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Where We Are

• Relational query languages we have seen so far:
- SQL
- Relational Calculus
- Relational Algebra

• They can express the same class of relational queries (ignoring 
extensions, such as grouping, aggregates, or sorting)
- How powerful are they? What kind of useful queries are missing?

https://northeastern-datalab.github.io/cs7240/
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Which are Relational Queries? Which are not? And Why?

• Given Friend(X,Y): Find all people X whose number of friends is a prime 
number

• Find all people who are friends with everyone who is not a friend of Bob

• Partition all people into three sets P1(X),P2(X),P3(X) s.t. any two friends 
are in different partitions

• Find all people who are direct or indirect friends with Alice (connected 
in arbitrary length)

?

?

?

?Source: Dan Suciu, CSE 554, 2011. 

https://northeastern-datalab.github.io/cs7240/


4Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 

Which are Relational Queries? Which are not? And Why?

• Given Friend(X,Y): Find all people X whose number of friends is a prime 
number

• Find all people who are friends with everyone who is not a friend of Bob

• Partition all people into three sets P1(X),P2(X),P3(X) s.t. any two friends 
are in different partitions

• Find all people who are direct or indirect friends with Alice (connected 
in arbitrary length)

NO: needs higher math; not possible with RA
(unless we have access to a relation Prime(x)...)

?

?

?Source: Dan Suciu, CSE 554, 2011. 

https://northeastern-datalab.github.io/cs7240/
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Which are Relational Queries? Which are not? And Why?

• Given Friend(X,Y): Find all people X whose number of friends is a prime 
number

• Find all people who are friends with everyone who is not a friend of Bob

• Partition all people into three sets P1(X),P2(X),P3(X) s.t. any two friends 
are in different partitions

• Find all people who are direct or indirect friends with Alice (connected 
in arbitrary length)

NO: needs higher math; not possible with RA
(unless we have access to a relation Prime(x)...)

YES: {x | ∀y.(¬Friend(y, 'Bob')⇒Friend(x,y) } DI?

?

?Source: Dan Suciu, CSE 554, 2011. 

https://northeastern-datalab.github.io/cs7240/
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Which are Relational Queries? Which are not? And Why?

• Given Friend(X,Y): Find all people X whose number of friends is a prime 
number

• Find all people who are friends with everyone who is not a friend of Bob

• Partition all people into three sets P1(X),P2(X),P3(X) s.t. any two friends 
are in different partitions

• Find all people who are direct or indirect friends with Alice (connected 
in arbitrary length)

NO: needs higher math; not possible with RA
(unless we have access to a relation Prime(x)...)

YES: {x | ∀y.(¬Friend(y, 'Bob')⇒Friend(x,y) } DI?

?

?Source: Dan Suciu, CSE 554, 2011. 

{x | Person(x) ⋀ ∀y.[Person(y) ⋀ ¬Friend(y,'Bob')⇒Friend(x,y)]}

https://northeastern-datalab.github.io/cs7240/
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Which are Relational Queries? Which are not? And Why?

• Given Friend(X,Y): Find all people X whose number of friends is a prime 
number

• Find all people who are friends with everyone who is not a friend of Bob

• Partition all people into three sets P1(X),P2(X),P3(X) s.t. any two friends 
are in different partitions

• Find all people who are direct or indirect friends with Alice (connected 
in arbitrary length)

NO: needs higher math; not possible with RA
(unless we have access to a relation Prime(x)...)

NO: equivalent to 3-coloring; NP-complete

Source: Dan Suciu, CSE 554, 2011. ?

YES: {x | ∀y.(¬Friend(y, 'Bob')⇒Friend(x,y) }
{x | Person(x) ⋀ ∀y.[Person(y) ⋀ ¬Friend(y,'Bob')⇒Friend(x,y)]}

https://northeastern-datalab.github.io/cs7240/
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Which are Relational Queries? Which are not? And Why?

• Given Friend(X,Y): Find all people X whose number of friends is a prime 
number

• Find all people who are friends with everyone who is not a friend of Bob

• Partition all people into three sets P1(X),P2(X),P3(X) s.t. any two friends 
are in different partitions

• Find all people who are direct or indirect friends with Alice (connected 
in arbitrary length)

NO: needs higher math; not possible with RA
(unless we have access to a relation Prime(x)...)

NO: equivalent to 3-coloring; NP-complete

NO: recursive query; PTIME yet not expressible in RA
Next: Datalog: extends monotone RA with recursion

Source: Dan Suciu, CSE 554, 2011. 

YES: {x | ∀y.(¬Friend(y, 'Bob')⇒Friend(x,y) }
{x | Person(x) ⋀ ∀y.[Person(y) ⋀ ¬Friend(y,'Bob')⇒Friend(x,y)]}

https://northeastern-datalab.github.io/cs7240/
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Source: https://en.wikipedia.org/wiki/Relational_algebra#Transitive_closure 
Appendix from: Aho, Ullman. "Universality of data retrieval languages". POPL 1979. https://doi.org/10.1145%2F567752.567763 

Transitive closure (not expressible with RA)
THEOREM: Datalog can express queries that RA (RC) cannot (e.g., transitive closure of a graph)

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Relational_algebra
https://doi.org/10.1145%2F567752.567763
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Datalog & ASP

• Datalog
- Database query language designed in the 80’s
- Simple, concise, elegant

• "Clean" (syntactic) restriction of Prolog with DB access
• Expressive & declarative: Set-of-rules semantics, Independence of 

execution order, Invariance under logical equivalence
- Several open source implementations, mostly academic implementations
- Recently a hot topic, beyond databases: 

• network protocols, static program analysis, DB+ML

• Answer Set Programming (ASP): 
- very powerful extension (with negation) that can model 

hard computational problems

Path(x,y) :- Arc(x,y).
Path(x,z) :- Arc(x,y), Path(y,z).
InCycle(x) :- Path(x,x).

Originally based on slides by Dan Suciu
We will later see and use in class: Souffle (https://souffle-lang.github.io/simple) and Postassco/Clingo: Download: https://potassco.org/clingo/, 
Running in the browser: https://potassco.org/clingo/run/, More resources on clingo: https://teaching.potassco.org/

https://northeastern-datalab.github.io/cs7240/
https://souffle-lang.github.io/simple
https://potassco.org/clingo/
https://potassco.org/clingo/run/
https://teaching.potassco.org/
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Manager(eid) :- Manages(_, eid)

DirectReports(eid, 0) :-
 Employee(eid), not Manager(eid)

DirectReports(eid, level+1) :-
 DirectReports(mid, level), Manages(mid, eid)

Recursion with SQL server vs. Datalog

SQL Query vs. Datalog: which 
would you rather write?

SQL Datalog

Query on the left from Bieker, Lee. Mastering SQL server 2008. Example on the right by Dan Suciu

Possible scribe: to fix that 
example J

https://northeastern-datalab.github.io/cs7240/
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https://cs.stackexchange.com/questions/14694/smallest-set-of-features-that-would-make-relational-algebra-turing-complete 

CTE = Common Table Expession = WITH clause

https://northeastern-datalab.github.io/cs7240/
https://cs.stackexchange.com/questions/14694/smallest-set-of-features-that-would-make-relational-algebra-turing-complete
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https://www.quora.com/Why-is-relational-algebra-not-Turing-complete , https://wiki.postgresql.org/wiki/Cyclic_Tag_System , https://en.wikipedia.org/wiki/Tag_system#Cyclic_tag_systems 

https://northeastern-datalab.github.io/cs7240/
https://www.quora.com/Why-is-relational-algebra-not-Turing-complete
https://wiki.postgresql.org/wiki/Cyclic_Tag_System
https://en.wikipedia.org/wiki/Tag_system
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https://www.quora.com/Why-is-relational-algebra-not-Turing-complete , https://wiki.postgresql.org/wiki/Cyclic_Tag_System , https://en.wikipedia.org/wiki/Tag_system#Cyclic_tag_systems 

https://northeastern-datalab.github.io/cs7240/
https://www.quora.com/Why-is-relational-algebra-not-Turing-complete
https://wiki.postgresql.org/wiki/Cyclic_Tag_System
https://en.wikipedia.org/wiki/Tag_system
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Query Language Design

Query language design is still a popular topic, especially for 
graphs. See e.g. https://www.tigergraph.com/gsql/ 

And the slides
https://courses.cs.washington.edu/courses/csed516/20au/le
ctures/lecture05-advanced-query-evaluation.pdf 
from “DATA516/CSED516: Scalable Data Systems and 
Algorithms!” Dan Suciu
https://courses.cs.washington.edu/courses/csed516/20au/ 

https://northeastern-datalab.github.io/cs7240/
https://www.tigergraph.com/gsql/
https://courses.cs.washington.edu/courses/csed516/20au/lectures/lecture05-advanced-query-evaluation.pdf
https://courses.cs.washington.edu/courses/csed516/20au/lectures/lecture05-advanced-query-evaluation.pdf
https://courses.cs.washington.edu/courses/csed516/20au/
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Outline: T1-4: Datalog & ASP

• Datalog
– Datalog rules
– Datalog vs. RA
– Recursion
– Recursion in SQL [moved here from T1-U1: SQL]
– Semantics
– Naive and Semi-naive evaluation (Incremental View Maintenance)
– Chase Procedure (and Decompositions=Factorizations)
– Datalog¬: Datalog with stratified negation
– Datalog±

• Answer Set Programming (ASP)
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Datalog: Facts and Rules Actor(id, fname, lname)
Plays(aid, mid)
Movie(id, name, year)

Rules: queriesFacts: tuples in the database

Q1(y) :- Movie(x,y,z), z=1940.

Q2(f,l) :- Actor(u,f,l), Plays(u,x),
 Movie(x,y,z), z<1940.

Q3(f,l) :- Actor(z,f,l), Plays(z,x1), Movie(x1,y1,1910),
  Plays(z,x2), Movie(x2,y2,1940).

Schema

?

?

?

(notice position matters: unnamed perspective)

Examples by Dan Suciu

Actor(344759,"Douglas", "Fowley").
Plays(344759, 7909).
Plays(344759, 29000).
Movie(7909, "A Night in Armour", 1910).
Movie(29000, "Arizona", 1940).
Movie(29445, "Ave Maria", 1940).

https://northeastern-datalab.github.io/cs7240/


22Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 

Datalog: Facts and Rules

Rules: queriesFacts: tuples in the database

?

?
Examples by Dan Suciu

Q3(f,l) :- Actor(z,f,l), Plays(z,x1), Movie(x1,y1,1910),
  Plays(z,x2), Movie(x2,y2,1940).

Q2(f,l) :- Actor(u,f,l), Plays(u,x),
 Movie(x,y,z), z<1940.

Q1(y) :- Movie(x,y,z), z=1940.Actor(344759,"Douglas", "Fowley").
Plays(344759, 7909).
Plays(344759, 29000).
Movie(7909, "A Night in Armour", 1910).
Movie(29000, "Arizona", 1940).
Movie(29445, "Ave Maria", 1940).

Actor(id, fname, lname)
Plays(aid, mid)
Movie(id, name, year)

Schema

Find movies from 1940

(notice position matters: unnamed perspective)

https://northeastern-datalab.github.io/cs7240/
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Datalog: Facts and Rules

Rules: queriesFacts: tuples in the database

?
Examples by Dan Suciu

Q2(f,l) :- Actor(u,f,l), Plays(u,x),
 Movie(x,y,z), z<1940.

Q1(y) :- Movie(x,y,z), z=1940.

Q3(f,l) :- Actor(z,f,l), Plays(z,x1), Movie(x1,y1,1910),
  Plays(z,x2), Movie(x2,y2,1940).

Actor(344759,"Douglas", "Fowley").
Plays(344759, 7909).
Plays(344759, 29000).
Movie(7909, "A Night in Armour", 1910).
Movie(29000, "Arizona", 1940).
Movie(29445, "Ave Maria", 1940).

Actor(id, fname, lname)
Plays(aid, mid)
Movie(id, name, year)

Schema

Find actors who played in a movie before 1940

Find movies from 1940

(notice position matters: unnamed perspective)

https://northeastern-datalab.github.io/cs7240/
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Datalog: Facts and Rules

Rules: queriesFacts: tuples in the database

Examples by Dan Suciu

Q2(f,l) :- Actor(u,f,l), Plays(u,x),
 Movie(x,y,z), z<1940.

Q1(y) :- Movie(x,y,z), z=1940.

Q3(f,l) :- Actor(z,f,l), Plays(z,x1), Movie(x1,y1,1910),
  Plays(z,x2), Movie(x2,y2,1940).

Actor(344759,"Douglas", "Fowley").
Plays(344759, 7909).
Plays(344759, 29000).
Movie(7909, "A Night in Armour", 1910).
Movie(29000, "Arizona", 1940).
Movie(29445, "Ave Maria", 1940).

Actor(id, fname, lname)
Plays(aid, mid)
Movie(id, name, year)

Schema

Find actors who played in a movie from 1910 and from 1940

Find actors who played in a movie before 1940

Find movies from 1940

(notice position matters: unnamed perspective)

https://northeastern-datalab.github.io/cs7240/
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Datalog: Facts and Rules

Rules: queriesFacts: tuples in the database

Examples by Dan Suciu ?

Q2(f,l) :- Actor(u,f,l), Plays(u,x),
 Movie(x,y,z), z<1940.

Q1(y) :- Movie(x,y,z), z=1940.

Q3(f,l) :- Actor(z,f,l), Plays(z,x1), Movie(x1,y1,1910),
  Plays(z,x2), Movie(x2,y2,1940).

Actor(344759,"Douglas", "Fowley").
Plays(344759, 7909).
Plays(344759, 29000).
Movie(7909, "A Night in Armour", 1910).
Movie(29000, "Arizona", 1940).
Movie(29445, "Ave Maria", 1940).

Actor(id, fname, lname)
Plays(aid, mid)
Movie(id, name, year)

Schema

Find actors who played in a movie from 1910 and from 1940

Find actors who played in a movie before 1940

Find movies from 1940

(notice position matters: unnamed perspective)

https://northeastern-datalab.github.io/cs7240/
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Q2(f,l) :- Actor(u,f,l), Plays(u,x),
 Movie(x,y,z), z<1940.

Q4(f,l) :- Actor(z,f,l), Plays(z,x1), Movie(x1,y1,1910).
Q4(f,l) :- Actor(z,f,l), Plays(z,x2), Movie(x2,y2,1940).

Datalog: Facts and Rules

Extensional Database (EDB) predicates:  Actor, Plays, Movie 
Intensional Database (IDB) predicates: Q1, Q2, Q3, Q4

Rules: queriesFacts: tuples in the database

Actor(344759,"Douglas", "Fowley").
Plays(344759, 7909).
Plays(344759, 29000).
Movie(7909, "A Night in Armour", 1910).
Movie(29000, "Arizona", 1940).
Movie(29445, "Ave Maria", 1940).

Q1(y) :- Movie(x,y,z), z=1940.

Find movies from 1940

Find actors who played in a movie before 1940

Find actors who played in a movie from 1910 and from 1940

Examples by Dan Suciu

Actor(id, fname, lname)
Plays(aid, mid)
Movie(id, name, year)

Schema

(notice position matters: unnamed perspective)

https://northeastern-datalab.github.io/cs7240/
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Example with Souffle

souffle movie.dl

.decl Actor(id:number, fname:symbol, lname:symbol)

.decl Plays(aid:number, mid:number)

.decl Movie(id:number, name:symbol, year:number)
Actor(344759,"Douglas", "Fowley").
Plays(344759, 7909).
Plays(344759, 29000).
Movie(7909, "A Night in Armour", 1910).
Movie(29000, "Arizona", 1940).
Movie(29445, "Ave Maria", 1940).

.decl Q2(fname:symbol, lname:symbol)
Q2(f,l) :- Actor(u,f,l), Plays(u,x), Movie(x,_,z), z<1940.
.output Q2

movie.dl

Douglas   Fowley
Q2.csv

tab-separated output,
filename:  ".csv"

For more help on Souffle, see: https://souffle-lang.github.io/simple 
Datalog example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle 

output

command line if run from the same directory: movie

Actor(id, fname, lname)
Plays(aid, mid)
Movie(id, name, year)

Schema

souffle -F. -D. movie.dl

also allows to specify specific
input and output directories

https://northeastern-datalab.github.io/cs7240/
https://souffle-lang.github.io/simple
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog
https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog
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Pre-class conversations

• Last class summary
• Project discussions (in 1 weeks: Fri 2/16: first project ideas)

• today: 
- Recursion (Datalog)

• next week:
- what happens if we add negation? Answer: it depends on how we do it.

• Datalog with stratified negation
• Datalog with more genal negation (stable models), leads to ASP

https://northeastern-datalab.github.io/cs7240/
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bodyhead

{f,l}: head variables

Syntax of rules

Q2(f,l) :- Actor(u,f,l), Plays(u,x), Movie(x,y,z), z<1940.

{u,x,y,z}: existential variables

arithmetic predicate

• evaluates to true when relation Ri contains
the tuple described by argsi

• e.g. Actor(344759,"Douglas","Fowley") is true
Ri(argsi): relational predicate with arguments (= atom / subgoal)

(or consequent)
single IDB atom

(or antecedent)
conjunction of atoms

Alternative notation: Q(args) <- R1(args) AND R2(args) .... / or variables begin with a capital letter, predicates with lower-case letters (problem: can't have "Boston")
Based upon an example by Dan Suciu from CSE 554, 2018. 

https://northeastern-datalab.github.io/cs7240/
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Logical interpretation of a single rule Actor(id, fname, lname)
Plays(aid, mid)
Movie(id, name, year)

Meaning of a Datalog rule is a logical statement:

?

Based upon class material from Dan Suciu for CSE 554, 2018. 

Q(y) :- Movie(x,y,z), z<1940.

https://northeastern-datalab.github.io/cs7240/
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Logical interpretation of a single rule Actor(id, fname, lname)
Plays(aid, mid)
Movie(id, name, year)

Meaning of a Datalog rule is a logical statement:
For all x,y,z: if (x,y,z) ∈ Movies and z<1940 then y is in Q (i.e. is part of the answer)
∀x,y,z	[(Movie(x,y,z)	⋀	z<1940)	⇒	Q(y)]	

Ignoring the case of an empty movie table, logically equivalent to

?

Based upon class material from Dan Suciu for CSE 554, 2018. 

Q(y) :- Movie(x,y,z), z<1940.

https://northeastern-datalab.github.io/cs7240/
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Logical interpretation of a single rule Actor(id, fname, lname)
Plays(aid, mid)
Movie(id, name, year)

Meaning of a Datalog rule is a logical statement:
For all x,y,z: if (x,y,z) ∈ Movies and z<1940 then y is in Q (i.e. is part of the answer)
∀x,y,z	[(Movie(x,y,z)	⋀	z<1940)	⇒	Q(y)]	

∀y	[∃x,z	[Movie(x,y,z)	⋀	z<1940]	⇒	Q(y)	]
Ignoring the case of an empty movie table, logically equivalent to

Thus, non-head variables are 
called "existential variables"

compare with DRC

?
Based upon class material from Dan Suciu for CSE 554, 2018. 

Q(y) :- Movie(x,y,z), z<1940.

https://northeastern-datalab.github.io/cs7240/
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Logical interpretation of a single rule Actor(id, fname, lname)
Plays(aid, mid)
Movie(id, name, year)

Meaning of a Datalog rule is a logical statement:

{(y)	|	∃x,z	[Movie(x,y,z)	⋀	z<1940]	}

For all x,y,z: if (x,y,z) ∈ Movies and z<1940 then y is in Q (i.e. is part of the answer)
∀x,y,z	[(Movie(x,y,z)	⋀	z<1940)	⇒	Q(y)]	

∀y	[∃x,z	[Movie(x,y,z)	⋀	z<1940]	⇒	Q(y)	]

compare with DRC

Ignoring the case of an empty movie table, logically equivalent to
Thus, non-head variables are 
called "existential variables"

Based upon class material from Dan Suciu for CSE 554, 2018. 

Q(y) :- Movie(x,y,z), z<1940.

?We want the smallest set Q 
with this property (why?)

https://northeastern-datalab.github.io/cs7240/
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Logical interpretation of a single rule Actor(id, fname, lname)
Plays(aid, mid)
Movie(id, name, year)

Meaning of a Datalog rule is a logical statement:

{(y)	|	∃x,z	[Movie(x,y,z)	⋀	z<1940]	}

For all x,y,z: if (x,y,z) ∈ Movies and z<1940 then y is in Q (i.e. is part of the answer)
∀x,y,z	[(Movie(x,y,z)	⋀	z<1940)	⇒	Q(y)]	

∀y	[∃x,z	[Movie(x,y,z)	⋀	z<1940]	⇒	Q(y)	]

compare with DRC

Ignoring the case of an empty movie table, logically equivalent to

We want the smallest set Q 
with this property (why?)

Thus, non-head variables are 
called "existential variables"

Based upon class material from Dan Suciu for CSE 554, 2018. 

Q(y) :- Movie(x,y,z), z<1940.

That takes care of the empty 
movie table J: a rules only fires if 
the antecedent is fulfilled ...

https://northeastern-datalab.github.io/cs7240/
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Syntactic Constraints

∀x Q(x)	⇐	∃y R1(x1,y1)⋀⋅⋅⋅⋀Rm(xm,ym)

𝐱i ⊆ 𝐱, 𝐲i ⊆ 𝐲

The rule stands for the following logical formula:

Two restrictions:
1. Safety: every head variable should occur in the body at least once 

(bold = vector notation)

?

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

Recall we want the smallest 
set Q with this property

Q(x) :- R1(x1,y1),...,Rm(xm,ym).

R(x,z) :- S(x,y), R(y,x).

head 
variables

existential 
variables

https://northeastern-datalab.github.io/cs7240/
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Arc(x,y) :- Arc(x,z),Arc(z,y).

R(x,z) :- S(x,y), R(y,x).

Q(x) :- R1(x1,y1),...,Rm(xm,ym).

Syntactic Constraints

∀x Q(x)	⇐	∃y R1(x1,y1)⋀⋅⋅⋅⋀Rm(xm,ym)

𝐱i ⊆ 𝐱, 𝐲i ⊆ 𝐲

The rule stands for the following logical formula:

Two restrictions:
1. Safety: every head variable should occur in the body at least once 

2. The head predicate must be an IDB (Intensional) predicate
(Body can include both EDBs and IDBs)

This is mostly of theoretic interest. Souffle calls EDBs 
the "facts ... sourced from tab-separated input files" but 
allows them also to appear in the head of a rule
(https://souffle-lang.github.io/execute) 

forbidden rule: z not in body

(bold = vector notation)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/
https://souffle-lang.github.io/execute
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https://northeastern-datalab.github.io/cs7240/
https://souffle-lang.github.io/docs.html
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https://northeastern-datalab.github.io/cs7240/
https://souffle-lang.github.io/tutorial
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Grounded variables

?What can be done

Source: https://souffle-lang.github.io/rules 

https://northeastern-datalab.github.io/cs7240/
https://souffle-lang.github.io/rules
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Grounded variables

Source: https://souffle-lang.github.io/rules 

https://northeastern-datalab.github.io/cs7240/
https://souffle-lang.github.io/rules
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Grounded variables
souffle fibonacci.dl

.decl fib(key:number, value:number)

.output fib

fib(1, 1).
fib(2, 1).
fib(id+2, x+y) :- fib(id, x), fib(id+1, y), id <= 13.

fibonacci.dl

fibonacci

Datalog example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle 

?

Source: https://souffle-lang.github.io/rules 

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog
https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog
https://souffle-lang.github.io/rules
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Grounded variables
souffle fibonacci.dl

.decl fib(key:number, value:number)

.output fib

fib(1, 1).
fib(2, 1).
fib(id+2, x+y) :- fib(id, x), fib(id+1, y), id <= 13.

fibonacci.dl

Datalog example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle 
Source: https://souffle-lang.github.io/rules 

fib.csv

1 1
2 1
3 2
4 3
5 5
6 8
7 13
8 21
9 34
10 55
11 89
12 144
13 233
14 377
15 610

fibonacci

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog
https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog
https://souffle-lang.github.io/rules
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Outline: T1-4: Datalog & ASP

• Datalog
– Datalog rules
– Datalog vs. RA
– Recursion
– Recursion in SQL [moved here from T1-U1: SQL]
– Semantics
– Naive and Semi-naive evaluation (Incremental View Maintenance)
– Chase Procedure (and Decompositions=Factorizations)
– Datalog¬: Datalog with stratified negation
– Datalog±

• Answer Set Programming (ASP)
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R(A,B,C)
S(D,E,F)
T(G,H)

RA to Datalog by examples: Union

R(A,B,C) ∪ S(D,E,F)
RA:

Datalog:

?

https://northeastern-datalab.github.io/cs7240/
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R(A,B,C)
S(D,E,F)
T(G,H)

RA to Datalog by examples: Union

R(A,B,C) ∪ S(D,E,F)

Q(x,y,z) :- R(x,y,z)
 Q(x,y,z) :- S(x,y,z)

RA:

Datalog:

EDBIDB

?

https://northeastern-datalab.github.io/cs7240/
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R(A,B,C)
S(D,E,F)
T(G,H)

RA to Datalog by examples: Union

R(A,B,C) ∪ S(D,E,F)

Q(x,y,z) :- R(x,y,z)
 Q(x,y,z) :- S(x,y,z)

RA:

Datalog:

EDBIDB

https://northeastern-datalab.github.io/cs7240/
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R(A,B,C)
S(D,E,F)
T(G,H)

RA to Datalog by examples: Intersection

R(A,B,C) ∩ S(D,E,F)
RA:

Datalog:

?

https://northeastern-datalab.github.io/cs7240/
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R(A,B,C)
S(D,E,F)
T(G,H)

RA to Datalog by examples: Intersection

R(A,B,C) ∩ S(D,E,F)

Q(x,y,z) :- R(x,y,z), S(x,y,z)

RA:

Datalog:

https://northeastern-datalab.github.io/cs7240/
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R(A,B,C)
S(D,E,F)
T(G,H)

RA to Datalog by examples: Selection

?

RA:
𝜎B='Alice' ∧ C>10 (R)

Datalog:

https://northeastern-datalab.github.io/cs7240/
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R(A,B,C)
S(D,E,F)
T(G,H)

RA to Datalog by examples: Selection

RA:

Datalog:

(also:  Q(x,y,z) :- R(x,'Alice',z), z > 10 )

𝜎B='Alice' ∧ C>10 (R)

Q(x,y,z) :- R(x,y,z), y='Alice', z > 10

https://northeastern-datalab.github.io/cs7240/
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R(A,B,C)
S(D,E,F)
T(G,H)

RA to Datalog by examples: Selection

?

RA:

Datalog:

RA:

𝜎B='Alice' ∧ C>10 (R)

𝜎 B='Alice' ∨ C>10 (R)

Q(x,y,z) :- R(x,y,z), y='Alice', z > 10

https://northeastern-datalab.github.io/cs7240/
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R(A,B,C)
S(D,E,F)
T(G,H)

RA to Datalog by examples: Selection

RA:

𝜎 B='Alice' ∨ C>10 (R)

Datalog:

Q(x,y,z) :- R(x,y,z), y='Alice'
 Q(x,y,z) :- R(x,y,z), z > 10

RA:

Datalog:

Q(x,y,z) :- R(x,y,z), y='Alice', z > 10

𝜎B='Alice' ∧ C>10 (R)

https://northeastern-datalab.github.io/cs7240/


58Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 

R(A,B,C)
S(D,E,F)
T(G,H)

RA to Datalog by examples: Projection

RA:

Datalog:

𝜋A(R)

?

𝜋-B,C(R)

https://northeastern-datalab.github.io/cs7240/
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R(A,B,C)
S(D,E,F)
T(G,H)

RA to Datalog by examples: Projection

RA:

Datalog:

𝜋A(R)

Q(x) :- R(x,y,z)

𝜋-B,C(R)

Q(x) :- R(x,_,_)

Underscore denotes an "anonymous variable”. 
Each occurrence of an underscore represents a different variable

https://northeastern-datalab.github.io/cs7240/
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R(A,B,C)
S(D,E,F)
T(G,H)

RA to Datalog by examples: Equi-join

RA:

Datalog:

?

 𝜋-D,E( R ⨝A=D ∧ B=E  S)

https://northeastern-datalab.github.io/cs7240/
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R(A,B,C)
S(D,E,F)
T(G,H)

RA to Datalog by examples: Equi-join

Q(x,y,z,w) :- R(x,y,z), S(x,y,w)

RA:

Datalog:

 𝜋-D,E( R ⨝A=D ∧ B=E  S)

(also:  Q(x,y,z,w) :- R(x,y,z), S(u,v,w), x=u, y=v )

https://northeastern-datalab.github.io/cs7240/


62Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 

R(A,B,C)
S(D,E,F)
T(G,H)

RA to Datalog by examples: Difference

RA:

Datalog:

R−S

?

https://northeastern-datalab.github.io/cs7240/
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R(A,B,C)
S(D,E,F)
T(G,H)

RA to Datalog by examples: Difference

RA:

Datalog¬: (we need to add negation)
Q(x,y,z) :- R(x,y,z), not S(x,y,z)

R−S

We have a long discussion later on 
what can go wrong if you are not 
careful about how you define negation

https://northeastern-datalab.github.io/cs7240/
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Outline: T1-4: Datalog & ASP

• Datalog
– Datalog rules
– Datalog vs. RA
– Recursion
– Recursion in SQL [moved here from T1-U1: SQL]
– Semantics
– Naive and Semi-naive evaluation (Incremental View Maintenance)
– Chase Procedure (and Decompositions=Factorizations)
– Datalog¬: Datalog with stratified negation
– Datalog±

• Answer Set Programming (ASP)
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Recursion

Recursion occurs when 
a thing is defined 
in terms of itself 
(self-repetition). 

Figure Source: Fake XKCD: http://xkcdsw.com/1105 

Recursion and Iteration both repeatedly execute a set of instructions. 
• Recursion (self-similarity) is when a statement in a function calls itself repeatedly. 
• Iteration (repetition) is when a loop repeatedly executes until the controlling 

condition becomes false.

A Datalog program consists of several rules:
• Usually there is one distinguished predicate that’s the output
• Rules can be recursive!

https://northeastern-datalab.github.io/cs7240/
http://xkcdsw.com/1105
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?

Example

What does this query compute?

EDB
IDB

A(S,T)
recursion due to 
head in rule body

P(x,y) :- A(x,y).   
P(x,y) :- A(x,z), P(z,y).

Based upon an example by Dan Suciu from CSE 554, 2018. 

