an infinite number of relations $A(n)$ where $n>=0$. This is in some way analogous to an infinite while loop in an imperative programming language like C . However, the increased expressiveness afforded by arithmetic functors is very convenient for programming.

Grounded variables

However, note that the following example has an ungrounded variable:

```
.decl fib(idx:number, value:number)
fib(1,1).
fib(2,1).
fib(idx, x + y) :- fib(idx-1, x), fib(idx-2, y), idx <= 10.
.output fib
```

The reason for this is that variable idx is not bound as an argument of a positive predicate in the body. In the example, variable idx occurrs in the predicates $\mathrm{fib}(\mathrm{idx}-1, \mathrm{x}$) and fib(10x-2, y) but as arguments of a functor rather than as a direct argument.

Error: Ungrounded variable id in file fibonacci-wrong.dl at line 12 fib(id, x+y) :- fib(id-1, x), fib(id-2, y), id <= 10.

1 errors generated, evaluation aborted

what can be done?

Grounded variables

However, note that the following example has an ungrounded variable:

```
.decl fib(idx:number, value:number)
fib(1,1).
fib(2,1).
fib(idx, x + y) :- fib(idx-1, x), fib(idx-2, y), idx <= 10.
.output fib
```

The reason for this is that variable idx is not bound as an argument of a positive predicate in the body. In the example, variable idx occurrs in the predicates $\mathrm{fib}(\mathrm{idx}-1, \mathrm{x}$) and fib(10x-2, y) but as arguments of a functor rather than as a direct argument. To make variable idx bound, we can shift the index by one and obtain a program whose variables are grounded:

And the program can produce the following output,

$\begin{aligned} & \text { fib } \\ & \text { idx } \end{aligned}$	value
1	1
2	1
3	2
4	3
5	5
6	8
7	13
8	21
9	34
10	55

Source: $\underline{\text { https://souffle-lang.github.io/rules }}$

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Grounded variables

souffle fibonacci.dl

fibonacci.dl
.decl fib(key:number, value:number)
.output fib
fib (1, 1).
fib $(2,1)$.
fib(id+2, $x+y$) :- fib(id, $x)$, fib(id+1, y), id $<=13$.

Grounded variables

souffle fibonacci.dl

fibonacci.dl

```
    .decl fib(key:number, value:number)
    .output fib
fib(1, 1).
fib(2, 1).
fib(id+2,x+y) :- fib(id, x), fib(id+1, y), id <= 13.
```


fib.csv

11
21
$3 \quad 2$
43
$5 \quad 5$
68
$7 \quad 13$
$8 \quad 21$
$9 \quad 34$
1055
1189
12144
13233
14377
15610

Outline: T1-4: Datalog \& ASP

- Datalog
- Datalog rules
- Datalog vs. RA
- Recursion
- Recursion in SQL [moved here from T1-U1: SQL]
- Semantics
- Naive and Semi-naive evaluation (Incremental View Maintenance)
- Chase Procedure (and Decompositions=Factorizations)
- Datalog 7 : Datalog with stratified negation
- Datalog ${ }^{ \pm}$
- Answer Set Programming (ASP)

RA to Datalog by examples: Union
RA:

$$
R(A, B, C) \cup S(D, E, F)
$$

Datalog:
?

RA to Datalog by examples: Union
RA:

$$
R(A, B, C) \cup S(D, E, F)
$$

Datalog:

$$
\begin{aligned}
& Q(x, y, z):-R(x, y, z) \\
& Q(x, y, z):-S(x, y, z)
\end{aligned}
$$

IDB EDB
?

RA to Datalog by examples: Union
RA:

$$
R(A, B, C) \cup S(D, E, F)
$$

Datalog:

$$
\begin{aligned}
& Q(x, y, z):-R(x, y, z) \\
& Q(x, y, z):-S(x, y, z)
\end{aligned}
$$

IDB EDB

RA to Datalog by examples: Intersection
RA:

$$
R(A, B, C) \cap S(D, E, F)
$$

Datalog:
?

RA:

$$
R(A, B, C) \cap S(D, E, F)
$$

Datalog:

$$
Q(x, y, z):-R(x, y, z), S(x, y, z)
$$

RA:

$$
\sigma_{\mathrm{B}=\text { 'Alice' } \wedge \mathrm{C}>10}(\mathrm{R})
$$

Datalog:
?

RA to Datalog by examples: Selection
RA:

$$
\sigma_{B=\text { 'Alice' }^{\prime} \wedge \mathrm{C}>10}(\mathrm{R})
$$

Datalog:
$Q(x, y, z):-R(x, y, z), y=$ 'Alice' $^{\prime}, z>10$
(also: $Q(x, y, z):-R(x, ' A l i c e ', z), z>10)$

RA:

$$
\sigma_{B=\text { 'Alice' } \wedge C>10}(R)
$$

Datalog:

$$
Q(x, y, z):-R(x, y, z), y=' A l i c e ', z>10
$$

RA:

$$
\sigma_{B=' A l i s e ' ~} \vee \mathrm{C}>10(\mathrm{R})
$$

?

RA:

$$
\sigma_{B=' \text { 'Alice' } \wedge C>10}(R)
$$

Datalog:

$$
Q(x, y, z):-R(x, y, z), y=' A l i c e ', z>10
$$

RA:
$\sigma_{B=' A l i c e ' ~ v C>10}(R)$
Datalog:

$$
\begin{aligned}
& Q(x, y, z):-R(x, y, z), y=' \text { Alice' }^{\prime} \\
& Q(x, y, z):-R(x, y, z), z>10
\end{aligned}
$$

RA to Datalog by examples: Projection
RA:

$$
\pi_{A}(R)
$$

$$
\pi_{-B, C}(R)
$$

Datalog: ?

RA to Datalog by examples: Projection
RA:

$$
\pi_{A}(R)
$$

$$
\pi_{-B, C}(R)
$$

Datalog:
$Q(x):-R(x, y, z)$
$Q(x):-R(x, \ldots,-)$

Underscore denotes an "anonymous variable". Each occurrence of an underscore represents a different variable

RA to Datalog by examples: Equi-join
RA:

$$
\pi_{-D, E}\left(R \triangleright \bowtie_{A=D \wedge B=E} S\right)
$$

Datalog:
?

RA: $\pi_{A D, C, F}$

$$
\pi_{-D, E}^{\downarrow}(\underbrace{R \bowtie \bowtie_{A=D} \wedge B=E} S)
$$

Datalog:
A, B, C, D, f, F
$:-R(x, y, z), S(x, y, w)$
(also: $Q(x, y, z, w):-R(x, y, z), S(u, v, w), x=u, y=v)$

RA to Datalog by examples: Difference
RA:
R-S

Datalog: ?

RA to Datalog by examples: Difference
RA:
R-S

Datalog: (we need to add negation)
$R(A, B, C)$

$$
\begin{gathered}
Q(x, y, z):-R(x, y, z), \operatorname{not} S(x, y, z) \\
\text { SAFETY }
\end{gathered}
$$

We have a long discussion later on what can go wrong if you are not careful about how you define negation

Outline: T1-4: Datalog \& ASP

- Datalog
- Datalog rules
- Datalog vs. RA

- Recursion

- Recursion in SQL [moved here from T1-U1: SQL]
- Semantics
- Naive and Semi-naive evaluation (Incremental View Maintenance)
- Chase Procedure (and Decompositions=Factorizations)
- Datalog 7 : Datalog with stratified negation
- Datalog ${ }^{ \pm}$
- Answer Set Programming (ASP)

Recursion

Recursion occurs when a thing is defined in terms of itself (self-repetition).

Recursion and Iteration both repeatedly execute a set of instructions.

- Recursion (self-similarity) is when a statement in a function calls itself repeatedly.
- Iteration (repetition) is when a loop repeatedly executes until the controlling condition becomes false.

A Datalog program consists of several rules:

- Usually there is one distinguished predicate that's the output
- Rules can be recursive!

Example

recursion due to

What does this query compute?

S	T
1	2
1	4
2	1
2	3
3	4
4	5

?

Example

For all nodes x and y :
If there is an Arc from x to y, then there is a Path from x to y.

For all nodes x, z, and y :
If there is an Arc from x to z, and there is a Path from z to y then there is a Path from x to y.

Example

$$
\begin{array}{l|l}
\text { EDB } & P(x, y):-A(x, y) . \\
\text { IDB } & P(x, y):-A(x, z), P(z, y) .
\end{array}
$$

$1^{\text {st }}$ iteration P

Initially: P is empty

A | S | T |
| :---: | :---: |
| 1 | 2 |
| 1 | 4 |
| 2 | 1 |
| 2 | 3 |
| 3 | 4 |
| 4 | 5 |

$?$

EDB $\quad P(x, y):-A(x, y)$.
IDB $\quad P(x, y):-A(x, z), P(z, y)$.
$1^{\text {st }}$ iteration $\quad 2^{\text {nd }}$ iteration

A | S | T |
| :---: | :---: |
| 1 | 2 |
| 1 | 4 |
| 2 | 1 |
| 2 | 3 |
| 3 | 4 |
| 4 | 5 |

$2^{\text {nd }}$ rule generates
nothing (because
P is empty)

Example

A | S | T |
| :---: | :---: |
| 1 | 2 |
| 1 | 4 |
| 2 | 1 |
| 2 | 3 |
| 3 | 4 |
| 4 | 5 |

$P(x, y):-A(x, y)$.
$P(x, y):-A(x, z), P(z, y)$.

$2^{\text {nd }}$ iteration
 $3^{\text {rd }}$ iteration

P| 1 | 2 |
| :---: | :---: |
| 2 | 1 |
| 2 | 3 |
| 1 | 4 |
| 3 | 4 |
| 4 | 5 |\quad| $P=A$ from |
| :--- |
| $1^{\text {st }}$ rule |

$2^{\text {nd }}$ rule generates
nothing (because P is emp+y)

P| 1 2
 2 1
 2 3
 1 4
 3 4
 4 5
 1 1
 2 2 | $1^{\text {st }}$ rule |
| :--- | :--- |

Example

EDB $\quad P(x, y):-A(x, y)$.
IDB $\quad P(x, y):-A(x, z), P(z, y)$.
A(S,T)
recall set semantics! (No new facts)
$1^{\text {st }}$ iteration
$2^{\text {nd }}$ iteration $3^{\text {rd }}$ iteration $=4^{\text {th }}$ iteration

S	T
1	2
1	4
2	1
2	3
3	4
4	5

$2^{\text {nd }}$ rule generates
nothing (because P is emp+y)
P
$\left.\begin{array}{|ll|}\hline 1 & 2 \\ \hline 2 & 1 \\ \hline 2 & 3 \\ \hline 1 & 4 \\ \hline 3 & 4 \\ \hline 4 & 5 \\ \hline \hline 1 & 1 \\ \hline 2 & 2 \\ \hline 1 & 3 \\ \hline 2 & 4 \\ \hline 1 & 5 \\ \hline 3 & 5 \\ \hline\end{array}\right\} 2^{\text {st }}$ rule

New facts from $2^{\text {nd }}$ rule

souffle graph1.dl graph1.dl

Example with Souffle

A.facts input
1 2 2 1 2 3 1 4 3 4 tab-separated, 4 5 input filename: ".facts" .decl $P(S$:number, T:number, T.number)

$A(S, T)$
graph2
souffle graph2.dl

What is a principled process to determine if a program is recursive?

```
    Local(x) :- Person(x,y,'MA').
    Relative(x,x) :- Person(x,y,z).
    Relative(x,y) :- Relative(x,z),Parent(z,y).
    Relative(x,y) :- Relative(x,z),Parent(y,z).
Relative(x,y) :- Relative(x,z),Spouse(z,y).
    Invited(y) :- Relative('myself',y),Local(y).
```

 Local \((x)\) :- Person \(\left(x, y,{ }^{\prime} \mathrm{MA}^{\prime}\right)\).
 2 Relative (\mathbf{x}, x) :- Person $(\mathrm{x}, \mathrm{y}, \mathrm{z})$.
Invited(y) :- Relative('myself', y), Local(\mathbf{y}).

```
MayLike(x,y) :- Close(x,z),Likes(z,y).
    Visit(x,y) :- MayLike(x,y).
    Close(x,z) :- Visit(x,y),Visit(z,y).
```


Dependency Graph

- The dependency graph of a Datalog program is the directed graph (V,E) where
- V is the set of IDB predicates (relation names)
- E contains an arc $S \rightarrow T$ whenever there is a rule with T in the head and S in the body
- A Datalog program is recursive if its dependency graph contains a cycle

Which of these programs is recursive?

```
    Local(x) :- Person(x,y,'MA').
Relative(x,x) :- Person(x,y,z).
Relative(x,y) :- Relative(x,z),Parent(z,y).
Relative(x,y) :- Relative(x,z),Parent(y,z).
Relative(x,y) :- Relative(x,z),Spouse(z,y).
    Invited(y) :- Relative('myself',y),Local(y).
```

```
Local(x) :- Person(x,y,'MA').
2 Relative(x,x) :- Person(x,y,z).
    Invited(y) :- Relative('myself',y),Local(y).
```

```
MayLike(x,y) :- Close(x,z),Likes(z,y).
    Visit(x,y) :- MayLike(x,y).
    Close(x,z) :- Visit(x,y),Visit(z,y).
```

Which of these programs is recursive?

?

```
MayLike(x,y) :- Close(x,z),Likes(z,y).
            Visit(x,y) :- MayLike(x,y).
    Close(x,z) :- Visit(x,y),Visit(z,y).
```


Which of these programs is recursive?

```
    Local(x) :- Person(x,y,'MA').
Relative(x,x) :- Person(x,y,z).
Relative(x,y) :- Relative(x,z),Parent(z,y).
Relative(x,y) :- Relative(x,z),Parent(y,z).
Relative(x,y) :- Relative(x,z),Spouse(z,y).
    Invited(y) :- Relative('myself',y),Local(y).
```


Local (x) :- Person $\left(x, y,{ }^{\prime}\right.$ 'MA' $\left.^{\prime}\right)$.
2 Relative (\mathbf{x}, x) :- Person $(\mathrm{x}, \mathrm{y}, \mathrm{z})$.
Invited(y) :- Relative('myself', y), Local(\mathbf{y}).


```
MayLike( \(x, y\) ) :- Close( \(x, z\) ),Likes( \(z, y\) ).
    Visit( \(x, y\) ) :- MayLike \((x, y)\).
    Close(x,z) :- Visit(x,y),Visit(z,y).
```


Which of these programs is recursive?

Local(x) :- Person($x, y,{ }^{\prime}$ 'MA' $\left.^{\prime}\right)$.
Relative (x, x) :- Person (x, y, z).
Relative (x, y) :- Relative $(x, z), \operatorname{Parent}(z, y)$.
Relative(x, y) :- Relative(x, z), Parent (y, z).
Relative(\mathbf{x}, y) :- Relative($\mathrm{x}, \mathrm{z})$,Spouse(z,y).

Invited(y) :- Relative('myself', y),Local(y).

Local (x) :- Person $\left(x, y,{ }^{\prime} \mathrm{MA}^{\prime}\right)$.
2 Relative (\mathbf{x}, x) :- Person $(\mathrm{x}, \mathrm{y}, \mathrm{z})$.
Invited(y) :- Relative('myself', y), Local(\mathbf{y}).


```
MayLike(x,y) :- Close(x,z),Likes(z,y).
    Visit(x,y) :- MayLike(x,y).
    Close(x,z) :- Visit(x,y),Visit(z,y).
```


Expressiveness of Non-recursive Datalog

$$
\begin{aligned}
& \text { THEOREM: Non-recursive Datalog with built-in } \\
& \text { predicates }(<,>, \leq, \geq,!=) \text { has the same expressive } \\
& \text { power as the positive algebra }\{\sigma, \pi, \times, \cup\}
\end{aligned}
$$

If we restrict selection to $\sigma_{=}$(i.e. selection with a single equality), this fragment is also called at times UCQs (Union of Conjunctive Queries) or USPJ (Union-Select-Project-Join) queries.

Outline: T1-4: Datalog \& ASP

- Datalog
- Datalog rules
- Datalog vs. RA
- Recursion
- Recursion in SQL [moved here from T1-U1: SQL]
- Semantics
- Naive and Semi-naive evaluation (Incremental View Maintenance)
- Chase Procedure (and Decompositions=Factorizations)
- Datalog?: Datalog with stratified negation
- Datalog ${ }^{ \pm}$
- Answer Set Programming (ASP)

1. A simple recursive query
non-recursive part (here same as "select1")
recursive part, contains reference to the query's output
WITH RECURSIVE/T(n) as (
v values (1)
UNION ALL select $\mathrm{n}+1$ from T
where $\mathrm{n}<=3$)
SELECT n FROM T

1. A simple recursive query

```
non-recursive part (here same as "select1")
recursive part, contains reference to the query's output
```


Step	$\mathrm{WT}_{\text {start }}$	$\Delta \mathrm{R}=\mathrm{IT}=\mathrm{Wt}_{\text {end }}$	Results
1.			
2.			
3.			
4.			
5.			

Example slightly adapted from: https://www.postgresql.org/docs/current/queries-with.html\#QUERIES-WITH-RECURSIVE

1. A simple recursive query

```
non-recursive part (here same as "selec+1")
recursive part, contains reference to the query's output
```


Step	$\mathrm{WT}_{\text {start }}$	$\Delta \mathrm{R}=1 \mathrm{~T}=\mathrm{Wt}_{\text {end }}$	Results
1.		\{1\}	\{1\}
2.	\{1\}	\{2\}	\{ $\{1,2\}$
3.	\{2\}	$\{3\}-\cup$	$\rightarrow\{1,2,3\}$
4.	\{3\}	\{4\}	\{1,2,3,4\}
5.	\{4\}	¢	\{1,2,3,4\}

Recursive Query Evaluation ("semi-naive evaluation strategy")

1. Evaluate the non-recursive term. For UNION (but not UNION ALL), discard duplicate rows. Include all remaining row in the result of the recursive query, and also place them in a temporary working table.
2. So long as the working table is not empty, repeat these steps:
a. Evaluate the recursive term, substituting the current contents of the working table far the rerursive self-reference. For UNION (but not UNION ALL), discard duplicate rows and rows that duplicate any previous result row. Include all remaining rows in the result of the recursive query, and also place them in a temporar, intermediate table.
b. Replace the contents of the working table vith the contents of the intermediate table, then empty the intermediate table.

2. Fibonacci numbers: $0,1,1,2,3,5,8,13, \ldots$

Fib

2. Fibonacci numbers: $0,1,1,2,3,5,8,13, \ldots$

Fib
WITH RECURSIVE Fib as (
select 0 as n,
0 as "fib ${ }_{n}$ ",
1 as "fib b_{n+1} "
UNION ALL

SELECT * FROM Fib

LIMIT 10;

\boldsymbol{n}	nib integer	fib integer	fib inter
1	0	0	1
2	1	1	1
3	2	1	2
4	3	2	3
5	4	3	5
6	5	5	8
7	6	8	13
8	7	13	21
9	8	21	34
10	9	34	55

2. Fibonacci numbers: $0,1,1,2,3,5,8,13, \ldots$

Fib
WITH RECURSIVE Fib as (
select 0 as n ,
0 as "fib ${ }_{n}$ ",
1 as "fib ${ }_{n+1}$ "
UNION ALL
select $\mathrm{n}+1$,

from Fib)
SELECT * FROM Fib LIMIT 10;

| \boldsymbol{n} | n
 integer | fib
 integer | fib $_{n+1}$
 integer |
| ---: | ---: | :--- | :--- | :--- |
| 1 | 0 | 0 | 1 |
| 2 | 1 | 1 | 1 |
| 3 | 2 | 1 | 2 |
| 4 | 3 | 2 | 3 |
| 5 | 4 | 3 | 5 |
| 6 | 5 | 5 | 8 |
| 7 | 6 | 8 | 13 |
| 8 | 7 | 13 | 21 |
| 9 | 8 | 21 | 34 |
| 10 | 9 | 34 | 55 |

2. Fibonacci numbers: $0,1,1,2,3,5,8,13, \ldots$

Fib

```
WITH RECURSIVE Fib as (
    select 0 as n,
            0 as "fibn",
            1 as "fib n+1"
    UNION ALL
    select n+1,
        "fib b+1",?
    from Fib)
SELECT * FROM Fib
LIMIT 10;
```

$\left.\begin{array}{|r|r|l|l|l|}\hline \boldsymbol{n} & \begin{array}{l}\text { nib } \\ \text { integer }\end{array} & \begin{array}{l}\text { fib } \\ \text { integer }\end{array} & \begin{array}{l}\text { fib } \\ \text { inter }\end{array} \\ \text { integer }\end{array}\right]$

2. Fibonacci numbers: $0,1,1,2,3,5,8,13, \ldots$

Fib

```
WITH RECURSIVE Fib as (
    select 0 as \(n\),
            0 as "fib \({ }_{n}\) ",
            1 as "fib \({ }_{n+1}\) "
    UNION ALL
    select \(\mathrm{n}+1\),
        "fib \({ }_{n+1}\) ",
        "fib \({ }^{1}\) + "fib \(n+1\) "
    from Fib)
SELECT * FROM Fib
LIMIT 10;
```

| \boldsymbol{n} | nib
 integer | fib
 integer | fib
 integer |
| ---: | ---: | :--- | :--- | :--- |
| 1 | 0 | 0 | 1 |
| 2 | 1 | 1 | 1 |
| 3 | 2 | 1 | 2 |
| 4 | 3 | 2 | 3 |
| 5 | 4 | 3 | 5 |
| 6 | 5 | 5 | 8 |
| 7 | 6 | 8 | 13 |
| 8 | 7 | 13 | 21 |
| 9 | 8 | 21 | 34 |
| 10 | 9 | 34 | 55 |

2. Fibonacci numbers: $0,1,1,2,3,5,8,13, \ldots$

Fib

```
    select \(0,0,1\)
    UNION ALL
    select \(\mathrm{n}+1\),
        "fib \(n+1\) ",
        "fib \({ }_{n}\) + "fib \({ }_{n+1}\) "
    from Fib)
SELECT * FROM Fib
LIMIT 10;
```

WITH RECURSIVE Fib(n,"fib ${ }_{n}$ ","fib ${ }_{n+1}$ ") as(
$\left.\begin{array}{|r|r|l|l|l|}\hline \boldsymbol{n} & \begin{array}{l}\text { fib } \\ \text { integer }\end{array} & \begin{array}{l}\text { fib } \\ \text { integer }\end{array} \\ \text { integer }\end{array}\right)$

[^2]2. Fibonacci numbers: $0,1,1,2,3,5,8,13, \ldots$

Fib

```
    select \(0,0,1\)
    UNION ALL
    select \(\mathrm{n}+1\),
        "fib \(n+1\) ",
        "fib \({ }^{\text {" }}\) + "fib \({ }_{n+1}\) "
    from Fib
    where \(\mathrm{n}<9\) )
SELECT * FROM Fib;
```

WITH RECURSIVE Fib(n,"fib ${ }_{n}$ ","fib ${ }_{n+1}$ ") as(

\boldsymbol{n}	n integer	fib integer	fib integer
1	0	0	1
2	1	1	1
3	2	1	2
4	3	2	3
5	4	3	5
6	5	5	8
7	6	8	13
8	7	13	21
9	8	21	34
10	9	34	55

condition in WHERE clause is a more general way to write this query

"Find all paths (transitive closure)"

S	T
1	2
1	4
2	1
2	3
3	4
4	5

3. Recursion on graphs

A for arcs or adjacencies (directed edges),

"Find all paths (transitive closure)"

A | S | T |
| :---: | :---: |
| 1 | 2 |
| 1 | 4 |
| 2 | 1 |
| 2 | 3 |
| 3 | 4 |
| 4 | 5 |

1. Create a path for every arc
2. An arc + a path can make another path
3. Recursion on graphs

A for arcs or adjacencies (directed edges),

"Find all paths (transitive closure)"

A | S | T |
| :---: | :---: |
| 1 | 2 |
| 1 | 4 |
| 2 | 1 |
| 2 | 3 |
| 3 | 4 |
| 4 | 5 |

For all nodes x and y : If there is an arc from x to y,

$$
\begin{array}{|l|}
\hline P(x, y):-A(x, y) . \\
P(x, y):-A(x, z), P(z, y) . \\
\hline
\end{array}
$$ then there is a path from x to y.

For all nodes x, z, and y :
If there is an arc from x to z, and there is a path from z to y then there is a path from x to y.
3. Recursion on graphs

$$
\begin{aligned}
& P(x, y):-A(x, y) . \\
& P(x, y):-A(x, z), P(z, y) .
\end{aligned}
$$

S	T
1	2
1	4
2	1
2	3
3	4
4	5

In SQL
3. Recursion on graphs

$$
\begin{aligned}
& P(x, y):-A(x, y) . \\
& P(x, y):-A(x, z), P(z, y) .
\end{aligned}
$$

S	T
1	2
1	4
2	1
2	3
3	4
4	5

WITH RECURSIVE P AS (

SELECT * FROM P
3. Recursion on graphs

$$
\begin{aligned}
& P(x, y):-A(x, y) . \\
& P(x, y):-A(x, z), P(z, y) .
\end{aligned}
$$

A | S | T |
| :---: | :---: |
| 1 | 2 |
| 1 | 4 |
| 2 | 1 |
| 2 | 3 |
| 3 | 4 |
| 4 | 5 |

WITH RECURSIVE P AS (SELECT S, T FROM A
 UNION

?

