Topic 1: Data models and query languages Unit 3: Relational Algebra (RA) Lecture 6

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
https://northeastern-datalab.github.io/cs7240/sp24/
1/29/2024

Algebra and the connection to logic and queries

- Algebra
- Relational Algebra
- Operators
- Independence
- Power of algebra: optimizations
- Equivalence RA and safe RC (Codd's theorem)
- RA \rightarrow RC
$-R C \rightarrow R A$

What is "Algebra"?

- Algebra is the study of mathematical symbols and the rules for manipulating these symbols
- e.g., Linear Algebra
- e.g., Relational Algebra
- e.g., Boolean Algebra
- e.g., Elementary algebra
- e.g., Abstract algebra (groups, rings, fields, ...)

1 - Exponent (power), 2 - coefficient, 3 - term, 4 - operator, 5 - constant, x, y-variables

What is "Abstract Algebra"?

- Abstract algebra: studies algebraic structures, which consist of:
- A domain (i.e. a set of elements)
- A collection of operators (acting on operands)

- each of arity d; maps a domain of sequences $\left(x_{1}, \ldots, x_{d}\right)$ to an element y of its codomain (usually that is also the domain)
- A set of axioms (or identities) that these operators must satisfy.
- e.g. commutativity: $x \oplus y \equiv y \oplus x \quad$ or $\bigoplus(x, y) \equiv \bigoplus(y, x)$ or $\quad o p(x, y) \equiv o p(y, x)$
- Examples:
- Boolean algebra: (\{true,false $\},\{\Lambda, \vee, \neg\})$
- Ring of integers: $(\mathbb{Z},\{+, \cdot\})$ ring: set equipped with two binary operations with certain
- Relational algebra properties like distributivity of multiplication over addition
- The definition of an operator allows for composition:
- e.g. $\mathrm{op}_{1}\left(\mathrm{op}_{2}(x), \mathrm{op}_{1}\left(\mathrm{y}, \mathrm{op}_{4}(\mathrm{x}, \mathrm{z})\right)\right.$)

Function composition

INPUT

$x=3$
\downarrow^{\downarrow}

INPUT \downarrow^{\downarrow} (

$$
[f \circ g](x)=f[g(x)]
$$

Let's find $\mathrm{FOG}(\mathrm{x})$ of two example equations:

$$
f(x)=x+2
$$

$$
g(x)=x^{2}+1
$$

What is $[f \circ g](x)$?

$$
\begin{aligned}
& {[f \circ g](x)=f[g(x)]} \\
& {[f \circ g](x)=f\left[x^{2}+1\right]} \\
& {[f \circ g](x)=\left(x^{2}+1\right)+2} \\
& {[f \circ g](x)=x^{2}+3}
\end{aligned}
$$

Sources: $\underline{h t t p s: / / w w w . c o u r s e h e r o . c o m / s g / c o l l e g e-a l g e b r a / c o m p o s i t i o n-o f-f u n c t i o n s /, ~ h t t p s: / / u p l o a d . w i k i m e d i a . o r g / w i k i p e d i a / c o m m o n s / 2 / 21 / F u n c t i o n ~ m a c h i n e 5 . s v g, ~}$ https://en.wikibooks.org/wiki/Algebra/Functions, http://www.statisticslectures.com/topics/compositionoffunctions/

Distributivity = efficient factorization

[^0]
Distributivity = efficient factorization

$\min [a+d, a+e, a+f, a+g, \ldots, c+g]$

$$
\min [3+2,3+4,3+7,3+8, \ldots, 6+8]
$$

What is the shortest path from s to t?

Answer: $5=3+2$

Distributivity = efficient factorization

What is the shortest path from s to + ?

Answer: $5=3+2$
$\min [a+d, a+e, a+f, a+g, \ldots, c+g]$

$$
\min [3+2,3+4,3+7,3+8, \ldots, 6+8]
$$

$$
=\min [a, b, c]+\min [d, e, f, g]
$$

$$
\min [3,5,6]+\min [2,4,7,8]
$$

$$
\begin{aligned}
& \min [x, y]+z=\min [(x+z),(y+z)] \\
& (+\operatorname{distributes} \text { over min })
\end{aligned}
$$

Distributivity = efficient factorization
(Tropical semiring)

- Semiring ($\left.\mathbb{R}^{\infty}, \min ,+, \infty, 0\right)$

What is the shortest path from s to t ?

Answer: $5=3+2$

Principle of optimality from Dynamic Programming: irrespective of the initial state and decision, an optimal solution continues optimally from the resulting state

$$
\begin{aligned}
& \min [a+d, a+e, a+f, a+g, \ldots, c+g] \\
& \min [3+2,3+4,3+7,3+8, \ldots, 6+8] \\
& =\min [a, b, c]+\min [d, e, f, g] \\
& \quad \min [3,5,6]+\min [2,4,7,8]
\end{aligned}
$$

$$
\min [x, y]+z=\min [(x+z),(y+z)]
$$

(+ distributes over min)

Distributivity = efficient factorization

How many paths are there from s to t?

Distributivity = efficient factorization

How many paths are there from s to t?

Answer: $12=3 \cdot 4$

Distributivity = efficient factorization

(Ring of real numbers)

- Semiring ($\mathbb{R},+, \cdot, 0,1)$

$$
\left.\begin{array}{l}
\operatorname{count}[a \cdot d, a \cdot e, a \cdot f, a \cdot g, \ldots, c \cdot g] \\
\text { count }[\underbrace{}_{1 \cdot 1,1 \cdot 1,1 \cdot 1,1 \cdot 1, \ldots, 1 \cdot 1]} \\
=\text { count }[a, b, c] \cdot \operatorname{count}[d, e, f, g] \\
\quad \text { count }[1,1,1] \cdot \operatorname{count}[1,1,1,1]
\end{array}\right] \begin{aligned}
& +[x, y] \cdot z=+[x \cdot z, y \cdot z] \\
& (\cdot \text { distributes over }+)
\end{aligned}
$$

How many paths are there from s to t?

$$
\text { Answer: } 12=3 \cdot 4
$$

Distributivity = efficient factorization

- Semiring $(S, \oplus, \otimes, 0,1)$

Semirings generalize this idea

$$
\begin{aligned}
& \oplus[a \otimes d, a \otimes e, a \otimes f, a \otimes g, \ldots, c \otimes g] \\
& =\oplus[a, b, c] \otimes \oplus[d, e, f, g]
\end{aligned}
$$

Matrix multiplication
think of dots as "1"s

How many paths of length 2 are there from 7 to 6 ?

Matrix multiplication

matrix
multiplication
How many paths of length 2 are there from 7 to 6 ?

Matrix multiplication

A... Adjacency matrix, or Arcs only diagonals and $7 \rightarrow 6$ are shown

How many paths of length 2 are there from 7 to 6 ?
matrix
Itiplication
matrix
multiplication

$\mathbf{A}_{1} \frac{\text { in-vertex }}{34567}$

$$
\begin{gathered}
=0 \cdot 0+0 \cdot 0+ \\
1 \cdot 1 \\
+1 \cdot 0+1 \cdot 1+\ldots
\end{gathered}
$$

Matrix multiplication

A... Adjacency matrix, or Arcs only diagonals and $7 \rightarrow 6$ are shown

matrix
multiplication

$$
\begin{gathered}
=0 \cdot 0+0 \cdot 0+ \\
1 \cdot 1 \\
+1 \cdot 0+1 \cdot 1+\ldots
\end{gathered}
$$

How long is the "shortest path" (minimal sum of weights) from 7 to 6 ?

Matrix multiplication

Neutral element ∞ instead of 0
A... Adjacency matrix, or Arcs only diagonals and $7 \rightarrow 6$ are shown

The Relational Algebra

- In the relational algebra (RA) the elements are relations
- A relation is a schema together with a finite set of tuples

Company

cid	CName	StockPrice	Country
1	GizmoWorks	25	USA
2	Canon	65	Japan
3	Hitachi	15	Japan

- RA has 5 primitive operators:
- Unary: projection, selection
- Binary: union, difference, Cartesian product
- Each of the 5 is essential or "independent": we cannot define it using the others
- We will see what exactly this means and how this can be proved
- In practice, we allow many more useful operators that can be defined by the primitive ones (thus also called derived operators)
- For example, equi-joins via Cartesian product and selection

RA vs other Query Languages (QLs)

- There are some subtle (yet important) differences between RA and other QLs. In RA, ...
- ... can tables have duplicate records?
- ... are missing (NULL) values allowed?
?
- ... is there any order among records?
?
- ...is the answer dependent on the domain from which values are taken (not just the database at hand)?

RA vs other Query Languages (QLs)

- There are some subtle (yet important) differences between RA and other QLs. In RA, ...
- ... can tables have duplicate records?
- (RA vs. SQL)
- ... are missing (NULL) values allowed?
- (RA vs. SQL)
- ... is there any order among records?
- (RA vs. SQL)
- ...is the answer dependent on the domain from which values are taken (not just the database at hand)?
- (RA vs. unsafe RC)

Recall: Virtues of the relational model

- "Separation of concerns": physical/logic independence, declarative language
- Simple, elegant clean: Everything is a relation
- Why did it take multiple years to make it happen?
- Big doubts it could be done efficiently.

System R is a database system built as a research project at IBM San Jose Research (now IBM Almaden Research Center) in the 1970's. System R introduced the SQL language and also demonstrated that a relational system could provide good transaction processing performance.
again in System R and in Eagle, the big project at Santa Teresa. Nevertheless, what kicked off this work was a key paper by Ted Codd - was it published in 1970 in CACM?

Mike Blasgen: Yes.
Irv Traiger: A couple of us from the Systems Department had tried to read it - couldn't make heads nor tails out of it. [laughter] At least back then, it seemed like a very badly written paper: some industrial motivation, and then right into the math. [laughter]

Bob Yost: I went over there with several other people - I was in the Advanced Systems Development Division - I remember going over there in about 1970 to see this because we were working with the IMS ${ }^{8}$ guys at the time. We couldn't believe it; we thought it's going to take at least ten years before there's going to be anything. And it was ten years. [laughter]

Irv Traiger: So we had this 1970 paper; there were a couple of other papers that Ted had written after that; one on a language called DSL/Alpha ${ }^{9}$, which was based on the predicate calculus. Glenn Bacon, who had the Systems Department, used to wonder how Ted could justify that everybody would be able to write this language that was based on mathematical predicate calculus, with universal quantifiers and existential quantifiers and variables and really, really hairy stuff.

