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Where We Are

e Relational query languages we have seen so far:
- SQL
— Relational Calculus
— Relational Algebra

« They can express the same class of relational queries (ignoring
extensions, such as grouping, aggregates, or sorting)
— How powerful are they? What kind of useful queries are missing?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Which are Relational Queries? Which are not? And Why?

e Given Friend(X,Y): Find all people X whose number of friends is a prime
number f?

« Find all people who are friends with everyone who is not a friend of Bob

?

o Partition all people into three sets P1(X),P2(X),P3(X) s.t. any two friends
are in different partitions

?

e Find all people who are direct or indirect friends with Alice (connected
in arbitrary length)

?

Source: Dan Suciu, CSE 554, 2011. u
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Which are Relational Queries? Which are not? And Why?

Given Friend(X,Y): Find all people X whose number of friends is a prime

number NO: needs higher math; not possible with RA
(nuless we have access to a relation Prime(x)...)

e Find all people who are friends with everyone who is not a friend of Bob
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NO: equivalent to 3-coloring; NP-complete
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Which are Relational Queries? Which are not? And Why?

Given Friend(X,Y): Find all people X whose number of friends is a prime

number NO: needs higher math; not possible with RA
(nuless we have access to a relation Prime(x)...)

Find all people who are friends with everyone who is not a friend of Bob
VES: {x | Vy.(=Friend(y, '"Bob')=>Friend(x,\v) ?
£x | Person(x) A Vy.[Person(y) A -Friend(y, Bob')=>Friend(x,)]3
Partition all people into three sets P1(X),P2(X),P3(X) s.t. any two friends

are in different partitions
NO: equivalent to 3-coloring; NP-complete

Find all people who are direct or indirect friends with Alice (connected

in arbitrary length) o recursive auery; PTIME yet ot expressible in RA
Next: Datalog: extends monotone RA with recursion

Source: Dan Suciu, CSE 554, 2011.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Transitive closure (not expressible with RA)

THEOREM: Datalog can express queries that RA (RC) cannot (e.g., transitive closure of a graph)

Transitive closure |[edit]

Although relational algebra seems powerful enough for most practical
purposes, there are some simple and natural operators on relations that
cannot be expressed by relational algebra. One of them is the transitive
closure of a binary relation. Given a domain D, let binary relation R be a
subset of DxD. The transitive closure R* of R is the smallest subset of
DxD that contains R and satisfies the following condition:

VaVyVz ((z,y) € RT A (y,2) € Rt = (z,2) € R")

It can be proved using the fact that there is no relational algebra
expression E(R) taking R as a variable argument that produces R*.[’]

SQL however officially supports such fixpoint queries since 1999, and it
had vendor-specific extensions in this direction well before that.

Appendix

In this appendix, we prove that the transitive closure of
a relation cannot be couched as an expression of relation-
al algebra. It is interesting to note that both Bancilhon
[B] andParedaens[P] in essence characterize relational alge-
bra as equivalent to the set of mappings obeying principle 2
with respect to an empty set of predicates. However,
transitive closure obeys this principle. There is no con-
tradiction. In [B,P] it is shown that for every relation r
there is a relational algebra expression E such that
E(R)=R™, the transitive closure of R. What we show is
that for no relational algebra expression E is E(R)=R"*
for all r.

Theorem 6. For an arbitrary binary relation R, there is
no expression E(R) in relational algebra equivalent to
R*, the transitive closure of R.

Suppose we have an expression E(R) that is the transi-

tive closure of R. Let X, = {ay, a3, . . ., a)} be a set of /
arbitrary symbols. Let R; be the finite relation
{a\ay, asas, . . .,a1a;). R, represents the graph

We shall show that, for any relational expression E, there
is some value of / for which E(R,) is not R;*. In particu-

Source: https://en.wikipedia.org/wiki/Relational _algebra#fTransitive closure
Appendix from: Aho, Ullman. "Universality of data retrieval languages". POPL 1979. https://doi.org/10.1145%2F567752.567763
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/



https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Relational_algebra
https://doi.org/10.1145%2F567752.567763

Datalog & ASP

(X;y) .~ ArC(X,Y).
(X)Z) .~ Arc(xly)l (ylz)'
- Datalog InCycle(x) :- (x,X).

— Database query language designed in the 80’s

— Simple, concise, elegant

e "Clean" (syntactic) restriction of Prolog with DB access

* Expressive & declarative: Set-of-rules semantics, Independence
execution order, Invariance under logical equivalence

— Several open source implementations, mostly aca

LogicBlox
ic implementations RelationalAI

— Recently a hot topic, beyond databases:

* network protocols, static program analysis, DB+ML

4 SPIN-OFF
OF UNIVERSITY OF CALABRIA

4L divsystem

« Answer Set Programming (ASP):

hard computational problems '2 Potassco

— very powerful extension (with negation) that can model (-\
[]
1T :
mam Solutions

Originally based on slides by Dan Suciu
We will later see and use in class: Souffle (https://souffle-lang.github.io/simple) and Postassco/Clingo: Download: https://potassco.org/clingo/,

Running in the browser: https://potassco.org/clingo/run/, More resources on clingo: https://teaching.potassco.org/
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Recursion with SQL server vs. Datalog

SQL

LISTING 4.7 Using Common Table Expressions for Recursive Operations

USE AdventureWorks;
WITH DirectReports (ManagerID, EmployeelID, EmployeeName, Title)
AS
(
-- Anchor member definition
SELECT e.ManagerID, e.EmployeelID, c.FirstName + '
FROM HumanResources.Employee AS e
INNER JOIN Person.Contact as c
ON e.ContactID = c.ContactID
WHERE ManagerID IS NULL
UNION ALL
-- Recursive member definition
SELECT e.ManagerID, e.EmployeelD,c.FirstName + '
FROM HumanResources.Employee AS e
INNER JOIN DirectReports AS d
ON e.ManagerID = d.EmployeelD
INNER JOIN Person.Contact as ¢
ON e.ContactID = c.ContactID

" + c.LastName, e.Title

" + c.LastName ,e.Title

)
-- Statement that executes the CTE

SELECT EmployeeID, EmployeeName, Title, ManagerID
FROM DirectReports
GO

Query on the left from Bieker, Lee. Mastering SQL server 2008. Example on the right by Dan Suciu

Datalog

Manager(eid) :- Manages(_, eid)

DirectReports(eid, 0) :-
Employee(eid), not Manager(eid)

DirectReports(eid, level+1) :-
DirectReports(mid, level), Manages(mid, eid)

SQL Query vs. Patalog: which
would you rather write?

Possible scribe: to fix that
example ©

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Smallest set of features that would make relational algebra Turing complete

Asked 8 years, 4 months ago Active 5 years, 5 months ago Viewed 296 times

You need just two things: new values and recursion/while.

4 New values means the ability to execute some external function that returns values that were
not already to be found in the database. Obviously most implementations (including SQL)

have that. CTE = Common Table Expession = WITH clanse

V Recursion/while means the ability to e a loop or iterative computation that may not
terminate. The CTE RECURSIVE feature of SQL is one such.

SQL with CTE RECURSIVE is Turing Complete (without stored procedures).

See the Alice book http://webdam.inria.fr/Alice/ for a detailed treatment.

Share Cite Improve this answer Follow answered Sep 12016 at 5:47

david.pfx
D‘ 176 o4

https://cs.stackexchange.com/questions/14694/smallest-set-of-features-that-would-make-relational-algebra-turing-complete
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 16
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@ Jan Hidders, Database researcher Cyclic Tag System

Answered 2 years ago - Author has 615 answers and 840K answer views Fun Snippets
This SQL query (requires PostgreSQL 8.4) forms a cyclic tag system (wikipedia &), which is sufficient to demonstrate that

SQL is Turing-complete. It is written entirely in SQL:2003-conformant SQL. Cyclic Tag System

Why is SQL not Turing complete?

Thanks to Andrew (RhodiumToad) Gierth, who came up with the concept and wrote the code. Works with PostgreSQL
Some variants of SQL, including some of the ISO standards, are actually Turing The productions are encoded in the table "p" as follows: B
Written in
Complete' "iter" is the production number; saL
"rnum" is the index of the bit;
"tag" is the bit value. Depends on
The most obvious example is SQL:1999 with the SQL/PSM extension, which adds Hoifing

This example uses the productions:

stored procedures and therefore recursive functions and programming

constructs that were intended to turn SQL into a programming language. 11001 0000

The initial state is encoded in the non-recursive union arm, in this case just '1'

A |ESS ObViOUS example is SQL'2003 Without Stored procedures_ |t can be Shown The mod(r.iter, n) subexpression encodes the number of productions, which can be greater than the size of table "p", because empty productions are
A 2 5 < s 3 % not included in the table.
to be Turing complete using a clever combination of recursive queries (using

Parameters:
Common Table Expressions) and Windowing, the first introduced in SQL:1999
. . the content of "p"
and the latter since SQL:2003. See: hitp://assets.en.oreilly.com/1/event Wi S ) I eSS e
[27[High%20Performance%20SQL%20with%20PostgreSQL%20Presentation.pd
A "p" encodes the production rules; the non-recursive branch is the initial state, and the 3 is the number of rules
f & )’ The result at each level is a bitstring encoded as 1 bit per row, with rnum as the index of the bit number.
At each iteration, bit 0 is removed, the remaining bits shifted up one, and if and only if bit 0 was a 1, the content of the current production rule is
Nevertheless, it is true that the core of SQL was deliberately designed to be not STt te SN of the/sting:
Turing complete. The main reasons for this are: WITH RECURSIVE
p(iter,rnum,tag) AS (
VALUES E?,g,%;,g?,i,%;,(@,z,@),
1. By restricting the query language the programmer is encouraged to ) (2,0,0),(2,1,0),(2,2,0),(2,3,0)
separate the computational task into a part that can be efficiently e
. . UNION ALL
computed and optimised by the DBMS (namely the part that can be SELECT r.iters1,
formulated in SQL) and a part that the programmer probably can better SMEN rurnum-8: THER s + WBXLr.ratn): OVER, ()
. END,
implement by themselves. CASE
WHEN r.rnum=0 THEN p.tag
ELSE r.tag
2. By restricting the query language to computations that always terminate o
. - - - - r
and can be computed in polynomial time and logarithmic space, we can i L ——
reduce the risk of burdening the database server with a workload that it WHRE. i

OR p.iter IS NOT NULL

H )
cannot deal with. SELECT iter, rnum, tag

FROM r
ORDER BY iter, rnum;

1.4K views - View upvotes

https://www.quora.com/Why-is-relational-algebra-not-Turing-complete , https://wiki.postgresql.org/wiki/Cyclic Tag System, https://en.wikipedia.org/wiki/Tag system#Cyclic tag systems
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Cyclic tag systems |edit]

A cyclic tag system is a modification of the original tag system. The alphabet consists of only two symbols, 0 and 1,
and the production rules comprise a list of productions considered sequentially, cycling back to the beginning of the
list after considering the "last" production on the list. For each production, the leftmost symbol of the word is
examined—if the symbol is 1, the current production is appended to the right end of the word; if the symbol is 0, no
characters are appended to the word; in either case, the leftmost symbol is then deleted. The system halts if and
when the word becomes empty.

Example |edit]

Cyclic Tag System
Productions: (010, 000, 1111)

Computation
Initial Word: 11001
Production Word
010 11001
000 1001010
1111 001010000
010 01010000
000 1010000
1111 010000000
010 10000000

Cyclic tag systems were created by Matthew Cook and were used in Cook's demonstration that the Rule 110
cellular automaton is universal. A key part of the demonstration was that cyclic tag systems can emulate a Turing-
complete class of tag systems.

Cyclic Tag System

Fun Snippets
This SQL query (requires PostgreSQL 8.4) forms a cyclic tag system (wikipedia &), which is sufficient to demonstrate that

SQL is Turing-complete. It is written entirely in SQL:2003-conformant SQL. Cyclic Tag System
Thanks to Andrew (RhodiumToad) Gierth, who came up with the concept and wrote the code. Works with PostgreSQL
The productions are encoded in the table "p" as follows: 8.4

Written in

"iter" is the production number;
"rnum" is the index of the bit;
"tag" is the bit value.

sQL
Depends on

Nothin
This example uses the productions: g

110 01 0000

The initial state is encoded in the non-recursive union arm, in this case just '1'

The mod(r.iter, n) subexpression encodes the number of productions, which can be greater than the size of table "p", because empty productions are
not included in the table.

Parameters:

the content of "p"
the content of the non-recursive branch
the 3 in mod(r.iter, 3)

"p" encodes the production rules; the non-recursive branch is the initial state, and the 3 is the number of rules
The result at each level is a bitstring encoded as 1 bit per row, with rnum as the index of the bit number.

At each iteration, bit 0 is removed, the remaining bits shifted up one, and if and only if bit 0 was a 1, the content of the current production rule is
appended at the end of the string.

WITH RECURSIVE
p(iter, rnum,tag) AS (
VALUES (o,0,1),(0,1,1),(0,2,0),
(1,0,0),(1,1,1),
) (2,0,0),(2,1,0),(2,2,0),(2,3,0)
’
r(iter,rnum,tag) AS (
VALUES (0,0,1)
UNION ALL
SELECT r.iter+1,
CASE
WHEN r.rnum=0 THEN p.rnum + max(r.rnum) OVER ()
ELSE r.rnum-1
END,
CASE
WHEN r.rnum=0 THEN p.tag
ELSE r.tag
END
FROM

r
LEFT JOIN p

ON (r.rnum=0 and r.tag=1 and p.iter=mod(r.iter, 3))
WHERE

r.rnum>0
OR p.iter IS NOT NULL

)

SELECT iter, rnum, tag
FROM r

ORDER BY iter, rnum;

https://www.quora.com/Why-is-relational-algebra-not-Turing-complete , https://wiki.postgresql.org/wiki/Cyclic Tag System, https://en.wikipedia.org/wiki/Tag system#Cyclic tag systems

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Query Language Design

Query language design is still a popular topic, especially for
graphs. See e.g. https://www.tigergraph.com/gsql/

And the slides
https://courses.cs.washington.edu/courses/csed516/20au/le

ctures/lecture05-advanced-guery-evaluation.pdf
from “DATA516/CSED516: Scalable Data Systems and
Algorithms!” Dan Suciu

https://courses.cs.washington.edu/courses/csed516/20au/

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Outline: T1-4: Datalog & ASP

 Datalog
— Datalog rules
— Datalog vs. RA
— Recursion
— Recursion in SQL [moved here from T1-U1: SQL]
— Semantics
— Naive and Semi-naive evaluation (Incremental View Maintenance)
— (Chase Procedure (and Decompositions=Factorizations)
— Datalog™ Datalog with stratified negation
Datalog®
. Ansvver Set Programming (ASP)

20



Datalgg: Facts and RUleS Schema | Actor(id, fname, Iname)
Plays(aid, mid)

Movie(id, name, year)

Facts: tuples in the database Rules: queries
(votice position matters: umamed perspective)
Actor(344759,"Douglas", "Fowley"). (y) :- Movie(x,y,z), z=1940.
Plays(344759, 7909). ?
Plays(344759, 29000). f
Movie(7909, "A Night in Armour", 1910). (£1) - Actor(u,f1), Plays(u.x),
Movie(29000, "Arizona", 1940). Vovie(x,y,z), z<1940.
Movie(29445, "Ave Maria", 1940).

?

(f,1) :- Actor(z,f,1), Plays(z,x1), Movie(x1,y1,1910),
Plays(z,x2), Movie(x2,y2,1940).

Examples by Dan Suciu
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 21
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Datalgg: Facts and RUleS Schema | Actor(id, fname, Iname)
Plays(aid, mid)

Movie(id, name, year)

Facts: tuples in the database Rules: queries
(notice position matters: umwamed perspective)
Actor(344759,"Douglas", "Fowley"). (y) :- Movie(x,y,z), z=1940.

Plays(344759, 7909).
Plays(344759, 29000).
Movie(7909, "A Night in Armour", 1910). (£1) == Actor(u,fl), Plays(u,x),
Movie(29000, "Arizona", 1940). Movie(x,y,z), z<1940.
Movie(29445, "Ave Maria", 1940). ?

(f,1) :- Actor(z,f,1), Plays(z,x1), Movie(x1,y1,1910),
Plays(z,x2), Movie(x2,y2,1940).

Find movies from 1440

Examples by Dan Suciu
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 22
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Datalog: Facts and RUleS Schema | Actor(id, fname, Iname)
Plays(aid, mid)

Movie(id, name, year)

Facts: tuples in the database Rules: queries
(notice position matters: umwamed perspective)
Actor(344759,"Douglas", "Fowley"). (y) :- Movie(x,y,z), z=1940.

Plays(344759, 7909).
Plays(344759, 29000).
Movie(7909, "A Night in Armour", 1910). (£1) == Actor(u,fl), Plays(u,x),
Movie(29000, "Arizona", 1940). Movie(x,y,z), z<1940.
Movie(29445, "Ave Maria", 1940).

Find movies from 1440

Find actors who played in a movie before 1440

(f,1) :- Actor(z,f,1), Plays(z,x1), Movie(x1,y1,1910),
Plays(z,x2), Movie(x2,y2,1940).

Examples by Dan Suciu
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 23
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Datalog: Facts and Rules

Facts: tuples in the database

Schema | Actor(id, fname, Iname)
Plays(aid, mid)
Movie(id, name, year)

Rules: queries
(notice position matters: umwamed perspective)

Actor(344759,"Douglas", "Fowley").
Plays(344759, 7909).
Plays(344759, 29000).

Movie(29000, "Arizona", 1940).
Movie(29445, "Ave Maria", 1940).

(y) :- Movie(x,y,z), z=1940.

Movie(7909, "A Night in Armour", 1910).

Find movies from 1440

(f,1) :- Actor(u,f,l), Plays(u,x),
Viovie(x,y,z), z<1940.

Find actors who played in a movie before 1440

(f,1) :- Actor(z,f,1), Plays(z,x1), Movie(x1,y1,1910),

Plays(z,x2), Movie(x2,y2,1940).

Find actors who played in a movie from 110 avd from 1940

Examples by Dan Suciu

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 24
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Datalog: Facts and Rules

Facts: tuples in the database

Schema | Actor(id, fname, Iname)
Plays(aid, mid)
Movie(id, name, year)

Rules: queries
(notice position matters: umwamed perspective)

Actor(344759,"Douglas", "Fowley").
Plays(344759, 7909).
Plays(344759, 29000).

Movie(29000, "Arizona", 1940).
Movie(29445, "Ave Maria", 1940).

(y) :- Movie(x,y,z), z=1940.

Movie(7909, "A Night in Armour", 1910).

Find movies from 1440

(f,1) :- Actor(u,f,l), Plays(u,x),
Viovie(x,y,z), z<1940.

Find actors who played in a movie before 1440

(f,1) :- Actor(z,f,1), Plays(z,x1), Movie(x1,y1,1910),

Plays(z,x2), Movie(x2,y2,1940).

Find actors who played in a movie from 1410 ayid from 1440

Examples by Dan Suciu

OR

?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 25
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Datalgg: Facts and RUleS Schema | Actor(id, fname, Iname)
Plays(aid, mid)

Movie(id, name, year)

Facts: tuples in the database Rules: queries
(notice position matters: umwamed perspective)
Actor(344759,"Douglas", "Fowley"). (y) :- Movie(x,y,z), z=1940.

Plays(344759, 7909).
Plays(344759, 29000).
Movie(7909, "A Night in Armour", 1910). (£1) == Actor(u,fl), Plays(u,x),
Movie(29000, "Arizona", 1940). Movie(x,y,z), z<1940.
Movie(29445, "Ave Maria", 1940).

Find movies from 1440

Find actors who played in a movie before 1440

(f,1) :- Actor(z,f1), Plays(z,x1), Movie(x1,y1,1910).
(f,1) :- Actor(z,f1), Plays(z,x2), Movie(x2,y2,1940).

Find actors who played in a movie from 1410 ayid from 1440
Extensional Database (EDB) predicates: Actor, Plays, Movie OR
Database (IDB) predicates: Q1, Q2, Q3, Q4
Examples by Dan Suciu

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 26
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[
-

™

Example with Souffle
command live if run from +the same directory:

souffle movie.dl

movie.dl i

_ ae—

@ctor(id:numben fname:symbol, Iname:symbol)
.decl Plays(aid:number, mid:number)

.decl Movie(id:number, name:symbol, year:number)
Actor(344759,"Douglas", "Fowley").

Plays(344759, 7909).

Plays(344759, 29000).

Movie(7909, "A Night in Armour”, 1910).
Movie(29000, "Arizona", 1940).

Movie(29445, "Ave Maria", 1940).

.decl Q2(fname:symbol, [Iname:symbol)
Q2(f 1) :- Actor(u,f), Plays(u,x), I\/Iovie(>@z), 2<1940.

Schema | Actor(id, fname, Iname)
Plays(aid, mid)
Movie(id, name, year)

also allows +o specify specific
input and output directories

e

souffle -F. -D. movie.dl

tab-separated ontput,
filename: ".csv"

Q2.csv

ontput .

.output Q2

For more help on Souffle, see: https://souffle-lang.github.io/simple

Datalog example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Douglas Fowley
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Pre-class conversations

e Last class summary
e Project discussions (in 1 weeks: Fri 2/16: first project ideas)

e today:
— Recursion (Datalog)
e next week:
— what happens if we add negation? Answer: it depends on how we do it.

* Datalog with stratified negation
* Datalog with more genal negation (stable models), leads to ASP

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Syntax of rules

* evaluates +o true when relation &, contains
the tuple described by aros,
* e.9. Actor (344754, Donglas”,"Fowley") is true arithmetic predicate

R.(args): relational predicate with arguments (= atom / subgoal)

\

Q2(f,l) :- Actor(u,1,1), Plays(u,x), Movie(x,y,z), 7<1940.

W_/ \_ ~ J
head body
(or conseduent) (or antecedent)
single TUB atom conjunction of atoms

{t,!}: head variables
{u,x,v,z}: existential variables

Alternative notation: Q(args) <- R1(args) AND R2(args) .... / or variables begin with a capital letter, predicates with lower-case letters (problem: can't have "Boston")
Based upon an example by Dan Suciu from CSE 554, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 30
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Logical interpretation of a single rule

Q(v) :- Movie(x,y,z), z<1940.

Meaning of a Datalog rule is a logical statement:

?

Based upon class material from Dan Suciu for CSE 554, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Actor(id, fname, Iname)
Plays(aid, mid)
Movie(id, name, year)
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Logical interpretation of a single rule

Q(v) :- Movie(x,y,z), z<1940.

Meaning of a Datalog rule is a logical statement:

Actor(id, fname, Iname)
Plays(aid, mid)
Movie(id, name, year)

For all x,y,z: if (X,y,z) € Movies and z<1940 then y is in Q (i.e. is part of the answer)

|(Movie(x,y,2) A 2<1940) = Q(v)]

lgnoring the case of an empty movie table, logically equivalent to

?

Based upon class material from Dan Suciu for CSE 554, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Logical interpretation of a single rule

Q(v) :- Movie(x,y,z), z<1940.

Meaning of a Datalog rule is a logical statement:

Actor(id, fname, Iname)
Plays(aid, mid)
Movie(id, name, year)

For all x,y,z: if (X,y,z) € Movies and z<1940 then y is in Q (i.e. is part of the answer)

|(Movie(x,y,2) A 2<1940) = Q(v)]

lgnoring the case of an empty movie table, logically e

|Z%,z [Movie(x,y,2) A z<1940] = Q(v) ]

compare with DRC

?

Based upon class material from Dan Suciu for CSE 554, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Logical interpretation of a single rule

Actor(id, fname, Iname)
Plays(aid, mid)

Q(Y) .- I\/Iovie(x,y,z), 7<1940. Movie(id, name, year)

Meaning of a Datalog rule is a logical statement:
For all x,y,z: if (X,y,z) € Movies and z<1940 then y is in Q (i.e. is part of the answer)

Vx,v,z [(Movie(x,y,2) A 2z<1940) = Q(v)]

lgnoring the case of an empty movie table, logically eqPivaIent to _
hus, non-head variables are

vy [3%z [Movie(x,y,2) A 2<1940] called "existential variables"

we want the smallest set Q) f?
compare with DRC with this property (why?)

{(v) | 3%,z [Movie(x,y,z) A z<1940] }

Based upon class material from Dan Suciu for CSE 554, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 38
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Logical interpretation of a single rule

Actor(id, fname, Iname)
Plays(aid, mid)

Q(Y) .- I\/Iovie(x,y,z), 7<1940. Movie(id, name, year)

Meaning of a Datalog rule is a logical statement:
For all x,y,z: if (X,y,z) € Movies and z<1940 then y is in Q (i.e. is part of the answer)

Vx,v,z [(Movie(x,y,2) A 2z<1940) = Q(v)]

vy [3xz [Movie(x,y,z) A z<1940] called "existential variables”

lgnoring the case of an empty movie table, logically quivalent to _
hus, non-head variables are

we want the smallest set Q)
compare with DRC with this property (why?)

: That +akes care of the empty
4%,z [Movie(x,v,z) \ z<1940
)1 [ (6,7) I3 movie table ©: a rules owly fires if
Based upon class material from Dan Suciu for CSE 554, 2018.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ +M6 ﬂVH’@G@d@VH’ lS 'FMl'ﬁ l[@d ' 39
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' ' head existential *&gad
Syntactic Constraints varizbles'. variables 9

Q(X) . Rl(xllyl)l'";Rm(xm)ym)' X, €EXV, &y
(bold = vector notation)

The rule stands for the following logical formula:

Recall t the simallest
VX[Q(X) = EIY[Rl(Xll}Il)/\'"/\Rm(XmJYm)] 566:&\@ ZVVS"V\/]V?'WVHS Pri;:fi\.fcs

Two restrictions:

1. Safety: every head variable should occur in the body at least once

R(x,2) :- S(X,y), R(y,X). P,

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 40
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Syntactic Constraints

Q(X) . Rl(xlly1)1°-';Rm(xmlym)' X, €EXV, &y

: : bold = vect tat
The rule stands for the following logical formula: (beld = vector wotation)

vx[Q() & 3[R (%1, DA+ ARy (%7,

Two restrictions:

1. Safety: every head variable should occur in the body at least once
\ /
R(X,M). forbiddew rule: & viot in body
/ \

2. The head predicate must be an |DB (Intensional) predicate
(Body can include both EDBs and IDBs)

—— —  Thisis mostly of theoretic interest. Souffle calls EDBs
Ar‘C(X,y) ‘- < rC(Z,y), the "facts ... sourced from tab-separated input files" but
P— — allows +hewm also to appear in the head of a rule

(httpsi//sounffle-lang.github.io/execute)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 41
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Soufflé

Getting Started A

Install Soufflé

Build Soufflé

A Simple Example
Run Soufflé
Examples

Tutorial

Source Code and Documentation

Developer Tutorial

Applications

Language v
Advanced Topics v
Publications v

Welcome
() Editme &

Soufflé is a logic programming language inspired by Datalog. It overcomes some of the limitations in classical Datalog. For
example, programmers are not restricted to finite domains, and the usage of functors (intrinsic, user-defined,
records/constructors, etc.) is permitted. Soufflé has a component model so that large logic projects can be expressed. Soufflé
was initially designed for crafting static analysis in logic at Oracle Labs. Since then, there have been many other applications
written in the Soufflé language, including applications in reverse engineering, network analysis and data analytics.

Soufflé provides the ability to rapid prototype and make deep design space explorations possible. A wide range of
applications have been implemented in the Soufflé language, e.g., static program analysis for Java DOOP (£, parallelizing
compiler framework Insieme (4, binary disassembler DDISASM (', security analysis for cloud computing (4, and security
analysis for smart contracts Gigahorse (4, Securify (£, Secuify V2.0 (&', VANDAL (£. More applications are listed here.

Soufflé language project is led by Prof Bernhard Scholz (4, and commenced at Oracle Labs in Brisbane (4. Soufflé was open-
sourced in March 2016. It is actively supported by universities and industrial research labs. The main contributors to this
project have been The University of Sydney (£, the University of Innsbruck (£, the University College London (4, the University
of Athens (4, Oracle Labs, Brisbane (', and many more.