SELECT *
FROM P
3. Recursion on graphs

$$
\begin{aligned}
& P(x, y):-A(x, y) . \\
& P(x, y):-A(x, z), P(z, y) .
\end{aligned}
$$

A | S | T |
| :---: | :---: |
| 1 | 2 |
| 1 | 4 |
| 2 | 1 |
| 2 | 3 |
| 3 | 4 |
| 4 | 5 |

```
WITH RECURSIVE P AS (
    SELECT S, T
    FROM A
    UNION
        SELECT A.S, P.T
    FROM A, P
    WHERE A.T = P.S)
SELECT *
FROM P
```

3. Recursion on graphs

$$
\begin{aligned}
& P(x, y):-A(x, y) . \\
& P(x, y):-A(x, z), P(z, y) .
\end{aligned}
$$

A(S,T)

Strictly speaking, this process is iteration, not recursion:
(2) (3)

A | S | T |
| :---: | :---: |
| 1 | 2 |
| 1 | 4 |
| 2 | 1 |
| 2 | 3 |
| 3 | 4 |
| 4 | 5 |

```
WITH RECURSIVE P AS (
    SELECT S, T
        FROM A
    UNION
        SELECT A.S, P.T
        FROM A, P
        WHERE A.T = P.S)
```

SELECT *
FROM P

Recursion and Iteration both repeatedly execute a set of instructions.

- Recursion (self-similarity) is when a statement in a function calls itself repeatedly.
- Iteration (repetition) is when a loop repeatedly executes until the controlling condition becomes false.

3. Recursion on graphs

$$
\begin{aligned}
& P(x, y):-A(x, y) . \\
& P(x, y):-A(x, z), A(z, y) .
\end{aligned}
$$

A(S,T)

Probe for understanding: how does the output change with this little change in the query

```
WITH RECURSIVE P AS (
    SELECT S, T
    FROM A
    UNION
        SELECT A1.S, A2.T
        FROM A A1, A A2
    WHERE A1.T = A2.S)
SELECT *
FROM P
```

P| 1 | 2 |
| :---: | :---: |
| 2 | 1 |
| 2 | 3 |
| 1 | 4 |
| 3 | 4 |
| 4 | 5 |
| 1 | 1 |
| 2 | 2 |
| 1 | 3 |
| 2 | 4 |
| 1 | 5 |
| 3 | 5 |
| 2 | 5 |

3. Recursion on graphs

$$
\begin{aligned}
& P(x, y):-A(x, y) . \\
& P(x, y):-A(x, z), A(z, y) .
\end{aligned}
$$

Probe for understanding: how the output changes with this little change in the query:

```
WITH RECURSIVE P AS (
    SELECT S, T
    FROM A
    UNION
        SELECT A1.S, A2.T
        FROM A A1, A A2
    WHERE A1.T = A2.S)
SELECT *
FROM P
```

A | S | T |
| :---: | :---: |
| 1 | 2 |
| 1 | 4 |
| 2 | 1 |
| 2 | 3 |
| 3 | 4 |
| 4 | 5 |

Challenge

- Write a query that finds the shortest path to each node from a starting node
- Create an interesting minimum database instance
- Show interesting variations
- https://www.postgresql.org/docs/14/queries-with.html

Topic 1: Data models and query languages Unit 4: Datalog Lecture 10

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
https://northeastern-datalab.github.io/cs7240/sp24/
2/16/2024

Pre-class conversations

- Last class summary
- Project discussions (today: first project ideas)
- today:
- More on Datalog
- What happens if we add negation? Answer: it depends on how we do it.
- Datalog with stratified negation
- Datalog with more genal negation (stable models), leads to ASP

Outline: T1-4: Datalog \& ASP

- Datalog
- Datalog rules
- Datalog vs. RA
- Recursion
- Recursion in SQL [moved here from T1-U1: SQL]
- Semantics
- Naive and Semi-naive evaluation (Incremental View Maintenance)
- Chase Procedure (and Decompositions=Factorizations)
- Datalog 7 : Datalog with stratified negation
- Datalog ${ }^{ \pm}$
- Answer Set Programming (ASP)

Semantics of Datalog Programs

- Let \mathbf{S} be a schema, D a database over \mathbf{S}, and P be a Datalog program over \mathbf{S} (i.e., all EDBs predicates belong to \mathbf{S})
- The result of evaluating P over D is a database I over the IDB schema of P
- We give 2 definitions:

1. Fixpoint semantics
operative (think procedural)
2. model-theoretic declarative
3. Fixpoint semantics via the chase (operative definition) Pseudo-code of a chase procedure:

Chase(P,D)

```
I := empty
repeat {
```

if(DUI satisfies all the rules of P), then return I
Find a rule head (\mathbf{x}) :- body (\mathbf{x}, \mathbf{y}) and constants \mathbf{a}, \mathbf{b} s.t. that DUI contains body (\mathbf{a}, \mathbf{b}) but not head(\mathbf{a})
$I:=I \cup\{\operatorname{head}(a)\}$
$\}$

Notice since rules are monotone, || is also monotonically increasing

Nondeterminism

- Note: the chase is underspecified (i.e., not fully defined)
- There can be many ways of choosing the next violation to handle
- And each choice can lead to new violations, and so on
- We can view the choice of a new violation as nondeterministic

Church-Rosser property (defined for term reduction): If term a can be reduced to both b and c, then there must be a further term d (possibly equal to either b or c) to which both b and c can be reduced.

In computer science, confluence is a property of rewriting systems, describing which terms in such a system can be rewritten in more than one way, to yield the same result.

Example

> Path $(x, y):-\operatorname{Arc}(x, y)$.
> Path $(x, y):-\operatorname{Arc}(x, z), \operatorname{Path}(z, y)$. Reachable(y) :- Path $(' 1, y)$.

Path

Reachable

1	2
2	1
2	3
1	4
3	4
4	5

Example

> Path $(x, y):-\operatorname{Arc}(x, y)$. Path $(x, y):-\operatorname{Arc}(x, z), \operatorname{Path}(z, y)$. Reachable(y) :- Path $\left('^{\prime}, y\right)$.

\longmapsto| | Arc |
| :--- | :--- |
| 1 | 2 |
| 2 | 1 |
| 2 | 3 |
| 1 | 4 |
| 3 | 4 |
| 4 | 5 |

Path
Reachable
$\Rightarrow 1 \begin{array}{ll}1 & 2 \\ \end{array}$

Example

> Path $(x, y):-\operatorname{Arc}(x, y)$. Path $(x, y):-\operatorname{Arc}(x, z), \operatorname{Path}(z, y)$. Reachable(y) :- Path $\left('^{\prime}, y\right)$.

	Arc
\Rightarrow1 2 2 1 2 3 1 4 3 4 4 5	

Path
Reachable

\Rightarrow| 1 | 2 |
| :---: | :---: |
| 2 | 1 |

Example

> Path $(x, y):-\operatorname{Arc}(x, y)$. Path $(x, y):-\operatorname{Arc}(x, z), \operatorname{Path}(z, y)$. Reachable(y) :- Path $\left('^{\prime}, y\right)$.

	Arc
\longrightarrow1 2 2 1 2 3 1 4 3 4 4 5	

Path
Reachable

\Rightarrow| 1 | 2 |
| :--- | :--- |
| 2 | 1 |
| 2 | 3 |

Example

$\left\{x_{1}-1, z\right\} \rightarrow\{1,2\}$

Path $(x, y):-\operatorname{Arc}(x, y)$.	
$\operatorname{Path}(x, y):-\operatorname{Arc}(x, z), \operatorname{Path}(z, y)$.	x z
Reachable(y) :- Path $\left(1^{1}, y\right)$.	$y \rightarrow 1$

Path (x, y) :- $\operatorname{Arc}(x, y)$.
$x \rightarrow 1$

$$
z \rightarrow 2
$$

$$
\text { Reachable(y):- Path }(11, y) . \quad \text { y } \rightarrow 1
$$

Arc

1	2
2	1
2	3
1	4
3	4
4	5

Reachable

Example

Path $(x, y):-\operatorname{Arc}(x, y)$.
Path $(x, y):-\operatorname{Arc}(x, z), \operatorname{Path}(z, y)$. Reachable(y) :- Path('1',y).
Arc

1	2
2	1
2	3
1	4
3	4
4	5

Path

1	2
2	1
2	3

\square
2. Minimal model semantics (model-theoretic definition)

- We say that IDB \| is a model of Datalog program P (w.r.t. EDB D) if DUl satisfies all the rules of P
$\forall \operatorname{var}[\operatorname{Head}(I D B) \Leftarrow \operatorname{Body}(E D B, I D B)]$
- We say that || is a minimal model if | does not properly contain any other model
- Theorem: there exists one minimal model

Illustration with our example

1. Fixpoint semantics
```
Path(x,y):- Arc(x,y).
Path(x,y) :- Arc(x,z), Path(z,y).
```

\square
2. Minimal model semantics: smallest Path s.t.

Illustration with our example

1. Fixpoint semantics

```
Path}\mp@subsup{}{}{(0)}:=\emptyset,\textrm{t}=
Repeat {
    inc(t)
    Path (t)}(\textrm{x},\textrm{y}):=\operatorname{Arc}(\textrm{x},\textrm{y})\cup\mp@subsup{\Pi}{\textrm{xy}}{}(\operatorname{Arc}(\textrm{x},\textrm{z})\bowtie\mp@subsup{\operatorname{Path}}{}{(t-1)}(\textrm{z},\textrm{y})
until Path (t)}=\mp@subsup{P}{\mathrm{ Path (t-1)}}}{
```

2. Minimal model semantics: smallest relation Path s.t.

Illustration with our example

1. Fixpoint semantics

Path ${ }^{(0)}:=\emptyset, \mathrm{t}:=0$
Repeat $\left\{\quad\right.$ immediate consequence operator " T_{p} ":
$\operatorname{inc}(\mathrm{t})$
Path $^{(\mathrm{t})}(\mathrm{x}, \mathrm{y}):=\operatorname{Arc}(\mathrm{x}, \mathrm{y}) \cup \Pi_{\mathrm{xy}}\left(\operatorname{Arc}(\mathrm{x}, \mathrm{z}) \bowtie \operatorname{Path}^{(\mathrm{t}-1)}(\mathrm{z}, \mathrm{y})\right)$
until Path ${ }^{(\mathrm{t})}=$ Path $\left.^{(\mathrm{t}-1)}\right\}$
2. Minimal model semantics: smallest relation Path s.t.

$$
\begin{aligned}
\forall x, y[\operatorname{Arc}(x, y) & \Rightarrow \operatorname{Path}(x, y)] \wedge \\
\forall x, y, z[\operatorname{Arc}(x, z) & \wedge \operatorname{Path}(\mathrm{z}, \mathrm{y}) \Rightarrow \operatorname{Path}(\mathrm{x}, \mathrm{y})]
\end{aligned}
$$

Minimum (least) element vs minimal elements in partial orders

Consider a partial order ($(\mathbf{S}, \mathbf{\Omega})$. The set of elements from S are represented by black circles, arrows show partial order between elements.

2 minimal elements

An element a in S is called a minimal element of S if there is no element b in A such that $b \leq a$.

Datalog Semantics \& equivalence b/w the definitions

1. The fixpoint semantics tells us how to compute a Datalog query
2. The minimal model semantics is more declarative: only says what we get
```
Theorem: For all Datalog programs \(P\) and DBs \(D\) there is a unique minimal model, and every chase returns this model
```

Proof sketch:

1. If I_{1} and I_{2} are models, so are $\mathrm{I}_{1} \cap \mathrm{I}_{2}$
2. Every chase returns a model
(finite)
3. Pick a chase and prove by induction: If I' is a model, then every intermediate I is contained in I'
(monotonicity)
The minimal model is the result, denoted P(D)

Details

Lemma 8.8 Model intersection property. Let P be a positive program, and M_{1} and M_{2} be two models for P. Then, $M_{1} \cap M_{2}$ is also a model for P.

Proof: next page
Definition 8.9 Minimal model and least model. A model M for a program P is said to be a minimal model for P if there exists no other model M^{\prime} of P where $M^{\prime} \subset M$. A model M for a program P is said to be its least model if $M^{\prime} \supseteq M$ for every model M^{\prime} of P.

Then, as a result of the last lemma we have the following:
Theorem 8.10 Every positive program has a least model.
Herbrand base
Proof. Since B_{P} is a model, P has models, and therefore minimal models. Thus, either P has several minimal models, or it has a unique minimal model, the least model of P. By contradiction, say that M_{1} and M_{2} are two distinct minimal models, then $M_{1} \cap M_{2} \subset M_{1}$ is also a model. This contradicts the assumption that M_{1} is a minimal model. Therefore, there cannot be two distinct minimal models for P.

Definition 8.11 Let P be a positive program. The least model of P, denoted M_{P}, defines the meaning of P.

Details

Theorem 2.14 (Model intersection property) Let M be a non-empty family of Herbrand models of a definite program P. Then the intersection $\Im:=\bigcap M$ is a Herbrand model of P.

Proof: Assume that \Im is not a model of P. Then there exists a ground instance of a clause of P :

$$
A_{0} \leftarrow A_{1}, \ldots, A_{m} \quad(m \geq 0)
$$

which is not true in \Im. This implies that \Im contains A_{1}, \ldots, A_{m} but not A_{0}. Then A_{1}, \ldots, A_{m} are elements of every interpretation of the family M. Moreover there must be at least one model $\Im_{i} \in M$ such that $A_{0} \notin \Im_{i}$. Thus $A_{0} \leftarrow A_{1}, \ldots, A_{m}$ is not true in this \Im_{i}. Hence \Im_{i} is not a model of the program, which contradicts the assumption. This concludes the proof that the intersection of any set of Herbrand models of a program is also a Herbrand model.

Semantics Summary

1. Fixpoint-theoretic

- Most "operational": Based on the immediate consequence operator for a Datalog program.

2. Model-theoretic

- Most "declarative": Based on model-theoretic semantics of first order logic. View rules as logical constraints.

Semantics Summary

1. Fixpoint-theoretic

- Most "operational": Based on the immediate consequence operator for a Datalog program.
- Least fixpoint is reached after finitely many iterations of the immediate consequence operator.
- Basis for practical, bottom-up evaluation strategy.

2. Model-theoretic

- Most "declarative": Based on model-theoretic semantics of first order logic. View rules as logical constraints.
- Given input DB D and Datalog program P, find the smallest possible DB instance D^{\prime} that extends D and satisfies all constraints in P.

Monotonicity

- Can Datalog express difference?
- Answer: No!
- Proof: Datalog is monotone, difference is not
- That is, if D and D^{\prime} are such that every relation of D is contained in the corresponding relation of $\mathrm{D}^{\prime}\left(\mathrm{D} \subseteq \mathrm{D}^{\prime}\right)$, then $\mathrm{P}(\mathrm{D}) \subseteq \mathrm{P}\left(\mathrm{D}^{\prime}\right)$

$$
D \subseteq D^{\prime} \Rightarrow P(D) \subseteq P\left(D^{\prime}\right)
$$

Outline: T1-4: Datalog \& ASP

- Datalog
- Datalog rules
- Datalog vs. RA
- Recursion
- Recursion in SQL [moved here from T1-U1: SQL]
- Semantics
- Naive and Semi-naive evaluation (Incremental View Maintenance)
- Chase Procedure (and Decompositions=Factorizations)
- Datalog \urcorner : Datalog with stratified negation
- Datalog ${ }^{ \pm}$
- Answer Set Programming (ASP)

Datalog Evaluation Algorithms

- Goal: preserve the efficiency of query optimizers, yet extend them to recursion
- Two general strategies we will discuss:
- 1. Naive Datalog evaluation
- 2. Semi-naive Datalog evaluation
- More powerful optimizations:
- 3. Magic sets (which we will not cover, or may revisit later under "Topic 3: efficient query evaluation \& factorized representations")

1. Naive Datalog evaluation

$$
\begin{aligned}
& p^{(t)}(x, y):-A(x, y) \\
& p^{(t)}(x, y):-A(x, z), p^{(t-1)}(z, y) .
\end{aligned}
$$

```
p(0):= \emptyset, t:=0
Repeat { immediate consequence operator " }\mp@subsup{T}{p}{}"\mathrm{ ":
    inc(t)
    P
until P(t)}=P(t-1)
```

- Problem: The same facts are discovered over and over again
- Goal: The semi-naive algorithm tries to reduce the number of facts discovered multiple times

Example

$$
\begin{aligned}
& P^{(t)}(x, y):-A(x, y) . \\
& P^{(t)}(x, y):-A(x, z), P^{(t-1)}(z, y) .
\end{aligned}
$$

$(1) \longrightarrow(2) \longrightarrow(4) \longrightarrow 5$

A| 1 | 2 |
| :--- | :--- |
| 2 | 3 |
| 3 | 4 |
| 4 | 5 |

$\mathrm{P}^{(2)} ?$
$P^{(3)}$
$P^{(4)}$

Example

$$
\begin{aligned}
& P^{(t)}(x, y):-A(x, y) . \\
& P^{(t)}(x, y):-A(x, z), P^{(t-1)}(z, y) .
\end{aligned}
$$

paths of LEN ≤ 1
$\left.A \begin{array}{|ll|}\hline 1 & 2 \\ \hline 2 & 3 \\ \hline 3 & 4 \\ \hline 4 & 5 \\ \hline\end{array} \quad P^{(1)} \begin{array}{|ll|}\hline 1 & 2 \\ \hline 2 & 3 \\ \hline 3 & 4 \\ \hline 4 & 5 \\ \hline\end{array}\right\} L=1$

Example

$$
\begin{aligned}
& p^{(t)}(x, y):-A(x, y) . \\
& p^{(t)}(x, y):-A(x, z), p^{(t-1)}(z, y) .
\end{aligned}
$$

Example

$$
\begin{aligned}
& p^{(t)}(x, y):-A(x, y) . \\
& p^{(t)}(x, y):-A(x, z), P^{(t-1)}(z, y) .
\end{aligned}
$$

Example

$$
\begin{aligned}
& P^{(t)}(x, y):-A(x, y) . \\
& P^{(t)}(x, y):-A(x, z), P^{(t-1)}(z, y) .
\end{aligned}
$$

(1) (2) (3) (4)

$$
\begin{gathered}
\text { Side-topic: } \\
\text { Incremental View } \\
\text { Maintentance }
\end{gathered}
$$

Background: Incremental View Maintenace

Let Q be a "view" computed by a single Datalog rule without recursion, thus a simple conjunctive query

$$
\mathrm{Q}:-\mathrm{R}_{1}, \mathrm{R}_{2}, \ldots
$$

```
SELECT ...
FROM R1
NATURAL JOIN R2
NATURAL JOIN R3 ...
```

Add tuples to some of the relations:

$$
R_{1} \leftarrow R_{1} \cup \Delta R_{1}, R_{2} \longleftarrow R_{2} \cup \Delta R_{2}, \ldots
$$

Then the view Q will also increase in size:

$$
\mathrm{Q} \leftarrow \mathrm{Q} \cup \triangle \mathrm{Q}
$$

Incremental view maintenance problem:
 Compute $\Delta \mathrm{Q}$ without having to recompute Q from scratch

Background: Incremental View Maintenace Example 1:

$$
Q(x, y):-R(x, z), S(z, y)
$$

$\Delta Q(x, y):-$ If $R \leftarrow R \cup \Delta R$, then what is ΔQ ?

Background: Incremental View Maintenace

Example 1:

$$
Q(x, y):-R(x, z), S(z, y)
$$

$\Delta Q(x, y):-$

If $R \leftarrow R \cup \Delta R$, then what is $\triangle Q$?

Background: Incremental View Maintenace
Example 1:

$$
Q(x, y):-R(x, z), S(z, y)
$$

If $R \leftarrow R \cup \Delta R$, then what is ΔQ ?
$\Delta Q(x, y):-\Delta R(x, z), S(z, y)$
(to be more precise: we still need to subtract Q : $\Delta Q=\Delta R \bowtie S-Q$, e.g. for $\Delta R=(1,1)$. More on that later)

Relational Algebra:

$$
Q=R \bowtie S
$$

$Q \cup \Delta Q=(R \cup \Delta R) \bowtie S$

Background: Incremental View Maintenace

Example 1:

$$
Q(x, y):-R(x, z), S(z, y)
$$

$\Delta Q(x, y):-\Delta R(x, z), S(z, y)$

If $R \leftarrow R \cup \Delta R$, then what is ΔQ ?

ΔQ| 2 |
| :--- |
| 2 |

(to be more precise: we still need to subtract Q : $\Delta Q=\Delta R \bowtie S-Q$, e.g. for $\Delta R=(1,1)$. More on that later)

Relational Algebra:

$$
\begin{aligned}
z & =x \cdot y \\
z+\Delta z & =(x+\Delta x) \cdot y
\end{aligned}
$$

Background: Incremental View Maintenace
Example 1:
$Q(x, y):-R(x, z), S(z, y)$
$\Delta Q(x, y):-\Delta R(x, z), S(z, y)$ If $R \leftarrow R \cup \Delta R$, then what is ΔQ ?
(to be more precise: we still need to subtract Q :
 $\Delta Q=\Delta R \bowtie S-Q$, e.g. for $\Delta R=(1,1)$. More on that later)

Relational Algebra: Multiplication \otimes distributes

$$
\begin{array}{rlrl}
\text { over Addition } \oplus & (a+b) c \\
z & =x \cdot y & =a c+b c \\
z+\Delta z & =(x+\Delta x) \cdot y & \\
z+\Delta z & =(x \cdot y)+(\Delta x \cdot y) & \\
z+\Delta z & =z+(\Delta x \cdot y) & \\
\Delta z & =\Delta x \cdot y &
\end{array}
$$

$$
Q=R \bowtie S
$$

$Q \cup \Delta Q=(R \cup \Delta R) \bowtie S$
$Q \cup \Delta Q=(R \bowtie S) \cup(\Delta R \bowtie S)$
$Q \cup \Delta Q=Q \quad U(\Delta R \bowtie S)$
$\Delta Q=\Delta R \bowtie S$

Join \bowtie distributes
 over union U

$$
\begin{aligned}
& (a \cup b) \bowtie c \\
& =a \bowtie c \cup b \bowtie c
\end{aligned}
$$

Background: Incremental View Maintenace

Example 2:

$$
Q(x, y):-R(x, z), S(z, y)
$$

If $R \longleftarrow R \cup \Delta R$, and $S \longleftarrow S \cup \Delta S$, then what is $\triangle Q$?
(as before, we ignore the subtraction of Q here)

?

Background: Incremental View Maintenace

Example 2:

$$
Q(x, y):-R(x, z), S(z, y)
$$

If $R \longleftarrow R \cup \Delta R$, and $S \longleftarrow S \cup \Delta S$, then what is $\triangle Q$?
(as before, we ignore the subtraction of Q here)

$$
\begin{aligned}
z & =x \cdot y \\
z+\Delta z & =(x+\Delta x) \cdot(y+\Delta y) \\
z+\Delta z & =(x \cdot y)+(\Delta x \cdot y)+(x \cdot \Delta y)+(\Delta x \cdot \Delta y) \\
z+\Delta z & =z+(\Delta x \cdot y)+(x \cdot \Delta y)+(\Delta x \cdot \Delta y) \\
\Delta z & =(\Delta x \cdot y)+(x \cdot \Delta y)+(\Delta x \cdot \Delta y)
\end{aligned}
$$

Relational Algebra:

```
        \(Q=R \bowtie S\)
\(Q \cup \Delta Q=(R \cup \Delta R) \bowtie(S U \Delta S)\)
\[
Q \cup \Delta Q=(R \bowtie S) \cup(\Delta R \bowtie S) \cup(R \bowtie \Delta S) \cup(\Delta R \bowtie \Delta S)
\]
\(Q \cup \Delta Q=(R \bowtie S) \cup(\Delta R \bowtie S) \cup(R \bowtie \Delta S) \cup(\Delta R \bowtie \Delta S)\)
\(Q \cup \Delta Q=Q \quad U(\Delta R \bowtie S) U(R \bowtie \Delta S) U(\Delta R \bowtie \Delta S)\)
    \(\Delta Q=(\Delta R \bowtie S) U(R \bowtie \Delta S) U(\Delta R \bowtie \Delta S)\)
```


Background: Incremental View Maintenace

Example 2:

$$
Q(x, y):-R(x, z), S(z, y)
$$

If $R \longleftarrow R \cup \Delta R$, and $S \longleftarrow S \cup \Delta S$, then what is $\triangle Q$?

$$
\begin{aligned}
& \Delta Q(x, y):-\Delta R(x, z), S(z, y) \\
& \Delta Q(x, y):-R(x, z), \Delta S(z, y) \\
& \Delta Q(x, y):-\Delta R(x, z), \Delta S(z, y)
\end{aligned}
$$

$$
\begin{aligned}
z & =x \cdot y \\
z+\Delta z & =(x+\Delta x) \cdot(y+\Delta y) \\
z+\Delta z & =(x \cdot y)+(\Delta x \cdot y)+(x \cdot \Delta y)+(\Delta x \cdot \Delta y) \\
z+\Delta z & =z \quad(\Delta x \cdot y)+(x \cdot \Delta y)+(\Delta x \cdot \Delta y) \\
\Delta z & =(\Delta x \cdot y)+(x \cdot \Delta y)+(\Delta x \cdot \Delta y)
\end{aligned}
$$

Relational Algebra:

$$
\begin{aligned}
Q & =R \bowtie S \\
Q \cup \Delta Q & =(R \cup \Delta R) \bowtie(S U \Delta S) \\
Q \cup \Delta Q & =(R \bowtie S) \cup(\Delta R \bowtie S) \cup(R \bowtie \Delta S) \cup(\Delta R \bowtie \Delta S) \\
Q \cup \Delta Q & =\quad Q \quad \cup(\Delta R \bowtie S) \cup(R \bowtie \Delta S) \cup(\Delta R \bowtie \Delta S) \\
\Delta Q & =(\Delta R \bowtie S) \cup(R \bowtie \Delta S) \cup(\Delta R \bowtie \Delta S)
\end{aligned}
$$

Background: Incremental View Maintenace

Example 3:

$$
Q(x, y):-R(x, z), R(z, y)
$$

If $R \leftarrow R \cup \Delta R$, then what is ΔQ ?
(as before, we ignore the subtraction of Q here)

$$
\begin{aligned}
z & =x^{2} \\
z+\Delta z & =(x+\Delta x)^{2}
\end{aligned}
$$

Background: Incremental View Maintenace

Example 3:

$$
Q(x, y):-R(x, z), R(z, y)
$$

If $R \leftarrow R \cup \Delta R$, then what is ΔQ ?
(as before, we ignore the subtraction of Q here)

$$
\begin{aligned}
z & =x^{2} \\
z+\Delta z & =(x+\Delta x)^{2} \\
z+\Delta z & =x^{2}+(\Delta x \cdot x)+(x \cdot \Delta x)+\Delta x^{2} \\
z+\Delta z & =z+2 x \Delta x+\Delta x^{2} \\
\Delta z & =2 x \Delta x+\Delta x^{2}
\end{aligned}
$$

Relational Algebra:

$$
Q=R \bowtie_{c} R
$$

$$
Q \cup \Delta Q=(R \cup \Delta R) \bowtie_{c}(R \cup \Delta R)
$$

?