RDBMS Architecture

- How does a SQL engine work ?

Algebra and the connection to logic and queries

- Algebra
- Relational Algebra
- Operators
- Independence
- Power of algebra: optimizations
- Equivalence RA and safe RC (Codd's theorem)
- RA \rightarrow RC
$-R C \rightarrow R A$

Relational Algebra (RA) operators

- Five basic operators:

1. Selection: σ ("sigma")
2. Projection: Π
3. Cartesian Product: \times
4. Union: U
5. Difference:-

Two perspectives:

- mainly named perspective, where every attribute must have a unique name, thus attribute order does not matter. E.g. "R. $A=4$ " same for $R(A, B)$ or $R(B, A)$
- contrast with vectors: E.g. $R(x, y), x=4$
- Auxiliary operators (sometimes counted as basic):

6. Renaming: ρ ("rho")"

- Derived

7. Joins \bowtie (natural, equi-join, theta join, semi-join)
8. Intersection / complement
9. Division

All operators take in 1 or more relations as inputs (operands) and return another relation

Relational Algebra (RA) operators extending classical Set Theory

	Traditional set operators	Specific relational operators
Basic operators	$R \cup S$ (union) binary $R-S$ (difference) $R \times S$ (Cartesian prod.)	$\sigma_{\theta}(R)$ (selection) $\pi_{A}(R)$ (projection)
Derived operators	Notice that the Cartesian product in set theory is noncommutative (CP. unnamed with named perspective) ht+psi//en.wikipedia.org/wiki/Cartesian_product $R \cap S$ (intersection)	$R \bowtie S$ (join) $R \ltimes S$ (semi-join) $R \triangleright S$ (anti-join) $R \div S$ (division)
Extended operators		$\pi_{\boldsymbol{f}(\boldsymbol{A})}(R)$ (extended projection) $\delta(R)$ (duplicate elimination) $\gamma_{A, \operatorname{agg}(B)}(R)$ (grouping and aggregates) $\tau_{A}(R)$ (sorting) $R \searrow S$ (outerjoin)

Relational Algebra (RA) operators

- Five basic operators:

1. Selection: σ ("sigma")
2. Projection: П
3. Cartesian Product: $>$
4. Union: U
5. Difference:-

- Auxiliary (or special) operator

6. Renaming: ρ ("rho") for named perspective

- Derived (or implied) operators

7. Joins \bowtie (natural, theta join, equi-join, [semi-join: moved to T3-U1])
8. Intersection / complement
9. Division: -

- Returns all tuples which satisfy a condition
- Notation: $\sigma_{c}(R)$
- Examples
- Employee(ssn, name, salary)
- $\sigma_{\text {Salary }} 40000$ (Employee)
- $\sigma_{\text {name }}=$ "Smith" (Employee)
- The condition c can be comparison predicates $=,<, \leq,>, \geq$, <> combined with AND, OR, NOT

SQL:
SELECT *
FROM Employee
WHERE salary > 40000
$R A:$

$?$

- Returns all tuples which satisfy a condition
- Notation: $\sigma_{c}(R)$
- Examples
- Employee(ssn, name, salary)
- $\sigma_{\text {Salary }} 40000$ (Employee)
- $\sigma_{\text {name }}=$ "Smith" (Employee)
- The condition c can be comparison predicates $=,<, \leq,>, \geq$, <> combined with AND, OR, NOT

SQL:
SELECT *
FROM Employee
WHERE salary > 40000

RA:
$\sigma_{\text {Salary }} 40000$ (Employee)

1. Selection example

Employee

SSN	Name	Salary
1234545	John	20000
5423341	Smith	60000
4352342	Fred	50000

$\sigma_{\text {Salary }} 40000$ (Employee)

1. Selection example

Employee

$\left\{\begin{array}{|c|c|c|}\hline \text { SSN } & \text { Name } & \text { Salary } \\ \hline 1234545 & \text { John } & 20000 \\ \hline 5423341 & \text { Smith } & 60000 \\ \hline 4352342 & \text { Fred } & 50000\end{array}\right\}$
$\sigma_{\text {Salary }} 40000$ (Employee)

SSN	Name	Salary
5423341	Smith	60000
4352342	Fred	50000

2. Projection (π)

Employee(ssn, name, salary)

- Eliminates columns, then removes duplicates (set perspective!)
- Notation: $\pi_{\mathrm{A} 1, \ldots, \mathrm{An}}(\mathrm{R})$
- Alternative: $\pi_{-\mathrm{B} 1, \ldots, \mathrm{Bn}}(\mathrm{R})$ "project away" operator (not standard)
- Example: project on social-security
number and names:
- Employee(ssn, name, salary)
- $\pi_{\text {SSN, Name }}$ (Employee)
- Output schema: Answer(SSN, Name)

SQL:
SELECT DISTINCT name, salary FROM Employee
$R A:$

$?$
2. Projection (π)

Employee(ssn, name, salary)

- Eliminates columns, then removes duplicates (set perspective!)
- Notation: $\pi_{\mathrm{A} 1, \ldots, \mathrm{An}}(\mathrm{R})$
- Alternative: $\pi_{-\mathrm{B} 1, \ldots, \mathrm{Bn}}(\mathrm{R})$ "project away" operator (not standard)
- Example: project on social-security
number and names:
- Employee(ssn, name, salary)
- $\pi_{\text {SSN, Name }}$ (Employee)
- Output schema: Answer(SSN, Name)

SQL:
SELECT DISTINCT name, salary FROM Employee

$R A:$
$\pi_{\text {name, salary }}$ (Employee)
2. Projection example

Employee

SSN	Name	Salary
1234545	Ciara	20000
5423341	Ciara	60000
4352342	Ciara	20000

$\pi_{\text {name, salary }}$ (Employee)

$?$
2. Projection example

Employee

SSN	Name	Salary
1234545	Ciara	20000
5423341	Ciara	60000
4352342	Ciara	20000

$\pi_{\text {name, salary }}$ (Employee)

Bag semantics

Name	Salary
Ciara	20000
Ciara	60000

2. Projection example

Employee

SSN	Name	Salary
1234545	Ciara	20000
5423341	Ciara	60000
4352342	Ciara	20000

$\pi_{\text {name, salary }}$
(Employee)

which semantics is more efficient?

Bag semantics

Name	Salary
Ciara	20000
Ciara	60000
Ciara	20000

Name	Salary
Ciara	20000
Ciara	60000

Composing RA Operators

Patient

no	name	zip	disease
1	p1	98125	flu
2	p2	98125	heart
3	p3	98120	lung
4	p4	98120	heart

$\pi_{\text {zip, disease }}$ (Patient) | zip | disease |
| :--- | :--- |
| 98125 | flu |
| 98125 | heart |
| 98120 | lung |
| 98120 | heart |

$\sigma_{\text {disease }}=$ 'heart' $\left(\pi_{\text {zip, disease }}(\right.$ Patient $\left.)\right) \quad \checkmark$

zip	disease
98125	heart
98120	heart

Composing RA Operators
How do we call what we see on this page I the property of these two operators
$\pi_{\text {zip,disease }}$ (Patient)

zip	disease
98125	flu
98125	heart
98120	lung
98120	heart

no	name	zip	disease
2	p2	98125	heart
4	p4	98120	heart

$\pi_{\text {zip,disease }}\left(\sigma_{\text {disease }=\text { 'heart }}(\right.$ Patient $\left.)\right)$

Composing RA Operators
"commuting operators"

Patient

no	name	zip	disease
1	p1	98125	flu
2	p2	98125	heart
3	p3	98120	lung
4	p4	98120	heart

$\sigma_{\text {disease }}=$ 'heart $($ Patient $) ~ \checkmark$

no	name	zip	disease
2	p2	98125	heart
4	p4	98120	heart

$\pi_{\text {zip, disease }}$ (Patient)

zip	disease
98125	flu
98125	heart
98120	lung
98120	heart

zip	disease
98125	heart
98120	heart

$\pi_{\text {zip,disease }}\left(\sigma_{\text {disease }}=\right.$ 'heart' ${ }^{\prime}$ (Patient $\left.)\right)$

RA Operators are compositional, in general

Patient

no	name	zip	disease
1	p1	98125	flu
2	p2	98125	heart
3	p3	98120	lung
4	p4	98120	heart

Both RA expressions are logically equivalent (:)
$\sigma_{\text {disease }}=$ 'heart' $\left(\pi_{\text {zip,disease }}(\right.$ Patient $\left.)\right)$

SELECT DISTINCT zip, disease FROM Patient WHERE disease = 'heart'

zip	disease
98125	heart
98120	heart

$\pi_{\text {zip, disease }}\left(\sigma_{\text {disease }}=\right.$ 'heart' $($ Patient $\left.)\right)$

Logical Equivalece of RA Plans

$$
\pi_{A}\left(\sigma_{A=5}(R)\right) \stackrel{?}{\Leftrightarrow} \sigma_{A=5}\left(\pi_{A}(R)\right)
$$

Do projection \& selection commute in this example?

Logical Equivalece of RA Plans

$$
\pi_{A}\left(\sigma_{A=5}(R)\right) \stackrel{?}{\Leftrightarrow} \sigma_{A=5}\left(\pi_{A}(R)\right)
$$

Do projection \& selection commute in this example?

What about here?

Logical Equivalece of RA Plans

$$
\pi_{A}\left(\sigma_{A=5}(R)\right) \stackrel{?}{\Leftrightarrow} \sigma_{A=5}\left(\pi_{A}(R)\right)
$$

$$
R^{\prime}(B)
$$

$$
\pi_{B}\left(\sigma_{A=5}(R)\right) \stackrel{?}{\Leftrightarrow} \sigma_{A=5}\left(\pi_{B}(R)\right) \quad \text { what about here? }
$$

Topic 1: Data models and query languages Unit 3: Relational Algebra (RA) Lecture 7

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
https://northeastern-datalab.github.io/cs7240/sp24/
2/2/2024

Pre-class conversations

- Last class summary
- Please keep on pointing out any errors on the slides
- It is time to start to hand in your first scribes (some ideas today)
- Project discussions (in 2 weeks: Fri 2/16: project ideas)
- today:
- we continue with relational algebra (RA)
- next week: equivalence of RA and *safe* RC (Codd's theorem)
- next time:
- Recursion (Datalog)

Commuting functions: a digression

- Do functions commute with taking the expectation?
- $\mathbb{E}[f(x)]=f(\mathbb{E}[x])$?