One of the major challenges in logic programming is performance and scalability. Soufflé applies advanced compilation
techniques for logic programs. We use a range of techniques to achieve high-performance: Futamura Projections, staged-
compilation with a new abstract machine, partial evaluation, and parallelization with highly-parallel data-structures.

Source: https://souffle-lang.github.io/docs.html

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 42
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Introduction to Datalog

Overview

Datalog is a (declarative) logic-based query language, allowing the user to perform recursive queries. It adopts syntax in the
style of Prolog. In its pure form, it is based on a decidable fragment of first-order logic (FOL). Here, the universe — the
collection of elements by which computation can be performed within - is finite, and functors are not permitted. Applications
of Datalog include program analysis, security, graph databases, and declarative networking.

Soufflé: The Language

Motivation

The syntax of Soufflé is inspired by implementations of Datalog, namely bddbddb (' and muZ in Z3 (£ There is no unified
standard for the specification of Datalog syntax. Thus, each implementation of Datalog may differ. A principle goal of the
Soufflé project is speed, tailoring program execution to multi-core servers with large amounts of memory. With this in mind,
Soufflé provides software engineering features (components, for example) for large-scale logic-oriented programming. For
practical usage, Soufflé extends Datalog to make it Turing-equivalent througil arithmetic functors. ihis results in the ability of
the programmer to write programs that may never terminate. An example of non-termination is a program where the fact
A(0). andrule A(i + 1) :- A(i). exist without additional constraints. This causes Soufflé to attempt to output an infinite
number of relations A(n) where n >= 0. This is in some way analogous to an infinite while loop in an imperative

programming language like C. However, the increased expressiveness afforded by arithmetic functors is very convenient for
programming.

Source: https://souffle-lang.github.io/tutorial
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Grounded variables

However, note that the following example has an ungrounded variable:

.decl fib(idx:number, value:number)

fib(1,1).

fib(2,1).

fib(idx, x + y) :- fib(idx-1, x), fib(idx-2, y), idx <= 10.
.output fib

The reason for this is that variable idx is not bound as an argument of a positive predicate in the body. In
the example, variable idx occurrs in the predicates fib(idx-1, x) and Tibt10X-Z, ym
arguments of a functor rather than as a direct argument.

Error: Ungrounded variable id in file fibonacci-wrong.dl at line 12
fib(id, x+y) :- fib(id-1, x), fib(id-2, y), id <= 10.

1 errors generated, evaluation aborted

what can be dome?

Source: https://souffle-lang.github.io/rules
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 44
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Grounded variables

However, note that the following example has an ungrounded variable:

.decl fib(idx:number, value:number)

fib(1,1).

fib(2,1).

fib(idx, x + y) :- fib(idx-1, x), fib(idx-2, y), idx <= 10.
.output fib

The reason for this is that variable idx is not bound as an argument of a positive predicate in the body. In
the example, variable idx occurrs in the predicates fib(idx-1, x]J an 1 =7, ut as
arguments of a functor rather than as a direct argument. To make variable idx bound, we can shift the
index by one and obtain a program whose variables are grounded:

And the program can produce the following output,

.decl fib(idx:number, value:number) fib
fib(1,1). idx value
fib(2,1). 1 1
fib(idx+1, x + vy) : d fib(idx-1, y), idx <= 9. 2 1
.outpu ib 3 2
4 3
5 5
6 8
7 13
8 21
9 34
10 55

Source: https://souffle-lang.github.io/rules
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 45
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Grounded variables

ﬁbonégci
souffle fibonacci.dl

fibonacci.dl

.decl fib(key:number, value:number)
.output fib

fib(1, 1).
fib(2, 1).
fib(id+2, x+y) :- fib(id, x), fib(id+1, y), id <= 13.

Datalog example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle

Source: https://souffle-lang.github.io/rules
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 46
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Grounded variables

fibonacci

souffle fibonacci.dl fib.csv
1 1
2 1
fibonacci.dl 3 2
decl fib(key:number, value:number) g 2
.output fib 6 38
fib(1, 1). IS
) 8 21
fib(2, 1). 9 34
fib(id+2, x+y) :- fib(id, x), fib(id+1, y), id <= 13. 10 55
11 &89

12 144

13 233

14 377

Source: https://souffle-lang.github.io/rules 15 610

Datalog example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 47
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Outline: T1-4: Datalog & ASP

» Datalog
— Datalog rules
— Datalog vs. RA
— Recursion
— Recursion in SQL [moved here from T1-U1: SQL]
— Semantics
— Naive and Semi-naive evaluation (Incremental View Maintenance)
— (Chase Procedure (and Decompositions=Factorizations)
— Datalog™ Datalog with stratified negation
— Datalog®
* Answer Set Programming (ASP)

48



RA to Datalog by examples: Union

RA:
R(A,B,C) U S(D,E,F)

Datalog:

?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

R(A,B,C)
S(D,E,F)
T(G,H)
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RA to Datalog by examples: Union

RA:
R(A,B,C) U S(D,E,F)

Datalog:

Q(lelz) - R(lelz)
Q(lelz) - S(lelz)
IDB EDB

?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

% | R(AB,C)

S(D,E,F)
T(G,H)
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RA to Datalog by examples: Union

RA:
R(A,B,C) U S(D,E,F)

Datalog:

IDB EDB

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

e |R(AB,C)

S(D,E,F)
T(G,H)
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RA to Datalog by examples: Intersection

RA:
R(A,B,C) 1 S(D,E,F)

Datalog:

?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

R(A,B,C)
S(D,E,F)
T(G,H)
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RA to Datalog by examples: Intersection

RA:
R(A,B,C) (1 S(D,E,F)

Datalog:
Q(lelz) -~ R(lelz)l S(lelz)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

% | R(AB,C)

S(D,E,F)
T(G,H)
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RA to Datalog by examples: Selection

RA:
O g=rplice' A c>10 (R)

Datalog:

?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

R(A,B,C)
S(D,E,F)
T(G,H)
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RA to Datalog by examples: .57 [R(A.B,C)
: S(D,E,F)

T(G,H)

RA:

B="Alice' A C>10 (R)

Datalog:
Q(x,y,z) :- R(x,y,z), y="Alice', z > 10
(also: Q(x,y,z) :- R(x,'Alice',z), z> 10 )

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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RA to Datalog by examples: Selection

RA:
T g=plice' A c>10 (R)

Datalog:
Q(x,y,z) :- R(x,y,z), y="Alice', z > 10

RA:
0 g=plice' v c>10 (R)

?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

R(A,B,C)
S(D,E,F)
T(G,H)

56


https://northeastern-datalab.github.io/cs7240/

RA to Datalog by examples:

RA:
B='Alice' A C>10 (R)
Datalog:
Q(x,y,z) :- R(x,y,z), y="Alice', z > 10
RA:

B="Alice' vV C>10 (R)

Datalog:
Q(x,y,z) :- R(x,y,z), y="Alice’
Q(x,y,z) :- R(x,y,2), z> 10

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

‘o)’ | R(A,B,C)

S(D,E,F)
T(G,H)
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RA to Datalog by examples: Projection

1A(R) 1 g,c(R)

Datalog:

?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

R(A,B,C)
S(D,E,F)
T(G,H)
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1A(R) 1 g,c(R)

Underscore denotes an "anonymous variable”.

R(A,B,C)
S(D,E,F)
T(G,H)

Each occurrence of an underscore represents a different variable

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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RA to Datalog by examples: Equi-join

RA:
T[—D,E( RP>ppagrt S

Datalog:

?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

S ES
T(G,H)
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RA to Datalog by examples: Equi-join

W ShER
T(G,H)

RA: [ns,c ¢

J
T[—D,E( RP>ppagrt S

Datalog: f‘ﬁ/%
Q(x,y,z,w) :- R(x,y,z), S(X,y,w)

(alsor Q(x,y,z,w) - R(x,v,2), S(u,v,w), X=u, y=V )

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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RA to Datalog by examples: Difference

RA:
R-S
Datalog:

?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

R(A,B,C)
S(D,E,F)
T(G,H)
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RA to Datalog by examples: Difference R(A.B,C)
S(D,E,F
T((G,H) )
RA:
R-S

Datalog™: (we need to add negation)

Q(lelz) -~ R(lelz)l Not S(lelz)
SAFETY

we have a long discussion later on

what can go wrong if you are vot
careful about how vou defive negation

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Outline: T1-4: Datalog & ASP

» Datalog
— Datalog rules
— Datalog vs. RA
— Recursion
— Recursion in SQL [moved here from T1-U1: SQL]
— Semantics
— Naive and Semi-naive evaluation (Incremental View Maintenance)
— (Chase Procedure (and Decompositions=Factorizations)
— Datalog™ Datalog with stratified negation
Datalog®
. Ansvver Set Programming (ASP)

72



Recursion

WHAT IS IT? .
e Pecursion oceurs when

/ a thing is defined
ﬁ % in terms of itself
(self-repetition).

Recursion and lteration both repeatedly execute a set of instructions.
* Recursion (self-similarity) is when a statement in a function calls itself repeatedly.
* |teration (repetition) is when a loop repeatedly executes until the controlling

condition becomes false.

RECURSION

A Datalog program consists of several rules:
 Usually there is one distinguished predicate that’s the output

e Rulescan be recursivel

Figure Source: Fake XKCD: http://xkcdsw.com/1105
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 73
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Example
P EDB | P(X,y) - A(X,Y). recursion due +o

c 9 6 IDB P(X,y) . A(X;Z)z P(Z/y) Meﬂd v rule lﬁOd\{

23

What does +his query compute?

?

Nw[NN|=[=|m
GIENINIESEN N =

Based upon an example by Dan Suciu from CSE 554, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 74
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Example

EDB | P(X,y) - A(X,Y). recursion due to
@ 9 6 (x,¥) :- A(x,z), P(z,y). | head in rule body
M
Calenlates all paths (travsitive closure)

23

For all nodes x and y:

A ? '2r If there is an Arc from x toy,
11 4 then there is a from x toy.
2 | 1
2|3 For all nodes x, z, and :
3|4 If there is an Arc from x to z, and there is a fromztoy
4|5 :
then thereis a from x toy.

Based upon an example by Dan Suciu from CSE 554, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 75
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Example £0B [P(xy) = A(xy).

G 9 @ DB | P(x,y) :

I Tuitially: P is empty

@ @ 15t iteration

?

DW= =0
GIENIAIESENT I

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Example EDB |P(x,y) - A(x,y).

0 9 6 DB | P(x,y) :- A(x,2), P(z,y).
! a 157 i+eration 24 iteratiow

—

Pl1 2 P
2 1
A 2 3 | \'P=A from
1 4| (15" rule
3 4
- ?

2 rule generates
nothing (becaunse
P is empty)

NlwNN=|=lo
G IE SIS EN TNy =

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Example EDB |P(x,y) - A(x,y).

0¢,® DB | P(x,y) - A(x,z), P(z,y).

Il 15T iteration 2 i+eration rd i+eration

I

—

1 2 Pl1 2
2 1 21
AIS|T 2 3| \P=Afrom [2 3 15 rule
112 14| (15t rule 1 4
114 34 34 f?
2 |1 4 5 4 5
213 1 1 -
3|4 2" rule geverates < d
415 nothing (becanse 24| 2" rule
P is empty) ; g

/

New facts from 29 rule

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Example

x,z),. P(z,y).

o
o
—~
X
=
|
=

icel
recall set semantics! (No new facts)

15t iteration 2 iteration 2rd i+eration = 4™ iteration

:

1 2 Pl1 2 Pl1 2 st d
o= — 1 >1 + 2" rule
A|S|T 2 3 | \P=Afrom [2 3 45t rule 23
112 14| (15t rule 1 4 1 4 15t rule
114 3 4 3 4 3 4
2 1 4 5 15 ? o
T3 1 1 1 1
314 2 rule generates i § ) i §
415 wothing (becaunse 22| /2" e N o pyle
P is empt 15 L5
pty) - T
/' 2 5

New facts from 29 rule

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 79
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Example with Souffle €

(4)—(5

2

[

souffle graphl.dl
graphl.dl

.decl A(S:number, T:number)

.decl P(S:number, T:number)
(X, y) = AlX, y).
(X, y) = Alx, 2), P(z, y).

.output P

For more help on Souffle, see: https://souffle-lang.github.io/simple
Datalog example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

output

PR WWNNNNONNRRRER R,
VU WNRERPRUODSWNR

tab-separated,
output filename: ".csv


https://northeastern-datalab.github.io/cs7240/
https://souffle-lang.github.io/simple
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog
https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog

Example with Souffle €

(1) (4) (5) souffle graph2.dl

@ @ ontput

1 1

1 2

1 3

1 4

graph2.dl 1 5

A.facts input .decl A(S:number, T:n er) 2 1

1 2 \ .decl P(S:number, Fnumber) 2 2

2 1 —.input A 2 3

2 3 .output P 2 4

1 4| tab-separated, 323 Z

3 4| input filename: EX' V; 2 QEX V))- 2 1) -
4 5|n» n X, Y)-~A\X, Z), F\Z,Y).

Ffacts .-

tab-separated,
output filename: ".csv

For more help on Souffle, see: https://souffle-lang.github.io/simple
Datalog example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 81
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What is a principled process to determine if a program is recursive?

Local(x) :- Person(x,y,'MA').
Relative(x,x) :- Person(x,y,z).
Relative(x,y) :- Relative(x,z),Parent(z,y). f?
Relative(x,y) :- Relative(x,z),Parent(y,z). c

(
Relative(x,y) :- Relative(x,z),Spouse(z,y).
(

Invited(y) :- Relative('myself',y),Local(y).

Local(x) :- Person(x,y,'MA').

) Relative(x,x) :- Person(x,y,z). ?
Invited(y) :- Relative('myself',y),Local(y).

MayLike(x,y) :- Close(x,z),Likes(z,y).

3 Visit(x,y) :- MayLike(x,y). ?
Close(x,z) :- Visit(x,y),Visit(z,y).

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 82
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Dependency Graph

« The of a Datalog program is the directed graph
(V,E) where
- Vis the set of predicates (relation names)
— E contains an whenever there is a rule with T in the head and
in the body
e A Datalog program is if its dependency graph contains a

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Which of these programs is recursive?

Local(x) :- Person(x,y,'MA').
Relative(x,x) :- Person(x,y,z).
Relative(x,y) :- Relative(x,z),Parent(z,y). f?
Relative(x,y) :- Relative(x,z),Parent(y,z). c

(
Relative(x,y) :- Relative(x,z),Spouse(z,y).
(

Invited(y) :- Relative('myself',y),Local(y).

Local(x) :- Person(x,y,'MA').

) Relative(x,x) :- Person(x,y,z). ?
Invited(y) :- Relative('myself',y),Local(y).

MayLike(x,y) :- Close(x,z),Likes(z,y).

3 Visit(x,y) :- MayLike(x,y). ?
Close(x,z) :- Visit(x,y),Visit(z,y).

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Which of these programs is recursive?

Local Relative ]

Local(x) :- Person(x,y,'MA').

Relative = vV, Z).
1 Relative(x,y) :- Relative(x,z),Parent(z,y). l
Relative(x,y) :- Relative(x,z),Parent(y,z). /
S _ . Invited
\eatlve(x,y) .- Relative(x,z),Spouse .
Invited(y) :- Relative('myself',y),Local(y).

Local(x) :- Person(x,y,'MA').

) Relative(x,x) :- Person(x,y,z). ?
Invited(y) :- Relative('myself',y),Local(y).

MayLike(x,y) :- Close(x,z),Likes(z,y).

3 Visit(x,y) :- MayLike(x,y). ?
Close(x,z) :- Visit(x,y),Visit(z,y).

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 85
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Which of these programs is recursive?

Local(x) :- Person(x,y,'MA').
Relative(x,x) :- Person(x,y,z). Local Relative \

1 Relative(x,y) :- Relative(x,z),Parent(z,y). l
Relative(x,y) :- Relative(x,z),Parent(y,z). /
. _ . Invited
Relative(x,y) :- Relative(x,z),Spouse(z,y).
(

Invited(y) :- Relative('myself',y),Local(y).

Local(x) :- Person(x,y,' MA'"). Local Relative

) Relative(x,x) :- Person(x,y,z). l /

Invited(y) :- Relative('myself',y),Local(y). Invited

MayLike(x,y) :- Close(x,z),Likes(z,y).

3 Visit(x,y) :- MayLike(x,y). ?
Close(x,z) :- Visit(x,y),Visit(z,y). .

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 86
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Which of these programs is recursive?

Local(x) :- Person(x,y,'MA').
Relative(x,x) :- Person(x,y,z). Local Relative \

1 Relative(x,y) :- Relative(x,z),Parent(z,y). l
Relative(x,y) :- Relative(x,z),Parent(y,z). /
. _ . Invited
Relative(x,y) :- Relative(x,z),Spouse(z,y).
(

Invited(y) :- Relative('myself',y),Local(y).

Local(x) :- Person(x,y,' MA'"). Local Relative

) Relative(x,x) :- Person(x,y,z). l /

Invited(y) :- Relative('myself',y),Local(y). Invited

MayLike(x,y) :- Close(x,z),Likes(z,y). MayLike «— Close

3 Visit(x,y) :- MayLike(x,y). l
Close(x,z) :- Visit(x,y),Visit(z,y). Visit

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Expressiveness of Non-recursive Datalog

THEOREM: Datalog with built-in
predicates (<,>,<,2,!=) has the same expressive
power as the positive algebra {o,1,X,U}

If we restrict selection to o_ (i.e. selection with a single equality), this
fragment is also called at times UCQs (Union of Conjunctive Queries)
or USPJ (Union-Select-Project-Join) queries.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Outline: T1-4: Datalog & ASP

» Datalog
— Datalog rules
— Datalog vs. RA
— Recursion
— Recursion in SQL [moved here from T1-U1: SQL]
— Semantics
— Naive and Semi-naive evaluation (Incremental View Maintenance)
— (Chase Procedure (and Decompositions=Factorizations)
— Datalog™: Datalog with stratified negation
— Datalog®

* Answer Set Programming (ASP)
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1. A simple recursive query

non-recursive part (here same as "select 1")
recursive part, contains reference to the query's output

WITH RECURSIVE/T(n) as (

values (1) 4 innteger é
UNION ALL : :
select n+1 >, 2
from T 3 3
where n<=3) 4 4

SELECT n FROM T

Example slightly adapted from: https://www.postgresql.org/docs/current/queries-with.htmI#QUERIES-WITH-RECURSIVE
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 94
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1. A simple recursive query
non-recursive part (here same as "select 1")

recursive part, contains reference to the query's output

WITH RECURSIVE/T(n) as (

Values (1) A innteger
UNION ALL :

select n+1 >,

from T 3

where n<=3) 4

SELECT n FROM T

Step | WT,.« | AR=IT=Wt,_ 4 | Results
1.

1 2.

2

A Y Y

4 4 | | |
5.

2. So long as the working table is not empty, repeat these steps:

Recursive Query Evaluation  ("sei-naive evaluation strategy")

1. Evaluate th - ive term. For UNION (but not UNION ALL), discard duplicate rows. Include all remaining row
a temporaril working table.

a. Evaluate the recursive term, substituting the current contents of thelNorking tab

rows and rows that duplicate any previous result row. Include all remaining rows

table.

sive self-reference. For UNION (but not UNION ALL), discard duplicate
in the result of the recursive query, and also place them in a temporary intermediate

b. Replace the contents of theIworking table i/ith the contents of the intermediate table, then empty thei intermediate table.I

Example slightly adapted from: https://www.postgresql.org/docs/current/queries-with.htmI#QUERIES-WITH-RECURSIVE

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.gi

thub.io/cs7240/

in the result |>f the recursive query, and also place them in
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1. A simple recursive query
non-recursive part (here same as "select 1")

recursive part, contains reference to the query's output

WITH RECURSIVE/ T(n) as (
values (1)

UNION ALL
select n+1 j>
from T

where n<=3)
SELECTn FROM T

4 integer

.

2
3
4

Step

WTsta rt

AR=IT=Wt,

Results

1.

A OWON

ok N

1+
{2}«
3}

/2
12

14}

11}

1
({}

3}

2{1,2
C{ }

14}
0

*{1,2,3}
{1I213I4}
{1I213I4}

2. So long as the working table is not empty, repeat these steps:

table.

a. Evaluate the recursive term, substituting the current contents of thelNorking tab
rows and rows that duplicate any previous result row. Include all remaining rows

Recursive Query Evaluation  ("sei-naive evaluation strategy")

1. Evaluate th - ive term. For UNION (but not UNION ALL), discard duplicate rows. Include all remaining row
a temporarjl working table.

sive self-reference. For UNION (but not UNION ALL), discard duplicate
in the result ¢f the recursive query, and also place them in a temporary intermediate

b. Replace the contents of theIworking table }/ith the contents of the intermediate table, then empty thei intermediate tabIe.I

Example slightly adapted from: https://www.postgresql.org/docs/current/queries-with.htmI#QUERIES-WITH-RECURSIVE

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

in the result I)f the recursive query, and also place them in
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2. Fibonacci numbers: 0,1,1,2,3,5,8, 13, ...

Fib
WITH RECURSIVE Fib as ( v g e g o g
4 integer integer integer
’? 1 0 0 1
- 2 1 L L
UNION ALL j> : e z
5 4 3 )
? 6 5 5 8
7 6 8 13
8 7 13 21
SELECT * FROM Fib . . ) o
LIMIT 10; 0 . s s

Example slightly adapted from: https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 97
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2. Fibonacci numbers: 0,1,1,2,3,5,8, 13, ...

Fib
WITH RECURSIVE Fib as ( " g Mo g fbu g
select 0 as n, 4 Integer integer " integer
0 as "fib,", 1 0 0 L
1 as "fibn.1" 2 1 : :
UNION ALL j> j z ; z
S 4 3 5
? I R
7 6 8 13
8 7 13 21
SELECT * FROM Fib 9 8 8 3
LIMIT 10; . 9 3 -

Example slightly adapted from: https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 98
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2. Fibonacci numbers: 0,1,1,2,3,5,8,13, ...

Fib
WITH RECURSIVE Fib as ( i

select 0 as n, 4 integer

0 as "fib,", 1

1 as "fib,.1" 7

UNION ALL j|> j

select n+1, :

? 6

from Fib) ;

SELECT * FROM Fib 9

LIMIT 10; .

Example slightly adapted from: https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

O 00 N o O b W N

fibn
integer

o o W N

13
21
34

ﬁbl‘l+1
integer

o o W N

13
21
34
55
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2. Fibonacci numbers: 0,1,1,2,3,5,8,13, ...

Fib

WITH RECURSIVE Fib as ( " b g b g

select 0 as n, 4 Integer integer " integer
0 as "fib,", 1 0 0 1
1 as "fib,+1" 2 1 1 1
UNION ALL j> j z ; z
select n.+1, 5 : : :
"fibysa”, 6 J B N
7 6 8 13
from Fib) 8 7 . iy
SELECT * FROM Fib 9 8 8 3
LIMIT 10; . 9 3 -

Example slightly adapted from: https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 100
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2. Fibonacci numbers: 0,1,1,2,3,5,8,13, ...

Fib

WITH RECURSIVE Fib as ( " b g b g

select 0 as n, 4 Integer integer " integer
0 as "fib,", 1 0 0 1
1 as "fib,+1" 2 1 1 1
UNION ALL j> j 2 ; z
select n+1, 5 : : :
"fiDy 1", 6 g o
"fib," + "fib,+1" 7 6 8 >
from Fib) 8 7 . iy
SELECT * FROM Fib 9 8 8 3
LIMIT 10; . 9 3 -

Example slightly adapted from: https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 101
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2. Fibonacci numbers: 0,1,1,2,3,5,8,13, ...

Fib
WITH RECURSIVE Fib(n,"fib,","fiba1") as( " oa g b g
Select O’ O, 1 1‘ integer O integer 0 integer 1
2 1 L L
UNION ALL j> j z ; z
select n+1, 5 : : :
Ty, 6 g o
"fib," + "fib,+1" i 6 8 -
from Fib) 8 7 . iy
SELECT * FROM Fib . 8 . 5
LIMIT 10; = : " -

&

"This works because PostgreSQL's implementation evaluates only as many rows of a WITH query as are actually fetched by the parent query. Using this trick in production is not
recommended, because other systems might work differently." Source: https://www.postgresql.org/docs/current/queries-with.htmI#QUERIES-WITH-RECURSIVE

Example slightly adapted from: https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 102
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2. Fibonacci numbers: 0,1,1,2,3,5,8, 13, ...

Fib
WITH RECURSIVE Fib(n,"fib,","fib,.1") as( 0 g fb g b g
Select O’ O, 1 1‘ integer O integer 0 integer 1
2 1 L L
UNION ALL j> 3 2 1 2
4 3 2 3
select n+1, 5 : : :
"fibn+1", : : : ;
Ilfibn" + "fibn+1ll i 6 8 13
from Fib 8 7 . iy
where n<9) 9 : B —
10 9 34 55

SELE®< * FROM Fib;

condition in WHERE clause is a wore general way to write this query

Example slightly adapted from: https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 103
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" A for arcs or adjacewcies (directed edaes),
3 ‘ REC ursion on g a p h S S for source, T for target; another 2 L

relation € (edges) have both directions

G 9 6 “Find all paths (transitive closure)”

23

AN ==|m
S 1 F NI N E Ny

SQL database available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 104
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" A for arcs or adjacewcies (directed edaes),
3 ‘ ReC u rS | O n O n g ra p h S S for source, T for target; another 2 L

relation € (edges) have both directions

G 9 6 “Find all paths (transitive closure)”

I ~ T\
23 Ky

1. Create a path for every arc

AN ==|m
S 1 F NI N E Ny

2. An arc + a path can make another path

SQL database available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 105



https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

" A for arcs or adjacewcies (directed edaes),
3 ‘ Rec u rS | O n O n g ra p h S S for source, T for target; another 2 L

relation € (edges) have both directions

G 9 6 “Find all paths (transitive closure)”

@ @ X Z Y

AIS|T

12 For all nodes x and y: (X,y) = AlX,Y).

; :' If there is an from x toy, (x,y) - Ax,z), P(z,y).

>3 then there is a from x toy.

3|4

415 For all nodes x, z, and v:
If there is an from x to z, and there is a fromztoy
then thereis a from x toy.

SQL database available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
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3. Recursion on graphs

In SQL ?

SQL database available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
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3. Recursion on graphs

1 @& 5 )
iz

(5 WITH RECURSIVE P AS (
A ?

UNION
?

SELECT *
FROM P

DW= =0
GIENIAIESENT I

SQL database available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
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3. Recursion on graphs

1 @& 5 )
iz

2
<;f WITH RECURSIVE P AS (

A|S|T SELECT S, T
112 FROM A
11 4 UNION
2 |1
213 ?
3|4
415 SELECT =x
FROM P

SQL database available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
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3. Recursion on graphs

I D 0 (%y) - Alx2), P(z,y)
(2)

3

WITH RECURSIVE P AS (

A|S|T SELECT S, T

112 FROM A
114 UNION
2 |1 SELECT A.S, P.T
213 FROM A, P
3|4 WHERE A.T = P.S)
415 SELECT x

FROM P

SQL database available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
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https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

3. Recursion on graphs

9 6 (X/y) .~ A(XIZ) (Z/y)'

I Strictly speaking, this process is iteration, not recursion:
& E WITH RECURSIVE P AS ( and Lteration both
ATSTT SELECT S, T repeatedly execute a set of

112 FROM A instructions.

114 UNION (self-similarity) is

2 11 SELECT A.S, P.T when a statement in a

213 FROM A, P function calls itself repeatedly.

3|4 WHERE A.T = P.S) « Tteration (repetition) is whewn

415 SELECT > a loop repeatedly executes

FROM P

See also: https://www.postgresql.org/docs/14/queries-with.htmI#QUERIES-WITH-RECURSIVE
SQL database available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sal
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

mntil +he controlling conditiow
becomes false.
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3. Recursion on graphs

X,V).
6 9 6 P(X/y) .~ A(XIZ)I A(Zly)
I}‘V Probe for understanding: how does the ontput f?
@A‘@ change with this little change in the dquery :
(5 WITH RECURSIVE P AS ( P L2
A[S]T SELECT S, T -
1] 2 FROM A —
114 UNION 3 4
2|1 SELECT Al.S, A2.T 4 5
23 FROM A Al, A A2 1 1
3[4 WHERE A1.T = A2.S) ~—= P,
G SELECT 2 4 ]
FROM P 1 s
3 5
2 5

SQL database available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
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3. Recursion on graphs -
6 P(x,y) - Ax,z), Alz,y).