1 2
1 4
2 1
2 3
3 4
4 5

A S T

5

3

4

2

1

https://northeastern-datalab.github.io/cs7240/
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P(x,y) :- A(x,y).   
P(x,y) :- A(x,z), P(z,y).

recursion due to 
head in rule body

Example
EDB
IDB

For all nodes x and y: 
If there is an Arc from x to y, 
then there is a Path from x to y.

For all nodes x, z, and y:
If there is an Arc from x to z, and there is a Path from z to y
then there is a Path from x to y.

Calculates all paths (transitive closure)

A(S,T)

Based upon an example by Dan Suciu from CSE 554, 2018. 

1 2
1 4
2 1
2 3
3 4
4 5

5

3

4

2

1

A S T

https://northeastern-datalab.github.io/cs7240/
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Example

1 2
1 4
2 1
2 3
3 4
4 5

1st iteration

5

3

4

2

1

?
A S T

EDB
IDB

Initially: P is empty

P

P(x,y) :- A(x,y).   
P(x,y) :- A(x,z), P(z,y).

A(S,T)

https://northeastern-datalab.github.io/cs7240/
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Example

5

3

4

2

1

1 2
1 4
2 1
2 3
3 4
4 5

1st iteration
1 2
2 1
2 3
1 4
3 4
4 5

P=A from
1st rule

P

?
A S T

2nd iteration

EDB
IDB

P(x,y) :- A(x,y).   
P(x,y) :- A(x,z), P(z,y).

P

2nd rule generates 
nothing (because 
P is empty)

A(S,T)

https://northeastern-datalab.github.io/cs7240/
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Example

5

3

4

2

1

1 2
1 4
2 1
2 3
3 4
4 5

1st iteration 3rd iteration
1 2
2 1
2 3
1 4
3 4
4 5

P=A from
1st rule

P

?
A S T

2nd iteration

1 1
2 2
1 3
2 4
1 5
3 5

1 2
2 1
2 3
1 4
3 4
4 5

1st rule

2nd rule

P

2nd rule generates 
nothing (because 
P is empty)

New facts from 2nd rule

EDB
IDB

P(x,y) :- A(x,y).   
P(x,y) :- A(x,z), P(z,y).

A(S,T)

https://northeastern-datalab.github.io/cs7240/
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Example

5

3

4

2

1

1 2
1 4
2 1
2 3
3 4
4 5

2 5

1st iteration 2nd iteration 3rd iteration

1 1
2 2
1 3
2 4
1 5
3 5

1 2
2 1
2 3
1 4
3 4
4 5

1 2
2 1
2 3
1 4
3 4
4 5

1 1
2 2
1 3
2 4
1 5
3 5

2nd rule

1st rule

2nd rule

P=A from
1st rule

P P
A S T

1 2
2 1
2 3
1 4
3 4
4 5

1st + 2nd rule

1st rule

P

EDB
IDB

P(x,y) :- A(x,y).   
P(x,y) :- A(x,z), P(z,y).

= 4th iteration
(No new facts)

New facts from 2nd rule

2nd rule generates 
nothing (because 
P is empty)

recall set semantics!

A(S,T)

https://northeastern-datalab.github.io/cs7240/
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Example with Souffle
graph1

A(S,T)

souffle graph1.dl

.decl A(S:number, T:number)
A(1,2).
A(2,1).
A(2,3).
A(1,4).
A(3,4).
A(4,5).

.decl P(S:number, T:number)
P(x, y) :- A(x, y).   
P(x, y) :- A(x, z), P(z, y).

.output P

graph1.dl 1 1
1 2
1 3
1 4
1 5
2 1
2 2
2 3
2 4
2 5
3 4
3 5
4 5

P.csv

tab-separated,
output filename: ".csv"

For more help on Souffle, see: https://souffle-lang.github.io/simple 
Datalog example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle 

output

5

3

4

2

1

https://northeastern-datalab.github.io/cs7240/
https://souffle-lang.github.io/simple
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog
https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog
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Example with Souffle A(S,T)

.decl A(S:number, T:number)

.decl P(S:number, T:number)

.input A

.output P

P(x, y) :- A(x, y).   
P(x, y) :- A(x, z), P(z, y).

1 2
2 1
2 3
1 4
3 4
4 5

graph2.dl
A.facts

P.csv

tab-separated,
input filename:
".facts"

For more help on Souffle, see: https://souffle-lang.github.io/simple 
Datalog example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle 

input

output

1 1
1 2
1 3
1 4
1 5
2 1
2 2
2 3
2 4
2 5
3 4
3 5
4 5

graph2

tab-separated,
output filename: ".csv"

souffle graph2.dl5

3

4

2

1

https://northeastern-datalab.github.io/cs7240/
https://souffle-lang.github.io/simple
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog
https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog
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What is a principled process to determine if a program is recursive?

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

1

2

3

Local(x) :- Person(x,y,'MA').
 Relative(x,x) :- Person(x,y,z).
 Relative(x,y) :- Relative(x,z),Parent(z,y).
 Relative(x,y) :- Relative(x,z),Parent(y,z).
 Relative(x,y) :- Relative(x,z),Spouse(z,y).
 Invited(y) :- Relative('myself',y),Local(y).

Local(x) :- Person(x,y,'MA').
 Relative(x,x) :- Person(x,y,z).
 Invited(y) :- Relative('myself',y),Local(y).

MayLike(x,y) :- Close(x,z),Likes(z,y).
 Visit(x,y) :- MayLike(x,y).
 Close(x,z) :- Visit(x,y),Visit(z,y).

?

?

?

https://northeastern-datalab.github.io/cs7240/


83Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 

Dependency Graph

• The dependency graph of a Datalog program is the directed graph 
(V,E) where
- V is the set of IDB predicates (relation names)
- E contains an arc S ⟶ T whenever there is a rule with T in the head and S 

in the body

• A Datalog program is recursive if its dependency graph contains a 
cycle

https://northeastern-datalab.github.io/cs7240/
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Which of these programs is recursive?

?

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

1

2

3

?

?

Local(x) :- Person(x,y,'MA').
 Relative(x,x) :- Person(x,y,z).
 Relative(x,y) :- Relative(x,z),Parent(z,y).
 Relative(x,y) :- Relative(x,z),Parent(y,z).
 Relative(x,y) :- Relative(x,z),Spouse(z,y).
 Invited(y) :- Relative('myself',y),Local(y).

Local(x) :- Person(x,y,'MA').
 Relative(x,x) :- Person(x,y,z).
 Invited(y) :- Relative('myself',y),Local(y).

MayLike(x,y) :- Close(x,z),Likes(z,y).
 Visit(x,y) :- MayLike(x,y).
 Close(x,z) :- Visit(x,y),Visit(z,y).

https://northeastern-datalab.github.io/cs7240/
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Local(x) :- Person(x,y,'MA').
 Relative(x,x) :- Person(x,y,z).
 Relative(x,y) :- Relative(x,z),Parent(z,y).
 Relative(x,y) :- Relative(x,z),Parent(y,z).
 Relative(x,y) :- Relative(x,z),Spouse(z,y).
 Invited(y) :- Relative('myself',y),Local(y).

Local(x) :- Person(x,y,'MA').
 Relative(x,x) :- Person(x,y,z).
 Invited(y) :- Relative('myself',y),Local(y).

MayLike(x,y) :- Close(x,z),Likes(z,y).
 Visit(x,y) :- MayLike(x,y).
 Close(x,z) :- Visit(x,y),Visit(z,y).

Which of these programs is recursive?

?

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

1

2

3 ?

Local Relative

Invited

https://northeastern-datalab.github.io/cs7240/
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Which of these programs is recursive?

?
Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

1

2

3

Local Relative

Invited

Local Relative

Invited

Local(x) :- Person(x,y,'MA').
 Relative(x,x) :- Person(x,y,z).
 Relative(x,y) :- Relative(x,z),Parent(z,y).
 Relative(x,y) :- Relative(x,z),Parent(y,z).
 Relative(x,y) :- Relative(x,z),Spouse(z,y).
 Invited(y) :- Relative('myself',y),Local(y).

Local(x) :- Person(x,y,'MA').
 Relative(x,x) :- Person(x,y,z).
 Invited(y) :- Relative('myself',y),Local(y).

MayLike(x,y) :- Close(x,z),Likes(z,y).
 Visit(x,y) :- MayLike(x,y).
 Close(x,z) :- Visit(x,y),Visit(z,y).

https://northeastern-datalab.github.io/cs7240/
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Which of these programs is recursive?

Local Relative

Invited

Local Relative

Invited

MayLike Close

Visit

1

2

3

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

Local(x) :- Person(x,y,'MA').
 Relative(x,x) :- Person(x,y,z).
 Relative(x,y) :- Relative(x,z),Parent(z,y).
 Relative(x,y) :- Relative(x,z),Parent(y,z).
 Relative(x,y) :- Relative(x,z),Spouse(z,y).
 Invited(y) :- Relative('myself',y),Local(y).

Local(x) :- Person(x,y,'MA').
 Relative(x,x) :- Person(x,y,z).
 Invited(y) :- Relative('myself',y),Local(y).

MayLike(x,y) :- Close(x,z),Likes(z,y).
 Visit(x,y) :- MayLike(x,y).
 Close(x,z) :- Visit(x,y),Visit(z,y).

https://northeastern-datalab.github.io/cs7240/
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Expressiveness of Non-recursive Datalog 

If we restrict selection to σ= (i.e. selection with a single equality), this 
fragment is also called at times UCQs (Union of Conjunctive Queries) 
or USPJ (Union-Select-Project-Join) queries.

THEOREM: Non-recursive Datalog with built-in 
predicates (<,>,≤,≥,!=) has the same expressive 
power as the positive algebra {σ,π,×,∪} 

https://northeastern-datalab.github.io/cs7240/
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Outline: T1-4: Datalog & ASP

• Datalog
– Datalog rules
– Datalog vs. RA
– Recursion
– Recursion in SQL [moved here from T1-U1: SQL]
– Semantics
– Naive and Semi-naive evaluation (Incremental View Maintenance)
– Chase Procedure (and Decompositions=Factorizations)
– Datalog¬: Datalog with stratified negation
– Datalog±

• Answer Set Programming (ASP)
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1. A simple recursive query

WITH RECURSIVE T(n) as (
      values (1)
   UNION ALL
      select n+1
      from T
      where n<=3)
SELECT n FROM T

Example slightly adapted from: https://www.postgresql.org/docs/current/queries-with.html#QUERIES-WITH-RECURSIVE 

non-recursive part (here same as "select 1")
recursive part, contains reference to the query's output

https://northeastern-datalab.github.io/cs7240/
https://www.postgresql.org/docs/current/queries-with.html
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1. A simple recursive query

WITH RECURSIVE T(n) as (
      values (1)
   UNION ALL
      select n+1
      from T
      where n<=3)
SELECT n FROM T

Example slightly adapted from: https://www.postgresql.org/docs/current/queries-with.html#QUERIES-WITH-RECURSIVE 

1.
2.
3.
4.
5.

non-recursive part (here same as "select 1")
recursive part, contains reference to the query's output

? ? ?
Step ∆R=IT=Wtend ResultsWTstart

("semi-naive evaluation strategy")

https://northeastern-datalab.github.io/cs7240/
https://www.postgresql.org/docs/current/queries-with.html
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1. A simple recursive query

WITH RECURSIVE T(n) as (
      values (1)
   UNION ALL
      select n+1
      from T
      where n<=3)
SELECT n FROM T

Example slightly adapted from: https://www.postgresql.org/docs/current/queries-with.html#QUERIES-WITH-RECURSIVE 

Step
{1}1.
{2}2.

3. {3}
4.
5.

{4}

{1}
{1,2}
{1,2,3}
{1,2,3,4}
{1,2,3,4}∅

∆R=IT=Wtend Results

non-recursive part (here same as "select 1")
recursive part, contains reference to the query's output

WTstart

{1}
{2}
{3}
{4}

⋃
=

=
⋃

("semi-naive evaluation strategy")

https://northeastern-datalab.github.io/cs7240/
https://www.postgresql.org/docs/current/queries-with.html


97Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 

2. Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, ...

WITH RECURSIVE Fib as (
   
  
 
   UNION ALL
 
  
   
  
SELECT * FROM Fib
LIMIT 10;

Example slightly adapted from: https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/ 

Fib

?

?

https://northeastern-datalab.github.io/cs7240/
https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/
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2. Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, ...

WITH RECURSIVE Fib as (
      select 0 as n,
                0 as "fibₙ",
                1 as "fibₙ₊₁"
   UNION ALL
 
  
   
  
SELECT * FROM Fib
LIMIT 10;

Example slightly adapted from: https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/ 

Fib

?

https://northeastern-datalab.github.io/cs7240/
https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/
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2. Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, ...

WITH RECURSIVE Fib as (
      select 0 as n,
                0 as "fibₙ",
                1 as "fibₙ₊₁"
   UNION ALL
      select n+1,

 
      from Fib)
SELECT * FROM Fib
LIMIT 10;

Example slightly adapted from: https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/ 

Fib

?

https://northeastern-datalab.github.io/cs7240/
https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/
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2. Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, ...

WITH RECURSIVE Fib as (
      select 0 as n,
                0 as "fibₙ",
                1 as "fibₙ₊₁"
   UNION ALL
      select n+1,
                "fibₙ₊₁",
 
      from Fib)
SELECT * FROM Fib
LIMIT 10;

Example slightly adapted from: https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/ 

Fib

?

https://northeastern-datalab.github.io/cs7240/
https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/
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2. Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, ...

WITH RECURSIVE Fib as (
      select 0 as n,
                0 as "fibₙ",
                1 as "fibₙ₊₁"
   UNION ALL
      select n+1,
                "fibₙ₊₁",
                "fibₙ" + "fibₙ₊₁"
      from Fib)
SELECT * FROM Fib
LIMIT 10;

Example slightly adapted from: https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/ 

Fib

https://northeastern-datalab.github.io/cs7240/
https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/
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2. Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, ...

WITH RECURSIVE Fib(n,"fibₙ","fibₙ₊₁") as(
      select 0, 0, 1

   UNION ALL
      select n+1,
                "fibₙ₊₁",
                "fibₙ" + "fibₙ₊₁"
      from Fib)
SELECT * FROM Fib
LIMIT 10;

Example slightly adapted from: https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/ 

Fib

"This works because PostgreSQL's implementation evaluates only as many rows of a WITH query as are actually fetched by the parent query. Using this trick in production is not 
recommended, because other systems might work differently." Source: https://www.postgresql.org/docs/current/queries-with.html#QUERIES-WITH-RECURSIVE 

https://northeastern-datalab.github.io/cs7240/
https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/
https://www.postgresql.org/docs/current/queries-with.html
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2. Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, ...

WITH RECURSIVE Fib(n,"fibₙ","fibₙ₊₁") as(
      select 0, 0, 1

   UNION ALL
      select n+1,
                "fibₙ₊₁",
                "fibₙ" + "fibₙ₊₁"
      from Fib
      where n<9)
SELECT * FROM Fib;

Example slightly adapted from: https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/ 

Fib

condition in WHERE clause is a more general way to write this query

https://northeastern-datalab.github.io/cs7240/
https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/
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3. Recursion on graphs

5

3

4

2

1
501

A(S,T)

1 2
1 4
2 1
2 3
3 4
4 5

“Find all paths (transitive closure)”

?
A S T

A for arcs or adjacencies (directed edges), 
S for source, T for target; another 
relation E (edges) have both directions

SQL database available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql  

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
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3. Recursion on graphs

5

3

4

2

1
501

A(S,T)

1 2
1 4
2 1
2 3
3 4
4 5

“Find all paths (transitive closure)”

x z y

1. Create a path for every arc

2. An arc + a path can make another path

A S T

SQL database available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql  

A for arcs or adjacencies (directed edges), 
S for source, T for target; another 
relation E (edges) have both directions

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
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3. Recursion on graphs

5

3

4

2

1

For all nodes x and y: 
If there is an arc from x to y, 
then there is a path from x to y.

For all nodes x, z, and y:
If there is an arc from x to z, and there is a path from z to y
then there is a path from x to y.

501
A(S,T)

1 2
1 4
2 1
2 3
3 4
4 5

“Find all paths (transitive closure)”

x z y

P(x,y) :- A(x,y).   
P(x,y) :- A(x,z), P(z,y).

A S T

SQL database available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql  

A for arcs or adjacencies (directed edges), 
S for source, T for target; another 
relation E (edges) have both directions

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
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3. Recursion on graphs

5

3

4

2

1
501

A(S,T)

1 2
1 4
2 1
2 3
3 4
4 5

P(x,y) :- A(x,y).   
P(x,y) :- A(x,z), P(z,y).

In SQL ?
A S T

SQL database available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql  

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
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3. Recursion on graphs

5

3

4

2

1
501

A(S,T)

1 2
1 4
2 1
2 3
3 4
4 5

P(x,y) :- A(x,y).   
P(x,y) :- A(x,z), P(z,y).

WITH RECURSIVE P AS (
 
 
  UNION
 
 
 
SELECT * 
FROM P

?

?

A S T

SQL database available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql  

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
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3. Recursion on graphs

5

3

4

2

1
501

A(S,T)

1 2
1 4
2 1
2 3
3 4
4 5

P(x,y) :- A(x,y).   
P(x,y) :- A(x,z), P(z,y).

WITH RECURSIVE P AS (
    SELECT S, T 
    FROM A
  UNION
    

SELECT * 
FROM P

A S T

?

SQL database available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql  

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
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3. Recursion on graphs

5

3

4

2

1
501

A(S,T)

1 2
1 4
2 1
2 3
3 4
4 5

P(x,y) :- A(x,y).   
P(x,y) :- A(x,z), P(z,y).

WITH RECURSIVE P AS (
    SELECT S, T 
    FROM A
  UNION
    SELECT A.S, P.T 
    FROM A, P
    WHERE A.T = P.S)
SELECT * 
FROM P

A S T

SQL database available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql  

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
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3. Recursion on graphs

5

3

4

2

1
501

A(S,T)

1 2
1 4
2 1
2 3
3 4
4 5

A

P(x,y) :- A(x,y).   
P(x,y) :- A(x,z), P(z,y).

WITH RECURSIVE P AS (
    SELECT S, T 
    FROM A
  UNION
    SELECT A.S, P.T 
    FROM A, P
    WHERE A.T = P.S)
SELECT * 
FROM P

Recursion and Iteration both 
repeatedly execute a set of 
instructions. 
• Recursion (self-similarity) is 

when a statement in a 
function calls itself repeatedly. 

• Iteration (repetition) is when 
a loop repeatedly executes 
until the controlling condition 
becomes false.

Strictly speaking, this process is iteration, not recursion:

S T

SQL database available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql  
See also: https://www.postgresql.org/docs/14/queries-with.html#QUERIES-WITH-RECURSIVE 

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
https://www.postgresql.org/docs/14/queries-with.html
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3. Recursion on graphs

5

3

4

2

1
501

A(S,T)

1 2
1 4
2 1
2 3
3 4
4 5

A

P(x,y) :- A(x,y).   
P(x,y) :- A(x,z), A(z,y).

WITH RECURSIVE P AS (
    SELECT S, T 
    FROM A
  UNION
    SELECT A1.S, A2.T 
    FROM A A1, A A2
    WHERE A1.T = A2.S)
SELECT * 
FROM P

Probe for understanding: how does the output 
change with this little change in the query

S T

SQL database available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql  

?

2 5

1 1
2 2
1 3
2 4
1 5
3 5

1 2
2 1
2 3
1 4
3 4
4 5

P

?

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
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3. Recursion on graphs

5

3

4

2

1
501

A(S,T)

1 2
1 4
2 1
2 3
3 4
4 5

A

P(x,y) :- A(x,y).   
P(x,y) :- A(x,z), A(z,y).

WITH RECURSIVE P AS (
    SELECT S, T 
    FROM A
  UNION
    SELECT A1.S, A2.T 
    FROM A A1, A A2
    WHERE A1.T = A2.S)
SELECT * 
FROM P

Probe for understanding: how the output 
changes with this little change in the query:

S T

SQL database available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql  

1 1
2 2
1 3
2 4
1 5
3 5

1 2
2 1
2 3
1 4
3 4
4 5

P

2 5

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
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Challenge

• Write a query that finds the shortest path to each node from a 
starting node

• Create an interesting minimum database instance
• Show interesting variations
• https://www.postgresql.org/docs/14/queries-with.html 

???

?

https://northeastern-datalab.github.io/cs7240/
https://www.postgresql.org/docs/14/queries-with.html
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Pre-class conversations

• Last class summary
• Project discussions (today: first project ideas)

• today: 
- More on Datalog 
- What happens if we add negation? Answer: it depends on how we do it.

• Datalog with stratified negation
• Datalog with more genal negation (stable models), leads to ASP

https://northeastern-datalab.github.io/cs7240/
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Outline: T1-4: Datalog & ASP

• Datalog
– Datalog rules
– Datalog vs. RA
– Recursion
– Recursion in SQL [moved here from T1-U1: SQL]
– Semantics
– Naive and Semi-naive evaluation (Incremental View Maintenance)
– Chase Procedure (and Decompositions=Factorizations)
– Datalog¬: Datalog with stratified negation
– Datalog±

• Answer Set Programming (ASP)
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Semantics of Datalog Programs

• Let S be a schema, D a database over S, and P be a Datalog program 
over S (i.e., all EDBs predicates belong to S)

• The result of evaluating P over D is a database I over the IDB schema 
of P 

• We give 2 definitions:

1. Fixpoint semantics

2. model-theoretic

operative (think procedural)

declarative

https://northeastern-datalab.github.io/cs7240/
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1. Fixpoint semantics via the chase (operative definition)
Pseudo-code of a chase procedure:

I	:=	empty
repeat	{
if(D∪I	satisfies	all	the	rules	of	P),	then	return	I
Find	a	rule	head(x)	:-	body(x,y)	and	constants	a,b	
				s.t.	that	D∪I	contains	body(a,b)	but	not	head(a)
I	:=	I	∪	{head(a)}

}

Chase(P,D)

Notice since rules are monotone, I is also monotonically increasing
Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

("D∪I" is here just a set of tuples)

https://northeastern-datalab.github.io/cs7240/
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Church-Rosser property (defined for term reduction):
If term a can be reduced to both b and c, then there 
must be a further term d (possibly equal to either b or c) 
to which both b and c can be reduced.

Nondeterminism

• Note: the chase is underspecified (i.e., not fully defined)
- There can be many ways of choosing the next violation to handle
- And each choice can lead to new violations, and so on

• We can view the choice of a new violation as nondeterministic

Also see: https://en.wikipedia.org/wiki/Church%E2%80%93Rosser_theorem , https://en.wikipedia.org/wiki/Confluence_(abstract_rewriting) 

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Church%E2%80%93Rosser_theorem
https://en.wikipedia.org/wiki/Confluence_(abstract_rewriting)
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5

1 2
2 1
2 3
1 4
3 4
4 5

3

4

Example

2

1
Path(x,y) :- Arc(x,y).   
Path(x,y) :- Arc(x,z), Path(z,y).
Reachable(y) :- Path('1',y).

Arc Path Reachable

https://northeastern-datalab.github.io/cs7240/
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5

1 2
2 1
2 3
1 4
3 4
4 5

3

4

Example

2

1

1 2
Arc Path Reachable

Path(x,y) :- Arc(x,y).   
Path(x,y) :- Arc(x,z), Path(z,y).
Reachable(y) :- Path('1',y).

https://northeastern-datalab.github.io/cs7240/
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5

1 2
2 1
2 3
1 4
3 4
4 5

3

4

Example

2

1

1 2
Arc Path Reachable

2 1

Path(x,y) :- Arc(x,y).   
Path(x,y) :- Arc(x,z), Path(z,y).
Reachable(y) :- Path('1',y).

https://northeastern-datalab.github.io/cs7240/
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5

1 2
2 1
2 3
1 4
3 4
4 5

3

4

Example

2

1

Arc
1 2
2 1

Path Reachable

2 3

Path(x,y) :- Arc(x,y).   
Path(x,y) :- Arc(x,z), Path(z,y).
Reachable(y) :- Path('1',y).

https://northeastern-datalab.github.io/cs7240/


129Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 

5

1 2
2 1
2 3
1 4
3 4
4 5

3

4

Example

2

1

Arc
1 2
2 1

Path Reachable

2 3
1 1

Path(x,y) :- Arc(x,y).   
Path(x,y) :- Arc(x,z), Path(z,y).
Reachable(y) :- Path('1',y).

https://northeastern-datalab.github.io/cs7240/
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5

1 2
2 1
2 3
1 4
3 4
4 5

3

4

Example

2

1

Arc
1 2
2 1
2 3

Path
2

Reachable

Path(x,y) :- Arc(x,y).   
Path(x,y) :- Arc(x,z), Path(z,y).
Reachable(y) :- Path('1',y).

https://northeastern-datalab.github.io/cs7240/
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2. Minimal model semantics (model-theoretic definition)

• We say that IDB I is a model of Datalog program P (w.r.t. EDB D) if 
D∪I satisfies all the rules of P

• We say that I is a minimal model if I does not properly contain any 
other model

• Theorem: there exists one minimal model

∀var Head(IDB)	⇐Body(EDB,	IDB)

https://northeastern-datalab.github.io/cs7240/
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Illustration with our example Path(x,y) :- Arc(x,y).
Path(x,y) :- Arc(x,z), Path(z,y).

1. Fixpoint semantics

2. Minimal model semantics: smallest Path s.t.

https://northeastern-datalab.github.io/cs7240/
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Illustration with our example

Path(0) :=	∅,	t:=0
Repeat	{
inc(t)
Path(t) x, y :=	Arc(x,y)	∪	Πxy(Arc(x,z)	⋈Path(t−1)(z,y))

until	Path(t) =	Path(t-1)}

1. Fixpoint semantics

2. Minimal model semantics: smallest relation Path s.t.

Path(x,y) :- Arc(x,y).
Path(x,y) :- Arc(x,z), Path(z,y).

immediate consequence operator "TP": 
P(t) = TP(P(t-1))

https://northeastern-datalab.github.io/cs7240/
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Illustration with our example

Path(0) :=	∅,	t:=0
Repeat	{
inc(t)
Path(t) x, y :=	Arc(x,y)	∪	Πxy(Arc(x,z)	⋈Path(t−1)(z,y))	

until	Path(t) =	Path(t-1)}

1. Fixpoint semantics

2. Minimal model semantics: smallest relation Path s.t.

∀x,y	[Arc(x,y)	⇒	Path(x,y)]	⋀
∀x,y,z	[Arc(x,z)	⋀	Path(z,y)	⇒	Path(x,y)]	

Path(x,y) :- Arc(x,y).
Path(x,y) :- Arc(x,z), Path(z,y).

immediate consequence operator "TP": 
P(t) = TP(P(t-1))

https://northeastern-datalab.github.io/cs7240/
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Minimum (least) element vs minimal elements in partial orders

2 minimal elements1 least element

Consider a partial order (S,⪯). 
The set of elements from S 
are represented by black 
circles, arrows show partial 
order between elements.

For more details see e.g. "Davey, Priestley. Introduction To Lattices And Order (book, 2nd ed). 2002", https://doi.org/10.1017/CBO9780511809088 

An element a in S is called a minimal 
element of S if there is no element b 
in A such that b ⪯ a.

An element a in S is called a least (or minimum) 
element of S if a ⪯ x for all x in S.

{a} {b} {c}

{a,b} {a,c} {b,c}

{a,b,c}

{ }

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1017/CBO9780511809088
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Datalog Semantics & equivalence b/w the definitions

1. The fixpoint semantics tells us how to compute a Datalog query
2. The minimal model semantics is more declarative: only says what we get

Proof sketch: 
1. If I1 and I2 are models, so are I1∩I2
2. Every chase returns a model

3. Pick a chase and prove by induction: If I' is a model, 
then every intermediate I is contained in I'

The minimal model is the result, denoted P(D)

THEOREM: For all Datalog programs P and DBs D 
there is a unique minimal model, 
and every chase returns this model

(nondeterministic)

(finite)

(monotonicity)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/
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Details

Source: Zaniolo et al. Advanced Database systems. 1997. Section 8.9. https://dl.acm.org/doi/book/10.5555/260822 

Herbrand base

Proof: next page

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/book/10.5555/260822
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Details

Source: Nilsson, Maluszynski. Logic, Programming and Prolog, 2nd ed, 2000. Chapter 2: http://tinman.cs.gsu.edu/~raj/8710/f02/bok.pdf 

https://northeastern-datalab.github.io/cs7240/
http://tinman.cs.gsu.edu/~raj/8710/f02/bok.pdf
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Semantics Summary

1. Fixpoint-theoretic
- Most "operational": Based on the immediate consequence operator for a 

Datalog program. 

2. Model-theoretic
- Most "declarative": Based on model-theoretic semantics of first order logic. 

View rules as logical constraints.  
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Semantics Summary

1. Fixpoint-theoretic
- Most "operational": Based on the immediate consequence operator for a 

Datalog program. 
- Least fixpoint is reached after finitely many iterations of the immediate 

consequence operator.
- Basis for practical, bottom-up evaluation strategy.

2. Model-theoretic
- Most "declarative": Based on model-theoretic semantics of first order logic. 

View rules as logical constraints.  
- Given input DB D and Datalog program P, find the smallest possible DB 

instance D' that extends D and satisfies all constraints in P.
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Monotonicity

• Can Datalog express difference?

- Answer: No!

• Proof: Datalog is monotone, difference is not
- That is, if D and D' are such that every relation of D	is contained in the 

corresponding relation of D'	(D	⊆	D'), then P(D)	⊆	P	(D')

D	⊆	D'				⇒			 P(D)	⊆	P	(D')

https://northeastern-datalab.github.io/cs7240/
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Outline: T1-4: Datalog & ASP

• Datalog
– Datalog rules
– Datalog vs. RA
– Recursion
– Recursion in SQL [moved here from T1-U1: SQL]
– Semantics
– Naive and Semi-naive evaluation (Incremental View Maintenance)
– Chase Procedure (and Decompositions=Factorizations)
– Datalog¬: Datalog with stratified negation
– Datalog±

• Answer Set Programming (ASP)
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Datalog Evaluation Algorithms

• Goal: preserve the efficiency of query optimizers, yet extend them 
to recursion

• Two general strategies we will discuss:
- 1. Naive Datalog evaluation
- 2. Semi-naive Datalog evaluation

• More powerful optimizations:
- 3. Magic sets (which we will not cover, or may revisit later under "Topic 3: 

efficient query evaluation & factorized representations")

https://northeastern-datalab.github.io/cs7240/
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1. Naive Datalog evaluation

• Problem: The same facts are discovered over and over again
• Goal: The semi-naive algorithm tries to reduce the number of facts 

discovered multiple times

P(0) :=	∅,	t:=0
Repeat	{
inc(t)
P(t) x, y :=	A(x,y)	∪	Π−z(A(x,z)	⋈P(t−1)(z,y))

until	P(t) =	P(t-1)}

P(t)(x,y) :- A(x,y).   
 P(t)(x,y) :- A(x,z), P(t-1)(z,y).

immediate consequence operator "TP": 
P(t) = TP(P(t-1))

https://northeastern-datalab.github.io/cs7240/
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1 2
2 3
3 4
4 5

Example

A P(1) P(2) P(3)

321 4 5

P(4)

? ? ? ?