Commuting functions: a digression

- Do functions commute with taking the expectation?
- $\mathbb{E}[f(x)]=f(\mathbb{E}[x])$?
- Only for linear functions
- Thus $f(x)=a x+b$
- $\mathbb{E}[a x+b]=a \mathbb{E}[x]+b$
- Jensen's inequality for convex f

Commuting functions: a digression

- Do functions commute with taking the expectation?
- $\mathbb{E}[f(x)]=f(\mathbb{E}[x])$?
- Only for linear functions
- Thus $f(x)=a x+b$
- $\mathbb{E}[a x+b]=a \mathbb{E}[x]+b$
- Jensen's inequality for convex f
- $\mathbb{E}[f(x)] \geq f(\mathbb{E}[x])$
- Example $f(x)=x^{2}$
- Assume $0 \leq x \leq 1$
- $f(\mathbb{E}[x])=f(0.5)=0.25$
$-\mathbb{E}[\mathrm{f}(\mathrm{x})]=\frac{\int_{0}^{1} f(x)}{1-0}=\left.\frac{x^{3}}{3}\right|_{0} ^{1}=0.33$

Ratio of averages != average of ratios

- Assume you developed a new variant "1" for creating "output" (the higher the better) and want to experimentally compare it against a baseline variant " 2 ".
- Your Professor suggests to compare the methods on two data points (Alice and Bob) and report the AVG of their relative ratios. How does this sound?

Ratio of averages != average of ratios

- Assume you developed a new variant "1" for creating "output" (the higher the better) and want to experimentally compare it against a baseline variant " 2 ".
- Your Professor suggests to compare the methods on two data points (Alice and Bob) and report the AVG of their relative ratios. How does this sound?

DATA (higher \uparrow is better):

	Variant 1	Variant 2	Ratio $\frac{\text { Variant 1 }}{\text { Variant 2 }}$
Alice	20	10	$20 / 10=?$
Bob	10	20	$10 / 20=?$
		AVG = ?	

Ratio of averages != average of ratios

- Assume you developed a new variant "1" for creating "output" (the higher the better) and want to experimentally compare it against a baseline variant " 2 ".
- Your Professor suggests to compare the methods on two data points (Alice and Bob) and report the AVG of their relative ratios. How does this sound?

DATA (higher \uparrow is better):

	Variant 1	Variant 2	Ratio $\frac{\text { Variant 1 }}{\text { Variant 2 }}$
Alice	20	10	$20 / 10=2$
Bob	10	20	$10 / 20=0.5$
		AVG = ?	

Ratio of averages != average of ratios

- Assume you developed a new variant "1" for creating "output" (the higher the better) and want to experimentally compare it against a baseline variant " 2 ".
- Your Professor suggests to compare the methods on two data points (Alice and Bob) and report the AVG of their relative ratios. How does this sound?

DATA (higher \uparrow is better):

	Variant 1	Variant 2	Ratio $\frac{\text { Variant 1 }}{\text { Variant 2 }}$
Alice	20	10	$20 / 10=2$
Bob	10	20	$10 / 20=0.5$ AVG $=1.25$$+25 \%$

Ratio of averages != average of ratios

- Assume you developed a new variant "1" for creating "output" (the higher the better) and want to experimentally compare it against a baseline variant "2".
- Your Professor suggests to compare the methods on two data points (Alice and Bob) and report the AVG of their relative ratios. How does this sound?

DATA (higher \uparrow is better):

	Variant 1	Variant 0	Ratio $\frac{\text { Variant 1 }}{\text { Variant 0 }}$
Alice	20	10	$20 / 10=2$
Bob	10	20	$\frac{10 / 20=0.5}{\mid \text { AVG }=1.25}+25 \%$

CONCLUSION

Variant 1 is on average 25% better

Relational Algebra (RA) operators

- Five basic operators:

1. Selection: σ ("sigma")
2. Projection: Π
3. Cartesian Product: \times
4. Union: U
5. Difference:-

- Auxiliary (or special) operator

6. Renaming: ρ ("rho") for named perspective

- Derived (or implied) operators

7. Joins \bowtie (natural, theta join, equi-join, [semi-join: moved to T3-U1])
8. Intersection / complement
9. Division: -
10. Cartesian Product (\times), or Cross-product

- Each tuple in R with each tuple in S
- Notation: $R \times S$
- $R \times S:=\{(r, s) \mid r \in R, s \in S\}$
- Example:

Student(sid,sname,gpa)
People(ssn,pname,address)
SQL:
SELECT *
FROM People, Student

- Students \times Advisors
- Rare in practice; mainly used to express joins

3. Cartesian Product (\times), or Cross-product

- Each tuple in R with each tuple in S
- Notation: $R \times S$
- $R \times S:=\{(r, s) \mid r \in R, s \in S\}$
- Example:

Student(sid,sname,gpa) People(ssn,pname,address)

SQL:

SELECT *
 FROM People, Student

- Students \times Advisors
- Rare in practice; mainly used to express joins

RA:
People \times Student
3. Cross join example

People

ssn	pname	address
1234545	John	216 Rosse
5423341	Bob	217 Rosse

\times
Student

sid	sname	gpa
001	John	3.4
002	Bob	1.3

3. Cross join example

People

ssn	pname	address				
1234545	John	216 Rosse				
5423341	Bob	217 Rosse	$\times \quad$	sid	sname	gpa
:---:	:---:	:---:	:---:			
001	John	3.4				
002	Bob	1.3				

People \times Student

ssn	pname	address	sid	sname	gpa
1234545	John	216 Rosse	001	John	3.4
5423341	Bob	217 Rosse	001	John	3.4
1234545	John	216 Rosse	002	Bob	1.3
5423341	Bob	216 Rosse	002	Bob	1.3

Relational Algebra (RA) operators

- Five basic operators:

1. Selection: σ ("sigma")
2. Projection: Π
3. Cartesian Product:
4. Union: U
5. Difference:-

- Auxiliary (or special) operator

6. Renaming: ρ ("rho") for named perspective

- Derived (or implied) operators

7. Joins \bowtie (natural, theta join, equi-join, [semi-join: moved to T3-U1])
8. Intersection / complement
9. Division: -
10. Union (U) and 5. Difference (-)

$$
R \cup S:=\{x \mid x \in R \vee x \in S\}
$$

$$
R-S:=\{x \mid x \in R \wedge x \notin S\}
$$

- Examples:
- Students U Faculty
- AllNEUEmployees - RetiredFaculty

Student (neuid, fname, Iname)
Faculty (neuid, fname, Iname, college)
What about the union of Student and Faculty?
4. Union (U) and 5. Difference (-)
other example: find actor ids who don't play in any movie:

$$
R-S:=\{x \mid x \in R \wedge x \notin S\}
$$

- Examples:

- Students U Faculty
- AllNEUEmployees - RetiredFaculty

$\pi_{\text {-college }}$| Student (neuid, frame, Iname) |
| :--- |
| (Faculty (neuid, frame, Iname, college)) |

What about the union of Student and Faculty?

No! Only makes sense if R and S are "union compatible", thus have the same schema!
4. Union (U) and 5. Difference (-)
$R \cup S$
RmS

$R \cup S:=\{x \mid x \in R \vee x \in S\}$
other example: find actor ids who don't play in any movie:
$\pi_{\text {aid }}$ (Actor) $-\pi_{\text {aid }}$ (Play)

- Examples:

- Students U Faculty
- AlINEUEmployees - RetiredFaculty

$\pi_{\text {-college }}$| Student (neuid, frame, Iname) |
| :--- |
| (Faculty (neuid, frame, Iname, college)) |

What about the union of Student and Faculty?

No! Only makes sense if R and S are "union compatible", thus have the same schema!

VENN diagrams for join types: rows vs column

Which rows are returned

Union

Intersection

Which columns are returned:

Inner

Left
Right

rows
(data):

a
b
c

VENN diagrams for join types: rows vs column Join keys from which rows are returned:
Left Union
rows
(data):

Inner

VENN diagrams for join types: rows vs column

Columns returned

innerunique

VENN diagrams for join types: rows vs column

"Right" is redundant
?

Relational Algebra (RA) operators

- Five basic operators:

1. Selection: σ ("sigma")
2. Projection: Π
3. Cartesian Product:
4. Union: U
5. Difference:-

- Auxiliary (or special) operator

6. Renaming: ρ ("rho") for named perspective

- Derived (or implied) operators

7. Joins \bowtie (natural, theta join, equi-join, [semi-join: moved to T3-U1])
8. Intersection / complement
9. Division: -

6. Renaming (ρ rho)

- Does not change the instance, only the schema (table or attribute names)
- Only needed in named perspective, thus a 'special' operator (neither basic nor derived)
- Several existing conventions:

$$
\begin{array}{ll}
\rho_{S}(R) & \text { S new table name } \\
\rho_{S\left(B_{1}, \ldots, B_{n}\right)}(R) \quad \text { if positions can be used } \\
\rho_{S\left(A_{1} \rightarrow B_{1}, \ldots, A_{n} \rightarrow B_{n}\right)}(R) & \text { if attribute names, } \\
\rho_{A_{1} \rightarrow B_{1}, \ldots, A_{n} \rightarrow B_{n}}(R) \quad \text { not order matters } \\
\rho_{B_{1}, \ldots, B_{n}}(R) &
\end{array}
$$

Student(sid,sname,gpa)

SQL:

SELECT
 sid AS studld, sname AS name, gpa AS gradePtAvg

FROM Student
$R A:$

6. Renaming (ρ rho)

- Does not change the instance, only the schema (table or attribute names)
- Only needed in named perspective, thus a 'special' operator (neither basic nor derived)
- Several existing conventions:

$$
\begin{array}{ll}
\rho_{S}(R) & \text { S new table name } \\
\rho_{S\left(B_{1}, \ldots, B_{n}\right)}(R) \quad \text { if positions can be used } \\
\rho_{S\left(A_{1} \rightarrow B_{1}, \ldots, A_{n} \rightarrow B_{n}\right)}(R) & \text { if attribute names, } \\
\rho_{A_{1} \rightarrow B_{1}, \ldots, A_{n} \rightarrow B_{n}}(R) \quad \text { not order matters } \\
\rho_{B_{1}, \ldots, B_{n}}(R) &
\end{array}
$$

Student(sid,sname,gpa)

SQL:

SELECT

sid AS studld, sname AS name, gpa AS gradePtAvg
FROM Student
$R A:$

$\rho_{\text {studId, name, gradePtAvg }}$ (Student)
6. Why we need renaming in the named perspective

R
A
:---
3

S

B	\mathbf{C}	\mathbf{D}
2	5	6
4	7	8
9	10	11

$R \times S$
\square
6. Why we need renaming in the named perspective
R

A	B
1	2
3	4

B	C	D
2	5	6
4	7	8
9	10	11

$\mathrm{R} \times \mathrm{S}$

A	R.B	S.B	C	D
1	2	2	5	6
1	2	4	7	8
1	2	9	10	11
3	4	2	5	6
3	4	4	7	8
3	4	9	10	11

What if we use renaming
6. Why we need renaming
R

A	$B \rightarrow E$
1	2
3	4

S

B	\mathbf{C}	\mathbf{D}
2	5	6
4	7	8
9	10	11

$R \times S$

A	R.B	S.B	C	D
1	2	2	5	6
1	2	4	7	8
1	2	9	10	11
3	4	2	5	6
3	4	4	7	8
3	4	9	10	11

$$
\rho_{B \rightarrow E}(\mathrm{R}) \times \mathrm{S}
$$

A	E	B	C	D
1	2	2	5	6
1	2	4	7	8
1	2	9	10	11
3	4	2	5	6
3	4	4	7	8
3	4	9	10	11

We would *really* need renaming if we had $R \times R$: (compare to table aliases)

6. Named vs Unnamed perspective (=positional notation)

Q: Nodes that have a grand-child $\{1,2\}$
In DRC:

A for arc or adjacency

$A:$| | S |
| :---: | :---: | | 1 | 2 |
| :---: | :---: |
| 2 | 1 |
| 2 | 3 |
| 1 | 4 |
| 3 | 4 |

6. Named vs Unnamed perspective (=positional notation)

A for arc or adjacency

$A:$| | S |
| :---: | :---: | | 1 | 2 |
| :---: | :---: |
| 2 | 1 |
| 2 | 3 |
| 1 | 4 |
| 3 | 4 |

Q: Nodes that have a grand-child $\{1,2\}$
In DRC:

$$
\begin{aligned}
& \{\mathrm{x} \mid \exists \mathrm{y}, \mathrm{z} \cdot[\mathrm{~A}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{A}(\mathrm{y}, \mathrm{z})]\} \\
& \{\mathrm{x} \mid \exists \mathrm{y}, \mathrm{z}, \mathrm{u}, \mathrm{w} \cdot[\mathrm{~A}(\mathrm{y}, \mathrm{z}) \wedge \mathrm{A}(\mathrm{u}, \mathrm{w}) \wedge \mathrm{z}=\mathrm{u} \wedge \mathrm{y}=\mathrm{x}]\}
\end{aligned}
$$

In RA:

6. Named vs Unnamed perspective (=positional notation)

A for arc or adjacency

In RA:

$$
\pi_{S}\left(\sigma_{T=S 2}\left(A \times \rho_{S \rightarrow S 2, S \rightarrow S 2}(A)\right) \quad \text { named perspective } \quad\right. \text { unnamed perspective }
$$

6. Named vs Unnamed perspective (=positional notation)

Q: Nodes that have a grand-child $\{1,2\}$

In DRC:

$$
\begin{aligned}
& \{x \mid \exists y, z \cdot[A(x, y) \wedge A(y, z)]\} \quad \text { unnamed= positional } \\
& \{x \mid \exists y, z, u, w \cdot[A(y, z) \wedge A(u, w) \wedge z=u \wedge y=x]\}
\end{aligned}
$$

In TRC:
"named":
A:

1	2
2	1
2	3
1	4
3	4

\hline 2 \& 1

\hline 2 \& 3

\hline 1 \& 4

\hline 3 \& 4

\hline\end{array} \right\rvert\,]{ }\)
named perspective
unnamed perspective

I adopt the notation $\$ 2$ from [Ullman'99] (also mentioned by [Silberschatz+' 20]. It is often just written as " $\pi_{1}\left(\sigma_{2=3}(A \times A)\right.$)", which is ambiguous. A more recent database textbook uses " $2=3$ " for " $\$ 2=\$ 3$ " which gets confusing for " $\$ 2=3$ "...
6. Named vs Unnamed perspective (=positional notation)

Q: Nodes that have a grand-child $\{1,2\}$

In DRC:

$$
\begin{aligned}
& \{x \mid \exists y, z \cdot[A(x, y) \wedge A(y, z)]\} \quad \text { unnamed= positional } \\
& \{x \mid \exists y, z, u, w \cdot[A(y, z) \wedge A(u, w) \wedge z=u \wedge y=x]\}
\end{aligned}
$$

A:

$\begin{array}{ll}1 & 2\end{array}$	1 2 2 1 2 3 1 4 3 4	
$2 \begin{array}{ll}1 & 1\end{array}$		
2 3 1		
1 4		
34		

In TRC: $\{q(S) \mid\}$

$$
\begin{array}{ll}
\pi_{S}\left(\sigma_{T=S 2}\left(A \times \rho_{S \rightarrow S 2, S \rightarrow S 2}(A)\right)\right. & \text { named perspective } \\
\pi_{\$ 1}\left(\sigma_{\$ 2=\$ 3}(A \times A)\right) & \text { unnamed perspective }
\end{array}
$$

I adopt the notation $\$ 2$ from [Ullman'99] (also mentioned by [Silberschatz+' 20]. It is often just written as " $\pi_{1}\left(\sigma_{2=3}(A \times A)\right.$)", which is ambiguous. A more recent database textbook uses " $2=3$ " for " $\$ 2=\$ 3$ " which gets confusing for " $\$ 2=3$ "...
6. Named vs Unnamed perspective (=positional notation)

Q: Nodes that have a grand-child $\{1,2\}$

In DRC:

$$
\begin{aligned}
& \{x \mid \exists y, z \cdot[A(x, y) \wedge A(y, z)]\} \quad \text { unnamed= positional } \\
& \{x \mid \exists y, z, u, w \cdot[A(y, z) \wedge A(u, w) \wedge z=u \wedge y=x]\}
\end{aligned}
$$

$\$ 1$	$\$ 2$	$\$ 3$	$\$ 4$
S	T	S 2	T 2

A:
$\left.\begin{array}{|ll|}\hline 1 & 2 \\ \hline 2 & 1 \\ \hline 2 & 3 \\ \hline 1 & 4 \\ \hline 3 & 4 \\ \hline\end{array} \sqrt[\begin{array}{|ll|}\hline 1 & 2 \\ \hline 2 & 1 \\ \hline 2 & 3 \\ \hline 1 & 4 \\ \hline 3 & 4 \\ \hline\end{array}]\right]{ }$

$$
\begin{aligned}
& \text { In TRC: } \quad \ddagger \text { alct, } \exists \circ \circ \neq A \text { named": } \\
& \{q(S) \mid \exists a 1, a 2 \in A[a 1 . T=a 2 . S \wedge \text { a1.S=q.S] }\} \\
& \{q \mid \exists a 1, a 2 \in A[a 1 . \$ 2=a 2 . \$ 1 \wedge a 1 . \$ 1=q . \$ 1]\} \\
& \text { In RA: } \\
& \pi_{S}\left(\sigma_{T=S 2}\left(A \times \rho_{S \rightarrow S 2, S \rightarrow S 2}(A)\right)\right. \text { named perspective } \\
& \pi_{\$ 1}\left(\sigma_{\$ 2=\$ 3}(A \times A)\right) \quad \text { unnamed perspective }
\end{aligned}
$$

I adopt the notation $\$ 2$ from [Ullman'99] (also mentioned by [Silberschatz+' 20]. It is often just written as " $\pi_{1}\left(\sigma_{2=3}(A \times A)\right.$)", which is ambiguous. A more recent database textbook uses " $2=3$ " for " $\$ 2=\$ 3$ " which gets confusing for " $\$ 2=3$ "...

Q: Find the ID and name of those employees who earn more than the employee whose ID is 123?

Q: Find the ID and name of those employees who earn more than the employee whose ID is 123?

$$
\begin{aligned}
& \pi_{\text {e.id,e.name }}\left(\sigma_{\text {e.salary }>\text { o.salary }}\left(\rho_{\mathrm{e}}(\mathrm{employee}) \times \sigma_{\mathrm{id}=123}\left(\rho_{\mathrm{o}}(\text { employee })\right)\right)\right) \\
& \pi_{\text {id, name }}\left(\sigma_{\text {salary }>\mathrm{s}}\left(\mathrm{employee} \times\left(\rho_{\text {salary } \rightarrow \mathrm{s}}\left(\pi_{\text {salary }}\left(\sigma_{\mathrm{id}=123}(\mathrm{employee})\right)\right)\right)\right)\right. \\
& \pi_{\$ 1, \$ 2}\left(\sigma_{\$ 4=123 \wedge \$ 3>\$ 6}(\text { employee } \times \text { employee })\right)
\end{aligned}
$$

Relational Algebra (RA) operators

- Five basic operators:

1. Selection: σ ("sigma")
2. Projection: Π
3. Cartesian Product: \times
4. Union: U
5. Difference:-

- Auxiliary (or special) operator

6. Renaming: $\rho($ "rho") for named perspective

- Derived (or implied) operators

7. Joins \bowtie (natural, theta join, equi-join, [semi-join: moved to T3-U1])
8. Intersection / complement
9. Division: -

Derived relational operators:

- can be expressed in basic RA; thus not needed But enhancing the basic operator set with derived operators is a good idea:
- Queries become easier to write/understand/maintain
- Easier for DBMS to apply specialized optimizations (recall the conceptual evaluation strategy)

we discuss later in class in detail (SJs are at the heart of efficient algorithms)

7a. Natural Join (ゅ)
Product(pname, price, category, cid)
Company(cid, cname, stockprice, country)

SELECT pname, price, category, P.cid, cname, stockprice, country FROM Product P, Company C WHERE P.cid= C.cid

SQL (alternative syntax)

- Natural join in basic RA:
- Meaning: $R \bowtie S=\pi_{A \cup B}\left(\sigma_{R . C=S . C}(R \times S)\right)$
- Meaning: $\mathrm{R} \bowtie \mathrm{S}=\pi_{\mathrm{A} \cup \mathrm{B}}\left(\sigma_{\mathrm{C}=\mathrm{D}}\left(\rho_{C \rightarrow D}(\mathrm{R}) \times \mathrm{S}\right)\right)$
- The rename $\rho_{C \rightarrow D}$ renames the shared attributes in one of the relations
- The selection $\sigma_{C=D}$ checks equality of the shared attributes
- The projection $\pi_{\mathrm{A} \cup \mathrm{B}}$ eliminates the duplicate common attributes
- Notation: $\mathrm{R} \bowtie \mathrm{S}$
- Joins R and S on equality of all shared attributes
- Only makes sense in named perspective!
- If R has attribute set A, and S has attribute set B, and they share attributes $A \cap B=C$, can also be written as $R \bowtie_{C} S$
- Natural join in basic RA:
- Meaning: $R \bowtie S=\pi_{A \cup B}\left(\sigma_{R . C=S . C}(R \times S)\right)$
- Meaning: $\mathrm{R} \bowtie \mathrm{S}=\pi_{\mathrm{A} \cup \mathrm{B}}\left(\sigma_{\mathrm{C}=\mathrm{D}}\left(\rho_{C \rightarrow D}(\mathrm{R}) \times \mathrm{S}\right)\right)$
- The rename $\rho_{C \rightarrow D}$ renames the shared attributes in one of the relations
- The selection $\sigma_{C=D}$ checks equality of the shared attributes
- The projection $\pi_{\mathrm{A} \cup \mathrm{B}}$ eliminates the duplicate common attributes

SQL

SELECT pname, price, category, P.cid, cname, stockprice, country FROM Product P, Company C WHERE P.cid= C.cid

SQL (alternative syntax)

SELECT *

FROM Product
NATURAL JOIN Company
$R A:$
$?$

- Notation: $\mathrm{R} \bowtie \mathrm{S}$
- Joins R and S on equality of all shared attributes
- Only makes sense in named perspective!
- If R has attribute set A, and S has attribute set B, and they share attributes $A \cap B=C$, can also be written as $R \bowtie_{C} S$
- Natural join in basic RA:
- Meaning: $R \bowtie S=\pi_{A \cup B}\left(\sigma_{R . C=S . C}(R \times S)\right)$
- Meaning: $\mathrm{R} \bowtie \mathrm{S}=\pi_{\mathrm{A} \cup \mathrm{B}}\left(\sigma_{\mathrm{C}=\mathrm{D}}\left(\rho_{C \rightarrow D}(\mathrm{R}) \times \mathrm{S}\right)\right)$
- The rename $\rho_{C \rightarrow D}$ renames the shared attributes in one of the relations
- The selection $\sigma_{C=D}$ checks equality of the shared attributes
- The projection $\pi_{\mathrm{A} \cup \mathrm{B}}$ eliminates the duplicate common attributes

SQL
SELECT pname, price, category, P.cid, cname, stockprice, country FROM Product P, Company C WHERE P.cid= C.cid

SQL (alternative syntax)

SELECT *

FROM Product
NATURAL JOIN Company

RA:

Product \bowtie Company

Figure 15: Joining tuples

We only want to pair those tuples that match in some way.
More formally the semantics of the natural join are defined as follows:

$$
\begin{equation*}
R \bowtie S=\{r \cup s \mid r \in R \wedge s \in S \wedge F u n(r \cup s)\} \tag{1}
\end{equation*}
$$

where Fun(t) is a predicate that is true for a relation t (in the mathematical sense) iff t is a function. It is usually required that R and S must have at least one common attribute, but if this constraint is omitted, and R and S have no common attributes, then the natural join becomes exactly the Cartesian product.

7a. Natural Join (৯): An example

\mathbf{R}
\mathbf{A}
\mathbf{B}
1

S
\mathbf{B}
2
:---
4
9

$$
\rho_{B \rightarrow E}(\mathrm{R}) \times \mathrm{S}
$$

7a. Natural Join (৯): An example

\mathbf{R}	
\mathbf{A}	\mathbf{B}
1	2
3	4

S
\mathbf{B}
\mathbf{B}
2

$R \bowtie S$

$$
\rho_{B \rightarrow E}(\mathrm{R}) \times \mathrm{S}
$$

A	E	B	C	D
1	2	2	5	6
1	2	4	7	8
1	2	9	10	11
3	4	2	5	6
3	4	4	7	8
3	4	9	10	11

7a. Natural Join (円): An example

\mathbf{R}
\mathbf{A}
\mathbf{A}
1

S

B	C	\mathbf{D}
2	5	6
4	7	8
9	10	11

$R \bowtie S$

A	B	C	D
1	2	5	6
3	4	7	8

$R \bowtie S=$

7a. Natural Join (円): An example

R

A	B
1	2
3	4

S

B	\mathbf{C}	\mathbf{D}
2	5	6
4	7	8
9	10	11

$R \bowtie S$

A	B	C	D
1	2	5	6
3	4	7	8

$R \bowtie S=$
$\Pi_{A, R . B, C, D}\left(\sigma_{R . B=S . B}(R \times S)\right)=$ $\Pi_{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}}\left(\sigma_{\mathrm{B}=\mathrm{E}}\left(\rho_{B \rightarrow E}(\mathrm{R}) \times \mathrm{S}\right)\right)=$
$\Pi_{\$ 1, \$ 2, \$ 4, \$ 5}\left(\sigma_{\$ 2=\$ 3}(R \times S)\right)=$

- Given schemas $R(A, B, C, D), S(A, C, E)$, what is the schema of $R \bowtie S$?
- Given schemas $R(\underbrace{A, B, C, D)}, S(\mathbb{A}, C, E)$, what is the schema of $R \bowtie S$?
Answer(A, B, C, D,E)
- Given $R(A, B, C), S(D, E)$, what is $R \bowtie S$?

7a. Natural Join (®): practice

- Given schemas $R(A, B, C, D), S(A, C, E)$, what is the schema of $R \bowtie S$?
Answer(A, B, C, D,E)
- Given $R(A, B, C), S(D, E)$, what is $R \bowtie S$?

no condition in the selection that could be violated:

- Given $R(A, B), S(A, B)$, what is $R \bowtie S$?

7a. Natural Join (凶): practice

- Given schemes $R(A, B, C, D), S(A, C, E)$, what is the schema of $R \bowtie S$?

Answer (A, B, C, D, E)

- Given $R(A, B, C), S(D, E)$, what is $R \bowtie S$?

$$
R \times S
$$

- Given $R(A, B), S(\mathbb{A}, B)$, what is $R \bowtie S$?

$$
R \cap S
$$

7a. Natural Join (凶): practice

- Given schemes $R(A, B, C, D), S(A, C, E)$, what is the schema of $R \bowtie S$?

Answer (A, B, C, D,E)

- Given $R(A, B, C), S(D, E)$, what is $R \bowtie S$?

$$
R \times S
$$

- Given $R(A, B), S(A, B)$, what is $R \bowtie S$?

$$
R \cap S
$$

Wolfgang Gatterbauer. Principles of scalable data management: $\underline{\text { https://northeastern-datalab.github.io/cs7240/ }}$

7b. Theta Join $\left(\bowtie_{\theta}\right)$

- A join that involves a predicate

$$
R_{1} \bowtie_{\theta} R_{2}=\sigma_{\theta}\left(R_{1} \times R_{2}\right)
$$

- θ ("theta") can be any condition
- No projection: \#attributes in output = sum \#attributes in input Note that natural join is
- Example: band-joins for approx. matchings across tables

```
AnonPatient (age, zip, disease)
Voters (name, age, zip)
```

Assume relatively fresh data (within 1 year)

7b. Theta Join $\left(\bowtie_{\theta}\right)$

- A join that involves a predicate

$$
R_{1} \bowtie_{\theta} R_{2}=\sigma_{\theta}\left(R_{1} \times R_{2}\right)
$$

- θ ("theta") can be any condition

Student(sid,name,gpa) People(ssn,name,address)

SQL:

SELECT *
 FROM
 Students, People
 WHERE θ

- No projection: \#attributes in output
= sum \#attributes in input Note that natural join is
a theta join + a selection

- Example: band-joins for approx. matchings across tables

```
AnonPatient (age, zip, disease)
Voters (name, age, zip)
Assume relatively fresh
data (within 1 year)
```

$\mathrm{A} \bowtie_{\mathrm{P} . \text { zip }}=\mathrm{V}$. zip $\wedge(\mathrm{P}$. age $>=\mathrm{V}$.age $-1 \wedge \mathrm{P}$. age $<=\mathrm{V}$.age $+1 \mathrm{~V}$

7b. Theta Join $\left(\bowtie_{\theta}\right)$

- A join that involves a predicate

$$
R_{1} \bowtie_{\theta} R_{2}=\sigma_{\theta}\left(R_{1} \times R_{2}\right)
$$

- θ ("theta") can be any condition
- No projection: \#attributes in output = sum \#attributes in input Note that natural join is - Example: band-joins for approx. matchings across tables

```
AnonPatient (age, zip, disease) Assume relatively fresh
Voters (name, age, zip) data (within 1 year)
```

$\mathrm{A} \bowtie_{\mathrm{P} . z i p=\mathrm{V} . \text { zip }} \wedge$ P.age>=V.age $-1 \wedge$ P.age $<=\mathrm{V}$.age +1 V

Student(sid,name,gpa) People(ssn,name,address)

SQL:

SELECT *
 FROM
 Students, People
 WHERE θ

$R A:$

Students \bowtie_{θ} People

7c. Equi-join $\left(\bowtie_{A=B}\right)$

- A theta join where q is an equality

$$
R_{1} \bowtie_{\mathrm{A}=\mathrm{B}} R_{2}=\sigma_{\mathrm{A}=\mathrm{B}}\left(R_{1} \times R_{2}\right)
$$

- Example over Gizmo DB:
- Product $\bowtie_{\text {manufacturer=cname }}$ Company
- Most common join in practice!