I}‘ Probe for understanding: how the output
A‘ changes with this little change v the duery:

2 3
(4 WITH RECURSIVE P AS ( P
A SELECT S, T
FROM A
UNION

SELECT Al1.S, A2.T
FROM A Al, A A2
WHERE Al1.T = A2.S)
SELECT *
FROM P

AN ==|m
S 1 F NI N E Ny

WiR (N[RN[R S [wR NN -
| |w|NR|lals] s |w|~]N

A

SQL database available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
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Challenge

e Write a query that finds the shortest path to each node from a
starting node

e Create an interesting minimum database instance
« Show interesting variations

o https://www.postgresgl.org/docs/14/queries-with.html

?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 114
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Topic 1: Data models and query languages
Unit 4: Datalog
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Pre-class conversations

e Last class summary
e Project discussions (today: first project ideas)

e today:
— More on Datalog
— What happens if we add negation? Answer: it depends on how we do it.

* Datalog with stratified negation
* Datalog with more genal negation (stable models), leads to ASP

116
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Outline: T1-4: Datalog & ASP

» Datalog
— Datalog rules
— Datalog vs. RA
— Recursion
— Recursion in SQL [moved here from T1-U1: SQL]
— Semantics
— Naive and Semi-naive evaluation (Incremental View Maintenance)
— (Chase Procedure (and Decompositions=Factorizations)
— Datalog™ Datalog with stratified negation
— Datalog®
* Answer Set Programming (ASP)
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Semantics of Datalog Programs

e Let S be aschema, D a database over S, and P be a Datalog program
over S (i.e., all EDBs predicates belong to S)

« The result of evaluating P over D is a database | over the |IDB schema
of P

« We give 2 definitions:
1. Fixpoint semantics operative (think procedural)

2. model-theoretic declarative

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 121
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1. Fixpoint semantics via the chase (operative definition)

Pseudo-code of a chase procedure:

Chase(P,D)
[ := empty ("DUI" is here just a set of tuples)

repeat {
if(DUI satisfies all the rules of P), then return |
Find a rule head(x) :- body(x,y) and constants a,b
s.t. that DUI contains body(a,b) but not head(a)
[:=1U{head(a)}
}

Notice since rules are monotone, | is also monotonically increasing

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 122
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Nondeterminism

« Note: the chase is underspecified (i.e., not fully defined)
— There can be many ways of choosing the next violation to handle
— And each choice can lead to new violations, and so on

e We can view the choice of a new violation as

(defined for term reduction): a - b
If term a can be reduced to both b and c, then there
must be a further term d (possibly equal to either b or c) s -
to which both b and ¢ can be reduced. 5
In computer science, confluence is a property of rewriting systems, describing which c Y_ R ’v d

terms in such a system can be rewritten in more than one way, to yield the same result.

Also see: https://en.wikipedia.org/wiki/Church%E2%80%93Rosser theorem , https://en.wikipedia.org/wiki/Confluence (abstract rewriting)
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Example

Path(x,y) :- Arc(x,y).
Path(x,y) :- Arc(x,z), Path(z,y).
ﬁ.e S Reachable(y) :- Path('1',y).
Arc Path Reachable
1 2
2 1
2 3
1 4
3 4
4 5

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 125
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Example

m)  Path(x,y) - Arc(x,y).
Path(x,y) :- Arc(x,z), Path(z,y).

ﬁ.e 6 Reachable(y) :- Path('1',y).

23

Arc Path Reachable

—l

B = N DN =
DWWk

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 126
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Example

m)  Path(x,y) - Arc(x,y).
Path(x,y) :- Arc(x,z), Path(z,y).
ﬁ.e S Reachable(y) :- Path('1',y).
Arc Path Reachable

1 2 1 2
m) |2 1 —> |2 1

2 3

1 4

3 4

4 5

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 127
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Example

m)  Path(x,y) - Arc(x,y).
6 Path(x,y) :- Arc(x,z), Path(z,y).

ﬁ.e Reachable(y) :- Path('1',y).
2)—(3

Arc Path Reachable

B = N DN =
DWWk
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Example Exeye 5=
Path(x,y) :- Arc(x,y). Y — /

mm) Path(x,y) :- Arc(x,z), Path(zy). | 2 —¢
ﬁ.e 6 Reachable(y) :- P&M 7 >

23

Arc Path Reachable
) (1 2 1 2
2 1 ) P2 1
2 3 2 3
1 4 —> |1 1
3 4
4 5

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 129
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Example

Path(x,y) :- Arc(x,y).
Path(x,y) :- Arc(x,z), Path(z,y).

ﬁ.e 6 mm) Reachable(y) :- Path('1'",y).

23

Arc Path Reachable
1 2 ) [1 2 —> [ 2
2 1 2 1
2 3 2 3
1 4
3 4
4 5

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 130
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2. Minimal model semantics (model-theoretic definition)

« We say that IDB | is a model of Datalog program P (w.r.t. EDB D) if
DUI satisfies all the rules of P

vvar|Head(IDB) <Body(EDB, IDB)]

« We say that!lisa minimal modelif | does not properly contain any
other model

e Theorem: there exists one minimal model

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 131
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llustration with our example Path(x,y) :- Arc(x,y).
Path(x,y) :- Arc(x,z), Path(z,y).

N

1. Fixpoint semantics

2. Minimal model semantics: smallest Path s.t.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 132
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llustration with our example Path(xy) :- Arc(x,y).
O—X) .. | Path(x,y) :- Arc(x,z), Path(z,y).

1. Fixpoint semantics *W %

Path®:=@,t:=0 . o
Immediate consedquence operator "T."
Repeat { P = T?('P(n“—ﬂ)
inc(t) /
Path®O(x,y):= Arc(x,y) U Il (Arc(x,z) xPath(®1(z,
y y Xy y
until Path® = path(t1)}

N

2. Minimal model semantics: smallest relation Path s.t.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 133
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llustration with our example Path(xy) :- Arc(x,y).
O—X) .. | Path(x,y) :- Arc(x,z), Path(z,y).

1. Fixpoint semantics ’VW %

Path®:=@,t:=0 . o
Immediate consedquence operator "T."

Repeat { /'P(Jr) = T?('P(n“—ﬂ)

N

inc(t)
Path®(x,y):= Arc(xy) U I, (Arc(x,z) dPatht-D(zy))
until Path®t) = path(t1)}

2. Minimal model semantics: smallest relation Path s.t.

vxy [Arc(xy) = Path(xy)] A
Vx,y,z |[Arc(x,z) \ Path(zy) = Path(xy)]

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 134
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Minimum (least) element vs minimal elements in partial orders

ta,b,c} Consider a partial order (S,%).
The set of elements from S
are represented by black
circles, arrows show partial
order between elements.

1 least element 2 wminimal elements

An element a in S is called a least (or wminimuwm) An element a in S is called a minimal
element of Sifa < x for all x in S. element of S if there is wo element b

m A such that b < a.

For more details see e.g. "Davey, Priestley. Introduction To Lattices And Order (book, 2nd ed). 2002", https://doi.org/10.1017/CB0O9780511809088
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Datalog Semantics & equivalence b/w the definitions

(vondeterministic)
1. The fixpoint semantics tells us how to compute a Datalog query

2. The minimal model semantics is more declarative: only says what we get

THEOREM: For all Datalog programs P and DBs D
there is a unigue minimal model,
and every chase returns this model

Proof sketch:

1. IfI; and I, are models, so are I;NI,
2. Every chase returns a model (finite)

3. Pick a chase and prove by induction: If I' is a model,
then every intermediate I is contained in I’ (movietonicity)

The minimal model is the result, denoted P(D)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Details

Lemma 8.8 Model intersection property. Let P be a positive program, and

M and Ms be two models for P. Then, M1 N Ms is also a model for P.
Proof: next page

Definition 8.9 Minimal model and least model. A model M for a program

P is said to be a minimal model for P if there exists no other model M' of

P where M' C M. A model M for a program P is said to be its least model

if M' O M for every model M’ of P.

Then, as a result of the last lemma we have the following:

Theorem 8.10 FEvery positive program has a least model.
Herbrand base

Proof. Since Bp is a model, P has models, and therefore minimal models.
Thus, either P has several minimal models, or it has a unique minimal model,
the least model of P. By contradiction, say that M and My are two distinct
minimal models, then M; N M; C M; is also a model. This contradicts the
assumption that My is a minimal model. Therefore, there cannot be two
distinct minimal models for P. O

Definition 8.11 Let P be a positive program. The least model of P, denoted
Mp, defines the meaning of P.

Source: Zaniolo et al. Advanced Database systems. 1997. Section 8.9. https://dl.acm.org/doi/book/10.5555/260822
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 140
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Details

Theorem 2.14 (Model intersection property) Let M be a non-empty family

of Herbrand models of a definite program P. Then the intersection & := (M is a
Herbrand model of P. i

Proof: Assume that & is not a model of P. Then there exists a ground instance of a
clause of P:

Ao — A1,..., Am (m>0)

which is not true in &. This implies that & contains A4, ..., A,, but not Ay. Then
Aq,..., A, are elements of every interpretation of the family M. Moreover there must
be at least one model &; € M such that Ag € &;. Thus Ay «+— Aq,..., A, is not true
in this &;. Hence $&; is not a model of the program, which contradicts the assumption.
This concludes the proof that the intersection of any set of Herbrand models of a
program is also a Herbrand model. i

Source: Nilsson, Maluszynski. Logic, Programming and Prolog, 2" ed, 2000. Chapter 2: http://tinman.cs.gsu.edu/~raj/8710/f02/bok.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 141
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Semantics Summary

-theoretic

— Most " ": Based on the immediate consequence operator for a
Datalog program.

-theoretic

— Most " ": Based on model-theoretic semantics of first order logic.
View rules as logical constraints.
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Semantics Summary

-theoretic

— Most " ": Based on the immediate consequence operator for a
Datalog program.

— Least fixpoint is reached after finitely many iterations of the

— Basis for practical, evaluation strategy.

-theoretic

— Most " ": Based on model-theoretic semantics of first order logic.
View rules as logical constraints.

— Given input DB D and Datalog program P, find the smallest possible DB
instance D' that extends D and satisfies all constraints in P.
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Monotonicity

e Can Datalog express ?

— Answer: !

e Proof: Datalog is monotone, difference is not

— Thatis, if D and D" are such that every relation of D is contained in the
corresponding relation of D' (D<€ D"), then P(D) € P (D)

DED' = PD)cP((D)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 144
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Outline: T1-4: Datalog & ASP

» Datalog
— Datalog rules
— Datalog vs. RA
— Recursion
— Recursion in SQL [moved here from T1-U1: SQL]
— Semantics
— Naive and Semi-naive evaluation (Incremental View Maintenance)
— (Chase Procedure (and Decompositions=Factorizations)
— Datalog™: Datalog with stratified negation
Datalog®

o Ansvver Set Programming (ASP)
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Datalog Evaluation Algorithms

« Goal: preserve the efficiency of query optimizers, yet extend them
to recursion
« Two general strategies we will discuss:
Datalog evaluation

Datalog evaluation

« More powerful optimizations:

— 3. Magic sets (which we will not cover, or may reuvisit later under "Topic 3:
efficient query evaluation & factorized representations")

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 153
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1. Naive Datalog evaluation () = ABy)

(0) — (D’ t-=0
Repeat { immediate conseduence operator "T,":

_ PG = T (PH)
inc(t) / (P

O, y):=Axy) UII_,(A(xz) xPED(zy))
until Pt = p(t1)}

« Problem: The same facts are discovered over and over again

e Goal: The algorithm tries to reduce the number of facts
discovered multiple times

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 154
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Example PO(KY) - Alx,y).

U—2—B)—4—E

p) P(2) P@G) p4)

? ? ? ?

BDIWIN| -
Ul |W([DN

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 155
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Example PO(KY) - Alx,y).

U—2—3)—@—E

paths of LEN < 1

Pl

=[N | =
Ul ||
Ul |W(DN

2
3
4

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 156
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Example PO(KY) - Alx,y).

U @ @ @ 5

paths of LEN < 1 paths of LEN < 2

Al1 2| PU1 2 P12
2 3 2 3]\ 2 3|\,

3 4 3 4 3 4

4 5 4 5 4 5

1 3
2 4| =2

3 5

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 157
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Example

— S
O @ @ A
paths of LEN < 1
Al1 2| PU1 2
2 3 2 3
3 4 3 4
4 5 4 5

@ 5

P(2)
| =1

paths of LEN < 2

WIN[FRIBITWIN

b |wlu|s|w|N

paths of LEN < 3

P@G)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2
2 3
3 4
4 5
1 3
2 4
3 5
1 4
2 5
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Example PO(KY) - Alx,y).

T @ 3 @ 5

paths of LEN < 1 paths of LEN < 2 paths of LEN < 3 paths of LEN < 4
Al1 2| POI1 2 P12 PG 2 P12
2 3 2 3 2 3 2 3 2 3
| = | = | = | =
3 4 3 4 3 4 ! 3 4 3 4
4 5 4 5 4 5 4 5 4 5
1 3 1 3 1 3
2 4| L= 2 4 L=2 2 4 L=2
3 5 \ 3 5 \ 3 5
1 4 1 4
2 5 "'9’\ 2 5|/
1 5| -1=4

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 159
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Side-topic:
Incremental View
Maintentance



Background: Incremental View Maintenace

Let Q be a "view" computed by a single Datalog rule without recursion,

thus a simple conjunctive query

SELECT ...

Q:-Ry, Ry, ... FROM R1
NATURAL JOIN R2
NATURAL JOIN R3 ...

Add tuples to some of the relations:
Ri«— R{UAR{, Ry «— R, UAR,, ...

Then the view Q will also increase in size:
Q— QU

Compute without having to recompute Q from scratch

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 162
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Background: Incremental View Maintenace

Example 1:
Q(X,y) - R(X/Z)/ S(Z,y)

AQ(X,Y):- 0.

If R «— R UAR,
then what is AQ. ?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

u—y N

DN

AQ 1)

AR
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Background: Incremental View Maintenace

Example 1:
Q(X,y) - R(X/Z)/ S(Z,y)

AQ(X,Y):- 0.

If R «— R UAR,
then what is AQ. ?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Background: Incremental View Maintenace

Example 1:
Q(X,y) - R(X,Z), S(Z,y)

If R «— R U AR,

Q S

then whatis AQ. ? < 1 1> 10 0
1 0

9

1
\<§i20 2
9 1
(to be more precise: we still need to subtract Q: AQ '3

1
AQ=ARPS - @, e.9. for AR = (11). Wore on that loﬁ'crw
\

Relational Algebra:
Q=RnS
OQUAQ=(RUAR) X S

?

AQ(x,y):- AR(x,z2), S(z,y)
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Background: Incremental View Maintenace

Example 1:
- fR e RUAR, Q R S
Axy) - Rixz), S(z)y) then what is AQ. ? 11 10 01
AQ(x,y):- AR(x,2), S(z,y) 12 AR[2 0f—10 2
(+o be more precise: we still need to subtract Q: AQ ; ;

AQ=ARPS - @, e.9. for AR = (11). Wore on that later)

Relational Algebra:
Z =Xy O=RXS
7+07 = (X+Ax)y OQUAO=(RUAR) XS

? ?
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Background: Incremental View Maintenace

Example 1:
| If R «— R U AR, Q
Qxy) - R(x,z), S(z,y) then what is AQ. ? 11
AQ(x,y):- AR(x,2), S(z,y) 1 2
(+o be more precise: we still need to subtract Q: AQ ; ;
AQ=ARPS - @, e.9. for AR = (11). Wore on that later)
Multiplication @ distributes .
over Addition @ (0)c Relational Algebra:
Z=xy = ac+be Q=R™5
7+07 = (X+Ax)y OQUAO=(RUAR) ™S
7+07 = (x-y)+(Axy) O U AQ = (RxS) U (ARXS)
7+0A7z = 7 +(Ax-y) QUAO= QO U(ARKXS)
Az = AX-y AO=AR XS
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AR|2 0

Join ™ distributes
over union U

(aUb)xac
=ac U bxac
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Background: Incremental View Maintenace

Example 2:
Q(X/y) - R(X,Z), S(Z,y)

?

z+Az = (X+Ax)-(y+Ay) X

?

If R«— RUAR, and S «— S UAS,
then what is AQ ?

(as before, we ignore the subtraction of Q here)

SN
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Background: Incremental View Maintenace

Example 2:
Q(X/y) - R(X,Z), S(Z,y)

?

_ Relational Algebra:
Z=XYy 7 7 N 0 =RXS

7+A7 = (X+Ax)-(y+Ay) X QUAQ. = (RUAR) (SUAS)

7407 = () FH(Axy)+ (- Ay )+H(Ax-Ay) QUAQ = (RXS)U(ARMS)U(RMAS)U(ARNAS)

2407 = 7 +H(Axey)+(cAy)+H(Ax-Ay)  QUAQ = O U(ARXS)U(RKNAS)U(ARNMAS)
Az = (Ax-y)+(x-Ay)+(Ax-Ay) AQ = (ARXS)U(RXAS)U(ARKAS)

If R«— RUAR, and S «— S UAS,
then what is AQ. ?

(as before, we ignore the subtraction of Q here)
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Background: Incremental View Maintenace

Example 2:
If R«— RUAR, and S «— S UAS,
Q(X/y) - R(XIZ)I S(Zly) then What |S AQ ?
AQ(x,y):- AR(x,2), S(z,y) (as before, we ignore the subtraction of Q here)

AQ(X,y):- R(x,z), AS(z,y)
AQ(x,y):- AR(x,z), AS(z,y)

_ Relational Algebra:
Z=XYy 7 7 N 0 =RXS

7+A7 = (X+Ax)-(y+Ay) X QUAQ. = (RUAR) (SUAS)

7407 = () FH(Axy)+ (- Ay )+H(Ax-Ay) QUAQ = (RXS)U(ARMS)U(RMAS)U(ARNAS)

2407 = 7 +H(Axey)+(cAy)+H(Ax-Ay)  QUAQ = O U(ARXS)U(RKNAS)U(ARNMAS)
Az = (Ax-y)+(x-Ay)+(Ax-Ay) AQ = (ARXS)U(RXAS)U(ARKAS)
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Background: Incremental View Maintenace

Example 3:
If R «— R U AR,
Q(X/y) - R(XIZ)I R(Z/y) then What |S AQ ?
(as before, we ignore the subtraction of Q here)
&
Z = x2 N
7+A7 = (x+Ax)?2 X

?

171
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Background: Incremental View Maintenace

Example 3:

If R «<— R U AR,
Q(X/y) - R(XIZ)I R(Z/y) then What iS AQ ?

(as before, we ignore the subtraction of Q here)

N Relational Algebra:
Z=X? LN Q= RMR
7+A7 = (x+Ax)?2 X QUAQ = (RUAR) ™, (RUAR)
7+07 = %24+ (Axx)+(x-Ax)+Ax?
Z2+Az = 7 +2xAx+Ax? ?
Az = 2XAX+AX? '

\\§>
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Background: Incremental View Maintenace

Example 3:
If R «— R U AR,
Q(xy) :- R(x,z), R(z,y) then what is AQ) ?
(as before, we ignore the subtraction of Q here)
XW% Relational Algebra:
Z=X? N 0 =RpaR

7407 = (x+Ax)? X QUAQ = (RUAR) m, (RUAR)

7+0N7 = 24+ (Ax-x)+(x-Ax)+Ax2 QUAQ = (RXR)U(ARNR)U(RNAR)U(ARNAR)

Z+Az = 7 +2xAx+Ax? QUAO = QO U(ARXR)U(RNAR)U(ARNAR)

Az = 2XAX+DX AQ JG(RAR)U(ARBIAR)

f
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Background: Incremental View Maintenace

Example 3:
If R «— R U AR,
Qlxy) - R(x,2), R(z,y) then what is AQ ?
AQ(x,y):- AR(x,2), R(z,y) (as before, we ignore the subtraction of Q here)

AQ(x,y):- R(x,z), AR(z,y)
AQ(x,y):- AR(x,z), AR(z,y)

XW% Relational Algebra:
L= X2 é Q - RMCR
7+A7 = (x+Ax)?2 X QUAQ = (RUAR) ™, (RUAR)
7+0N7 = 24+ (Ax-x)+(x-Ax)+Ax2 QUAQ = (RXR)U(ARNR)U(RNAR)U(ARNAR)
Z+Az = 7 +2xAx+Ax? QUAO = QO U(ARXR)U(RNAR)U(ARNAR)
Az = 2XAX+AX? AQ )R AD)U(ARMAR)

f
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Back to Datalog
evaluation



2. Semi-Naive Datalog evaluation P(x,Y) - Alx,y).
- A

Recall the naive evaluation:

PO.=0@,t:=0 —
immediate conseduence operator "T."
Repeat { P = T (PG)

inc(t)
POy := A(xy) Uy (A(xz) m PED(zy))
until PO = pED}

Semi-naive evaluation:

P:=A(xz); APO:= A(x,2)

Repeat { "mcrementalized” immediate conseduence operator:
inC(t) AP = T? (A'P(’r—ﬂ)_?(w“—ﬂ
APOKy) := m (A(xz) & APED(Zy)) — P(xy)
P:=PUAP®

until AP® = @}

The idea of semi-naive evaluation predates following paper which is often cited as main reference:
Bancilhon, Ramakrishnan. An Amateur's Introduction to Recursive Query Processing Strategies. SIGMOD 1986. https://doi.org/10.1145/16894.16859 (the 1988 revision is better)
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 176
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Example P(x,y) = Alx,y).

(t) - (t-1)
c @ 6 @ 6 APY(XY) = Ax,z), AP (z,y), not P(x,y).

P(xy) = APU(x,y).

paths of LEN < 1

A P
1 2
2 3
4| !
4 5
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Example P(x,y) = Alx,y).

(t) - (t-1)
c @ 6 @ 6 APY(XY) = Ax,z), AP (z,y), not P(x,y).

P(xy) = APU(x,y).

paths of LEN < 1 paths of LEN < 2
A P P
1 2 11 2
2 3 2 3
3 4 < 3 4 ?
4 5 |4 5
AP

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 178
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Example P(x,y) = Alx,y).

NG ) S ) i ) . APWO(x,y) :- A(x,z), APE1(z,y), not P(x,y).
c @ 6 @ 6 P(x,z) - APU(x,y). ! !
paths of LEN < 1 paths of LEN < 2 paths of LEN < 3

A P P P
1 2 11 2 1 2
2 3 2 3 2 3

3 4 < 3 4 3 4 ?
4 5 |4 5 4 5
AP 1 3
AP |2 4
3 5
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Example P(x,y) = Alx,y).

c‘éﬁ.’a“:@‘g APWO(x,y) :- A(x,z), APE1(z,y), not P(x,y).

P(x,y) :- APWO(x,y).
paths of LEN < 1 paths of LEN < 2 paths of LEN < 3 paths of LEN < 4

A P P P P
1 2 11 2 1 2 1 2
2 3 2 3 2 3 2 3

3 4 < 3 4 3 4 3 4 ?
4 5 |4 5 4 5 4 5
AP 1 3 1 3
AP |2 4 2 4
3 5 3 5
1 4
Ap@{ —
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Example P(x,y) = Alx,y).

c‘é{"g‘.‘}'@‘@ APWO(x,y) :- A(x,z), APE1(z,y), not P(x,y).

P(xy) = APU(x,y).

paths of LEN < 1 paths of LEN < 2 paths of LEN < 3 paths of LEN < 4

A P P P P
1 2 11 2 1 2 1 2 1 2
2 3 < 2 3 2 3 2 3 2 3
3 4 3 4 3 4 3 4 3 4
4 5 |4 5 4 5 4 5 4 5
AP 1 3 1 3 1 3
AP |2 4 2 4 2 4
3 5 3 5 3 5
1 4 1 4
AP(S){ 2 5 2 5
AP®{[1 5
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Outline: T1-4: Datalog & ASP

» Datalog
— Datalog rules
— Datalog vs. RA
— Recursion
— Recursion in SQL [moved here from T1-U1: SQL]
— Semantics
— Naive and Semi-naive evaluation (Incremental View Maintenance)
— (Chase Procedure (and Decompositions=Factorizations)
— Datalog™: Datalog with stratified negation
— Datalog®

* Answer Set Programming (ASP)

182



The Chase

« A simple fixed-point algorithm to test implication of data dependencies.

« Inits simplest incarnation it tests whether the projection of a relation schema
constrained by some functional dependencies onto a given decomposition
can be recovered by rejoining the projections

— i.e. whether a particular decomposition is "lossless”

— Problem is motivated by from schema normalization (decomposition of relations)

« The interesting aspect is that this algorithms is confluent: we can apply rules
in any order and will still arrive at a unigque fixed-point

The term “chase’ was coined in "Maier, Mendelzon, Sagiv: Testing implications of data dependencies, TODS 1979. https://doi.org/10.1145/320107.320115", where it was used to test the
logical implication of dependencies. "Aho, Sagiv, Ullman: Equivalences among relational expressions, SICOMP 1979. https://doi.org/10.1137/0208017" introduced tableaux queries with an
algorithm that coincides with the chase with functional dependencies. "Aho, Beeri, Ullman: The theory of joins in relational databases, TODS 1979. https://doi.org/10.1145/320083.320091"
extends this algorithm to include also multivalued dependencies, for the purpose of checking whether the join of several relations is lossless. See also "Deutsch, Nash: Chase. Encyclopedia

of Database Systems. 2009. https://doi.org/10.1007/978-0-387-39940-9 1250" for more details

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 183
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Notation 4 E_E

« We usually denote relations by a name and an ordered set of attributes
- R{(4,B,C,D),R,(D,E,F)

« We can can also ignore relation names and the order among attributes. A
relation is then just a set of attributes (unordered or named perspective)
- S, ={A,B,C,D}, S, = {D,E,F}

« We can then view a relational schema R as a pair (§, X) where:

— S is a finite set of attributes
« S={A,B,C,D,E,F},
- 2 isasetof over S
« X={D—->E,D - F}
We want to know if we can always Sinto S; and §,, s.t.:

- Ry =75, (R),R; =7s,(R),R =Ry X R,

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 184
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A possibly familiar example
Assume we decompose R(A,B,C,D,E,F)withZ ={D - E,D - F}into R;(4,B,C,D) and
R,(D,E,F).Is R = R{ X R, for every database over this schema?

R
A B C D E F
a e i I 0 s X
b f i I 0 S D - E
C g j m p t Do>F
d h k n q t
Ta,B,C,D Tp E,F
Ry R,
A B C D D E F
a e [ I I o] S
b f [ I m p t
C g ] m n (ofs} t
d h k n

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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A possibly familiar example: now even more familiar ©
Assume we decompose Item(N,P,C,M,S,C) withX = {M - S,M — C} into Product(N,P,C,M)
and Company(M,S,C). Is Item = Product x Company for every database?

Item
Name Price Category Manufacturer | StockPrice Country
Gizmo $19.99 Gadgets GizmoWorks | 25 USA o -
Powergizmo | $29.99 Gadgets észoWorks 25 USA M-S
ingleTouch | $149.99 | Phot hy | C 65 J
SingleTouch | $ otography | Canon apan M= C
MultiTouch | $203.99 | Household Hitachi 15 Japan
&

TN, P,CM TTM,S,C
Product Company
Name Price Category Manufacturer Manufacturer | StockPrice | Country
Gizmo $19.99 Gadgets GizmoWorks GizmoWorks | 25 USA
Powergizmo | $29.99 Gadgets GizmoWorks Canon 65 Japan
SingleTouch | $149.99 Photography | Canon Hitachi 15 Japan
MultiTouch | $203.99 | Household Hitachi

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Decompositions in General

UYW:;

R(A,B,C)

R.(A,B)

Notice that R € R; X R, for every database over any schema (we never loose tuples).