P(t)(x,y) :- A(x,y).   
 P(t)(x,y) :- A(x,z), P(t-1)(z,y).

https://northeastern-datalab.github.io/cs7240/
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1 2
2 3
3 4
4 5

Example

A
L=1

P(1)

321 4 5

1 2
2 3
3 4
4 5

P(t)(x,y) :- A(x,y).   
 P(t)(x,y) :- A(x,z), P(t-1)(z,y).

paths	of	LEN	≤	1

https://northeastern-datalab.github.io/cs7240/
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1 2
2 3
3 4
4 5

Example

A
L=1

P(1) P(2)

321 4 5

1 2
2 3
3 4
4 5

1 2
2 3
3 4
4 5
1 3
2 4
3 5

L=1

L=2

P(t)(x,y) :- A(x,y).   
 P(t)(x,y) :- A(x,z), P(t-1)(z,y).

paths	of	LEN	≤	1 paths	of	LEN	≤	2

https://northeastern-datalab.github.io/cs7240/
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1 2
2 3
3 4
4 5

Example

A
L=1

P(1) P(2) P(3)

321 4 5

1 2
2 3
3 4
4 5

1 2
2 3
3 4
4 5
1 3
2 4
3 5

L=1

L=2

1 2
2 3
3 4
4 5
1 3
2 4
3 5
1 4
2 5

L=1

P(t)(x,y) :- A(x,y).   
 P(t)(x,y) :- A(x,z), P(t-1)(z,y).

paths	of	LEN	≤	1 paths	of	LEN	≤	2 paths	of	LEN	≤	3

L=2

L=3

https://northeastern-datalab.github.io/cs7240/
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1 2
2 3
3 4
4 5

Example

A
L=1

P(1) P(2) P(3)

321 4 5

1 2
2 3
3 4
4 5

1 2
2 3
3 4
4 5
1 3
2 4
3 5

L=1

L=2

1 2
2 3
3 4
4 5
1 3
2 4
3 5
1 4
2 5

P(4) 1 2
2 3
3 4
4 5
1 3
2 4
3 5
1 4
2 5
1 5

L=1L=1

P(t)(x,y) :- A(x,y).   
 P(t)(x,y) :- A(x,z), P(t-1)(z,y).

paths	of	LEN	≤	1 paths	of	LEN	≤	2 paths	of	LEN	≤	3 paths	of	LEN	≤	4

L=2

L=3

L=2

L=3

L=4

https://northeastern-datalab.github.io/cs7240/
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Side-topic: 
Incremental View 

Maintentance
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Background: Incremental View Maintenace

Let Q be a "view" computed by a single Datalog rule without recursion, 
thus a simple conjunctive query

Add tuples to some of the relations:
R1 ⟵ R1 ∪ ΔR1, R2 ⟵ R2 ∪ ΔR2, …

Then the view Q will also increase in size:
Q ⟵ Q ∪ ΔQ

Q :- R1, R2, ...

Incremental view maintenance problem:
Compute ΔQ without having to recompute Q from scratch

SELECT ... 
FROM R1
NATURAL JOIN R2
NATURAL JOIN R3 ...

https://northeastern-datalab.github.io/cs7240/
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Background: Incremental View Maintenace

1 0
R

0 1
0 2
9 1

SIf R ⟵ R ∪ ΔR, 
then what is ΔQ ?

Example 1:
Q(x,y) :- R(x,z), S(z,y)

ΔQ(x,y) :- 
   ?

1 1
1 2

Q

2 0ΔR
ΔQ ?

https://northeastern-datalab.github.io/cs7240/
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Background: Incremental View Maintenace

1 0
R

0 1
0 2
9 1

S

2 0ΔR

If R ⟵ R ∪ ΔR, 
then what is ΔQ ?

Example 1:
Q(x,y) :- R(x,z), S(z,y)

1 1
1 2

Q

2 1
2 2ΔQ

ΔQ(x,y) :- 
   ?

https://northeastern-datalab.github.io/cs7240/
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Background: Incremental View Maintenace

If R ⟵ R ∪ ΔR, 
then what is ΔQ ?

Example 1:

ΔQ(x,y) :- ΔR(x,z), S(z,y)

Relational Algebra:

Q(x,y) :- R(x,z), S(z,y)
1 1
1 2

Q
1 0
R

0 1
0 2
9 1

S

2 0
2 1
2 2ΔQ

ΔR

Q ∪ ΔQ = (R ∪ ΔR) ⋈ S
Q = R ⋈ S

?

(to be more precise: we still need to subtract Q: 
ΔQ=ΔR⨝S – Q, e.g. for ΔR = (1,1). More on that later) 

https://northeastern-datalab.github.io/cs7240/
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Background: Incremental View Maintenace

If R ⟵ R ∪ ΔR, 
then what is ΔQ ?

Example 1:

ΔQ(x,y) :- ΔR(x,z), S(z,y)

Relational Algebra:

z = x⋅y
z+Δz = (x+Δx)⋅y

Q(x,y) :- R(x,z), S(z,y)
1 1
1 2

Q
1 0
R

0 1
0 2

S

2 0
2 1
2 2ΔQ

ΔR

??

(to be more precise: we still need to subtract Q: 
ΔQ=ΔR⨝S – Q, e.g. for ΔR = (1,1). More on that later) 

Q = R ⋈ S
Q ∪ ΔQ = (R ∪ ΔR) ⋈ S

https://northeastern-datalab.github.io/cs7240/
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Background: Incremental View Maintenace

If R ⟵ R ∪ ΔR, 
then what is ΔQ ?

Example 1:

ΔQ(x,y) :- ΔR(x,z), S(z,y)

Q ∪ ΔQ = (R⋈S) ∪ (ΔR⋈S)
Q ∪ ΔQ =      Q    ∪ (ΔR⋈S)

ΔQ = ΔR ⋈ S

Relational Algebra:
Join ⋈ distributes 
over union ∪

z = x⋅y
z+Δz = (x+Δx)⋅y

Δz = Δx⋅y

Multiplication ⊗ distributes 
over Addition ⊕

Q(x,y) :- R(x,z), S(z,y)
1 1
1 2

Q
1 0
R

0 1
0 2

S

2 0
2 1
2 2ΔQ

ΔR

z+Δz = (x⋅y)+(Δx⋅y)
z+Δz =    z  +(Δx⋅y)

(to be more precise: we still need to subtract Q: 
ΔQ=ΔR⨝S – Q, e.g. for ΔR = (1,1). More on that later) 

Q = R ⋈ S
Q ∪ ΔQ = (R ∪ ΔR) ⋈ S

(a+b)c
= ac+bc

(a∪b)⋈c
= a⋈c ∪ b⋈c

https://northeastern-datalab.github.io/cs7240/
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Background: Incremental View Maintenace

If R ⟵ R ∪ ΔR, and S ⟵ S ∪ ΔS, 
then what is ΔQ ?

Example 2:
Q(x,y) :- R(x,z), S(z,y)

z = x⋅y
z+Δz = (x+Δx)⋅(y+Δy)

?

?

(as before, we ignore the subtraction of Q here) 

https://northeastern-datalab.github.io/cs7240/
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Background: Incremental View Maintenace

If R ⟵ R ∪ ΔR, and S ⟵ S ∪ ΔS, 
then what is ΔQ ?

Example 2:

Relational Algebra:

Q(x,y) :- R(x,z), S(z,y)

z+Δz = (x⋅y)+(Δx⋅y)+(x⋅Δy)+(Δx⋅Δy)
z+Δz =    z   +(Δx⋅y)+(x⋅Δy)+(Δx⋅Δy)

z = x⋅y
z+Δz = (x+Δx)⋅(y+Δy)

Δz = (Δx⋅y)+(x⋅Δy)+(Δx⋅Δy)

Q = R⋈S

Q∪ΔQ = (R∪ΔR) ⋈(S∪ΔS)
Q∪ΔQ = (R⋈S)∪(ΔR⋈S)∪(R⋈ΔS)∪(ΔR⋈ΔS)
Q∪ΔQ =      Q    ∪(ΔR⋈S)∪(R⋈ΔS)∪(ΔR⋈ΔS)

ΔQ = (ΔR⋈S)∪(R⋈ΔS)∪(ΔR⋈ΔS)

?
(as before, we ignore the subtraction of Q here) 

https://northeastern-datalab.github.io/cs7240/


170Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 

Background: Incremental View Maintenace

If R ⟵ R ∪ ΔR, and S ⟵ S ∪ ΔS, 
then what is ΔQ ?

Example 2:

ΔQ(x,y) :- ΔR(x,z), S(z,y)
ΔQ(x,y) :- R(x,z), ΔS(z,y)
ΔQ(x,y) :- ΔR(x,z), ΔS(z,y)

Q(x,y) :- R(x,z), S(z,y)

z+Δz = (x⋅y)+(Δx⋅y)+(x⋅Δy)+(Δx⋅Δy)

z = x⋅y
z+Δz = (x+Δx)⋅(y+Δy)

Δz = (Δx⋅y)+(x⋅Δy)+(Δx⋅Δy)

Relational Algebra:

z+Δz =    z   +(Δx⋅y)+(x⋅Δy)+(Δx⋅Δy)

(as before, we ignore the subtraction of Q here) 

Q = R⋈S

Q∪ΔQ = (R∪ΔR) ⋈(S∪ΔS)
Q∪ΔQ = (R⋈S)∪(ΔR⋈S)∪(R⋈ΔS)∪(ΔR⋈ΔS)
Q∪ΔQ =      Q    ∪(ΔR⋈S)∪(R⋈ΔS)∪(ΔR⋈ΔS)

ΔQ = (ΔR⋈S)∪(R⋈ΔS)∪(ΔR⋈ΔS)

https://northeastern-datalab.github.io/cs7240/
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Background: Incremental View Maintenace

If R ⟵ R ∪ ΔR, 
then what is ΔQ ?

Example 3:
Q(x,y) :- R(x,z), R(z,y)

z = x2

z+Δz = (x+Δx)2

?

?

(as before, we ignore the subtraction of Q here) 

https://northeastern-datalab.github.io/cs7240/
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Background: Incremental View Maintenace

If R ⟵ R ∪ ΔR, 
then what is ΔQ ?

Example 3:

Relational Algebra:

Q(x,y) :- R(x,z), R(z,y)

z+Δz = x2+(Δx⋅x)+(x⋅Δx)+Δx2

z+Δz =  z +2xΔx+Δx2

z = x2

z+Δz = (x+Δx)2

Δz = 2xΔx+Δx2

Q = R⋈cR

Q∪ΔQ = (R∪ΔR) ⋈c (R∪ΔR)

?

?

(as before, we ignore the subtraction of Q here) 

https://northeastern-datalab.github.io/cs7240/
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Background: Incremental View Maintenace

If R ⟵ R ∪ ΔR, 
then what is ΔQ ?

Example 3:

Relational Algebra:

Q(x,y) :- R(x,z), R(z,y)

z+Δz = x2+(Δx⋅x)+(x⋅Δx)+Δx2

z+Δz =  z +2xΔx+Δx2

z = x2

z+Δz = (x+Δx)2

Δz = 2xΔx+Δx2

?
(as before, we ignore the subtraction of Q here) 

Q = R⋈cR

Q∪ΔQ = (R∪ΔR) ⋈c (R∪ΔR)
Q∪ΔQ = (R⋈cR)∪(ΔR⋈cR)∪(R⋈cΔR)∪(ΔR⋈cΔR)
Q∪ΔQ =      Q     ∪(ΔR⋈cR)∪(R⋈cΔR)∪(ΔR⋈cΔR)

ΔQ = (ΔR⋈cR)∪(R⋈cΔR)∪(ΔR⋈cΔR)

https://northeastern-datalab.github.io/cs7240/
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Background: Incremental View Maintenace

If R ⟵ R ∪ ΔR, 
then what is ΔQ ?

Example 3:

ΔQ(x,y) :- ΔR(x,z), R(z,y)
ΔQ(x,y) :- R(x,z), ΔR(z,y)
ΔQ(x,y) :- ΔR(x,z), ΔR(z,y)

Q(x,y) :- R(x,z), R(z,y)

z+Δz = x2+(Δx⋅x)+(x⋅Δx)+Δx2

z+Δz =  z +2xΔx+Δx2

z = x2

z+Δz = (x+Δx)2

Δz = 2xΔx+Δx2

Relational Algebra:

Q = R⋈cR

Q∪ΔQ = (R∪ΔR) ⋈c (R∪ΔR)
Q∪ΔQ = (R⋈cR)∪(ΔR⋈cR)∪(R⋈cΔR)∪(ΔR⋈cΔR)
Q∪ΔQ =      Q     ∪(ΔR⋈cR)∪(R⋈cΔR)∪(ΔR⋈cΔR)

ΔQ = (ΔR⋈cR)∪(R⋈cΔR)∪(ΔR⋈cΔR)

(as before, we ignore the subtraction of Q here) 

https://northeastern-datalab.github.io/cs7240/
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Back to Datalog
evaluation



176Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 

2. Semi-Naive Datalog evaluation

P	:=	A(x,z);	ΔP(0)	:=	A(x,z)
Repeat	{
inc(t)
ΔP(t)(x,y)	:=	𝜋xy(A(x,z)	⋈	ΔP(t−1)(z,y))	−	P(x,y)
P	:=	P	∪	ΔP	(t)

until	ΔP(t)	=	∅}

P(x,y) :- A(x,y).
P(x,y) :- A(x,z), P(z,y).

P(0)	:=	∅,	t:=0
Repeat	{
inc(t)
P(t) x,y 	:=	A(x,y)	∪	𝜋xy(A(x,z)	⋈	P(t−1)(z,y))

until	P(t)	=	P(t-1)}

Semi-naive evaluation:

Recall the naive evaluation:

The idea of semi-naive evaluation predates following paper which is often cited as main reference:
Bancilhon, Ramakrishnan. An Amateur's Introduction to Recursive Query Processing Strategies. SIGMOD 1986. https://doi.org/10.1145/16894.16859 (the 1988 revision is better)

immediate consequence operator "TP": 
P(t) = TP(P(t-1))

"incrementalized" immediate consequence operator:
ΔP(t) = TP(ΔP(t-1))-P(t-1)

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/16894.16859
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1 2
2 3
3 4
4 5

Example

A P

P(t)(x,y) :- A(x,y).   
 P(t)(x,y) :- A(x,z), P(t-1)(z,y).

321 4 5 ΔP(t)(x,y) :- A(x,z), ΔP(t-1)(z,y), not P(x,y).
 P(x,y) :- ΔP(t)(x,y).

paths	of	LEN	≤	1

?

https://northeastern-datalab.github.io/cs7240/
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1 2
2 3
3 4
4 5

Example

A P

P(t)(x,y) :- A(x,y).   
 P(t)(x,y) :- A(x,z), P(t-1)(z,y).

321 4 5

1 2
2 3
3 4
4 5

ΔP(t)(x,y) :- A(x,z), ΔP(t-1)(z,y), not P(x,y).
 P(x,y) :- ΔP(t)(x,y).

ΔP(1)

paths	of	LEN	≤	1

P
paths	of	LEN	≤	2

?

https://northeastern-datalab.github.io/cs7240/
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1 2
2 3
3 4
4 5

Example

A P P

P(t)(x,y) :- A(x,y).   
 P(t)(x,y) :- A(x,z), P(t-1)(z,y).

321 4 5

1 2
2 3
3 4
4 5

1 2
2 3
3 4
4 5
1 3
2 4
3 5

ΔP(t)(x,y) :- A(x,z), ΔP(t-1)(z,y), not P(x,y).
 P(x,y) :- ΔP(t)(x,y).

ΔP(2)
ΔP(1)

paths	of	LEN	≤	1 paths	of	LEN	≤	2

?
P

paths	of	LEN	≤	3

https://northeastern-datalab.github.io/cs7240/
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1 2
2 3
3 4
4 5

Example

A P P

P(t)(x,y) :- A(x,y).   
 P(t)(x,y) :- A(x,z), P(t-1)(z,y).

P

321 4 5

1 2
2 3
3 4
4 5

1 2
2 3
3 4
4 5
1 3
2 4
3 5

1 2
2 3
3 4
4 5
1 3
2 4
3 5
1 4
2 5

ΔP(t)(x,y) :- A(x,z), ΔP(t-1)(z,y), not P(x,y).
 P(x,y) :- ΔP(t)(x,y).

ΔP(3)

ΔP(2)
ΔP(1)

paths	of	LEN	≤	1 paths	of	LEN	≤	2 paths	of	LEN	≤	3

P
paths	of	LEN	≤	4

?

https://northeastern-datalab.github.io/cs7240/
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1 2
2 3
3 4
4 5

Example

A P P

P(t)(x,y) :- A(x,y).   
 P(t)(x,y) :- A(x,z), P(t-1)(z,y).

P

321 4 5

1 2
2 3
3 4
4 5

1 2
2 3
3 4
4 5
1 3
2 4
3 5

1 2
2 3
3 4
4 5
1 3
2 4
3 5
1 4
2 5

P
1 2
2 3
3 4
4 5
1 3
2 4
3 5
1 4
2 5
1 5

ΔP(t)(x,y) :- A(x,z), ΔP(t-1)(z,y), not P(x,y).
 P(x,y) :- ΔP(t)(x,y).

ΔP(4)
ΔP(3)

ΔP(2)
ΔP(1)

paths	of	LEN	≤	1 paths	of	LEN	≤	2 paths	of	LEN	≤	3 paths	of	LEN	≤	4

https://northeastern-datalab.github.io/cs7240/
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Outline: T1-4: Datalog & ASP

• Datalog
– Datalog rules
– Datalog vs. RA
– Recursion
– Recursion in SQL [moved here from T1-U1: SQL]
– Semantics
– Naive and Semi-naive evaluation (Incremental View Maintenance)
– Chase Procedure (and Decompositions=Factorizations)
– Datalog¬: Datalog with stratified negation
– Datalog±

• Answer Set Programming (ASP)
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The Chase

• A simple fixed-point algorithm to test implication of data dependencies. 
• In its simplest incarnation it  tests whether the projection of a relation schema 

constrained by some functional dependencies onto a given decomposition 
can be recovered by rejoining the projections
- i.e. whether a particular decomposition is "lossless"
- Problem is motivated by from schema normalization (decomposition of relations)

• The interesting aspect is that this algorithms is confluent: we can apply rules 
in any order and will still arrive at a unique fixed-point

The term ‘‘chase’’ was coined in "Maier, Mendelzon, Sagiv: Testing implications of data dependencies, TODS 1979. https://doi.org/10.1145/320107.320115", where it was used to test the 
logical implication of dependencies. "Aho, Sagiv, Ullman: Equivalences among relational expressions, SICOMP 1979. https://doi.org/10.1137/0208017" introduced tableaux queries with an 
algorithm that coincides with the chase with functional dependencies. "Aho, Beeri, Ullman: The theory of joins in relational databases, TODS 1979. https://doi.org/10.1145/320083.320091" 
extends this algorithm to include also multivalued dependencies, for the purpose of checking whether the join of several relations is lossless. See also "Deutsch, Nash: Chase. Encyclopedia 
of Database Systems. 2009. https://doi.org/10.1007/978-0-387-39940-9_1250" for more details

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/320107.320115
https://doi.org/10.1137/0208017
https://doi.org/10.1145/320083.320091
https://doi.org/10.1007/978-0-387-39940-9_1250
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Notation

• We usually denote relations by a name and an ordered set of attributes
- 𝑅'(𝐴, 𝐵, 𝐶, 𝐷), 𝑅((𝐷, 𝐸, 𝐹)

• We can can also ignore relation names and the order among attributes. A 
relation is then just a set of attributes (unordered or named perspective)
- 𝑆' = {𝐴, 𝐵, 𝐶, 𝐷}, 𝑆( = {𝐷, 𝐸, 𝐹}

• We can then view a relational schema 𝑅 as a pair (𝑆, Σ) where:
- 𝑆 is a finite set of attributes 

• 𝑆 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹},
- Σ is a set of functional dependencies (FDs) over 𝑆	

• Σ = {𝐷 → 𝐸,𝐷 → 𝐹}

• We want to know if we can always decompose 𝑆 into 𝑆/ and 𝑆0, s.t.:
- 𝑅' = 𝜋)" 𝑅 , 𝑅( = 𝜋)# 𝑅 , 𝑅 = 𝑅' ⋈ 𝑅( 

https://northeastern-datalab.github.io/cs7240/
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A possibly familiar example

A B C D E F

a e i l o s

b f i l o s

c g j m p t

d h k n q t

A B C D

a e i l

b f i l

c g j m

d h k n

𝑅/
D E F

l o s

m p t

n q5 t

𝜋1,2,3,4 𝜋4,5,6

Assume we decompose 𝑅(𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹) with Σ = 𝐷 → 𝐸,𝐷 → 𝐹  into 𝑅'(𝐴, 𝐵, 𝐶, 𝐷) and 
𝑅((𝐷, 𝐸, 𝐹). Is  𝑅 = 𝑅' ⋈ 𝑅( for every database over this schema?

𝑅0

𝑅

Σ:
𝐷 → 𝐸 
𝐷 → 𝐹 

https://northeastern-datalab.github.io/cs7240/
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A possibly familiar example: now even more familiar J

Name Price Category Manufacturer StockPrice Country

Gizmo $19.99 Gadgets GizmoWorks 25 USA

Powergizmo $29.99 Gadgets GizmoWorks 25 USA

SingleTouch $149.99 Photography Canon 65 Japan

MultiTouch $203.99 Household Hitachi 15 Japan

Item

Name Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company
Manufacturer StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Assume we decompose Item(N,P,C,M,S,C) with Σ = 𝑀 → 𝑆,𝑀 → 𝐶 into Product(N,P,C,M) 
and Company(M,S,C). Is 𝐈𝐭𝐞𝐦 = 𝐏𝐫𝐨𝐝𝐮𝐜𝐭 ⋈ 𝐂𝐨𝐦𝐩𝐚𝐧𝐲 for every database?

𝜋7,8,9,: 𝜋:,;,9

Σ:
𝑀 → 𝑆 
𝑀 → 𝐶 

https://northeastern-datalab.github.io/cs7240/
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Decompositions in General

R(A,B,C)

R1(A,B) R2(A,C)

𝜋!,# 𝜋!,$

But we want that 𝑅 = 𝑅' ⋈ 𝑅( for every database over this schema.
We then say that the decomposition of 𝑅 into (𝑅', 𝑅() is lossless if 𝑅 = 𝑅'	⋈ 𝑅(.

When is this the case?

Notice that 𝑅 ⊆ 𝑅' ⋈ 𝑅( for every database over any schema (we never loose tuples).

?

https://northeastern-datalab.github.io/cs7240/
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Decompositions in General

R(A,B,C)

R1(A,B) R2(A,C)

𝜋!,# 𝜋!,$

But we want that 𝑅 = 𝑅' ⋈ 𝑅( for every database over this schema.
We then say that the decomposition of 𝑅 into (𝑅', 𝑅() is lossless if 𝑅 = 𝑅'	⋈ 𝑅(.

When is this the case?

Notice that 𝑅 ⊆ 𝑅' ⋈ 𝑅( for every database over any schema (we never loose tuples).

The decomposition is lossless iff:
• 𝐴 → 𝐵, even if we don't have 
𝐴 → 𝐶 at the same time, or

• 𝐴 → 𝐵, even if we don't have 
𝐴 → 𝐶 at the same time, or

https://northeastern-datalab.github.io/cs7240/
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Lossless Decomposition

Name Price Category
Gizmo 19 Gadget

OneClick 24 Camera
Gizmo 19 Camera

Name Price
Gizmo 19

OneClick 24
Gizmo 19

Name Category
Gizmo Gadget

OneClick Camera
Gizmo Camera

A B C

A B A C

Is this decomposition 
lossless = correct? ?

https://northeastern-datalab.github.io/cs7240/
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Lossless Decomposition

Name Price Category
Gizmo 19 Gadget

OneClick 24 Camera
Gizmo 19 Camera

Name Price
Gizmo 19

OneClick 24
Gizmo 19

Name Category
Gizmo Gadget

OneClick Camera
Gizmo Camera

A B C

A B A C

Is this decomposition 
lossless = correct?

Yes, we don't loose 
information

https://northeastern-datalab.github.io/cs7240/
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Lossless Decomposition

Name Price Category
Gizmo 19 Gadget

OneClick 24 Camera
Gizmo 19 Camera

Name Category
Gizmo Gadget

OneClick Camera
Gizmo Camera

Price Category
19 Gadget
24 Camera
19 Camera

C B A

C A B A

Is this decomposition 
lossless = correct? ?

https://northeastern-datalab.github.io/cs7240/
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Lossless Decomposition

Name Price Category
Gizmo 19 Gadget

OneClick 24 Camera
Gizmo 19 Camera

Name Category
Gizmo Gadget

OneClick Camera
Gizmo Camera

Price Category
19 Gadget
24 Camera
19 Camera

C B A

C A B A

Is this decomposition 
lossless = correct?

No, here we lost infor-
mation (Does Gizmo cost 
19 or 24?).

Why does this happen?

(Neither A→B, nor A→C)

https://northeastern-datalab.github.io/cs7240/
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More general question: is a given decomposition lossless?

• Given a relation 𝑅 with attributes 𝑆, a set of FDs Σ over 𝑆, and a set 
of subsets of 𝑆: 𝑆%, 𝑆&, … , 𝑆'. 

• Is the decomposition of 𝑅	into 𝑅% = 𝜋(0(𝑅), ..., 𝑅' = 𝜋(1(𝑅) 
lossless? I.e. Is it true that 𝑅% ⋈ 𝑅& ⋈ ⋯ ⋈ 𝑅' = 𝑅?

• All we need to prove is that
- ... ?

https://northeastern-datalab.github.io/cs7240/
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More general question: is a given decomposition lossless?

• Given a relation 𝑅 with attributes 𝑆, a set of FDs Σ over 𝑆, and a set 
of subsets of 𝑆: 𝑆%, 𝑆&, … , 𝑆'. 

• Is the decomposition of 𝑅	into 𝑅% = 𝜋(0(𝑅), ..., 𝑅' = 𝜋(1(𝑅) 
lossless? I.e. Is it true that 𝑅% ⋈ 𝑅& ⋈ ⋯ ⋈ 𝑅' = 𝑅?

• All we need to prove is that
- 𝑅	⊇	𝑅/ ⋈ 𝑅0 ⋈ ⋯ ⋈ 𝑅<

• because we already know that we never loose tuples:
- 𝑅	⊆	𝑅/ ⋈ 𝑅0 ⋈ ⋯ ⋈ 𝑅<

https://northeastern-datalab.github.io/cs7240/
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The chase in a page (a test for lossless join decomposition)

• Given 𝑅(𝐴, 𝐵, 𝐶, 𝐷), is the decomposition into 𝑅2 = 𝜋3,5 𝑅 , 𝑅6 = 𝜋3,7 𝑅 ,
𝑅8 = 𝜋9,7,5 𝑅  lossless, if 𝑅	satisifies Σ = 𝐴 → 𝐵, 𝐵 → 𝐶, 𝐶𝐷 → 𝐴 ? 

• We need to check that 𝑅 ⊇ 𝑅2 ⋈ 𝑅6 ⋈ 𝑅8:
- Suppose 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅' ⋈ 𝑅( ⋈ 𝑅*. Question: Is it also in 𝑅?
- Since 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅' ⋈ 𝑅( ⋈ 𝑅*, therefore also 𝑎, 𝑑 ∈ 𝑅', 𝑎, 𝑐 ∈ 𝑅(, 𝑏, 𝑐, 𝑑 ∈ 𝑅*
- We therefor know that 𝑅	must contain the following tuples (Irrespective of the FDs Σ):

Example taken from Example 3.22, Section 3.4.2, "Garcia-Molina, Ullman, Widom. Database Systems: The Complete Book. 2nd ed. 2009

A B C D
a b1 c1 d
a b2 c d2

a3 b c d

Why?

?

https://northeastern-datalab.github.io/cs7240/
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The chase in a page (a test for lossless join decomposition)

• Given 𝑅(𝐴, 𝐵, 𝐶, 𝐷), is the decomposition into 𝑅2 = 𝜋3,5 𝑅 , 𝑅6 = 𝜋3,7 𝑅 ,
𝑅8 = 𝜋9,7,5 𝑅  lossless, if 𝑅	satisifies Σ = 𝐴 → 𝐵, 𝐵 → 𝐶, 𝐶𝐷 → 𝐴 ? 

• We need to check that 𝑅 ⊇ 𝑅2 ⋈ 𝑅6 ⋈ 𝑅8:
- Suppose 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅' ⋈ 𝑅( ⋈ 𝑅*. Question: Is it also in 𝑅?
- Since 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅' ⋈ 𝑅( ⋈ 𝑅*, therefore also 𝑎, 𝑑 ∈ 𝑅', 𝑎, 𝑐 ∈ 𝑅(, 𝑏, 𝑐, 𝑑 ∈ 𝑅*
- We therefor know that 𝑅	must contain the following tuples (Irrespective of the FDs Σ):

• Idea: “Chase” them (apply given FDs Σ	by equating constants) until we can either 
prove that 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅 or until we cannot apply any more FDs.