Student(sid,sname,gpa) People(ssn,pname,address)

SQL:

SELECT *
 FROM

Students S, People P
WHERE sname $=$ pname
$R A:$

7c. Equi-join $\left(\bowtie_{A=B}\right)$

- A theta join where q is an equality

$$
R_{1} \bowtie_{\mathrm{A}=\mathrm{B}} R_{2}=\sigma_{\mathrm{A}=\mathrm{B}}\left(R_{1} \times R_{2}\right)
$$

- Example over Gizmo DB:
- Product $\bowtie_{\text {manufacturer=cname }}$ Company
- Most common join in practice!

Student(sid,sname,gpa) People(ssn,pname,address)

SQL:

SELECT *
 FROM
 Students S, People P
 WHERE sname = pname

RA:
$\mathrm{S} \bowtie_{\text {sname }}$ pname P

7d. Semi-join $(\ltimes) \quad[m o v e d ~ t o ~ T 3-U 1] ~] ~$

- $\mathrm{R} \ltimes \mathrm{S}$: Return tuples from R for which there is a matching tuple in S that is equal on their common attribute names.

Semijoins as Message Passing
- Semijoins can reduce network use for equijoins in distributed databases

Effective if 1) the size of join attribute B (or nun is smaller than A and C, and 2) few tuples from R

Join Summary

- Theta-join: $R \bowtie_{\theta} S=\sigma_{\theta}(R \times S)$
- Join of R and S with a join condition θ
- Cross-product followed by selection θ
- No projection
- Equijoin: $R \bowtie_{\theta} S=\sigma_{\theta}(R \times S)$
- Join condition θ consists only of equalities
- No projection
- Natural join: $R \bowtie S=\pi_{A}\left(\sigma_{\theta}(R \times S)\right)$
- Equality on all fields with same name in R and in S
- Projection π_{A} drops all redundant attributes

Example: Converting SFW Query to RA

Student(sid,name,gpa)
 People(ssn,name,address)

SELECT DISTINCT gpa, address
FROM Student S, People P
WHERE S.name = P.name
AND gpa > 3.5
How do we represent this query in RA?

Example: Converting SFW Query to RA

Student(sid,name,gpa)
People(ssn,name,address)
SELECT DISTINCT gpa, address
FROM Student S, People P
WHERE S.name = P.name AND gpa > 3.5

How do we represent this query in RA?

$$
\begin{aligned}
& \Pi_{\text {gpa,address }}\left(\sigma_{\text {gpa }>3.5}(S \bowtie P)\right) \\
& \Pi_{\text {gpa,address }}\left(\sigma_{\text {gpa }>3.5} \wedge \text { s.name }=\right.\text { P.name } \\
& (S \times P)) \\
& \Pi_{\text {gpa,address }}\left(\sigma_{\text {gpa }>3.5} \wedge \text { name }=\text { name2 }\left(S \times \rho_{\text {name } \rightarrow \text { name } 2} P\right)\right)
\end{aligned}
$$

Some Examples

Find names of suppliers of parts with size greater than 10

Find names of suppliers of red parts or parts with size greater than 10

Some Examples

Find names of suppliers of parts with size greater than 10
$\Pi_{\text {sname }}\left(\sigma_{\text {psize>10 }}(\right.$ Supplier \bowtie Supply \bowtie Part) $)$
$\Pi_{\text {sname }}\left(\right.$ Supplier \bowtie Supply $\bowtie\left(\sigma_{\text {psize } 10}\right.$ (Part))
Find names of suppliers of red parts or parts with size greater than 10

Some Examples

Supplier(sno,sname,scity,sstate) Part(pno,pname,psize,pcolor) Supply(sno,pno,qty,price)

Find names of suppliers of parts with size greater than 10
$\Pi_{\text {sname }}\left(\sigma_{\text {psize>10 }}(\right.$ Supplier \bowtie Supply \bowtie Part) $)$
$\pi_{\text {sname }}$ (Supplier \bowtie Supply $\bowtie\left(\sigma_{\text {psize>10 }}(\right.$ Part $\left.)\right) \xrightarrow[\substack{\text { Representation } \\ \text { of RA as tree? }}]{\substack{\text { and }}}$
Find names of suppliers of red parts or parts with size greater than 10

$$
\begin{aligned}
& \Pi_{\text {sname }}\left(\text { Supplier } \bowtie \text { Supply } \bowtie\left(\sigma_{\text {psize } 10}(\text { Part }) \cup \sigma_{\text {pcolor='red' }}(\text { Part })\right)\right) \\
& \Pi_{\text {sname }}\left(\text { Supplier } \bowtie \text { Supply } \bowtie\left(\sigma_{\text {psize> } 10} \text { Vpcolor='redrd }^{\prime}(\text { Part })\right)\right)
\end{aligned}
$$

Some Examples

> Supplier(sno,sname,scity,sstate) Part(pno,pname,psize,pcolor) Supply(sno,pno,qty,price)

Usually unary or binary. Think of:

- abstract syntax +rees Answer
- binary expression trees

Find names of suppliers of parts with size greater than 10

- parse trees
- data flow graph
$\Pi_{\text {sname }}\left(\sigma_{\text {psize>10 }}(\right.$ Supplier $\bowtie($ Supply \bowtie Part) $)$
$\Pi_{\text {sname }}$ (Supplier \bowtie Supply $\bowtie\left(\sigma_{\text {psize>10 }}(\right.$ Part $\left.)\right) \xrightarrow[\text { of RA as tree? }]{\text { Representation }}$
Supplier
Find names of suppliers of red parts or parts with size greater than $10^{\sigma_{\text {psize }}>10}$ Supply $\Pi_{\text {sname }}\left(\right.$ Supplier \bowtie Supply $\bowtie\left(\sigma_{\text {psize>10 }}(\right.$ Part $) \cup \sigma_{\text {pcolor='red' }}($ Part $\left.\left.)\right)\right)$
$\Pi_{\text {sname }}\left(\right.$ Supplier \bowtie Supply $\bowtie\left(\sigma_{\text {psize>10 }} \vee\right.$ pcolor='red'
$($ Part $)))$

Part

Query (Evaluation / Execution) Tree, Data flow graph

A query tree is a tree data structure that corresponds to a relational algebra expression. It represents the input relations of the query as leaf nodes of the tree, and represents the relational algebra operations as internal nodes. An execution of the query tree consists of executing an internal node operation whenever its operands (represented by its child nodes) are available, and then replacing that internal node by the relation that results from executing the operation. The execution terminates when the root node is executed and produces the result relation for the query.

root = result
$\pi_{\text {P.Pnumber,P.Dnum,E.Lname,E.Address,E.Bdate }}$
(3)
${ }^{\bowtie}$ D.Mgr_ssn=E.Ssn

Relational Algebra (RA) operators

- Five basic operators:

1. Selection: σ ("sigma")
2. Projection: Π
3. Cartesian Product:
4. Union: U
5. Difference:-

- Auxiliary (or special) operator

6. Renaming: ρ ("rho") for named perspective

- Derived (or implied) operators

7. Joins \bowtie (natural, theta join, equi-join, [semi-join: moved to T3-U1])
8. Intersection / complement
9. Division: -
10. What about Intersection \cap ?

- As derived operator using union and minus
?

R

S

8. What about Intersection \cap ?

- As derived operator using union and minus
? (R-S)

8. What about Intersection \cap ?

- As derived operator using union and minus

$$
? \quad(R \cup S)-(R-S)-(S-R)
$$

8. What about Intersection \cap ?

- As derived operator using union and minus

$$
\begin{array}{r}
(R \cup S)-((R-S) \cup(S-R)) \\
\{1,2,3\}=2 \\
\{3,4,5\}=3
\end{array}
$$

8. What about Intersection \cap ?

- As derived operator using union and minus

$$
\begin{array}{|l|}
R \cap S=((R \cup S)-(R-S))-(S-R) \\
R \cap S=(R \cup S)-((R-S) \cup(S-R))
\end{array}
$$

- Derived operator using minus only!
?

8. What about Intersection \cap ?

- As derived operator using union and minus

$$
\begin{array}{|l}
R \cap S=((R \cup S)-(R-S))-(S-R) \\
R \cap S=(R \cup S)-((R-S) \cup(S-R))
\end{array}
$$

- Derived operator using minus only!

$R \cap S=\quad S \quad-(S-R)$
- Derived using join
?