But we want that R = R; ™ R, for every database over this schema.
We then say that the decomposition of R into (R, R,) is lossless if R = R{ X R,.

Ty c

R, (A, C)

When is this the case? ’?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Decompositions in General

R(A,B,C)

UYW:;

R, (A, B)

Ty c

R, (A, C)

The decomposition is lossless iff:

e A — B,evenif wedon't have
A — C at the same time, or

e A — B,evenifwedon't have
A — C at the same time, or

Notice that R € R; X R, for every database over any schema (we never loose tuples).

But we want that R = R; ™ R, for every database over this schema.
We then say that the decomposition of R into (R, R,) is lossless if R = R{ X R,.

When is this the case?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Lossless Decomposition

A 17 C | L
Ts this decomposition
Name Price | Category lossless = correct? f?
Gizmo 19 Gadget .
OneClick 24 Camera
Gizmo 19 Camera
A / B A \ C

Name Price Name Category

Gizmo 19 Gizmo Gadget

OneClick 24 OneClick Camera

Gizmo 19 Gizmo Camera

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 190
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Lossless Decomposition

A 1% C

/3\ N & N.a\me Price Category

Gizmo 19 Gadget

OneClick 24 Camera

Gizmo 19 Camera

A / B A \ C

Name Price Name Category
Gizmo 19 Gizmo Gadget
OneClick 24 OneClick Camera
Gizmo 19 Gizmo Camera

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Ts this decomposition
lossless = correct?

Ves, we don't loose
nformation

191


https://northeastern-datalab.github.io/cs7240/

Lossless Decomposition

C 1% A | .
Ts this decomposition
Name Price | Category lossless = correct? f?
Gizmo 19 Gadget .
OneClick 24 Camera
Gizmo 19 Camera
e /s 5\ A
Name Category Price Category
Gizmo Gadget 19 Gadget
OneClick Camera 24 Camera
Gizmo Camera 19 Camera

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 192
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Lossless Decomposition

C 1% A | .
Ts this decomposition
Name Price Category lossless = correct?
Gizmo 19 Gadget
OneClick 24 Camera No, here we lost infor-
Gizmo 19 Camera mation (Does Gizwmo cost
19 or 247).
C / A 17 \ A Why does this happen?
Name Category Price Category
Gizmo Gadget 19 Gadget (Neither A—B, vor A—C)

OneClick Camera 24 Camera
Gizmo Camera Z 19 Camera

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 193
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More general question: is a given decomposition lossless?

e Given a relation R with attributes S, a set of FDs X over S, and a set
of subsets of 5: 54, 55, ..., Sk.

e |sthe decomposition of R into R, = 7T51 (R), ..., R = s, (R)
lossless? l.e. Is it truethat Ry X R, X -+ X Rk = R?

e All we need to prove is that

?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 194
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More general question: is a given decomposition lossless?

e Given a relation R with attributes S, a set of FDs X over S, and a set
of subsets of 5: 54, 55, ..., Sk.

e |sthe decomposition of R into R, = 7T51 (R), ..., R = s, (R)
lossless? l.e. Is it truethat Ry X R, X -+ X Rk = R?

e All we need to prove is that
- R2R{ X R, M- X R

e because we already know that we never loose tuples:
- RS R{®XR, M-+ XR,

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 195
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The chase in a page (a test for lossless join decomposition)

 Given R(4,B, C,D), is the decomposition into R, = 14 p(R), R, = m4 ¢ (R),
R; = mp ¢ p(R) lossless, if R satisifiesX ={A - B,B - C,CD — A}?
« We needtocheckthatR 2 R;{ W R, X R5:
— Suppose (a,b,c,d) € R;{ X R, X Rs. Question: Isitalsoin R?
— Since (a, b,c,d) € R{ ¥ R, M R;, therefore also (a,d) € Ry, (a,c) € Ry, (b,c,d) € R;
— We therefor know that R must contain the following tuples (Irrespective of the FDs X):

A B |Cc |D | why?

a |by |cq |d f?

ab20d2 -
as |b [c |d

Example taken from Example 3.22, Section 3.4.2, "Garcia-Molina, Ullman, Widom. Database Systems: The Complete Book. 2" ed. 2009
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 196
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The chase in a page (a test for lossless join decomposition)

 Given R(4, B, C,D), is the decomposition into R, = 14 p(R), R, = my ¢ (R),
R; = mp ¢ p(R) lossless, if R satisifiesX = {4 - B,B - C,D — A}?

« We needtocheckthatR 2 R;{ W R, X R5:
— Suppose (a,b,c,d) € R;{ X R, X Rs. Question: Isitalsoin R?
— Since (a, b,c,d) € R{ ¥ R, M R;, therefore also (a,d) € Ry, (a,c\€ R,, (b,c,d) € R;
— We therefor know that R must contain the following tuples (Irrespective of the FDs X):

A |B |Cc [D | why?
a |bs [c; |d | because (a,d) € Ry which was derived from R as myp(R) ~<~— RI(A | D)
a |b, [c |d, | because (a,c) € R, which was derived from from R as my ¢(R)

as |b e |d | because (b,c,d) € Rz which was derived from from R as ng ¢ p(R)

e |dea: “Chase” them (apply given FDs X by equating constants) until we can either
prove that (a, b, ¢, d) € R or until we cannot apply any more FDs.

Example taken from Example 3.22, Section 3.4.2, "Garcia-Molina, Ullman, Widom. Database Systems: The Complete Book. 2" ed. 2009
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 197
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The chase in a page (a test for lossless join decomposition)

o |dea: “Chase” them (apply given FDs X by equating constants) until we can either

prove that (a, b, ¢, d) € R or until we cannot apply any more FDs.
e Our FDs 2:

- A—-B

- B->C

- CD - A

A (B [C (D apply:

a |(by |cq |d A_)B ?
a bQC d2

as |b [c |d

Example taken from Example 3.22, Section 3.4.2, "Garcia-Molina, Ullman, Widom. Database Systems: The Complete Book. 2" ed. 2009
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 198
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The chase in a page (a test for lossless join decomposition)

o |dea: “Chase” them (apply given FDs X by equating constants) until we can either

prove that (a, b, ¢, d) € R or until we cannot apply any more FDs.
e Our FDs 2:

- A-> B
- B->C
- CD - A
A [B |[C ID | apply: f?
A B ICID | apply: |a |bslci|d | B :
a_ b |cs |d A—-> B la |bs|c |ds
a |b,lc |d, as |b |c |d
as |b [c |d

Example taken from Example 3.22, Section 3.4.2, "Garcia-Molina, Ullman, Widom. Database Systems: The Complete Book. 2" ed. 2009
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 199
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The chase in a page (a test for lossless join decomposition)

o |dea: “Chase” them (apply given FDs X by equating constants) until we can either

prove that (a, b, ¢, d) € R or until we cannot apply any more FDs.
e Our FDs 2:

- A-B
- B->C
- CD - A
A [B |[C |D | apply: f?
A B IC D/ apply: Ja |bijc |d | D > A
AlBICID | apply: [abifeid | B la bl |d, )
a [b1101 d A—-> B |2 b1LCJd2 as; |b |c |d
a szc d» as; |b [c |d
as |b [c |d

Example taken from Example 3.22, Section 3.4.2, "Garcia-Molina, Ullman, Widom. Database Systems: The Complete Book. 2" ed. 2009
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The chase in a page (a test for lossless join decomposition)

o |dea: “Chase” them (apply given FDs X by equating constants) until we can either
prove that (a, b, ¢, d) € R or until we cannot apply any more FDs.

e QOur FDs 2:
- A-> B
- B->C
- CD-A A B [C |D
A B |IC ID | apply: a |by[c |d
A B IC D | apply: Jalbile |d | cp >4 la lb, lec |d
A |[B |[C |D apply a |bq [C11d B —->C a (b |c |[do
a [b1101 d A—-> B |a_|b; k?sz as; b [c |d
a szc d a; |b |c |d Hewce R contains (a, b, c,d)
as |b [c |d

Example taken from Example 3.22, Section 3.4.2, "Garcia-Molina, Ullman, Widom. Database Systems: The Complete Book. 2" ed. 2009
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 201
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The chase in a page (a test for lossless join decomposition)

o |dea: “Chase” them (apply given FDs X by equating constants) until we can either
prove that (a, b, ¢, d) € R or until we cannot apply any more FDs.

e Qur FDs 2:
- A—-B
- B->C
- CD -4 A B [Cc |D
A [B |[C |D | apply: a |b;|lc |d
A B IC D | apply: Jalbile |d | cp >4 la lble |d
A B ICID | apply: |a |bifeild | B¢ la [bs [c |d a [b lc |d |
a [bﬂcn d A—-> B |a_|b; k?sz as; b [c |d
a szc d, a; |b [c |d Hewce R contains (a, b, c,d)
as |b [c |d T Ic o
apply:  fa—Tls—Ttc1d
A_>B a b |c d2
a (b |c |d

unidque fix point
Example taken from Example 3.22, Section 3.4.2, "Garcia-Molina, Ullman, Widom. Database Systems: The Complete Book. 2" ed. 2009
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 202
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Chase example 2 C-E D-oE E-B

A|/B|C|D|E
a|bslc |dq|eq f?
a|b |c [d |e 0
ds b3 Cs3 d|e

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 203
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Chase example 2 C~E D-E E-B

E—D
AB|C|D|E > |A|B|C|D|E
a b1 C d1 €1 C—E d b1 C d1 e1>
az[b cid ey a|b |c |d | e
ds b3 Cs3 d e djs b3 C3 d e
ﬂ Dok e=e,
AB|C|D|E
al|bqc |dq|e
a|b|lc |d |e
djs b2 C3 dle E—BD

>
o
@

Q

o

o
o |laflalo
o o o [m

O |T
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Chase example 2 C~E D-E E-B

E—D

A|/B|C|D|E > |A|B|C|D|E

a b1 C d1 €1 C—E d b1 C d1 €1

az[b cid ey a|b |c |d | e

ds b3 Cs3 d e djs b3 C3 d e

HD—)E ﬂ D—E

A|/B|C|D|E > |A|B|C|D|E

a|bqlc | dyl eq C—E a|bslc |dq|e

a|b c d e a|b|lc |d |e

as|bs|cs|d |e as| bilcsld | e E—BD

>
o
@

Q

o

o
o |laflalo
o o o [m

O |T
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Chase example 2 D—E E—B

E—D

A|B|C|D|E > |A|B|C|D|E

a b1 C d1fe1 d b1 C d1 €1

agbcd4|e2 a|lb|c d e

ds b3|C3d e djs b3 C3d e

HD%E HD%E

A|B|C|D|E > |A|B|C|D|E

a|bqlc | dyl eq al|bqc |dq|e

a2b|Cd|e axjb|c |d |e
aglbs)cs|d |e as|bslcs|d | e E—BD

E—B

A|B|[C|D|E > |A[B|C|D|E > IAIBJCIDJE] The chaseis
alb c d e ajbjc |dje a,|b|c |d|e| (hasa unique
az|b |cs|d |e a3|b |cs|d |e as|b |cs|d |e | fixpoint)
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Chase example 2 E—B

E—D

A|B|C|D|E]| > |A|B|C|D|E > |[A|B|C|D|E

a|byic dq eq a|bqlc [dy]eq E—B al|b|c [dy]eq

ax|b c d e a|lb|c d e a|b|c d eq

ds b3|C3 d e djs b3 C3 d e ds b3 Cs3 d e
A|B|C|D|E > |[A|B|C|D|E A|lB|C|D|E

a|bqlc | dyl eq al|bqc |dq|e alb|lc |di|e
azblcie a|b|lc |d |e a|b|c |d]|e

ﬁﬁdcﬁd e az|bsjcs|d [e E—BD |az|bsjcs|d | e

E—B ﬂE—)BD

A|B|C|D|E > |[A[B|C|DJ|E > [ATBJcID[E] The chase is
d b1 C d1 €1 d b1 C d1 e E—BD GOVI‘HM@VH'
alb c d e ajbjc |dje a,|b|c |d|e| (hasa unique
a3b|c3|d|e az|b |cs|d |e as;|b |cs|d |e fix point)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 207
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Outline: T1-4: Datalog & ASP

» Datalog
— Datalog rules
— Datalog vs. RA
— Recursion
— Recursion in SQL [moved here from T1-U1: SQL]
— Semantics
— Naive and Semi-naive evaluation (Incremental View Maintenance)
— Chase Procedure (and Decompositions=Factorizations)
— Datalog™ Datalog with stratified negation
— Datalog®
* Answer Set Programming (ASP)
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NP-hardness (assuming P#NP)

Takes more time to solve

/
NP-hard

problems that are at least as hard as the
hardest problems in NP (hard-to-solve)

NP-complete
shortest path

vertex cover hard _
P (decision variant) optimization Halting
problem
problems

NP

problems that can
be solved in

polynomial time

hardest problems in NP
(easy-to-verify and
hard-to-solve)

decision problems
for which a solution
can be verified in
polynomial time
(easy-to-verify)
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What should be the Semantics?

Likes (1,2). Parent (2,1).
Likes (1,3).

Friend(x,y) :- Likes(x,y),~Parent(y,x).

Alternative notations to “~ Parent(y,x)” are “! Parent(y,x)” or “~Parent(y,x)” or “NOT Parent(y,x)”
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 250
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What should be the Semantics?

Likes (1,2). Parent (2,1).
Likes (1,3).

Friend(x,y) :- Likes(x,y),~Parent(y,x).

Friend(1,3)

Box(x) :- ltem(x), -Box(x). item('ball") . ?

Alternative notations to “~ Parent(y,x)” are “! Parent(y,x)” or “~Parent(y,x)” or “NOT Parent(y,x)”
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 251
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What should be the Semantics?

Friend(x,y) :- Likes(x,y),~Parent(y,x).

Box(x) :- ltem(x), -Box(x).

LeftBox(x) :- Iltem(x), =RightBox(x).
RightBox(x) :- =LeftBox(x).

Alternative notations to “~ Parent(y,x)” are “! Parent(y,x)” or “~Parent(y,x)” or “NOT Parent(y,x)”

Likes (1,2). Parent (2,1).
Likes(1,3). —  ————— Friend(1,3)

v

item('ball') Box('ball') P77

?

v

ltem('ball’)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 252
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What should be the Semantics?

Friend(x,y) :- Likes(x,y),~Parent(y,x).

Box(x) :- ltem(x), -Box(x).

LeftBox(x) :- Iltem(x), =RightBox(x).
RightBox(x) :- =LeftBox(x).

LeftBox(x) :- ltem(x), =RightBox(x).
RightBox(x) :- Item(x), —LeftBox(x).

Alternative notations to “~ Parent(y,x)” are “! Parent(y,x)” or “~Parent(y,x)” or “NOT Parent(y,x)”

Likes (1,2). Parent (2,1).
Likes(1,3). —  ————— Friend(1,3)

v

item('ball') Box('ball') P77

v

item('ball') LeftBox('ball') 7?7

unsafel

ltem('ball') ?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 253
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What should be the Semantics?

Friend(x,y) :- Likes(x,y),~Parent(y,x).

Box(x) :- ltem(x), -Box(x).

LeftBox(x) :- Iltem(x), =RightBox(x).
RightBox(x) :- =LeftBox(x).

LeftBox(x) :- ltem(x), =RightBox(x).
RightBox(x) :- Item(x), —LeftBox(x).

Likes (1,2). Parent (2,1).
Likes(1,3). —  ————— Friend(1,3)

v

item('ball') Box('ball') P77

v

item('ball') LeftBox('ball') 7?7

unsafel

LeftBox('ball’)
ltem('ball') /

= Adding negation to Datalog is ot straightforward!

Alternative notations to “~ Parent(y,x)” are “! Parent(y,x)” or “~Parent(y,x)” or “NOT Parent(y,x)”

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 254
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What should be the Semantics?

Likes (1,2). Parent (2,1).

Friend(x,y) :- Likes(x,y),~Parent(y,x). likes (1,3). ———————— Friend(1,3)

Box(x) :- Iltem(x), =Box(x). 'tem('ball')

\V
w

no "stable" model

LeftBox(x) :- Item(x), =RightBox(x). tem('ball’) W

RightBox(x) :- =LeftBox(x).

unsafel
LeftBox(x) :- Item(x), =RightBox(x). tem(ball) - LeftBox('ball’)
RightBox(x) :- Item(x), -LeftBox(x). T RightBox('ball')

Later discussed "stable model" semantics
(intended wmodels = answer sets)

Alternative notations to “~ Parent(y,x)” are “! Parent(y,x)” or “~Parent(y,x)” or “NOT Parent(y,x)”
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 255



https://northeastern-datalab.github.io/cs7240/

Negation in Datalog

e Various semantics have been proposed for supporting negation in
Datalog that still allow tractability

« We will first look at two:
(restricted): PTIME

(standard): PTIME

« We will later look at a more powerful (but intractable) semantics

(or answer set programming ASP): NP-complete
and beyond!

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 256
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1. Semipositive Programs and Safety

(x,y) :- Likes(x,y), =Parent(y,x). Likes — 1T, Parent

A program is a program where only EDBs may be negated

— Semantics: same as ordinary Datalog programs

— Safety: rule is safe if every variable occurs in a positive (= unnegated)
relational atom (ensures domain independence: the results of programs
are finite and depend only on the actual contents of the database)

Exercise: Are following rules safe?

() = T(y), Arclz,y), ~Arc(xy). ?
[
(X) - Tly), 7). ?
Alternative notations to “- Parent(y,x)” are “! Parent(y,x)” or “~Parent(y,x)” or “NOT Parent(y,x)” 257
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1. Semipositive Programs and Safety

(x,y) :- Likes(x,y), =Parent(y,x).

Likes — m,, , Parent

A program is a program where only EDBs may be negated

— Semantics: same as ordinary Datalog programs
— Safety: rule is safe if every variable occurs in a positive (= unnegated)

relational atom (ensures domain independence: the results of programs
are finite and depend only on the actual contents of the database)

Exercise: Are following rules safe?

(x) :- T(y), Arc(z,y), =Arc(x,y).

(x) :- T(y), =T(x).

Alternative notations to “~ Parent(y,x)” are “! Parent(y,x)” or “~Parent(y,x)” or “NOT Parent(y,x)”

unsafe (what is the domain for "x"?)

unsafe

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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1. Semipositive: Negated Atoms Arc(Source,Target) g

« We may put -, |, ~, or not in front of an EDB atom to negate its meaning.

o EXAmPLE: Return all pairs of nodes (x,y) where y is two hops away from x,
but not an immediate neighbor of x.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 260
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L)
Y

1. Semipositive: Negated Atoms Arc(Source, Target)

« We may put -, |, ~, or not in front of an EDB atom to negate its meaning.

o EXAmPLE: Return all pairs of nodes (x,y) where y is two hops away from x,
but not an immediate neighbor of x.

(le) . (X,Z), (Zly)l - (le)'

oL ?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 261
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e—m

60 G b
N 4

1. Semipositive: Negated Atoms Arc(Source, Target)

« We may put -, |, ~, or not in front of an EDB atom to negate its meaning.

o EXAmPLE: Return all pairs of nodes (x,y) where y is two hops away from x,
but not an immediate neighbor of x.

(le) . (XIZ)I (Z,Y), - (le)°

SELECT Al.S, A2.T
FROM A Al, A A2
WHERE Al.T = A2.5
AND NOT EXISTS
(SELECT x*
FROM A A3
WHERE A3.S = Al.S
AND A3.T = A2.T)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 262
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EXam PE. beyond Semi pOSitive EZ?ZBSK.”‘?&%}%WW Arc(Source, Target)
Node(y) - Arc(xy) Node(id)

Compute all pairs of disconnected nodes in a graph.

?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 263
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EXam PE. beyond Semi pOSitive Egﬁg(i:)bfiﬁf&ﬁp‘w Arc(Source, Target)
Node(y) - Arc(xy) Node(id)

Compute all pairs of disconnected nodes in a graph.

Reachable(x,y) :- Arc(x,y).
Reachable(x,y) :- Arc(x,z), Reachable(z,y).

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 264
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Exampe: beyond Semipositive

Node(x) - Arc(x,y)

Node is basically ADowm: Arc(Source, Target) oeb ol

Node (y) - Arc(oy) Node(id)
Compute all pairs of disconnected nodes in a graph.
B &= AR Stratum 1 J
_____________________ e S |
. _ v
(x,y) - Node(x), Node(y), *Y)- | stratum 2
e Straightforward syntactic restriction.
 When the Datalog program is stratified, we can | * Nodes = predicates

evaluate IDB predicates stratum-by-stratum

* Once evaluated, treat it as EDB for higher strata. | * Label this arc

 Arc p—q if predicate g depends on p

negated  think: "topological sort"

if predicate p is

Nou-stratified example: (X) :- -

(x), [tem(x).

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Exampe: beyond Semipositive

Node(x) - Arc(x,y)

Node is basically ADowm: Arc(Source, Target) oeb ol

Node (y) - Arc(oy) Node(id)
Compute all pairs of disconnected nodes in a graph.
B &= AR Stratum 1 J
_____________________ e S |
. _ v
(x,y) - Node(x), Node(y), *Y)- | stratum 2
e Straightforward syntactic restriction.
 When the Datalog program is stratified, we can | * Nodes = predicates

evaluate IDB predicates stratum-by-stratum

* Once evaluated, treat it as EDB for higher strata. | * Label this arc

 Arc p—q if predicate g depends on p

negated  think: "topological sort"

if predicate p is

Nou-stratified example: (X) :- -

(x), [tem(x).

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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2. Stratified Programs: Definition and Semantics

« DEFINITION: Let P be a Datalog program, E be the set of EDB predicates, and
be the set of predicates. A of Pisa of the

predicates into disjoint sets such that:
- Fori=1,...,k, every rule with head in | has possible body predicates only from E,

- Fori=1,...,k, every rule with head in |. has negated body predicates only from E, D

e SEMANTICS:

- Fori=1,...k:
 Compute the IDBs of the stratum |, possibly via recursion
 Add computed IDBs to the EDBs

— Due to the definition of stratification, each E; can be viewed as semipositive

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 267
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2. Theorems on Stratification Contrast with our earlier

defivition of recursive programs!

« THEOREM 1: A program has a stratification if and only if its dependency graph
does not contain a cycle with a "negated edge”

— Dependency graph is defined as previously, A(x) - B(x).
except that edges can be labeled with negation

Cav it be

B5(x) - C(X). :
— Hence, we can test for stratifiability efficiently, (x) (x) stratified d

via graph reachability C(x) - =A(x).

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 268
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2. Theorems on Stratification Contrast with our earlier

defivition of recursive programs!

« THEOREM 1: A program has a stratification if and only if its dependency graph
does not contain a cycle with a "negated edge”

— Dependency graph is defined as previously, A(x) - B(x). A e—— B
except that edges can be labeled with negation B(x) - C(x) \ T
— Hence, we can test for stratifiability efficiently, ' ' )
via graph reachability C(x) - =A(x). ¢

e THEOREM 2: Non-recursive Datalog with negation can always be stratified via
the topological order

e THEOREM 3: Non-recursive Datalog with negation has the same expressive
power as the algebra {o_, i, X, U, —}
— Extendable to RA if we add the comparison predicates <, >, 1=, <=, >=

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 269
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Hierarchy of expressiveness

Positive RA (RAY): {o,m,%X,U}

RA: {o,1t,%X,U, -} Recursive queries

Union of CQs (UCQs)

Non-recursive Datalog
w/ negation

Datalog

Non-recursive Datalog

Notice that Datalog and UCQSs often assume an unordered domaiv and vo built-in predicates.

For equality, we assume here an ordered domaiv and allow built-in predicates (>,<,<,2,!=).
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 270
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Hierarchy of expressiveness

can express all polynomial
time dueries ow ordered
databases relying ow only
information encoded i
tables (e.9. excludes

RA: {o,1,X,U, -} Positive RA (RAY): {o,m,%X,U} _ . arithmetical functions)
D Recursive queries

Stratified Datalog w/ negation

Non-recursive Datalog Union of CQs (UCQs)
w/ negation

Datalog
Non-recursive Datalog

Notice that Datalog and UCQSs often assume an unordered domaiv and vo built-in predicates.

For equality, we assume here an ordered domaiv and allow built-in predicates (>,<,<,2,!=).
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 271
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H |e Farc hy Of eXp Fess |Ve NESS ASPcavw express NP-complete problems (and even

problems higher in the Polynomial hierarchy)

(For Turing-completeness, we would only have to add
functions, i.e. the ability to create vew values vot
previously found in the EDB)

Answer set programming / Stable Model Semantics

can express all polynomial
time dueries ow ordered
databases relying ow only
information encoded i
tables (e.9. excludes

RA: {o,1,X,U, -} Positive RA (RAY): {o,m,%X,U} _ . arithmetical functions)
D Recursive queries

Stratified Datalog w/ negation

Non-recursive Datalog Union of CQs (UCQs)
w/ negation

Datalog
Non-recursive Datalog

Notice that Datalog and UCQSs often assume an unordered domaiv and vo built-in predicates.
For equality, we assume here an ordered domaiv and allow built-in predicates (>,<,<,2,!=).

) — ) —
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2. Stratification practice Parent(P,C)

Q: Find all descendants of Alice,
who are not descendants of Bob
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2. Stratification practice Parent(P,C)

Q: Find all descendants of Alice,
who are not descendants of Bob

first compute for each
person their descendants

then use negation
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2. Stratification practice Parent(P,C)

Q: Find all descendants of Alice,
who are not descendants of Bob

D(x,y) :- Parent(x,y). first compute for each
D(x,z) :- Parent(y,z), D(x,y). person their descendants

then use negation
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2. Stratification practice Parent(P,C)

Q: Find all descendants of Alice,
who are not descendants of Bob

D(x,y) :- Parent(x,y). first compute for each J
D(x,z) :- Parent(y,z), D(x,y). person their descendants
O(x) :- D(*Alice’,x), =D('Bob’,x). thew use negation Q

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 277
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2. Stratification practice Parent(P,C)

Q: Find all descendants of Alice,
who are not descendants of Bob

DA(y) :- Parent('Alice',y).
DA(y) :- Parent(x,y), DA(x).

D(x,y) :- Parent(x,y). DB(y) :- Parent('Bob',y).
.. [BboeiiRarently,z) By |  IDEyIEsRarenty oyl DB}
QO(x) :- D('Alice’,x), =-D('Bob’,x). O(x) :- DA(x), =DB(x).

Dj DlAj D,B_<—|
e AT

Q Q
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Datalog Summary

(extensional/base relations), (intentional/derived relations)
« Datalog program = set of rules; base relations are also rules

e Datalog can be
Datalog with negation still PTIME

— Non-stratified Datalog: stable model semantics, ASP, can model NPC
problems

has also been extended to express limited form of recursion

— Using a recursive "with" clause, also called CTE ( )
— Can only have a

For more details on recursion in SQL see https://www.postgresgl.org/docs/14/queries-with.htmI#QUERIES-WITH-RECURSIVE
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 287
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Pre-class conversations

e Last class summary
e Project discussions (in class and after)
e Faculty candidates (today, Feb 29, March 20)

e today:
— More on Datalog
— What happens if we add negation? Answer: it depends on how we do it.