Example taken from Example 3.22, Section 3.4.2, "Garcia-Molina, Ullman, Widom. Database Systems: The Complete Book. 2nd ed. 2009

because 𝑎, 𝑑 ∈ 𝑅! which was derived from 𝑅 as 𝜋",$ 𝑅
because 𝑎, 𝑐 ∈ 𝑅% which was derived from from 𝑅 as 𝜋",& 𝑅
because 𝑏, 𝑐, 𝑑 ∈ 𝑅' which was derived from from 𝑅 as 𝜋(,&,$ 𝑅

Why?A B C D
a b1 c1 d
a b2 c d2

a3 b c d

https://northeastern-datalab.github.io/cs7240/
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The chase in a page (a test for lossless join decomposition)
• Idea: “Chase” them (apply given FDs Σ	by equating constants) until we can either 

prove that 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅 or until we cannot apply any more FDs.
• Our FDs Σ:
- 𝐴 → 𝐵
- 𝐵 → 𝐶
- 𝐶𝐷 → 𝐴

Example taken from Example 3.22, Section 3.4.2, "Garcia-Molina, Ullman, Widom. Database Systems: The Complete Book. 2nd ed. 2009

apply:
𝐴 → 𝐵 

A B C D
a b1 c1 d
a b2 c d2

a3 b c d

?

https://northeastern-datalab.github.io/cs7240/
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The chase in a page (a test for lossless join decomposition)
• Idea: “Chase” them (apply given FDs Σ	by equating constants) until we can either 

prove that 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅 or until we cannot apply any more FDs.
• Our FDs Σ:
- 𝐴 → 𝐵
- 𝐵 → 𝐶
- 𝐶𝐷 → 𝐴

Example taken from Example 3.22, Section 3.4.2, "Garcia-Molina, Ullman, Widom. Database Systems: The Complete Book. 2nd ed. 2009

apply:
𝐴 → 𝐵 

apply:
𝐵 → 𝐶 A B C D

a b1 c1 d
a b2 c d2

a3 b c d

?A B C D
a b1 c1 d
a b1 c d2

a3 b c d

https://northeastern-datalab.github.io/cs7240/
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The chase in a page (a test for lossless join decomposition)
• Idea: “Chase” them (apply given FDs Σ	by equating constants) until we can either 

prove that 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅 or until we cannot apply any more FDs.
• Our FDs Σ:
- 𝐴 → 𝐵
- 𝐵 → 𝐶
- 𝐶𝐷 → 𝐴

Example taken from Example 3.22, Section 3.4.2, "Garcia-Molina, Ullman, Widom. Database Systems: The Complete Book. 2nd ed. 2009

apply:
𝐴 → 𝐵 

A B C D
a b1 c1 d
a b1 c d2

a3 b c d

apply:
𝐵 → 𝐶 

A B C D
a b1 c d
a b1 c d2

a3 b c d

apply:
𝐶𝐷 → 𝐴 A B C D

a b1 c1 d
a b2 c d2

a3 b c d

?

https://northeastern-datalab.github.io/cs7240/
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The chase in a page (a test for lossless join decomposition)
• Idea: “Chase” them (apply given FDs Σ	by equating constants) until we can either 

prove that 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅 or until we cannot apply any more FDs.
• Our FDs Σ:
- 𝐴 → 𝐵
- 𝐵 → 𝐶
- 𝐶𝐷 → 𝐴

Example taken from Example 3.22, Section 3.4.2, "Garcia-Molina, Ullman, Widom. Database Systems: The Complete Book. 2nd ed. 2009

Hence 𝑅 contains 𝑎, 𝑏, 𝑐, 𝑑

apply:
𝐴 → 𝐵 

A B C D
a b1 c1 d
a b1 c d2

a3 b c d

apply:
𝐵 → 𝐶 

A B C D
a b1 c d
a b1 c d2

a3 b c d

apply:
𝐶𝐷 → 𝐴 

A B C D
a b1 c d
a b1 c d2

a b c dA B C D
a b1 c1 d
a b2 c d2

a3 b c d

https://northeastern-datalab.github.io/cs7240/
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The chase in a page (a test for lossless join decomposition)
• Idea: “Chase” them (apply given FDs Σ	by equating constants) until we can either 

prove that 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅 or until we cannot apply any more FDs.
• Our FDs Σ:
- 𝐴 → 𝐵
- 𝐵 → 𝐶
- 𝐶𝐷 → 𝐴

Example taken from Example 3.22, Section 3.4.2, "Garcia-Molina, Ullman, Widom. Database Systems: The Complete Book. 2nd ed. 2009

Hence 𝑅 contains 𝑎, 𝑏, 𝑐, 𝑑

apply:
𝐴 → 𝐵 

A B C D
a b1 c1 d
a b1 c d2

a3 b c d

apply:
𝐵 → 𝐶 

A B C D
a b1 c d
a b1 c d2

a3 b c d

apply:
𝐶𝐷 → 𝐴 

A B C D
a b1 c d
a b1 c d2

a b c d

apply:
𝐴 → 𝐵 

A B C D
a b c d
a b c d2

a b c d

unique fix point

A B C D
a b1 c1 d
a b2 c d2

a3 b c d

https://northeastern-datalab.github.io/cs7240/
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Chase example 2 C→E D→E

?

E→B
E→D

A B C D E
a b1 c d1 e1

a2 b c d e2

a3 b3 c3 d e

https://northeastern-datalab.github.io/cs7240/


204Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 

Chase example 2
A B C D E
a b1 c d1 e1

a2 b c d e2

a3 b3 c3 d e

A B C D E
a b1 c d1 e1

a2 b c d e1

a3 b3 c3 d e

D→E

A B C D E
a b1 c d1 e
a2 b c d e
a3 b3 c3 d e E→BD

A B C D E
a b c d e
a2 b c d e
a3 b c3 d e

C→E

C→E D→E E→B
E→D

https://northeastern-datalab.github.io/cs7240/
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Chase example 2
A B C D E
a b1 c d1 e1

a2 b c d e2

a3 b3 c3 d e

A B C D E
a b1 c d1 e1

a2 b c d e1

a3 b3 c3 d e

D→E

A B C D E
a b1 c d1 e
a2 b c d e
a3 b3 c3 d e E→BD

A B C D E
a b c d e
a2 b c d e
a3 b c3 d e

C→E

C→E D→E E→B

D→E

A B C D E
a b1 c d1 e1

a2 b c d e
a3 b3 c3 d e

C→E

E→D

https://northeastern-datalab.github.io/cs7240/
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Chase example 2
A B C D E
a b1 c d1 e1

a2 b c d e2

a3 b3 c3 d e

A B C D E
a b1 c d1 e1

a2 b c d e1

a3 b3 c3 d e

D→E

A B C D E
a b1 c d1 e
a2 b c d e
a3 b3 c3 d e E→BD

A B C D E
a b c d e
a2 b c d e
a3 b c3 d e

C→E

C→E D→E E→B

D→E

A B C D E
a b1 c d1 e1

a2 b c d e
a3 b3 c3 d e

C→E

A B C D E
a b1 c d1 e1

a2 b c d e
a3 b c3 d e

A B C D E
a b1 c d1 e
a2 b c d e
a3 b c3 d e

E→B

C→E E→BD

E→D

The chase is 
confluent
(has a unique
fix point)

https://northeastern-datalab.github.io/cs7240/
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Chase example 2
A B C D E
a b1 c d1 e1

a2 b c d e2

a3 b3 c3 d e

A B C D E
a b1 c d1 e1

a2 b c d e1

a3 b3 c3 d e

D→E

A B C D E
a b1 c d1 e
a2 b c d e
a3 b3 c3 d e E→BD

A B C D E
a b c d e
a2 b c d e
a3 b c3 d e

C→E

C→E D→E E→B

D→E

A B C D E
a b1 c d1 e1

a2 b c d e
a3 b3 c3 d e

C→E

A B C D E
a b1 c d1 e1

a2 b c d e
a3 b c3 d e

A B C D E
a b1 c d1 e
a2 b c d e
a3 b c3 d e

E→B

C→E E→BD

E→B
A B C D E
a b c d1 e1

a2 b c d e1

a3 b3 c3 d e

D→E

A B C D E
a b c d1 e
a2 b c d e
a3 b3 c3 d e

E→BD

E→D

The chase is 
confluent
(has a unique
fix point)

https://northeastern-datalab.github.io/cs7240/
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Outline: T1-4: Datalog & ASP

• Datalog
– Datalog rules
– Datalog vs. RA
– Recursion
– Recursion in SQL [moved here from T1-U1: SQL]
– Semantics
– Naive and Semi-naive evaluation (Incremental View Maintenance)
– Chase Procedure (and Decompositions=Factorizations)
– Datalog¬: Datalog with stratified negation
– Datalog±

• Answer Set Programming (ASP)
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NP-hardness (assuming P≠NP)
Takes more time to solve

NP-hard

NP-complete

NP

P

problems that are at least as hard as the 
hardest problems in NP (hard-to-solve)

decision problems 
for which a solution 
can be verified in 
polynomial time
(easy-to-verify)

hardest problems in NP
(easy-to-verify and 
hard-to-solve)

problems that can 
be solved in 
polynomial time

shortest path vertex cover
(decision variant) Halting

problem
hard

optimization
problems

https://northeastern-datalab.github.io/cs7240/
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What should be the Semantics?

?Friend(x,y) :- Likes(x,y),¬Parent(y,x). 

Alternative notations to “¬ Parent(y,x)” are “! Parent(y,x)” or “~Parent(y,x)” or “NOT Parent(y,x)”

Likes (1,2). Parent (2,1).
Likes (1,3).

https://northeastern-datalab.github.io/cs7240/
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What should be the Semantics?

?Box(x) :- Item(x), ¬Box(x).

Alternative notations to “¬ Parent(y,x)” are “! Parent(y,x)” or “~Parent(y,x)” or “NOT Parent(y,x)”

Friend(x,y) :- Likes(x,y),¬Parent(y,x). Likes (1,2). Parent (2,1).
Likes (1,3). Friend(1,3)

Item('ball')

https://northeastern-datalab.github.io/cs7240/
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What should be the Semantics?

LeftBox(x) :- Item(x), ¬RightBox(x).
RightBox(x) :- ¬LeftBox(x).

Item('ball') Box('ball') ???Box(x) :- Item(x), ¬Box(x).

Friend(x,y) :- Likes(x,y),¬Parent(y,x). 

Alternative notations to “¬ Parent(y,x)” are “! Parent(y,x)” or “~Parent(y,x)” or “NOT Parent(y,x)”

Likes (1,2). Parent (2,1).
Likes (1,3). Friend(1,3)

?Item('ball')

https://northeastern-datalab.github.io/cs7240/
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What should be the Semantics?

?

Friend(x,y) :- Likes(x,y),¬Parent(y,x). 

LeftBox(x) :- Item(x), ¬RightBox(x).
RightBox(x) :- ¬LeftBox(x).

LeftBox(x) :- Item(x), ¬RightBox(x).
RightBox(x) :- Item(x), ¬LeftBox(x).

Item('ball') Box('ball')Box(x) :- Item(x), ¬Box(x). ???

Alternative notations to “¬ Parent(y,x)” are “! Parent(y,x)” or “~Parent(y,x)” or “NOT Parent(y,x)”

Likes (1,2). Parent (2,1).
Likes (1,3). Friend(1,3)

Item('ball')

Item('ball')

unsafe!
LeftBox('ball') ???

https://northeastern-datalab.github.io/cs7240/
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What should be the Semantics?

⇒ Adding negation to Datalog is not straightforward!

Item('ball') Box('ball')

Item('ball')
LeftBox('ball')

RightBox('ball')

???

Friend(x,y) :- Likes(x,y),¬Parent(y,x). 

LeftBox(x) :- Item(x), ¬RightBox(x).
RightBox(x) :- ¬LeftBox(x).

LeftBox(x) :- Item(x), ¬RightBox(x).
RightBox(x) :- Item(x), ¬LeftBox(x).

Box(x) :- Item(x), ¬Box(x).

Alternative notations to “¬ Parent(y,x)” are “! Parent(y,x)” or “~Parent(y,x)” or “NOT Parent(y,x)”

Likes (1,2). Parent (2,1).
Likes (1,3). Friend(1,3)

unsafe!
Item('ball') LeftBox('ball') ???

https://northeastern-datalab.github.io/cs7240/
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What should be the Semantics?

Later discussed "stable model" semantics
(intended models = answer sets)

Item('ball') Box('ball')

Item('ball')
LeftBox('ball')

RightBox('ball')

Friend(x,y) :- Likes(x,y),¬Parent(y,x). 

LeftBox(x) :- Item(x), ¬RightBox(x).
RightBox(x) :- ¬LeftBox(x).

LeftBox(x) :- Item(x), ¬RightBox(x).
RightBox(x) :- Item(x), ¬LeftBox(x).

Box(x) :- Item(x), ¬Box(x).

Alternative notations to “¬ Parent(y,x)” are “! Parent(y,x)” or “~Parent(y,x)” or “NOT Parent(y,x)”

Likes (1,2). Parent (2,1).
Likes (1,3). Friend(1,3)

unsafe!
Item('ball') LeftBox('ball')

no "stable" model

https://northeastern-datalab.github.io/cs7240/
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Negation in Datalog

• Various semantics have been proposed for supporting negation in 
Datalog that still allow tractability

• We will first look at two:
- 1. Semipositive Datalog¬ (restricted): PTIME
- 2. Stratified Datalog¬ (standard): PTIME 

• We will later look at a more powerful (but intractable) semantics
- Stable Models semantics (or answer set programming ASP): NP-complete 

and beyond!

https://northeastern-datalab.github.io/cs7240/
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1. Semipositive Programs and Safety

A semipositive program is a program where only EDBs may be negated

Friend(x,y) :- Likes(x,y), ¬Parent(y,x). 

- Safety: rule is safe if every variable occurs in a positive (= unnegated) 
relational atom (ensures domain independence: the results of programs 
are finite and depend only on the actual contents of the database)

- Semantics: same as ordinary Datalog programs

S(x) :- T(y), Arc(z,y), ¬Arc(x,y).

S(x) :- T(y), ¬T(x).

?
?

Exercise: Are following rules safe?

Likes − 𝜋D,EParent

Alternative notations to “¬ Parent(y,x)” are “! Parent(y,x)” or “~Parent(y,x)” or “NOT Parent(y,x)”

https://northeastern-datalab.github.io/cs7240/
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1. Semipositive Programs and Safety

- Safety: rule is safe if every variable occurs in a positive (= unnegated) 
relational atom (ensures domain independence: the results of programs 
are finite and depend only on the actual contents of the database)

- Semantics: same as ordinary Datalog programs

S(x) :- T(y), Arc(z,y), ¬Arc(x,y).

S(x) :- T(y), ¬T(x).

Exercise: Are following rules safe?

Likes − 𝜋D,EParent

unsafe (what is the domain for "x"?)

unsafe

Friend(x,y) :- Likes(x,y), ¬Parent(y,x). 

A semipositive program is a program where only EDBs may be negated

Alternative notations to “¬ Parent(y,x)” are “! Parent(y,x)” or “~Parent(y,x)” or “NOT Parent(y,x)”

https://northeastern-datalab.github.io/cs7240/
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1. Semipositive: Negated Atoms

• We may put ¬, !, ~, or not in front of an EDB atom to negate its meaning.
• EXAMPLE: Return all pairs of nodes (x,y) where y is two hops away from x, 

but not an immediate neighbor of x.

z

yx
?

Arc(Source,Target)

https://northeastern-datalab.github.io/cs7240/
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1. Semipositive: Negated Atoms

• We may put ¬, !, ~, or not in front of an EDB atom to negate its meaning.
• EXAMPLE: Return all pairs of nodes (x,y) where y is two hops away from x, 

but not an immediate neighbor of x.

TwoHopsAway(x,y) :- Arc(x,z), Arc(z,y), ¬Arc(x,y). z

yx

Arc(x,z) Arc(z,y)

¬Arc(x,y)

?SQL
501

A(S,T)

Arc(Source,Target)

https://northeastern-datalab.github.io/cs7240/
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1. Semipositive: Negated Atoms

• We may put ¬, !, ~, or not in front of an EDB atom to negate its meaning.
• EXAMPLE: Return all pairs of nodes (x,y) where y is two hops away from x, 

but not an immediate neighbor of x.

z

yx

Arc(x,z) Arc(z,y)

¬Arc(x,y)

SELECT A1.S, A2.T 
FROM A A1, A A2
WHERE A1.T = A2.S
AND NOT EXISTS 
    (SELECT * 
    FROM A A3
    WHERE A3.S = A1.S
    AND A3.T = A2.T)

501
A(S,T)

TwoHopsAway(x,y) :- Arc(x,z), Arc(z,y), ¬Arc(x,y).

Arc(Source,Target)

https://northeastern-datalab.github.io/cs7240/
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Exampe: beyond Semipositive
Compute all pairs of disconnected nodes in a graph.

Arc(Source,Target)
Node(id)

?

Node is basically ADom:
Node(x) :- Arc(x,y)
Node(y) :- Arc(x,y)

https://northeastern-datalab.github.io/cs7240/
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Exampe: beyond Semipositive
Compute all pairs of disconnected nodes in a graph.

Arc(Source,Target)
Node(id)

Reachable(x,y) :- Arc(x,y).
Reachable(x,y) :- Arc(x,z), Reachable(z,y). 

Node is basically ADom:
Node(x) :- Arc(x,y)
Node(y) :- Arc(x,y)

https://northeastern-datalab.github.io/cs7240/
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Exampe: beyond Semipositive

Stratum 1

Stratum 2

Reachable

Unreachable

• Straightforward syntactic restriction.
• When the Datalog program is stratified, we can 

evaluate IDB predicates stratum-by-stratum
• Once evaluated, treat it as EDB for higher strata.

Compute all pairs of disconnected nodes in a graph.

¬

LeftBox(x) :- ¬LeftBox(x), Item(x). 

Precedence graph
• Nodes = IDB predicates
• Arc p→q if predicate q depends on p
• Label this arc "¬" if predicate p is 

negated

Arc(Source,Target)
Node(id)

Reachable(x,y) :- Arc(x,y).
Reachable(x,y) :- Arc(x,z), Reachable(z,y). 
Unreachable(x,y) :- Node(x), Node(y), ¬Reachable(x,y).

think: "topological sort"

Non-stratified example: ?

Node is basically ADom:
Node(x) :- Arc(x,y)
Node(y) :- Arc(x,y)

https://northeastern-datalab.github.io/cs7240/
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Reachable(x,y) :- Arc(x,y).
Reachable(x,y) :- Arc(x,z), Reachable(z,y). 
Unreachable(x,y) :- Node(x), Node(y), ¬Reachable(x,y).

Exampe: beyond Semipositive

Stratum 1

Stratum 2

Reachable

Unreachable

• Straightforward syntactic restriction.
• When the Datalog program is stratified, we can 

evaluate IDB predicates stratum-by-stratum
• Once evaluated, treat it as EDB for higher strata.

Compute all pairs of disconnected nodes in a graph.

¬

LeftBox
¬

Precedence graph
• Nodes = IDB predicates
• Arc p→q if predicate q depends on p
• Label this arc "¬" if predicate p is 

negated

Arc(Source,Target)
Node(id)

Non-stratified example: LeftBox(x) :- ¬LeftBox(x), Item(x). 

think: "topological sort"

Node is basically ADom:
Node(x) :- Arc(x,y)
Node(y) :- Arc(x,y)

https://northeastern-datalab.github.io/cs7240/
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• DEFINITION: Let P be a Datalog program, E be the set of EDB predicates, and I 
be the set of IDB predicates. A stratification of P is a partitioning of the IDB 
predicates into disjoint sets I1,...,Ik such that:
- For i=1,...,k, every rule with head in Ii has possible body predicates only from E, I1,..., Ii
- For i=1,...,k, every rule with head in Ii has negated body predicates only from E, I1,..., Ii-1

• SEMANTICS:
- For i=1,...,k:

• Compute the IDBs of the stratum Ii, possibly via recursion
• Add computed IDBs to the EDBs

- Due to the definition of stratification, each Ei can be viewed as semipositive

2. Stratified Programs: Definition and Semantics

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/
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2. Theorems on Stratification

• THEOREM 1: A program has a stratification if and only if its dependency graph 
does not contain a cycle with a "negated edge"
- Dependency graph is defined as previously, 

except that edges can be labeled with negation
- Hence, we can test for stratifiability efficiently, 

via graph reachability

A(x) :- B(x).
B(x) :- C(x).
C(x) :- ¬A(x).

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?Can it be 
stratified

Contrast with our earlier 
definition of recursive programs!

https://northeastern-datalab.github.io/cs7240/
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2. Theorems on Stratification

• THEOREM 1: A program has a stratification if and only if its dependency graph 
does not contain a cycle with a "negated edge"
- Dependency graph is defined as previously, 

except that edges can be labeled with negation
- Hence, we can test for stratifiability efficiently, 

via graph reachability

• THEOREM 2: Non-recursive Datalog with negation can always be stratified via 
the topological order

• THEOREM 3: Non-recursive Datalog with negation has the same expressive 
power as the algebra {σ=,	π,	×,	∪,	−} 
- Extendable to RA if we add the comparison predicates <, >, !=, <=, >=

A B

C

¬

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

A(x) :- B(x).
B(x) :- C(x).
C(x) :- ¬A(x).

Contrast with our earlier 
definition of recursive programs!

https://northeastern-datalab.github.io/cs7240/
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Hierarchy of expressiveness

Positive RA (RA+): {σ,π,×,∪}

Union of CQs (UCQs)

Non-recursive Datalog

Non-recursive Datalog 
w/ negation

RA: {σ,π,×,∪, −}

Datalog

Recursive queries

Notice that Datalog and UCQs often assume an unordered domain and no built-in predicates. 
For equality, we assume here an ordered domain and allow built-in predicates (>,<,≤,≥,!=). 

https://northeastern-datalab.github.io/cs7240/
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Hierarchy of expressiveness

Positive RA (RA+): {σ,π,×,∪}

Union of CQs (UCQs)

Non-recursive Datalog

Non-recursive Datalog 
w/ negation

RA: {σ,π,×,∪, −}

Datalog

Recursive queries

Stratified Datalog w/ negation

Notice that Datalog and UCQs often assume an unordered domain and no built-in predicates. 
For equality, we assume here an ordered domain and allow built-in predicates (>,<,≤,≥,!=). 

can express all polynomial 
time queries on ordered 
databases relying on only 
information encoded in 
tables (e.g. excludes 
arithmetical functions)

https://northeastern-datalab.github.io/cs7240/
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Hierarchy of expressiveness

Positive RA (RA+): {σ,π,×,∪}

Union of CQs (UCQs)

Non-recursive Datalog

Non-recursive Datalog 
w/ negation

RA: {σ,π,×,∪, −}

Datalog

Recursive queries

Stratified Datalog w/ negation

Answer set programming / Stable Model Semantics

ASP can express NP-complete problems (and even 
problems higher in the Polynomial hierarchy)
(For Turing-completeness, we would only have to add 
functions, i.e. the ability to create new values not 
previously found in the EDB)

Notice that Datalog and UCQs often assume an unordered domain and no built-in predicates. 
For equality, we assume here an ordered domain and allow built-in predicates (>,<,≤,≥,!=). 

can express all polynomial 
time queries on ordered 
databases relying on only 
information encoded in 
tables (e.g. excludes 
arithmetical functions)

https://northeastern-datalab.github.io/cs7240/
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2. Stratification practice

Q: Find all descendants of Alice, 
who are not descendants of Bob

?

Parent(P,C)

https://northeastern-datalab.github.io/cs7240/
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2. Stratification practice

Q: Find all descendants of Alice, 
who are not descendants of Bob

?

first compute for each 
person their descendants

then use negation

Parent(P,C)

https://northeastern-datalab.github.io/cs7240/
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D(x,y) :- Parent(x,y).
D(x,z) :- Parent(y,z), D(x,y).

2. Stratification practice

Q: Find all descendants of Alice, 
who are not descendants of Bob

?

first compute for each 
person their descendants

then use negation

D

Parent(P,C)

https://northeastern-datalab.github.io/cs7240/
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2. Stratification practice

D(x,y) :- Parent(x,y).
D(x,z) :- Parent(y,z), D(x,y).
Q(x) :- D('Alice',x), ¬D('Bob',x).

Q: Find all descendants of Alice, 
who are not descendants of Bob

first compute for each 
person their descendants

then use negation

D

Q

¬

Parent(P,C)

https://northeastern-datalab.github.io/cs7240/
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DA(y) :- Parent('Alice',y).
DA(y) :- Parent(x,y), DA(x).
DB(y) :- Parent('Bob',y).
DB(y) :- Parent(x,y), DB(x).
Q(x) :- DA(x), ¬DB(x).

2. Stratification practice

D(x,y) :- Parent(x,y).
D(x,z) :- Parent(y,z), D(x,y).
Q(x) :- D('Alice',x), ¬D('Bob',x).

Q: Find all descendants of Alice, 
who are not descendants of Bob

DB

Q
¬

DAD

Q

¬

Parent(P,C)

https://northeastern-datalab.github.io/cs7240/
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Datalog Summary

• EDB (extensional/base relations), IDB (intentional/derived relations)
• Datalog program = set of rules; base relations are also rules
• Datalog can be recursive
- Stratified Datalog with negation still PTIME
- Non-stratified Datalog: stable model semantics, ASP, can model NPC 

problems
• SQL has also been extended to express limited form of recursion
- Using a recursive "with" clause, also called CTE (Common Table Expression)
- Can only have a single IDB

For more details on recursion in SQL see https://www.postgresql.org/docs/14/queries-with.html#QUERIES-WITH-RECURSIVE 

https://northeastern-datalab.github.io/cs7240/
https://www.postgresql.org/docs/14/queries-with.html
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Pre-class conversations

• Last class summary
• Project discussions (in class and after)
• Faculty candidates (today, Feb 29, March 20)

• today: 
- More on Datalog 
- What happens if we add negation? Answer: it depends on how we do it.

• Datalog with stratified negation
• Datalog with more genal negation (stable models), leads to ASP

- Later: Beyond NP with ASP (including 3-colorability in 2 lines)

https://northeastern-datalab.github.io/cs7240/
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Outline: T1-4: Datalog & ASP

• Datalog
– Datalog rules
– Datalog vs. RA
– Recursion
– Recursion in SQL [moved here from T1-U1: SQL]
– Semantics
– Naive and Semi-naive evaluation (Incremental View Maintenance)
– Chase Procedure (and Decompositions=Factorizations)
– Datalog¬: Datalog with stratified negation
– Datalog±

• Answer Set Programming (ASP)
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Datalog±: background

Datalog query language
(stratified negation)

• Much is possible with Datalog

Based on a presentation by Andrea Cali

https://northeastern-datalab.github.io/cs7240/
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Datalog±: background

Ontologies,
Description Logics (DL−Lite) 

Semantic web

Datalog query language
(stratified negation)

• Much is possible with Datalog
• Much is not (observed e.g. by [Patel-Schneider, Horrocks 2006])

Based on a presentation by Andrea Cali

Patel-Schneider, Horrocks. Position paper: A comparison of two modelling paradigms in the Semantic Web. WWW (Semantic Web track). 2006. https://dl.acm.org/doi/10.1145/1135777.1135784 

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/10.1145/1135777.1135784
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Datalog±: goal

Ontologies,
Description Logics (DL−Lite) 

Semantic web

Relational integrity
constraints

Datalog query language
(stratified negation)

• Much is possible with Datalog

Cali, Gottlob, Lukasiewicz, Marnette, Pieris. Datalog+/-: A Family of Logical Knowledge Representation and Query Languages for New Applications. LICS 2010. https://doi.org/10.1109/LICS.2010.27  

• Datalog±  is a framework that extends Datalog with:
- value invention (∃-variables in the head): TGDs (Tuple-Generating Dependencies)
- equality predicate in the head: EGDs (Equality Generating Dependencies)
- constant ⊥ in the head: negative constraints (disjointness)

• Much is not (observed e.g. by [Patel-Schneider, Horrocks 2006])

Datalog±

Based on a presentation by Andrea Cali

Patel-Schneider, Horrocks. Position paper: A comparison of two modelling paradigms in the Semantic Web. WWW (Semantic Web track). 2006. https://dl.acm.org/doi/10.1145/1135777.1135784 

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1109/LICS.2010.27
https://dl.acm.org/doi/10.1145/1135777.1135784
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Datalog and expressiveness for ontological reasoning
Assertion type Datalog rule
Inclusion emp(X)	→	person(X)
(Inverse) role inclusion reportsTo(X	,	Y)	→	manages(Y	,	X)
Reflexive expansion boss(X)	→	manages(X	,	X)
Transitivity manages(X	,	Y),	manages(Y	,	Z)	→	manages(X,	Z)
Concept product seniorEmp(X),	emp(Y)	→	higher(X,	Y)
Participation ?
Disjointness ?
Functionality ?

Ontology assertion Datalog±  rule
Participation boss(X)	→	∃Y	reports(Y	,	X)
Disjointness customer(X),	boss(X	)	→	⊥
Functionality reports(X	,	Y1),	reports	(X	,	Y2)	→	Y1	 =	Y2

Based on a presentation by Andrea Cali

https://northeastern-datalab.github.io/cs7240/
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Datalog± vs. DL
• Much is possible with Datalog

Source: Gottlob, Lukasiewicz, Pieris. Datalog+/-: Questions and Answers. AAAI 2014. https://www.aaai.org/ocs/index.php/KR/KR14/paper/viewPaper/7965 

https://northeastern-datalab.github.io/cs7240/
https://www.aaai.org/ocs/index.php/KR/KR14/paper/viewPaper/7965
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Interesting Observations

• Exploiting schema knowledge in query answering is not trivial
• Languages and algorithms exist that allow for tractable query 

answering
• Applications in real-world scenarios are possible
- Industrial applications in data integration, Semantic Web, ontological 

reasoning
- Companies and Products: RelationalAI, Deepreason.ai, Oracle Semantic 

Technologies, IBM IODT, OntoDLV (Vienna)

Based on a presentation by Andrea Cali

https://northeastern-datalab.github.io/cs7240/
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Outline: T1-4: Datalog & ASP

• Datalog
• Answer Set Programming

– Intro to Rules with Negation
– Horn clauses and Logic Programming
– Stable model semantics
– An application and surprising complexity result
– The power of Disjunctions
– [A surprising application: automating hardness proofs: 

moved to T2-U4: Reverse Data Management]
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Negation in Souffle vs. Negation in ASP

Source: https://souffle-lang.github.io/rules 

YES: stable model semantics 
as used by ASP can deal with 
this  circular definition

NO: safety conditions are still 
the same as for souffle

https://northeastern-datalab.github.io/cs7240/
https://souffle-lang.github.io/rules
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Answer Set Programming (ASP)
• Programming paradigm that can model AI problems (e.g, planning, combinatorics)
• Basic idea 

- Allow non-stratified negation and encode problem (specification & "instance") as logic program rules
- Solutions are so-caled "stable models" of the program

• Semantics based on Possible Worlds and Stable Models 
- Given an answer set program P, there can be multiple solutions (stable models, answer sets)
- Each model M: assignment of true/false value to propositions to make all formulas true (combinatorial)
- Captures default reasoning, non-monotonic reasoning, constrained optimization, exceptions, weak 

exceptions, preferences, etc., in a natural way

• Finding stable models of answer set programs is not easy 
- Current systems CLASP, DLV, clingo, Smodels, etc., extremely sophisticated
- Work by first grounding the program (= replacing variables with constants), suitably transforming it to a 

propositional theory whose models are stable models of the original program (contrast with "lifted 
inference" later )

- These models are found using a SAT solver or solvers using similar ideas to SAT solvers

https://northeastern-datalab.github.io/cs7240/
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Rules with Negation

• Closed world assumption (CWA) as used in standard Datalog:
- If a fact does not logically follow from a set of Datalog clauses, then we conclude that 

the negation of this fact is true.