8. What about Intersection \cap ?

- As derived operator using union and minus

$$
\begin{aligned}
& R \cap S=((R \cup S)-(R-S))-(S-R) \\
& R \cap S=(R \cup S)-((R-S) \cup(S-R))
\end{aligned}
$$

- Derived operator using minus only!
$R \cap S=\quad S \quad-(S-R)$
- Derived using join
$R \cap S=R \bowtie S$

Legal input: schemas need to be union compatible (same schema). E.g. not:
$R(A, B, C)$ $S(A, B)$

If R and S have the same schema, then $R \bowtie S$ and $R \ltimes S$ equal to $R \cap S$

Relational Algebra (RA) operators

- Five basic operators:

1. Selection: σ ("sigma")
2. Projection: Π
3. Cartesian Product:
4. Union: U
5. Difference:-

- Auxiliary (or special) operator

6. Renaming: ρ ("rho") for named perspective

- Derived (or implied) operators

7. Joins \bowtie (natural, theta join, equi-join, [semi-join: moved to T3-U1])
8. Intersection / complement
9. Division: -

- Consider two relations $\mathrm{R}(\mathrm{X}, \mathrm{Y})$ and $\mathrm{S}(\mathrm{Y})$
- Then $R \div S$ is ...
x, y are sets of attributes Legal input: $a+t(R) \supset a+t(S)$

What could be a meaningful definition of division
compare to Integer division: $7 / 2=3$

3 is the biggest integer that multiplied with 2 is smaller or equal to 7
9. Division $(R \div S)$

- Consider two relations $R(X, Y)$ and $S(Y)$
- Then $R \div S$ is ...
- ... the largest relation $T(X)$ s.t. $S \times T \subseteq R$
x, y are sets of attributes Legal input: $a+t(R) \supset a+t(S)$
(safety: $T \subseteq \pi_{x} R$)

9. Division $(R \div S)$

- Consider two relations $\mathrm{R}(\mathrm{X}, \mathrm{Y})$ and $\mathrm{S}(\mathrm{Y})$
x, y are sets of attributes Legal input: $a+t(R) \supset a+t(S)$
- Then $R \div S$ is ...
- ... the largest relation $T(X)$ s.t. $S \times T \subseteq R$, or (safety: $T \subseteq \pi_{x} R$)
- ... the relation $T(X)$ that contains the X 's that occur with all Y 's in S, or
- ... $\{t(X) \mid \forall s(Y) \in S .[\exists r(X, Y) \in R]\} \quad(+s a f e+y)$

\mathbf{R} Dividend	S Divisor	
X Y Alice 1 Alice 2 Bob 1 Bob 2 Bob 3\quadY 1 2 3		

9. Division $(R \div S)$

- Consider two relations $R(X, Y)$ and $S(Y)$
x, y are sets of attributes Legal input: $a+t(R) \supset a+t(S)$
- Then $R \div S$ is ...
- ... the largest relation $T(X)$ s.t. $S \times T \subseteq R$, or (safe+y: $T \subseteq \pi_{\mathrm{x}} R$)
- ... the relation $T(X)$ that contains the X's that occur with all Y's in S, or
- ... $\{t(X) \mid \forall s(Y) \in S .[\exists r(X, Y) \in R]\} \quad(+$ safe+y)

\mathbf{R} Dividend		S Divisor	T
X	Y	Y	X
Alice	1	1	Bob
Alice	2	2	
Bob	1	3	
Bob	2		
Bob	3		
4	3		

Questions

Studies

sid	student	course		
1	Alice	Al		
1	Alice	DB		
2	Bob	DB		
2	Bob	ML		
3	Charly	Al		
3	Charly	DB		
3	Charly	ML	\quad	course
:---:				
ML	\quad	course		
:---:				
Al				
DB				
ML	$=?$			

Questions

Studies

sid	student	course
1	Alice	Al
1	Alice	DB
2	Bob	DB
2	Bob	ML
3	Charly	Al
3	Charly	DB
3	Charly	ML

Assume R,S have disjoint attribute sets (possibly by renaming)

$$
\begin{aligned}
& (R x S) \div S=? \\
& (R x S) \div R=?
\end{aligned}
$$

Questions

Studies

sid	student	course
1	Alice	Al
1	Alice	DB
2	Bob	DB
2	Bob	ML
3	Charly	Al
3	Charly	DB
3	Charly	ML

recall set semantics for RA

course
ML
:---:
2
3

\div	course
Al	$=$
:---:	:---:
3	Charly

Q: If R has 1000 tuples and S has 100 tuples, how many tuples can be in $R \div S$?

Q: If R has 1000 tuples

 and 5 has 1001 tuples, how many tuples can be in $R \div S$?
Questions

Studies

sid	student	course
1	Alice	Al
1	Alice	DB
2	Bob	DB
2	Bob	ML
3	Charly	Al
3	Charly	DB
3	Charly	ML

\div

Course recall set semantics for $R A$

course
ML
:---:
2
3

$$
\div \begin{array}{|c|c|}
\hline \text { course } \\
\hline \mathrm{Al} \\
\hline \mathrm{DB} \\
\hline
\end{array} \begin{array}{|c|c|}
\hline \text { sid } & \text { student } \\
\hline 3 & \text { Charly } \\
\hline
\end{array}
$$

Q: If R has 1000 tuples and S has 100 tuples, how many tuples can be in $R \div S$?

Q: If R has 1000 tuples

 and 5 has 1001 tuples, how many tuples can be in $R \div S$?
Questions

Studies

sid	student	course
1	Alice	Al
1	Alice	DB
2	Bob	DB
2	Bob	ML
3	Charly	Al
3	Charly	DB
3	Charly	ML

Course Type

course	type
Al	elective
DB	core
ML	core

Who took all core courses in RA with relational division?
?

Questions

Studies

sid	student	course
1	Alice	Al
1	Alice	DB
2	Bob	DB
2	Bob	ML
3	Charly	Al
3	Charly	DB
3	Charly	ML

Who took all core courses in RA with relational division?
Studies $\div \pi_{\text {course }}\left(\sigma_{\text {type }=\text { 'core }}{ }^{\prime}\right.$ CourseType $)$

How to write R $\div S$ in Primitive RA? $(\times,-, \pi)$
$R(X, Y) \div S(Y)$

How to write $R \div S$ in Primitive RA? $(x,-, \pi)$ $R(X, Y) \div S(Y)$
$\pi_{\mathrm{X}} \mathrm{R} \times \mathrm{S}$
Each X of R w/ each Y of S

How to write $R \div S$ in Primitive RA? $(x,-, \pi)$

$R(X, Y) \div S(Y)$

$\left(\pi_{X} R \times S\right)-R$
 Each X of R w/ each Y of S

(X, Y) s.t. X in R, Y in S, but (X, Y) not in R

How to write $R \div S$ in Primitive RA? $(x,-, \pi)$

$$
R(X, Y) \div S(Y)
$$

X s in R where for some Y in $S,(X, Y)$ is not in R

How to write $R \div S$ in Primitive RA? $(x,-, \pi)$

$$
\begin{aligned}
& R(X, Y) \div S(Y)
\end{aligned}
$$

> Xs in R where for some Y in $S,(X, Y)$ is not in R
> $R \div S$

What if $S=\varnothing$?
$R(X, Y) \div S(Y)$

	\div
X	Y
a	0
a	1
a	2

What if $S=\varnothing$?

$R(X, Y) \div S(Y)$

$\pi_{x} R-\pi_{x}\left(\left(\pi_{x} R \times S\right)-R\right)$

R		$S=Q$	
X	Y	Y	X
a	0		a
a	1		b

Recall: $\{(x) \mid \forall s(y) \in S .[\exists r(x, y) \in R]\}(+$ safe $+y)$

Now you see why we needed the safe+y condition " $T \subseteq \pi_{x} R$ " when defining " $R \div S$ as the largest relation $T(X)$ s.t. $S \times T \subseteq R$ "
$R \div S$ in Primitive RA vs. RC

$$
R(X, Y) \div S(Y)
$$

$$
\stackrel{I n R A_{i}}{\pi_{X} R-\pi_{X}\left(\left(\pi_{X} R \times S\right)-R\right)}
$$

In DRC: ?
$R \div S$ in Primitive RA vs. RC

$$
\begin{aligned}
& R(X, Y) \div S(Y) \\
& \operatorname{InRA:} \\
& \pi_{X} R-\pi_{X}\left(\left(\pi_{X} R \times S\right)-R\right) \\
& \operatorname{In} \nabla R C: \\
& \quad\{x \mid \exists \mathrm{z} \cdot[\mathrm{R}(\mathrm{x}, \mathrm{z})] \wedge
\end{aligned}
$$

x is "guarded": safe and thus domain independent
$R \div S$ in Primitive RA vs. RC

$$
R(X, Y) \div S(Y)
$$

$$
\begin{aligned}
& \operatorname{InR} R A_{i} \\
& \pi_{x} R-\pi_{x}\left(\left(\pi_{x} R \times S\right)-R\right)
\end{aligned}
$$

$$
\text { In DRC: what if } S(y)=\varnothing \text { ? }
$$

$$
\{x \mid \exists \mathrm{z} \cdot[\mathrm{R}(\mathrm{x}, \mathrm{z})] \wedge \forall \mathrm{y} \cdot[\mathrm{~S}(\mathrm{y}) \rightarrow \mathrm{R}(\mathrm{x}, \mathrm{y})]\}
$$

$R \div S$ in Primitive RA vs. RC
? without universal quantification

$$
\begin{aligned}
& R(X, Y) \div S(Y) \\
& \stackrel{\text { In } R A_{i}}{\pi_{X} R}-\pi_{X}\left(\left(\pi_{X} R \times S\right)-R\right) \\
& \text { In DRC: } \\
& \{\mathrm{x} \mid \exists \mathrm{z} .[\mathrm{R}(\mathrm{x}, \mathrm{z})] \wedge \forall \mathrm{y} .[\mathrm{S}(\mathrm{y}) \rightarrow \mathrm{R}(\mathrm{x}, \mathrm{y})]\}
\end{aligned}
$$

$R \div S$ in Primitive RA vs. RC

$$
\begin{aligned}
& R(X, Y) \div S(Y) \\
& \operatorname{InRA:} \\
& \pi_{X} R-\pi_{X}\left(\left(\pi_{X} R \times S\right)-R\right)
\end{aligned}
$$

In DRC:

$$
\begin{aligned}
& \{\mathrm{x} \mid \exists \mathrm{z} \cdot[\mathrm{R}(\mathrm{x}, \mathrm{z})] \wedge \forall \mathrm{y} \cdot[\mathrm{~S}(\mathrm{y}) \rightarrow \mathrm{R}(\mathrm{x}, \mathrm{y})]\} \\
& \{\mathrm{x} \mid \exists \mathrm{z} \cdot[\mathrm{R}(\mathrm{x}, \mathrm{z})] \wedge \nexists \mathrm{y} \cdot[\mathrm{~S}(\mathrm{y}) \wedge \neg \mathrm{R}(\mathrm{x}, \mathrm{y})]\}
\end{aligned}
$$