Background: Incremental View Maintenace
Example 3:

$$
Q(x, y):-R(x, z), R(z, y)
$$

If $R \longleftarrow R \cup \Delta R$,
then what is ΔQ ?
(as before, we ignore the subtraction of Q here)

$$
\begin{aligned}
z & =x^{2} \\
z+\Delta z & =(x+\Delta x)^{2} \\
z+\Delta z & =x^{2}+(\Delta x \cdot x)+(x \cdot \Delta x)+\Delta x^{2} \\
z+\Delta z & =z+2 x \Delta x+\Delta x^{2} \\
\Delta z & =2 x \Delta x+\Delta x^{2}
\end{aligned}
$$

Relational Algebra:

$$
\begin{aligned}
Q & =R \bowtie_{c} R \\
Q U \Delta Q & =(R U \Delta R) \bowtie_{c}(R U \Delta R) \\
Q U \Delta Q & =\left(R \bowtie_{c} R\right) U\left(\Delta R \bowtie_{c} R\right) U\left(R \bowtie_{c} \Delta R\right) U\left(\Delta R \bowtie_{c} \Delta R\right) \\
Q U \Delta Q & =Q \quad Q\left(\Delta R \bowtie_{c} R\right) U\left(R \bowtie_{c} \Delta R\right) U\left(\Delta R \bowtie_{c} \Delta R\right) \\
\Delta Q & =\left(\Delta R \bowtie_{C} R\right) \cup\left(R \bowtie_{c} \Delta R\right) U\left(\Delta R \bowtie_{c} \Delta R\right)
\end{aligned}
$$

Background: Incremental View Maintenace
Example 3:

$$
\begin{aligned}
& Q(x, y):-R(x, z), R(z, y) \\
& \Delta Q(x, y):-\Delta R(x, z), R(z, y) \\
& \Delta Q(x, y):-R(x, z), \Delta R(z, y) \\
& \Delta Q(x, y):-\Delta R(x, z), \Delta R(z, y)
\end{aligned}
$$

If $R \leftarrow R \cup \Delta R$,
then what is $\triangle Q$?
(as before, we ignore the subtraction of Q here)

Relational Algebra:

$$
\begin{aligned}
Q & =R \bowtie_{c} R \\
Q U \Delta Q & =(R \cup \Delta R) \bowtie_{c}(R U \Delta R) \\
Q U \Delta Q & =\left(R \bowtie_{c} R\right) \cup\left(\Delta R \bowtie_{c} R\right) \cup\left(R \bowtie_{c} \Delta R\right) \cup\left(\Delta R \bowtie_{c} \Delta R\right) \\
Q U \Delta Q & =Q \quad U\left(\Delta R \bowtie_{c} R\right) \cup\left(R \bowtie_{c} \Delta R\right) \cup\left(\Delta R \bowtie_{c} \Delta R\right) \\
\Delta Q & =\left(\Delta R \bowtie_{c}\right) \cup\left(R \bowtie_{c} \Delta R\right) U\left(\Delta R \bowtie_{c} \Delta R\right)
\end{aligned}
$$

Back to Datalog evaluation

2. Semi-Naive Datalog evaluation

Recall the naive evaluation:

```
\(P^{(0)}:=\emptyset, t:=0\)
Repeat \(\left\{\quad / \begin{array}{l}\text { immediate cons } \\ p(t)=T_{p}(p(t-1))\end{array}\right.\)
    inc(t)
    \(\mathrm{P}^{(\mathrm{t})}(\mathrm{x}, \mathrm{y}):=\mathrm{A}(\mathrm{x}, \mathrm{y}) \cup \pi_{\mathrm{xy}}\left(\mathrm{A}(\mathrm{x}, \mathrm{z}) \bowtie \mathrm{P}^{(\mathrm{t}-1)}(\mathrm{z}, \mathrm{y})\right)\)
until \(\left.\mathrm{P}^{(\mathrm{t})}=\mathrm{P}^{(\mathrm{t}-1)}\right\}\)
```

Semi-naive evaluation:

```
\(P:=A(x, z) ; \Delta P^{(0)}:=A(x, z)\)
Repeat \{ "incrementalized" immediate consequence operator:
    \(\operatorname{inc}(\mathrm{t}) \quad / \Delta p^{(t)}=T_{p}\left(\Delta p^{(t-1)}\right)-p^{(t-1)}\)
    \(\Delta \mathrm{P}^{(\mathrm{t})}(\mathrm{x}, \mathrm{y}):=\pi_{\mathrm{xy}}\left(\mathrm{A}(\mathrm{x}, \mathrm{z}) \bowtie \Delta \mathrm{P}^{(\mathrm{t}-1)}(\mathrm{z}, \mathrm{y})\right)-\mathrm{P}(\mathrm{x}, \mathrm{y})\)
    \(\mathrm{P}:=\mathrm{P} \cup \Delta \mathrm{P}(\mathrm{t})\)
until \(\left.\Delta P^{(t)}=\emptyset\right\}\)
```

Example

$$
\begin{aligned}
& P^{(t)}(x, y):-A(x, y) . \\
& P^{(t)}(x, y):-A(x, z), P^{(t-1)}(z, y) .
\end{aligned}
$$

$$
\begin{aligned}
& \Delta P^{(t)}(x, y):-A(x, z), \Delta P^{(t-1)}(z, y), \text { not } P(x, y) . \\
& P(x, y):-\Delta P^{(t)}(x, y) .
\end{aligned}
$$

A

1	2
2	3
3	4
4	5

paths of LEN ≤ 1
P
$?$

Example

$$
\begin{aligned}
& \Delta P^{(t)}(x, y):-A(x, z), \Delta P^{(t-1)}(z, y), \text { not } P(x, y) . \\
& \quad P(x, y):-\Delta P^{(t)}(x, y) .
\end{aligned}
$$

paths of LEN ≤ 2
P
?

Example

$$
\begin{aligned}
& p^{(t)}(x, y):-A(x, y) . \\
& P^{(t)}(x, y):-A(x, z), P^{(t-1)}(z, y) .
\end{aligned}
$$

$$
\begin{aligned}
& \Delta P^{(t)}(x, y):-A(x, z), \Delta P^{(t-1)}(z, y), \text { not } P(x, y) . \\
& \quad P(x, y):-\Delta P^{(t)}(x, y) .
\end{aligned}
$$

| A |
| :---: |\quad| 1 | 2 |
| :--- | :--- |
| 2 | 3 |
| 3 | 4 |
| 4 | 5 |\(\quad\left\{\begin{array}{|ll|}\hline 1 \& 2

\hline 2 \& 3

\hline 3 \& 4

\hline 4 \& 5

\hline\end{array}\right.\)
paths of LEN ≤ 2
P
$\Delta \mathrm{P}^{(2)}\left\{\begin{array}{|ll|}\hline 1 & 2 \\ \hline 2 & 3 \\ \hline 3 & 4 \\ \hline 4 & 5 \\ \hline 1 & 3 \\ \hline 2 & 4 \\ \hline 3 & 5 \\ \hline\end{array}\right.$
paths of LEN ≤ 3
P
?

Example

$$
\begin{aligned}
& \Delta P^{(t)}(x, y):-A(x, z), \Delta P^{(t-1)}(z, y), \text { not } P(x, y) . \\
& \quad P(x, y):-\Delta P^{(t)}(x, y) .
\end{aligned}
$$

$$
\begin{aligned}
& P^{(t)}(x, y):-A(x, y) . \\
& P^{(t)}(x, y):-A(x, z), P^{(t-1)}(z, y) .
\end{aligned}
$$

Example

$$
\begin{aligned}
& P^{(t)}(x, y):-A(x, y) . \\
& P^{(t)}(x, y):-A(x, z), P^{(t-1)}(z, y) .
\end{aligned}
$$

$$
\begin{aligned}
\Delta P^{(t)}(x, y) & :-A(x, z), \Delta P^{(t-1)}(z, y), \text { not } P(x, y) . \\
P(x, y) & :-\Delta P^{(t)}(x, y) .
\end{aligned}
$$

A	paths of LEN \leq P	$\begin{gathered} \text { paths of LEN } \leq 2 \\ \mathrm{P} \end{gathered}$	$\begin{gathered} \text { paths of LEN } \leq 3 \\ \mathrm{P} \end{gathered}$	paths of	$\begin{aligned} & \mathrm{ff} \text { LEN } \leq 4 \\ & \mathrm{P} \end{aligned}$
12	1 2	12	12		11 2
23	2 3	23	23		2 3
34	3	34	34		3 4
45	45	45	45		4 5 1
	$\Delta \mathrm{P}^{(1)}$	13	13		1 3
		$\Delta \mathrm{P}^{(2)} \begin{cases}2 & 4 \\ \hline\end{cases}$	24		24
		(1) 3	35		3 5 1
			1 4		1 4
			$\triangle P\left(\begin{array}{\|c\|}\hline 2 \quad 5 \\ \hline\end{array}\right.$		2 5 1
				$\Delta \mathrm{P}^{(4)}\{$	15

Outline: T1-4: Datalog \& ASP

- Datalog
- Datalog rules
- Datalog vs. RA
- Recursion
- Recursion in SQL [moved here from T1-U1: SQL]
- Semantics
- Naive and Semi-naive evaluation (Incremental View Maintenance)
- Chase Procedure (and Decompositions=Factorizations)
- Datalog?: Datalog with stratified negation
- Datalog ${ }^{ \pm}$
- Answer Set Programming (ASP)

The Chase

- A simple fixed-point algorithm to test implication of data dependencies.
- In its simplest incarnation it tests whether the projection of a relation schema constrained by some functional dependencies onto a given decomposition can be recovered by rejoining the projections
- i.e. whether a particular decomposition is "lossless"
- Problem is motivated by from schema normalization (decomposition of relations)
- The interesting aspect is that this algorithms is confluent: we can apply rules in any order and will still arrive at a unique fixed-point

Notation

- We usually denote relations by a name and an ordered set of attributes
- $R_{1}(A, B, C, D), R_{2}(D, E, F)$
- We can can also ignore relation names and the order among attributes. A relation is then just a set of attributes (unordered or named perspective)
- $S_{1}=\{A, B, C, D\}, S_{2}=\{D, E, F\}$
- We can then view a relational schema R as a pair (S, Σ) where:
- S is a finite set of attributes
- $S=\{A, B, C, D, E, F\}$,
- $\quad \Sigma$ is a set of functional dependencies (FDs) over S
- $\Sigma=\{D \rightarrow E, D \rightarrow F\}$
- We want to know if we can always decompose S into S_{1} and S_{2}, s.t.:
- $R_{1}=\pi_{S_{1}}(R), R_{2}=\pi_{S_{2}}(R), R=R_{1} \bowtie R_{2}$

A possibly familiar example

Assume we decompose $R(A, B, C, D, E, F)$ with $\Sigma=\{D \rightarrow E, D \rightarrow F\}$ into $R_{1}(A, B, C, D)$ and $R_{2}(D, E, F)$. Is $R=R_{1} \bowtie R_{2}$ for every database over this schema?
R

A	B	C	D	E	F
a	e	i	l	o	s
b	f	i	l	o	s
c	g	j	m	p	t
d	h	k	n	q	t

$\pi_{A, B, C, D}$
R R_{1}

A	B	C	D		
a	e	i	l		
b	f	i	l		
c	g	j	m		
d	h	k	n	\quad	
:---	R_{2}				

D	E	F
l	o	s
m	p	t
n	$q 5$	t

A possibly familiar example: now even more familiar Assume we decompose Item $(\mathrm{N}, \mathrm{P}, \mathrm{C}, \mathrm{M}, \mathrm{S}, \mathrm{C})$ with $\Sigma=\{M \rightarrow S, M \rightarrow C\}$ into Product($\mathrm{N}, \mathrm{P}, \mathrm{C}, \mathrm{M}$) and Company $(\mathrm{M}, \mathrm{S}, \mathrm{C})$. Is Item = Product \bowtie Company for every database?

Item

Name	Price	Category	Manufacturer	StockPrice	Country
Gizmo	$\$ 19.99$	Gadgets	GizmoWorks	25	USA
Powergizmo	$\$ 29.99$	Gadgets	GizmoWorks	25	USA
SingleTouch	$\$ 149.99$	Photography	Canon	65	Japan
MultiTouch	$\$ 203.99$	Household	Hitachi	15	Japan

$\Sigma:$
$M \rightarrow S$
$M \rightarrow C$

$\pi_{\mathrm{N}, \mathrm{P}, \mathrm{C}, \mathrm{M}}$
Product
Name Price Category Manufacturer Gizmo $\$ 19.99$ Gadgets GizmoWorks Powergizmo $\$ 29.99$ Gadgets GizmoWorks SingleTouch $\$ 149.99$ Photography Canon MultiTouch $\$ 203.99$ Household Hitachi

Company

Manufacturer	StockPrice	Country
GizmoWorks	25	USA
Canon	65	Japan
Hitachi	15	Japan

Decompositions in General

$R(A, B, C)$

Notice that $R \subseteq R_{1} \bowtie R_{2}$ for every database over any schema (we never loose tuples).
But we want that $R=R_{1} \bowtie R_{2}$ for every database over this schema.
We then say that the decomposition of R into $\left(R_{1}, R_{2}\right)$ is lossless if $R=R_{1} \bowtie R_{2}$.
When is this the case?

Decompositions in General

$R(A, B, C)$

Notice that $R \subseteq R_{1} \bowtie R_{2}$ for every database over any schema (we never loose tuples).
But we want that $R=R_{1} \bowtie R_{2}$ for every database over this schema.
We then say that the decomposition of R into $\left(R_{1}, R_{2}\right)$ is lossless if $R=R_{1} \bowtie R_{2}$.
When is this the case?

Lossless Decomposition

Lossless Decomposition

Is this decomposition lossless = correct?

Yes, we don't loose information

Lossless Decomposition

Is this decomposition lossless = correct?

Lossless Decomposition

	C	B	A	
	Name	Price	Category	
	Gizmo	19	Gadget	
	OneClick	24	Camera	
	Gizmo	19	Camera	
C			B	A
Name	Category		Price	Category
Gizmo	Gadget		19	Gadget
OneClick	Camera		24	Camera
Gizmo	Camera		19	Camera

> Is this decomposition lossless = correct?

No, here we lost information (Does Gizmo cost 19 or 24?).

Why does this happen?
(Neither $A \rightarrow B$, nor $A \rightarrow C$)

More general question: is a given decomposition lossless?

- Given a relation R with attributes S, a set of $\mathrm{FDs} \Sigma$ over S, and a set of subsets of $S: S_{1}, S_{2}, \ldots, S_{k}$.
- Is the decomposition of R into $R_{1}=\pi_{S_{1}}(R), \ldots, R_{k}=\pi_{S_{k}}(R)$ lossless? I.e. Is it true that $R_{1} \bowtie R_{2} \bowtie \cdots \bowtie R_{k}=R$?
- All we need to prove is that
- ...
?

More general question: is a given decomposition lossless?

- Given a relation R with attributes S, a set of FDs Σ over S, and a set of subsets of $S: S_{1}, S_{2}, \ldots, S_{k}$.
- Is the decomposition of R into $R_{1}=\pi_{S_{1}}(R), \ldots, R_{k}=\pi_{S_{k}}(R)$ lossless? I.e. Is it true that $R_{1} \bowtie R_{2} \bowtie \cdots \bowtie R_{k}=R$?
- All we need to prove is that
- $R \supseteq R_{1} \bowtie R_{2} \bowtie \cdots \bowtie R_{k}$
- because we already know that we never loose tuples:
$-R \subseteq R_{1} \bowtie R_{2} \bowtie \cdots \bowtie R_{k}$
- Given $R(A, B, C, D)$, is the decomposition into $R_{1}=\pi_{A, D}(R), R_{2}=\pi_{A, C}(R)$, $R_{3}=\pi_{B, C, D}(R)$ lossless, if R satisifies $\Sigma=\{A \rightarrow B, B \rightarrow C, C D \rightarrow A\}$?
- We need to check that $R \supseteq R_{1} \bowtie R_{2} \bowtie R_{3}$:
- Suppose $(a, b, c, d) \in R_{1} \bowtie R_{2} \bowtie R_{3}$. Question: Is it also in R ?
- Since $(a, b, c, d) \in R_{1} \bowtie R_{2} \bowtie R_{3}$, therefore also $(a, d) \in R_{1},(a, c) \in R_{2},(b, c, d) \in R_{3}$
- We therefor know that R must contain the following tuples (Irrespective of the FDs Σ):

A	B	C	D
a	b_{1}	c_{1}	d
a	b_{2}	c	d_{2}
a_{3}	b	c	d

why?
$?$

- Given $R(A, B, C, D)$, is the decomposition into $R_{1}=\pi_{A, D}(R), R_{2}=\pi_{A, C}(R)$, $R_{3}=\pi_{B, C, D}(R)$ lossless, if R satisifies $\Sigma=\{A \rightarrow B, B \rightarrow C, C D \rightarrow A\}$?
- We need to check that $R \supseteq R_{1} \bowtie R_{2} \bowtie R_{3}$:
- Suppose $(a, b, c, d) \in R_{1} \bowtie R_{2} \bowtie R_{3}$. Question: Is it also in R ?
- Since $(a, b, c, d) \in R_{1} \bowtie R_{2} \bowtie R_{3}$, therefore also $(a, d) \in R_{1},(a, c) \in R_{2},(b, c, d) \in R_{3}$
- We therefor know that R must contain the following tuples (Irrespective of the FDs Σ):

A	B	C	D
a	b_{1}	c_{1}	d
a	b_{2}	c	d_{2}
a_{3}	b	c	d

Why?
because $(a, d) \in R_{1}$ which was derived from R as $\pi_{A, D}(R) \subset R_{1}(A, D)$
because $(a, c) \in R_{2}$ which was derived from from R as $\pi_{A, C}(R)$
because $(b, c, d) \in R_{3}$ which was derived from from R as $\pi_{B, C, D}(R)$

- Idea: "Chase" them (apply given FDs Σ by equating constants) until we can either prove that $(a, b, c, d) \in R$ or until we cannot apply any more FDs.

The chase in a page (a test for lossless join decomposition)

- Idea: "Chase" them (apply given FDs Σ by equating constants) until we can either prove that $(a, b, c, d) \in R$ or until we cannot apply any more FDs.
- Our FDs Σ :
- $A \rightarrow B$
- $B \rightarrow C$
- $C D \rightarrow A$

A	B	C	D
a	b_{1}	c_{1}	d
a	b_{2}	c	d_{2}
a_{3}	b	c	d

> apply:
> $A \rightarrow B$

The chase in a page (a test for lossless join decomposition)

- Idea: "Chase" them (apply given FDs Σ by equating constants) until we can either prove that $(a, b, c, d) \in R$ or until we cannot apply any more FDs.
- Our FDs Σ :
- $A \rightarrow B$
- $B \rightarrow C$
- $C D \rightarrow A$

A	B	C	D
a	b_{1}	c_{1}	d
a	b_{2}	c	d_{2}
a_{3}	b	c	d

apply:
$A \rightarrow B$

A	B	C	D
a	b_{1}	c_{1}	d
a	b_{1}	c	d_{2}
a_{3}	b	c	d

apply:
$B \rightarrow C$

The chase in a page (a test for lossless join decomposition)

- Idea: "Chase" them (apply given FDs Σ by equating constants) until we can either prove that $(a, b, c, d) \in R$ or until we cannot apply any more FDs.
- Our FDs Σ :
- $A \rightarrow B$
- $B \rightarrow C$
- $C D \rightarrow A$

A	B	C	D
a	b_{1}	c_{1}	d
a	b_{2}	c	d_{2}
a_{3}	b	c	d

apply:
$A \rightarrow B$

A	B	C	D	apply:
a	b_{1}	C_{1}	d	$B \rightarrow C$
a	b_{1}	c	d_{2}	
a_{3}	b	c	d	

A	B	C	D		
a	b_{1}	c	d		
a	b_{1}	c	d_{2}		
a_{3}	b	c	d	\quad	
:---					
$C D$	\quad				
:---					

The chase in a page (a test for lossless join decomposition)

- Idea: "Chase" them (apply given FDs Σ by equating constants) until we can either prove that $(a, b, c, d) \in R$ or until we cannot apply any more FDs.
- Our FDs Σ :
- $A \rightarrow B$
- $B \rightarrow C$
- $C D \rightarrow A$

A	B	C	D
a	b_{1}	c_{1}	d
a	b_{2}	c	d_{2}
a_{3}	b	c	d

apply:
$A \rightarrow B$

A	B	C	D
a	b_{1}	c_{1}	d
a	b_{1}	c	d_{2}
a_{3}	b	c	d

A	B	C	D
a	b_{1}	c	d
a	b_{1}	c	d_{2}
a_{3}	b	c	d

apply:
$C D \rightarrow A$

A	B	C	D
a	b_{1}	c	d
a	b_{1}	c	d_{2}
a	b	c	d

Hence R contains (a, b, c, d)

The chase in a page (a test for lossless join decomposition)

- Idea: "Chase" them (apply given FDs Σ by equating constants) until we can either prove that $(a, b, c, d) \in R$ or until we cannot apply any more FDs.
- Our FDs Σ :
- $A \rightarrow B$
- $B \rightarrow C$
- $C D \rightarrow A$

A	B	C	D
a	b_{1}	c_{1}	d
a	b_{2}	c	d_{2}
a_{3}	b	c	d

apply: $A \rightarrow B$

A	B	C	D
a	b_{1}	c_{1}	d
a	b_{1}	c	d_{2}
a_{3}	b	c	d

A	B	C	D
a	b_{1}	c	d
a	b_{1}	c	d_{2}
a_{3}	b	c	d

apply:
$C D \rightarrow A$

A	B	C	D
a	b_{1}	c	d
a	b_{1}	c	d_{2}
a	b	c	d

Hence R contains (a, b, c, d)

Chase example 2

$\mathrm{D} \rightarrow \mathrm{E}$

A	B	C	D	E
a	b_{1}	c	d_{1}	e_{1}
a_{2}	b	c	d	e_{2}
a_{3}	$\mathrm{~b}_{3}$	C_{3}	d	e

Chase example 2

$\mathrm{D} \rightarrow \mathrm{E}$
$\mathrm{E} \rightarrow \mathrm{B}$
$\mathrm{E} \rightarrow \mathrm{D}$

A	B	C	D	E
a	b_{1}	c	d_{1}	e_{1}
a_{2}	b_{1}	c	d	e_{2}
a_{3}	b_{3}	c_{3}	d	e

A	B	C	D	E
a	b_{1}	c	d_{1}	e_{1}
a_{2}	b	c	d	e_{1}
a_{3}	b_{3}	c_{3}	d	e

$\prod D \rightarrow E \quad e=e$,

A	B	C	D	E
a	b_{1}	c	d_{1}	e
a_{2}	b	c	d	e
a_{3}	$\mathrm{~b}_{3}$	c_{3}	d	e

A	B	C	D	E
a	b	c	d	e
a_{2}	b	c	d	e
a_{3}	b	c_{3}	d	e

Chase example 2

A	B	C	D	E
a	b_{1}	c	d_{1}	e_{1}
a_{2}	b	c	d	e_{2}
a_{3}	$\mathrm{~b}_{3}$	c_{3}	d	e

$$
\Longrightarrow \quad \Longrightarrow
$$

A	B	C	D	E
a	b_{1}	c	d_{1}	e_{1}
a_{2}	b	c	d	e_{1}
a_{3}	b_{3}	c_{3}	d	e

$$
\sqrt{ } D \rightarrow E
$$

A	B	C	D	E
a	b_{1}	c	d_{1}	e_{1}
a_{2}	b_{1}	c	d	e
a_{3}	b_{3}	c_{3}	d	e

A	B	C	D	E
a	b_{1}	c	d_{1}	e
a_{2}	b	c	d	e
a_{3}	b_{3}	c_{3}	d	e

A	B	C	D	E
a	b	c	d	e
a_{2}	b	c	d	e
a_{3}	b	c_{3}	d	e

Chase example 2
$D \rightarrow E$
$\mathrm{E} \rightarrow \mathrm{B}$
$\mathrm{E} \rightarrow \mathrm{D}$

A	B	C	D	E
a	b_{1}	c	d_{1}	e_{1}
a_{2}	b	c	d	e_{2}
a_{3}	b_{3}	c_{3}	d	e

A	B	C	D	E
a	b_{1}	c	d_{1}	e_{1}
a_{2}	b	c	d	e_{1}
a_{3}	b_{3}	c_{3}	d	e

$\sqrt{\int} D \rightarrow E$

A	B	C	D	E
a	b_{1}	c	d_{1}	e_{1}
a_{2}	b	c	d	e
a_{3}	b_{3}	c_{3}	d	e

A	B	C	D	E
a	b_{1}	c	d_{1}	e
a_{2}	b	c	d	e
a_{3}	b_{3}	c_{3}	d	e

$E \rightarrow B$

A	B	C	D	E	$C \rightarrow E$	A	B	C	D		$\mathrm{E} \rightarrow \mathrm{BD}$	A	B	C	D	E
a	b_{1}	c	d_{1}	e_{1}		a	b_{1}	c	d_{1}			a	b	c	d	e
a_{2}	b	c	d	e		a_{2}	b	c	d			a_{2}	b	c	d	e
a_{3}	b	C_{3}	d	e		a_{3}	b	c_{3}	d			a_{3}	b	${ }^{2}$	d	e

The chase is confluent
(has a unique fix point)

Chase example 2

$\mathrm{E} \rightarrow \mathrm{B}$ $\mathrm{E} \rightarrow \mathrm{D}$

The chase is confluent (has a unique fix point)

Outline: T1-4: Datalog \& ASP

- Datalog
- Datalog rules
- Datalog vs. RA
- Recursion
- Recursion in SQL [moved here from T1-U1: SQL]
- Semantics
- Naive and Semi-naive evaluation (Incremental View Maintenance)
- Chase Procedure (and Decompositions=Factorizations)
- Datalog?: Datalog with stratified negation
- Datalog ${ }^{ \pm}$
- Answer Set Programming (ASP)

What should be the Semantics?

$$
\text { Friend }(x, y) \text { :- Likes }(x, y), \rightarrow \text { Parent }(y, x) \text {. }
$$

Likes (1,2). Parent (2,1).
Likes (1,3).