• Problem: CWA can lead to inconsistencies when negation is allowed in rule 
bodies. Intuition: we can have multiple minimal models ("Herbrand models")

?
What are all the possible *minimal* models:

Example 1:

boring(chess) :- boring(chess).

• Herbrand universe UP (set of all constants) ={chess}
• Herbrand base BP (set of grounded atoms) = {boring(chess)}
• Interpretations (all subsets of BP) = { {}, {boring(chess)} }
• Model: interpretation that makes each ground instance of each rule true

The "boring chess" example is taken from "Ceri, Gottlob, Tanca. What you always wanted to know about Datalog (and never dared to ask). TKDE 1989. https://doi.org/10.1109/69.43410 

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1109/69.43410
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Rules with Negation

• Closed world assumption (CWA) as used in standard Datalog:
- If a fact does not logically follow from a set of Datalog clauses, then we conclude that 

the negation of this fact is true.

• Problem: CWA can lead to inconsistencies when negation is allowed in rule 
bodies. Intuition: we can have multiple minimal models ("Herbrand models")

boring(chess) :- boring(chess).
What are all the possible *minimal* models:

Example 1:

M1 = {}
M2 = {boring(chess)} is a 
model, but not minimal

The "boring chess" example is taken from "Ceri, Gottlob, Tanca. What you always wanted to know about Datalog (and never dared to ask). TKDE 1989. https://doi.org/10.1109/69.43410 

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1109/69.43410
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Rules with Negation

• Closed world assumption (CWA) as used in standard Datalog:
- If a fact does not logically follow from a set of Datalog clauses, then we conclude that 

the negation of this fact is true.

• Problem: CWA can lead to inconsistencies when negation is allowed in rule 
bodies. Intuition: we can have multiple minimal models ("Herbrand models")

boring(chess) :- ¬interesting(chess). ?

boring(chess) :- boring(chess).
Example 1:

M1 = {}
M2 = {boring(chess)} is a 
model, but not minimalExample 2:

Possible interpretations:
{ {}, {b(c)}, {i(c)}, 
{b(c),i(c)} }What are all the possible *minimal* models:

What are all the possible *minimal* models:

The "boring chess" example is taken from "Ceri, Gottlob, Tanca. What you always wanted to know about Datalog (and never dared to ask). TKDE 1989. https://doi.org/10.1109/69.43410 

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1109/69.43410
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Rules with Negation

• Closed world assumption (CWA) as used in standard Datalog:
- If a fact does not logically follow from a set of Datalog clauses, then we conclude that 

the negation of this fact is true.

• Problem: CWA can lead to inconsistencies when negation is allowed in rule 
bodies. Intuition: we can have multiple minimal models ("Herbrand models")

What are all the possible *minimal* models:

What are all the possible *minimal* models:

Example 1:

M1 = {}
M2 = {boring(chess)} is a 
model, but not minimalExample 2:

M1 = {boring(chess)}
M2 = {interesting(chess)}

boring(chess) :- ¬interesting(chess).

boring(chess) :- boring(chess).

The "boring chess" example is taken from "Ceri, Gottlob, Tanca. What you always wanted to know about Datalog (and never dared to ask). TKDE 1989. https://doi.org/10.1109/69.43410 

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1109/69.43410
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Outline: T1-4: Datalog & ASP

• Datalog
• Answer Set Programming

– Intro to Rules with Negation
– Horn clauses and Logic Programming
– Stable model semantics
– An application and surprising complexity result
– The power of Disjunctions
– [A surprising application: automating hardness proofs: 

moved to T2-U4: Reverse Data Management]
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Horn clauses and logic programming
A clause is a disjunction of literals.

A Horn clause has at most one positive (i.e. unnegated) literal. 

Recall: !a	 = ¬a	=	!a	=	~a	=	NOT	a

? Alfred Horn, ~1973
https://en.wikipedia.org/wiki/Alfred_Horn 

a	∧	b	⇒	c	∨	d
1	∧	a	∧	b	⇒	c	∨	d	∨	0

xa	∨	xb	∨	c	∨	d

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Alfred_Horn
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Horn clauses and logic programming
A clause is a disjunction of literals.

A Horn clause has at most one positive (i.e. unnegated) literal. 

xa	∨	xb	∨	c definite clause (exactly one positive)

c unit clause (facts, unconditional knowledge, empty body)

xa	∨	xb goal clause

Recall: !a	 = ¬a	=	!a	=	~a	=	NOT	a

?
?
?

Alfred Horn, ~1973
https://en.wikipedia.org/wiki/Alfred_Horn 

a	∧	b	⇒	c	∨	d
1	∧	a	∧	b	⇒	c	∨	d	∨	0

xa	∨	xb	∨	c	∨	d

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Alfred_Horn
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Horn clauses and logic programming
A clause is a disjunction of literals.

A Horn clause has at most one positive (i.e. unnegated) literal. 

xa	∨	xb	∨	c definite clause (exactly one positive)

c unit clause (facts, unconditional knowledge, empty body)

xa	∨	xb goal clause

¬human(X)	∨	mortal(X)

Recall: !a	 = ¬a	=	!a	=	~a	=	NOT	a

Universal quantification (everything above was propositional)

? ?

Alfred Horn, ~1973
https://en.wikipedia.org/wiki/Alfred_Horn 

a	∧	b	⇒	c	∨	d

a	∧	b	⇒	c
1	⇒	c

1	∧	a	∧	b	⇒	c	∨	d	∨	0

a	∧	b ⇒	0

xa	∨	xb	∨	c	∨	d

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Alfred_Horn
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Horn clauses and logic programming
A clause is a disjunction of literals.

A Horn clause has at most one positive (i.e. unnegated) literal. 

a	∧	b	⇒	c	∨	dxa	∨	xb	∨	c	∨	d

a	∧	b	⇒	cxa	∨	xb	∨	c definite clause (exactly one positive)

1	⇒	cc unit clause (facts, unconditional knowledge, empty body)

1	∧	a	∧	b	⇒	c	∨	d	∨	0

a	∧	b ⇒	0xa	∨	xb goal clause

¬human(X)	∨	mortal(X)
∀X[¬human(X)	∨	mortal(X)] ∀X[	human X 	 ⇒	mortal(X)]

Recall: !a	 = ¬a	=	!a	=	~a	=	NOT	a

Universal quantification (everything above was propositional)

Alfred Horn, ~1973
https://en.wikipedia.org/wiki/Alfred_Horn 

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Alfred_Horn
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Datalog grammar

P ∈ program
r ∈ rule
a ∈ atom
t ∈ term

=
=
=
=

r1. r2. ... rn. 
a0 :- a1,..., am. 
p(t1,..., tk) 
x | "c"

p = set of predicate symbols
x = set of variable symbols
c = set of constants

a ground atom has only constants as terms (no variables)

https://northeastern-datalab.github.io/cs7240/


318Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 

Concepts from logic programming

• P:  Program

• UP:  Herbrand universe (or Herbrand domain or vocabulary)

• BP:  Herbrand base (or alphabet)

• I:  Interpretation (or database instance or dataset)

• M:  Model of P

• A model is minimal if

?
?
?
?

?
?

Jacques Herbrand, 1931
https://en.wikipedia.org/wiki/Jacques_Herbrand 

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Jacques_Herbrand
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Concepts from logic programming

• P:  Program
- set of facts (assertions) and rules (sentences that allow to infer new facts from existing ones)

• UP:  Herbrand universe (or Herbrand domain or vocabulary)

• BP:  Herbrand base (or alphabet)

• I:  Interpretation (or database instance or dataset)

• M:  Model of P

• A model is minimal if

?
?
?

?
?

Jacques Herbrand, 1931
https://en.wikipedia.org/wiki/Jacques_Herbrand 

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Jacques_Herbrand


320Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 

Concepts from logic programming

• P:  Program
- set of facts (assertions) and rules (sentences that allow to infer new facts from existing ones)

• UP:  Herbrand universe (or Herbrand domain or vocabulary)
- set of all constants (variable-free terms) appearing in P (cp. with active domain interpretation)

• BP:  Herbrand base (or alphabet)
- set of all ground atoms (variable-free) constructible with predicates from P and terms from UP 

• I:  Interpretation (or database instance or dataset)

• M:  Model of P

• A model is minimal if

?

?
?

https://northeastern-datalab.github.io/cs7240/
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Concepts from logic programming

• P:  Program
- set of facts (assertions) and rules (sentences that allow to infer new facts from existing ones)

• UP:  Herbrand universe (or Herbrand domain or vocabulary)
- set of all constants (variable-free terms) appearing in P (cp. with active domain interpretation)

• BP:  Herbrand base (or alphabet)
- set of all ground atoms (variable-free) constructible with predicates from P and terms from UP

• I:  Interpretation (or database instance or dataset)
- any subset of BP   

• M:  Model of P
- an interpretation that makes each ground instance of each rule in P true (a ground instance 

of a rule is obtained by replacing all variables in the rule by elements from UP)

• A model is minimal if ?

https://northeastern-datalab.github.io/cs7240/
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Concepts from logic programming

• P:  Program
- set of facts (assertions) and rules (sentences that allow to infer new facts from existing ones)

• UP:  Herbrand universe (or Herbrand domain or vocabulary)
- set of all constants (variable-free terms) appearing in P (cp. with active domain interpretation)

• BP:  Herbrand base (or alphabet)
- set of all ground atoms (variable-free) constructible with predicates from P and terms from UP

• I:  Interpretation (or database instance or dataset)
- any subset of BP   

• M:  Model of P
- an interpretation that makes each ground instance of each rule in P true (a ground instance 

of a rule is obtained by replacing all variables in the rule by elements from UP)

• A model is minimal if it does not properly contain any other model

https://northeastern-datalab.github.io/cs7240/
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Herbrand, interpretations, models
Program P

Herbrand universe UP

Herbrand base BP

Interpretation

"a" "b" "c"

?
?

?
arc("a","b"). arc("b","c").
path(x,y) :- arc(x,y).
path(x,y) :- arc(x,z), path(z,y).

https://northeastern-datalab.github.io/cs7240/
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Herbrand, interpretations, models
Program P

Herbrand universe UP

Herbrand base BP

Interpretation

"a" "b" "c"

?

?
{"a", "b", "c"}

arc("a","b"). arc("b","c").
path(x,y) :- arc(x,y).
path(x,y) :- arc(x,z), path(z,y).

https://northeastern-datalab.github.io/cs7240/
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Herbrand, interpretations, models
Program P

Herbrand universe UP

Herbrand base BP

Interpretation

"a" "b" "c"

?
{"a", "b", "c"}

arc("a","a").
arc("a","b").

arc("c","c").

⋮
arc("a","c").

arc("c","b").

path("a","a").
path("a","b").

path("c","c").

⋮
path("a","c").

path("c","b").

{

}

Contains a wild mix of
• explicit facts that we know 

(IDB) like arc("a","b"),
• facts that can be inferred 

(EDB) like path("a","b"), and
• facts that cannot be inferred 

like path("c","a") or arc("a","a")

arc("a","b"). arc("b","c").
path(x,y) :- arc(x,y).
path(x,y) :- arc(x,z), path(z,y).

https://northeastern-datalab.github.io/cs7240/
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Herbrand, interpretations, models
Program P

Herbrand universe UP

Herbrand base BP

{"a", "b", "c"}

Interpretation
arc("a","b"). arc("b","c"). arc("b","a").
path("a","b"). path("b","c"). path("b","a").
path("a","c"). path("a","a").

Is this interpretation a model?

"a" "b" "c"

?

one of many interpretationsarc("a","b"). arc("b","c").
path(x,y) :- arc(x,y).
path(x,y) :- arc(x,z), path(z,y).

arc("a","a").
arc("a","b").

arc("c","c").

⋮
arc("a","c").

arc("c","b").

path("a","a").
path("a","b").

path("c","c").

⋮
path("a","c").

path("c","b").

{

}

https://northeastern-datalab.github.io/cs7240/


327Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 

arc("a","b"). arc("b","c").
path(x,y) :- arc(x,y).
path(x,y) :- arc(x,z), path(z,y).

Herbrand, interpretations, models
Program P

Herbrand universe UP

Herbrand base BP

{"a", "b", "c"}

Interpretation
arc("a","b"). arc("b","c"). arc("b","a").
path("a","b"). path("b","c"). path("b","a").
path("a","c"). path("a","a").

Is this interpretation a model?
No! There is a rule for which there is a ground
instance that is not true in this interpretation

"a" "b" "c"

x→"b", y→"b", z→"a": 
path("b","b") :- arc("b","a"), path("a","b").

one of many interpretations

This is an example grounding of a rule.

arc("a","a").
arc("a","b").

arc("c","c").

⋮
arc("a","c").

arc("c","b").

path("a","a").
path("a","b").

path("c","c").

⋮
path("a","c").

path("c","b").

{

}

https://northeastern-datalab.github.io/cs7240/
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Herbrand, interpretations, models
Program P

Herbrand universe UP

Herbrand base BP

{"a", "b", "c"}

Interpretation
arc("a","b"). arc("b","c"). arc("b","a").
path("a","b"). path("b","c"). path("b","a").
path("a","c"). path("a","a"). path("b","b").

"a" "b" "c"

Is this new interpretation a model? ?

arc("a","b"). arc("b","c").
path(x,y) :- arc(x,y).
path(x,y) :- arc(x,z), path(z,y).

arc("a","a").
arc("a","b").

arc("c","c").

⋮
arc("a","c").

arc("c","b").

path("a","a").
path("a","b").

path("c","c").

⋮
path("a","c").

path("c","b").

{

}

https://northeastern-datalab.github.io/cs7240/
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Herbrand, interpretations, models
Program P

Herbrand universe UP

Herbrand base BP

{"a", "b", "c"}

Interpretation
arc("a","b"). arc("b","c"). arc("b","a").
path("a","b"). path("b","c"). path("b","a").
path("a","c"). path("a","a"). path("b","b").

Yes!

Is this model minimal?

"a" "b" "c"

Is this new interpretation a model?

?

arc("a","b"). arc("b","c").
path(x,y) :- arc(x,y).
path(x,y) :- arc(x,z), path(z,y).

arc("a","a").
arc("a","b").

arc("c","c").

⋮
arc("a","c").

arc("c","b").

path("a","a").
path("a","b").

path("c","c").

⋮
path("a","c").

path("c","b").

{

}

https://northeastern-datalab.github.io/cs7240/
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Herbrand, interpretations, models

arc("a","b"). arc("b","c").
path(x,y) :- arc(x,y).
path(x,y) :- arc(x,z), path(z,y).

Program P

Herbrand universe UP

Herbrand base BP

{"a", "b", "c"}

Interpretation
arc("a","b"). arc("b","c"). arc("b","a").
path("a","b"). path("b","c"). path("b","a").
path("a","c"). path("a","a"). path("b","b").

Yes!

Is this model minimal?
No! There is a properly contained model

"a" "b" "c"

Is this new interpretation a model?

arc("a","a").
arc("a","b").

arc("c","c").

⋮
arc("a","c").

arc("c","b").

path("a","a").
path("a","b").

path("c","c").

⋮
path("a","c").

path("c","b").

{

}

https://northeastern-datalab.github.io/cs7240/
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Herbrand, interpretations, models
Program P

Herbrand universe UP

Herbrand base BP
arc(a,a).
arc(a,b).

{a, b, c}

arc(c,c).

⋮

Interpretation
arc(a,b). arc(b,c). arc(b,a). 
path(a,b). path(b,c). path(b,a).
path(a,c). path(a,a). path(b,b).

arc(a,c).

arc(c,b).

path(a,a).
path(a,b).

path(c,c).

path(a,c).

path(c,b).

Yes!

{

No! There is a properly contained model

a b c

Convention in ASP:
• Variables begin 

with upper-case
• constants begin 

with lower-case

}

⋮

Is this model minimal?

Is this new interpretation a model?

arc(a,b). arc(b,c).
path(X,Y) :- arc(X,Y).
path(X,Y) :- arc(X,Z), path(Z,Y).

https://northeastern-datalab.github.io/cs7240/
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Evaluating ASP's with Clingo
paths1

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 
Postassco/Clingo available for download at: https://teaching.potassco.org/

clingo paths1.txt

paths1.txt
a b c

?

arc(a,b). arc(b,c).
path(X,Y) :- arc(X,Y).
path(X,Y) :- arc(X,Z), path(Z,Y).

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
https://teaching.potassco.org/
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Evaluating ASP's with Clingo
paths1

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 
Postassco/Clingo available for download at: https://teaching.potassco.org/

clingo paths1.txt

Solving...
Answer: 1
arc(a,b) arc(b,c) path(a,b) 
path(b,c) path(a,c)
SATISFIABLE

Shows all predicates, including EDBs

paths1.txt
arc(a,b). arc(b,c).
path(X,Y) :- arc(X,Y).
path(X,Y) :- arc(X,Z), path(Z,Y).

a b c

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
https://teaching.potassco.org/
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Evaluating ASP's with Clingo
paths2

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 
Postassco/Clingo available for download at: https://teaching.potassco.org/

clingo paths2.txt

Solving...
Answer: 1
path(a,b) path(b,c) path(a,c)
SATISFIABLE

paths2.txt
arc(a,b). arc(b,c).
path(X,Y) :- arc(X,Y).
path(X,Y) :- arc(X,Z), path(Z,Y).
#show path/2.

a b c

Show only the facts in the predicate 
named "path" with arity "2"

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
https://teaching.potassco.org/
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Outline: T1-4: Datalog & ASP

• Datalog
• Answer Set Programming

– Intro to Rules with Negation
– Horn clauses and Logic Programming
– Stable model semantics
– An application and surprising complexity result
– The power of Disjunctions
– [A surprising application: automating hardness proofs: 

moved to T2-U4: Reverse Data Management]



340Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 

Semantics: Informally

• Informally, a stable model M of a ground program P is a set of 
ground atoms such that
1. Every rule is satisfied: 

 i.e., for any rule in P

 if each atom ai is satisfied (ai's are in M) and no atom bi is satisfied 
 (i.e. no bi is in M), then h is in M.

2. Every h Î M can be derived from a rule by a "non-circular reasoning"
(informal for: we are looking for minimal models, or there is some 
"derivation provenance")

h :- a1, ..., am, ¬b1, ..., ¬bn.

Recall that alternatives to "¬" are "not" and "!"and "~". Writing out "not" explicitly is more common in ASP.

https://northeastern-datalab.github.io/cs7240/
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Semantics: "non-circular" more formally
Idea: Guess a model M (= a set of atoms). Then verify M is the exact set of atoms 
that "can be derived" under standard minimal model semantics on PM on a 
modified positive program PM (called "the reduct") derived from P as follows:

M is a stable model of P iff M is the least model of PM

1. Create all possible groundings of the rules of program P

2. Delete all grounded rules that contradict M 

h :- a1, ..., am, ¬b1, ..., ¬bn. if some bi ∊ M

3. In remaining grounded rules, delete all negative literals

h :- a1, ..., am, ¬b1, ..., ¬bn. if no bi ∊ M

Recall that alternatives to "¬" are "not" and "!"and "~". Writing out "not" explicitly is more common in ASP.

https://northeastern-datalab.github.io/cs7240/
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Semantics: "non-circular" more concisely

The reduct of P w.r.t M is:

h :- a1, ..., am.PM = { 
∧ no bi ∊ Mh :- a1, ..., am, ¬b1, ..., ¬bn.

|
∊ grounding of P }

M is a stable model of P iff M is the least model of PM

Idea: Guess a model M (= a set of atoms). Then verify M is the exact set of atoms 
that "can be derived" under standard minimal model semantics on PM on a 
modified positive program PM (called "the reduct") derived from P as follows:

Recall that alternatives to "¬" are "not" and "!"and "~". Writing out "not" explicitly is more common in ASP.

https://northeastern-datalab.github.io/cs7240/
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Examples

a :- a.P1:

M={a} Is M a stable model of P1? ?

"a" is a proposition that is either true or false

https://northeastern-datalab.github.io/cs7240/
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Examples

a :- a.P1:

M={a}

What is a stable model??
not a stable model (not minimal, derivation of "a" is based 
on circular reasoning: {a} is not least model of a :- a)

"a" is a proposition that is either true or false

https://northeastern-datalab.github.io/cs7240/
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Examples

a :- a.P1:

M={a}

M={} stable model

a :- not b.P2:

?
{ {a}, {b},
  {}, {a,b} }

not a stable model (not minimal, derivation of "a" is based 
on circular reasoning: {a} is not least model of a :- a)

Interpretations:

"a" is a proposition that is either true or false. Intuitively a predicate with zero arguments (arity 0)

https://northeastern-datalab.github.io/cs7240/
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Examples

a :- a.P1:

M={a}

M={} stable model

not a stable model (not minimal, derivation of "a" is based 
on circular reasoning: {a} is not least model of a :- a)

a :- not b.P2:

?
{ {a}, {b},
  {}, {a,b} } a :- not b. {}

Interpretations:

"a" is a proposition that is either true or false

https://northeastern-datalab.github.io/cs7240/
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Interpretations:

Examples

a :- a.P1:

M={a}

M={} stable model

a :- not b.P2:

?
{ {a}, {b},
  {}, {a,b} }

a :- not b.

a :- not b.

{a}

{}

not a stable model (not minimal, derivation of "a" is based 
on circular reasoning: {a} is not least model of a :- a)

"a" is a proposition that is either true or false

https://northeastern-datalab.github.io/cs7240/
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Interpretations:

Examples

a :- a.P1:

M={a}

M={} stable model

a :- not b.P2:

M={a}
only stable model (compare to the the earlier chess example)
a :- not a.P3:

?
{ {}, {a} }

{ {a}, {b},
  {}, {a,b} }

a :- not b.

a :- not b.

{a}

{}

not a stable model (not minimal, derivation of "a" is based 
on circular reasoning: {a} is not least model of a :- a)

"a" is a proposition that is either true or false

https://northeastern-datalab.github.io/cs7240/
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Interpretations:

Examples

a :- a.P1:

M={a}

M={} stable model

a :- not b.P2:

M={a}

a :- not a.P3:

has no stable model (cp. to earlier "Box(x) :- Item(x), ¬Box(x).")

{ {}, {a} }
a :- not a.

a :- not a.

{a}
{}

only stable model

{ {a}, {b},
  {}, {a,b} }

a :- not b.

a :- not b.

{a}

{}

not a stable model (not minimal, derivation of "a" is based 
on circular reasoning: {a} is not least model of a :- a)

"a" is a proposition that is either true or false

https://northeastern-datalab.github.io/cs7240/
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Examples

a :- not b.
b :- not a.

P4:

?

https://northeastern-datalab.github.io/cs7240/
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Examples

a :- not b.
b :- not a.

P4:

M1={a}
two stable modelsM2={b}

?

How can you "prove" that 
M1 is a stable model?

https://northeastern-datalab.github.io/cs7240/


352Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 

Examples

a :- not b.
b :- not a.

P4:

M1={a}
two stable modelsM2={b}

a :- not b.
b :- not a.

https://northeastern-datalab.github.io/cs7240/
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Examples

a :- not b.
b :- not a.

P4:

M1={a}
two stable modelsM2={b}

a :- not b.
b :- not a.
a :- not a.

P5:

?

a :- not b.
b :- not a.

{ {}, {a}, {b}, {a,b} }

https://northeastern-datalab.github.io/cs7240/
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Examples

a :- not b.
b :- not a.

P4:

M1={a}
two stable modelsM2={b}

a :- not b.
b :- not a.
a :- not a.

P5:

M={a} only stable model

?

How can you "prove" that 
M is a stable model?

a :- not b.
b :- not a.

https://northeastern-datalab.github.io/cs7240/
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Examples

P4:

M1={a}
two stable modelsM2={b}

P5:

M={a} only stable model

a :- not b.
b :- not a.
a :- not a.

a :- not b.
b :- not a.

a :- not b.
b :- not a.
a :- not a.

a :- not b.
b :- not a.

https://northeastern-datalab.github.io/cs7240/
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Evaluating ASP's with Clingo
p4.txt

M1={a}
M2={b}

M={a}

a :- not b.
b :- not a.

a :- not b.
b :- not a.
a :- not a.

clingo p4.txt -n 0
Answer: 1
b
Answer: 2
a
SATISFIABLE

p5.txt
clingo p5.txt -n 0

p4, p5print all stable models (not just one)

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 
Postassco/Clingo: Download: https://potassco.org/clingo/, Running in the browser: https://potassco.org/clingo/run/, More resources on clingo: https://teaching.potassco.org/

Answer: 1
a
SATISFIABLE

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
https://potassco.org/clingo/
https://potassco.org/clingo/run/
https://teaching.potassco.org/
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Pre-class conversations

• Last class summary
• Scribe correction: I make a pass on Monday (before next class)
• Project discussions (in class and after)
• Faculty candidates (THU Feb 29, WED March 20)

• Today: 
- Stable models, ASP
- Later: Beyond NP with ASP (including 3-colorability in 2 lines)

https://northeastern-datalab.github.io/cs7240/
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Outline: T1-4: Datalog & ASP

• Datalog
• Answer Set Programming

– Intro to Rules with Negation
– Horn clauses and Logic Programming
– Stable model semantics
– An application and surprising complexity result
– The power of Disjunctions
– [A surprising application: automating hardness proofs: 

moved to T2-U4: Reverse Data Management]
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Interpretations:

Discussion from last time
a :- not b.P2:

M={a} is the only stable model { {a}, {b},
  {}, {a,b} }

a :- not b.

a :- not b.

{a}

{}
not	b	⇒	a

b	∨	a
a	∨	b

not	a	⇒	b

b :- not a.P6:

M={b} is the only stable model

?
"Why should syntax determine 
the semantics?"

Logically 
equivalent

https://northeastern-datalab.github.io/cs7240/
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Interpretations:

Discussion from last time
a :- not b.P2:

M={a} is the only stable model { {a}, {b},
  {}, {a,b} }

a :- not b.

a :- not b.

{a}

{}
not	b	⇒	a

b	∨	a
a	∨	b

not	a	⇒	b

b :- not a.

a :- a.

a	⇒	a
xa	∨	a

P6:

M={b} is the only stable model

recall that we want to have
the least model in standard 
Datalog (non-circular)

Logically 
equivalent

https://northeastern-datalab.github.io/cs7240/
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What do empty bodies or heads mean in ASP?

a :- b, not c.

Empty body:

a.

Empty head:

:- b, not c.

0	∨	a	⇐1	∧	b	∧	¬c
"Disjunctive Logic Programming": disjunctions in the head

Think of the head as a disjunction, body as conjunction

?

?

https://northeastern-datalab.github.io/cs7240/
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What do empty bodies or heads mean in ASP?

Empty body:

Empty head:

0	∨	a	⇐1	∧	b	∧	¬c
Think of the head as a disjunction, body as conjunction

a	⇐1 Empty body describes a fact: 
"a" needs to be true. 
Also in Datalog

a :- b, not c.

a.

:- b, not c. ?

"Disjunctive Logic Programming": disjunctions in the head

https://northeastern-datalab.github.io/cs7240/
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What do empty bodies or heads mean in ASP?

Empty body:

Empty head:

0	∨	a	⇐1	∧	b	∧	¬c
Think of the head as a disjunction, body as conjunction

a	⇐1 Empty body describes a fact: 
"a" needs to be true. 
Also in Datalog

0	 ⇐	b	∧	¬c

Empty heads describes a constraint: "b and not c" must 
not be true in any model. Emtpy head describes a 
condition in the body which leads to contradiction (false)

a :- b, not c.

a.

:- b, not c.

"Disjunctive Logic Programming": disjunctions in the head

https://northeastern-datalab.github.io/cs7240/
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3-colorability

Q: For a graph (V, E) assign each vertex a color in {1, 2, 3} 
such that no adjacent vertices have the same color.

Convention in ASP: 
Capital letters are 
variables, lower case 
letters constants

Cp. edge(X,a)
vs. edge(x,"a")

b

c

a

?

https://northeastern-datalab.github.io/cs7240/
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Q: For a graph (V, E) assign each vertex a color in {1, 2, 3} 
such that no adjacent vertices have the same color.

3-colorability

Convention in ASP: 
Capital letters are 
variables, lower case 
letters constants

Cp. edge(X,a)
vs. edge(x,"a")

b

c

a

vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).

?

EDB (facts)

IDB

Every vertex needs to have a color

Vertices from an edge can't have same color?

https://northeastern-datalab.github.io/cs7240/
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3-colorability

Convention in ASP: 
Capital letters are 
variables, lower case 
letters constants

Cp. edge(X,a)
vs. edge(x,"a")

b

c

a

vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).
color(V,1) :- not color(V,2), not color(V,3), vertex(V). 
color(V,2) :- not color(V,3), not color(V,1), vertex(V). 
color(V,3) :- not color(V,1), not color(V,2), vertex(V). 

EDB (facts)

IDB

Every vertex needs to have a color

Vertices from an edge can't have same color?

Q: For a graph (V, E) assign each vertex a color in {1, 2, 3} 
such that no adjacent vertices have the same color.

https://northeastern-datalab.github.io/cs7240/
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3-colorability

Convention in ASP: 
Capital letters are 
variables, lower case 
letters constants

Cp. edge(X,a)
vs. edge(x,"a")

b

c

a

vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).
color(V,1) :- not color(V,2), not color(V,3), vertex(V). 
color(V,2) :- not color(V,3), not color(V,1), vertex(V). 
color(V,3) :- not color(V,1), not color(V,2), vertex(V). 

EDB (facts)

IDB

":- edge(a,X), edge(b,X)" means that "a" and "b" don't share a neighbor

Vertices from an edge can't have same color?

Q: For a graph (V, E) assign each vertex a color in {1, 2, 3} 
such that no adjacent vertices have the same color.

https://northeastern-datalab.github.io/cs7240/
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3-colorability

Convention in ASP: 
Capital letters are 
variables, lower case 
letters constants

Cp. edge(X,a)
vs. edge(x,"a")

b

c

a

vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).
color(V,1) :- not color(V,2), not color(V,3), vertex(V). 
color(V,2) :- not color(V,3), not color(V,1), vertex(V). 
color(V,3) :- not color(V,1), not color(V,2), vertex(V). 
:- edge(V,U), color(V,C), color(U,C).