* Datalog with stratified negation
* Datalog with more genal negation (stable models), leads to ASP

— Later: Beyond NP with ASP (including 3-colorability in 2 lines)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 291
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Outline: T1-4: Datalog & ASP

» Datalog
— Datalog rules
— Datalog vs. RA
— Recursion
— Recursion in SQL [moved here from T1-U1: SQL]
— Semantics
— Naive and Semi-naive evaluation (Incremental View Maintenance)
— (Chase Procedure (and Decompositions=Factorizations)
— Datalog™ Datalog with stratified negation
Datalog®
. Ansvver Set Programming (ASP)
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Datalog®*: background

Datalog query language
(stratified negation)

* Much is possible with Datalog

Based on a presentation by Andrea Cali
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 296
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Datalog*: background

Datalog query language
(stratified negation)

Ontologies,
Description Logics (DL-Lite)
Semantic web

* Much is possible with Datalog
* Much is not (observed e.g. by [Patel-Schneider, Horrocks 2006])

Patel-Schneider, Horrocks. Position paper: A comparison of two modelling paradigms in the Semantic Web. WWW (Semantic Web track). 2006. https://dl.acm.org/doi/10.1145/1135777.1135784

Based on a presentation by Andrea Cali
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 297
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Datalog®*: goal

Datalog query language
(stratified negation)

Ontologies,
Description Logics (DL-Lite)
Semantic web

Relational integrity
constraints

Datalog™

* Much is possible with Datalog
* Much is not (observed e.g. by [Patel-Schneider, Horrocks 2006])

is a framework that extends Datalog with:

- value invention (3-variables in the head): (Tuple-Generating Dependencies)
- equality predicate in the head: (Equality Generating Dependencies)
- constant L in the head: (disjointness)

Patel-Schneider, Horrocks. Position paper: A comparison of two modelling paradigms in the Semantic Web. WWW (Semantic Web track). 2006. https://dl.acm.org/doi/10.1145/1135777.1135784
Cali, Gottlob, Lukasiewicz, Marnette, Pieris. Datalog+/-: A Family of Logical Knowledge Representation and Query Languages for New Applications. LICS 2010. https://doi.org/10.1109/LICS.2010.27

Based on a presentation by Andrea Cali
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Datalog and expressiveness for ontological reasoning

Assertion type

Datalog rule

Inclusion

emp(X) — person(X)

(Inverse) role inclusion

reportsTo(X, Y) - manages(Y, X)

Reflexive expansion

boss(X) — manages(X, X)

Transitivity

manages(X, Y), manages(Y, Z) - manages(X, Z)

Concept product

seniorEmp(X), emp(Y) — higher(X, Y)

Participation

?

Disjointness

?

Functionality

?

Ontology assertion

Datalog* rule

Participation

boss(X) — Y reports(Y, X)

Disjointness

customer(X), boss(X) —

Functionality

reports(X, Y1), reports (X, Y2) - Y1 =Y2

Based on a presentation by Andrea Cali
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Datalog*vs. DL

The above example corre-
sponds to the following set of DL axioms, expressed in an
extension of £LHZ by nonmonotonic negation:

FiveStar(X) — Hotel(X), FiveStar C Hotel,
FiveStar(X),notPool(X,Y) — 3Z Beach(X, Z), FiveStar MnotdPool C dBeach,
FiveStar(X),notBeach(X,Y) — 37 Pool(X, Z), FiveStar MnotdBeach T 3Pool,
Beach(X,Y) — 3Z SwimOpp(X, Z), dBeach C  dSwimOpp,
Pool(X, Y) — 37 SwimOpp (X, Z), JdPool T JSwimOpp,

Source: Gottlob, Lukasiewicz, Pieris. Datalog+/-: Questions and Answers. AAAI 2014. https://www.aaai.org/ocs/index.php/KR/KR14/paper/viewPaper/7965
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Interesting Observations

e Exploiting schema knowledge in query answering is
e Languages and algorithms exist that allow for

e Applicationsin are possible
— Industrial applications in data integration, Semantic Web, ontological
reasoning

— Companies and Products: RelationalAl, Deepreason.ai, Oracle Semantic
Technologies, IBM I0DT, OntoDLV (Vienna)

Based on a presentation by Andrea Cali
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Outline: T1-4: Datalog & ASP

* Answer Set Programming
— Intro to Rules with Negation

304



Negation in Souffle vs. Negation in ASP

Negation in Rules

A rules of the form
CanRenovate(person, building) :- Owner(person, building), !Heritage(building).

expresses the rule that an owner can renovate a building with the condition that the building is

not classified as heritage. Thus the literal “Heritage(building)” is negated (via “!”) in the body of \IES : S’I‘Q b l 6 VV\ Od 6[ 5 6 VV\ ﬁ Vl+l 0 S

the rule. Not all negations are semantically permissible. For example,

S as used by ASP can deal with
500 - 1 A this circular definition

is a circular definition. One cannot determine if anything belongs to the relation “A” without
determining if it belongs to relation “B”. But to determine if it is a “B” one needs to determine if
the item belongs to “A”. Such circular definitions are forbidden. Technically, rules involving
negation must be stratifiable.

Negated literals do not bind variables. For example, N O : Sa-Fe-“\{ OOVI di-"i OW 5 a lp@ 5+i l l

A(x,y) := R(x), !S(y/ +M6 SﬂlVV\@ ﬁS 'FOI” SOM_F-Fla

is not valid as the set of values that “y” can take is not clear. This can be rewritten as,
A(x,y) := R(x), Scope(y), !S(y).

where the relation “Scope” defines the set of values that “y” can take.

Source: https://souffle-lang.github.io/rules
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Answer Set Programming (ASP)

Programming paradigm that can model Al problems (e.g, planning, combinatorics)

e Basicidea
- Allow and encode problem ( ) as logic program rules
— Solutions are so-caled " " of the program

Semantics based on Possible Worlds and Stable Models
— Given an answer set program P, there can be
— Each model M: assignment of true/false value to propositions to make all formulas true (combinatorial)

— Captures default reasoning, non-monotonic reasoning, constrained optimization, exceptions, weak
exceptions, preferences, etc., in a natural way

Finding stable models of answer set programs is not easy
— Current systems CLASP, , , Smodels, etc., extremely sophisticated

— Work by the program (= replacing variables with constants), suitably transforming it to a
propositional theory whose models are stable models of the original program (contrast with "
"later )

— These models are found using a SAT solver or solvers using similar ideas to SAT solvers
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 306
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Rules with Negation

» Closed world assumption (CWA) as used in standard Datalog:

— If a fact does not logically follow from a set of Datalog clauses, then we conclude that
the negation of this fact is true.

« Problem: CWA can lead to inconsistencies when negation is allowed in rule

bodies. Intuition: we can have multiple models ("Herbrand models")
Example 1:
boring(chess) :- boring(chess). :> ?

What are all the possible *minimal* models:

o Herbrand wiiverse U, (set of all constants) =fchess}
« Herbrand base . (set of grounded atoms) = {voring(chess)3
(all subsets of By) = £ {3, thoring(chess)3 3
L interpretation that makes each ground instavce of each rule true

The "boring chess" example is taken from "Ceri, Gottlob, Tanca. What you always wanted to know about Datalog (and never dared to ask). TKDE 1989. https://doi.org/10.1109/69.43410
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Rules with Negation

» Closed world assumption (CWA) as used in standard Datalog:

— If a fact does not logically follow from a set of Datalog clauses, then we conclude that

the negation of this fact is true.

e Problem: CWA can lead to inconsistencies when negation is allowed in rule
bodies. Intuition: we can have multiple minimal models ("Herbrand models")

Example 1:

boring(chess) :- boring(chess).

—

What are all the possible *minimal* models:

M, = {}

W, = {boring(chess)? is a
model, but vot minimal

The "boring chess" example is taken from "Ceri, Gottlob, Tanca. What you always wanted to know about Datalog (and never dared to ask). TKDE 1989. https://doi.org/10.1109/69.43410
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Rules with Negation

» Closed world assumption (CWA) as used in standard Datalog:

— If a fact does not logically follow from a set of Datalog clauses, then we conclude that
the negation of this fact is true.

e Problem: CWA can lead to inconsistencies when negation is allowed in rule
bodies. Intuition: we can have multiple minimal models ("Herbrand models")

Example 1:
boring(chess) :- boring(chess). :> M, ={}

What are all the possible *minimal* models: W, = ¢boring(chess)3 is a
model, but not minimal

Example 2.
boring(chess) :- —interesting(chess). > Possible nterpretations:
P (8 ()3, ),
What are all the possible *minimal* models: (o(c),i(c)} 3

The "boring chess" example is taken from "Ceri, Gottlob, Tanca. What you always wanted to know about Datalog (and never dared to ask). TKDE 1989. https://doi.org/10.1109/69.43410
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Rules with Negation

» Closed world assumption (CWA) as used in standard Datalog:

— If a fact does not logically follow from a set of Datalog clauses, then we conclude that
the negation of this fact is true.

e Problem: CWA can lead to inconsistencies when negation is allowed in rule
bodies. Intuition: we can have multiple minimal models ("Herbrand models")

Example 1:
boring(chess) :- boring(chess). :> M, ={}

What are all the possible *minimal* models: W, = ¢boring(chess)3 is a
model, but not minimal

Example 2.
boring(chess) :- —interesting(chess). :> M, = {boring(chess)}

What are all the possible *minimal* models: | M2 = linteresting(chess)}

The "boring chess" example is taken from "Ceri, Gottlob, Tanca. What you always wanted to know about Datalog (and never dared to ask). TKDE 1989. https://doi.org/10.1109/69.43410
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Outline: T1-4: Datalog & ASP

— Horn clauses and Logic Programming

311



Horn clauses and logic programming

A clause is a disjunction of literals.

avVbvcvd aAb=cvd
ITAaAb=cvdVvO

A Horn clause has at most one positive (i.e. unnegated) literal.

Alfred Horn, ~1973
https://en.wikipedia.org/wiki/Alfred _Horn

Recal:a = ma=!a=~a=NO0OTa
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 312
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Horn clauses and logic programming

A clause is a disjunction of literals.

avVbvcvd aAb=cvd
ITAaAb=cvdVvO

A Horn clause has at most one positive (i.e. unnegated) literal.

avVbVvec ? definite clause (exactly one positive) s
C ? unit clause (facts, unconditional knowledge, empty body)
aVvb ? goal clause

Recalla = ma=!a=~a=N0OTa
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 313
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Horn clauses and logic programming

A clause is a disjunction of literals.

avVbvcvd aAb=cvd
ITAaAb=cvdVvO

A Horn clause has at most one positive (i.e. unnegated) literal.

avbVc a/Ab = c definite clause (exactly one positive) A o
C 1 = ¢ unitclause (facts, unconditional knowledge, empty body)
aVvb aAb = (0 goalclause

Universal quantification (everything above was propositional)
—human(X) vV mortal(X)
? ?

Recalla = ma=!a=~a=N0OTa
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 314
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Horn clauses and logic programming

A clause is a disjunction of literals.

avVbvcvd aAb=cvd
ITAaAb=cvdVvO

A Horn clause has at most one positive (i.e. unnegated) literal.

avbVc a/Ab = c definite clause (exactly one positive) A o
C 1 = ¢ unitclause (facts, unconditional knowledge, empty body)
aVvb aAb = (0 goalclause

Universal quantification (everything above was propositional)

—human(X) vV mortal(X)
VX[—=human(X) vV mortal(X)] VX[ human(X) = mortal(X)]

Recalla = ma=!la=~a=N0OTa
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 315
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Datalog grammar

P € program = ry.r. ... 1.

r € rule = Qg i~ Aq,ees, Anye

a € atom = p(ty,..., t) p = set of predicate symbols
t € term =x | "c" x = set of variable symbols

c = set of constants

a ground atom has only constants as terms (no variables)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 317
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Concepts from logic programming

P: Program

?

Up: Herbrand universe (or Herbrand domain or vocabulary)
?

Bp: Herbrand.base (or alphabet)

?

I: Interpretation (or database instance or dataset) Jacques Horbrand, 1031

? https://en.wikipedia.org/wiki/Jacques He
|
M: Model of P
L]

?

A model is minimalif )

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 318
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Concepts from logic programming

P: Program

— set of facts (assertions) and rules (sentences that allow to infer new facts from existing ones)

Up: Herbrand universe (or Herbrand domain or vocabulary)
?

Bp: Herbrand.base (or alphabet)

?

I: Interpretation (or database instance or dataset) Jacques Horbrand, 1031

? https://en.wikipedia.org/wiki/Jacques He
|
M: Model of P
L]

?

A model is minimalif )

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 319
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Concepts from logic programming

P: Program

— set of facts (assertions) and rules (sentences that allow to infer new facts from existing ones)

Up: Herbrand universe (or Herbrand domain or vocabulary)

- set of all constants (variable-free terms) appearing in P (cp. with active domain interpretation)

Bo: Herbrand base (or alphabet)

- set of all ground atoms (variable-free) constructible with predicates from P and terms from U,

o I (or database instance or dataset)
?

« M: of P
?

« A modelis if )

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 320
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Concepts from logic programming

P: Program

— set of facts (assertions) and rules (sentences that allow to infer new facts from existing ones)

Up: Herbrand universe (or Herbrand domain or vocabulary)

- set of all constants (variable-free terms) appearing in P (cp. with active domain interpretation)

Bo: Herbrand base (or alphabet)

- set of all ground atoms (variable-free) constructible with predicates from P and terms from U,

o I (or database instance or dataset)

— any subset of B,

e M: of P

- an that makes each ground instance of each rule in P true (a ground instance
of a rule is obtained by replacing all variables in the rule by elements from U,)

A model is if )

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 321
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Concepts from logic programming

e P:

- set of (assertions) and (sentences that allow to infer new facts from existing ones)
e U,: Herbrand (or Herbrand domain or vocabulary)

- set of all (variable-free terms) appearing in P (cp. with active domain interpretation)
e Bp: Herbrand (or alphabet)

- set of all (variable-free) constructible with predicates from P and terms from U,
o I (or database instance or dataset)

— any subset of B,
e« M: of P

- an that makes each of each rule in P true (a ground instance

of a rule is obtained by replacing all variables in the rule by elements from U,)

A model is if it does not properly contain any other model

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 322
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Herbrand, interpretations, models

Program P

arC(”a”,”b”)_ arC(”b”,"C”)_ |nterpretation
path(x,y) :- arc(x,y).
path(x,y) - arC(X,Z), path(z,y) ?

Herbrand universe Up

?

Herbrand base B,

?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Herbrand, interpretations, models

Program P

arC(”a”,”b”), arC(”b”,”C”)_

path(x,y) :- arc(x,y).
path(x,y) :- arc(x,z), path(z,y).

Herbrand universe Up
{llall’ ||b|l’ "C”}

Herbrand base B,

?

Interpretation

?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Herbrand, interpretations, models T TN

Program P Q—’Q—’Q

arC(”a”,”b”)_ arC(”b”,"C”)_ |nterpretation
path(x,y) :- arc(x,y).
path(x,y) - arC(X,Z), path(zzy) ?

Herbrand universe Up

{"a", "b", "c"} Contains a wild mix of
- o licit facts that we know
Herbrand base B, 1B 1=18 OXPlIOIT
{e;m:?ar: ..a..)aW (IDB) like arc("a","v"),

(e ..b.,)' Eath(., ,.’..b..)' e facts that cav be inferred
arc("a" ”C”). path( nn ”) (EVB) lik@ Pa_kl/]("a","b"), avld

: : o facts that cannot be inferred
arc("c","b").  path("c","b"). like path("c","a") or arc("a","a")
arc("c","c"). path("c","c"). }

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 325
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Herbrand, interpretations, models agn g
Program P Q—’Q—’Q

arc("a","b"). arc("b","c"). Interpretation ove of mawy interpretations
path(x,y) - arC(X,Y). arC(”a”,”b”). arC(”b”,”C”). arC(”b“,”a”).
path(x,y) - arC(X,Z), path(Z,Y) path(" ] nbn) path("b" n n) path("b","a").
path(" non n) path(" non n).
Herbrand universe Up
{"a", "b", "c"} Ts +his interpretation a model? ?
Herbrand base By |B E 8

"a","a" "a","a").

{ arc("a","a").  path("a",
arC(” 1] Ilbll)- path( aIl l|b||).
a

"at,"c" "),

arc("a","c"). path("

arc(' c" ,'b"). path("c","b").
C

arc("c","c"). path("c","c"). }

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 326
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Herbrand, interpretations, models agn g

Program P Q—’Q—’Q

arc("a","b"). arc("b","c"). Interpretation  ove of many interpretations
path(x,y) - arC(X,Y). arC(”a”,”b”). arC(”b”,”C”). arC(”b”,”a”).
path(X,y) - arC(X,Z), path(Z,y) path(" I nbn) path("b" 1" n) path("b","a").
path(ll nn II) path(ll nn |l).
Herbrand universe Up
{"a", "b", "c"} T<s this interpretation a wmodel?
Herbrand base By |B,, ‘ - |C9 No! There is a rule for which there is a ground
instance that is not true in this interpretation
{ arc(Ilall llall). path(llall’ll II).
arC( aII llbll)- path( aIl llbll). \ X%”b", y%”b”’ Z%”a”:
arC( a|| ”C”)_ path( a” n ”). path(llb"’llbll) :_ arC(”b”,"a”), path(”a",”b”)_
arc("c" "b").  path("c","b"). This is an example grounding of a rule.
arC( C”’”C”) path( |I’II II) }
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Herbrand, interpretations, models agn g
Program P Q—’Q—’Q

arC(”a”,”b”). arC(”b","C"). |nterpretat|0n
path(x,y) - arC(X,Y). arC(”a”,”b”). arC(”b”,”C"). arC(”b“,”a”).
path(x’y) - arC(X,Z), path(Z,Y) path(" " nbn) path("b" 1 n) path("b" " ||)
path(" non n) path(" non u) path(ubn nbn)
Herbrand universe Up
{"a", "b", "c"} Ts +his vew iuterpretation a wmodel? ?
Herbrand base By |B E 8

"a","a" "a","a").

{ arc("a","a").  path("a",
arc(Il 1] llbll)- path( aIl l|b||).
a

"at,"c" "),

arc("a","c"). path("

arc(' c" ,'b"). path("c","b").
C

arc("c","c"). path("c","c"). }
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Herbrand, interpretations, models agn g
Program P Q—’Q—’Q

arC(”a”,”b”). arC(”b","C”). |nterpretat|on
path(x,y) - arC(X,Y). arC(”a”,”b”). arC(”b”,”C"). arC(”b”,”a”).
path(x’y) - arC(X,Z), path(Z,Y) path(" " nbn) path("b" n n) path("b" " ||)

path(” n 1 II) path(” n 1 II) path("b" Ilbll)
Herbrand universe Up

{"a","b", "c"} Ts +his vew iuterpretation a model?
Herbrand base By |B E 8 Yes!
{arc("a","a").  path("a","a"). T<s this wmodel minimal? ?

d
arc(Il I llbll)- path( aIl l|b||).
d

"at,"c" "),

arc("a","c"). path("

arc(' c" ,'b"). path("c","b").
C

arc("c","c"). path("c","c"). }
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Herbrand, interpretations, models agn g
Program P Q—’Q—7’Q

\_—/

arC("a”,”b”). arC(”b","C”). |nterpretat|on

path(x,y) - arC(X,Y). arC(”a”,"b”) arC(”b” I n) arC(”b”,”a”).

path()(’y) - arC(X,Z), path(Z,Y) path(" " nbn) path("b" 1 l) |E Etl:('llfn,nfn).

path(" non n)- n n’n 1Y n n,u 1Y

Herbrand universe Up

{"a", "b", "} Ts +his vew interpretation\a model?
Herbrand base Bp |Bp ‘ =18 Yes!

{arC(" n uau). path(" n’n n). IS _‘_M“S VV\Od@[ VV\iV]iVV\ﬂl[?

a a
arc("a","b"). path("a","b").
a a

"), bath("a" "e"). No! There is a properly contained model

arc("

arc("c","b").  path("c","b").
C

arc("c","c"). path("c","c"). }

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Herbrand, interpretations, models T b C
Program P Q—’Q—7’Q

\_’/

arc(a,b). arc(b,c). Interpretation Convention in ASP:

path(X.Y) :- arc(X,Y). sre(ab). arc(b,c). arelb-al * Variables begiv

path(X,Y) :- arc(X,Z), path(Z)Y). nath(a,b). path(b,c). pathib-al with upper-case

path(a,c). pathiaay—pathtbby:  * constants begiv

Herbrand universe Up with lower-case

fa, b, c} Ts +his vew interpretation\a model?
Herbrand base Bp |Bp ‘ =18 Yes!

{arc(a,a). path(a,a). Ts this model minimal?

arc(a,b). path(a,b). Nol There i | t2ined model

arc(a,c). path(a,c). O! ere 1S a properiy contalned mode

arc(c,b). path(c,b).

arc(c,c). path(c,c). }
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Evaluating ASP's with Clingo

pathsl.txt

arc(a,b). arc(b,c).

path(X,Y) :- arc(X,Y).

path(X,Y) :- arc(X,Z), path(Z,Y).

clingo pathsl.txt

-)

?

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo

Postassco/Clingo available for download at: https://teaching.potassco.org/
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Evaluating ASP's with Clingo

pathsl.txt

arc(a,b). arc(b,c).

path(X,Y) :- arc(X,Y).

path(X,Y) :- arc(X,Z), path(Z,Y).

clingo pathsl.txt

-)

Solving...
Answer: 1
arc(a,b) arc(b,c) path(a,b)

path(b,c) path(a,c)
SATISFIABLE

Shows all predicates, including EDBs

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo

Postassco/Clingo available for download at: https://teaching.potassco.org/
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Evaluating ASP's with Clingo

paths2.txt

arc(a,b). arc(b,c).

path(X,Y) :- arc(X,Y).

path(X,Y) :- arc(X,Z), path(Z)Y).
#show path/2. clingo paths2.txt

Show owly +he facts in the predicate '

named "path" with arity "2."

Solving...

Answer: 1

path(a,b) path(b,c) path(a,c)
SATISFIABLE

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
Postassco/Clingo available for download at: https://teaching.potassco.org/
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Outline: T1-4: Datalog & ASP

— Stable model semantics
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Semantics: Informally

e Informally, a of a ground program P is a set of
ground atoms such that

1. Every rule is satisfied:
i.e., foranyruleinP

.- al, ves) am, ﬁb]_, Y “bn.

if each atom a; is satisfied (2,'s are in [VI) and no atom b, is satisfied
(i.e. isin M), then hisin

2. Every h € M can be derived from arulebya”
(informal for: we are looking for , or there is some

" ")

Recall that alternatives to "-" are "not" and "!"and "~". Writing out "not" explicitly is more common in ASP.
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Semantics: "non-circular” more formally

ldea: Guess a model VI (= a set of atoms). Then verify M is the exact set of atoms
that "can be derived" under standard minimal model semantics on PV on a
modified positive program P"' (called "the ") derived from P as follows:

1. Create all possible groundings of the rules of program P

2. Delete all grounded rules that contradict

h:-a, a5 =bq, ..., =b,. if some b, €

3. In remaining grounded rules, delete all negative literals

h . al, Y am, _'bl, ceey _'bn. |f NO bi €

is a of P iff Ml is the least model of

Recall that alternatives to "-" are "not" and "!"and "~". Writing out "not" explicitly is more common in ASP.
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Semantics: "non-circular” more concisely

ldea: Guess a model VI (= a set of atoms). Then verify M is the exact set of atoms
that "can be derived" under standard minimal model semantics on PV on a
modified positive program P"' (called "the ") derived from P as follows:

The of Pw.r.t M is:

= { h:-ag .. a,.

h:-ay ..., a, -by ..., =b,. | €grounding of P A no b, € V }

MV is a of P iff Ml is the least model of

Recall that alternatives to "-" are "not" and "!"and "~". Writing out "not" explicitly is more common in ASP.
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Examples

"a" is a proposition that is either true or false

x

Pl: |a:-a.

M=fal Ts W a stable model of P17 ’?
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Examples

"a" is a proposition that is either true or false

x
P1: 'a:-a.
I\/I/—{/a’f not a stable model (not mivimal, derivation of "a" is based

ov circular reasoning: {a3 is ot least model of a :- a)

? wWhat is a stable wodel?
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Examples

"a" is a proposition that is either true or false. Tntuitively a predicate with zero arguments (arity 0)
/
4

Pl: |a:-a.

I\/I/—{/a’f not a stable model (not mivimal, derivation of "a" is based
ov circular reasoning: {a3 is ot least model of a :- a)

M={} stable model
Iwterpretations:

P2: a:-notb. § a3, tb3,
£3, €a b3 3
? A
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Examples

"a" is a proposition that is either true or false

x
P1: a:-a.
I\/I/—{/a’f not a stable model (not mivimal, derivation of "a" is based

ov circular reasoning: {a3 is ot least model of a :- a)

M={} stable model
IW‘l‘@Y‘PY‘@‘l’a‘l‘iOWS‘

P2: a:-notbh. § §a3, £bd;
? B, a3} ™ lmww] —
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Examples

"a" is a proposition that is either true or false

x
P1: a:-a.
I\/I/—{/a’f not a stable model (not mivimal, derivation of "a" is based

ov circular reasoning: {a3 is ot least model of a :- a)

M={} stable wmodel

Tvterpretationss~

P2: |a:-notb. ééa}/fQ anotb | —— f4)

(3, a3 3 anoth | —s
? a /mrf £3
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Examples

n_n

a' is a proposition that is either true or false

x
P1: a:-a.
W not a stable model (not mivimal, derivation of "a" is based

ov circular reasoning: {a3 is ot least model of a :- a)

M={} stable wmodel
Twvterpretations:—

P2: |a:-notbh. § éa}/f}_\\ a-noth | —— A3
3

M={a} é} éd lﬁ} _a/)m‘f( — é}
only stable model (compare to +l/16 e earlier chess example)
P3: 'a:-nota. £ €3, Ea3 3

?

]
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Examples

"a" is a proposition that is either true or false

x
P1: 'a:-a.
W not a stable model (not mivimal, derivation of "a" is based

ov circular reasoning: {a3 is ot least model of a :- a)

M={} stable wmodel

Twvterpretations:—

P2: 'a:-notb. {{a}/f_\\a:” T —— {a3

M={a} é} éﬁ 17} _a/,mf( — é}
only stable model _— a*w%-/ — s {a?
P3: |a:-nota. § £3, {0} 3 anors | —— §3

has wo stable wmodel (cp. +o earlier "Box(x) - Ttem(x), -Box(x).")
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Examples

P4: a:-notbh.
b :- not a.
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Examples

P4: |a:-notb. How can vou "prove" that
b :- not a. W, is a stable model?

M, ={a} ?

M, ={b] +wo stable models
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Examples

P4: |a:-notb. a - petD.
b :- not a. bt a

M, ={a}

M,={b} +wo stable models
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Examples

P4: a:-notb. a - petD.
b :- not a. bt a

M, ={a}

M, ={b] +wo stable models

P5: |a:-notbh.
b :- not a.
a :- not a.

? 8. (a3}, (03, tab} 3
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P4: |a:-notb. a - petD.
b :- not a. bt a

My=ial two stable models
M,={b}
How can you "prove" that
P5: |a:-notb. W is a stable model?
b :- not a. ,7
a :- not a. s

M={a}  owly stable model
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Examples

P4: 'a:-noth.
b :- not a.

\

M, ={a}

M,={b} +wo stable models

P5: 'a:-noth.
b :- not a.

a - not a.

W\

M={a}  owly stable model

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Evaluating ASP's with Clingo

p4.txt

a - notb.
b :- not a.

M, ={a}
M,={b}

p5.txt

a - notb.
b :- not a.
a :- not a.

M={a}

print all stable models (wot just one)
(—A—\
clingo p4.txt -n 0@

-)

clingo p5.txt -n 0@

-)

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo

Answer: 1

b

Answer: 2

a
SATISFIABLE
Answer: 1

a
SATISFIABLE

@Potegsco
ama Solutions

Postassco/Clingo: Download: https://potassco.org/clingo/, Running in the browser: https://potassco.org/clingo/run/, More resources on clingo: https://teaching.potassco.org/

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Pre-class conversations

e Last class summary
e Scribe correction: | make a pass on Monday (before next class)

e Project discussions (in class and after)
e Faculty candidates (THU Feb 29, WED March 20)

e Today:
— Stable models, ASP
— Later: Beyond NP with ASP (including 3-colorability in 2 lines)
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Outline: T1-4: Datalog & ASP

— Stable model semantics
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Discussion from last time

P2: 'a:-noth. Tuterpretations:—,

Weta is thne only stable wodel ¢ éa}/f_\\

£3, {a, b} _a/)mf(
notb = a
bVa Logjically
aVvb edquivalent ’?
nota=b .
"Why should sywtax determine
the semantics?”
P6: b :-nota.