What should be the Semantics?

$$
\text { Friend }(x, y) \text { :- Likes }(x, y), \rightarrow \text { Parent }(y, x)
$$

$$
\operatorname{Box}(x):-\operatorname{Item}(x),-\operatorname{Box}(x) .
$$

Likes (1,2). Parent (2,1).
Likes (1,3)

Item('ball')
?

What should be the Semantics?

$$
\text { Friend }(x, y) \text { :- Likes }(x, y), \rightarrow \text { Parent }(y, x)
$$

$$
\operatorname{Box}(x):-\operatorname{Item}(x), \neg \operatorname{Box}(x) .
$$

Item('ball') \longrightarrow Box('ball') ???

$$
\begin{aligned}
& \operatorname{LeftBox}(x):-\operatorname{Item}(x), ~ \neg \operatorname{RightBox}(x) . \\
& \operatorname{RightBox}(x):-\neg \operatorname{LeftBox}(x) .
\end{aligned}
$$

Likes (1,2). Parent (2,1).
Likes $(1,3) . \longrightarrow$ Friend $(1,3)$

What should be the Semantics?

$$
\text { Friend }(\mathrm{x}, \mathrm{y}) \text { :- Likes }(\mathrm{x}, \mathrm{y}),, \text { Parent }(\mathrm{y}, \mathrm{x}) .
$$

$$
\operatorname{Box}(x):-\operatorname{Item}(x), \neg \operatorname{Box}(x) .
$$

Likes (1,2). Parent (2,1).
Likes $(1,3) . \longrightarrow$ Friend $(1,3)$

$$
\text { Item('ball') } \longrightarrow \text { Box('ball') ??? }
$$

$$
\begin{aligned}
& \text { LeftBox(x) :- Item }(x), ~-\operatorname{RightBox}(x) . \\
& \operatorname{RightBox}(x):-\neg \operatorname{LeftBox}(x) .
\end{aligned}
$$

$$
\text { Item('ball') } \longrightarrow \begin{aligned}
& \text { LeftBox('ball') ??? } \\
& \text { unsafe! }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{LeftBox}(x):-\operatorname{Item}(x), ~ \neg \operatorname{RightBox}(x) . \\
& \operatorname{RightBox}(x):-\operatorname{Item}(x), \neg \operatorname{LeftBox}(x) .
\end{aligned}
$$

What should be the Semantics?

$$
\text { Friend }(\mathrm{x}, \mathrm{y}) \text { :- Likes }(\mathrm{x}, \mathrm{y}),, \text { Parent }(\mathrm{y}, \mathrm{x}) .
$$

$$
\operatorname{Box}(x):-\operatorname{Item}(x), \neg \operatorname{Box}(x) .
$$

Likes (1,2). Parent (2,1).
Likes $(1,3) . \longrightarrow$ Friend $(1,3)$

Item('ball') \longrightarrow Box('ball') ???

> LeftBox(x) :- Item(x), $\neg \operatorname{RightBox(x).~}$ RightBox(x) :- $-\operatorname{LeftBox(x).~}$

$$
\text { Item('ball') } \longrightarrow \begin{aligned}
& \text { LeftBox('ball') ??? } \\
& \text { unsafe! }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{LeftBox}(\mathrm{x}):-\operatorname{Item}(\mathrm{x}), ~ \neg \operatorname{RightBox}(\mathrm{x}) . \\
& \operatorname{RightBox}(\mathrm{x}):-\operatorname{Item}(\mathrm{x}), \neg \operatorname{LeftBox}(\mathrm{x}) .
\end{aligned}
$$

\Rightarrow Adding negation to Datalog is not straightforward!

What should be the Semantics?

$$
\text { Friend }(x, y) \text { :- Likes }(x, y),- \text { Parent }(y, x)
$$

$$
\operatorname{Box}(x):-\operatorname{Item}(x), \neg \operatorname{Box}(x) .
$$

Likes (1,2). Parent (2,1).
Likes $(1,3) . \longrightarrow$ Friend $(1,3)$

LeftBox(x) :- Item(x), $\neg \operatorname{RightBox(x).~}$ RightBox(x) :- $-\operatorname{LeftBox(x).~}$

$$
\begin{aligned}
& \operatorname{LeftBox}(x):-\operatorname{Item}(x), ~ \neg \operatorname{RightBox}(x) . \\
& \operatorname{RightBox}(x):-\operatorname{Item}(x), \neg \operatorname{LeftBox}(x) .
\end{aligned}
$$

Later discussed "stable model" semantics
(intended models = answer sets)

Negation in Datalog

- Various semantics have been proposed for supporting negation in Datalog that still allow tractability
- We will first look at two:
- 1. Semipositive Datalog (restricted): PTIME
- 2. Stratified Datalog (standard): PTIME
- We will later look at a more powerful (but intractable) semantics
- Stable Models semantics (or answer set programming ASP): NP-complete and beyond!

1. Semipositive Programs and Safety

```
Friend(x,y) :- Likes(x,y), ~Parent(y,x).
```

Likes $-\pi_{y, x}$ Parent
A semipositive program is a program where only EDBs may be negated

- Semantics: same as ordinary Datalog programs
- Safety: rule is safe if every variable occurs in a positive (= unnegated) relational atom (ensures domain independence: the results of programs are finite and depend only on the actual contents of the database)

Exercise: Are following rules safe?

$$
S(x):-T(y), \operatorname{Arc}(z, y), \neg \operatorname{Arc}(x, y) .
$$

$$
S(x):-\top(y), \neg \top(x) .
$$

1. Semipositive Programs and Safety

```
Friend(x,y) :- Likes(x,y), ~Parent(y,x).
```

Likes $-\pi_{y, x}$ Parent
A semipositive program is a program where only EDBs may be negated

- Semantics: same as ordinary Datalog programs
- Safety: rule is safe if every variable occurs in a positive (= unnegated) relational atom (ensures domain independence: the results of programs are finite and depend only on the actual contents of the database)

Exercise: Are following rules safe?

$$
S(x):-T(y), \operatorname{Arc}(z, y), \neg \operatorname{Arc}(x, y) . \quad \text { unsafe (what is the domain for "x"?) }
$$

$$
S(x):-T(y), \neg T(x) .
$$

unsafe

1. Semipositive: Negated Atoms

- We may put \neg, !, ~, or not in front of an EDB atom to negate its meaning.
- EXAMPLE: Return all pairs of nodes (x, y) where y is two hops away from x , but not an immediate neighbor of x.

1. Semipositive: Negated Atoms

- We may put \neg, !, ~, or not in front of an EDB atom to negate its meaning.
- EXAMPLE: Return all pairs of nodes (x, y) where y is two hops away from x , but not an immediate neighbor of x.

TwoHopsAway $(x, y):-\operatorname{Arc}(x, z), \operatorname{Arc}(z, y), \sim \operatorname{Arc}(x, y)$.

A(S,T)

1. Semipositive: Negated Atoms

- We may put \neg, !, \sim, or not in front of an EDB atom to negate its meaning.
- EXAMPLE: Return all pairs of nodes (x, y) where y is two hops away from x , but not an immediate neighbor of x.

TwoHopsAway $(x, y):-\operatorname{Arc}(x, z), \operatorname{Arc}(z, y), \sim \operatorname{Arc}(x, y)$.

```
```

SELECT A1.S, A2.T

```
```

SELECT A1.S, A2.T
FROM A A1, A A2
FROM A A1, A A2
WHERE A1.T = A2.S
WHERE A1.T = A2.S
AND NOT EXISTS
AND NOT EXISTS
(SELECT *
(SELECT *
FROM A A3
FROM A A3
WHERE A3.S = A1.S
WHERE A3.S = A1.S
AND A3.T = A2.T)

```
```

 AND A3.T = A2.T)
    ```
```


A(S,T)

Compute all pairs of disconnected nodes in a graph.

Exampe: beyond Semipositive

Arc(Source,Target)
Node(id)
Compute all pairs of disconnected nodes in a graph.
Reachable $(x, y):-\operatorname{Arc}(x, y)$.
Reachable(x,y) :- $\operatorname{Arc}(x, z)$, Reachable(z,y).

Exampe: beyond Semipositive

Arc(Source,Target) Node(id)

Compute all pairs of disconnected nodes in a graph.

Reachable(x, y) :- $\operatorname{Arc}(x, y)$.
Reachable(\mathbf{x}, y) :- $\operatorname{Arc}(\mathbf{x}, \mathbf{z})$, Reachable(z,y).
Unreachable(x, y) :- Node(x), Node(y), \rightarrow Reachable(x, y).

Stratum 1 Reachable <

Stratum 2 Unreachable

- Straightforward syntactic restriction.
- When the Datalog program is stratified, we can evaluate IDB predicates stratum-by-stratum
- Once evaluated, treat it as EDB for higher strata.

Precedence graph

- Nodes = IDB predicates
- Arc $p \rightarrow q$ if predicate q depends on p
- Label this arc " \neg " if predicate p is negated think: "topological sort"

$$
\text { Non-stratified example: LeftBox }(x) \text { :- }-\operatorname{LeftBox}(x) \text {, Item }(x) \text {. }
$$

Exampe: beyond Semipositive
Node is basically ADom: Node (x) :- Arc (x, y) Node (y) :- $\operatorname{Arc}(x, y)$

Arc(Source,Target) Node(id)

Compute all pairs of disconnected nodes in a graph.

Reachable $(x, y):-\operatorname{Arc}(x, y)$.
Reachable(x, y) :- $\operatorname{Arc}(x, z)$, Reachable(z,y).
Unreachable(x, y) :- Node(x), Node(y), \rightarrow Reachable(x, y).

Stratum 1 Reachable

Stratum 2 Unreachable

- Straightforward syntactic restriction.
- When the Datalog program is stratified, we can evaluate IDB predicates stratum-by-stratum
- Once evaluated, treat it as EDB for higher strata.

Precedence graph

- Nodes = IDB predicates
- Arc $p \rightarrow q$ if predicate q depends on p
- Label this arc " \neg " if predicate p is negated think: "topological sort"

$$
\text { Non-stratified example: LeftBox(x) :- }- \text { LeftBox }(x) \text {, Item }(x) \text {. }
$$

2. Stratified Programs: Definition and Semantics

- Definition: Let \mathbf{P} be a Datalog program, \mathbf{E} be the set of EDB predicates, and I be the set of IDB predicates. A stratification of \mathbf{P} is a partitioning of the IDB predicates into disjoint sets $\|_{1}, \ldots, l_{k}$ such that:
- For $i=1, \ldots, k$, every rule with head in I_{i} has possible body predicates only from E, I_{1}, \ldots, I_{i}
- For $i=1, \ldots, k$, every rule with head in I_{i} has negated body predicates only from $E, I_{1}, \ldots,(i-1)$
- Semantics:
- For $\mathrm{i}=1, . ., \mathrm{k}$:
- Compute the IDBs of the stratum I_{i}, possibly via recursion
- Add computed IDBs to the EDBs
- Due to the definition of stratification, each E_{i} can be viewed as semipositive

2. Theorems on Stratification

- Theorem 1: A program has a stratification if and only if its dependency graph does not contain a cycle with a "negated edge"
- Dependency graph is defined as previously, except that edges can be labeled with negation
- Hence, we can test for stratifiability efficiently, via graph reachability

$$
\begin{aligned}
& A(x):-B(x) . \\
& B(x):-C(x) . \\
& C(x):-\neg A(x) .
\end{aligned}
$$

2. Theorems on Stratification

- Theorem 1: A program has a stratification if and only if its dependency graph does not contain a cycle with a "negated edge"
- Dependency graph is defined as previously, except that edges can be labeled with negation
- Hence, we can test for stratifiability efficiently, via graph reachability

$$
\begin{aligned}
& A(x):-B(x) . \\
& B(x):-C(x) . \\
& C(x):-\neg A(x) .
\end{aligned}
$$

- Theorem 2: Non-recursive Datalog with negation can always be stratified via the topological order
- Theorem 3: Non-recursive Datalog with negation has the same expressive power as the algebra $\left\{\sigma_{=}, \pi, \times, U,-\right\}$
- Extendable to RA if we add the comparison predicates <, >, !=, <=, >=

Hierarchy of expressiveness
ASP can express NP-complete problems (and even problems higher in the Polynomial hierarchy) (For Turing-completeness, we would only have to add functions, i.e. the ability to create new values not previously found in the EDB)

Answer set programming / Stable Model Semantics

Stratified Datalog w/ negation
$R A:\{\sigma, \pi, \times, \cup,-\}$
Non-recursive Datalog
$w /$ negation
Positive RA (RA $^{+}$): $\{\sigma, \pi, \times, \cup\}$
Recursive queries

Union of CQs (UCQs)

Non-recursive Datalog

Notice that Datalog and UCQs often assume an unordered domain and no built-in predicates. For equality, we assume here an ordered domain and allow built-in predicates ($(,,<, \leq, \geq,!=)$.

2. Stratification practice

Q: Find all descendants of Alice, who are not descendants of Bob

Q: Find all descendants of Alice, who are not descendants of Bob

Q: Find all descendants of Alice, who are not descendants of Bob

```
D(x,y):- Parent(x,y).
D(x,z) :- Parent(y,z), D(x,y).
```

first compute for each person their descendants

then use negation

?

Q: Find all descendants of Alice, who are not descendants of Bob

2. Stratification practice

Q: Find all descendants of Alice, who are not descendants of Bob
$D(x, y):-\operatorname{Parent}(x, y)$.
$D(x, z):-$ Parent $(y, z), D(x, y)$.
$\mathrm{Q}(\mathrm{x}):-\mathrm{D}\left(\right.$ 'Alice' $\left.^{\prime}, \mathrm{x}\right), \rightarrow \mathrm{D}\left(\mathrm{Bob}^{\prime}, \mathrm{x}\right)$.

$$
\begin{aligned}
& D A(y) \text { :- Parent('Alice', } y \text {). } \\
& D A(y) \text { :- Parent }(x, y), D A(x) . \\
& D B(y):- \text { Parent('Bob', } y \text {). } \\
& D B(y):- \text { Parent }(x, y), D B(x) . \\
& Q(x):-D A(x), ~ \neg D B(x) .
\end{aligned}
$$

Datalog Summary

- EDB (extensional/base relations), IDB (intentional/derived relations)
- Datalog program = set of rules; base relations are also rules
- Datalog can be recursive
- Stratified Datalog with negation still PTIME
- Non-stratified Datalog: stable model semantics, ASP, can model NPC problems
- SQL has also been extended to express limited form of recursion
- Using a recursive "with" clause, also called CTE (Common Table Expression)
- Can only have a single IDB

Topic 1: Data models and query languages Unit 4: Datalog Lecture 11

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
https://northeastern-datalab.github.io/cs7240/sp24/
2/20/2024

Pre-class conversations

- Last class summary
- Project discussions (in class and after)
- Faculty candidates (today, Feb 29, March 20)
- today:
- More on Datalog
- What happens if we add negation? Answer: it depends on how we do it.
- Datalog with stratified negation
- Datalog with more genal negation (stable models), leads to ASP
- Later: Beyond NP with ASP (including 3-colorability in 2 lines)

Outline: T1-4: Datalog \& ASP

- Datalog
- Datalog rules
- Datalog vs. RA
- Recursion
- Recursion in SQL [moved here from T1-U1: SQL]
- Semantics
- Naive and Semi-naive evaluation (Incremental View Maintenance)
- Chase Procedure (and Decompositions=Factorizations)
- Datalog 7 : Datalog with stratified negation
- Datalog ${ }^{ \pm}$
- Answer Set Programming (ASP)

Datalog£: background
Datalog query language (stratified negation)

- Much is possible with Datalog

Datalog: background

- Much is possible with Datalog
- Much is not (observed e.g. by [Patel-Schneider, Horrocks 2006])

Datalog: goal

- Much is possible with Datalog
- Much is not (observed e.g. by [Patel-Schneider, Horrocks 2006])
- Datalog ${ }^{ \pm}$is a framework that extends Datalog with:
- value invention (\exists-variables in the head): TGDs (Tuple-Generating Dependencies)
- equality predicate in the head: EGDs (Equality Generating Dependencies)
- constant \perp in the head: negative constraints (disjointness)

Datalog and expressiveness for ontological reasoning

| Assertion type | Datalog rule |
| :--- | :--- |
| Inclusion | emp $(\mathrm{X}) \rightarrow$ person (X) |
| (Inverse) role inclusion | reportsTo $(\mathrm{X}, \mathrm{Y}) \rightarrow$ manages (Y, X) |
| Reflexive expansion | boss $(\mathrm{X}) \rightarrow$ manages (X, X) |
| Transitivity | manages (X, Y), manages $(\mathrm{Y}, \mathrm{Z}) \rightarrow$ manages (X, Z) |
| Concept product | seniorEmp (X), emp $(\mathrm{Y}) \rightarrow$ higher (X, Y) |
| Participation | $?$ |
| Disjointness | $?$ |
| Functionality | $?$ |

| Ontology assertion | Datalog $^{ \pm}$rule |
| :--- | :--- |
| Participation | $\operatorname{boss}(\mathrm{X}) \rightarrow \exists \mathrm{Y}$ reports (Y, X) |
| Disjointness | $\operatorname{customer}(\mathrm{X})$, boss $(\mathrm{X}) \rightarrow \perp$ |
| Functionality | reports $(\mathrm{X}, \mathrm{Y} 1)$, reports $(\mathrm{X}, \mathrm{Y} 2) \rightarrow \mathrm{Y} 1=\mathrm{Y} 2$ |

Datalog${ }^{ \pm}$vs. DL

The above example corresponds to the following set of DL axioms, expressed in an extension of $\mathcal{E} \mathcal{L H}$ I by nonmonotonic negation:

FiveStar $(X) \rightarrow \operatorname{Hotel}(X)$,
FiveStar $(X), \operatorname{not} \operatorname{Pool}(X, Y) \rightarrow \exists Z \operatorname{Beach}(X, Z)$, FiveStar $(X), \operatorname{not} \operatorname{Beach}(X, Y) \rightarrow \exists Z \operatorname{Pool}(X, Z)$, $\operatorname{Beach}(X, Y) \rightarrow \exists Z \operatorname{SwimOpp}(X, Z)$, $\operatorname{Pool}(X, Y) \rightarrow \exists Z \operatorname{SwimOpp}(X, Z)$,

FiveStar \sqsubseteq Hotel, FiveStar $\sqcap \operatorname{not} \exists$ Pool $\sqsubseteq \exists$ Beach, FiveStar \sqcap not \exists Beach $\sqsubseteq \exists$ Pool,
\exists Beach $\sqsubseteq \exists$ SwimOpp,
\exists Pool $\sqsubseteq \exists$ SwimOpp,

Interesting Observations

- Exploiting schema knowledge in query answering is not trivial
- Languages and algorithms exist that allow for tractable query answering
- Applications in real-world scenarios are possible
- Industrial applications in data integration, Semantic Web, ontological reasoning
- Companies and Products: RelationalAI, Deepreason.ai, Oracle Semantic Technologies, IBM IODT, OntoDLV (Vienna)

Outline: T1-4: Datalog \& ASP

- Datalog
- Answer Set Programming
- Intro to Rules with Negation
- Horn clauses and Logic Programming
- Stable model semantics
- An application and surprising complexity result
- The power of Disjunctions
- [A surprising application: automating hardness proofs: moved to T2-U4: Reverse Data Management]

Negation in Souffle vs. Negation in ASP

Negation in Rules

A rules of the form

CanRenovate(person, building) :- Owner(person, building), !Heritage(building).
expresses the rule that an owner can renovate a building with the condition that the building is not classified as heritage. Thus the literal "Heritage(building)" is negated (via "!") in the body of the rule. Not all negations are semantically permissible. For example,

```
A(x) :- ! B(x).
B(x) :- ! A(x).
```

is a circular definition. One cannot determine if anything belongs to the relation " A " without determining if it belongs to relation " B ". But to determine if it is a " B " one needs to determine if the item belongs to "A". Such circular definitions are forbidden. Technically, rules involving negation must be stratifiable.
Negated literals do not bind variables. For example,

is not valid as the set of values that " y " can take is not clear. This can be rewritten as,