EDB (facts)

IDB

constraint

":- edge(a,X), edge(b,X)" means that "a" and "b" don't share a neighbor

Vertices from an edge can't have same color

Q: For a graph (V, E) assign each vertex a color in {1, 2, 3} 
such that no adjacent vertices have the same color.

https://northeastern-datalab.github.io/cs7240/
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3-colorability with Clingo
clingo 3colorability1.txt

3colorability1.txt

b

c

a

Answer: 1
vertex(a) vertex(b) vertex(c) edge(a,b) edge(a,c) color(a,1) 
color(b,3) color(c,3)
SATISFIABLE

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

Returns a stable model if it 
exists. Since there is a 
stable model, the problem is 
"satisfiable".

vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).
color(V,1) :- not color(V,2), not color(V,3), vertex(V). 
color(V,2) :- not color(V,3), not color(V,1), vertex(V). 
color(V,3) :- not color(V,1), not color(V,2), vertex(V). 
:- edge(V,U), color(V,C), color(U,C).

3colorability1

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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3-colorability with Clingo
clingo 3colorability1.txt -n 0

3colorability1.txt

b

c

a

Answer: 1
vertex(a) vertex(b) vertex(c) edge(a,b) edge(a,c) 
color(a,1) color(b,3) color(c,3)
Answer: 2
vertex(a) vertex(b) vertex(c) edge(a,b) edge(a,c) 
color(a,1) color(b,3) color(c,2)
Answer: 3
vertex(a) vertex(b) vertex(c) edge(a,b) edge(a,c) 
color(a,1) color(b,2) color(c,3)

...

Answer: 11
vertex(a) vertex(b) vertex(c) edge(a,b) edge(a,c) 
color(a,3) color(b,2) color(c,2)
Answer: 12
vertex(a) vertex(b) vertex(c) edge(a,b) edge(a,c) 
color(a,3) color(b,1) color(c,2)
SATISFIABLE

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).
color(V,1) :- not color(V,2), not color(V,3), vertex(V). 
color(V,2) :- not color(V,3), not color(V,1), vertex(V). 
color(V,3) :- not color(V,1), not color(V,2), vertex(V). 
:- edge(V,U), color(V,C), color(U,C).

3colorability1

print all stable models (not just one)

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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Outline: T1-4: Datalog & ASP

• Datalog
• Answer Set Programming

– Intro to Rules with Negation
– Horn clauses and Logic Programming
– Stable model semantics
– An application and surprising complexity result
– The power of Disjunctions
– [A surprising application: automating hardness proofs: 

moved to T2-U4: Reverse Data Management]
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Data Conflict Resolution
Using Trust Mappings

Wolfgang Gatterbauer & Dan Suciu
June 8, Sigmod 2010
Paper: https://doi.org/10.1145/1807167.1807193
Full version with proofs: http://arxiv.org/pdf/1012.3320 
Old Project web page: https://db.cs.washington.edu/projects/beliefdb/ 

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/1807167.1807193
http://arxiv.org/pdf/1012.3320
https://db.cs.washington.edu/projects/beliefdb/
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Alice

Bob

Problem in social data: often no single ground truth

Charlie

What is the origin 
of this glyph? : ship hull

: cow

: jar

The Indus Script*

* Current state of knowledge on the Indus Script: Rao et al., Science 324(5931):1165, May 2009

https://doi.org/10.1145/1807167.1807193
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arrow

arrowarrow

“Implicit belief”
ship hull

Alice

Bob
glyph origin

cow

glyph origin

fish

100

50

80

Background: Conflicts & Trust in Community DBs

Alice ¬ Bob (100)
 Alice ¬ Charlie (50)
 Bob ¬ Alice (80)

ship hull
cow
jar
fish
knot

arrow

glyph origin
Alice
Bob
Charlie
Bob
Charlie
Charlie

“Explicit belief”

Priorities

“Beliefs”: annotated 
 (key,value) pairs

Trust mappings

Conflicting beliefs

Recent work on community databases:

Charlie
glyph origin

jar
knotTaylor & Ives [SIGMOD’06] 

Green et al. [VLDB’07] 
Kot & Koch [VLDB’09]
GBKS [VLDB’09] 

Orchestra
Youtopia
BeliefDB

fish
arrowarrowarrow

fishfish

arrow

https://doi.org/10.1145/1807167.1807193
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glyph origin
jar t1jar

1. Incorrect inserts
– Value depends on order of inserts

Limitations of previous work: transient effects

Alice

Charlie

Bob
glyph origin

glyph origin
jar t2

cow t3

Alice would have
preferred Bob’s 
value over Charlie’s

100

50

https://doi.org/10.1145/1807167.1807193
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Alice 50
glyph origin

jar t2

glyph origin
jar t1jar

cow t4

1. Incorrect inserts
– Value depends on order of inserts

2. Incorrect updates
– Mis-handling of revokes

Limitations of previous work: transient effects

Charlie

Bob
glyph origin

jar t3

jar

Automatic conflict resolution with trust mappings: 
1. How to define a globally consistent solution?
2. How to calculate it efficiently?
(3. Several extensions)

Alice and Bob trust each 
other most, but have lost 
“justification” for their beliefs

100 80

GS [Sigmod’10] 

https://doi.org/10.1145/1807167.1807193
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Agenda

1. Stable solutions
– how to define a unique and consistent solution?

2. Resolution algorithm
– how to calculate the solution efficiently?

3. Extensions
– how to deal with “negative beliefs”?

https://doi.org/10.1145/1807167.1807193
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30

Binary Trust Networks (BTNs)

D:?C:?

B:wA:v

User D is
 user C’s 
“preferred 
 parent”

User A has explicit belief v

To simplify presentation: focus on binary TNs

Alice Bob
glyph origin

100

80
Charlie

glyph origin
Dhana

glyph origin

40
Focus on one single key
(we ignore the glyph)

glyph origin
cowship hull

https://doi.org/10.1145/1807167.1807193
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N2:? N3:?N1:? D:?A:v

N4:?

N2:v N3:vN1:v D:vA:v

N4:?

N2:v N3:vN1:v D:vA:v

N4:v

The definition of a globally consistent solution

D:?C:?

B:wA:v• Stable solution
– assignment of values to each node, 

s.t. each belief has a “non-dominated 
lineage” to an explicit belief

non-dominating

https://doi.org/10.1145/1807167.1807193
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The definition of a globally consistent solution

D:vC:v

B:wA:v

SS1=(A:v, B:w, C:v, D:v)

non-dominating

N2:v N3:vN1:v D:vA:v

N4:v

• Stable solution
– assignment of values to each node, 

s.t. each belief has a “non-dominated 
lineage” to an explicit belief

https://doi.org/10.1145/1807167.1807193
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• Stable solution
– assignment of values to each node, 

s.t. each belief has a “non-dominated 
lineage” to an explicit belief

The definition of a globally consistent solution

D:wC:w

B:wA:v

SS1=(A:v, B:w, C:v, D:v)
SS2=(A:v, B:w, C:w, D:w)N2:v N3:vN1:v D:vA:v

N4:v

https://doi.org/10.1145/1807167.1807193
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N2:v N3:vN1:v

Possible and certain values from all stable solutions

D:?C:?

B:wA:v

SS1=(A:v, B:w, C:v, D:v)
SS2=(A:v, B:w, C:w, D:w)

X poss(X) cert(X)

A {v}
B {w}
C {v,w}
D {v,w}

{v}
{w}
Æ
Æ

• Possible / Certain semantics
– a stable solution determines, for each 

node, a possible value (“poss”)
– certain value (“cert”) = intersection of 

all stable solutions, per user

D:vA:v

N4:v

• Stable solution
– assignment of values to each node, 

s.t. each belief has a “non-dominated 
lineage” to an explicit belief

https://doi.org/10.1145/1807167.1807193
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Logic programs (LP) with stable model semantics

Ti
m

e 
[s

ec
]

0

0

1

10

100

1,000

10,000

0 50 100 150 200

0.1

0.01
DLV

State-of-the-art LP solver� Previous work on peer data 
exchange suggest using LPs.

Greco et al. [TKDE’03]

0 50 100 150 200

But solving LPs is hard L

Size of the network (#N + #E)

Arenas et al. [TLP’03]
Barcelo, Bertossi [PADL’03]
Bertossi, Bravo [LPAR’07]

10

1

1,000

100

10,000

Yet surprisingly, our
problem allows a 
PTIME solution J

poss(c,X) :- poss(a,X).
block(c,b,Y) :- poss(b,Y), poss(c,X), X!=Y.
 poss(c,Y) :- poss(b,Y), not block(c,b,Y).C

A B

� LPs can capture this semantics.

� There exist powerful and free 
LP solver available.

Convention from LP solver DLV: constants and predicates start with lowercase letters, variables with uppercase 
letters.

https://doi.org/10.1145/1807167.1807193


405Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010, https://doi.org/10.1145/1807167.1807193 

DLV example
poss(X,U) ?

./dlv.bin – brave 
input.txt. query-.txt

input.txt query.txt

Size: 38

Executing program

Result

% --- Insert explicit beliefs ---
possH(h8_0,1).
possH(h11_0,0).
possH(h12_0,1).
possH(h13_0,0).
possH(h14_0,1).
% --- Node: 0 ---
possH(h0_1,X) :- possH(h0_0,X).
block(h0_1,11,X) :- poss(11,X), possH(h0_1,Y), Y!=X.
possH(h0_1,X) :- poss(11,X), not block(h0_1,11,X).
possH(h0_2,X) :- possH(h0_1,X).
block(h0_2,3,X) :- poss(3,X), possH(h0_2,Y), Y!=X.
possH(h0_2,X) :- poss(3,X), not block(h0_2,3,X).
possH(h0_3,X) :- possH(h0_2,X).
block(h0_3,12,X) :- poss(12,X), possH(h0_3,Y), Y!=X.
possH(h0_3,X) :- poss(12,X), not block(h0_3,12,X).
poss(0,X) :- possH(h0_3,X).
% --- Node: 1 ---
possH(h1_1,X) :- possH(h1_0,X).
block(h1_1,2,X) :- poss(2,X), possH(h1_1,Y), Y!=X.
possH(h1_1,X) :- poss(2,X), not block(h1_1,2,X).
possH(h1_2,X) :- possH(h1_1,X).
block(h1_2,0,X) :- poss(0,X), possH(h1_2,Y), Y!=X.
possH(h1_2,X) :- poss(0,X), not block(h1_2,0,X).
possH(h1_3,X) :- possH(h1_2,X).
block(h1_3,5,X) :- poss(5,X), possH(h1_3,Y), Y!=X.
possH(h1_3,X) :- poss(5,X), not block(h1_3,5,X).
possH(h1_4,X) :- possH(h1_3,X).
block(h1_4,13,X) :- poss(13,X), possH(h1_4,Y), Y!=X.
possH(h1_4,X) :- poss(13,X), not block(h1_4,13,X).
poss(1,X) :- possH(h1_4,X).
% --- Node: 2 ---
. . . . . . 

% --- Node: 13 ---
poss(13,X) :- possH(h13_0,X).
% --- Node: 14 ---
poss(14,X) :- possH(h14_0,X).
% --- Node: 15 ---
poss(15,X) :- possH(h15_0,X).

https://doi.org/10.1145/1807167.1807193
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Agenda

1. Stable solutions
– how to define a unique and consistent solution?

2. Resolution algorithm
– how to calculate the solution efficiently?

3. Extensions
– how to deal with “negative beliefs”?

https://doi.org/10.1145/1807167.1807193
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Resolution Algorithm

closed

G

A{v} C{u}

D E F

H

J L

B{w}

X poss(X) cert(X)

A {v}
B {w}
C {u}
D ?
E ?
F ?
G ?
H ?
J ?
K ?
L ?

{v}
{w}
{u}
?
?
?
?
?
?
?
?

Initialize closed with explicit beliefs
� Keep 2 sets: closed / open

open

K

Focus on binary trust network

preferred

non-preferred

https://doi.org/10.1145/1807167.1807193
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Resolution Algorithm

closed

open

X poss(X) cert(X)

A {v}
B {w}
C {u}
D ?
E ?
F ?
G ?
H ?
J ?
K ?
L ?

{v}
{w}
{u}
?
?
?
?
?
?
?
?

Initialize closed with explicit beliefs
� Keep 2 sets: closed / open

� MAIN
   Step 1: if $ preferred edges from 

open to closed 
® follow

G

A{v}

D

J

E

H

B{w} C{u}

F

LK

https://doi.org/10.1145/1807167.1807193
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Resolution Algorithm

closed

X poss(X) cert(X)

A {v}
B {w}
C {u}
D {v}
E ?
F ?
G ?
H ?
J ?
K ?
L ?

{v}
{w}
{u}
{v}
?
?
?
?
?
?
?

G

A{v}

J

E

H

B{w} C{u}

F

L

Initialize closed with explicit beliefs
� Keep 2 sets: closed / open

� MAIN
   Step 1: if $ preferred edges from 

open to closed 
® follow

open

K

D{v}

https://doi.org/10.1145/1807167.1807193
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Resolution Algorithm

closed

X poss(X) cert(X)

A {v}
B {w}
C {u}
D
E {w}
F ?
G ?
H ?
J ?
K ?
L ?

{v}
{w}
{u}

{w}
?
?
?
?
?
?

G

A{v}

J

H

B{w} C{u}

F

L

Initialize closed with explicit beliefs
� Keep 2 sets: closed / open

� MAIN
   Step 1: if $ preferred edges from 

open to closed 
® follow

open

{v} {v}

K

D{v} E{w}
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Resolution Algorithm

closed

X poss(X) cert(X)

A {v}
B {w}
C {u}
D
E
F {u}
G ?
H ?
J ?
K ?
L ?

{v}
{w}
{u}

{u}
?
?
?
?
?

G

A{v}

J

H

B{w} C{u}

F{u}

L

Initialize closed with explicit beliefs
� Keep 2 sets: closed / open

� MAIN
   Step 1: if $ preferred edges from 

open to closed 
® follow

open

{w} {w}
{v} {v}

K

D{v} E{w}
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Resolution Algorithm

closed

X poss(X) cert(X)

A {v}
B {w}
C {u}
D
E
F
G ?
H {w}
J ?
K ?
L ?

{v}
{w}
{u}

?
{w}
?
?
?

A{v}

H{w}

B{w} C{u}

Initialize closed with explicit beliefs
� Keep 2 sets: closed / open

� MAIN
   Step 1: if $ preferred edges from 

open to closed 
® follow

F{u}

open

{u} {u}
{w} {w}
{v} {v}

D{v} E{w}

J L

G

K

Now we are stuck!

https://doi.org/10.1145/1807167.1807193
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Detail: Strongly Connected Components (SCCs)

“Minimal SCCs”: no incoming
 edge from other SCC 
 = root node(s) in SCC graphA

C

E

G

B

D

F

H

SCC1

SCC2

SCC4

SCC3

A

C

E

G

B

D

F

H

SCC1

SCC2

SCC3

SCC4

For every cyclic or acyclic directed graph:
- The Strongly Connected Components graph is a DAG
- can be calculated in O(n) Tarjan [1972]

https://doi.org/10.1145/1807167.1807193
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Resolution Algorithm

D{v}

A{v} C{u}

H{w}

B{w}

closed

open

Step 2: else 
® construct SCC graph of open

X poss(X) cert(X)

A {v}
B {w}
C {u}
D
E
F
G
H
J ?
K ?
L ?

{v}
{w}
{u}

?
?
?

E{w} F{u}

Initialize closed with explicit beliefs
� MAIN

   Step 1: if $ preferred edges from 
open to closed 
® follow

� Keep 2 sets: closed / open

?
{w}

?
{w}

{u} {u}
{w} {w}
{v} {v}

“Root SCC”
 no incoming
 edge from 
 other SCC 

G

LJ K

https://doi.org/10.1145/1807167.1807193
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Resolution Algorithm

A{v} C{u}B{w}

closed

open

Step 2: else 
® construct SCC graph of open

X poss(X) cert(X)

A {v}
B {w}
C {u}
D
E
F
G
H
J ?
K ?
L ?

{v}
{w}
{u}

?
?
?

E{w} F{u}

Initialize closed with explicit beliefs
� MAIN

   Step 1: if $ preferred edges from 
open to closed 
® follow

� Keep 2 sets: closed / open

?
{w}

?
{w}

{u} {u}
{w} {w}
{v} {v}

“Root SCC”
 no incoming
 edge from 
 other SCC 

G

LJ K

D{v}

H{w}
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Resolution Algorithm

D{v}

A{v} C{u}

H{w}

L

B{w}

closed

open

Step 2: else 
® construct SCC graph of open

X poss(X) cert(X)

A {v}
B {w}
C {u}
D
E
F
G
H
J {v,w}
K {v,w}
L ?

{v}
{w}
{u}

Æ
Æ
?

E{w} F{u}

Initialize closed with explicit beliefs
� MAIN

   Step 1: if $ preferred edges from 
open to closed 
® follow

� Keep 2 sets: closed / open

{v,w}
{w}

Æ
{w}

{u} {u}
{w} {w}
{v} {v}

“Root SCC”
 no incoming
 edge from 
 other SCC 

® resolve minimum SCCs

J{v,w} K{v,w}

G{v,w}

https://doi.org/10.1145/1807167.1807193
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Resolution Algorithm

D{v}

A{v} C{u}

H{w}

L

B{w}
Step 2: else 
® construct SCC graph of open

X poss(X) cert(X)

A {v}
B {w}
C {u}
D
E
F
G
H
J {v,w}
K {v,w}
L ?

{v}
{w}
{u}

Æ
Æ
?

E{w} F{u}

Initialize closed with explicit beliefs
� MAIN

   Step 1: if $ preferred edges from 
open to closed 
® follow

� Keep 2 sets: closed / open

{v,w}
{w}

Æ
{w}

{u} {u}
{w} {w}
{v} {v}

® resolve minimum SCCs

J{v,w} K{v,w}

G{v,w}

closed

open
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Resolution Algorithm

L{v,w,u}
closed

open
PTIME resolution algorithm
O(n2) worst case
O(n) on reasonable graphs

X poss(X) cert(X)

A {v} {v}
B {w} {w}
C {u} {u}
D {v} {v}
E {w} {w}
F {u} {u}
G {v,w} Æ
H {w} {w}
J {v,w} Æ
K {v,w} Æ
L {v,w,u} Æ

D{v}

A{v} C{u}

H{w}

B{w}

E{w} F{u}

J{v,w} K{v,w}

Step 2: else 
® construct SCC graph of open

Initialize closed with explicit beliefs
� MAIN

   Step 1: if $ preferred edges from 
open to closed 
® follow

� Keep 2 sets: closed / open

® resolve minimum SCCs

G{v,w}

Can be implemented
in current DBMS with
transitive closure J

https://doi.org/10.1145/1807167.1807193


419Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010, https://doi.org/10.1145/1807167.1807193 

. . .

. . .

. . .

O(n2)-worst-case for Resolution Algorithm

{v}

{w}

{v}

{v}

{v}

{v}

{v}

{v}

{v}

{v}
{w}

{w}

{w}

{w}

{w}

{w}

{v}{v} {v} {v}

{w} {w} {w} {w} {w}
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Experiments on large network data

Web data set with 5.4m links between
270k domain names. Approach:
• Sample links with increasing ratio
• Include both nodes in sample
• Assign explicit beliefs randomly

Calculating poss / cert for fixed key
- DLV: State-of-the art logic programming solver
- RA: Resolution algorithm

Network 1: “Oscillators”

Network 2: “Web link data”
8 16

…
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Network 3: “Worst case” O(n2)

1
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3{v}

{w}

{v} {v} {v} {v}
{v} {v} {v} {v}{v}
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Agenda

1. Stable solutions
– how to define a unique and consistent solution?

2. Resolution algorithm
– how to calculate the solution efficiently?

3. Extensions
– how to deal with “negative beliefs”?

https://doi.org/10.1145/1807167.1807193
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3 semantics for negative beliefs
Agnostic Eclectic

NP-hard NP-hardw cycles

w/o cycles* O(n) O(n)

{w+}
{v−,w−}

{v−}
D

E

G H

F

J {u+,v−,w−}

{v−,w−}
{u+}

{w+}
{v−}

{v−}
D

E

G H

F

J {w+}

{w+}
{u+}

{v+}C

AB
{v+} {w−}

{v+,w−}C

AB
{v+} {w−}

* assuming total order on parents for each node
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3 semantics for negative beliefs
Agnostic Eclectic Skeptic

NP-hard O(n2)NP-hardw cycles

w/o cycles* O(n) O(n) O(n)

{w+}
{v−,w−}

{v−}
D

E

G H

F

J {u+,v−,w−}

{v−,w−}
{u+}

{w+}
{v−}

{v−}
D

E

G H

F

J {w+}

{w+}
{u+}

{w+}

G H

F

J {^}

{^}
{u+}

with a variation of resolution algorithm

Our recommendation

{v+}C

AB
{v+} {w−}

{v+,w−}C

AB
{v+} {w−}

{^}

{v+}
{v−}
D

E

C

AB
{v+} {w−}

* assuming total order on parents for each node
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Please visit us at the poster session Th, 3:30pm
    or at:

Take-aways automatic conflict resolution

424

in the paper & TR

– bulk inserts
– agreement checking
– consensus value
– lineage computation

Problem 
• Given explicit beliefs & trust mappings, how to assign 

consistent value assignment to users?

Our solution
• Stable solutions with possible/certain value semantics
• PTIME algorithm [O(n2) worst case, O(n) experiments]
• Several extensions

– negative beliefs: 3 semantics, two hard, one O(n2)

https://db.cs.washington.edu/projects/beliefdb/

https://doi.org/10.1145/1807167.1807193
https://db.cs.washington.edu/projects/beliefdb/
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that is consistent with the entire network. Definition 2.4 de-
fines a stable solution for this network, but in general there
may be several stable solutions. We have proposed the cer-
tain values as the snapshot to be shown to the user, and
described Algorithm 1, which computes the certain values
(and the possible values too) in time quadratic in the num-
ber of users. The algorithm may need to be run separately
for each object k, an issue that we will address in Sect. 4.

The important property of our approach is that both the
definition and the algorithm are order-invariant : they do
not rely on any order in which conflicts are to be resolved.
The result is a consistent snapshot of the conflicting infor-
mation. By contrast, as we have seen, prior approaches to
conflict resolution process the explicit beliefs in a fixed order
(e.g. in the order of their transaction time), and the result
depends on this order. As a consequence, if any explicit be-
lief is updated, e.g. some belief is revoked, there may be no
way to re-compute a consistent snapshot. In our approach,
if an explicit belief is updated, we will simply re-run the
algorithm and obtain another consistent snapshot.

As a further benefit of a principled approach, we men-
tion here two extensions of our algorithm that allow the
system to answer more complex queries, as those mentioned
in Sect. 2.1.

Retrieving lineage. We show how to extend the algorithm
to compute the lineage of each possible value. Whenever
we insert a value v into poss(x), store a pointer back to
the value v 2 poss(z) that produced this possible value at
x: for Step 1 this is a value in the preferred parent, for
Step 2 there can be several (user, value) pairs from outside
the set S: store pointers to all of them. Thus, from each
value v 2 poss(x) we can trace back several lineages. Note
that this method is not complete: Step 1 misses some lin-
eages that come to x via non-preferred edges. However, it
has the property that each possible value has at least one
lineage that the system can return to the user.

Pairs of possible values. For any two users x, y in a bi-
nary trust network, denote:

poss(x, y)={(v, w) | 9 stable solution b: b(x)=v, b(y)=w}

Thus, poss(x, y) denotes the set of pairs of values that x

and y can take together. Note that if (v, w) 2 poss(x, y)
then x 2 poss(x) and y 2 poss(y), but the converse is not
true. For example in Fig. 4b, poss(x1, x2) contains the
pairs (v, v) and (w,w), but not (v, w) or (w, v).

Proposition 2.13 (Possible Pairs). Algorithm 1
can be extended to compute poss(x, y) for all pairs of users
x, y. The modified algorithm runs in time O(n4) where n

is the number of users.

The sets poss(x, y) allow us to go beyond the snapshot con-
sisting of certain tuples, and answer more complex queries
about the conflicts and the reconciliation. For example,
the agreement checking query mentioned in Sect. 2.1 can
be answered as {(x, y) | 8(v, w) 2 poss(x, y) ) v = w}.

3. CONFLICT RESOLUTION WITH CON-
STRAINTS

In this section, we extend our approach to constraints
which we model as negative beliefs. So far, we have only

considered positive beliefs, i.e. a user either believes that
the value of an object is v or has no opinion at all. A neg-
ative belief, in contrast, states that the value of the object
is not v. We denote with (k, v)+ a positive belief, and with
(k, v)� a negative belief.
Constraints occur naturally in collaborative systems and

enable users to filter the data values they accept. For ex-
ample, one users may define the constraint the value of the
‘carbon-date’ attribute is between 1,200 and 40,000 : this cor-
responds to a negative belief for every value v outside the
range. Or, another user may rely on a reference database
before accepting a value, e.g. the value of the ‘translation
attribute’ must be in the ‘list-of-known-words’. These con-
straints are used to refuse a value from a trusted user and
therefore a↵ect the global conflict reconciliation. In addi-
tion, a user may state a negative belief explicitly in order
to refute another user’s statement. For example, user Alice
may state that the origin of is cow, written (k1, cow)+.
User Bob may disagree. He does not know what the origin
of the glyph is, but believes it cannot be a cow. His belief
is thus (k1, cow)�. Bob may accept other values, such as
horse or jar, from users he trusts, but not cow.
As in the previous section, our discussion focuses on a

single, fixed object k and we will not mention k anymore.
We write a positive belief as v+ and a negative belief as v�,
where v is a data value. An explicit belief can be positive
v+, meaning that the user knows that the value is v, or can
be a set of negative beliefs v�, w�, . . .. We allow these sets
to be infinite as long as they can be finitely represented, for
example by a range predicate.

Definition 3.1 (consistency). Two beliefs b1, b2 are
conflicting (b1 6$b2) if they are either distinct positive beliefs
v+, w+, or one is v+ and the other is v�. Otherwise, b1, b2
are consistent (b1$b2). A set of beliefs B is called consistent
if any two beliefs b1, b2 2 B are consistent.

Definition 3.2 (preferred union). Given two consis-
tent sets of beliefs B1, B2, their preferred union is:

B1~[B2 = B1 [ {b2 | b2 2 B2.
�
8b1 2 B1.b1$b2

�
}

As in the previous section, our goal is to define, then com-
pute all implicit beliefs based on the priority trust mappings.
As we will see next, this raises both conceptual and compu-
tational challenges.

3.1 Three Paradigms
Consider the binary trust network in Fig. 6a. User x1

defines a constraint resulting in a negative belief b�. Let’s
examine user x3: she obviously adopts the explicit belief a+
from her preferred parent x2. The question is: what should
she do with the negative belief b�? Should her belief be
{a+, b�}, or just {a+}? Clearly, once she believes the value
a+, she has no more use for the constraint b�, since the
purpose of the constraint was only to rule out b+ which is
not under consideration at all here. This argument shows
that she may well restrict her belief to {a+}. On the other
hand, her decision may a↵ect the users who trust her. Her
immediate successor x5 will reject a+, but the next user x7

has the option of adopting b+ or not. The decision made
by user x3 a↵ects whether x7 can learn or not about the
constraint b� defined upstream. As this example shows,
there are several choices in defining conflict-resolution in the
presence of negative beliefs, even for graphs without cycles.

6
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(a) Explicit beliefs (b)Agnosticparadigm (c) Eclectic paradigm (d) Skeptic paradigm

Figure 6: (a): An example binary trust network with explicit positive and negative beliefs. The edge from the
preferred parent is labeled as such. (b-d): The three alternative paradigms lead to di↵erent entailed implicit
beliefs at various nodes for the unique stable solution of the trust network.

We propose here three paradigms for trust network res-
olution in the presence of negative beliefs. A paradigm is
formally defined as a set of consistent sets of beliefs that are
considered valid or in normal form. We denote ?= {v� |

v 2 D} the set of all negative beliefs. Equivalently, ? is an
inconsistent constraint that rejects any value.

Agnostic. The only valid belief sets in this paradigm are
singleton positives {v+} and sets of negatives {v�, w�, . . .}.
Once a user knows the value of an object, they do not want
to know any constraints, even if they are consistent with
this value. In the agnostic solution, the negative belief b�
is blocked by x3 who believes only a+ (Fig. 6b).

“An agnostic is a person who believes that nothing is known
or can be known (. . . ) beyond material phenomena.”

Eclectic. Any consistent set of beliefs is valid. In this
paradigm, a user adopts all constraints that are consis-
tent with a given value. Thus, {a+, b�, c�} is a a valid
set of beliefs. The eclectic solution is shown in Fig. 6c.
Here x3 accepts the constraint b� in addition to a+. As a
consequence, this constraint is communicated all the way
to x7, who now rejects b+.

“An eclectic is a person who derives ideas, style, or taste
from a broad and diverse range of sources.”

Skeptic. The valid sets of beliefs are the following: all sets
with only negative beliefs, and all sets that contain exactly
one positive belief and all negative beliefs consistent with
it, i.e. they are of the form {v+} [ (? � {v�}). Thus,
when a user accepts a positive belief v+, she also adopts
a constraint that rules out all other values. The skeptic
solution is shown in Fig. 6d. In this paradigm the belief
a+“means” the set {a+, b�, c�, d�, . . .}. When x5 rejects
a+, his belief becomes ?. This propagates to x7, who
reject b+, similarly to the eclectic paradigm. However, at
the next step x9 rejects c+ too, hence x9 does not belief
any positive value (he believes ?). This di↵ers from the
eclectic paradigm, where x9 believes c+.

“A skeptic is a person inclined to question or doubt all
accepted opinions.”

The paradigm is chosen by the system administrator and
applied to all users. The stable solutions to a trust network

depend on the paradigm chosen. Before we can define the
stable solutions, we need some technical definitions. Let B

be a consistent set of positive and/or negative beliefs. For
each paradigm � 2 {Agnostic, Eclectic, Skeptic} (abbre-
viated by {A, E, S}), the normal form Norm�(B) is:

NormA(B) =

⇢
{v+} if 9v+ 2 B

B otherwise

NormE(B) = B

NormS(B) =

⇢
{v+} [ (?� {v�}) if 9v+ 2 B

B otherwise

The preferred union specialized to the paradigm � is:

B1~[�B2 = Norm�

�
Norm�(B1)~[Norm�(B2)

�
(1)

For example:

{a�}~[A{b+} = {b+}

{a�}~[E{b+} = {b+, a�}

{a�} ~[S {b+} = {b+, a�, c�, d�, . . .}

{b�} ~[S {b+} = ?

We define next a stable solution for a binary trust network
with constraints. We make the restriction that edges enter-
ing the same node have distinct priorities, thus we disallow
ties. We discuss ties in Appendix B.