M=¢{b3 is the ouly stable model
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Discussion from last time

P2: |a:-nothbh. Twvterpretations— )
a:-no¥p. | —— A
WM={a3} is the ouly stable model ¢ é“}/f_\\ )
notb=a
bVa Logjically
aVvb eduivalent e o gk
nota=>b \ a—a
aVa
P6: |b:-nota. recall that we want to have

the least model iv standard

Datalog (mow-circular)
/
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What do empty bodies or heads mean in ASP?

Think of the head as a disjuuction, body as conjunction

Ova<1lAbA-c
"Disjunctive Logic Programming": disjunctions in the head

a - b, notc.

Empty body:

a ?

Empty head:

- b, not c. ?
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What do empty bodies or heads mean in ASP?

Think of the head as a disjuuction, body as conjunction

a - b, notc.
Ova<1lADbA-cC
"Disjunctive Logic Programming": disjunctions in the head
Empty body:
a. a<1 Empty body describes a fact:
"a" needs to be true.
Also in Datalog
Empty head:

- b, not c. ?
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What do empty bodies or heads mean in ASP?

Think of the head as a disjuuction, body as conjunction

a - b, notc.
Ova<1lADbA-cC
"Disjunctive Logic Programming": disjunctions in the head
Empty body:
a. a<1 Empty body describes a fact:
"a" needs to be true.
Also in Datalog
Empty head:
- b, not c. 0 <DbA-=c

Empty heads describes a constraint: "b and ot ¢" must
not be true in any model. Emtpy head describes a
condition in the body which leads to contradiction (false)
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3-colorability wbs [ A clsT

3 -
A

Q: For a graph (V, E) assign each/vértex a color in {[,

such that no adjacent vertices have the same color.

?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

¥ A
0
2, 3}

Convention in ASP:
Capital letters are

variables, lower case
letters constants

Cp. edge(X,a)
Vs, edge(x,"a")
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3-colorability wbs [ A clsT (3)

h/ : * [ N

Q: For a graph (V, E) assign each/vértex a color in {1, 2, 3} e

such that no adjacent vertices have the same color.

EDB (facts)

vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c). o
— — Convention in ASP:

IV Capital letters are
variables, lower case
letters constants
Cp. edoe(X,a)

Every vertex needs to have a color ? Vs, ed 2@ (x,"a")

Vertices from an edae can't have same color ?

369
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3-colorability (a)—(b)
Q: For a graph (V, E) assign each vertex a color in {1, 2, 3} G
such that no adjacent vertices have the same color.
EDB (facts)
vertex(a). vertex(b). vertex( ). edge(a,b). edge(a,c). o
— Convention in ASP:

color(V,1) :- not color(V, 2) not color(V,3), vertex(V).
color(V,2) :- not color(V,3), not color(V

IV Capital letters are
variables, lower case

letters constants

1), vertex(V).
2), vertex(V).

(v,
(V.

color(V,3) :- not color(V,1), not color(V

Cp. edge(X,a)
Every vertex needs to have a color vs. edoe(x,"a")

Vertices from an edae can't have same color ?
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3-colorability

Q: For a graph (V, E) assign each vertex a color in {1, 2, 3}
such that no adjacent vertices have the same color.
EDB (facts)

vertex(a). vertex(b). vertex( ). edge(a,b). edge(a,c).

color(V,1) :- not color(V, 2) not color(V, 3)v/H%EX(V). C’OV]Y6W+|°M n ASP:
Capital letters are

color(V,2) :- not color(V,3), not color(V,1), vertex(V). .
color(V,3) :- not color(V,1), not color(V,2), vertex(V) Variables, lower case
| | letters constants

ID®

Cp. edge(X,a)
vs. edae(x,"a")

Vertices from an edae can't have same color ?

- edge(aXx), edae(bX)" means that "a" and "b" don't share a weighbor
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3-colorability

Q: For a graph (V, E) assign each vertex a color in {1, 2, 3}
such that no adjacent vertices have the same color.

EDB (facts)

vertex(a). vertex(b). vertex( ). edge(a,b). edge(a,c).

ID®

L —

color(V,1) :- not color(V, 2) not color(V,3), vertex(V).
color(V,2) :- not color(V,3), not color(V,1), vertex(V).
color(V,3) :- not color(V, 1) not color(V,2), vertex(V).

.- edge(V,U), color(V,C), color(U,C). -

constraint

Vertices from an edge can't have same color

Convention in ASP:
Capital letters are
variables, lower case
letters constants

Cp. edge(X,a)
vs. edae(x,"a")

- edge(aXx), edae(bX)" means that "a" and "b" don't share a weighbor

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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3-colorability with Clingo (ar—(b) =
3colorability1

clingo 3colorabilityl.txt G
3colorabilityl.txt
vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c). Returns a stable wmodel if i+
color(V,1) :- not color(V,2), not color(V,3), vertex(V). exists. Since there is a
stable wmodel, the problem is

color(V,2) :- not color(V,3), not color(V,1), vertex(V). - ;
satisfiable”.
color(V,3) :- not color(V,1), not color(V,2), vertex(V).

- edge(V,U), color(V,C), color(U,C).

Answer: 1

vertex(a) vertex(b) vertex(c) edge(a,b) edge(a,c) color(a,1)
color(b,3) color(c,3)

SATISFIABLE

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 373
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3-colorability with Clingo

clingo 3colorabilityl.txt -n 0@
H_J

privt all stable models (not just ove)

3colorabilityl.txt

vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).
color(V,1) :- not color(V,2), not color(V,3), vertex(V).
color(V,2) :- not color(V,3), not color(V,1), vertex(V).
color(V,3) :- not color(V,1), not color(V,2), vertex(V).
- edge(V,U), color(V,C), color(U,C).

-)

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

3colorabil

Answer: 1

vertex(a) vertex(b) vertex(c) edge(a,b) edge(a,c)
color(a,1) color(b,3) color(c,3)

Answer: 2

vertex(a) vertex(b) vertex(c) edge(a,b) edge(a,c)
color(a,1) color(b,3) color(c,2)

Answer: 3

vertex(a) vertex(b) vertex(c) edge(a,b) edge(a,c)
color(a,1) color(b,2) color(c,3)

Answer: 11

vertex(a) vertex(b) vertex(c) edge(a,b) edge(a,c)
color(a,3) color(b,2) color(c,2)

Answer: 12

vertex(a) vertex(b) vertex(c) edge(a,b) edge(a,c)
color(a,3) color(b,1) color(c,2)

SATISFIABLE

ity 1
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Outline: T1-4: Datalog & ASP

— An application and surprising complexity result
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Problem in social data: often no single ground truth

The Indus Script*

What is the origin
of this glyph?

-

U

~

* Current state of knowledge on the Indus Script: Rao et al., Science 324(5931):1165, May 2009
Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010, https://doi.org/10.1145/1807167.1807193
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Background: Conflicts & Trust in Community DBs

Conflicting beliefs

glyph origin
ship hull
cow
jar
fish
knot
arrow

>l sl

“Beliefs”: annotated
(key,value) pairs

Alice
Bob
Charlie
Bob
Charlie
Charlie

“Explicit belief”

Trust mappings

Alice <~ Bob

Alice < Charlie
Bob « Alice

Recent work on community databases:

(100)
(50)

(80) Priorities

“Implicit belief”

\ glyph origin

100

ship hull

fish

N

U
i
?

arrow

Taylor & Ives [SIGMOD’06]
Green et al. [VLDB’07] )Orchestra

Kot & Koch [VLDB’09]<—Youtopia

GBKS [VLDB’09]

- BeliefDB

30

Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010, https://doi.org/10.1145/1807167.1807193

alyph

Bob
origin
cCow

fish

U
i
?

arrow

alyph

Charlie

origin
jar

knot

U
i
?

arrow
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Limitations of previous work: transient effects

1. Incorrect inserts
— Value depends on order of inserts

100

Bob

glyph origin
U cow |t3

AIce >0
glyph origin
U jar |t

preferred Bob’s
value over Charlie’s

é Alice would have

glyph origin
U jar [ty

Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010, https://doi.org/10.1145/1807167.1807193 396
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Limitations of previous work: transient effects

1. Incorrect inserts
— Value depends on order of inserts 10

0
80 Bob
2. Incorrect updates glyph origin
/ \ U jar t3

— Mis-handling of revokes

Alice and Bob trust each . 50
6 f{).the.rf.mo§t, k’)’uft ha;]/e.lo;tl_ f origin
justification” for their beliefs T jar |t :

Charlie

glyph origin
4 . . , _ _ ™ —
Automatic conflict resolution with trust mappings: U @r |4
U cow |t,

1. How to define a globally consistent solution?
2. How to calculate it efficiently?
(3. Several extensions)

GS [Sigmod’10]

J

&

Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010, https://doi.org/10.1145/1807167.1807193
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Agenda

1. Stable solutions
— how to define a unique and consistent solution?

Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010, https://doi.org/10.1145/1807167.1807193 398
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Blnary TrUSt NetWOrkS (BTNS) User A has explicit belief v
/

To simplify presentation: focus on binary TNs AV B:w
® ®
User D is
| _— user C’s
. “preferred
¥ Y
AI'Ce BOb ( % parent"

gzg origin glyph origin C:? /T)'?
ship hull U cow N N

oL
®

-~
\/f
Charlie Dhana

glyph origin glyph origin

Focus on one single key
(we ignore the glyph)

Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010, https://doi.org/10.1145/1807167.1807193 399
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The definition of a globally consistent solution

A:v
®

o Stable solution

— assignment of values to each node,
s.t. each belief has a “non-dominated
dineage” to an explicit belief

B:w
o

e

P \)\Mq’ s (A,-—
Y
Y oull]
\(non-dominating C:?
® >0 >0 >0 >0

A:v N;:;v  N,yv  Njv D

Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010, https://doi.org/10.1145/1807167.1807193
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The definition of a globally consistent solution

. A:v B:w
« Stable solution
. ® ®
— assignment of values to each node,
s.t. each belief has a “non-dominated
lineage” to an explicit belief
\ Y
Ny:v « e
\(non-dominating C.v D:v
® >0 > >0 >0 SS,=(A:v, B:w, C:v, D:v)

A:v N;:.v l(/?:v N;.v  D:v

Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010, https://doi.org/10.1145/1807167.1807193
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The definition of a globally consistent solution

. A:v B:w
« Stable solution . .
— assignment of values to each node,
s.t. each belief has a “non-dominated
lineage” to an explicit belief
Y )
N,:v < e
\ C:w D:w
® >0 >0 >0 >0 SS,=(A:v, B:w, C:v, D:v)
Av  Ngvo Npvo Nyvo D $S,=(A:v, B:w, C:w, D:w)

Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010, https://doi.org/10.1145/1807167.1807193
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Possible and certain values from all stable solutions

o Stable solution

— assignment of values to each node,
s.t. each belief has a “non-dominated
lineage” to an explicit belief

N,:v

N

A:v N;:;v  N,yv Nsv D

e Possible / Certain semantics

— a stable solution determines, for each
node, a possible value (“poss”)

— certain value (“cert”) = intersection of
all stable solutions, per user

A:v B:w
o o
C:? ~D:?

SS,=(A:v, B:w, C:v, D:v)
SS,=(A:v, B:w, C:w, D:w)

X poss(X) cert(X)
A {v} {v}

B {w} {w}

cC {vw} O

D {vw} O

Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010, https://doi.org/10.1145/1807167.1807193
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Logic programs (LP) with stable model semantics

Convention from LP solver PLV: constants and predicates s+ar+ with lowercase letters, variables with uppercase

But solving LPs is hard ®

letters.

A B

N

* LPs can capture this semantics.

poss(c,X) :-
block(c,b,Y) :-
poss(c,Y) :-

poss(a,X)
bIY)I
b,Y), not block(c,b,Y).

poss(

poss(b,Y

poss(c,X), X!I=Y.

* There exist powerful and free
LP solver available.

* Previous work on peer data
exchange suggest using LPs.

Greco et al. [TKDE'03]
Arenas et al. [TLP’03]
Barcelo, Bertossi [PADL'03]
Bertossi, Bravo [LPAR'07]

10,000

1,000 [

Time [sec]

o
[EEN

100 F

[N
o
T

[y
T

S —0 by

o
o
=

0 50 100 150 200
Size of the network (#N + #E)
State-of-the-art LP solver

Yet surprisingly, our
problem allows a
PTIME solution ©

Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010, https://doi.org/10.1145/1807167.1807193 404
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DLV example

Size: 38

input.txt

query.txt

% --- Insert explicit beliefs ---
possH(h8_0,1).
possH(h11_0,0).
possH(h12_0,1).
possH(h13_0,0).
possH(h14_0,1).

% --- Node: 0 ---

possH(h0_1,X) :- possH(hO_0,X).
block(h0_1,11,X) :- poss(11,X), possH(hO_1,Y), Y!=X.
possH(h0_1,X) :- poss(11,X), not block(h0_1,11,X).
possH(h0_2,X) :- possH(hO_1,X).

block(h0_2,3,X) :- poss(3,X), possH(hO_2,Y), Y!=X.
possH(h0_2,X) :- poss(3,X), not block(h0_2,3,X).
possH(h0_3,X) :- possH(hO_2,X).
block(h0_3,12,X) :- poss(12,X), possH(hO_3,Y), Y!=X.
possH(h0_3,X) :- poss(12,X), not block(h0_3,12,X).
poss(0,X) :- possH(hO_3,X).

% --- Node: 1 ---

possH(h1_1,X) :- possH(h1_0,X).

block(h1_1,2,X) :-poss(2,X), possH(h1_1,Y), Y!=X.
possH(h1_1,X) :- poss(2,X), not block(h1_1,2,X).
possH(h1_2,X) :- possH(h1_1,X).

block(h1_2,0,X) :-poss(0,X), possH(h1_2,Y), Y!=X.
possH(h1_2,X) :- poss(0,X), not block(h1_2,0,X).
possH(h1_3,X) :- possH(h1_2,X).

block(h1_3,5,X) :-poss(5,X), possH(h1_3,Y), Y!=X.
possH(h1_3,X) :- poss(5,X), not block(h1_3,5,X).
possH(h1_4,X) :- possH(h1_3,X).
block(h1_4,13,X) :-poss(13,X), possH(h1_4,Y), Y!=X.
possH(h1_4,X) :- poss(13,X), not block(h1_4,13,X).
poss(1,X) :- possH(h1_4,X).

% --- Node: 2 ---

% --- Node: 13 ---

poss(13,X) :- possH(h13_0,X).

% --- Node: 14 ---

poss(14,X) :- possH(h14_0,X).

% --- Node: 15 ---

poss(15,X) :- possH(h15_0,X).

poss(X,U) ?

Executing program

.Jdlv.bin — brave
input.txt. query-.txt

Result

Macintosh-2:DLY gati
8,1
11, @
125:d;
13, @

[N
B <N
[N

P ORRPRPRPORPRORRE®

s BES I VR B ) R G R T AN i

Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010, https://doi.org/10.1145/1807167.1807193
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Agenda

2. Resolution algorithm
— how to calculate the solution efficiently?

Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010, https://doi.org/10.1145/1807167.1807193 406
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Resolution Algorithm
* Keep 2 sets: closed / open

Focus on bina ry trust network Initialize closed with explicit beliefs

oA{v} eB{w} eC{u}

closed

open T~ T /
£ \%F\ preferred

poss(X) cert(X)

{v} {v}
{w} {w}
{u} {u}
? ?

\non-preferred

~NXSTITOTMMOO ™| X

VOTVOTV TV TV Y TV
VOV TV TV Y TV

Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010, https://doi.org/10.1145/1807167.1807193 407
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Resolution Algorithm

* Keep 2 sets: closed / open
Initialize closed with explicit beliefs

* MAIN
Step 1: if 4 preferred edges from
open to closed
closed .A{V} .B{W} ?C{U} — follow
open \_/—\/
e JXF
X poss(X) cert(X)
A {v} {v}
B {w} {w}
C {u} {u}
D ? ?
\ E ? ?
K———OL F 7 P
G ? ?
H ? ?
J ? ?
K ? ?
[ ? ?

Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010, https://doi.org/10.1145/1807167.1807193 408
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Resolution Algorithm

A{v}
closed D{V}
open

J

o B{w} QC{u}

E F
e '

* Keep 2 sets: closed / open
Initialize closed with explicit beliefs
* MAIN
Step 1: if 4 preferred edges from
open to closed
— follow

X poss(X) cert(X)
A {v} {v}
B {w} {w}
C {u} {u}
D {v} {v}
E 7? ?

F ? ?

G ? ?

H ? ?

J ? ?

K ? ?

[ ? ?

Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010, https://doi.org/10.1145/1807167.1807193
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Resolution Algorithm

* Keep 2 sets: closed / open
Initialize closed with explicit beliefs
* MAIN

Step 1: if 4 preferred edges from

open to closed
A{V} .B{W} ’C{U} — follow
/
closed D{v}*)iE {w} F
open X poss(X) cert(X)
A {v} {v}
G B W)  {w)
C {u} {u}
D {v} {v}
Y ¥ E {w} {w}
J K———0OL F ? 2
G ? ?
H ? ?
J ? ?
K ? ?
L ? ?

Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010, https://doi.org/10.1145/1807167.1807193
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Resolution Algorithm

closed D{V}%E{W}% F{U}

open

* Keep 2 sets: closed / open
Initialize closed with explicit beliefs
* MAIN
Step 1: if 4 preferred edges from
open to closed

K———0OL

— follow
— X poss(X) cert(X)
A {v} {v}
B {w} {w}
C {u} {u}
D {v} {v}
E{w} {w}
F o {u} {u}
G ? ?
H ? ?
J ? ?
K ? ?
[ ? ?

Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010, https://doi.org/10.1145/1807167.1807193
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Resolution Algorithm

* Keep 2 sets: closed / open

Initialize closed with explicit beliefs

* MAIN

Step 1: if 4 preferred edges from
open to closed

— follow

closed

open X poss(X) cert(X)
A {v} {v}
B {w} {w}
C A{u} {u}
D {v} {v}
E{w} {w}
F o {u} {u}
G °? ?
H {w} {w}
J 7 ?

Now we are stuck! K 2 5

L ? ?

Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010, https://doi.org/10.1145/1807167.1807193

412


https://doi.org/10.1145/1807167.1807193

Detail: Strongly Connected Components (SCCs)

4 )
For every cyclic or acyclic directed graph:

- The Strongly Connected Components graph is a DAG

- can be calculated in O(n) Tarjan [1972]
L J

“Minimal SCCs”: no incoming
edge from other SCC

RN \
‘. SCC;
1 .-
_________
"""""""""" \
‘.. SCC
1
- 2 .
_________
________
,” ~~\
. SCC;
____________
~~~~~~~~~~~
‘. SCC,
’
e 4

________
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Resolution Algorithm

* Keep 2 sets: closed / open

Initialize closed with explicit beliefs

* MAIN

Step 1: if 4 preferred edges from
open to closed

— follow

Step 2: else

— construct SCC graph of open

poss(X) cert(X)

closed
open X
, A
i B
“Root SCC” | ¢
no incoming ! D
edge from E
other SCC i
G
H
J
K
L

Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010, https://doi.org/10.1145/1807167.1807193

{v}

{w}
{u}

{v}

{w}
{u}

?

W)

{v}

{w}
{u}

{v}

{w}
{u}

?

W)
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Resolution Algorithm

* Keep 2 sets: closed / open

Initialize closed with explicit beliefs

* MAIN

Step 1: if 4 preferred edges from
open to closed

— construct SCC graph of open

poss(X) cert(X)

— follow
Step 2: else
closed O D{V}
open X
i A {v}
., OH { W} B {w}
“Root SCC” | — ¢ v}
no incoming | D {v}
edge from v TN £ A{w}
other SCC 10 L] Fo{u}
Nl T G °?
""""""" H  {w)
J ?
K 7?7
L 7
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{v}

{w}
{u}

{v}

{w}
{u}

?

W)
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Resolution Algorithm

* Keep 2 sets: closed / open

Initialize closed with explicit beliefs

Step 1: if 4 preferred edges from

poss(X) cert(X)

— construct SCC graph of open
— resolve minimum SCCs

* MAIN
open to closed
A{v} eB{w} eC{u} e e
Step 2: else
closed F{u}
open X
T R\ A {v}
.-" ) B {w)
“Root SCC” | — C {u}
no incoming | ? EV}}
edge from N AN w
other SCC  OH{v,wi=oKlv,w} -OL | Fo{u}
Nl G {vw}
"""" H o {w)
J A{vw}
K {v,w}
L 7
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{v}
{w}
{u}
{v}
{w}
{u}
%)
{w}
%)

%)
?
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Resolution Algorithm

* Keep 2 sets: closed / open

Initialize closed with explicit beliefs

* MAIN

Step 1: if 3 preferred edges from
?A{V} .B{W} .C{U} open to closed

— follow

Step 2: else
— construct SCC graph of open
— resolve minimum SCCs

X poss(X) cert(X)
A {v} {v}
B {w} {w}
C {u} {u}
D {v} {v}
E {w} {w}
F o {u} {u}

closed G {v,w} %)

— H {w} {w}

open J  {v,w} %)
K {v,w} %,
L 7 ?
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Resolution Algorithm

* Keep 2 sets: closed / open

Initialize closed with explicit beliefs

* MAIN

Step 1: if 3 preferred edges from
?A{v} .B{W} .C{U} open to closed

— follow

Step 2: else
— construct SCC graph of open

D{V}JE{W} F{U} — resolve minimum SCCs

X poss(X) cert(X)

A {v} {v}

{w} B w  {w

C {u} {u}

D {v} {v}

Y E {w} {w}

K{V, W}>OL{V, W,U} F A{u} {u}
closed G {v,w) o

open ' . H {w} {w}
Can be implemented PTIME resolution algorithm ;I {vywl @
in current DBMS with/ O(n?) worst case K {v,w} %,
transitive closure © O(n) on reasonable graphs L {vwut 9
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O(n2)-worst-case for Resolution Algorithm

v}
®

|
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Experiments on large network

Calculating poss / cert for fixed key

- DLV: State-of-the art logic programming solver
- RA: Resolution algorithm

Network 1: “Oscillators”
8 16 24

Network 2: “Web link data”
Web data set with 5.4m links between
270k domain names. Approach:

« Sample links with increasing ratio
+ Include both nodes in sample
« Assign explicit beliefs randomly

.
>

size

Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010

1

data

[uny
o

Time [sec]
[EnY

o
[EEN

0.01

100

[uny
o

Time [sec]

0.1

10

Time [sec]
[EnY

o
[EEN

0.01

E . DLV
Sk =0 RA
T -- y=1le5x
10 100 1,000 10,000 100,000 1,000,000
-- y=1le-5x
10 100 1,000 10,000 100,000 1,000,000
/
4
V4
i = DLV
-- y=1le-7x?
10 100 1,000 10,000 100,000 1,000,000

Size of the network [users + mappings]
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Agenda

3. Extensions
— how to deal with “negative beliefs”?

Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010, https://doi.org/10.1145/1807167.1807193 421
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3 semantics for negative beliefs

Agnostic Eclectic
{v+} {w—} {v+} {w—}

J {w+} J {u+,v—,w-}
w/o cycles’ O(n) O(n)
w cycles NP-hard NP-hard

Gatterbauer, Suciu. Data @sswming total arden on parentsfareachnode 10D 2010, https://doi.org/10.1145/1807167.1807193
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3 semantics for negative beliefs oureconmenti

Agnostic Eclectic Skeptic

{v+} {w-} {v+} {w—} {v+} {w—}

J{w+} J{u+,v=,w—} J{L}
w/o cycles’ O(n) O(n) O(n)
w cycles NP-hard NP-hard o(n?)|

with a variation of resolution algorithm
Gatterbauer, Suciu. Data @ssuming otal orden an parentsferneachnode 10D 2010, https://doi.org/10.1145/1807167.1807193 423
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Take-aways automatic conflict resolution

Problem
o Given explicit beliefs & trust mappings, how to assign
consistent value assignment to users?

Our solution
« Stable solutions with possible/certain value semantics
« PTIME algorithm [O(n?) worst case, O(n) experiments]
« Several extensions

— negative beliefs: 3 semantics, two hard, one O(n?)

" — bulk inserts b
— agreement checking
— consensus value

_— lineage computation

Ve in the paper & TR

J

Please visit us at the poster session Th, 3:30pm
or at: https://db.cs.washington.edu/projects/beliefdb/

Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010, https://doi.org/10.1145/1807167.1807193
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some details



Fig ComplexityExamplelLong

level 1

level 2

level 3

level 4 A

8-17-2010

Encoding

(0/1) = (a+/b+)

(0/1) = (c+/d+)

(0/1) = (e+/d+)

(0/1) = (e+/f+)
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Fig. ComplexityOscillator

{0+}  {at}
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Fig. ComplexityPassLong

{a—} {b+/a+}
X;

8-17-2010

Encoding

(0/1) = (a+/b+)

(0/1) = (c+/d+)
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Fig_ ComplexityNotLong

{a—} {b+/a+}
X;
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Fig ComplexityOrLong

{e—} {d+/c+} {c—} {d+/c+} {c—} {d+/c+}
X7 X3 X3

Y;
{e+(c)/d+(c)}
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Fig_ ComplexityAndLong

{d=} {d+/et} {d—=} {d+/et} {d=} {d+/et}
Yi Yo Y3

{f+(d=)/e+(d=)}
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DEFINITION 3.1 (CONSISTENCY). Two beliefs by, by are
conflicting (b1 <4 bs) if they are either distinct positive beliefs
v+, w4+, or one is v+ and the other is v—. Otherwise, b1, bo
are consistent (b1<>b2). A set of beliefs B is called consistent
if any two beliefs b1,ba € B are consistent.

DEFINITION 3.2 (PREFERRED UNION). Given two consis-
tent sets of beliefs B1, B2, their preferred union 1s:

BlOBQ — B{ U {bz ‘ bo € BQ.(\V/bl - Bl.bleg)}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 432
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be a consistent set of positive and/or negative beliefs. For
each paradigm o € {Agnostic,Eclectic, Skeptic} (abbre-
viated by {A,E, S}), the normal form Norm.,(B) is:

B {v+} if v+ € B
NOTmA(B) — { B otherwise
Normg(B) = B

[ {v+}u(L—{v-}) ifFv+e€B
Normg(B) = { B otherwise

The preferred union specialized to the paradigm o is:
B1U, Bz = Normg, (Normo (B1)JNormgy (Bz)) (1)
For example:
{a—}0p{b+} = {b+}
{a—}YUTe{b+} = {b+,a—}
{a—}Us {b+} = {b+,a—,c—,d—, ...}
{b—}Us {b+} =L

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 433
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A puzzling question is why is the Skeptic paradigm in

PTIME, while the other two are hard. It is easy to see [ o \ J )@ 7’
that the Boolean gates in Fig. 7 no longer work under Skep-
tic, but we do not consider this a satisfactory explanation.
While we cannot give an ultimate cause, we point out one
interesting difference. The preferred union for Skeptic is as-
sociative, while it is not associative for either Agnostic nor
Eclectic., For example, consider the two expressions B =
{a—}U, (éa—k}fjg{b—l—}), By = ga—}ﬁa{a—l—}) Uy {b+}. For
Agnostic, we have B ={b+}, for Eclectic B2 ={a—, b+},
while for both B; ={a—}. By contrast, one can show that Us
is associative. Associativity as a desirable property during
data merging was poi out in [14].

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 434
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The issue of associativity

null appears in a join column. No matter what choice is taken, $X is not
associative. Consider the relations

g A B) r(B C) s(4 ©C)

1 2 2 3 1 4
Computing (g ki r) tX1 s we get {a_} U>a ({a} Ua {b}) = {a_}
e (@)U, (@) 0.0} =5}

while g X1 (r < 5) gives

q4"A B C)
1 2 4
1 2 3

Source: left outer join example from p392 in "Maier. The theory of relational databases, 1983." https://web.cecs.pdx.edu/~maier/TheoryBook/TRD.html

Source: right preferred union example from "Gatterbauer, Suciu. Conflict resolution using trust mapping. SIGMOD 2010. https://doi.org/10.1145/1807167.1807193
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 435
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Binarization example

z2 24 R5 R RT 21=UY1 %2 X3 R4 25 R R7
GRS SN g
P2 P3 P4 D5 Pe P7 Y2 Y3
Y4
Ys
Ye
X r=Y7

P1=P2<P3=Psg=P5<Pe< Py

Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010, https://doi.org/10.1145/1807167.1807193 436
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Logic programs with stable model semantics

Step 1:
Binarization

partial orde

Step 2:
Logic program

1: accept all poss of preferred parent

\\ poss(c,X) :- poss(a,X).
poss(b,Y), poss(c,X), X!=Y.
poss(b,Y), not block(c,b,Y).

block(c,b,Y) :-

/{ poss(c,Y) :-

11/

A B C D

30 20 10 10

%

preferred E non-preferred
parent parent

C

block(c,a,Y) :-
poss(c,Y) :-

block(c,b,Y) :- poss(b,Y), poss(c,X), X!I=Y.
poss(c,Y) :-

poss(a,Y), poss(c,X), X!=Y.

2: accept poss from non-preferred parent, that are not conflicting with an existing value

Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010, https://doi.org/10.1145/1807167.1807193

poss(a,Y), not block(c,a,Y).

poss(b,Y), not block(c,b,Y).
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Binarization for Resolution Algorithm*

Example Trust Network (TN) Corresponding Binary TN (BTN)
6 nodes, 9 arcs (size 15) 8 nodes, 12 arcs (size 20)
3 explicit beliefs: A:v, B:w, C:u

Size increase (N+E): <3

A{v} B{w} C{u} A{v} B{w} C{u}
20 . S
NN

éﬁ%@@;
120

* Note that binarization is not necessary, but greatly simplifies the presentation
Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010, https://doi.org/10.1145/1807167.1807193
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Stable solutions: example 2

 Priority trust network (TN)
— assume a fixed key
— users (nodes): A, B, C
— values (beliefs): v, w, u

— trust mappings (arcs) from “parents” 80— C:?
- P
e Stable solution ° \ZZ\. D:v
— assignment of values to each node’, 60\.
s.t. each belief has a “non-dominated E:w
lineage” to an explicit belief \
F:u

o Certain values
— all stable solution determine, for each
node, a possible value (“poss”)
— certain value (“cert”) = intersection of
all stable solutions

* each node with at least one ancestor with explicit belief
Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010, https://doi.org/10.1145/1807167.1807193
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Stable solutions: example 2

 Priority trust network (TN)
— assume a fixed key
— users (nodes): A, B, C
— values (beliefs): v, w, u

— trust mappings (arcs) from “parents” 80— C:
« Stable solution oV ZO\.D v
— assignment of values to each node’, 60\.
s.t. each belief has a “non-dominated ‘W
lineage” to an explicit belief \
F:u

o Certain values
— all stable solution determine, for each
node, a possible value (“poss”)
— certain value (“cert”) = intersection of poss(G) = {v,...}
all stable solutions

* each node with at least one ancestor with explicit belief
Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010, https://doi.org/10.1145/1807167.1807193
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Stable solutions: example 2

« Priority trust network (TN)
— assume a fixed key
— users (nodes): A, B, C
— values (beliefs): v, w, u
— trust mappings (arcs) from “parents”

o Stable solution

— assignment of values to each node”,
s.t. each belief has a “non-dominated
lineage” to an explicit belief

o Certain values
— all stable solution determine, for each
node, a possible value (“poss”)
— certain value (“cert”) = intersection of poss(G) = {v,w,...}
all stable solutions

* each node with at least one ancestor with explicit belief
Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010, https://doi.org/10.1145/1807167.1807193 441
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Stable solutions: example 2

« Priority trust network (TN)
— assume a fixed key
— users (nodes): A, B, C
— values (beliefs): v, w, u
— trust mappings (arcs) from “parents”

o Stable solution

— assignment of values to each node”,
s.t. each belief has a “non-dominated
lineage” to an explicit belief

not stable!

 Certain values F—G dominated by E—>G

— all stable solution determine, for each
node, a possible value (“poss”)

— certain value (“cert”) = intersection of poss(G) = {v,w}
all stable solutions cert(G) =0

* each node with at least one ancestor with explicit belief
Gatterbauer, Suciu. Data Conflict Resolution Using Trust Mappings, SIGMOD 2010, https://doi.org/10.1145/1807167.1807193
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exercise



Logic programs with stable model semantics

1 >
5> A B

N

C

poss(c,X) :- poss(a,X).
block(c,b,Y) :- poss(b,Y), poss(c,X), X!=Y.
poss(c,Y) :- poss(b,Y), not block(c,b,Y).

poss(a,1). poss(c,X) ?

e & 5

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 445
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Logic programs with stable model semantics

1 C) poss(c,1) :- poss(a,1)
2 A B poss(c,2) :- poss(a,2)

\O/ block(c,b,3) :- poss(b,3), poss(c,1), X!=Y
c block(c,b,3) :- poss(b,3), poss(c,2), X!=Y

noss(c,X) :- poss(a,X).
block(c,b,Y) :- poss(b,Y), poss(c,X), X!=Y.
poss(c,Y) :- poss(b,Y), not block(c,b,Y).

poss(a,l1). poss(c,X) ? M={ poss(a,1), poss(a,2), poss(b,3),
poss(a,2). :> poss(c,1), poss(c,2) }
poss(b,3).

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 446
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Logic programs with stable model semantics

1 2
A B

N

C

block(c,a,Y) :- poss(a,Y), poss(c,X), X!I=Y.
poss(c,Y) :- poss(a,Y), not block(c,a,Y).
(
(

block(c,b,Y) :- poss(b,Y), poss(c,X), X!=Y.
poss(c,Y) :- poss(b,Y), not block(c,b,Y).

poss(c,X) ?

?

poss(a,1).

poss(a,?2). :>

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 447
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Topic 1: Data models and query languages
Unit 4: Datalog

Lecture 13

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
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Pre-class conversations

e Last class summary

« Feedback on Feedback on scribes?

e Project discussions (in class and after or via email and office hours)
 Faculty candidates (THU Feb 29, WED March 20)

e Today:

— The power of disjunctions: Disjunctive Logic Programs
(NP and Co-NP in the same program...)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 464
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About research (getting a PhD or finding a project topic)

Imagine a circle that contains By the time you finish By the time you finish With a bachelor's
all of human knowledge: elementary school, you high school, you know a degree, you gain a
know a little: bit more: specialty:
\ / \\\ ”‘/,/ \ //"/ ‘"\\\
&) ® @ |

N

A master's degree deepens  Reading research papers Once you're at the bound- You push at the boundary
that specialty: takes you to the edge of ary, you focus: for a few years:
human knowledge:

/ \\ 7 : N 7
'a._. . ‘\., ' |
A\ //“ NG \
N\ / \\n,, A \
Until one day, the bound-  And, that dent you've Of course, the world looks  So, don't forget the bigger
ary gives way: made is called a Ph.D.: different to you now: picture:
/// \\\:\'

The last comment: Keep pushing!

Source: https://matt.might.net/articles/phd-school-in-pictures/
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 465
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Outline: T1-4: Datalog & ASP

— The power of Disjunctions

467



Disjunctive Logic Programming
with Clingo/Potassco

(Examples prepared together
with Neha Makhija
https://nehamakhija.github.io/)

ttttt ://northeastern-datalab.github.io/cs7240/
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_— Clingo,

BE8 Potassco
SEm

Potassco start page: https://potassco.org/

Clingo start page: https://potassco.org/clingo/

Running clingo in the browser: https://potassco.org/clingo/run/

Teaching material: https://teaching.potassco.org/

Download: https://github.com/potassco/clingo/releases/

clingo user guide: https://github.com/potassco/guide/releases/download/v2.2.0/guide.pdf

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

(88 Potassco, the Potsdam Answer Set Solving Collection

Home About Getting Started Documentation Teaching Support

Potassco

Getting Started

Answer Set Programming (ASP) offers a simple and powerful modeling language to solve combinatorial
problems. With our tools you can concentrate on an actual problem, rather than a smart way of
implementing it. Get started!

To get a quick first impression, you may want to experiment with running clingo in your browser.

Documentation

A comprehensive documentation of our software can be found in the Potassco guide. For additional
resources, see the documentation page.

Systems

To find out more about a specific system and a download link, follow one of the links below.

P system to ground and solve logic programs.

o gringo is glgrounder (powering the grounding in clingo).

o clasp is'solver (powering the search in clingo).

extends clingo with constraint solving capabilities.

aspcud is a solver for package dependencies.

asprin is a general framework for qualitative and quantitative optimization in ASP.

clingoisan A

469
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Clingo Implementation

is a system that combines two steps and offers more control than using the
two tools individually:

: a that, given an input program with first-order variables, computes an
equivalent ground (variable-free) program
: a that works on ground program (like other answer set solvers)

— relies on conflict-driven nogood learning, a technique that proved very successful for SAT
— does not rely on legacy software, such as a SAT solver or any other existing ASP solver

Input format Grounder ['aspif" (ASP Solver Output format
P Intermed. format) P
clingo
gringo clasp
ASP-core 2 dlv system answer
"idlv wasp \

Sources: https://potassco.org/clingo/ , "ASP-Core-2 Input Language Format. Calimeri, Faber, Gebser, et al. TPLP, 2020, https://doi.org/10.1017/S1471068419000450"
"How to Build Your Own ASP-based System?!, Kaminski, Romero, Schaub, Wanko, TPLP, 2023. https://doi.org/10.1017/51471068421000508"
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 470
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Complexity and Expressive Power of Logic Programming

EVGENY DANTSIN

Roosevelt University, Chicago, IL, USA
THOMAS EITER, GEORG GOTTLOB
Vienna University of Technology, Austria
AND

ANDREI VORONKOV

University of Manchester, United Kingdom

THEOREM 5.7. ([Marek and Truszczy-
nski 1991; Bidoit and Froidevau 91]).
Gwen a proposztzonal normal“logic pro-

= deciding whether SM(P) # @ is
& combiay

THEOREM 5.8. (Marek and Truszczy-
nski 1991; Schlipf 1995b; Kolaitis and
Papadimitriou 1991]). Propositional logic
programming with negation under SMS
is co-NP-complete. Datalog with negation
under SMS is data complete for co-NP and
program complete for co-NEXPTIME.

Note that every stratified P has a unique
stable model, andits and stable
semantics commde. Unstratified rules in-
crease complexity.

Informally, disjunctive logic programming
(DLP) extends logic programming by

"normal”" means wvo disjunctions in head

Example for NP-complete problewm:
Boolean satisfiability problem:
"given a Boolean formula, is it
satisfiable" (i.e. is there an ivput
for which +he formula sutputs
true)?

Example for co-NP problem: the
complementary problem asks: "given
a Boolean formula, is it
misatisfiable" (i.e. do all possible
iputs to the formula ontput
false)?

adding disjunction in the rule heads, in
order to allow more natural and flexible

s P
knowledge representation. For example, 35 can be mo

male(X) V female(X') < person(X) (Eiter and Gottlob

Modeling problems beyond the class NP with ASP is possible to some extent. Namely,
when disjunctions are allowed in the heads of rules, every decision problem in the class

modeling problems beyond NP with ASP is complicated and the generate-define-test
approach is no longersufficient in general. Additional techniques such as saturation
are needed but they are difficult to use, and may introduce

am (Dantsin et al. 2001). However,

naturally represents that any person is ei-
ther male or female.

constraints that have no direct relation to constraints of the problem being modeled. As
stated explicitly in (Gebser et al. 2011) “unlike the ease of common ASP modeling, |...]
these techniques are rather involved and hardly le by ASP laymen.”

Cree—— e p—

Dantsin, Eiter, Gottlob, Voronkov. "Complexity and expressive power of logic programming", ACM computing survesy, 2001. https://doi.org/10.1145/502807.502810

Amendola, Ricca, Truszczynski. "Beyond NP: Quantifying over Answer Sets"; TPLP, 2019. https://doi.org/10.1017/51471068419000140
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

472


https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/502807.502810
https://doi.org/10.1017/S1471068419000140

NP-hardness (assuming P#NP)

Takes more time to solve

/
NP-hard

problems that are at least as hard as the
hardest problems in NP (hard-to-solve)

NP-complete
shortest path

vertex cover hard _
P (decision variant) optimization Halting
problem
problems

NP

problems that can
be solved in

polynomial time

hardest problems in NP
(easy-to-verify and
hard-to-solve)

decision problems
for which a solution
can be verified in
polynomial time
(easy-to-verify)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 473
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NP vs. Co-NP

« NP: decision problems for which a solution can be verified in PTIME

— SAT: Given a Boolean formula, is it satisfiable (i.e. there is an input for which the formula outputs true)?

o = (xVyVz)A(XVzVW)A(YVZVWw) 3SAT (3CNF)
— 3-colorability: Given a graph, is there an assignment of colors to nodes s.t. no edge connects same colors?
— VC (Vertex Cover): Given a graph and a number k (as part of input), is there a VC of size k or smaller?

e Co-NP-complete: A decision problem is in co-NP if its complement is in NP.

- Co-NP = {L|L € NP}

— UNSAT: Given a Boolean formula, is it unsatisfiable (i.e. is it false for all choices of inputs)?

— Tautology: Given a Boolean formula, is it a tautology (i.e. is it true for all choices of inputs)?

— Uncolorable: Given a graph, is there no assignment of colors to nodes s.t. edges connect different colors?
— "UNCOVERABLE": Given a graph and a number k, is there no VC of size k or smaller?

NP co-NP

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ — 474
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Computational Complexity of Logic Programs (LP) / ASP

»5=NpNPY" [15=co-NPNP™

* Deciding whether an atom is in an
a disjunctive LP with optimal SM (stable model) is Ag-complete (ElVEl) (‘K’HV)
optimization statements * Deciding whether a set of atoms is an \ \
optimal SM is co-NP"P-complete )
\ A313=PNPNP
* Deciding whether an atomsisina
SM is NPNP-complete \

a disjunctive LP * Deciding whether a set of atoms is a SM \

of a disjunctive P is co-NP-complete -
| ’ 5=NPNP [15=co-NPNP
¢ * Deciding whether an atom is in (ElV) (Ya)
a normal LP with an optimal SM is A} -complete
optimization statements Q. Deciding whether a set of atoms is

an optimal SM is co-NP-complete \
\
(. Deciding whether an atom is in a SM
a normal LP (no ) is NP-complete (e.g. satisfiability)
disjunction in head) * Deciding whether a set of atoms is a Z

L SM is P-complete

* Deciding whether an atom is in a stable model,
{ * or whether a set of atoms is a stable model is

\ P-complete (cf. Datalog) 3 AP‘ZP‘P‘HP‘AP

Created based on: Gebser, Kaminski, Kaufmann, Schaub. Answer Set Solving in Practice. Synthesis Lectures on Al and ML, 2013. https://doi.org/10.1007/978-3-031-01561-8
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 482

a positive normal LP
(no negation in body)
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Details on Disjunctive Logic Programming

« 3-colorability
— 3-colorability with normal or disjunctive logic programs
— 3-uncolorability with cautious semantics



3-CO | Ora bl | |ty ( 1 / 6) Capital letters are variables, lowercase a

lett+ers and numbers are constants (notice

clingo 3colorabilityl.txt the difference +o Souffle) G
3colorabilityl.txt /

vertex(a). vertex(b). vertex(c). edge(a,b)l/ edge(a,c).

color(X,1) :- not color(X,2), not color(X,3), vertex(X).

color(X,2) :- not color(X,3), not color(X,1), vertex(X). Returns a stable model if it exists.
color(X,3) :- not color(X,1), not color(X,2), vertex(X). Since there is a stable model, the
.- edge(X,Y), color(X,C), color(Y,C). problem is "satisfiable’.

)

Recall that anv empty head evcodes a

. A 1
constraint that +he b()d\{ can't be true. venr?évxe(;) vertex(b) vertex(c) edge(a,b) edge(a,c) color(a,1)
Thus no two veighbors in a valuation SATISFIABE

SATISFIABLE
cov share colors.

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 492
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3-colorability (2/6)

clingo 3colorability2.txt

3colorability2.txt

vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).
color(X,1) :- not color(X,2), not color(X,3
color(X,2) :- not color(X,3), not color(X,1
color(X,3) :- not color(X,1), not color(X,2), vertex(X).
notcolored :- edge(X,Y), color(X,C), color(Y,C). /

.- notcolored.
AN
Answer: 1
vertex(a) vertex(b) vertex(c) edge(a,b) edge(a,c) color(a,1)
color(b,3) color(c,3)
SATISFIABLE

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 493

, vertex(X). . . ‘
Now, if any two veighbors v a

P Valuation share colors, then

) (

), vertex(X).
) ( "notcolored" nweeds to be true.
(

But "wotcolored" canvot be true
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3-colorability (3/6)

clingo 3colorability3.txt

3colorability3.txt

vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).
color(X,1) :- not color(X,2), not color(X,3
color(X,2) :- not color(X,3), not color(X,1
color(X,3) :- not color(X,1), not color(X,2

, vertex(X).

) (

), vertex(X).
), vertex(X).
notcolored :- edge(X,Y), color(X,C), color(Y,C).

A" notcolored, not a.

Another way to think about +he empty

Answer: 1
i « ) vertex(a) vertex(b) vertex(c) edge(a,b) edge(a,c) color(a,1)
k}@ader Frot'/'n‘ the previous pages: if ‘ ferirti Nty |
notcolored" is true, thew +he body of a rule SATISFIABLE
is "a - not a", which has wo stable model.

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 494
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3-colorability (4/6)

clingo 3colorability4.txt G

3colorability4.txt

vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).
color(X,1) :- not color(X,2), not color(X,3), vertex(X)

(X).
color(X,2) :- not color(X,3), not color(X,1), vertex(X).
1 (X).

(X
color(X,3) :- not color(X,1), not color(X,2), vertex(X)
.- edge(X,Y), color(X,C), color(Y,C).

H#Hshow coior/Z.

\

. " " . . _ Answer: 1
OVII\'{ show the Pl"@dlﬁﬁ“’@ color” with ﬁl"l""'f"z ‘ color(a,1) color(b,3) color(c,3)

(i.e. 2 arguments). clivgo allows different SATISFIABLE
predicates with same name but different
arities; thus we veed +o uclude the "/2."

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 495
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3-colorability (5/6)

clingo 3colorability4.txt -n 0@ e
T Show all models

3colorability4.txt

vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).
color(X,1) :- not color(X,2), not color(X,3), vertex(X).
color(X,2) :- not color(X,3), not color(X,1), vertex(X). 12 possible colorings.
12=3 (for a) * 2% 2 (for b avd ¢)
color(X,3) :- not color(X,1), not color(X,2), vertex(X).
)

.- edge(X,Y), color(X,C), color(Y,C). Answer: 1
color(a,1) color(b,3) color(c,3)
#show color/2. Answer: 2
color(a,1) color(b,3Y color(c,2)
Answer: 3

color(a,1) color(b/2) color(c,3)
Answer: 4

color(a,1) color(b,2) color(c,2)
Answer: 11

color(a,3) cglor(b,2) color(c,2)
Answer: 12

color(a,3) color(b,1) color(c,2)
SATISFIABLE

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 496
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3-colorability (6/6)

clingo 3colorability5.txt -n 0@ e

3colorability5.txt

vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).
color(X,1) :- not color(X,2), not color(X,3), vertex(X).

(
color(X,2) :- not color(X,3), not color(X,1), vertex(X).
color(X,3) :- not color(X,1), not color(X,2), vertex(X).
.- edge(X,Y), color(X,C), color(Y,C). [E—
,1) (b,3) (c,3
#ShOW, SnS\)N(er:2)(C )
(a,1) (b,3) (c,2)
#show E}G}\color(X,C). Answer: 3
* I
Turws off printing of all (a.1) (b.2) (c.2)
Pr@dioa'l'@s b\'{ defﬁ““’ e
Conditional statement: shows Anowor 12
(X,C) +erwms if color(X, C) is true o) 0. e

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 497
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3-colorability: now with disjunction (a)—(b)

clingo 3colorability—-disjunction.txt -n 0 e

3colorability-disjunction.txt > GQuess a possible color assignment of

vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c). vertices. This rule does ot preveut a

_— vertex from getting assigued >1 color.

« However, a vertex having multiple
colors is wot part of a minimal model
since it is a superset of a valid coloring.

.- edge(X,Y),\color(X,C), color(Y,C). Answer: 1
(a,1) (b,3) (c,3)
#show. Answer: 2
(a,1) (b,3) (c,2)
#show (X,C) :\color(X,C). Answer: 3
(a,1) (b,2) (c,3)
Answer: 4

(a,1) (b,2) (c,2)
;A-\.nswer: 11
(a,3) (b,2) (c,2)

non Answer: 12

clingo also allows ";" instead of "|" for disjunctions (@3 .1 c2)
SATISFIABLE

color(X,1) | color(X,2) | color(X,3) :- vertex(X)./

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 498
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3-colorability: Brave semantics (1/2)

We use here disjunction

clingo 3colorability-bravel.txt -n 0 although vot veeded

3colorability-bravel.txt— defines arange 1, 2, 3 Tf any +wo veighbors in a valuation share
o " "

vertex(1..3). edge(1,2). edge(1,3). edge(2,3)./ colors, then "wotcolored” needs +o be true.

color(X,1) | color(X,2) | color(X,3) = vertex(X). Sivce it is the ovly rule with "wotcolored

in the head, "wotcolored” is true iff any
notcolored :- edge(X,Y), color(X,C), color(Y,C). *| +wo ueighbors share the color.

colored :- not notcolored. +~——orou_
Hshow.

"colored" is true if "wotcolored" is vot.

Show "yes" if colored is true.

#tshow yes : colored. } . ———— | Show "wo" if votcolored is true.

#show no : notcolored

Answer: 1

no

A A 12
v a minimal model, notcolored and colored are b Notice 27 possible colorings.
not true at the same time. Thus "colored” is ISR

i Each is either a valid
only true in a stable model where "notcolored” is ; L, coloring ("yes") or vot ("no").
wot true and thus the color assignment is valid. o

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo SATISFIABLE
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 499
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3-colorability: Brave semantics (2/2)

clingo 3colorability-brave2.txt —e brave

T~

3colorability-brave2.txt

vertex(1..3). edge(1,2). edge(1,3). edge(2,3).