```
A(x,y) :- R(x), Scope(y), !S(y).
```

where the relation "Scope" defines the set of values that " y " can take.

Answer Set Programming (ASP)

- Programming paradigm that can model Al problems (e.g, planning, combinatorics)
- Basic idea
- Allow non-stratified negation and encode problem (specification \& "instance") as logic program rules
- Solutions are so-caled "stable models" of the program
- Semantics based on Possible Worlds and Stable Models
- Given an answer set program P, there can be multiple solutions (stable models, answer sets)
- Each model \mathbf{M} : assignment of true/false value to propositions to make all formulas true (combinatorial)
- Captures default reasoning, non-monotonic reasoning, constrained optimization, exceptions, weak exceptions, preferences, etc., in a natural way
- Finding stable models of answer set programs is not easy
- Current systems CLASP, DLV, clingo, Smodels, etc., extremely sophisticated
- Work by first grounding the program (= replacing variables with constants), suitably transforming it to a propositional theory whose models are stable models of the original program (contrast with "lifted inference" later)
- These models are found using a SAT solver or solvers using similar ideas to SAT solvers

Rules with Negation

- Closed world assumption (CWA) as used in standard Datalog:
- If a fact does not logically follow from a set of Datalog clauses, then we conclude that the negation of this fact is true.
- Problem: CWA can lead to inconsistencies when negation is allowed in rule bodies. Intuition: we can have multiple minimal models ("Herbrand models")

Example 1:
boring(chess) :- boring(chess).

What are all the possible *minimal* models:

- Herbrand universe U_{p} (set of all constants) $=$ \{chess\}
- Herbrand base B_{p} (set of grounded atoms) =\{boring(chess) $\}$
- Interpretations (all subsets of B_{p}) $=\{\{ \}$, $\{$ boring(chess) $\}\}$
- Model: interpretation that makes each ground instance of each rule true

Rules with Negation

- Closed world assumption (CWA) as used in standard Datalog:
- If a fact does not logically follow from a set of Datalog clauses, then we conclude that the negation of this fact is true.
- Problem: CWA can lead to inconsistencies when negation is allowed in rule bodies. Intuition: we can have multiple minimal models ("Herbrand models")

Example 1:
boring(chess) :- boring(chess).
What are all the possible *minimal* models:

$$
M_{1}=\{ \}
$$

$m_{2}=\{$ boring(chess) $\}$ is a model, but not minimal

Rules with Negation

- Closed world assumption (CWA) as used in standard Datalog:
- If a fact does not logically follow from a set of Datalog clauses, then we conclude that the negation of this fact is true.
- Problem: CWA can lead to inconsistencies when negation is allowed in rule bodies. Intuition: we can have multiple minimal models ("Herbrand models")

Example 1:

| boring(chess) :- boring(chess). $\quad \square$ | $\mathrm{M}_{1}=\{ \}$ |
| :---: | :---: |
| What are all the possible *minimal* models: Example 2: | $m_{2}=\{b o r i n g$ (chess) $\}$ is a model, but not minimal |
| $\frac{\text { boring(chess) :- -interesting(chess). }}{\text { What are all the possible * minimal* models: }}$ | $? \begin{aligned} & \text { Possible interpretations: } \\ & \{\},\{b(c)\},\{i(c)\}, \\ & \{b(c), i(c)\}\} \end{aligned}$ |

Rules with Negation

- Closed world assumption (CWA) as used in standard Datalog:
- If a fact does not logically follow from a set of Datalog clauses, then we conclude that the negation of this fact is true.
- Problem: CWA can lead to inconsistencies when negation is allowed in rule bodies. Intuition: we can have multiple minimal models ("Herbrand models")

Example 1:

boring(chess) :- boring(chess).

What are all the possible *minimal* models:
Example 2:
boring(chess) :- -interesting(chess).

What are all the possible *minimal* models:

$$
M_{1}=\{ \}
$$

$m_{2}=\{$ boring(chess) $\}$ is a model, but not minimal
$M_{1}=\{$ boring(chess) $\}$
$\mathrm{M}_{2}=\{$ interesting(chess) $\}$

Outline: T1-4: Datalog \& ASP

- Datalog
- Answer Set Programming
- Intro to Rules with Negation
- Horn clauses and Logic Programming
- Stable model semantics
- An application and surprising complexity result
- The power of Disjunctions
- [A surprising application: automating hardness proofs: moved to T2-U4: Reverse Data Management]

Horn clauses and logic programming

A clause is a disjunction of literals.

$$
\begin{array}{cc}
\overline{\mathrm{a}} \vee \overline{\mathrm{~b}} \vee \mathrm{c} \vee \mathrm{~d} \quad & \mathrm{a} \wedge \mathrm{~b} \Rightarrow \mathrm{c} \vee \mathrm{~d} \\
& 1 \wedge \mathrm{a} \wedge \mathrm{~b}
\end{array} \Rightarrow \mathrm{c} \vee \mathrm{~d} \vee 0 .
$$

A Horn clause has at most one positive (i.e. unnegated) literal.
?

Horn clauses and logic programming

A clause is a disjunction of literals.

$$
\begin{aligned}
& \bar{a} \vee \bar{b} \vee c \vee d \\
& \mathrm{a} \wedge \mathrm{~b} \Rightarrow \mathrm{c} \vee \mathrm{~d} \\
& 1 \wedge a \wedge b \Rightarrow c \vee d \vee 0
\end{aligned}
$$

A Horn clause has at most one positive (i.e. unnegated) literal.

$\overline{\mathrm{a}} \vee \overline{\mathrm{b}} \vee \mathrm{c}$
 c
 $\overline{\mathrm{a}} \vee \overline{\mathrm{b}}$

definite clause (exactly one positive)
Alfred Horn, ~1973 unit clause (facts, unconditional knowledge, empty body)
goal clause

Horn clauses and logic programming

A clause is a disjunction of literals.

$$
\begin{aligned}
& \overline{\mathrm{a}} \vee \overline{\mathrm{~b}} \vee \mathrm{c} \vee \mathrm{~d} \\
& a \wedge b \Rightarrow c \vee d \\
& 1 \wedge a \wedge b \Rightarrow c \vee d \vee 0
\end{aligned}
$$

A Horn clause has at most one positive (i.e. unnegated) literal.
$\overline{\mathrm{a}} \vee \overline{\mathrm{b}} \vee \mathrm{c}$
$\mathrm{a} \wedge \mathrm{b} \Rightarrow \mathrm{c} \quad$ definite clause (exactly one positive)
Alfred Horn, ~1973
$1 \Rightarrow \mathbf{C} \quad$ unit clause (facts, unconditional knowledge, empty body)
$\overline{\mathrm{a}} \vee \overline{\mathrm{b}}$
$\mathrm{a} \wedge \mathrm{b} \Rightarrow 0 \quad$ goal clause

Universal quantification (everything above was propositional)
\neg human $(\mathrm{X}) \vee$ mortal (X)
$?$

Horn clauses and logic programming

A clause is a disjunction of literals.

$$
\begin{aligned}
& \overline{\mathrm{a}} \vee \overline{\mathrm{~b}} \vee \mathrm{c} \vee \mathrm{~d} \\
& a \wedge b \Rightarrow c \vee d \\
& 1 \wedge a \wedge b \Rightarrow c \vee d \vee 0
\end{aligned}
$$

A Horn clause has at most one positive (i.e. unnegated) literal.
$\overline{\mathrm{a}} \vee \overline{\mathrm{b}} \vee \mathrm{c}$
$\mathrm{a} \wedge \mathrm{b} \Rightarrow \mathrm{c} \quad$ definite clause (exactly one positive)
Alfred Horn, ~1973
$1 \Rightarrow$ C unit clause (facts, unconditional knowledge, empty body)
$\overline{\mathrm{a}} \vee \overline{\mathrm{b}}$

$$
\mathrm{a} \wedge \mathrm{~b} \Rightarrow 0 \quad \text { goal clause }
$$

Universal quantification (everything above was propositional)
\neg human $(X) \vee$ mortal (X)
$\forall X[\neg \operatorname{human}(X) \vee \operatorname{mortal}(X)] \quad \forall X[\operatorname{human}(X) \Rightarrow \operatorname{mortal}(X)]$

Datalog grammar

$P \in$ program $=r_{1} . r_{2} \ldots r_{n}$.
$r \in$ rule $\quad=a_{0}:-a_{1}, \ldots, a_{m}$.
$a \in$ atom $\quad=p\left(t_{1}, \ldots, t_{k}\right) \quad p=$ set of predicate symbols
$t \in$ term $=x \mid$ "c" $x=$ set of variable symbols
c = set of constants
a ground atom has only constants as terms (no variables)

Concepts from logic programming

- P: Program

?

- U_{p} : Herbrand universe (or Herbrand domain or vocabulary)
- B_{p} : Herbrand base (or alphabet)
- I: Interpretation (or database instance or dataset)
- M: Model of P

- A model is minimal if?

Concepts from logic programming

- P: Program
- set of facts (assertions) and rules (sentences that allow to infer new facts from existing ones)
- U_{p} : Herbrand universe (or Herbrand domain or vocabulary)
- B_{p} : Herbrand base (or alphabet)
- I: Interpretation (or database instance or dataset)

Jacques Herbrand, 1931 hitps:// en.wikipedia org wikiklaccues Herbran

- M: Model of P

- A model is minimal if?

Concepts from logic programming

- P: Program
- set of facts (assertions) and rules (sentences that allow to infer new facts from existing ones)
- U_{p} : Herbrand universe (or Herbrand domain or vocabulary)
- set of all constants (variable-free terms) appearing in P (cp. with active domain interpretation)
- B_{p} : Herbrand base (or alphabet)
- set of all ground atoms (variable-free) constructible with predicates from P and terms from U_{P}
- I: Interpretation (or database instance or dataset)
- M: Model of P

- A model is minimal if?

Concepts from logic programming

- P: Program
- set of facts (assertions) and rules (sentences that allow to infer new facts from existing ones)
- U_{p} : Herbrand universe (or Herbrand domain or vocabulary)
- set of all constants (variable-free terms) appearing in P (cp. with active domain interpretation)
- B_{p} : Herbrand base (or alphabet)
- set of all ground atoms (variable-free) constructible with predicates from P and terms from U_{P}
- I: Interpretation (or database instance or dataset)
- any subset of B_{p}
- M : Model of P
- an interpretation that makes each ground instance of each rule in P true (a ground instance of a rule is obtained by replacing all variables in the rule by elements from U_{P})
- A model is minimal if

Concepts from logic programming

- P: Program
- set of facts (assertions) and rules (sentences that allow to infer new facts from existing ones)
- U_{p} : Herbrand universe (or Herbrand domain or vocabulary)
- set of all constants (variable-free terms) appearing in P (cp. with active domain interpretation)
- B_{p} : Herbrand base (or alphabet)
- set of all ground atoms (variable-free) constructible with predicates from P and terms from U_{P}
- I: Interpretation (or database instance or dataset)
- any subset of B_{p}
- M : Model of P
- an interpretation that makes each ground instance of each rule in P true (a ground instance of a rule is obtained by replacing all variables in the rule by elements from U_{P})
- A model is minimal if it does not properly contain any other model

Herbrand, interpretations, models Program P

Interpretation
path $(x, y):-\operatorname{arc}(x, y)$.
path $(x, y):-\operatorname{arc}(x, z), \operatorname{path}(z, y)$.
Herbrand universe U_{P} ?
Herbrand base B_{p}

Herbrand, interpretations, models Program P

Interpretation
path (x, y) :- $\operatorname{arc}(x, y)$. $\operatorname{path}(x, y):-\operatorname{arc}(x, z), \operatorname{path}(z, y)$.

Herbrand universe U_{p}

$$
\text { \{"a", "b", "c"\} }
$$

Herbrand base B_{p}

Herbrand, interpretations, models
Program P

Interpretation

```
arc("a","b"). arc("b","c").
path(x,y) :- arc(x,y).
path(x,y) :- arc(x,z), path(z,y).
```

Herbrand universe U_{P}

$$
\text { \{"a", "b", "c"\} }
$$

Herbrand base $B_{p} \quad\left|B_{p}\right|=18$

$$
\begin{array}{cc}
\left\{\operatorname{arc}\left(" a "^{\prime}, " a "\right) .\right. & \text { path("a","a"). } \\
\operatorname{arc}(" a ", " b ") . & \text { path("a","b"). } \\
\operatorname{arc}(" a ", " c ") . & \text { path("a","c"). } \\
\vdots & \vdots \\
\operatorname{arc}(" c ", " b ") . & \text { path("c","b"). } \\
\operatorname{arc}(" c ", " c ") . & \text { path("c","c"). }\}
\end{array}
$$

Contains a wild mix of

- explicit facts that we know (IDB) like $\operatorname{arc}(" a ", " b ")$,
- facts that can be inferred (EDB) like path (" a ", " b "), and
- facts that cannot be inferred like path("c","a") or $\operatorname{arc}(" a$ "," a ")

Herbrand, interpretations, models Program P


```
arc("a","b"). arc("b","c").
path(x,y) :- arc(x,y).
path(x,y) :- arc(x,z), path(z,y).
```

Herbrand universe U_{p}

$$
\text { \{"a", "b", "c"\} }
$$

Is this interpretation a model?
Interpretation one of many interpretations

```
arc("a","b"). arc("b","c"). arc("b","a").
path("a","b"). path("b","c"). path("b","a").
path("a","c"). path("a","a").
```

Herbrand base $B_{p}\left|B_{p}\right|=18$

$$
\begin{array}{cc}
\{\operatorname{arc}(" a ", " a ") . & \text { path("a","a"). } \\
\operatorname{arc}(" a ", " b ") . & \text { path("a","b"). } \\
\operatorname{arc}(" a ", " c ") . & \text { path("a","c"). } \\
\vdots & \vdots \\
\operatorname{arc}(" c ", " b ") . & \text { path("c","b"). } \\
\operatorname{arc}(" c ", " c ") . & \text { path("c","c"). }\}
\end{array}
$$

Herbrand, interpretations, models Program P

```
arc("a","b"). arc("b","c").
path(x,y) :- arc(x,y).
path(x,y) :- arc(x,z), path(z,y).
```

Interpretation one of many interpretations

$$
\begin{aligned}
& \text { arc("a","b"). arc("b","c"). arc("b","a"). } \\
& \text { path("a","b"). path("b","c"). path("b","a"). } \\
& \text { path("a","c"). path("a","a"). }
\end{aligned}
$$

Herbrand universe U_{P}

$$
\text { \{"a", "b", "c"\} }
$$

Is this interpretation a model?
No! There is a rule for which there is a ground instance that is not true in this interpretation

$$
\begin{array}{cc}
\{\operatorname{arc}(" a ", " a ") . & \text { path("a","a"). } \\
\operatorname{arc}(" a \mathrm{a}, " \mathrm{~b} ") . & \text { path("a","b"). } \\
\operatorname{arc}(" a ", " c ") . & \text { path("a","c"). } \\
\vdots & \vdots \\
\operatorname{arc}(" c \text { ","b"). } & \text { path("c","b"). } \\
\operatorname{arc}(" c ", " c ") . & \text { path("c","c"). }
\end{array}
$$

```
x->"b", y >"b", z >"a":
path("b","b") :- arc("b","a"), path("a","b").
```

This is an example grounding of a rule.

Herbrand, interpretations, models Program P


```
arc("a","b"). arc("b","c").
path(x,y) :- arc(x,y).
path(x,y) :- arc(x,z), path(z,y).
```

Herbrand universe U_{p}

$$
\text { \{"a", "b", "c"\} }
$$

Interpretation

```
arc("a","b"). arc("b","c"). arc("b","a").
path("a","b"). path("b","c"). path("b","a").
path("a","c"). path("a","a"). path("b","b").
```

Is this new interpretation a model?
Herbrand base $B_{p}\left|B_{p}\right|=18$

$$
\begin{array}{cl}
\{\operatorname{arc}(" a ", " a ") . & \text { path("a","a"). } \\
\operatorname{arc}(" a ", " b ") . & \text { path("a","b"). } \\
\operatorname{arc}(" a ", " c ") . & \text { path("a","c"). } \\
\vdots & \vdots \\
\operatorname{arc}(" c ", " b ") . & \text { path("c","b"). } \\
\operatorname{arc}(" c ", " c ") . & \text { path("c","c"). }
\end{array}
$$

Herbrand, interpretations, models Program P


```
arc("a","b"). arc("b","c").
path(x,y) :- arc(x,y).
path(x,y) :- arc(x,z), path(z,y).
```

Herbrand universe U_{P}

$$
\text { \{"a", "b", "c"\} }
$$

Herbrand base $B_{p} \quad\left|B_{p}\right|=18$

$$
\begin{array}{cc}
\{\operatorname{arc}(" a ", " a ") . & \text { path("a","a"). } \\
\operatorname{arc}(" a ", " b ") . & \text { path("a","b"). } \\
\operatorname{arc}(" a ", " c ") . & \text { path("a","c"). } \\
\vdots & \vdots \\
\operatorname{arc}(" c ", " b ") . & \text { path("c","b"). } \\
\operatorname{arc}(" c ", " c ") . & \text { path("c","c"). }\}
\end{array}
$$

Is this new interpretation a model? Yes!

Is this model minimal?
Interpretation

$$
\begin{aligned}
& \text { arc("a","b"). arc("b","c"). arc("b","a"). } \\
& \text { path("a","b"). path("b","c"). path("b","a"). } \\
& \text { path("a","c"). path("a","a"). path("b","b"). }
\end{aligned}
$$

Herbrand, interpretations, models Program P


```
arc("a","b"). arc("b","c").
path(x,y) :- arc(x,y).
path(x,y) :- arc(x,z), path(z,y).
```

Herbrand universe U_{P}

$$
\text { \{"a", "b", "c"\} }
$$

Herbrand base $B_{p} \quad\left|B_{p}\right|=18$

$$
\begin{array}{cc}
\{\operatorname{arc}(" a ", " a ") . & \text { path("a","a"). } \\
\operatorname{arc}(" a ", " b ") . & \text { path("a","b"). } \\
\operatorname{arc}(" a ", " c ") . & \text { path("a","c"). } \\
\vdots & \vdots \\
\operatorname{arc}(" c ", " b ") . & \text { path("c","b"). } \\
\operatorname{arc}(" c ", " c ") . & \text { path("c","c"). }\}
\end{array}
$$

Interpretation
arc("a","b"). arc("b","c"). arc("b","a").
path("a","b"). path("b","c"). path("b","a").
path("a","c"). path("a","a"). path("b", "b").

Is this new interpretation a model? Yes!

Is this model minimal?

No! There is a properly contained model

Herbrand, interpretations, models Program P


```
arc(a,b). arc(b,c).
path(X,Y) :- arc(X,Y).
path(X,Y) :- arc(X,Z), path(Z,Y).
```

Herbrand universe U_{P} $\{a, b, c\}$
Herbrand base $B_{p} \quad\left|B_{p}\right|=18$

$$
\left.\begin{array}{cc}
\{\operatorname{arc}(a, a) . & \text { path }(a, a) \\
\operatorname{arc}(a, b) . & \text { path }(a, b) \\
\operatorname{arc}(a, c) . & \operatorname{path}(a, c) \\
\vdots & \vdots \\
\operatorname{arc}(c, b) . & \text { path }(c, b) \\
\operatorname{arc}(c, c) . & \text { path }(c, c)
\end{array}\right\}
$$

Interpretation

$$
\operatorname{arc}(a, b) \cdot \operatorname{arc}(b, c) \cdot \operatorname{arc}(b, a) .
$$ path (a, b). path (b, c). path (b, a). path (a, c). path (a, a). path (b, b).

Convention in ASP:

- Variables begin with upper-case
- constants begin with lower-case
Is this new interpretation a model? Yes!

Is this model minimal?
No! There is a properly contained model

Evaluating ASP's with Clingo
paths1.txt

$$
\begin{aligned}
& \operatorname{arc}(\mathrm{a}, \mathrm{~b}) \cdot \operatorname{arc}(\mathrm{b}, \mathrm{c}) . \\
& \operatorname{path}(X, Y):-\operatorname{arc}(X, Y) . \\
& \operatorname{path}(X, Y):-\operatorname{arc}(X, Z), \operatorname{path}(Z, Y) .
\end{aligned}
$$

Evaluating ASP's with Clingo paths1.txt
clingo paths1.txt

```
Solving...
Answer: 1
arc(a,b) arc(b,c) path(a,b)
path(b,c) path(a,c)
SATISFIABLE
```

Shows all predicates, including EDBS

Evaluating ASP's with Clingo paths2.txt

path $(X, Y):-\operatorname{arc}(X, Y)$.
path (X, Y) :- $\operatorname{arc}(X, Z)$, path (Z, Y).
\#show path/2.

Show only the facts in the predicate named "path" with arity "2"
clingo paths2.txt

```
Solving...
Answer: 1
path(a,b) path(b,c) path(a,c)
SATISFIABLE
```


Outline: T1-4: Datalog \& ASP

- Datalog
- Answer Set Programming
- Intro to Rules with Negation
- Horn clauses and Logic Programming
- Stable model semantics
- An application and surprising complexity result
- The power of Disjunctions
- [A surprising application: automating hardness proofs: moved to T2-U4: Reverse Data Management]

Semantics: Informally

- Informally, a stable model M of a ground program P is a set of ground atoms such that

1. Every rule is satisfied:
i.e., for any rule in P

$$
h:-a_{1}, \ldots, a_{m},-b_{1}, \ldots,-b_{n} .
$$

if each atom a_{i} is satisfied (a_{i} 's are in M) and no atom b_{i} is satisfied (i.e. no b_{i} is in M), then h is in M.
2. Every $h \in M$ can be derived from a rule by a "non-circular reasoning" (informal for: we are looking for minimal models, or there is some "derivation provenance")

Semantics: "non-circular" more formally

Idea: Guess a model M (= a set of atoms). Then verify M is the exact set of atoms that "can be derived" under standard minimal model semantics on P^{M} on a modified positive program P^{M} (called "the reduct") derived from P as follows:

1. Create all possible groundings of the rules of program P
2. Delete all grounded rules that contradict M

$$
h:-a_{1}, \ldots, a_{m},-b_{1}, \ldots,-b_{n} . \quad \text { if some } b_{i} \in M
$$

3. In remaining grounded rules, delete all negative literals

$$
h:-a_{1}, \ldots, a_{m},-b_{1}, \ldots,-b_{n} .
$$

$$
\text { if no } b_{i} \in M
$$

M is a stable model of P iff M is the least model of $P M$

Semantics: "non-circular" more concisely

Idea: Guess a model M (= a set of atoms). Then verify M is the exact set of atoms that "can be derived" under standard minimal model semantics on P^{M} on a modified positive program P^{M} (called "the reduct") derived from P as follows:

The reduct of P w.r.t M is:

$$
P^{M}=\frac{h:-a_{1}, \ldots, a_{m} . \mid}{\left.h:-a_{1}, \ldots, a_{m},-b_{1}, \ldots,-b_{n} . \quad \in \text { grounding of } P \wedge \text { no } b_{i} \in M\right\}}
$$

M is a stable model of P iff M is the least model of $P M$

Examples
" a " is a proposition that is either true or false
P1: a :- a.
$M=\{a\} \quad$ Is M a stable model of $P 1$? $?$

Examples

" a " is a proposition that is either true or false
P1: a :- a.
$M=\{a\}$ not a stable model (not minimal, derivation of " a " is based on circular reasoning: $\{a\}$ is not least model of a :- a)
$?$ What is a stable model?

Examples

P1: a :- a.
$M=\{a\}$ not a stable model (not minimal, derivation of " a " is based on circular reasoning: $\{a\}$ is not least model of $a:-a$)
$M=\{ \} \quad$ stable model
P2:

Interpretations:
$\{\{a\},\{b\}$,

$$
\},\{a, b\}\}
$$

Examples

" a " is a proposition that is either true or false
P1: a :- a.

$$
\begin{aligned}
M=\{a\} & \text { not a stable model (not minimal, derivation of " } a \text { " is based } \\
& \text { on circular reasoning: }\{a\} \text { is not least model of } a:-a)
\end{aligned}
$$

$M=\{ \} \quad$ stable model
P2:

Interpretations:
$\{\{a\},\{b\}$,
$\{3,\{a, b\}\} \longrightarrow$ anotb. $\longrightarrow\}$

Examples
" a " is a proposition that is either true or false
P1: a :- a.

$$
\begin{array}{ll}
M=\{a\} & \text { not a stable model (not minimal, derivation of " } a \text { " is based } \\
\text { on circular reasoning: }\{a\} \text { is not least model of } a:-a)
\end{array}
$$

$M=\{ \} \quad$ stable model
P2:

$$
\mathrm{a}:-\operatorname{not} \mathrm{b} \text {. }
$$

Examples

" a " is a proposition that is either true or false
P1: a :- à.
$M=\{a\}$ not a stable model (not minimal, derivation of " a " is based on circular reasoning: $\{a\}$ is not least model of $a:-a$)
$M=\{ \} \quad$ stable model
Interpretations:
P2: a :- not b.
$\mathrm{M}=\{\mathrm{a}\}$

only stable model (compare to the the earlier chess example)
P3: a :- not a.
$\{\},\{a\}\}$

Examples

" a " is a proposition that is either true or false
P1: a :- a.
$M=\{a\}$ not a stable model (not minimal, derivation of " a " is based on circular reasoning: $\{a\}$ is not least model of $a:-a$)
$M=\{ \} \quad$ stable model
Interpretations:
P2: a :- not b.
$\mathrm{M}=\{\mathrm{a}\}$
only stable model
P3: a :- not a.
has no stable model (CP. to earlier "Bo xXx):- Item $(x), \neg \operatorname{Box}(x) . ")$

Examples
P4: a :- not b.
b:- not a.
$?$

Examples

$$
\begin{aligned}
& \text { P4: a :- not b. } \\
& \text { b:- not a. } \\
& \text { How can you "prove" that } \\
& m_{1} \text { is a stable model? }
\end{aligned}
$$

$M_{1}=\{a\}$
two stable models

Examples

$$
\begin{array}{l|l}
\text { P4: } & \mathrm{a}:-\operatorname{not} \mathrm{b} . \\
& \mathrm{b}:-\mathrm{not} \mathrm{a} .
\end{array}
$$

$M_{1}=\{a\}$
$M_{2}=\{b\}$
two stable models

Examples

$$
\begin{array}{l|l}
\text { P4: } & \mathrm{a}:-\operatorname{not} \mathrm{b} . \\
& \mathrm{b}:-\operatorname{not} \mathrm{a} .
\end{array}
$$

$M_{1}=\{a\}$
$M_{2}=\{b\}$
two stable models

P5: a :- not b.
b:- not a.
a :- not a.
? $\{\},\{a\},\{b\},\{a, b\}\}$

Examples

P4: a :- not b.
b:- not a.

$M_{1}=\{a\}$
$M_{2}=\{b\}$
two stable models

P5: a :- not b.
b:- not a.
a :- not a.
$M=\{a\} \quad$ only stable model
How can you "prove" that M is a stable model?

Examples

$$
\begin{array}{l|l}
\text { P4: } & \mathrm{a}:-\operatorname{not} \mathrm{b} . \\
& \mathrm{b}:-\operatorname{not} \mathrm{a} .
\end{array}
$$

$M_{1}=\{a\}$
$M_{2}=\{b\}$
two stable models

P5: a :- not b.
b:- not a.
a :- not a.

$M=\{a\} \quad$ only stable model

Evaluating ASP's with Clingo p4.txt
a :- not b.
print all stable models (not just one)
p4, p5
b :- not a.
clingo p4.txt -n 0
Answer: 1 b
Answer: 2
a
SATISFIABLE
p5.txt

$$
\begin{aligned}
& \text { a :- not b. } \\
& \text { b:- not a. } \\
& \text { a :- not a. }
\end{aligned}
$$

clingo p5.txt -n 0

Answer: 1
a
SATISFIABLE

$$
M=\{a\}
$$

Topic 1: Data models and query languages Unit 4: Datalog Lecture 12

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
https://northeastern-datalab.github.io/cs7240/sp24/
2/23/2024

Pre-class conversations

- Last class summary
- Scribe correction: I make a pass on Monday (before next class)
- Project discussions (in class and after)
- Faculty candidates (THU Feb 29, WED March 20)
- Today:
- Stable models, ASP
- Later: Beyond NP with ASP (including 3-colorability in 2 lines)

Outline: T1-4: Datalog \& ASP

- Datalog
- Answer Set Programming
- Intro to Rules with Negation
- Horn clauses and Logic Programming
- Stable model semantics
- An application and surprising complexity result
- The power of Disjunctions
- [A surprising application: automating hardness proofs: moved to T2-U4: Reverse Data Management]

Discussion from last time

P2: a :- not b.
$M=\{a\}$ is the only stable model

Interpretations:

"Why should syntax determine the semantics?"

P6: b :- not a.
$M=\{b\}$ is the only stable model

Discussion from last time

P2: a :- not b.
$M=\{a\}$ is the only stable model

Interpretations:
 $\{\{a\},\{b\},>a b=$ not $5.1 \longrightarrow\{a\}$ $\},\{a, b\}\} \longrightarrow\}$

| not b | $\Rightarrow a$ | | |
|---|---|---|---|
| b | $\vee a$ |
| a | $\vee b$ |
| not a | $\Rightarrow b$ |\quad| Logically |
| :--- |
| equivalent |

P6: b:- not a.
$m=\{b\}$ is the only stable model
a :- a.

$$
\begin{aligned}
& \mathrm{a} \Rightarrow \mathrm{a} \\
& \overline{\mathrm{a}} \vee \mathrm{a}
\end{aligned}
$$

recall that we want to have the least model in standard Datalog (non-circular)

What do empty bodies or heads mean in ASP?

Think of the head as a disjunction, body as conjunction $0 \vee \mathrm{a} \Leftarrow 1 \wedge \mathrm{~b} \wedge \neg \mathrm{c}$
"Disjunctive Logic Programming": disjunctions in the head
a :- b, not c.

Empty body:
a.

Empty head:
:- b, not c.

$$
?
$$

?

What do empty bodies or heads mean in ASP?

a :- b, not c.

Empty body:

Think of the head as a disjunction, body as conjunction $0 \vee \mathrm{a} \Leftarrow 1 \wedge \mathrm{~b} \wedge \neg \mathrm{C}$
"Disjunctive Logic Programming": disjunctions in the head
a.

$$
\mathrm{a} \Leftarrow 1
$$

Empty body describes a fact: "a" needs to be true. Also in Datalog

Empty head:

$$
:-b, \text { not } c \text {. }
$$

?

What do empty bodies or heads mean in ASP?