Definition 3.3 (Stable solution w/ constraints).

Let � 2 {A, E, S}, and let BTN = (U,E,B0) be a binary trust
network, where for all x, B0(x) is either a positive belief, or
a set of negative beliefs, or the empty set. A stable solution
is a function B from users to sets of beliefs such that:
(1) If x has a preferred parent y and a non-preferred parent

z, then B(x)=B0(x) ~[�

�
B(y)~[�B(z)

�
. If x has only

one parent y, then B(x) =B0(x)~[�B(y). If x has no
parent, then B(x)=Norm�

�
B0(x)

�
.

(2) For every belief b 2 B(x) there exists a path x0 !

x1 ! . . . ! xn=x such that b 2 Norm�

�
B0(x0)

�
and

b 2 B(xi) for all i=0, . . . , n.

Consider a node x and a positive belief v+. We say that
v+ is possible if there exists a stable solution B s.t. v+ 2

B(x). We say that v+ is certain, if v+ 2 b(x) for all stable

7
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unreachable nodes, we add ? to the set of possible values,
because in the Skeptic paradigm: {v�}~[S{v+} = ?.

Theorem 3.5. (Skeptic resolution algorithm) Al-
gorithm 2 runs in time O(n2) and computes the set of pos-
sible values, for the Skeptic paradigm.

3.3 Discussion
This section described how to handle constraints during

conflict resolution. We represent constraints as negative be-
liefs and argue that they are an important feature in collab-
orative data sharing. The question we have studied is how
trust mappings should handle constraints. Perhaps the most
natural approach is to use the constraints only as filters for
data values accepted from other users, but otherwise ignore
them during reconciliation. This is what we called the Ag-

nostic paradigm. The second natural approach is to simply
propagate constraints together with data values, in what we
called the Eclectic paradigm. However, we have shown
that computing the possible values under both paradigms is
NP-hard (and computing the certain values is co-NP hard),
so we do not advocate their use in data reconciliation. Our
third paradigm is, we believe, natural too: propagate con-
straints, but in addition associate to a data value a maxi-
mal constraint, which rules out any other data value. This
paradigm, we have shown, is in PTIME, and the algorithm is
a natural, yet somewhat detailed extension of Algorithm 1.
We propose the Skeptic paradigm as the basis for conflict
resolution in cooperative data sharing systems.
We note that, if no constraints exist in the system, then

all three paradigms collapse to the simple semantics we dis-
cussed in Sect. 2.
The hardness of the Agnostic and Eclectic paradigms

holds under the assumption that the network is cyclic: the
proof used oscillators. If the network is a DAG, then all three
paradigms can be computed in PTIME, by simply applying
repeatedly the definition of preferred union (Eq. 1).

Proposition 3.6 (Acyclic BTNs). Let BTN be a bi-
nary trust network that is acyclic. Then for any of the
three paradigms (Agnostic, Eclectic, Skeptic) the follow-
ing hold: (a) there exists exactly one stable solution, and (b)
that solution can be computed in PTIME.

A puzzling question is why is the Skeptic paradigm in
PTIME, while the other two are hard. It is easy to see
that the Boolean gates in Fig. 7 no longer work under Skep-
tic, but we do not consider this a satisfactory explanation.
While we cannot give an ultimate cause, we point out one
interesting di↵erence. The preferred union for Skeptic is as-
sociative, while it is not associative for either Agnostic nor
Eclectic. For example, consider the two expressions B1 =
{a�}~[�

�
{a+}~[�{b+}

�
, B2 =

�
{a�}~[�{a+}

�
~[�{b+}. For

Agnostic, we have B2={b+}, for Eclectic B2={a�, b+},
while for both B1={a�}. By contrast, one can show that ~[S

is associative. Associativity as a desirable property during
data merging was pointed out in [14].

4. EXTENSION TO BULK PROCESSING
So far we have treated one object at a time. If several ob-

jects need to be updated, then the reconciliation algorithm
needs to be run separately for each object. In this section,
we show, that under certain conditions, the set of possi-
ble/certain values can be computed in bulk, for an entire

Algorithm 2: Skeptic Resolution Algorithm

Input: BTN = (U,E, b0)
Output: repPoss(x) for each node x 2 U

foreach x 2 U do prefNeg(x) ; and repPoss(x) ;
P foreach node x with 9v� 2 b0(x) do

prefNeg(x) b0(x)

while 9 preferred edge z ! x with v� 2 prefNeg(z),
v+ 62 b0(x) do

prefNeg(x) prefNeg(x) [ prefNeg(z)

I closed ;
foreach node x with v+ 2 b0(x) do

repPoss(x) b0(x)
add x to closed

open U � closed
M while open 6= ; do
S1 if 9 preferred edge z ! x with z 2 closed, x 2 open and

repPoss(x) = ; then
repPoss(x) repPoss(z)
move x from open to closed

S2 else

Let SCC(open) be the SCC graph constructed from the
open nodes. Let S = {x1, . . . , xn} be a minimal SCC. Let
{z1, . . . , zk} be all nodes in closed that have edges into S.
forall i 2 {1, . . . , n}, j 2 {1, . . . , k} do

foreach v+ 2 repPoss(zj) do

Let S0 = S � {x | v� 2 prefNeg(x)}
if 9 path zj ! xi in S0

then

repPoss(xi) repPoss(xi) [ {v+}
else

repPoss(xi) repPoss(xi) [ {?}

foreach v� 2 repPoss(zj) do

repPoss(xi) repPoss(xi) [ {v�}

move all nodes of S from open to closed

set of objects k1, k2, . . . , kn. We sketch here the approach
and provide the details in Appendix B.
Let TN1, . . . ,TNn be the trust networks for each of the n

objects. We make the following two assumptions:
(i) The set of trust mappings is the same for each object

ki, i.e. a user x trusts a user z globally, for all objects.
(ii) If a user has an explicit belief for an object ki, then

the user has an explicit belief for each of the objects.
Then it is possible to simply adapt both, Algorithm 1

and Algorithm 2 to bulk-compute the set of possible tuples
through SQL queries. Let POSS(X,K,V) denote the a relation
representing the possible values: an entry (x, k, v) means
that v is a possible value for user x and object k. Then, in
step 1 of the modified algorithm, when traversing a preferred
edge z ! x, we perform the following bulk insertion:

insert into POSS

select ’x’ AS X, t.K, t.V

from POSS t

where t.X = ’z’

In step 2, when ’flooding’ a strongly connected component
SCC with the beliefs coming from the users z1, . . . , zk we
perform the following bulk insertions for each xi 2 SCC:

insert into POSS

select distinct ’xi’ AS X, t.K, t.V

from POSS t

where t.X = ’z1’ or . . . t.X = ’zk’

9
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The issue of associativity

Source: left outer join example from p392 in "Maier. The theory of relational databases, 1983." https://web.cecs.pdx.edu/~maier/TheoryBook/TRD.html 

{𝑎−} ∪- 𝑎 ∪- 𝑏

{𝑎−} ∪- 𝑎 ∪- 𝑏

Source: right preferred union example from "Gatterbauer, Suciu. Conflict resolution using trust mapping. SIGMOD 2010. https://doi.org/10.1145/1807167.1807193 

= {𝑎−}

= {𝑏}

https://northeastern-datalab.github.io/cs7240/
https://web.cecs.pdx.edu/~maier/TheoryBook/TRD.html
https://doi.org/10.1145/1807167.1807193
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Binarization example

z4z3z2z1

x

p4p2p1

z5 z6

p3 p6p5

z7

p7

z4z3z2

y4
y3y2

y5

z6

y6

z5 z7

x=y7

z1=y1

p1 = p2 < p3 = p4 = p5 < p6 < p7

https://doi.org/10.1145/1807167.1807193
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Logic programs with stable model semantics

E

A C

poss(c,X) :- poss(a,X).
 block(c,b,Y) :- poss(b,Y), poss(c,X), X!=Y.
 poss(c,Y) :- poss(b,Y), not block(c,b,Y).

20 1030

B D

E’
E’’

E

A CB D

10

non-preferred
parent

preferred
parent

C

A B

C

A B

partial order

1: accept all poss of preferred parent

2: accept poss from non-preferred parent, that are not conflicting with an existing value

Step 1: 
Binarization

Step 2: 
Logic program

block(c,a,Y) :- poss(a,Y), poss(c,X), X!=Y.
 poss(c,Y) :- poss(a,Y), not block(c,a,Y).
 block(c,b,Y) :- poss(b,Y), poss(c,X), X!=Y.
 poss(c,Y) :- poss(b,Y), not block(c,b,Y).

https://doi.org/10.1145/1807167.1807193


438Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010, https://doi.org/10.1145/1807167.1807193 

D E F
D’

Binarization for Resolution Algorithm*

70 30 20 10060

20

120
80

100 E’

D E F

Example Trust Network (TN) 
6 nodes, 9 arcs (size 15)
3 explicit beliefs: A:v, B:w, C:u

Corresponding Binary TN (BTN)
8 nodes, 12 arcs (size 20)

Size increase (N+E): ≤ 3

A{v} C{u}B{w} A{v} C{u}B{w}

* Note that binarization is not necessary, but greatly simplifies the presentation

https://doi.org/10.1145/1807167.1807193
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Stable solutions: example 2

B:?

C:?

D:v

E:w

90

80

100

20

F:u

G:?

A:?

70

70
60

30

• Priority trust network (TN)
– assume a fixed key
– users (nodes): A, B, C
– values (beliefs): v, w, u
– trust mappings (arcs) from “parents”

• Stable solution
– assignment of values to each node*, 

s.t. each belief has a “non-dominated 
lineage” to an explicit belief

• Certain values
– all stable solution determine, for each 

node, a possible value (“poss”)
– certain value (“cert”) = intersection of 

all stable solutions

* each node with at least one ancestor with explicit belief

https://doi.org/10.1145/1807167.1807193
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Stable solutions: example 2

B:v

C:Æ

D:v

E:w

90

80

100

20

F:u

G:v

A:v

70

70
60

30

• Priority trust network (TN)
– assume a fixed key
– users (nodes): A, B, C
– values (beliefs): v, w, u
– trust mappings (arcs) from “parents”

• Stable solution
– assignment of values to each node*, 

s.t. each belief has a “non-dominated 
lineage” to an explicit belief

• Certain values
– all stable solution determine, for each 

node, a possible value (“poss”)
– certain value (“cert”) = intersection of 

all stable solutions
poss(G) = {v,...}

* each node with at least one ancestor with explicit belief

https://doi.org/10.1145/1807167.1807193
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Stable solutions: example 2

B:w

C:Æ

D:v

E:w

90

80

100

20

F:u

G:w

A:w

70

70
60

30

• Priority trust network (TN)
– assume a fixed key
– users (nodes): A, B, C
– values (beliefs): v, w, u
– trust mappings (arcs) from “parents”

• Stable solution
– assignment of values to each node*, 

s.t. each belief has a “non-dominated 
lineage” to an explicit belief

• Certain values
– all stable solution determine, for each 

node, a possible value (“poss”)
– certain value (“cert”) = intersection of 

all stable solutions
poss(G) = {v,w,...}

* each node with at least one ancestor with explicit belief

https://doi.org/10.1145/1807167.1807193
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Stable solutions: example 2

B:u

C:Æ

D:v

E:w

90

80

100

20

F:u

G:u

A:u

70

70
60

30

not stable!
F®G dominated by E®G 

• Priority trust network (TN)
– assume a fixed key
– users (nodes): A, B, C
– values (beliefs): v, w, u
– trust mappings (arcs) from “parents”

• Stable solution
– assignment of values to each node*, 

s.t. each belief has a “non-dominated 
lineage” to an explicit belief

• Certain values
– all stable solution determine, for each 

node, a possible value (“poss”)
– certain value (“cert”) = intersection of 

all stable solutions cert(G) = Æ
poss(G) = {v,w}

* each node with at least one ancestor with explicit belief

https://doi.org/10.1145/1807167.1807193
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exercise
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Logic programs with stable model semantics

poss(c,X) :- poss(a,X).
 block(c,b,Y) :- poss(b,Y), poss(c,X), X!=Y.
 poss(c,Y) :- poss(b,Y), not block(c,b,Y).

C

A B
1

poss(a,1).
 poss(a,2).
 poss(b,3).

poss(c,X) ?

2
3

?

https://northeastern-datalab.github.io/cs7240/
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Logic programs with stable model semantics

C

A B
1

poss(a,1).
 poss(a,2).
 poss(b,3).

poss(c,X) ?

2
3 poss(c,1) :- poss(a,1)

 poss(c,2) :- poss(a,2)
 poss(c,3) :- poss(a,3)
 block(c,b,3) :- poss(b,3), poss(c,1), X!=Y
 block(c,b,3) :- poss(b,3), poss(c,2), X!=Y
 block(c,b,3) :- poss(b,1), poss(c,3), X!=Y
  ...
 poss(c,3) :- poss(b,3), not block(c,b,3)
 poss(c,2) :- poss(b,2), not block(c,b,2)
  ...

M={ poss(a,1), poss(a,2), poss(b,3), 
poss(c,1), poss(c,2) } 

poss(c,X) :- poss(a,X).
 block(c,b,Y) :- poss(b,Y), poss(c,X), X!=Y.
 poss(c,Y) :- poss(b,Y), not block(c,b,Y).

https://northeastern-datalab.github.io/cs7240/
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Logic programs with stable model semantics

block(c,a,Y) :- poss(a,Y), poss(c,X), X!=Y.
 poss(c,Y) :- poss(a,Y), not block(c,a,Y).
 block(c,b,Y) :- poss(b,Y), poss(c,X), X!=Y.
 poss(c,Y) :- poss(b,Y), not block(c,b,Y).

C

A B
1

poss(a,1).
 poss(a,2).

poss(c,X) ?

2

?

https://northeastern-datalab.github.io/cs7240/
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Pre-class conversations

• Last class summary
• Feedback on Feedback on scribes?
• Project discussions (in class and after or via email and office hours)
• Faculty candidates (THU Feb 29, WED March 20)

• Today: 
- The power of disjunctions: Disjunctive Logic Programs 

(NP and Co-NP in the same program...)

https://northeastern-datalab.github.io/cs7240/
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Source: https://matt.might.net/articles/phd-school-in-pictures/ 

About research (getting a PhD or finding a project topic)

The last comment: Keep pushing!

https://northeastern-datalab.github.io/cs7240/
https://matt.might.net/articles/phd-school-in-pictures/


467

Outline: T1-4: Datalog & ASP

• Datalog
• Answer Set Programming

– Intro to Rules with Negation
– Horn clauses and Logic Programming
– Stable model semantics
– An application and surprising complexity result
– The power of Disjunctions
– [A surprising application: automating hardness proofs: 

moved to T2-U4: Reverse Data Management]
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Disjunctive Logic Programming
with Clingo/Potassco

(Examples prepared together 
with Neha Makhija

https://nehamakhija.github.io/)

https://northeastern-datalab.github.io/cs7240/
https://nehamakhija.github.io/
https://nehamakhija.github.io/
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Clingo,
             Potassco

Potassco start page: https://potassco.org/ 
Clingo start page: https://potassco.org/clingo/ 
Running clingo in the browser: https://potassco.org/clingo/run/ 
Teaching material: https://teaching.potassco.org/ 
Download: https://github.com/potassco/clingo/releases/ 
clingo user guide: https://github.com/potassco/guide/releases/download/v2.2.0/guide.pdf 

https://northeastern-datalab.github.io/cs7240/
https://potassco.org/
https://potassco.org/clingo/
https://potassco.org/clingo/run/
https://teaching.potassco.org/
https://github.com/potassco/clingo/releases/
https://github.com/potassco/guide/releases/download/v2.2.0/guide.pdf
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Clingo Implementation
clingo is a monolithic system that combines two steps and offers more control than using the 
two tools individually:
• gringo: a grounder that, given an input program with first-order variables, computes an 

equivalent ground (variable-free) program
• clasp: a solver that works on ground program (like other answer set solvers) 

- relies on conflict-driven nogood learning, a technique that proved very successful for SAT
- does not rely on legacy software, such as a SAT solver or any other existing ASP solver

Grounder

Sources: https://potassco.org/clingo/ , "ASP-Core-2 Input Language Format. Calimeri, Faber, Gebser, et al. TPLP, 2020, https://doi.org/10.1017/S1471068419000450" , 
"How to Build Your Own ASP-based System?!, Kaminski, Romero, Schaub, Wanko, TPLP, 2023. https://doi.org/10.1017/S1471068421000508"

Solver

gringo clasp
ASP-core 2 answer

Input format "aspif" (ASP
Intermed. format) Output format

idlv wasp

clingo

dlv system

https://northeastern-datalab.github.io/cs7240/
https://potassco.org/clingo/
https://doi.org/10.1017/S1471068419000450
https://doi.org/10.1017/S1471068421000508
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Dantsin, Eiter, Gottlob, Voronkov. "Complexity and expressive power of logic programming", ACM computing survesy, 2001. https://doi.org/10.1145/502807.502810 
Amendola, Ricca, Truszczynski. "Beyond NP: Quantifying over Answer Sets", TPLP, 2019. https://doi.org/10.1017/S1471068419000140 

Example for NP-complete problem: 
Boolean satisfiability problem: 
"given a Boolean formula, is it 
satisfiable" (i.e. is there an input 
for which the formula outputs 
true)? 

Example for co-NP problem: the 
complementary problem asks: "given 
a Boolean formula, is it 
unsatisfiable" (i.e. do all possible 
inputs to the formula output 
false)? 

"normal" means no disjunctions in head

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/502807.502810
https://doi.org/10.1017/S1471068419000140
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NP-hardness (assuming P≠NP)
Takes more time to solve

NP-hard

NP-complete

NP

P

problems that are at least as hard as the 
hardest problems in NP (hard-to-solve)

decision problems 
for which a solution 
can be verified in 
polynomial time
(easy-to-verify)

hardest problems in NP
(easy-to-verify and 
hard-to-solve)

problems that can 
be solved in 
polynomial time

shortest path vertex cover
(decision variant) Halting

problem
hard

optimization
problems

https://northeastern-datalab.github.io/cs7240/
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NP vs. Co-NP
• NP: decision problems for which a solution can be verified in PTIME

- SAT: Given a Boolean formula, is it satisfiable (i.e. there is an input for which the formula outputs true)?
j	 = 𝑥 ∨ 𝑦 ∨ 𝑧 ∧ (�̅� ∨ 𝑧 ∨ 𝑤) ∧ (R𝑦 ∨ ̅𝑧 ∨ S𝑤)    3SAT (3CNF)

- 3-colorability: Given a graph, is there an assignment of colors to nodes s.t. no edge connects same colors? 
- VC (Vertex Cover): Given a graph and a number k (as part of input), is there a VC of size k or smaller?

• Co-NP-complete: A decision problem is in co-NP if its complement is in NP.
- Co-NP = 𝐿	 R𝐿 ∈ NP}
- UNSAT: Given a Boolean formula, is it unsatisfiable (i.e. is it false for all choices of inputs)? 
- Tautology: Given a Boolean formula, is it a tautology (i.e. is it true for all choices of inputs)?
- Uncolorable: Given a graph, is there no assignment of colors to nodes s.t. edges connect different colors?
- "UNCOVERABLE": Given a graph and a number k, is there no VC of size k or smaller?

NP co-NP

P

https://northeastern-datalab.github.io/cs7240/
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Computational Complexity of Logic Programs (LP) / ASP

Created based on: Gebser, Kaminski, Kaufmann, Schaub. Answer Set Solving in Practice. Synthesis Lectures on AI and ML, 2013. https://doi.org/10.1007/978-3-031-01561-8 

∑')=NP*)+,

(∃∀∃)
∏'
)=co-NP*)+,

(∀∃∀)

∆')=P*)+,

∑%)=NP*)
(∃∀)

∏%
)=co-NP*)

(∀∃)

∆%)=P*)

∑!)=NP
(∃)

∏!
)=co-NP

(∀)

∆+,=∑+,=P=∏+
)=∆!,

• Deciding whether an atom is in a SM 
is NP-complete (e.g. satisfiability)

• Deciding whether a set of atoms is a 
SM is P-complete

• Deciding whether an atoms is in a 
SM is NPNP-complete 

• Deciding whether a set of atoms is a SM 
of a disjunctive P is co-NP-complete 

a positive normal LP 
(no negation in body)

• Deciding whether an atom is in an 
optimal SM (stable model) is ∆𝟑

𝒑-complete 
• Deciding whether a set of atoms is an 

optimal SM is co-NPNP-complete 

a disjunctive LP with 
optimization statements

a disjunctive LP

a normal LP with 
optimization statements

a normal LP (no 
disjunction in head)

• Deciding whether an atom is in a stable model, 
• or whether a set of atoms is a stable model is 

P-complete (cf. Datalog)

• Deciding whether an atom is in 
an optimal SM is ∆𝟐

𝒑-complete 
• Deciding whether a set of atoms is 

an optimal SM is co-NP-complete 

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1007/978-3-031-01561-8


491

Details on Disjunctive Logic Programming

• 3-colorability
– 3-colorability with normal or disjunctive logic programs
– 3-uncolorability with cautious semantics

• Optimization
– Minimal Vertex Cover with weak constraints, optimization, aggregates
– Shortest paths with aggregation (contrast Clingo vs Souffle)

• Saturation for Disjunctive Logic Programs
– Minimal example for the power of saturation
– Uncolorability (program is satisfiable iff a graph is not 3-colorable)
– Minimal Vertex Cover of a particular size without minimization
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3-colorability (1/6)

vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).
color(X,1) :- not color(X,2), not color(X,3), vertex(X). 
color(X,2) :- not color(X,3), not color(X,1), vertex(X).
color(X,3) :- not color(X,1), not color(X,2), vertex(X). 
:- edge(X,Y), color(X,C), color(Y,C).

clingo 3colorability1.txt

3colorability1.txt

b

c

a

Answer: 1
vertex(a) vertex(b) vertex(c) edge(a,b) edge(a,c) color(a,1) 
color(b,3) color(c,3)
SATISFIABLE

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

Returns a stable model if it exists. 
Since there is a stable model, the 
problem is "satisfiable".

Recall that an empty head encodes a 
constraint that the body can't be true.
Thus no two neighbors in a valuation 
can share colors.

Capital letters are variables, lowercase 
letters and numbers are constants (notice 
the difference to Souffle)

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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3-colorability (2/6)

vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).
color(X,1) :- not color(X,2), not color(X,3), vertex(X). 
color(X,2) :- not color(X,3), not color(X,1), vertex(X).
color(X,3) :- not color(X,1), not color(X,2), vertex(X). 
notcolored :- edge(X,Y), color(X,C), color(Y,C).
:- notcolored.

clingo 3colorability2.txt

3colorability2.txt

b

c

a

Answer: 1
vertex(a) vertex(b) vertex(c) edge(a,b) edge(a,c) color(a,1) 
color(b,3) color(c,3)
SATISFIABLE

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

But "notcolored" cannot be true

Now, if any two neighbors in a 
valuation share colors, then 
"notcolored" needs to be true.

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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3-colorability (3/6)

vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).
color(X,1) :- not color(X,2), not color(X,3), vertex(X). 
color(X,2) :- not color(X,3), not color(X,1), vertex(X).
color(X,3) :- not color(X,1), not color(X,2), vertex(X). 
notcolored :- edge(X,Y), color(X,C), color(Y,C).
a :- notcolored, not a.

clingo 3colorability3.txt

3colorability3.txt

b

c

a

Answer: 1
vertex(a) vertex(b) vertex(c) edge(a,b) edge(a,c) color(a,1) 
color(b,3) color(c,3)
SATISFIABLE

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

Another way to think about the empty 
header from the previous pages: if 
"notcolored" is true, then the body of a rule 
is "a :- not a", which has no stable model.

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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3-colorability (4/6)

vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).
color(X,1) :- not color(X,2), not color(X,3), vertex(X). 
color(X,2) :- not color(X,3), not color(X,1), vertex(X).
color(X,3) :- not color(X,1), not color(X,2), vertex(X). 
:- edge(X,Y), color(X,C), color(Y,C).
#show color/2.

clingo 3colorability4.txt

3colorability4.txt

b

c

a

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

Only show the predicate "color" with arity=2 
(i.e. 2 arguments). clingo allows different 
predicates with same name but different 
arities; thus we need to include the "/2"

Answer: 1
color(a,1) color(b,3) color(c,3)
SATISFIABLE

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo


496Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 

3-colorability (5/6)

vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).
color(X,1) :- not color(X,2), not color(X,3), vertex(X). 
color(X,2) :- not color(X,3), not color(X,1), vertex(X).
color(X,3) :- not color(X,1), not color(X,2), vertex(X). 
:- edge(X,Y), color(X,C), color(Y,C).
#show color/2.

clingo 3colorability4.txt -n 0

3colorability4.txt

b

c

a

Answer: 1
color(a,1) color(b,3) color(c,3)
Answer: 2
color(a,1) color(b,3) color(c,2)
Answer: 3
color(a,1) color(b,2) color(c,3)
Answer: 4
color(a,1) color(b,2) color(c,2)
...
Answer: 11
color(a,3) color(b,2) color(c,2)
Answer: 12
color(a,3) color(b,1) color(c,2)
SATISFIABLE

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

Show all models

12 possible colorings.
12 = 3 (for a) * 2 * 2 (for b and c)

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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3-colorability (6/6)

vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).
color(X,1) :- not color(X,2), not color(X,3), vertex(X). 
color(X,2) :- not color(X,3), not color(X,1), vertex(X).
color(X,3) :- not color(X,1), not color(X,2), vertex(X). 
:- edge(X,Y), color(X,C), color(Y,C).
#show.
#show (X,C) : color(X,C).

clingo 3colorability5.txt -n 0

3colorability5.txt

b

c

a

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

Turns off printing of all 
predicates by default

Conditional statement: shows 
(X,C) terms if color(X, C) is true

Answer: 1
(a,1) (b,3) (c,3)
Answer: 2
(a,1) (b,3) (c,2)
Answer: 3
(a,1) (b,2) (c,3)
Answer: 4
(a,1) (b,2) (c,2)
...
Answer: 11
(a,3) (b,2) (c,2)
Answer: 12
(a,3) (b,1) (c,2)
SATISFIABLE

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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3-colorability: now with disjunction b

c

a

• Guess a possible color assignment of 
vertices. This rule does not prevent a 
vertex from getting assigned >1 color.

• However, a vertex having multiple 
colors is not part of a minimal model 
since it is a superset of a valid coloring.

clingo 3colorability-disjunction.txt -n 0 

vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).

color(X,1) | color(X,2) | color(X,3) :- vertex(X). 

:- edge(X,Y), color(X,C), color(Y,C).
#show.
#show (X,C) : color(X,C).

3colorability-disjunction.txt

clingo also allows ";" instead of "|" for disjunctions

Answer: 1
(a,1) (b,3) (c,3)
Answer: 2
(a,1) (b,3) (c,2)
Answer: 3
(a,1) (b,2) (c,3)
Answer: 4
(a,1) (b,2) (c,2)
...
Answer: 11
(a,3) (b,2) (c,2)
Answer: 12
(a,3) (b,1) (c,2)
SATISFIABLE

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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vertex(1..3). edge(1,2). edge(1,3). edge(2,3).
color(X,1) | color(X,2) | color(X,3) :- vertex(X).
notcolored :- edge(X,Y), color(X,C), color(Y,C).
colored :- not notcolored.
#show. 
#show yes : colored. 
#show no : notcolored.

3-colorability: Brave semantics (1/2)

If any two neighbors in a valuation share 
colors, then "notcolored" needs to be true.
Since it is the only rule with "notcolored" 
in the head, "notcolored" is true iff any 
two neighbors share the color.

clingo 3colorability-brave1.txt -n 0 

2

3

1

3colorability-brave1.txt defines a range 1, 2, 3

In a minimal model, notcolored and colored are 
not true at the same time. Thus "colored" is 
only true in a stable model where "notcolored" is 
not true and thus the color assignment is valid.

"colored" is true if "notcolored" is not.

Answer: 1
no
Answer: 2
yes
Answer: 3
no
...
Answer: 27
no
SATISFIABLEClingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

Show "yes" if colored is true. 
Show "no" if notcolored is true.

We use here disjunction 
although not needed

Notice 27 possible colorings.
Each is either a valid 
coloring ("yes") or not ("no").

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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3-colorability: Brave semantics (2/2)
clingo 3colorability-brave2.txt -e brave 

2

3

1

3colorability-brave2.txt "brave" execution mode gives possible answers 
(union): Is there an answer set in which the 
query (here "yes=true") holds?

vertex(1..3). edge(1,2). edge(1,3). edge(2,3).
color(X,1) | color(X,2) | color(X,3) :- vertex(X).
notcolored :- edge(X,Y), color(X,C), color(Y,C).
colored :- not notcolored.
#show. 
#show yes : colored. 

Answer: 1

Consequences: [0;1]
Answer: 2
yes
Consequences: [1;1]
SATISFIABLE

Clingo uses multiple answer sets to converge on 
the final union/intersection. "Consequences [d;p]" 
are essentially lower and upper bounds which 
converge towards d=p. 

(Details: There are d definite consequences and p 
probable consequences. For brave semantics, the 
value of d increases with processing of more models 
while in cautious semantics the value of p decreases.) “yes", thus there exists some model 

in which "colored" is trueClingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

The 2nd (last) answer 
(after convergence) is the 
union of all models: it 
contains "colored", thus we 
see "yes": there is some 
answer that is correct.

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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Answer: 1
yes
Consequences: [1;1]
SATISFIABLE

vertex(1..3). edge(1,2). edge(1,3). edge(2,3).
color(X,1) | color(X,2) | color(X,3) :- vertex(X).
notcolored :- edge(X,Y), color(X,C), color(Y,C).
colored :- not notcolored.
#show.
#show yes : notcolored.

3-uncolorability: Cautious semantics (1/3)
clingo 3colorability-cautious1.txt -e brave 

2

3

1

3colorability-cautious1.txt

Here we are asking if there is at 
least one stable model (one answer 
set) in which "notcolored" is true.

Here, clingo happens to find that the 
first stable model it looks at has 
"notcolored" as true. Thus it does not 
need to look further: it knows that the 
union of the answers contains "notcolored"

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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Answer: 1
yes
Consequences: [0;1]
Answer: 2

Consequences: [0;0]
SATISFIABLE

3-uncolorability: Cautious semantics (2/3)
clingo 3colorability-cautious1.txt -e cautious 

2

3

1

3colorability-cautious1.txt
"cautious" execution model gives certain 
answers (intersection): Is is true that 
the query holds in *all* stable models?

vertex(1..3). edge(1,2). edge(1,3). edge(2,3).
color(X,1) | color(X,2) | color(X,3) :- vertex(X).
notcolored :- edge(X,Y), color(X,C), color(Y,C).
colored :- not notcolored.
#show.
#show yes : notcolored.