color(X,1) | color(X,2) | color(X,3) :- vertex(X).
notcolored :- edge(X,Y), color(X,C), color(Y,C).
colored :- not notcolored.

#show.
#tshow yes : colored.

(Details: There are d definite conseduences and p
probable conseduences. For brave semautics, the
value of d increases with processing of more models

while in cantions semavtics the value of p decreases.)

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo

Consequences: [0;1]
Answer: 2

yes

Congx}q\uences: [1;1]

"brave" execution mode gives possible answers
(nnion): Ts there an answer set in which +he
query (here "yes=true") holds?

Clingo uses multiple answer sets to converge on
the final union/intersection. "Conseduences [d;p]"
are essentially lower and upper bounds which
converge towards d=p.

The 2 (last) answer
(after convergeuce) is the
union of all models: i+
contains "colored”, thus we
see "yes': there is some
answer that is correct.

Answer: 1

SATISKIABLE

“yes", thus there exists some model
v which "colored" is +rue

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 500
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3-uncolorability: Cautious semantics (1/3)

clingo 3colorability—-cautiousl.txt —-e brave

3colorability-cautiousl.txt

Here, clingo happens +o find that the
vertex(1..3). edge(1,2). edge(1,3). edge(2,3). first stable model i+ looks at+ has

color(X,1) | color(X,2) | color(X,3) :- vertex(X). | "wotcolored" as true. Thus it does not

notcolored :- edge(X,Y), color(X,C), color(Y,C). | need to look further: it knows that the
union of the answers contains "notcolored”

colored :- not notcolored.

H#show.

#show yes : notcolored.

Here we are asking if there is at shadl
least one stable model (onwe answer Consequences: [1;1]

SATISFIABLE
set) in which "notcolored" is true.

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 501
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3-uncolorability: Cautious semantics (2/3)

clingo 3colorability-cautiousl.txt —e cautious

3colorability-cautiousl.txt

vertex(1..3). edge(1,2). edge(1,3). edge(2,3).
color(X,1) | color(X,2) | color(X,3) :- vertex(X).
notcolored :- edge(X,Y), color(X,C), color(Y,C).
colored :- not notcolored.

#show.

#show yes : notcolored.

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo

N\

"cantions” execution model gives certain
answers (intersection): Is is true that
the query holds in *all* stable models?

Even by looking at the 24 answer, we
are dove: it does not contain "wotcolored”
and thus the answer is vo: the
intersection does not contain "wotcolored”.

Answer: 1

yes
Consequences: [0;1]
Answer: 2

Consequences: [0;0]
SATISFIABLE

We therefore do not see "yes'.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 502
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3-uncolorability: Cautious semantics (3/3)

clingo 3colorability—-cautious2.txt —-e cautious

3colorability-cautious2.txt
vertex(1..4). edge(1,2..4). edge(2,3..4). edge(3,4). This uew graph (0 4-clique) is not 3-

color(X,1) | color(X,2) | color(X,3) :- vertex(X). colorable. Thus "noteolored” is true in
notcolored :- edge(X,Y), color(X,C), color(Y,C). all stable wmodels, thus in all attempts

colored :- not notcolored. to assigw colors to vertices. The
intersection thus contains "wotcolored”

H#show.

#show yes : notcolored.

Answer: 1
Consequences: [0;1]
SATISFIABLE

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 503
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Details on Disjunctive Logic Programming

» Optimization
— Minimal Vertex Cover with weak constraints, optimization, aggregates



Weak constraints for optimization

3.1.13 Optimization

Optimization statements extend the basic question of whether a set of atoms is an
answer set to whether it is an optimal answer set. To support this reasoning mode,
gringo and clingo adopt dlv’s weak constraints [14]. The form of weak constraints is
similar to integrity constraints (cf. Section 3.1.2) being associated with a term tuple:

i~ Ly,...,Ly,. [w@p,t1,...,t5]

The priority ‘@p’ is optional. For simplicity, we first consider the non-prioritized
case omitting ‘@p’. Whenever the body of a weak constraint is satisfied, it con-
tributes its term tuple (as with aggregates, each tuple is included at most once) to
a cost function. This cost function accumulates the integer weights w of all con-
tributed tuples just like a # sum aggregate does (cf. Section 3.1.12). The semantics
of a program with weak constraints is intuitive: an answer set is optimal if the ob-
tained cost is minimal among all answer sets of the given program. Whenever there
are different priorities attached to tuples, we obtain a (possibly zero) cost for each
priority. To determine whether an answer set is optimal, we do not just compare two
single costs but lexicographically compare cost tuples whose elements are ordered
by priority (greater is more important). Note that a tuple is always associated with a
priority; if it is omitted, then the priority defaults to zero. A weak constraint is safe
if the variables in its term tuples are bound by the atoms in the body and the safety
requirements for the body itself are the same as for integrity constraints.

Source: Gebser, Kaminski, Kaufmann, Lindauer, Ostrowski, Romero, Schaub, Thiele, Wanko. Potassco user guide. version 2.2.0, 2019. https://github.com/potassco/guide/releases/
Neha Makhija. Principles of Scalable Database Management. https://northeastern-datalab.github.io/cs7240/ 505
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Minimum Vertex Cover: Optimization

We use here disjunction althongh
not needed: every vertex "N" is

minVC-optimization.txt n the cover (1) or vot (D)

vertex(1..3). edge(1,2). ed% edge(2,3). = At least one endpoint of each edge veeds

cover(N,1) | cover(N,0) :- vertex (N). to b? in the cover, i.e. both can't be
outside +he cover (D)

.- edge(X,Y), cover(X,0), cover(Y,0).

clingo minVC-optimization.txt

~ cover(X.1). [1@1, X]- WMinimize ‘l'l/l"6 mumber TC valuations for X
Y. I At Y that make "cover(X)" true
Body Tail

T | Show the nodes and whether they are in the
42+

priority (optional) cover (1) or vot (0)
weight (w) an intermediate vion-

#show. #show (X,C): cover(X,C). RrSerH / optimal answer
(1,1) (2,1) (3,1)
Optlmlzatlon 3
Answer: 2

Twutuitively: enforce weak constraints if 1121 30« last answer is av

. e . . : O ti tion: 2
possible. Minimize the number of violations. ot rouno  optimal answer

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 506
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Minimum Vertex Cover: Optimization

clingo minVC-optimization.txt

minVC-optimization.txt

vertex(1..3). edge(1,2). edge(1,3). edge(2,3).

cover(N,1) | cover(N,0) :- vertex (N).
- edge(X,Y), cover(X,0), cover(Y,0).
~cover(X,1). [1@1, X]

ALY

\ J

Tail
terms (+,, wt,)
priority (optional)
weight (w)
#tshow. #show (X,C): cover(X,C).

Body

SEMANTICS OF WEAK CONSTRAINTS:
For any program P and answer set A, weak(P,A) is

the set of all unigue tails of weak constraints in
ground(P) whose body is satisfied by A

Goal is to minimize Xc¢,  + yeweak(®.a) W

Higher priority levels are more important

an intermediate non-

st " optimal auswer
) (2,1) (3,1)

Optlmlzatlon 3

Answer: 2

1.1 @21 6o+~ last answer is an

Optlmlzatlon 2
OPTIMUM FOUND optimal answer

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Minimum Vertex Cover: Optimization

clingo minVC-aggregation.txt

minVC-aggregation.txt
vertex(1..3). edge(1,2). edge(1,3). edge(2,3).
cover(N,1) | cover(N,0) :- vertex (N).

.- edge(X,Y), cover(X,0), cover(Y,0).
Sminimize (1@1, X : cover(X,1]]. « WMinimize the nvumber of valuations for X

N that make "cover(XA)" true
/ / Body
terms (ty, wt,)

priority (optional)
weight (w)

same answer
#tshow. #show (X,C): cover(X,C). nswer:
)

Optimization: 3
Answer: 2

(1,1) (2,1) (3,0)
Optlmlzatlon 2
OPTIMUM FOUND

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 508
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Minimum Vertex Cover: Aggregate / Decision

clingo minVC-decisionl.txt -n ©

\
minVC-decision1.txt Show all models

vertex(1..3). edge(1,2). edge(1,3). edge(2,3). Check if there is some valid cover with 2
or fewer vertices covered

cover(N,1) | cover(N,0) :- vertex (N).
.- edge(X,Y), cover(X,0), cover(Y,0).
:-\#count{X : cover(X, 1)},> 2. < The size of the cover canot be > 2

/‘ A%:@@m—e Atom

Counts Values X Hhat make "cover(XA)" +rue

#show. #show (X,C): cover(X,C). E—
‘ (11) @2.1) (3.0

Answer: 2
(1,1) (2,0) (3,1)

Answer: 3
(1,0) (2,1) (3,1)
SATISFIABLE

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Minimum Vertex Cover: Aggregate / Decision

clingo minVC-decisionl.txt -n O

minVC-decisionl.txt

vertex(1..3). edge(1,2). edge(1,3). edge(2,3). SEMANTICS OF AGGREGATES:
cover(N,1) | cover(N,0) :- vertex (N). An aggregate atom occurring in a rule body
- edge(XY), cover(X,0), cover(Y,0). takes the form l a{t,: Ly; ...; t,,: L, } u where

* @ isan aggregate function,
- #oount{X : cover(X, 1)} > 2.  t;:L; aggregate t; when L; holds

Y .
/ Aggregate Atom * [,u are optional lower and upper bounds
Counts Values X Hhat make "cover(XA)" +rue

#show. #show (X,C): cover(X,C). E—
‘ (1,1) (2,1) (3,0)

Answer: 2
(1,1) (2,0) (3,1)

Answer: 3
(1,0) (2,1) (3,1)
SATISFIABLE

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

510


https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo

Minimum Vertex Cover: Aggregate / Decision

clingo minVC-decision2.txt -n 0

minVC-decision2.txt

vertex(1..3). edge(1,2). edge(1,3). edge(2,3). Check if there is some valid cover with 2
or fewer nodes covered

cover(N,1) | cover(N,0) :- vertex (N).
.- edge(X,Y), cover(X,0), cover(Y,0).
solution :- #count{X: cover(X, 1)} <= 2. < Tf the size of the cover is <= 2, thew it is

- not solution. _— a solution.

— And "solution” cannot be false (otherwise
it true wounld imply false)

#show. #show (X,C): cover(X,C). E—
‘ (11) @2.1) (3.0

Answer: 2
(1,1) (2,0) (3,1)

Answer: 3
(1,0) (2,1) (3,1)
SATISFIABLE

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 511
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Details on Disjunctive Logic Programming

« 3-colorability
— 3-colorability with normal or disjunctive logic programs
— 3-uncolorability with cautious semantics
» Optimization
— Minimal Vertex Cover with weak constraints, optimization, aggregates
— Shortest paths with aggregation (contrast Clingo vs Souffle)
 Saturation for Disjunctive Logic Programs
— Minimal example for the power of saturation
— Uncolorability (program is satisfiable iff a graph is not 3-colorable)
— Minimal Vertex Cover of a particular size without minimization
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Shortest Path via Aggregation

clingo shortestpathl.txt

shortestpathl.txt
edge(s,v1,2). edge(vl,v2,1). edge(v2,t,1).
edge(v2,t,10). edge(s,v3,1). edge(v3,t,4).

path(X,YW) :- edge(X,Y;W). For all possible values X, grounded

_ by "path(X,V,_)", find the minimum
ST B AL (oI 22 weight W, call it C and store it v
/ minpath(X,Y,C)

minpath(X,Y,C) :- path(X), ), C:ﬁmin{W: path(X,Y,Wl}.‘/
#tshow. #show W: minpath(s,t,W). A@@r@ga—r@ Atom l —

4
SANSFIABLE

The length of the

ortest pat
Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo SM 5 P M
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 513
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Shortest Path via Aggregation

clingo shortestpath2.txt

shortestpath2.txt
edge(s,v1,2). edge(vl,v2,1). edge(v2,t,1).
edge(v2,t,10). edge(s,v3,1). edge(v3,t,4).

path(X,YW) :- edge(X,YW). For all possible values W grounded

by "path(s,t,W)", find the minimum
ST B AL (oI 22 —— w\{eigh-r W(, call i)‘l— C and store it iv

minpath(C) :- C=1#min{W: path(s,t,W)j}.
#show. #show W: minpath\fW). l —
gA SFIABLE

The length of the

ortest pat
Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo SM 5 P M
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 514



https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo

weights of edges

Shortest Path via Aggregation (Souffle)

souffle shortestpath.dl

shortestpath.dl

.decl edge(x: symbol, y: symbol, wt:number — edge. facts
input edge s vl 2

1 v2 1
decl path(x: symbol, y: symbol, wt:number) zz }[/ 1
path(x,y,w) :- edge(x,y,w). v2 t 10
nath(x,z,wl+w2) :- path(x,y,wl), path(y,z,w2). 53 }[/3 jr
Vv

decl minpath(w:number)
minpath(c) :-c = {nin W:{path(”s","t”,w)l.

, minpath.csv
.output minpath M \ P
\ 4
Recall that in souffle, constants are \ ‘
Avswer in minSTpath

indicated by dquotation marks

Souffle example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 515
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Details on Disjunctive Logic Programming

 Saturation for Disjunctive Logic Programs
— Minimal example for the power of saturation



Use Disjunction only if needed

clasp and claspD have been united into clasp
3.1.3 Disjunction

Disjunctive logic programg permit conhective “|” between atoms in rule heads. A
disjunction is true if at least one of its atems is true. Additionally, logic programs
have to satisfy a minimality criterion, which we do not detail in this guide. The simple
program a | b. Has the two answer sets {a} and {b} but does not admit the answer
set a, b because # is no minimal model.

In generalsthe use of disjunction however increases\computational complexity [12].
This 1s w clingoﬂ and solvers like assat [37], clasp [20], nomore++ [1],
smodeXs [51]], and smodels.. [56] do not work on disjunctive programs. Rather,
claspD [8], cmodels [28l35], or gnt [33] need to be used for solving a disjunctive
programEl We thus suggest to use “choice constructs” (cf. Section 3.1.10|) instead of

disjunction, unless the latter is requirwplexity reasons (see [[13]] for an imple-

mentation methodology in disjunctive ASR),

T+ is is possible that moderw solvers can detect
head-cycle free disjunctions and internally "shift"
the heads to normal logic prograwms.

Source: Gebser, Kaminski, Kaufmann, Ostrowski, Schaub, Thiele. A user’s guide to gringo, clasp, clingo, and iclingo. version 3.x. 2010.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 517
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Horn clauses and logic programming

A clause is a disjunction of literals.

avVbvcvd aAb=cvd
ITAaAb=cvdVvO

A Horn clause has at most one positive (i.e. unnegated) literal.

\

aVbvec aAb=c .
Those express the same models and minimal
_—_— — models. However, for a model in which both

avbve aAC=Db J a and b are +rue, the won-disjunctive version

_ does not include +he rules in the reduct
avbVvec a=>bV C} becanse the body is ot truel

Recal:a = ma=!la=~a=NO0Ta
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 518



https://northeastern-datalab.github.io/cs7240/

Disjunctive logic programming

Datalog
b - a.
C - a.

If ais true, thew both b and ¢ weed to be true too
bACc<a

Datalog with negation and stable model semantics, or disjunction in head

b :- a3, notc.
Cc :-a, notb.
b | c:-a.

If ais true, thew either b or ¢ need +o be true
(both can be true only if there are other rules)
bVc<a

If ais true, thew at least b or ¢ veed +o be true:
bVvc<a

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 519
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When disjunctions add expressiveness (1/2)

clingo saturationl.txt -n 0

saturationl.txt saturation2.txt
a :- not b. al|b:-.
b :- not a.

- 2

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 520
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When disjunctions add expressiveness (1/2)

clingo saturationl.txt -n 0

saturationl.txt saturation2.txt

a :- not b. al|b:-.

b :- not a.
Solving... Solving...
Answer: 1 Answer: 1
b b
Answer: 2 Answer: 2
a a
SATISFIABLE SATISFIABLE
Models 12 Models 1 2

ial, {b}}

both have the same two SMs a3 and {b3. {a,b3 would also be a wmodel, but

s not mivimal, thus ot a SM

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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When disjunctions add expressiveness (1/2)

clingo saturationl.txt -n 0

saturationl.txt saturation2.txt
a :- not b. al|b:-.
b :- not a.
Solving... Solving...
Answer: 1 Answer: 1
b b
Answer: 2 Answer: 2
a a
SATISFIABLE SATISFIABLE
Models 12 Models 1 2
reduct w.r.t {a} reduct w.r.t {a}
7 e | —— b | ——>tador {03
{{a}, {b}} e

both have the same two SMs a3 and {b3. {a,b3 would also be a wmodel, but
Is not mivimal, thus ot a SM

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 522
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When disjunctions add expressiveness (2/2)

clingo saturationl.txt -n 0

saturation3.txt ‘ saturation4.txt ‘ ‘
ot P 6’l'l‘l/\6Y‘ aorbis Jrr'me 2lb- —T° elther a or bis true
| (if the other one is false) (or both if needed)
b :- not a. . .
/- +hus ¢ is true P +hus ¢ is true
o thus both a and b veed o thus both a and b veed
C:-a >< to be true ("saturation") C:-a. >< to be true ("saturation”)
c:-b. *  but thev veither aor b c:-b. ¢ avnd that's ok

is Justified in the first place

d.-C. d.-C.

b :- c. IIIII"’ ‘?> b:-c

- ?

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 523
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When disjunctions add expressiveness (2/2)

clingo saturationl.txt -n 0

saturation3.txt saturation4.txt
S not b | cither aor bis true 2lb- —T° either a or b is +rue
' L (if the other one is false) - (or both if veeded)

b :- not a. . .

/- +hus ¢ is true P +hus ¢ is true

« thus both a and b veed * thus both a and b veed

C:-a >< to be true ("saturation") C:-a. >< to be true ("saturation”)
c:-b. *  but thev veither aor b c:-b. ¢ avnd that's ok

is Justified in the first place

d.-C. d.-C.

. Solving... . Solving...
b - c. ‘ UNSATISFIABLE b:-c. ‘ Answer: 1
abc
Models :0 SATISFIABLE

{} {a,b,c}

has no SWM (stable model) has 1 SM that includes both a and b

Models 1

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 524
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Details on Disjunctive Logic Programming

« 3-colorability
— 3-colorability with normal or disjunctive logic programs
— 3-uncolorability with cautious semantics
» Optimization
— Minimal Vertex Cover with weak constraints, optimization, aggregates
— Shortest paths with aggregation (contrast Clingo vs Souffle)
 Saturation for Disjunctive Logic Programs
— Minimal example for the power of saturation
— Uncolorability (program is satisfiable iff a graph is not 3-colorable)
— Minimal Vertex Cover of a particular size without minimization

525



3-uncolorability: via disjunctive LP

clingo 3uncolorability2.txt -n 0

3uncolorability2.txt

% Facts

vertex(1..3). edge(1,2). edge(1,3). edge(2,3).

% Guess

color(X,1) | color(X,2) | color(X,3) :- vertex(X).
% Check desired property (of being "uncolored")
uncolored :- edge(X,Y), color(X,C), color(Y,C)

% Saturate if desired property holds /
color(X,1..3) :- uncolored, vertex(X).

"wotcolored” is true iff any two
/ neighbors share the color.

TF "wotcolored" is true thew

"saturate" all vertices with all colors.
—— This will never be a mivimal SWM if
there is at least one valid coloring

Answer: 1

There are @ possible colorings in which
notcolored is wot made +rue. Thus
"wotcolored" is never wncluded.

vertex(1) vertex(2) vertex(3) edge(1,2) edge(1,3) edge(2,3) color(1,3) color(2,2) color(3,1)
Cenri;v;(:.)2vertex(2) vertex(3) edge(1,2) edge(1,3) edge(2,3) color(1,2) color(2,3) color(3,1)
Cenri;v;(:.)svertex(a vertex(3) edge(1,2) edge(1,3) edge(2,3) color(1,3) color(2,1) color(3,2)

)

)

)

Answer: 4
vertex(1) vertex(2) vertex(3) edge(1,2) edge(1,3) edge(2,3) color(1,2) color(2,1) color(3,3)
Answer: 5
vertex(1) vertex(2) vertex(3) edge(1,2) edge(1,3) edge(2,3) color(1,1) color(2,3) color(3,2)
Answer: 6
vertex(1) vertex(2) vertex(3) edge(1,2) edge(1,3) edge(2,3) color(1,1) color(2,2) color(3,3)

SATISFIABLE

Models 16

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 526
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3-uncolorability: via disjunctive LP

clingo 3uncolorability3.txt -n 0

3uncolorability3.txt

% Facts

vertex(1..3). edge(1,2). edge(1,3). edge(2,3).

% Guess

color(X,1) | color(X,2) | color(X,3) :- vertex(X).
% Check desired property (of being "uncolored")
uncolored :- edge(X,Y), color(X,C), color(Y,C)

#show. #show yes : uncolored.

% Saturate if desired property holds /
color(X,1..3) :- uncolored, vertex(X).

"wotcolored” is true iff any two
/ neighbors share the color.

TF "wotcolored" is true thew

"saturate" all vertices with all colors.
—— This will vever be a mivimal SM if
there is at least ove valid coloring

Answer: 1

There are @ possible colorings in which
notcolored is wot made +rue. Thus
"wotcolored" is never wncluded.

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo

Answer: 5
Answer: 6

Answer: 2

Answer: 3

Answer: 4

SATISFIABLE

Models 16

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 527
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3-uncolorability: via disjunctive LP

clingo 3uncolorability3.txt

3uncolorability3.txt

% Facts

vertex(1..3). edge(1,2). edge(1,3). edge(2,3).

% Guess

color(X,1) | color(X,2) | color(X,3) :- vertex(X).
% Check desired property (of being "uncolored")
uncolored :- edge(X,Y), color(X,C), color(Y,C)

#show. #show yes : uncolored.

% Saturate if desired property holds /
color(X,1..3) :- uncolored, vertex(X).

"wotcolored” is true iff any two
/ neighbors share the color.

TF "wotcolored" is true thew

"saturate" all vertices with all colors.
—— This will vever be a mivimal SM if
there is at least ove valid coloring

There are @ possible colorings in which

notcolored is ot made true. Thus
"wotcolored" is never included.

Solving...

Answer: 1
‘ SATISFIABLE

Models 1+

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 528
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3-uncolorability: via disjunctive LP

clingo 3uncolorability6.txt

3uncolorability6.txt

% Facts "wotcolored” is true iff any two
vertex(1..3). edge(1,2). edge(1,3). edge(2,3). /wciqhbors share the color.

% Guess

color(X,1) | color(X,2) | color(X,3) :- vertex(X). Tf "notcolored" is true thew

% Check desired property (of being "uncolored”) "saturate” all vertices with all colors.
uncolored :- edge(X,Y), color(X,C), color(Y,C). _— This will vever be a mivimmal SW if

% Saturate if desired property holds / there is at least one valid coloring
color(X,1..3) :- uncolored, vertex(X).

% Additionally require desired property

.- not ur;colored.

/
Additionally require the desired property "uncolored" +o

Solving...
UNSATISFIABLE
be true as additional constraint (recall +his rule does not Models - 0

make i+ true, it veeds to be derivable in the reduct)

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 529
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3-uncolorability: (non-existence of coloring) @

clingo 3uncolorabilityl.txt

3uncolorabilityl.txt

(2
e

% Facts

vertex(1..4). edge(1,2..4). edge(2,3..4). edge(3,4).
% Guess

color(X,1) | color(X,2) | color(X,3) :- vertex(X).

% Check desired property (of being "uncolored")
uncolored :- edge(X,Y), color(X,C), color(Y,C)

% Additionally require desired property

- not uncolored.

% Saturate if desired property holds /
color(X,1..3) :- uncolored, vertex(X).

"wotcolored” is true iff any two
/ neighbors share the color.

TF "wotcolored" is true thew

"saturate" all vertices with all colors.
—— This will never be a mivimal SWM if
there is at least ove valid coloring

Answer: 1

There is vo possible coloring and "wotcoloring” is always
true. Thus there is only ove "saturated" SWM that also
contains "noteolored" (which is also required)

vertex(1) vertex(2) vertex(3) vertex(4) edge(3,4) edge(1,2)

edge(1,3) edge(1,4) edge(2,3) edge(2,4) color(1,1) color(1,2)
color(1,3) color(2,1) color(2,2) color(2,3) color(3,1) color(3,2)
color(3,3) color(4,1) color(4,2) color(4,3) notcolored

SATISFIABLE

Models 1

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 530
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3-colorability: (existence of coloring)

clingo 3colorability6.txt

3colorability6.txt

% Facts "wotcolored” is true iff any two
vertex(1..4). edge(1,2..4). edge(2,3..4). edge(3,4). /wai@lﬂbors share the color.
% Guess

color(X,1) | color(X,2) | color(X,3) :- vertex(X).
% Check undesired property (of being "uncolored")
uncolored :- edge(X,Y), color(X,C), color(Y,C).

% Additionally disallow undesired property

- uncolored.

Solving...
UNSATISFIABLE
Models 10

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 531
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Details on Disjunctive Logic Programming

« 3-colorability
— 3-colorability with normal or disjunctive logic programs
— 3-uncolorability with cautious semantics
» Optimization
— Minimal Vertex Cover with weak constraints, optimization, aggregates
— Shortest paths with aggregation (contrast Clingo vs Souffle)
 Saturation for Disjunctive Logic Programs
— Minimal example for the power of saturation
— Uncolorability (program is satisfiable iff a graph is not 3-colorable)
— Minimal Vertex Cover of a particular size without minimization
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existence of VC =3

minVC-existence2.txt

clingo minVC-existence2.txt

% Facts

vertex(1..4). edge(1,2..4). edge(2,3..4). edge(3,4).

% Guess solutions
cover (X,1) | cover (X,0) :- vertex(X).

% Check and enforce properties

.- edge(X,Y), cover (X,0), cover (Y,0).
valid :- #count{X: cover (X,1)} = 3.

.- not valid.

A

A

@auess a solution (expressiveness of disjunctive rule is
not required here)

The valid solution needs +o be a cover and have 2

Solving...

Answer: 1

vertex(1) vertex(2) vertex(3) vertex(4) edge(3,4) edge(1,2)
edge(1,3) edge(1,4) edge(2,3) edge(2,4) cover(1,0) cover(2,1)

cover(3,1) cover(4,1 @

SATISFIABLE

Models 1+

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 533
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non-existence of VC < 3

MiNVC-nonexistence?. txt clingo minVC-nonexistence2.txt

% Facts
vertex(1..4). edge(1,2..4). edge(2,3..4). edge(3,4).
% Guess solutions

cover_all(X,1) | cover_all(X,0) :- vertex(X). <« @auess all cover candidates with disjunction (here disjunction
% Check and enforce properties is needed as we use it with saturation later below)

invalid :- edge(X,Y), cover_all(X,0), cover_all(Y,0).
invalid :- #count{X: cover_all(X,1)} >= 3.

A

All cover candidates wmust be invalid (ot a cover or >= 3)

.- not invalid.
% Additionally saturate if desired property holds
cover_all(X,0..1) :- invalid, vertex(X). <« Saturate all other cover candidates if invalid

Answer: 1

vertex(1) vertex(2) vertex(3) vertex(4) edge(3,4) edge(1,2)
edge(1,3) edge(1,4) edge(2,3) edge(2,4) cover_all(1,1)
cover_all(1,0) cover_all(2,1) cover_all(2,0) caver_all(3,1)
cover_all(3,0) cover_all(4,1) cover_all(4,0)

SATISFIABLE

Models 1

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 534
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minVC = 3 (exists 3 and not exists <3) D
clingo minVC-existsandnotl.txt "

minVC-existsandnotl.txt

% Facts
vertex(1..4). edge(1,2..4). edge(2,3..4). edge(3,4).
% Guess solutions

cover (X,1) | cover (X,0) :- vertex(X). <
cover_all(X,1) | cover_all(X,0) :- vertex(X). <«

Gauess a valid solution (disjunction is not required here)
we want all other cover candidates to vot be better

% Check and enforce properties
.- edge(X,Y), cover (X,0), cover (Y,0).

(disjuuction is required here)

A

valid :- #count{X: cover (X,1)} = 3.
.- not valid.

invalid :- edge(X,Y), cover_all(X,0), cover_all(Y,0).
invalid :- #count{X: cover_all(X,1)} >= 3.

.- not invalid.

% Additionally saturate if desired property holds

The valid solution needs +o be a cover and have 2

All other cover candidates must be invalid (wot a cover or >= 3)

A

cover_all(X,0..1) :- invalid, vertex(X). <«

Saturate all other cover candidates if invalid
Answer: 1
vertex(1) vertex(2) vertex(3) vertex(4) edge(3,4) edge(1,2)
edge(1,3) edge(1,4) edge(2,3) edge(2,4) cover_all(1,1)

cover_all(1,0) cover_all(2,1) cover_all(2,0) caver_all(3,1)
cover_all(3,0) cover_all(4,1) cover—a (4,0) over(1,0)
cover(2,1) cover(3,1) cover(4,1 @

SATISFIABLE

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo Models D1+
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minVC = K (exists K and not exists <K) 1)

clingo minVC-existsandnot2.txt

minVC-existsandnot2.txt

% Facts
vertex(1..4). edge(1,2..4). edge(2,3..4). edge(3,4).
% Guess solutions

cover (X,1) | cover (X,0) :- vertex(X). <
cover_all(X,1) | cover_all(X,0) :- vertex(X). <«

% Check and enforce properties

Gauess a valid solution (disjunction is not required here)
we want all other cover candidates to vot be better

(disjuuction is required here)

.- edge(X,Y), cover (X,0), cover (Y,0). )
minvc(K) :- #count{X: cover (X,1)} = K.

invalid :- edge(X,Y), cover_all(X,0), cover_all(Y,0).

invalid :- #count{X: cover_all(X,1)} >= K, minvc(K).
.- not invalid.

% Additionally saturate if desired property holds

A

cover_all(X,0..1) :- invalid, vertex(X). <«

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The valid solution veeds o be a cover and have some size K

All other cover candidates must be invalid (not a cover or >= K)

Saturate all other cover candidates if invalid

-)

Answer: 1

vertex(1) vertex(2) vertex(3) vertex(4) edge(3,4) edge(1,2)
edge(1,3) edge(1,4) edge(2,3) edge(2,4) cover_all(1,1)
cover_all(1,0) cover_all(2,1) cover_all(2,0) cover_all(3,1)
cover_all(3,0) cover_al4=4~eqyer_all(4,0) cover(1,0) cover(2,1)
cover(3,1) cover(4, 1valid

SATISFIABLE

Models D1+
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minVC = K (exists K and not exists <K) 1)

clingo minVC-existsandnot3.txt

minVC-existsandnot3.txt

% Facts
vertex(1..4). edge(1,2..4). edge(2,3..4). edge(3,4).
% Guess solutions

cover (X,1) | cover (X,0) :- vertex(X). <

cover_all(X,1) | cover_all(X,0) :- vertex(X). <«
% Check and enforce properties

@auess a valid solution (disjunction is not required here)
We want all other cover candidates +o vot be better

(disjuuction is required here)

.- edge(X,Y), cover (X,0), cover (Y,0). )
minvc(K) :- #count{X: cover (X,1)} = K.

invalid :- edge(X,Y), cover_all(X,0), cover_all(Y,0).

invalid :- #count{X: cover_all(X,1)} >= K, minvc(K).
.- not invalid.

% Additionally saturate if desired property holds

A

cover_all(X,0..1) :- invalid, vertex(X). <«

#show. #show K: minvc(K).

A 3

AN

Owly show the single entry K in "minve(K)"

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The valid solution veeds o be a cover and have some size K

All other cover candidates must be invalid (wot a cover or >= K)

Saturate all other cover candidates if invalid

é;swer: 1
‘ ISFIABLE
Models @1+
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minVC = K (exists K and not exists <K)

clingo minVC-existsandnot4.txt

minVC-existsandnot4.txt

% Facts
vertex(1..3). edge(1,2..3). edge(2,3).
% Guess solutions

cover (X,1) | cover (X,0) :- vertex(X). < @auess a valid solution (disjunction is vot required here)
cover_all(X,1) | cover_all(X,0) :- vertex(X). <« We wawt all other cover candidates to ot be better
9% Check and enforce properties (disjunction is required here)

The valid solution veeds o be a cover and have some size K

.- edge(X,Y), cover (X,0), cover (Y,0). )
minvc(K) :- #count{X: cover (X,1)} = K.

invalid :- edge(X,Y), cover_all(X,0), cover_all(Y,0).

invalid :- #count{X: cover_all(X,1)} >= K, minvc(K). All other cover candidates must be invalid (not a cover or >= K)

A

.- not invalid.
% Additionally saturate if desired property holds
cover_all(X,0..1) :- invalid, vertex(X). <« Saturate all other cover candidates if invalid

#show. #show K: minvc(K).

-~ é;swer: 1
\ ISFIABLE
Owly show the single entry Kin "minve(K)"
Models 1+

Clingo example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/clingo
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Outline: T1-4: Datalog & ASP

— [A surprising application: automating hardness proofs:
moved to T2-U4: Reverse Data Management]
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