```
a :- b, not c.
```

Empty body:

```
a.
```

Empty head:
:- b, not c.

Think of the head as a disjunction, body as conjunction $0 \vee \mathrm{a} \Leftarrow 1 \wedge \mathrm{~b} \wedge \neg \mathrm{c}$
"Disjunctive Logic Programming": disjunctions in the head

$$
\mathrm{a} \Leftarrow 1
$$

Empty body describes a fact: "a" needs to be true. Also in Datalog

$$
0 \Leftarrow \mathrm{~b} \wedge \neg \mathrm{C}
$$

Empty heads describes a constraint: " b and not c " must not be true in any model. Emtpy head describes a condition in the body which leads to contradiction (false)

3-colorability
Q: For a graph (V, E) assign each vertex a color in $\left\{\begin{array}{l}1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}, 3\right\}$ such that no adjacent vertices have the same color.

Convention in ASP: Capital letters are variables, lower case letters constants

Cp. edge (x, a)
Vs. edge $(x, " a ")$

3-colorability
Q: For a graph (V, E) assign each vêrtex a color in $\{1,2,3\}$ such that no adjacent vertices have the same color.

EDB (facts)

```
vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).
```

IDB

| aeler | A | |
| :--- | :--- | :--- | :--- |
| | ${ }^{2}$ | $S T$ |
| each | | |
| vêrtex a color in $\{1,2,3\}$ | | |

vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).

Every vertex needs to have a color? Vertices from an edge can't have same color?

Convention in ASP: Capital letters are variables, lower case letters constants

CP. edge (x, a)
vs. edge $\left(x, " a^{\prime \prime}\right)$

Q: For a graph (V, E) assign each vertex a color in $\{1,2,3\}$
 such that no adjacent vertices have the same color.
EDB (facts)
vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).
IDB
$\operatorname{color}(\mathrm{V}, 1)$:- not color(V,2), not color(V,3), vertex(V). color(V,2) :- not color(V,3), not color(V,1), vertex(V). color($\mathrm{V}, 3$) :- not color($\mathrm{V}, 1$), not color($\mathrm{V}, 2$), vertex (V).

Every vertex needs to have a color
vertices from an edge can't have same color?
convention in ASP: Capital letters are variables, lower case letters constants

CP. edge (x, a)
vs. edge (x, " a ")

Q: For a graph (V, E) assign each vertex a color in $\{1,2,3\}$
 such that no adjacent vertices have the same color. EDB (facts)
vertex (a). vertex (b). vertex (c). edge (abb). edge(a,c).
ID
color (V,1) :- not color (V,2), not color (V,3), vertex (V). color (V,2) :- not color (V,3), not color (V,1), vertex (V). $\operatorname{color}(\mathrm{V}, 3)$:- not color(V,1), not color(V,2), vertex (V).
convention in ASP: Capital letters are variables, lower case letters constants

CP. edge (x, a)
vs. edge (x, " a ")

Vertices from an edge can't have same color? ":- edge (a, x), edge (b, x) " means that " a " and " b " don't share a neighbor

Q: For a graph (V, E) assign each vertex a color in $\{1,2,3\}$
 such that no adjacent vertices have the same color.

EDB (facts)

vertex (a). vertex (b). vertex (c). edge (abb). edge (ac).
ID
color (V,1) :- not color (V,2), not color (V,3), vertex (V). color (V,2) :- not color (V,3), not color (V,1), vertex (V). color (V,3) :- not color (V,1), not color (V,2), vertex (V). :- edge (V,U), color(V,C), color(U,C).

Convention in ASP: Capital letters are variables, lower case letters constants

CP. edge (x, a)
vs. edge $\left(x,{ }^{\prime \prime} a^{\prime \prime}\right)$

Vertices from an edge can't have same color ":- edge (a, x), edge (b, x) " means that " a " and " b " don't share a neighbor

3-colorability with Clingo
clingo 3colorability1.txt

3colorability1.txt

```
vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).
color(V,1) :- not color(V,2), not color(V,3), vertex(V).
color(V,2) :- not color(V,3), not color(V,1), vertex(V).
color(V,3) :- not color(V,1), not color(V,2), vertex(V).
:- edge(V,U), color(V,C), color(U,C).
```

Returns a stable model if it exists. Since there is a stable model, the problem is "satisfiable".

Answer: 1

vertex(a) vertex(b) vertex(c) edge(a,b) edge(a,c) color(a,1)
color(b,3) color(c,3)
SATISFIABLE

3-colorability with Clingo

clingo 3colorability1.txt -n 0

print all stable models (not just one)
3colorability1.txt

$$
\begin{aligned}
& \text { vertex(a). vertex(b). vertex(c). edge(a,b). edge(a, c). } \\
& \text { color(V,1) :- not color(V,2), not color(V,3), vertex(V). } \\
& \text { color(V,2) :- not color(V,3), not color(V,1), vertex(V). } \\
& \text { color(V,3) :- not color(V,1), not color(V,2), vertex(V). } \\
& \text { :- edge(V,U), color(V,C), color(U,C). }
\end{aligned}
$$

Answer: 1
vertex(a) vertex(b) vertex(c) edge(a, b) edge (a, c) color(a,1) color(b,3) color(c,3)
Answer: 2
vertex(a) vertex(b) vertex(c) edge(a,b) edge(a,c) color(a,1) color(b,3) color(c,2)
Answer: 3
vertex(a) vertex(b) vertex(c) edge(a,b) edge(a, c) $\operatorname{color}(\mathrm{a}, 1) \operatorname{color}(\mathrm{b}, 2) \operatorname{color}(\mathrm{c}, 3)$

Answer: 11
vertex(a) vertex(b) vertex(c) edge(a, b) edge (a, c) color(a,3) color(b,2) color(c,2)
Answer: 12
vertex(a) vertex(b) vertex(c) edge(a, b) edge (a, c) color(a,3) color(b,1) color(c,2)
SATISFIABLE
...

Outline: T1-4: Datalog \& ASP

- Datalog
- Answer Set Programming
- Intro to Rules with Negation
- Horn clauses and Logic Programming
- Stable model semantics
- An application and surprising complexity result
- The power of Disjunctions
- [A surprising application: automating hardness proofs: moved to T2-U4: Reverse Data Management]

Wolfgang Gatterbauer \& Dan Suciu June 8, Sigmod 2010
Paper: https://doi.org/10.1145/1807167.1807193
Full version with proofs: http://arxiv.org/pdf/1012.3320
Old Project web page: https://db.cs.washington.edu/projects/beliefdb/

Problem in social data: often no single ground truth

The Indus Script*

What is the origin of this glyph?

Background: Conflicts \& Trust in Community DBs

Conflicting beliefs

| glyph | origin | | "Beliefs": annotated | |
| :---: | :---: | :--- | :--- | :--- |
| U | ship hull | Alice | (key,value) pairs | |
| U | cow | Bob | | |
| U | jar | Charlie | | |
| h | fish | Bob | | |
| h | knot | Charlie | | |
| A | arrow | Charlie | | |

Trust mappings

Recent work on community databases:

| Taylor \& Ives [SIGMOD'06] | Orchestra |
| :--- | :--- |
| Green et al. [VLDB'07] | Youtopia |
| Kot \& Koch [VLDB'09] | BeliefDB |
| GBKS [VLDB'09] \longleftarrow | |

| glyph | origin |
| :---: | :---: |
| \mathcal{U} | jar |
| h | knot |
| A | arrow |

Limitations of previous work: transient effects

1. Incorrect inserts

- Value depends on order of inserts

Limitations of previous work: transient effects

1. Incorrect inserts

- Value depends on order of inserts

2. Incorrect updates

- Mis-handling of revokes

Automatic conflict resolution with trust mappings:

1. How to define a globally consistent solution?

2. How to calculate it efficiently?
(3. Several extensions)

Agenda

1. Stable solutions

- how to define a unique and consistent solution?

2. Resolution algorithm

- how to calculate the solution efficiently?

3. Extensions

- how to deal with "negative beliefs"?

Binary Trust Networks (BTNs)
To simplify presentation: focus on binary TNs

User A has explicit belief v

Focus on one single key (we ignore the glyph)

The definition of a globally consistent solution

- Stable solution
- assignment of values to each node, s.t. each belief has a "non-dominated lineage" to an explicit belief

The definition of a globally consistent solution

- Stable solution
- assignment of values to each node, s.t. each belief has a "non-dominated lineage" to an explicit belief

The definition of a globally consistent solution

- Stable solution
- assignment of values to each node, s.t. each belief has a "non-dominated lineage" to an explicit belief

Possible and certain values from all stable solutions

- Stable solution
- assignment of values to each node, s.t. each belief has a "non-dominated lineage" to an explicit belief

- Possible / Certain semantics
- a stable solution determines, for each node, a possible value ("poss")
- certain value ("cert") = intersection of all stable solutions, per user

| X | $\operatorname{poss}(X)$ | $\operatorname{cert}(X)$ |
| :--- | :--- | :--- |
| A | $\{v\}$ | $\{v\}$ |
| B | $\{w\}$ | $\{w\}$ |
| C | $\{v, w\}$ | \varnothing |
| D | $\{v, w\}$ | \varnothing |

Logic programs (LP) with stable model semantics

convention from LP solver DLV: constants and predicates stant with lowercase letters, variables with uppercase letters.

- LPs can capture this semantics.

poss(c,X) :- poss(a,X). $\operatorname{block}(c, b, Y):-\operatorname{poss}(b, Y), \operatorname{poss}(c, X), X!=Y$. $\operatorname{poss}(c, Y):-\operatorname{poss}(b, Y)$, not $\operatorname{block}(c, b, Y)$.
- There exist powerful and free LP solver available.
- Previous work on peer data exchange suggest using LPs.

```
Greco et al. [TKDE'03]
Arenas et al. [TLP'03]
Barcelo, Bertossi [PADL`O3]
Bertossi, Bravo [LPAR`07]
```

But solving LPs is hard $:$

State-of-the-art LP solver

Yet surprisingly, our problem allows a PTIME solution :

DLV example

Size: 38

query.txt
$\operatorname{poss}(\mathrm{X}, \mathrm{U})$?

Executing program

./dlv.bin - brave input.txt. query-.txt

Result

Macintosh-2:DLV gat 1
8, 1
11, 0
12, 1
13, 0
14, 1

- 0

1, 1
2, 1
3, 0
3, 1
4, 6
4, 1
5, 1
6, 1
7, 0
7, 1

Agenda

1. Stable solutions

- how to define a unique and consistent solution?

2. Resolution algorithm

- how to calculate the solution efficiently?

3. Extensions

- how to deal with "negative beliefs"?

Resolution Algorithm

- Keep 2 sets: closed / open

Initialize closed with explicit beliefs

Resolution Algorithm

- Keep 2 sets: closed / open

Initialize closed with explicit beliefs

- MAIN

Step 1: if \exists preferred edges from open to closed
\rightarrow follow

| X | $\operatorname{poss}(X)$ | $\operatorname{cert}(X)$ |
| :--- | :--- | :--- |
| A | $\{v\}$ | $\{v\}$ |
| B | $\{w\}$ | $\{w\}$ |
| C | $\{u\}$ | $\{u\}$ |
| D | $?$ | $?$ |
| E | $?$ | $?$ |
| F | $?$ | $?$ |
| G | $?$ | $?$ |
| H | $?$ | $?$ |
| J | $?$ | $?$ |
| K | $?$ | $?$ |
| L | $?$ | $?$ |

Resolution Algorithm

- Keep 2 sets: closed / open

Initialize closed with explicit beliefs

- MAIN

Step 1: if \exists preferred edges from open to closed
\rightarrow follow

| X | $\operatorname{poss}(X)$ | $\operatorname{cert}(X)$ |
| :--- | :--- | :--- |
| A | $\{v\}$ | $\{v\}$ |
| B | $\{w\}$ | $\{w\}$ |
| C | $\{u\}$ | $\{u\}$ |
| D | $\{v\}$ | $\{v\}$ |
| E | $?$ | $?$ |
| F | $?$ | $?$ |
| G | $?$ | $?$ |
| H | $?$ | $?$ |
| J | $?$ | $?$ |
| K | $?$ | $?$ |
| L | $?$ | $?$ |

Resolution Algorithm

- Keep 2 sets: closed / open

Initialize closed with explicit beliefs

- MAIN

Step 1: if \exists preferred edges from open to closed
\rightarrow follow

| X | $\operatorname{poss}(X)$ | $\operatorname{cert}(X)$ |
| :--- | :--- | :--- |
| A | $\{v\}$ | $\{v\}$ |
| B | $\{w\}$ | $\{w\}$ |
| C | $\{u\}$ | $\{u\}$ |
| D | $\{v\}$ | $\{v\}$ |
| E | $\{w\}$ | $\{w\}$ |
| F | $?$ | $?$ |
| G | $?$ | $?$ |
| H | $?$ | $?$ |
| J | $?$ | $?$ |
| K | $?$ | $?$ |
| L | $?$ | $?$ |

- Keep 2 sets: closed / open

Initialize closed with explicit beliefs

- MAIN

Step 1: if \exists preferred edges from open to closed
\rightarrow follow

| X | $\boldsymbol{p o s s}(X)$ | $\operatorname{cert}(X)$ |
| :--- | :--- | :--- |
| A | $\{v\}$ | $\{v\}$ |
| B | $\{w\}$ | $\{w\}$ |
| C | $\{u\}$ | $\{u\}$ |
| D | $\{v\}$ | $\{v\}$ |
| E | $\{w\}$ | $\{w\}$ |
| F | $\{u\}$ | $\{u\}$ |
| G | $?$ | $?$ |
| H | $?$ | $?$ |
| J | $?$ | $?$ |
| K | $?$ | $?$ |
| L | $?$ | $?$ |

- Keep 2 sets: closed / open

Initialize closed with explicit beliefs

- MAIN

Step 1: if \exists preferred edges from open to closed
\rightarrow follow

| X | $\boldsymbol{\operatorname { p o s s }}(X)$ | $\operatorname{cert}(X)$ |
| :--- | :--- | :--- |
| A | $\{v\}$ | $\{v\}$ |
| B | $\{w\}$ | $\{w\}$ |
| C | $\{u\}$ | $\{u\}$ |
| D | $\{v\}$ | $\{v\}$ |
| E | $\{w\}$ | $\{w\}$ |
| F | $\{u\}$ | $\{u\}$ |
| G | $?$ | $?$ |
| H | $\{w\}$ | $\{w\}$ |
| J | $?$ | $?$ |
| K | $?$ | $?$ |
| L | $?$ | $?$ |

Detail: Strongly Connected Components (SCCs)

For every cyclic or acyclic directed graph:

- The Strongly Connected Components graph is a DAG
- can be calculated in O(n) Tarjan [1972]

Resolution Algorithm

- Keep 2 sets: closed / open

Initialize closed with explicit beliefs

- MAIN

Step 1: if \exists preferred edges from open to closed
\rightarrow follow
Step 2: else
\rightarrow construct SCC graph of open

| X | $\operatorname{poss}(X)$ | $\operatorname{cert}(X)$ |
| :--- | :--- | :--- |
| A | $\{v\}$ | $\{v\}$ |
| B | $\{w\}$ | $\{w\}$ |
| C | $\{u\}$ | $\{u\}$ |
| D | $\{v\}$ | $\{v\}$ |
| E | $\{w\}$ | $\{w\}$ |
| F | $\{u\}$ | $\{u\}$ |
| G | $?$ | $?$ |
| H | $\{w\}$ | $\{w\}$ |
| J | $?$ | $?$ |
| K | $?$ | $?$ |
| L | $?$ | $?$ |

Resolution Algorithm

- Keep 2 sets: closed / open

Initialize closed with explicit beliefs

- MAIN

Step 1: if \exists preferred edges from
open to closed
\rightarrow follow
Step 2: else
\rightarrow construct SCC graph of open

| X | $\operatorname{poss}(X)$ | $\operatorname{cert}(X)$ |
| :--- | :--- | :--- |
| A | $\{v\}$ | $\{v\}$ |
| B | $\{w\}$ | $\{w\}$ |
| C | $\{u\}$ | $\{u\}$ |
| D | $\{v\}$ | $\{v\}$ |
| E | $\{w\}$ | $\{w\}$ |
| F | $\{u\}$ | $\{u\}$ |
| G | $?$ | $?$ |
| H | $\{w\}$ | $\{w\}$ |
| J | $?$ | $?$ |
| K | $?$ | $?$ |
| L | $?$ | $?$ |

- Keep 2 sets: closed / open

Initialize closed with explicit beliefs

- MAIN

Step 1: if \exists preferred edges from open to closed
\rightarrow follow
Step 2: else
\rightarrow construct SCC graph of open
\rightarrow resolve minimum SCCs

| X | $\operatorname{poss}(X)$ | $\operatorname{cert}(X)$ |
| :--- | :--- | :--- |
| A | $\{v\}$ | $\{v\}$ |
| B | $\{w\}$ | $\{w\}$ |
| C | $\{u\}$ | $\{u\}$ |
| D | $\{v\}$ | $\{v\}$ |
| E | $\{w\}$ | $\{w\}$ |
| F | $\{u\}$ | $\{u\}$ |
| G | $\{v, w\}$ | \varnothing |
| H | $\{w\}$ | $\{w\}$ |
| J | $\{v, w\}$ | \varnothing |
| K | $\{v, w\}$ | \varnothing |
| L | $?$ | $?$ |

- Keep 2 sets: closed / open

Initialize closed with explicit beliefs

- MAIN

Step 1: if \exists preferred edges from
open to closed
\rightarrow follow
Step 2: else
\rightarrow construct SCC graph of open
\rightarrow resolve minimum SCCs

| X | $\operatorname{poss}(X)$ | $\operatorname{cert}(X)$ |
| :--- | :--- | :--- |
| A | $\{v\}$ | $\{v\}$ |
| B | $\{w\}$ | $\{w\}$ |
| C | $\{u\}$ | $\{u\}$ |
| D | $\{v\}$ | $\{v\}$ |
| E | $\{w\}$ | $\{w\}$ |
| F | $\{u\}$ | $\{u\}$ |
| G | $\{v, w\}$ | \varnothing |
| H | $\{w\}$ | $\{w\}$ |
| J | $\{v, w\}$ | \varnothing |
| K | $\{v, w\}$ | \varnothing |
| L | $?$ | $?$ |

- Keep 2 sets: closed / open

Initialize closed with explicit beliefs

- MAIN

Step 1: if \exists preferred edges from
open to closed
\rightarrow follow
Step 2: else
\rightarrow construct SCC graph of open
\rightarrow resolve minimum SCCs

| X | $\operatorname{poss}(X)$ | $\operatorname{cert}(X)$ |
| :--- | :--- | :--- |
| A | $\{v\}$ | $\{v\}$ |
| B | $\{w\}$ | $\{w\}$ |
| C | $\{u\}$ | $\{u\}$ |
| D | $\{v\}$ | $\{v\}$ |
| E | $\{w\}$ | $\{w\}$ |
| F | $\{u\}$ | $\{u\}$ |
| G | $\{v, w\}$ | \varnothing |
| H | $\{w\}$ | $\{w\}$ |
| J | $\{v, w\}$ | \varnothing |
| K | $\{v, w\}$ | \varnothing |
| L | $\{v, w, u\}$ | \varnothing |

O(n2)-worst-case for Resolution Algorithm

Experiments on large network data

Calculating poss / cert for fixed key

- DLV: State-of-the art logic programming solver
- RA: Resolution algorithm

Network 1: "Oscillators"

Network 2: "Web link data"
Web data set with 5.4 m links between 270k domain names. Approach:

- Sample links with increasing ratio
- Include both nodes in sample
- Assign explicit beliefs randomly

Network 3: "Worst case" O(\boldsymbol{n}^{2})

Agenda

1. Stable solutions

- how to define a unique and consistent solution?

2. Resolution algorithm

- how to calculate the solution efficiently?

3. Extensions

- how to deal with "negative beliefs"?

3 semantics for negative beliefs

Agnostic

Eclectic

| w/o cycles | |
| :--- | :--- |
| w cycles | $\mathbf{O}(\boldsymbol{n})$ |
| | NP-hard |

O(n)

NP-hard

3 semantics for negative beliefs

with a variation of resolution algorithm

Take-aways automatic conflict resolution

Problem

- Given explicit beliefs \& trust mappings, how to assign consistent value assignment to users?

Our solution

- Stable solutions with possible/certain value semantics
- PTIME algorithm [$\mathbf{O}\left(\mathbf{n}^{2}\right)$ worst case, $\mathbf{O}(\mathbf{n})$ experiments]
- Several extensions
- negative beliefs: 3 semantics, two hard, one $\mathbf{O}\left(\mathrm{n}^{2}\right)$
- bulk inserts
- agreement checking
- consensus value
- lineage computation

Please visit us at the poster session Th, 3:30pm or at: https://db.cs.washington.edu/projects/beliefdb/

some details

Fig_ComplexityExampleLong

Encoding
$(0 / 1)=(a+/ b+)$
$(0 / 1)=(c+/ d+)$
$(0 / 1)=(e+/ d+)$
$(0 / 1)=(e+/ f+)$

Fig_ComplexityOscillator

Fig_ComplexityPassLong

Encoding

$(0 / 1)=(a+/ b+)$
$(0 / 1)=(c+/ d+)$

Fig_ComplexityNotLong

Fig_ComplexityOrLong

Fig_ComplexityAndLong

Definition 3.1 (CONSISTENCY). Two beliefs b_{1}, b_{2} are conflicting $\left(b_{1} \not \leftrightarrow b_{2}\right)$ if they are either distinct positive beliefs $v+, w+$, or one is $v+$ and the other is $v-$. Otherwise, b_{1}, b_{2} are consistent $\left(b_{1} \leftrightarrow b_{2}\right)$. A set of beliefs B is called consistent if any two beliefs $b_{1}, b_{2} \in B$ are consistent.

Definition 3.2 (PREFERRED UNION). Given two consistent sets of beliefs B_{1}, B_{2}, their preferred union is:

$$
B_{1} \vec{\cup} B_{2}=B_{1} \cup\left\{b_{2} \mid b_{2} \in B_{2} .\left(\forall b_{1} \in B_{1} \cdot b_{1} \leftrightarrow b_{2}\right)\right\}
$$

be a consistent set of positive and/or negative beliefs. For each paradigm $\sigma \in\{$ Agnostic, Eclectic, Skeptic $\}$ (abbreviated by $\{\mathrm{A}, \mathrm{E}, \mathrm{S}\}$), the normal form $\operatorname{Norm}_{\sigma}(B)$ is:

$$
\begin{aligned}
& \operatorname{Norm}_{\mathrm{A}}(B)= \begin{cases}\{v+\} & \text { if } \exists v+\in B \\
B & \text { otherwise }\end{cases} \\
& \operatorname{Norm}_{\mathbb{E}}(B)=B \\
& \operatorname{Norm}_{\mathrm{S}}(B)= \begin{cases}\{v+\} \cup(\perp-\{v-\}) & \text { if } \exists v+\in B \\
B & \text { otherwise }\end{cases}
\end{aligned}
$$

The preferred union specialized to the paradigm σ is:

$$
\begin{equation*}
B_{1} \vec{\cup}_{\sigma} B_{2}=\operatorname{Norm}_{\sigma}\left(\operatorname{Norm}_{\sigma}\left(B_{1}\right) \vec{\cup} \operatorname{Norm}_{\sigma}\left(B_{2}\right)\right) \tag{1}
\end{equation*}
$$

For example:

$$
\begin{aligned}
\{a-\} \vec{U}_{A}\{b+\} & =\{b+\} \\
\{a-\} \vec{U}_{E}\{b+\} & =\{b+, a-\} \\
\{a-\} \vec{U}_{S}\{b+\} & =\{b+, a-, c-, d-, \ldots\} \\
\{b-\} \vec{U}_{S}\{b+\} & =\perp
\end{aligned}
$$

A puzzling question is why is the Skeptic paradigm in PTIME, while the other two are hard. It is easy to see that the Boolean gates in Fig. 7 no longer work under Skeptic, but we do not consider this a satisfactory explanation. While we cannot give an ultimate cause, we point out one interesting difference. The preferred union for Skeptic is associative, while it is not associative for either Agnostic nor Eclectic. For example, consider the two expressions $B_{1}=$ $\left.\{a-\} \vec{\cup}_{\sigma}\left(\{a+\} \vec{U}_{\sigma}\{b+\}\right), B_{2}=\left(\{a-\} \vec{U}_{\sigma}\{a+\}\right)\right) \vec{U}_{\sigma}\{b+\}$. For Agnostic, we have $B_{2}=\{b+\}$, for Eclectic $B_{2}=\{a-, b+\}$, while for both $B_{1}=\{a-\}$. By contrast, one can show that \vec{U}_{s} is associative. Associativity as a desirable property during data merging was pointed out in [14].

The issue of associativity

null appears in a join column. No matter what choice is taken, \bowtie is not associative. Consider the relations

$$
q\left(\begin{array} { l l }
{ A - B } \\
{ 1 } & { 2 }
\end{array} r (\begin{array} { l l }
{ B \quad C }
\end{array}) \quad s \left(\begin{array}{l}
A-C) \\
1
\end{array}\right.\right.
$$

Computing $(q \bowtie r) \bowtie s$ we get

$$
\begin{array}{ll}
\left\{a^{-}\right\} \vec{U}_{a}\left(\{a\} \vec{U}_{a}\{b\}\right) & =\left\{a^{-}\right\} \\
\left(\left\{a^{-}\right\} \vec{U}_{a}\{a\}\right) \vec{U}_{a}\{b\} & =\{b\}
\end{array}
$$

while $q \bowtie^{\ddagger}(r \infty s)$ gives

$$
q^{\prime \prime} \begin{array}{ccc}
\left(\begin{array}{lll}
A & B & C
\end{array}\right) \\
\hline 1 & 2 & 4 \\
\perp & 2 & 3
\end{array}
$$

Binarization example

$$
p_{1}=p_{2}<p_{3}=p_{4}=p_{5}<p_{6}<p_{7}
$$

Logic programs with stable model semantics

Step 1:
Binarization

Step 2:

Logic program

1: accept all poss of preferred parent
$\operatorname{poss}(c, X):-\operatorname{poss}(a, X)$.
$\operatorname{block}(c, b, Y):-\operatorname{poss}(b, Y), \operatorname{poss}(c, X), X!=Y$.
$\operatorname{poss}(c, Y):-\operatorname{poss}(b, Y)$, not $\operatorname{block}(c, b, Y)$.

$\operatorname{block}(\mathrm{c}, \mathrm{a}, \mathrm{Y}):-\operatorname{poss}(\mathrm{a}, \mathrm{Y}), \operatorname{poss}(\mathrm{c}, \mathrm{X}), \mathrm{X}!=\mathrm{Y}$. $\operatorname{poss}(c, Y):-\operatorname{poss}(a, Y)$, not $\operatorname{block}(c, a, Y)$.
$\operatorname{block}(c, b, Y):-\operatorname{poss}(b, Y), \operatorname{poss}(c, X), X!=Y$. $\operatorname{poss}(c, Y):-\operatorname{poss}(b, Y)$, not $\operatorname{block}(c, b, Y)$.

2: accept poss from non-preferred parent, that are not conflicting with an existing value

Example Trust Network (TN)
6 nodes, 9 arcs (size 15)
3 explicit beliefs: A:v, B:w, C:u

Corresponding Binary TN (BTN) 8 nodes, 12 arcs (size 20)

Size increase (N+E): ≤ 3

Stable solutions: example 2

- Priority trust network (TN)
- assume a fixed key
- users (nodes): A, B, C
- values (beliefs): v, w, u
- trust mappings (arcs) from "parents"
- Stable solution

- Certain values
- all stable solution determine, for each node, a possible value ("poss")
- certain value ("cert") = intersection of all stable solutions

Stable solutions: example 2

- Priority trust network (TN)
- assume a fixed key
- users (nodes): A, B, C
- values (beliefs): v, w, u
- trust mappings (arcs) from "parents"
- Stable solution
- assignment of values to each node*, s.t. each belief has a "non-dominated lineage" to an explicit belief

- Certain values
- all stable solution determine, for each node, a possible value ("poss")
- certain value ("cert") = intersection of $\operatorname{poss}(G)=\{v, \ldots\}$ all stable solutions

Stable solutions: example 2

- Priority trust network (TN)
- assume a fixed key
- users (nodes): A, B, C
- values (beliefs): v, w, u
- trust mappings (arcs) from "parents"
- Stable solution
- assignment of values to each node*, s.t. each belief has a "non-dominated lineage" to an explicit belief

- Certain values
- all stable solution determine, for each node, a possible value ("poss")
- certain value ("cert") = intersection of $\operatorname{poss}(G)=\{v, w, \ldots\}$ all stable solutions

Stable solutions: example 2

- Priority trust network (TN)
- assume a fixed key
- users (nodes): A, B, C
- values (beliefs): v, w, u
- trust mappings (arcs) from "parents"
- Stable solution
- assignment of values to each node*, s.t. each belief has a "non-dominated lineage" to an explicit belief
- Certain values
- all stable solution determine, for each node, a possible value ("poss")
- certain value ("cert") = intersection of all stable solutions

exercise

Logic programs with stable model semantics