Even by looking at the 2nd answer, we 
are done: it does not contain "notcolored" 
and thus the answer is no: the 
intersection does not contain "notcolored".

We therefore do not see "yes".Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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vertex(1..4). edge(1,2..4). edge(2,3..4). edge(3,4).
color(X,1) | color(X,2) | color(X,3) :- vertex(X).
notcolored :- edge(X,Y), color(X,C), color(Y,C).
colored :- not notcolored.
#show.
#show yes : notcolored.

3-uncolorability: Cautious semantics (3/3)
clingo 3colorability-cautious2.txt -e cautious 

2

3

1

3colorability-cautious2.txt
4

Answer: 1
yes
Consequences: [0;1]
SATISFIABLE

This new graph (a 4-clique) is not 3-
colorable. Thus "notcolored" is true in 
all stable models, thus in all attempts 
to assign colors to vertices. The 
intersection thus contains "notcolored"

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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Details on Disjunctive Logic Programming

• 3-colorability
– 3-colorability with normal or disjunctive logic programs
– 3-uncolorability with cautious semantics

• Optimization
– Minimal Vertex Cover with weak constraints, optimization, aggregates
– Shortest paths with aggregation (contrast Clingo vs Souffle)

• Saturation for Disjunctive Logic Programs
– Minimal example for the power of saturation
– Uncolorability (program is satisfiable iff a graph is not 3-colorable)
– Minimal Vertex Cover of a particular size without minimization



505Neha Makhija. Principles of Scalable Database Management. https://northeastern-datalab.github.io/cs7240/  

Weak constraints for optimization

Source: Gebser, Kaminski, Kaufmann, Lindauer, Ostrowski, Romero, Schaub, Thiele, Wanko. Potassco user guide. version 2.2.0, 2019. https://github.com/potassco/guide/releases/ 

https://northeastern-datalab.github.io/cs7240/
https://github.com/potassco/guide/releases/
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Answer: 1
(1,1) (2,1) (3,1)
Optimization: 3
Answer: 2
(1,1) (2,1) (3,0)
Optimization: 2
OPTIMUM FOUND

vertex(1..3). edge(1,2). edge(1,3). edge(2,3).
cover(N,1) | cover(N,0) :- vertex (N).
:- edge(X,Y), cover(X,0), cover(Y,0).
:~ cover(X,1). [1@1, X]

#show. #show (X,C): cover(X,C).

Minimum Vertex Cover: Optimization
clingo minVC-optimization.txt 

2

3

1

minVC-optimization.txt

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

Intuitively: enforce weak constraints if 
possible. Minimize the number of violations.

an intermediate non-
optimal answer

last answer is an
optimal answer

We use here disjunction although 
not needed: every vertex "N" is 
in the cover (1) or not (0)

At least one endpoint of each edge needs 
to be in the cover, i.e. both can't be 
outside the cover (0)

Body Tail

weight (w)
priority (optional)

terms (t1, ...tn)

Minimize the number of valuations for X 
that make "cover(X,1)" true

Show the nodes and whether they are in the 
cover (1) or not (0)

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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Answer: 1
(1,1) (2,1) (3,1)
Optimization: 3
Answer: 2
(1,1) (2,1) (3,0)
Optimization: 2
OPTIMUM FOUND

vertex(1..3). edge(1,2). edge(1,3). edge(2,3).
cover(N,1) | cover(N,0) :- vertex (N).
:- edge(X,Y), cover(X,0), cover(Y,0).
:~ cover(X,1). [1@1, X]

#show. #show (X,C): cover(X,C).

Minimum Vertex Cover: Optimization
clingo minVC-optimization.txt 

2

3

1

minVC-optimization.txt

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

SEMANTICS OF WEAK CONSTRAINTS:
For any program P and answer set A, weak(P,A) is 
the set of all unique tails of weak constraints in 
ground(P) whose body is satisfied by A

Goal is to minimize ∑ 4!,…4" ∈89:;(𝐏,𝐀)𝑤

Higher priority levels are more important

an intermediate non-
optimal answer

last answer is an
optimal answer

Body Tail

weight (w)
priority (optional)

terms (t1, ...tn)

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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Answer: 1
(1,1) (2,1) (3,1)
Optimization: 3
Answer: 2
(1,1) (2,1) (3,0)
Optimization: 2
OPTIMUM FOUND

vertex(1..3). edge(1,2). edge(1,3). edge(2,3).
cover(N,1) | cover(N,0) :- vertex (N).
:- edge(X,Y), cover(X,0), cover(Y,0).
#minimize {1@1, X : cover(X,1)}.

#show. #show (X,C): cover(X,C).

Minimum Vertex Cover: Optimization
clingo minVC-aggregation.txt 

2

3

1

minVC-aggregation.txt

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

same answer

Minimize the number of valuations for X 
that make "cover(X,1)" true

weight (w)

terms (t1, ...tn)
Body

priority (optional)

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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vertex(1..3). edge(1,2). edge(1,3). edge(2,3).
cover(N,1) | cover(N,0) :- vertex (N).
:- edge(X,Y), cover(X,0), cover(Y,0).
:- #count{X : cover(X, 1)} > 2.

#show. #show (X,C): cover(X,C).

Minimum Vertex Cover: Aggregate / Decision
clingo minVC-decision1.txt -n 0 

2

3

1

minVC-decision1.txt

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

Answer: 1
(1,1) (2,1) (3,0)
Answer: 2
(1,1) (2,0) (3,1)
Answer: 3
(1,0) (2,1) (3,1)
SATISFIABLE

The size of the cover cannot be > 2

Counts values X that make "cover(X,1)" true

Aggregate Atom

Check if there is some valid cover with 2 
or fewer vertices covered

Show all models

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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vertex(1..3). edge(1,2). edge(1,3). edge(2,3).
cover(N,1) | cover(N,0) :- vertex (N).
:- edge(X,Y), cover(X,0), cover(Y,0).
:- #count{X : cover(X, 1)} > 2.

#show. #show (X,C): cover(X,C).

Minimum Vertex Cover: Aggregate / Decision
clingo minVC-decision1.txt -n 0 

2

3

1

minVC-decision1.txt

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

Answer: 1
(1,1) (2,1) (3,0)
Answer: 2
(1,1) (2,0) (3,1)
Answer: 3
(1,0) (2,1) (3,1)
SATISFIABLE

Counts values X that make "cover(X,1)" true

Aggregate Atom

SEMANTICS OF AGGREGATES:
An aggregate atom occurring in a rule body 
takes the form 𝑙	𝛼 𝑡@: 𝐿@; … ; 𝑡A: 𝐿A 	𝑢 where 
• 𝛼 is an aggregate function, 
• 𝑡@: 𝐿B aggregate 𝑡@ when 𝐿B holds
• 𝑙, 𝑢 are optional lower and upper bounds

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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Answer: 1
(1,1) (2,1) (3,0)
Answer: 2
(1,1) (2,0) (3,1)
Answer: 3
(1,0) (2,1) (3,1)
SATISFIABLE

vertex(1..3). edge(1,2). edge(1,3). edge(2,3).
cover(N,1) | cover(N,0) :- vertex (N).
:- edge(X,Y), cover(X,0), cover(Y,0).
solution :- #count{X: cover(X, 1)} <= 2.
:- not solution.

#show. #show (X,C): cover(X,C).

Minimum Vertex Cover: Aggregate / Decision
clingo minVC-decision2.txt -n 0 

2

3

1

minVC-decision2.txt

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

If the size of the cover is <= 2, then it is 
a solution. 

And "solution" cannot be false (otherwise 
it true would imply false)

Check if there is some valid cover with 2 
or fewer nodes covered

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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Details on Disjunctive Logic Programming

• 3-colorability
– 3-colorability with normal or disjunctive logic programs
– 3-uncolorability with cautious semantics

• Optimization
– Minimal Vertex Cover with weak constraints, optimization, aggregates
– Shortest paths with aggregation (contrast Clingo vs Souffle)

• Saturation for Disjunctive Logic Programs
– Minimal example for the power of saturation
– Uncolorability (program is satisfiable iff a graph is not 3-colorable)
– Minimal Vertex Cover of a particular size without minimization



513Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 

Answer: 1
4
SATISFIABLE

edge(s,v1,2). edge(v1,v2,1). edge(v2,t,1). 
edge(v2,t,10). edge(s,v3,1). edge(v3,t,4).

path(X,Y,W) :- edge(X,Y,W).
path(X,Z,W1+W2) :- path(X,Y,W1), path(Y,Z,W2).

minpath(X,Y,C) :- path(X,Y,_), C=#min{W: path(X,Y,W)}.
#show. #show W: minpath(s,t,W).

Shortest Path via Aggregation
clingo shortestpath1.txt 

tt1
s

shortestpath1.txt

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

The length of the 
shortest path

t3

t22 1
1
10

41

Aggregate Atom

weights of edges

For all possible values X,Y grounded 
by "path(X,Y,_)", find the minimum 
weight W, call it C and store it in 
minpath(X,Y,C)

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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Answer: 1
4
SATISFIABLE

edge(s,v1,2). edge(v1,v2,1). edge(v2,t,1). 
edge(v2,t,10). edge(s,v3,1). edge(v3,t,4).

path(X,Y,W) :- edge(X,Y,W).
path(X,Z,W1+W2) :- path(X,Y,W1), path(Y,Z,W2).

minpath(C) :- C=#min{W: path(s,t,W)}.
#show. #show W: minpath(W).

Shortest Path via Aggregation
clingo shortestpath2.txt 

tt1
s

shortestpath2.txt

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

t3

t22 1
1
10

41

For all possible values W grounded 
by "path(s,t,W)", find the minimum 
weight W, call it C and store it in 
minpath(C)

The length of the 
shortest path

weights of edges

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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.decl edge(x: symbol, y: symbol, wt:number)

.input edge

.decl path(x: symbol, y: symbol, wt:number)
path(x,y,w) :- edge(x,y,w).
path(x,z,w1+w2) :- path(x,y,w1), path(y,z,w2).
.decl minpath(w:number)
minpath(c) :- c = min w:{path("s","t",w)}.
.output minpath

Shortest Path via Aggregation (Souffle)
souffle shortestpath.dl 

tt1
s

shortestpath.dl

Recall that in souffle, constants are 
indicated by quotation marks Answer in minSTpath 

t3

t22 1
1
10

41

Souffle example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle 

s v1 2
v1 v2 1
v2 t 1
v2 t 10
s v3 1
v3 t 4

edge.facts

minpath.csv

4

weights of edges

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog
https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog
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Details on Disjunctive Logic Programming

• 3-colorability
– 3-colorability with normal or disjunctive logic programs
– 3-uncolorability with cautious semantics

• Optimization
– Minimal Vertex Cover with weak constraints, optimization, aggregates
– Shortest paths with aggregation (contrast Clingo vs Souffle)

• Saturation for Disjunctive Logic Programs
– Minimal example for the power of saturation
– Uncolorability (program is satisfiable iff a graph is not 3-colorable)
– Minimal Vertex Cover of a particular size without minimization
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Use Disjunction only if needed

Source: Gebser, Kaminski, Kaufmann, Ostrowski, Schaub, Thiele. A user’s guide to gringo, clasp, clingo, and iclingo. version 3.x. 2010.

It is is possible that modern solvers can detect 
head-cycle free disjunctions and internally "shift" 
the heads to normal logic programs.

clasp and claspD have been united into clasp

https://northeastern-datalab.github.io/cs7240/
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Horn clauses and logic programming
A clause is a disjunction of literals.

A Horn clause has at most one positive (i.e. unnegated) literal. 

a	∧	b	⇒	c	∨	dxa	∨	xb	∨	c	∨	d

a	∧	xb	⇒	cxa	∨	b	∨	c

1	∧	a	∧	b	⇒	c	∨	d	∨	0

Recall: !a	 = ¬a	=	!a	=	~a	=	NOT	a

a	∧	xc	⇒	bxa	∨	b	∨	c

a	⇒	b	∨	cxa	∨	b	∨	c

Those express the same models and minimal 
models. However, for a model in which both 
a and b are true, the non-disjunctive version 
does not include the rules in the reduct 
because the body is not true!

https://northeastern-datalab.github.io/cs7240/
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Disjunctive logic programming
Datalog

If a is true, then at least b or c need to be true:
b	∨	c	⇐	a	

b :- a.
c :- a.

If a is true, then both b and c need to be true too
b	∧	c	⇐	a 

Datalog with negation and stable model semantics, or disjunction in head

b :- a, not c.
c :- a, not b.

If a is true, then either b or c need to be true 
(both can be true only if there are other rules)
b	∨	c	⇐	a	

b | c :- a.

https://northeastern-datalab.github.io/cs7240/
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a :- not b.
b :- not a.

When disjunctions add expressiveness (1/2)
clingo saturation1.txt -n 0 

saturation1.txt

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

a | b :-.

saturation2.txt

? ?

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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a :- not b.
b :- not a.

When disjunctions add expressiveness (1/2)
clingo saturation1.txt -n 0 

saturation1.txt

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

Solving...
Answer: 1
b
Answer: 2
a
SATISFIABLE

Models    : 2

a | b :-.

saturation2.txt

Solving...
Answer: 1
b
Answer: 2
a
SATISFIABLE

Models    : 2

{{a}, {b}}

both have the same two SMs {a} and {b}. {a,b} would also be a model, but
is not minimal, thus not a SM

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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a :- not b.
b :- not a.

When disjunctions add expressiveness (1/2)
clingo saturation1.txt -n 0 

saturation1.txt

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

Solving...
Answer: 1
b
Answer: 2
a
SATISFIABLE

Models    : 2

a | b :-.

saturation2.txt

Solving...
Answer: 1
b
Answer: 2
a
SATISFIABLE

Models    : 2

{{a}, {b}}

both have the same two SMs {a} and {b}. {a,b} would also be a model, but
is not minimal, thus not a SM

{a}a :- not b.
b :- not a.

reduct w.r.t {a}
a | b :-.

reduct w.r.t {a}

{a} or {b}

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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a :- not b.
b :- not a.

c :- a.
c :- b.

a :- c.

b :- c.

When disjunctions add expressiveness (2/2)
clingo saturation1.txt -n 0 

saturation3.txt

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

a | b :-.

c :- a.
c :- b.

a :- c.

b :- c.

saturation4.txt
• either a or b is true 

(if the other one is false)
• thus c is true
• thus both a and b need 

to be true ("saturation")
• but then neither a or b 

is justified in the first place

• either a or b is true 
(or both if needed)

• thus c is true
• thus both a and b need 

to be true ("saturation")
• and that's ok

? ?

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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a :- not b.
b :- not a.

c :- a.
c :- b.

a :- c.

b :- c.

When disjunctions add expressiveness (2/2)
clingo saturation1.txt -n 0 

saturation3.txt

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

Solving...
UNSATISFIABLE

Models    : 0

a | b :-.

c :- a.
c :- b.

a :- c.

b :- c.

saturation4.txt

Solving...
Answer: 1
a b c
SATISFIABLE

Models    : 1
{}

has no SM (stable model)

{a,b,c}

has 1 SM that includes both a and b

• either a or b is true 
(if the other one is false)

• thus c is true
• thus both a and b need 

to be true ("saturation")
• but then neither a or b 

is justified in the first place

• either a or b is true 
(or both if needed)

• thus c is true
• thus both a and b need 

to be true ("saturation")
• and that's ok

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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Details on Disjunctive Logic Programming

• 3-colorability
– 3-colorability with normal or disjunctive logic programs
– 3-uncolorability with cautious semantics

• Optimization
– Minimal Vertex Cover with weak constraints, optimization, aggregates
– Shortest paths with aggregation (contrast Clingo vs Souffle)

• Saturation for Disjunctive Logic Programs
– Minimal example for the power of saturation
– Uncolorability (program is satisfiable iff a graph is not 3-colorable)
– Minimal Vertex Cover of a particular size without minimization
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% Facts
vertex(1..3). edge(1,2). edge(1,3). edge(2,3).

% Guess

color(X,1) | color(X,2) | color(X,3) :- vertex(X).
% Check desired property (of being "uncolored")

uncolored :- edge(X,Y), color(X,C), color(Y,C).
% Saturate if desired property holds

color(X,1..3) :- uncolored, vertex(X).

3-uncolorability: via disjunctive LP
clingo 3uncolorability2.txt -n 0 

3uncolorability2.txt

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

2

3

1

Answer: 1
vertex(1) vertex(2) vertex(3) edge(1,2) edge(1,3) edge(2,3) color(1,3) color(2,2) color(3,1)
Answer: 2
vertex(1) vertex(2) vertex(3) edge(1,2) edge(1,3) edge(2,3) color(1,2) color(2,3) color(3,1)
Answer: 3
vertex(1) vertex(2) vertex(3) edge(1,2) edge(1,3) edge(2,3) color(1,3) color(2,1) color(3,2)
Answer: 4
vertex(1) vertex(2) vertex(3) edge(1,2) edge(1,3) edge(2,3) color(1,2) color(2,1) color(3,3)
Answer: 5
vertex(1) vertex(2) vertex(3) edge(1,2) edge(1,3) edge(2,3) color(1,1) color(2,3) color(3,2)
Answer: 6
vertex(1) vertex(2) vertex(3) edge(1,2) edge(1,3) edge(2,3) color(1,1) color(2,2) color(3,3)
SATISFIABLE

Models       : 6

"notcolored" is true iff any two 
neighbors share the color.

There are 6 possible colorings in which 
notcolored is not made true. Thus 
"notcolored" is never included.

If "notcolored" is true then 
"saturate" all vertices with all colors. 
This will never be a minimal SM if 
there is at least one valid coloring

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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% Facts
vertex(1..3). edge(1,2). edge(1,3). edge(2,3).

% Guess

color(X,1) | color(X,2) | color(X,3) :- vertex(X).
% Check desired property (of being "uncolored")

uncolored :- edge(X,Y), color(X,C), color(Y,C).
% Saturate if desired property holds

color(X,1..3) :- uncolored, vertex(X).

#show. #show yes : uncolored.

3-uncolorability: via disjunctive LP
clingo 3uncolorability3.txt -n 0 

3uncolorability3.txt

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

2

3

1

Answer: 1

Answer: 2

Answer: 3

Answer: 4

Answer: 5

Answer: 6

SATISFIABLE

Models       : 6

There are 6 possible colorings in which 
notcolored is not made true. Thus 
"notcolored" is never included.

"notcolored" is true iff any two 
neighbors share the color.

If "notcolored" is true then 
"saturate" all vertices with all colors. 
This will never be a minimal SM if 
there is at least one valid coloring

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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% Facts
vertex(1..3). edge(1,2). edge(1,3). edge(2,3).

% Guess

color(X,1) | color(X,2) | color(X,3) :- vertex(X).
% Check desired property (of being "uncolored")

uncolored :- edge(X,Y), color(X,C), color(Y,C).
% Saturate if desired property holds

color(X,1..3) :- uncolored, vertex(X).

#show. #show yes : uncolored.

3-uncolorability: via disjunctive LP
clingo 3uncolorability3.txt 

3uncolorability3.txt

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

2

3

1

Solving...
Answer: 1

SATISFIABLE

Models       : 1+

There are 6 possible colorings in which 
notcolored is not made true. Thus 
"notcolored" is never included.

"notcolored" is true iff any two 
neighbors share the color.

If "notcolored" is true then 
"saturate" all vertices with all colors. 
This will never be a minimal SM if 
there is at least one valid coloring

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo


529Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 

% Facts
vertex(1..3). edge(1,2). edge(1,3). edge(2,3).

% Guess

color(X,1) | color(X,2) | color(X,3) :- vertex(X).
% Check desired property (of being "uncolored")

uncolored :- edge(X,Y), color(X,C), color(Y,C).
% Saturate if desired property holds

color(X,1..3) :- uncolored, vertex(X).

% Additionally require desired property
:- not uncolored.

3-uncolorability: via disjunctive LP
clingo 3uncolorability6.txt 

3uncolorability6.txt

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

2

3

1

Solving...
UNSATISFIABLE

Models    : 0

Additionally require the desired property "uncolored" to 
be true as additional constraint (recall this rule does not 
make it true, it needs to be derivable in the reduct)

"notcolored" is true iff any two 
neighbors share the color.

If "notcolored" is true then 
"saturate" all vertices with all colors. 
This will never be a minimal SM if 
there is at least one valid coloring

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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% Facts
vertex(1..4). edge(1,2..4). edge(2,3..4). edge(3,4).

% Guess

color(X,1) | color(X,2) | color(X,3) :- vertex(X).
% Check desired property (of being "uncolored")

uncolored :- edge(X,Y), color(X,C), color(Y,C).
% Saturate if desired property holds

color(X,1..3) :- uncolored, vertex(X).

% Additionally require desired property
:- not uncolored.

3-uncolorability: (non-existence of coloring)
clingo 3uncolorability1.txt 

2

3

1

3uncolorability1.txt
4

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

Answer: 1
vertex(1) vertex(2) vertex(3) vertex(4) edge(3,4) edge(1,2) 
edge(1,3) edge(1,4) edge(2,3) edge(2,4) color(1,1) color(1,2) 
color(1,3) color(2,1) color(2,2) color(2,3) color(3,1) color(3,2) 
color(3,3) color(4,1) color(4,2) color(4,3) notcolored
SATISFIABLE

Models       : 1

"notcolored" is true iff any two 
neighbors share the color.

If "notcolored" is true then 
"saturate" all vertices with all colors. 
This will never be a minimal SM if 
there is at least one valid coloring

There is no possible coloring and "notcoloring" is always 
true. Thus there is only one "saturated" SM that also 
contains "notcolored" (which is also required)

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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% Facts
vertex(1..4). edge(1,2..4). edge(2,3..4). edge(3,4).

% Guess

color(X,1) | color(X,2) | color(X,3) :- vertex(X).
% Check undesired property (of being "uncolored")

uncolored :- edge(X,Y), color(X,C), color(Y,C).

% Additionally disallow undesired property
:- uncolored.

3-colorability: (existence of coloring)
clingo 3colorability6.txt 

2

3

1

3colorability6.txt
4

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

Solving...
UNSATISFIABLE

Models       : 0

"notcolored" is true iff any two 
neighbors share the color.

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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Details on Disjunctive Logic Programming

• 3-colorability
– 3-colorability with normal or disjunctive logic programs
– 3-uncolorability with cautious semantics

• Optimization
– Minimal Vertex Cover with weak constraints, optimization, aggregates
– Shortest paths with aggregation (contrast Clingo vs Souffle)

• Saturation for Disjunctive Logic Programs
– Minimal example for the power of saturation
– Uncolorability (program is satisfiable iff a graph is not 3-colorable)
– Minimal Vertex Cover of a particular size without minimization
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% Facts
vertex(1..4). edge(1,2..4). edge(2,3..4). edge(3,4).
% Guess solutions
cover (X,1) | cover (X,0) :- vertex(X).

% Check and enforce properties
:- edge(X,Y), cover (X,0), cover (Y,0).
valid :- #count{X: cover (X,1)} = 3.
:- not valid.

existence of VC = 3 2

3

1

4

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

Solving...
Answer: 1
vertex(1) vertex(2) vertex(3) vertex(4) edge(3,4) edge(1,2) 
edge(1,3) edge(1,4) edge(2,3) edge(2,4) cover(1,0) cover(2,1) 
cover(3,1) cover(4,1) valid
SATISFIABLE

Models       : 1+

Guess a solution (expressiveness of disjunctive rule is 
not required here)

clingo minVC-existence2.txt minVC-existence2.txt

The valid solution needs to be a cover and have 3

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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% Facts
vertex(1..4). edge(1,2..4). edge(2,3..4). edge(3,4).
% Guess solutions

cover_all(X,1) | cover_all(X,0) :- vertex(X).
% Check and enforce properties

invalid :- edge(X,Y), cover_all(X,0), cover_all(Y,0).
invalid :- #count{X: cover_all(X,1)} >= 3.
:- not invalid.
% Additionally saturate if desired property holds
cover_all(X,0..1) :- invalid, vertex(X).

non-existence of VC < 3 2

3

1

4

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

Answer: 1
vertex(1) vertex(2) vertex(3) vertex(4) edge(3,4) edge(1,2) 
edge(1,3) edge(1,4) edge(2,3) edge(2,4) cover_all(1,1) 
cover_all(1,0) cover_all(2,1) cover_all(2,0) cover_all(3,1) 
cover_all(3,0) cover_all(4,1) cover_all(4,0) invalid
SATISFIABLE

Models       : 1

clingo minVC-nonexistence2.txt minVC-nonexistence2.txt

Guess all cover candidates with disjunction (here disjunction 
is needed as we use it with saturation later below)

All cover candidates must be invalid (not a cover or >= 3)

Saturate all other cover candidates if invalid

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo


535Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 

% Facts
vertex(1..4). edge(1,2..4). edge(2,3..4). edge(3,4).
% Guess solutions
cover (X,1) | cover (X,0) :- vertex(X).
cover_all(X,1) | cover_all(X,0) :- vertex(X).
% Check and enforce properties
:- edge(X,Y), cover (X,0), cover (Y,0).
valid :- #count{X: cover (X,1)} = 3.
:- not valid.
invalid :- edge(X,Y), cover_all(X,0), cover_all(Y,0).
invalid :- #count{X: cover_all(X,1)} >= 3.
:- not invalid.
% Additionally saturate if desired property holds
cover_all(X,0..1) :- invalid, vertex(X).

minVC = 3 (exists 3 and not exists <3) 2

3

1

4

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

Answer: 1
vertex(1) vertex(2) vertex(3) vertex(4) edge(3,4) edge(1,2) 
edge(1,3) edge(1,4) edge(2,3) edge(2,4) cover_all(1,1) 
cover_all(1,0) cover_all(2,1) cover_all(2,0) cover_all(3,1) 
cover_all(3,0) cover_all(4,1) cover_all(4,0) invalid cover(1,0) 
cover(2,1) cover(3,1) cover(4,1) valid
SATISFIABLE

Models       : 1+

Guess a valid solution (disjunction is not required here)

clingo minVC-existsandnot1.txt minVC-existsandnot1.txt

We want all other cover candidates to not be better
(disjunction is required here)

The valid solution needs to be a cover and have 3

All other cover candidates must be invalid (not a cover or >= 3)

Saturate all other cover candidates if invalid

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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% Facts
vertex(1..4). edge(1,2..4). edge(2,3..4). edge(3,4).
% Guess solutions
cover (X,1) | cover (X,0) :- vertex(X).
cover_all(X,1) | cover_all(X,0) :- vertex(X).
% Check and enforce properties
:- edge(X,Y), cover (X,0), cover (Y,0).
minvc(K) :- #count{X: cover (X,1)} = K.

invalid :- edge(X,Y), cover_all(X,0), cover_all(Y,0).
invalid :- #count{X: cover_all(X,1)} >= K, minvc(K).
:- not invalid.
% Additionally saturate if desired property holds
cover_all(X,0..1) :- invalid, vertex(X).

minVC = K (exists K and not exists <K) 2

3

1

4

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

Answer: 1
vertex(1) vertex(2) vertex(3) vertex(4) edge(3,4) edge(1,2) 
edge(1,3) edge(1,4) edge(2,3) edge(2,4) cover_all(1,1) 
cover_all(1,0) cover_all(2,1) cover_all(2,0) cover_all(3,1) 
cover_all(3,0) cover_all(4,1) cover_all(4,0) cover(1,0) cover(2,1) 
cover(3,1) cover(4,1) minvc(3) invalid
SATISFIABLE

Models       : 1+

Guess a valid solution (disjunction is not required here)

clingo minVC-existsandnot2.txt minVC-existsandnot2.txt

We want all other cover candidates to not be better
(disjunction is required here)

The valid solution needs to be a cover and have some size K

All other cover candidates must be invalid (not a cover or >= K)

Saturate all other cover candidates if invalid

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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% Facts
vertex(1..4). edge(1,2..4). edge(2,3..4). edge(3,4).
% Guess solutions
cover (X,1) | cover (X,0) :- vertex(X).
cover_all(X,1) | cover_all(X,0) :- vertex(X).
% Check and enforce properties
:- edge(X,Y), cover (X,0), cover (Y,0).
minvc(K) :- #count{X: cover (X,1)} = K.

invalid :- edge(X,Y), cover_all(X,0), cover_all(Y,0).
invalid :- #count{X: cover_all(X,1)} >= K, minvc(K).
:- not invalid.
% Additionally saturate if desired property holds
cover_all(X,0..1) :- invalid, vertex(X).

#show. #show K: minvc(K).

minVC = K (exists K and not exists <K) 2

3

1

4

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

Answer: 1
3
SATISFIABLE

Models       : 1+

Guess a valid solution (disjunction is not required here)

clingo minVC-existsandnot3.txt minVC-existsandnot3.txt

We want all other cover candidates to not be better
(disjunction is required here)

The valid solution needs to be a cover and have some size K

All other cover candidates must be invalid (not a cover or >= K)

Saturate all other cover candidates if invalid

Only show the single entry K in "minvc(K)"

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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% Facts
vertex(1..3). edge(1,2..3). edge(2,3).
% Guess solutions
cover (X,1) | cover (X,0) :- vertex(X).
cover_all(X,1) | cover_all(X,0) :- vertex(X).
% Check and enforce properties
:- edge(X,Y), cover (X,0), cover (Y,0).
minvc(K) :- #count{X: cover (X,1)} = K.

invalid :- edge(X,Y), cover_all(X,0), cover_all(Y,0).
invalid :- #count{X: cover_all(X,1)} >= K, minvc(K).
:- not invalid.
% Additionally saturate if desired property holds
cover_all(X,0..1) :- invalid, vertex(X).

#show. #show K: minvc(K).

minVC = K (exists K and not exists <K) 2

3

1

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo 

Answer: 1
2
SATISFIABLE

Models       : 1+

Guess a valid solution (disjunction is not required here)

clingo minVC-existsandnot4.txt minVC-existsandnot4.txt

The valid solution needs to be a cover and have some size K

All other cover candidates must be invalid (not a cover or >= K)

Saturate all other cover candidates if invalid

Only show the single entry K in "minvc(K)"

We want all other cover candidates to not be better
(disjunction is required here)

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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Outline: T1-4: Datalog & ASP

• Datalog
• Answer Set Programming

– Intro to Rules with Negation
– Horn clauses and Logic Programming
– Stable model semantics
– An application and surprising complexity result
– The power of Disjunctions
– [A surprising application: automating hardness proofs: 

moved to T2-U4: Reverse Data Management]