```
poss(c,X) :- poss(a,X).
block(c,b,Y) :- poss(b,Y), poss(c,X), X!=Y.
    poss(c,Y) :- poss(b,Y), not block(c,b,Y).
```


Logic programs with stable model semantics


```
poss(c,X) :- poss(a,X).
block(c,b,Y) :- poss(b,Y), poss(c,X), X!=Y.
poss(c,Y):- poss(b,Y), not block(c,b,Y).
```

```
poss(a,1).
poss(a,2).
poss(c,X) ?
```

```
poss(c,1) :- poss(a,1)
poss(c,2) :- poss(a,2)
```

$\operatorname{block}(c, b, 3):-\operatorname{poss}(b, 3), \operatorname{poss}(c, 1), X!=Y$
block(c,b,3) :- $\operatorname{poss}(b, 3), \operatorname{poss}(c, 2), X!=Y$

$$
\begin{gathered}
M=\{\operatorname{poss}(a, 1), \operatorname{poss}(a, 2), \operatorname{poss}(b, 3), \\
\operatorname{poss}(c, 1), \operatorname{poss}(c, 2)\}
\end{gathered}
$$

Logic programs with stable model semantics


```
block(c,a,Y) :- poss(a,Y), poss(c,X), X!=Y.
    poss(c,Y):- poss(a,Y), not block(c,a,Y).
block(c,b,Y) :- poss(b,Y), poss(c,X), X!=Y.
    poss(c,Y) :- poss(b,Y), not block(c,b,Y).
```


Topic 1: Data models and query languages Unit 4: Datalog Lecture 13

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
https://northeastern-datalab.github.io/cs7240/sp24/
2/27/2024

Pre-class conversations

- Last class summary
- Feedback on Feedback on scribes?
- Project discussions (in class and after or via email and office hours)
- Faculty candidates (THU Feb 29, WED March 20)
- Today:
- The power of disjunctions: Disjunctive Logic Programs (NP and Co-NP in the same program...)

About research (getting a PhD or finding a project topic)

Imagine a circle that contains By the time you finish all of human knowledge:
elementary school, you know a little:

Reading research papers takes you to the edge of human knowledge:

Until one day, the boundary gives way:

And, that dent you've made is called a Ph.D.:

By the time you finish high school, you know a bit more:

Once you're at the boundary, you focus:

Of course, the world looks different to you now:

With a bachelor's
degree, you gain a specialty:

You push at the boundary for a few years:

So, don't forget the bigger picture:

The last comment: Keep pushing!

Outline: T1-4: Datalog \& ASP

- Datalog
- Answer Set Programming
- Intro to Rules with Negation
- Horn clauses and Logic Programming
- Stable model semantics
- An application and surprising complexity result
- The power of Disjunctions
- [A surprising application: automating hardness proofs: moved to T2-U4: Reverse Data Management]

Disjunctive Logic Programming with Clingo/Potassco
 (Examples prepared together with Neha Makhija https://nehamakhija.github.io/)

Potassco, the Potsdam Answer Set Solving Collection

Home About Getting Started Documentation Teaching Support

Potassco

Getting Started

Answer Set Programming (ASP) offers a simple and powerful modeling language to solve combinatorial problems. With our tools you can concentrate on an actual problem, rather than a smart way of implementing it. Get started!

To get a quick first impression, you may want to experiment with running clingo in your browser.

Documentation

A comprehensive documentation of our software can be found in the Potassco guide. For additional resources, see the documentation page.

Systems

To find out more about a specific system and a download link, follow one of the links below.
clingo is an ASP system to ground and solve logic programs.

- gringo is a grounder (powering the grounding in clingo).
\circ clasp is solver (powering the search in clingo).
- clingcon extends clingo with constraint solving capabilities.
- aspcud is a solver for package dependencies.
- asprin is a general framework for qualitative and quantitative optimization in ASP.

Potassco start page: https://potassco.org/

Clingo start page: https://potassco.org/clingo/
Running clingo in the browser: https://potassco.org/clingo/run/
Teaching material: https://teaching.potassco.org/
Download: https://github.com/potassco/clingo/releases/
clingo user guide: https://github.com/potassco/guide/releases/download/v2.2.0/guide.pdf Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Clingo Implementation

clingo is a monolithic system that combines two steps and offers more control than using the two tools individually:

- gringo: a grounder that, given an input program with first-order variables, computes an equivalent ground (variable-free) program
- clasp: a solver that works on ground program (like other answer set solvers)
- relies on conflict-driven nogood learning, a technique that proved very successful for SAT
- does not rely on legacy software, such as a SAT solver or any other existing ASP solver

Complexity and Expressive Power of Logic Programming

"normal" means no disjunctions in head

EVGENY DANTSIN

Roosevelt University, Chicago, IL, USA
THOMAS EITER, GEORG GOTTLOB
Vienna University of Technology, Austria
AND
ANDREI VORONKOV
University of Manchester, United Kingdom

Note that every stratified P has a unique stable model, and its stratified and stable semantics coincide. Unstratified rules increase complexity.

Theorem 5.7. ([Marek and Truszczyński 1991; Bidoit and Froidevaux 1991]). Given a propositional normal logic prog, deciding whether $\operatorname{SM}(P) \neq \emptyset$ is NP-complety.

Theorem 5.8. (Marek and Truszczyński 1991; Schlipf 1995b; Kolaitis and Papadimitriou 1991]). Propositional logic programming with negation under SMS is co-NP-complete. Datalog with negation under SMS is data complete for $\mathrm{co}-\mathrm{NP}$ and program complete for co-NEXPTIME.

Example for NP-complete problem: Boolean satisfiability problem:
"given a Boolean formula, is it satisfiable" (i.e. is there an input for which the formula outputs true)?

Example for co-NP problem: the complementary problem asks: "given a Boolean formula, is it unsatisfiable" (i.e. do all possible inputs to the formula output false)?

Informally, disjunctive logic programming (DLP) extends logic programming by adding disjunction in the rule heads, in order to allow more natural and flexible knowledge representation. For example,

$$
\operatorname{male}(X) \vee \operatorname{female}(X) \leftarrow \operatorname{person}(X)
$$

naturally represents that any person is either male or female.

Modeling problems beyond the class NP with ASP is possible to some extent. Namely, when disjunctions are allowed in the heads of rules, every decision problem in the class Σ_{2}^{P} can be modeled in a unifurm way by a finite pregram (Dantsin et al. 2001). However, modeling problems beyond NP with ASP is complicated and the generate-define-test approach is no longer sufficient in general. Additional techniques such as saturation (Eiter and Gottlob 1995) are needed but they are difficult to use, and may introduce constraints that have no direct relation to constraints of the problem being modeled. As stated explicitly in (Gebser et al. 2011) "unlike the ease of common ASP modeling, [...] "these techniques are rather involved and hardly wsable by ASP laymen."

- NP: decision problems for which a solution can be verified in PTIME
- SAT: Given a Boolean formula, is it satisfiable (i.e. there is an input for which the formula outputs true)?

$$
\varphi=(x \vee y \vee z) \wedge(\bar{x} \vee z \vee w) \wedge(\bar{y} \vee \bar{z} \vee \bar{w}) \quad 3 \mathrm{SAT} \text { (3CNF) }
$$

- 3-colorability: Given a graph, is there an assignment of colors to nodes s.t. no edge connects same colors?
- VC (Vertex Cover): Given a graph and a number k (as part of input), is there a VC of size k or smaller?
- Co-NP-complete: A decision problem is in co-NP if its complement is in NP.
- Co-NP $=\{L \mid \bar{L} \in \mathrm{NP}\}$
- UNSAT: Given a Boolean formula, is it unsatisfiable (i.e. is it false for all choices of inputs)?
- Tautology: Given a Boolean formula, is it a tautology (i.e. is it true for all choices of inputs)?
- Uncolorable: Given a graph, is there no assignment of colors to nodes s.t. edges connect different colors?
- "UNCOVERABLE": Given a graph and a number k, is there no VC of size k or smaller?

Computational Complexity of Logic Programs (LP) / ASP

a disjunctive LP with optimization statements
a normal LP with optimization statements
a normal LP (no disjunction in head)
a positive normal LP (no negation in body)

- Deciding whether an atom is in an optimal SM (stable model) is Δ_{3}^{p}-complete
- Deciding whether a set of atoms is an optimal SM is co-NP ${ }^{N P}$-complete
- Deciding whether an atoms is in a SM is NP ${ }^{\text {NP }}$-complete
- Deciding whether a set of atoms is a SM of a disjunctive P is co-NP-complete

Deciding whether an atom is in an optimal SM is Δ_{2}^{p}-complete

- Deciding whether a set of atoms is an optimal SM is co-NP-complete
- Deciding whether an atom is in a SM is NP-complete (e.g. satisfiability)
- Deciding whether a set of atoms is a SM is P-complete
- Deciding whether an atom is in a stable model,
- or whether a set of atoms is a stable model is P-complete (cf. Datalog)

Details on Disjunctive Logic Programming

-3-colorability

- 3-colorability with normal or disjunctive logic programs
- 3-uncolorability with cautious semantics
- Optimization
- Minimal Vertex Cover with weak constraints, optimization, aggregates
- Shortest paths with aggregation (contrast Clingo vs Souffle)
- Saturation for Disjunctive Logic Programs
- Minimal example for the power of saturation
- Uncolorability (program is satisfiable iff a graph is not 3-colorable)
- Minimal Vertex Cover of a particular size without minimization

3-colorability (1/6) clingo 3colorability1.txt 3colorability1.txt
vertex(a). vertex(b). vertex(c). edge(a, b). edge(a, c). color(X,1) :- not color(X,2), not color(X,3), vertex(X). $\operatorname{color}(X, 2)$:- not color(X,3), not color(X,1), vertex(X). color($X, 3$) :- not color(X,1), not color(X,2), vertex(X). :- edge(X,Y), color(X,C), color(Y,C).

Recall that an empty head encodes a constraint that the body can't be true. Thus no two neighbors in a valuation can share colors.

Capital letters are variables, lowercase

Returns a stable model if it exists. Since there is a stable model, the problem is "satisfiable".

[^3]3-colorability (2/6)

clingo 3colorability2.txt

3colorability2.txt

vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c). color(X,1) :- not color(X,2), not color(X,3), vertex(X). color(X,2) :- not color(X,3), not color(X,1), vertex(X). color($X, 3$) :- not color($X, 1$), not color $(X, 2)$, vertex (X).
notcolored :- edge(X, Y), color(X, C), color($\mathrm{Y}, \mathrm{C})$.
:- notcolored.

But "notcolored" cannot be true
Now, if any two neighbors in a valuation share colors, then "notcolored" needs to be true.

3-colorability (3/6)

clingo 3colorability3.txt

3colorability3.txt

```
```

vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).

```
```

vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).
color(X,1) :- not color(X,2), not color(X,3), vertex(X).
color(X,1) :- not color(X,2), not color(X,3), vertex(X).
color(X,2) :- not color(X,3), not color(X,1), vertex(X).
color(X,2) :- not color(X,3), not color(X,1), vertex(X).
color(X,3) :- not color(X,1), not color(X,2), vertex(X).
color(X,3) :- not color(X,1), not color(X,2), vertex(X).
notcolored :- edge(X,Y), color(X,C), color(Y,C).
notcolored :- edge(X,Y), color(X,C), color(Y,C).
a :- notcolored, not a.

```
```

a :- notcolored, not a.

```
```

Another way to think about the empty header from the previous pages: if "notcolored" is true, then the body of a rule

is " a :- not a ", which has no stable model.

3-colorability (4/6)

clingo 3colorability4.txt

3colorability4.txt

```
vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).
color(X,1) :- not color(X,2), not color(X,3), vertex(X).
color(X,2) :- not color(X,3), not color(X,1), vertex(X).
color(X,3) :- not color(X,1), not color(X,2), vertex(X).
:- edge(X,Y), color(X,C), color(Y,C).
#show color/2.
```

Only show the predicate "color" with arity=2 (i.e. 2 arguments). clingo allows different predicates with same name but different arities; thus we need to include the " $/ 2$ "

Answer: 1

color(a,1) color(b,3) color(c,3)
SATISFIABLE

3-colorability (5/6)
clingo 3colorability4.txt $\underbrace{-n 0}$ Show all models
3colorability4.txt
vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c). color(X,1) :- not color(X,2), not color(X,3), vertex(X). color(X,2) :- not color(X,3), not color(X,1), vertex(X). color $(X, 3)$:- not color(X,1), not color(X,2), vertex(X). :- edge (X, Y), color(X, C), color($Y, C)$.
\#show color/2.

$$
12 \text { possible colorings. }
$$

$$
12=3(\text { for } a) * 2 * 2(\text { for } b \text { and } c)
$$

Answer: 1
color(a,1) color(b,3) color(c,3)
Answer: 2
color(a,1) color(b,3) color(c,2)
Answer: 3
color(a,1) color(b,2) color(c,3)
Answer: 4
color(a,1) color(b,2) color(c,2)
Answer: 11
color(a,3) color(b,2) color(c,2)
Answer: 12
color(a,3) color(b,1) color(c,2)
SATISFIABLE

3-colorability (6/6)

clingo 3colorability5.txt -n 0

3colorability5.txt

```
vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).
color(X,1) :- not color(X,2), not color(X,3), vertex(X).
color(X,2) :- not color(X,3), not color(X,1), vertex(X).
color(X,3) :- not color(X,1), not color(X,2), vertex(X).
:- edge(X,Y), color(X,C), color(Y,C).
#show.
#show (X,C): color(X,C).
```

Turns off printing of all predicates by default
Conditional statement: shows
Answer: 1
$(a, 1)(b, 3)(c, 3)$
Answer: 2
$(\mathrm{a}, 1)(\mathrm{b}, 3)(\mathrm{c}, 2)$
Answer: 3
$(a, 1)(b, 2)(c, 3)$
Answer: 4
$(\mathrm{a}, 1)(\mathrm{b}, 2)(\mathrm{c}, 2)$
Answer: 11 $(a, 3)(b, 2)(c, 2)$
Answer: 12
$(a, 3)(b, 1)(c, 2)$
SATISFIABLE

3-colorability: now with disjunction
clingo 3colorability-disjunction.txt -n 0

- Guess a possible color assignment of vertices. This rule does not prevent a vertex from getting assigned >1 color.
- However, a vertex having multiple colors is not part of a minimal model since it is a superset of a valid coloring.
:- $\operatorname{edge}(X, Y), \operatorname{color}(X, C), \operatorname{color}(Y, C)$.
\#show.
\#show (X,C) : $\operatorname{color}(X, C)$.
clingo also allows ";" instead of "|" for disjunctions

3colorability-disjunction.txt

vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).
$\operatorname{color}(X, 1)|\operatorname{color}(X, 2)| \operatorname{color}(X, 3):-\operatorname{vertex}(X)$

Answer: 1
$(a, 1)(b, 3)(c, 3)$
Answer: 2
$(a, 1)(b, 3)(c, 2)$
Answer: 3
$(a, 1)(b, 2)(c, 3)$
Answer: 4
$(a, 1)(b, 2)(c, 2)$

Answer: 11
$(a, 3)(b, 2)(c, 2)$
Answer: 12
$(a, 3)(b, 1)(c, 2)$
SATISFIABLE

3-colorability: Brave semantics (1/2)

We use here disjunction although not needed

If any two neighbors in a valuation share colors, then "notcolored" needs to be true. since it is the only rule with "notcolored" in the head, "notcolored" is true iff any two neighbors share the color.
"colored" is true if "notcolored" is not.
Show "yes" if colored is true.
show "no" if notcolored is true.
clingo 3colorability-brave1.txt -n 0 3colorability-brave1.txt defines a range $1,2,3$
vertex(1..3). edge(1,2). edge(1,3). edge(2,3). color $(X, 1)|\operatorname{color}(X, 2)| \operatorname{color}(X, 3):-\operatorname{vertex}(X)$. notcolored :- edge(X, Y), color(X, C), color($\mathrm{Y}, \mathrm{C})$. colored :- not notcolored. \#show.
\#show yes : colored. \#show no : notcolored.

In a minimal model, notcolored and colored are not true at the same time. Thus "colored" is only true in a stable model where "notcolored" is not true and thus the color assignment is valid.

Answer: 1

Notice 27 possible colorings. Each is either a valid coloring ("yes") or not ("no").

3-colorability: Brave semantics (2/2)
clingo 3colorability-brave2.txt -e brave 3colorability-brave2.txt
vertex(1..3). edge(1,2). edge(1,3). edge(2,3). color(X,1) | color(X,2) | color(X,3) :- vertex(X). notcolored :- edge (X, Y), color (X, C), color($\mathrm{Y}, \mathrm{C})$. colored :- not notcolored.
\#show.
\#show yes : colored.
(Details: There are d definite consequences and p probable consequences. For brave semantics, the value of d increases with processing of more models while in cautious semantics the value of p decreases.)
"brave" execution mode gives possible answers (union): Is there an answer set in which the query (here "yes=true") holds?

Clingo uses multiple answer sets to converge on the final union/intersection. "Consequences [d;p]" are essentially lower and upper bounds which converge towards $d=p$.

The $2^{\text {nd }}$ (last) answer (after convergence) is the union of all models: it contains "colored", thus we see "yes": there is some answer that is correct. Consequences: $[1 ; 1]$ SATISFIABLE
"yes", thus there exists some model in which "colored" is true

3-uncolorability: Cautious semantics (1/3)
clingo 3colorability-cautious1.txt -e brave

Here, clingo happens to find that the first stable model it looks at has "notcolored" as true. Thus it does not need to look further: it knows that the union of the answers contains "notcolored"

3colorability-cautious1.txt

vertex(1..3). edge(1,2). edge(1,3). edge(2,3). $\operatorname{color}(X, 1)|\operatorname{color}(X, 2)| \operatorname{color}(X, 3):-$ vertex(X). notcolored :- edge (X, Y), color(X,C), color(Y,C). colored :- not notcolored.
\#show.
\#show yes : notcolored.

Here we are asking if there is at least one stable model (one answer set) in which "notcolored" is true.

Answer: 1
yes
Consequences: $[1 ; 1]$ SATISFIABLE

3-uncolorability: Cautious semantics $(2 / 3)$ clingo 3colorability-cautious1.txt -e cautious

3colorability-cautious1.txt

vertex(1..3). edge(1,2). edge(1,3). edge(2,3). $\operatorname{color}(X, 1)|\operatorname{color}(X, 2)| \operatorname{color}(X, 3):-\operatorname{vertex}(X)$. notcolored :- edge (X, Y), color(X, C), color($\mathrm{Y}, \mathrm{C})$. colored :- not notcolored.
\#show.
\#show yes : notcolored.
"cautious" execution model gives certain answers (intersection): Is is true that the query holds in *all* stable models?

Even by looking at the $2^{\text {nd }}$ answer, we are done: it does not contain "notcolored" and thus the answer is no: the intersection does not contain "notcolored".

Answer: 1
yes
Consequences: [0;1]
Answer: 2
K
Consequences: [0;0] SATISFIABLE

We therefore do not see "yes".

3-uncolorability: Cautious semantics (3/3) clingo 3colorability-cautious2.txt -e cautious

3colorability-cautious2.txt

vertex(1..4). edge(1,2..4). edge(2,3..4). edge(3,4). color(X,1) | color(X,2) | color(X,3) :- vertex(X). notcolored :- edge(X,Y), color(X,C), color(Y,C). colored :- not notcolored.
\#show.
\#show yes : notcolored.

This new graph (a 4-clique) is not 3colorable. Thus "notcolored" is true in all stable models, thus in all attempts to assign colors to vertices. The intersection thus contains "notcolored"

Details on Disjunctive Logic Programming

- 3-colorability
- 3-colorability with normal or disjunctive logic programs
- 3-uncolorability with cautious semantics
- Optimization
- Minimal Vertex Cover with weak constraints, optimization, aggregates
- Shortest paths with aggregation (contrast Clingo vs Souffle)
- Saturation for Disjunctive Logic Programs
- Minimal example for the power of saturation
- Uncolorability (program is satisfiable iff a graph is not 3-colorable)
- Minimal Vertex Cover of a particular size without minimization

Weak constraints for optimization

3.1.13 Optimization

Optimization statements extend the basic question of whether a set of atoms is an answer set to whether it is an optimal answer set. To support this reasoning mode, gringo and clingo adopt $d l v$'s weak constraints [14]. The form of weak constraints is similar to integrity constraints (cf. Section 3.1.2) being associated with a term tuple:

$$
: \sim L_{1}, \ldots, L_{n} . \quad\left[w @ p, t_{1}, \ldots, t_{n}\right]
$$

The priority ' $@ p$ ' is optional. For simplicity, we first consider the non-prioritized case omitting ' $@ p$ '. Whenever the body of a weak constraint is satisfied, it contributes its term tuple (as with aggregates, each tuple is included at most once) to a cost function. This cost function accumulates the integer weights w of all contributed tuples just like a \# sum aggregate does (cf. Section 3.1.12). The semantics of a program with weak constraints is intuitive: an answer set is optimal if the obtained cost is minimal among all answer sets of the given program. Whenever there are different priorities attached to tuples, we obtain a (possibly zero) cost for each priority. To determine whether an answer set is optimal, we do not just compare two single costs but lexicographically compare cost tuples whose elements are ordered by priority (greater is more important). Note that a tuple is always associated with a priority; if it is omitted, then the priority defaults to zero. A weak constraint is safe if the variables in its term tuples are bound by the atoms in the body and the safety requirements for the body itself are the same as for integrity constraints.

Minimum Vertex Cover: Optimization

We use here disjunction although not needed: every vertex " N " is clingo minVC-optimization.txt in the cover (1) or not (0) minVC-optimization.txt

```
vertex(1..3). edge(1,2). edge(1,3). edge(2,3). _ At least one endpoint of each edge needs
cover(N,1) | cover(N,0) :- vertex (N).
:- edge(X,Y), cover(X,O), cover(Y,0).
:~ cover(X,1).[1@1, X]\longleftarrow
```



```
At least one endpoint of each edge needs to be in the cover, i.e. both can't be outside the cover (0) Minimize the number of valuations for \(x\) that make "cover \((X, 1)\) " true
Show the nodes and whether they are in the cover (1) or not (0)
an intermediate non-
\#show. \#show (X,C): cover(X,C)."
Answer: 1
\((1,1)(2,1)(3,1)\)
Optimization: 3
Answer: 2
\(\underset{\text { Answer: } 2,}{(1,1)(2,1)(3,0)}\) last answer is an
Optimization: 2
OPTIMUM FOUND optimal answer
```

Intuitively: enforce weak constraints if possible. Мinimize the number of violations.

``` optimal answer
```

Minimum Vertex Cover: Optimization
clingo minVC-optimization.txt

minVC-optimization.txt

```
vertex(1..3). edge(1,2). edge(1,3). edge(2,3).
cover(N,1) | cover(N,0) :- vertex (N).
:- edge(X,Y), cover(X,O), cover(Y,0).
:~ cover(X,1). [1@1, X]
```



```
                    terms (t, ,..t.t)
        priority (optional)
    weight (w)
#show. #show (X,C): cover(X,C).
```

SEMANTICS OF WEAK CONSTRAINTS: For any program P and answer set A , weak (P, A) is the set of all unique tails of weak constraints in ground (P) whose body is satisfied by A

Goal is to minimize $\sum_{\left(t_{1}, \ldots . t_{n}\right) \in \operatorname{weak}(\mathbf{P}, \mathbf{A})} w$
Higher priority levels are more important
an intermediate non-
Answer: 1
$(1,1)(2,1)(3,1)$
Optimization: 3
Answer: 2
$(1,1)(2,1)(3,0)$
Optimization: 2 OPTIMUM FOUND
optimal answer
last answer is an optimal answer

Minimum Vertex Cover: Optimization

clingo minVC-aggregation.txt

minVC-aggregation.txt

```
vertex(1..3). edge(1,2). edge(1,3). edge(2,3).
cover(N,1) | cover(N,0) :- vertex (N).
:- edge(X,Y), cover(X,O), cover(Y,O).
#minimize {1@1, X : cover(X,1)}.
```



```
Minimize the number of valuations for \(x\) that make "cover \((X, 1)\) " true
```



```
priority (optional)
weight (w)
\#show. \#show (X,C): cover(X,C).
```

same answer

Minimum Vertex Cover: Aggregate / Decision

Check if there is some valid cover with 2 or fewer vertices covered

```
vertex(1..3). edge(1,2). edge(1,3). edge(2,3).
```

cover $(\mathrm{N}, 1) \mid \operatorname{cover}(\mathrm{N}, 0):-\operatorname{vertex}(\mathrm{N})$.
:- edge (X, Y), cover $(X, 0)$, cover $(Y, 0)$.
$:-\underbrace{\# \operatorname{count}\{X: \operatorname{cover}(X, 1)\}}>2$.
Aggregate Atom
counts values x that make "cover $(x, 1)$ " true
\#show. \#show (X,C): cover(X,C).

Answer: 1
$(1,1)(2,1)(3,0)$
Answer: 2
$(1,1)(2,0)(3,1)$
Answer: 3
$(1,0)(2,1)(3,1)$
SATISFIABLE

Minimum Vertex Cover: Aggregate / Decision
clingo minVC-decision1.txt -n 0

minVC-decision1.txt

```
vertex(1..3). edge(1,2). edge(1,3). edge(2,3).
cover(N,1) | cover(N,0) :- vertex (N).
:- edge(X,Y), cover(X,O), cover(Y,O).
:- #
            Aggregate Atom
    counts values }X\mathrm{ that make "cover ( }x,1)\mathrm{ " true
#show. #show (X,C): cover(X,C).
```


SEMANTICS OF AGGREGATES:

An aggregate atom occurring in a rule body takes the form $l \alpha\left\{t_{1}: L_{1} ; \ldots ; t_{n}: L_{n}\right\} u$ where

- α is an aggregate function,
- $t_{1}: L_{i}$ aggregate t_{1} when L_{i} holds
- l, u are optional lower and upper bounds

Minimum Vertex Cover: Aggregate / Decision

clingo minVC-decision2.txt -n 0

minVC-decision2.txt

Details on Disjunctive Logic Programming

- 3-colorability
- 3-colorability with normal or disjunctive logic programs
- 3-uncolorability with cautious semantics
- Optimization
- Minimal Vertex Cover with weak constraints, optimization, aggregates
- Shortest paths with aggregation (contrast Clingo vs Souffle)
- Saturation for Disjunctive Logic Programs
- Minimal example for the power of saturation
- Uncolorability (program is satisfiable iff a graph is not 3-colorable)
- Minimal Vertex Cover of a particular size without minimization

Shortest Path via Aggregation clingo shortestpath1.txt

shortestpath1.txt

```
edge(s,v1,2). edge(v1,v2,1). edge(v2,t,1).
edge(v2,t,10). edge(s,v3,1). edge(v3,t,4).
path(X,Y,W) :- edge(X,Y,W).
path(X,Z,W1+W2) :- path(X,Y,W1), path(Y,Z,W2).
```

minpath $(X, Y, C):-\operatorname{path}(X, Y,-), C=\underbrace{\# m i n}\{W: \operatorname{path}(X, Y, W)\}$.
\#show. \#show W: minpath $(\mathrm{s}, \mathrm{t}, \mathrm{W})$. Aggregate Atom
weights of edges

For all possible values x, y grounded by "path (X, Y, \ldots) ", find the minimum weight w, call it C and store it in minpath (X, Y, C)

Answer: 1
4 SATISFIABLE

The length of the shortest path
weights of edges

Shortest Path via Aggregation clingo shortestpath2.txt shortestpath2.txt
minpath $(C):-C=\underbrace{\min \{W: \operatorname{path}(s, t, W)}\}$.
\#show. \#show W: minpath (W).

```
edge(s,v1,2). edge(v1,v2,1). edge(v2,t,1).
```

edge(s,v1,2). edge(v1,v2,1). edge(v2,t,1).
edge(v2,t,10). edge(s,v3,1). edge(v3,t,4).
edge(v2,t,10). edge(s,v3,1). edge(v3,t,4).
path(X,Y,W) :- edge(X,Y,W).
path(X,Z,W1+W2) :- path(X,Y,W1), path(Y,Z,W2).

```

The length of the shortest path

Answer: 1
4 SATYSFIABLE
For all possible values \(w\) grounded by "path \((s, t, w)\) ", find the minimum weight \(w\), call it \(C\) and store it in minpath (c)

Shortest Path via Aggregation (Souffle)
weights of edges

souffle shortestpath.dl
shortestpath.dl
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{.decl edge(x: symbol, y: symbol, wt:number)} \\
\hline .input edge & s v1 2 \\
\hline .decl path(x: symbol, y: symbol, wt:number) & \(\begin{array}{lll}\text { v1 } & \text { v2 } & 1 \\ v 2 & t & 1\end{array}\) \\
\hline path \((x, y, w)\) :- edge( \(x, y, w)\). & v2 t 10 \\
\hline path(x,z,w1+w2) :- path (x,y,w1), path(y,z,w2). & s v3 1 \\
\hline & v3 t 4 \\
\hline
\end{tabular}
minpath \((c):-c=\underbrace{\min w:\{p a t h(" s ", " t ", w)}\). .output minpath

Recall that in souffle, constants are indicated by quotation marks


\section*{Details on Disjunctive Logic Programming}
- 3-colorability
- 3-colorability with normal or disjunctive logic programs
- 3-uncolorability with cautious semantics
- Optimization
- Minimal Vertex Cover with weak constraints, optimization, aggregates
- Shortest paths with aggregation (contrast Clingo vs Souffle)
- Saturation for Disjunctive Logic Programs
- Minimal example for the power of saturation
- Uncolorability (program is satisfiable iff a graph is not 3-colorable)
- Minimal Vertex Cover of a particular size without minimization

\section*{Use Disjunction only if needed}

\section*{clasp and claspD have been united into clasp}

\subsection*{3.1.3 Disjunction}

Disjunctive logic programs permit connective " \(\mid\) " between atoms in rule heads. A disjunction is true if at least one of its atoms is true. Additionally, logic programs have to satisfy a minimality criterion, which we do not detail in this guide. The simple program a \(\mid\) b. has the two answer sets \(\{a\}\) and \(\{b\}\) but does not admit the answer set \(a, b\) because it is no minimal model.

In general, the use of disjunction however increases computational complexity [12]. This is why clingo \({ }^{2}\) and solvers like assat [37], clasp [20], nomore++ [1], smode 1 s [51], and smodel \(\mathrm{s}_{\mathrm{cc}}\) [56] do not work on disjunctive programs. Rather, claspD [8], cmodels [28, 35], or gnt [33] need to be used for solving a disjunctive program. \(\sqrt[3]{3}\) We thus suggest to use "choice constructs" (cf. Section 3.1.10) instead of disjunction, unless the latter is required for complexity reasons (see [13] for an implementation methodology in disjunctive ASR).

It is is possible that modern solvers can detect head-cycle free disjunctions and internally "shift" the heads to normal logic programs.

\section*{Horn clauses and logic programming}

A clause is a disjunction of literals.
\[
\begin{array}{cc}
\overline{\mathrm{a}} \vee \overline{\mathrm{~b}} \vee \mathrm{c} \vee \mathrm{~d} \quad \mathrm{a} \wedge \mathrm{~b} & \Rightarrow \mathrm{c} \vee \mathrm{~d} \\
& 1 \wedge \mathrm{a} \wedge \mathrm{~b}
\end{array} \Rightarrow \mathrm{c} \vee \mathrm{~d} \vee 0 .
\]

A Horn clause has at most one positive (i.e. unnegated) literal.
\(\left.\begin{array}{ll}\bar{a} \vee b \vee c & a \wedge \bar{b} \Rightarrow c \\ \bar{a} \vee b \vee c & a \wedge \bar{c} \Rightarrow b\end{array}\right\}\)

Those express the same models and minimal models. However, for a model in which both \(a\) and \(b\) are true, the non-disjunctive version does not include the rules in the reduct because the body is not true!

\section*{Disjunctive logic programming}

Datalog
\[
\begin{aligned}
& \mathrm{b}:-\mathrm{a} . \\
& \mathrm{c}:-\mathrm{a} .
\end{aligned}
\]

If \(a\) is true, then both \(b\) and \(c\) need to be true too \(\mathrm{b} \wedge \mathrm{c} \Leftarrow \mathrm{a}\)

Datalog with negation and stable model semantics, or disjunction in head
\[
\begin{aligned}
& b:-a, \operatorname{not} c . \\
& c:-a, \operatorname{not} b .
\end{aligned}
\]
b|c:- a.

If \(a\) is true, then either \(b\) or \(c\) need to be true (both can be true only if there are other rules) \(\mathrm{b} \vee \mathrm{c} \Leftarrow \mathrm{a}\)

If \(a\) is true, then at least \(b\) or \(c\) need to be true: \(\mathrm{b} V \mathrm{c} \Leftarrow \mathrm{a}\)

\section*{When disjunctions add expressiveness (1/2)}
```

clingo saturation1.txt -n 0

```
saturation1.txt
a :- not b.
b :- not a.
saturation2.txt
a | b:-.


\section*{When disjunctions add expressiveness (1/2)}

\section*{clingo saturation1.txt -n 0}
saturation1.txt
```

a :- not b.
b :- not a.

```
saturation2.txt
```

a | b :-

```
\begin{tabular}{ll} 
Solving... & Solving... \\
Answer: 1 & Answer: 1 \\
b & b \\
Answer: 2 & Answer: 2 \\
a & a \\
SATISFIABLE & SATISFIABLE \\
Models \(: 2\) & Models \(: 2\)
\end{tabular}
\{\{a\}, \{b\}\}
both have the same two SMs \(\{a\}\) and \(\{b\},\{a, b\}\) would also be a model, but is not minimal, thus not a SM

\section*{When disjunctions add expressiveness (1/2)}

\section*{clingo saturation1.txt -n 0}
Solving...
Answer: 1
b
Answer: 2
a
SATISFIABLE
Models \(\quad: 2\)
saturation1.txt
```

a :- not b.
b :- not a.

```

Answer: 1
b
Answer: 2
SATISFIABLE
Models : 2

\section*{saturation2.txt}

Solving...
Answer: 1
b

Answer: 2

a
SATISFIABLE


Models \(\quad: 2\)
reduct w.r.t \{a\}

both have the same two SMs \(\{a\}\) and \(\{b\},\{a, b\}\) would also be a model, but is not minimal, thus not a SM

\section*{When disjunctions add expressiveness (2/2)}
clingo saturation1.txt -n 0
saturation3.txt

saturation4.txt


\section*{When disjunctions add expressiveness (2/2)}
clingo saturation1.txt -n 0
saturation3.txt

has no SM (stable model)
saturation4.txt

has 1 SM that includes both \(a\) and \(b\)

\section*{Details on Disjunctive Logic Programming}
- 3-colorability
- 3-colorability with normal or disjunctive logic programs
- 3-uncolorability with cautious semantics
- Optimization
- Minimal Vertex Cover with weak constraints, optimization, aggregates
- Shortest paths with aggregation (contrast Clingo vs Souffle)
- Saturation for Disjunctive Logic Programs
- Minimal example for the power of saturation
- Uncolorability (program is satisfiable iff a graph is not 3-colorable)
- Minimal Vertex Cover of a particular size without minimization

3-uncolorability: via disjunctive LP
clingo 3uncolorability2.txt -n 0

\section*{3uncolorability2.txt}
```

% Facts
vertex(1..3). edge(1,2). edge(1,3). edge(2,3).
% Guess
color(X,1) | color(X,2) | color(X,3) :- vertex(X).
% Check desired property (of being "uncolored")
uncolored :- edge(X,Y), color(X,C), color(Y,C).
% Saturate if desired property holds
color(X,1..3) :- uncolored, vertex(X).

```

There are 6 possible colorings in which notcolored is not made true. Thus "notcolored" is never included.
"notcolored" is true iff any two neighbors share the color.

If "notcolored" is true then
"saturate" all vertices with all colors. This will never be a minimal SM if there is at least one valid coloring

Answer: 1
vertex(1) vertex(2) vertex(3) edge(1,2) edge \((1,3)\) edge \((2,3) \operatorname{color}(1,3) \operatorname{color}(2,2)\) color \((3,1)\) Answer: 2
vertex(1) vertex(2) vertex(3) edge(1,2) edge \((1,3)\) edge \((2,3) \operatorname{color}(1,2) \operatorname{color}(2,3) \operatorname{color}(3,1)\) Answer: 3
vertex(1) vertex(2) vertex(3) edge(1,2) edge \((1,3)\) edge \((2,3)\) color \((1,3)\) color \((2,1)\) color \((3,2)\) Answer: 4

3-uncolorability: via disjunctive LP
clingo 3uncolorability3.txt -n 0


\section*{3uncolorability3.txt}
```

"notcolored" is true iff any two neighbors share the color.
If "notcolored" is true then
"saturate" all vertices with all colors. This will never be a minimal SM if there is at least one valid coloring
% Facts
vertex(1..3). edge(1,2). edge(1,3). edge(2,3).
% Guess
color(X,1) | color(X,2) | color(X,3) :- vertex(X).
% Check desired property (of being "uncolored")
uncolored:- edge(X,Y), color(X,C), color(Y,C).
% Saturate if desired property holds

```
color(X,1..3) :- uncolored, vertex(X).
\#show. \#show yes: uncolored.

There are 6 possible colorings in which notcolored is not made true. Thus "notcolored" is never included.

3-uncolorability: via disjunctive LP
clingo 3uncolorability3.txt


\section*{3uncolorability3.txt}
```

% Facts
vertex(1..3). edge(1,2). edge(1,3). edge(2,3).
% Guess
color(X,1) | color(X,2) | color(X,3) :- vertex(X).
% Check desired property (of being "uncolored")
uncolored :- edge(X,Y), color(X,C), color(Y,C).
% Saturate if desired property holds
color(X,1..3) :- uncolored, vertex(X).
\#show. \#show yes : uncolored.

```

There are 6 possible colorings in which


Solving.
Answer: 1 notcolored is not made true. Thus "notcolored" is never included.
"notcolored" is true iff any two neighbors share the color.

If "notcolored" is true then
"saturate" all vertices with all colors. This will never be a minimal SM if there is at least one valid coloring

3-uncolorability: via disjunctive LP

\section*{clingo 3uncolorability6.txt}


\section*{3uncolorability6.txt}
```

% Facts
vertex(1..3). edge(1,2). edge(1,3). edge(2,3).
% Guess
color(X,1) | color(X,2) | color(X,3) :- vertex(X).
% Check desired property (of being "uncolored")
uncolored :- edge(X,Y), color(X,C), color(Y,C).
% Saturate if desired property holds
color(X,1..3) :- uncolored, vertex(X).
% Additionally require desired property
:- not uncolored.

```

Additionally require the desired property "uncolored" to be true as additional constraint (recall this rule does not make it true, it needs to be derivable in the reduct)
"notcolored" is true iff any two neighbors share the color.

If "notcolored" is true then
"saturate" all vertices with all colors.
This will never be a minimal SM if there is at least one valid coloring

3-uncolorability: (non-existence of coloring)

\section*{clingo 3uncolorability1.txt}


\section*{3uncolorability1.txt}
```

"notcolored" is true iff any two neighbors share the color.
If "notcolored" is true then
"saturate" all vertices with all colors. This will never be a minimal SM if there is at least one valid coloring
% Facts
vertex(1..4). edge(1,2..4). edge(2,3..4). edge(3,4).
% Guess
color(X,1) | color(X,2) | color(X,3) :- vertex(X).
% Check desired property (of being "uncolored")
uncolored :- edge(X,Y), color(X,C), color(Y,C).
% Saturate if desired property holds
color(X,1..3) :- uncolored, vertex(X).
% Additionally require desired property
:- not uncolored.
There is no possible coloring and "notcoloring" is always true. Thus there is only one "saturated" SM that also contains "notcolored" (which is also required)
Answer: 1
vertex(1) vertex(2) vertex(3) vertex(4) edge $(3,4)$ edge $(1,2)$ edge $(1,3)$ edge $(1,4)$ edge $(2,3)$ edge $(2,4)$ color $(1,1)$ color $(1,2)$ color $(1,3) \operatorname{color}(2,1) \operatorname{color}(2,2) \operatorname{color}(2,3) \operatorname{color}(3,1) \operatorname{color}(3,2)$ color $(3,3)$ color $(4,1)$ color $(4,2)$ color $(4,3)$ notcolored SATISFIABLE
Models : 1

```

3-colorability: (existence of coloring)

\section*{clingo 3colorability6.txt}

"notcolored" is true iff any two neighbors share the color.

\section*{Details on Disjunctive Logic Programming}
- 3-colorability
- 3-colorability with normal or disjunctive logic programs
- 3-uncolorability with cautious semantics
- Optimization
- Minimal Vertex Cover with weak constraints, optimization, aggregates
- Shortest paths with aggregation (contrast Clingo vs Souffle)
- Saturation for Disjunctive Logic Programs
- Minimal example for the power of saturation
- Uncolorability (program is satisfiable iff a graph is not 3-colorable)
- Minimal Vertex Cover of a particular size without minimization

\section*{existence of \(V C=3\)}
minVC-existence2.txt

\section*{clingo minVC-existence2.txt}
```

% Facts
vertex(1..4). edge(1,2..4). edge(2,3..4). edge(3,4).
% Guess solutions
% Check and enforce properties
:- edge(X,Y), cover (X,O), cover (Y,O).
valid :- \#count{X: cover (X,1)} = 3.
:- not valid.

```
cover \((\mathrm{X}, 1) \mid\) cover \((\mathrm{X}, \mathrm{O}):\) :- vertex \((\mathrm{X})\). \(\longleftarrow\) Guess a solution (expressiveness of disjunctive rule is
not required here)


\section*{Solving.}

Answer: 1
vertex(1) vertex(2) vertex(3) vertex(4) edge(3,4) edge(1,2) edge \((1,3)\) edge \((1,4)\) edge( 2,3 ) edge \((2,4) \operatorname{cover}(1,0) \operatorname{cover}(2,1)\)
cover \((3,1)\) cover \((4,1\) valid
SATISFIABLE
Models : 1+

\section*{non-existence of \(\mathrm{VC}<3\)}
minVC-nonexistence2.txt

\section*{clingo minVC-nonexistence2.txt}

\% Facts
vertex(1..4). edge(1,2..4). edge(2,3..4). edge(3,4).
\% Guess solutions
cover_all \((X, 1) \mid\) cover_all \((X, 0):-\) vertex \((X)\). \(\longleftarrow\) Guess all cover candidates with disjunction (here disjunction
\% Check and enforce properties

is needed as we use it with saturation later below)

Saturate all other cover candidates if invalid
Answer: 1
vertex(1) vertex(2) vertex(3) vertex(4) edge(3,4) edge(1,2) edge \((1,3)\) edge \((1,4)\) edge \((2,3)\) edge \((2,4)\) cover_all \((1,1)\) cover_all( 1,0 ) cover_all \((2,1)\) cover_all \((2,0)\) cover all \((3,1)\) cover_all( 3,0 ) cover_all \((4,1)\) cover_all( 4,0 ) invalid)
SATISFIABLE
Models : 1

\title{
\(\min V C=3\) (exists 3 and not exists <3)
}
minVC-existsandnot1.txt

\section*{clingo minVC-existsandnot1.txt}


\title{
\(\min V C=K\) (exists \(K\) and not exists \(<K\) )
}
minVC-existsandnot2.txt

\% Facts
vertex(1..4). edge(1,2..4). edge(2,3..4). edge(3,4).
\% Guess solutions
cover \((\mathrm{X}, 1) \mid\) cover \((\mathrm{X}, 0):-\) vertex \((\mathrm{X})\). \(\longleftarrow\) Guess a valid solution (disjunction is not required here)
cover_all \((X, 1) \mid\) cover_all \((X, 0):-\) vertex(X). \(\longleftarrow\) we want all other cover candidates to not be better
\% Check and enforce properties
:- edge \((X, Y)\), cover \((X, 0)\), cover \((Y, 0)\).
\(\operatorname{minvc}(K):-\# \operatorname{count}\{X: \operatorname{cover}(X, 1)\}=K\).
invalid :- edge(X,Y), cover_all(X,O), cover_all(Y,O).
invalid :- \#count \(\{\mathrm{X}\) : cover_all \((\mathrm{X}, 1)\}>=\mathrm{K}, \operatorname{minvc}(\mathrm{K})\).
:- not invalid.
\% Additionally saturate if desired property holds
cover_all(X,0..1) :- invalid, vertex(X). (disjunction is required here)

The valid solution needs to be a cover and have some size \(K\)

Models 1+

\title{
\(\min V C=K\) (exists \(K\) and not exists \(<K\) )
}
minVC-existsandnot3.txt

\% Facts
vertex(1..4). edge(1,2..4). edge(2,3..4). edge(3,4).
\% Guess solutions
cover \((\mathrm{X}, 1) \mid\) cover \((\mathrm{X}, 0):-\) vertex \((\mathrm{X})\). \(\longleftarrow\) Guess a valid solution (disjunction is not required here)
cover_all \((X, 1) \mid\) cover_all \((X, 0):-\) vertex(X). \(\longleftarrow\) we want all other cover candidates to not be better
\% Check and enforce properties
:- edge (X,Y), cover (X,O), cover ( \(\mathrm{Y}, \mathrm{O}\) ).
\(\operatorname{minvc}(K):-\# \operatorname{count}\{X: \operatorname{cover}(X, 1)\}=K\).
invalid :- edge(X,Y), cover_all(X,O), cover_all(Y,O).
invalid :- \#count \(\{\mathrm{X}\) : cover_all \((\mathrm{X}, 1)\}>=\mathrm{K}, \operatorname{minvc}(\mathrm{K})\).
:- not invalid. (disjunction is required here)
\% Additionally saturate if desired property holds
cover_all \((X, 0 . .1)\) :- invalid, vertex \((X)\). \(\longleftarrow\) Saturate all other cover candidates if invalid
\#show. \#show K: minvc(K).

Only show the single entry \(K\) in "minvc \((K)\) "
SATISFIABLE

Models : 1+

\title{
\(\min V C=K\) (exists \(K\) and not exists \(<K\) )
}

\section*{minVC-existsandnot4.txt}

\section*{clingo minVC-existsandnot4.txt}

\% Facts
vertex(1..3). edge(1,2..3). edge(2,3).
\% Guess solutions
cover \((X, 1) \mid\) cover \((X, 0):-\) vertex \((X)\). Guess a valid solution (disjunction is not required here)
cover_all \((X, 1) \mid\) cover_all \((X, 0):-\) vertex \((X)\). we want all other cover candidates to not be better
\% Check and enforce properties
:- edge \((X, Y)\), cover \((X, O)\), cover \((Y, O)\).
\(\operatorname{minvc}(K):-\# \operatorname{count}\{X: \operatorname{cover}(X, 1)\}=K\).
invalid :- edge(X,Y), cover_all(X,O), cover_all(Y,0).
invalid :- \#count \(\{X\) : cover_all \((X, 1)\}>=K, \operatorname{minvc}(K)\).
:- not invalid.
 (disjunction is required here)
\% Additionally saturate if desired property holds
cover_all(X,O..1) :- invalid, vertex(X). \(\longleftarrow\) Saturate all other cover candidates if invalid
\#show. \#show K: minvc(K).

Only show the single entry \(K\) in \(" \operatorname{minvc}(K) "\)
SATISFIABLE

Models : 1+

\section*{Outline: T1-4: Datalog \& ASP}
- Datalog
- Answer Set Programming
- Intro to Rules with Negation
- Horn clauses and Logic Programming
- Stable model semantics
- An application and surprising complexity result
- The power of Disjunctions
- [A surprising application: automating hardness proofs: moved to T2-U4: Reverse Data Management]```


[^0]:    For more help on Souffle, see: https://souffle-lang.github.io/simple

[^1]:    Source: https://souffle-lang.github.io/docs.html
    Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

[^2]:    "This works because PostgreSQL's implementation evaluates only as many rows of a WITH query as are actually fetched by the parent query. Using this trick in production is not recommended, because other systems might work differently." Source: https://www.postgresql.org/docs/current/queries-with.html\#QUERIES-WITH-RECURSIVE

[^3]:    Answer: 1
    vertex(a) vertex(b) vertex(c) edge(a,b) edge(a,c) color(a,1)
    color(b,3) color(c,3)
    SATISFIABLE