In TRC:
?
$R \div S$ in Primitive RA vs. RC
$R(X, Y) \div S(Y)$

$S=0$		$S=Q$	
X	Y	Y	X
a	0	1	a
a	1	2	
a	2		
b	1		
b) 2			

$\{\mathrm{x} \mid \exists \mathrm{z} .[\mathrm{R}(\mathrm{x}, \mathrm{z})] \wedge \forall \mathrm{y} \cdot[\mathrm{S}(\mathrm{y}) \rightarrow \mathrm{R}(\mathrm{x}, \mathrm{y})]\}$
$\{\mathrm{x} \mid \exists \mathrm{z} \cdot[\mathrm{R}(\mathrm{x}, \mathrm{z})] \wedge \nexists \mathrm{y} \cdot[\mathrm{S}(\mathrm{y}) \wedge \neg \mathrm{R}(\mathrm{x}, \mathrm{y})]\}$
$\{r . X \mid r \in R .[\nexists s \in S .[\mid$
$R \div S$ in Primitive RA vs. RC

$$
\begin{aligned}
& R(X, Y) \div S(Y)
\end{aligned}
$$

> In DRC:
> $\{\mathrm{x} \mid \exists \mathrm{z} \cdot[\mathrm{R}(\mathrm{x}, \mathrm{z})] \wedge \forall \mathrm{y} .[\mathrm{S}(\mathrm{y}) \rightarrow \mathrm{R}(\mathrm{x}, \mathrm{y})]\}$
> $\{\mathrm{x} \mid \exists \mathrm{z} \cdot[\mathrm{R}(\mathrm{x}, \mathrm{z})] \wedge \nexists \mathrm{y} \cdot[\mathrm{S}(\mathrm{y}) \wedge \mid \neg \mathrm{R}(\mathrm{x}, \mathrm{y})]\}$
> ? in SQL
> $\left.\left\{r . X \mid r \in R .\left[\nexists \mathrm{s} \in \mathrm{S} .\left[\nexists r_{2} \in \mathrm{R} \cdot\left[\mathrm{r}_{2} \cdot \mathrm{Y}=\mathrm{s} . \mathrm{Y} \wedge \mathrm{r}_{2} \cdot \mathrm{X}=\mathrm{r} . \mathrm{X}\right]\right]\right]\right]\right\}$
$R \div S$ in Primitive RA vs. RC

In SQL

SELECT DISTINCT R.X
FROM R
WHERE not exists(
SELECT *
FROM S
WHERE not exists(
SELECT *
FROM R AS R2

WHERE R2. $Y=S . Y$

```
AND R2.X = R.X))
```

In TRC:
$\left\{\mathrm{r} . \mathrm{X} \mid \mathrm{r} \in \mathrm{R} .\left[\nexists \mathrm{s} \in \mathrm{S} .\left[\nexists \mathrm{r}_{2} \in \mathrm{R} .\left[\mathrm{r}_{2} . \mathrm{Y}=\mathrm{s} . \mathrm{Y} \wedge \mathrm{r}_{2} \mathrm{X}=\mathrm{r} . \mathrm{X}\right]\right]\right]\right\}$

RA vs. RC
There are logical expressions that cannot be expressed in basic RA with the same number of table references
$R(X, Y) \div S(Y)$

$$
\begin{gathered}
\text { In RA: } \\
\pi_{X} R-\pi_{X}\left(\left(\pi_{X} R \times S\right)-R\right) \quad \begin{array}{l}
\text { 3 references to } R \text { in } R A, \\
\text { but only } 2 \text { references in } R C
\end{array}
\end{gathered}
$$

In DRC:

$$
\{\mathrm{x} \mid \exists \mathrm{z} \cdot[\mathrm{R}(\mathrm{x}, \mathrm{z})] \wedge \forall \mathrm{y} \cdot[\mathrm{~S}(\mathrm{y}) \rightarrow \mathrm{R}(\mathrm{x}, \mathrm{y})]\}
$$

In TRC:
$\left\{\mathrm{r} . \mathrm{X} \mid \mathrm{r} \in \mathrm{R} .\left[\nexists \mathrm{s} \in \mathrm{S} .\left[\nexists \mathrm{r}_{2} \in \mathrm{R} .\left[\mathrm{r}_{2} \cdot \mathrm{Y}=\mathrm{s} . \mathrm{Y} \wedge \mathrm{r}_{2} . \mathrm{X}=\mathrm{r} . \mathrm{X}\right]\right]\right]\right\}$
$R \div S$ as set-containment join (not part of standard RA)

$$
R(X, Y) \div S(Y)
$$

As set containment join
$R \bowtie_{\text {R.Y〇S.Y }} S$

R		$S=Q$	
X	Y	Y	X
a	0	1	a
a	1	2	
a	2		
b	1		

In DRC (extended with set containment):

$$
\{x \mid\{y \mid R(x, y)\} \supseteq\{y \mid S(y)\}\}
$$

Set-containment joins (not part of standard RA)

R
$\bowtie_{\mathrm{B} \supseteq \mathrm{C}} \mathrm{S}$
A B a 0 a 1 a 2 b 1 C D 1 a 2 a 1 b A D a a a b b b

In DRC (extended with set containment):

$$
\{(\mathrm{A}, \mathrm{D}) \mid\{\mathrm{B} \mid \mathrm{R}(\mathrm{~A}, \mathrm{~B})\} \supseteq\{\mathrm{C} \mid \mathrm{S}(\mathrm{C}, \mathrm{D})\}\}
$$

Set-containment joins generalize equi-joins

				Q	
A	B	C	D	A	D
a	0	1	a	a	a
a	1	2	a	a	b
a	2	1	b	b	b
b	1			b	a

Equi-join as instance of set intersection join

Set-containment joins generalize equi-joins

$\pi_{\text {- } \mathrm{BLC}(\mathrm{R}}$	\bowtie			Q	
A	B	C	D	A	D
a	0	1	a	a	a
a	1	2	a	a	b
a	2	1	b	b	b
b	1			b	a

"non-empty set intersection" join
$\mathrm{R} \bowtie_{\mathrm{B} \cap \mathrm{C} \neq \varnothing} \mathrm{S} \equiv \pi_{-\mathrm{B}, \mathrm{C}}\left(\mathrm{R} \bowtie_{\mathrm{B}=\mathrm{C}} \mathrm{S}\right)$
In DRC (extended with set containment):
$\{(A, D) \mid\{B \mid R(A, B)\} \cap\{C \mid S(C, D)\} \neq \emptyset\}$
$\{(A, D) \mid \exists B[R(A, B) \wedge S(B, D)]\}$

Parentheses Convention

- We have defined 3 unary operators ($\mathrm{w} /$ renaming) and 3 binary operators
- It is acceptable to omit the parentheses from $o(R)$ when o is unary
- Then, unary operators take precedence over binary ones
- Example:

$$
\begin{gathered}
\left(\sigma_{\text {course='DB' }}(\text { Course })\right) \times\left(\rho_{\text {cid } \rightarrow \text { cid1 } 1}(\text { Studies })\right) \\
\text { becomes } \\
\sigma_{\text {course' }} \text { 'DB' }{ }^{\text {Course }} \times \rho_{\text {cid } \rightarrow \text { cid1 } 1} \text { Studies }
\end{gathered}
$$

Topic 1: Data models and query languages Unit 3: Relational Algebra (RA) Lecture 8

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
https://northeastern-datalab.github.io/cs7240/sp24/
2/6/2024

Pre-class conversations

- Last class summary
- Please keep on pointing out any errors on the slides
- It is time to start to hand in your first scribes (some ideas today)
- Project discussions (in 2 weeks: Fri 2/16: project ideas)
- today:
- we continue with relational algebra (RA)
- next week: equivalence of RA and *safe* RC (Codd's theorem)
- nexttime: †ODAy
- Recursion (Datalog)

Algebra and the connection to logic and queries

- Algebra
- Relational Algebra
- Operators
- Independence
- Power of algebra: optimizations
- Equivalence RA and safe RC (Codd's theorem)
- RA \rightarrow RC
$-R C \rightarrow R A$

5 Primitive Operators

1. Projection (π)
2. Selection (σ)
3. Union (U)
4. Set Difference (-)
5. Cross Product (\times)

Is this a well chosen set of primitives?

5 Primitive Operators

1. Projection (π)
2. Selection (σ)
3. Union (U)
4. Set Difference (-)
5. Cross Product (\times)

independent

not independent
$y=(x+2) \cdot \frac{2}{3}$ $2+3 y+\underset{2}{3}-1+\frac{2}{3}$
$\frac{2}{3}+1$

Is this a well chosen set of primitives? could we drop an operator "without losing anything"?

Independence among Primitives

- Let \circ be an RA operator, and let A be a set of RA operators
- We say that \circ is independent of A if o cannot be expressed in A; that is, no expression in A is equivalent to \circ

Theorem: Each of the five primitives is independent of the other four

$$
\{\pi, \sigma, \times, \cup,-\}
$$

Proof:

- Separate argument for each of the 5 (For each operator, we need to discover a property that is uniquely possessed by that operator, and thus not by any RA expression that involves only the other 4 operations)
- Arguments follow a common pattern (union as example next slides)

Recipe for Proving Independence of an operator

1. Fix a schema S and an instance D over S
2. Find some property P over relations
3. Prove: for every expression φ that does not use 0 , the relation $\varphi(D)$ satisfies P
```
Such proofs are typically by induction on the size of the
expression, since operators compose
```

4. Find an expression ψ such that ψ uses \circ and $\psi(D)$ violates P

Concrete Example: Proving Independence of Union \cup

1. Fix a schema S and an instance D over S
$S: R(A), S(A) \quad D:\{R(0), S(1)\}$

R	S
\mathbf{A}	\mathbf{A}
0	1

2. Find some property P over relations
\#tuples < 2
3. Prove: for every expression φ that does not use \circ, the relation $\varphi(D)$ satisfies P Induction base: R and S have \#tuples<2
Induction step: If $\varphi_{1}(\mathrm{D})$ and $\varphi_{2}(\mathrm{D})$ have \#tuples <2, then so do:

$$
\sigma_{c}\left(\varphi_{1}(D)\right), \quad \pi_{A}\left(\varphi_{1}(D)\right), \quad \varphi_{1}(D) \times \varphi_{2}(D), \quad \varphi_{1}(D)-\varphi_{2}(D), \quad \rho_{A \rightarrow B}\left(\varphi_{1}(D)\right)
$$

4. Find an expression ψ such that ψ uses \circ and $\psi(\mathrm{D})$ violates P
$\psi=R U S$

Algebra and the connection to logic and queries

- Algebra
- Relational Algebra
- Operators
- Independence
- Power of algebra: optimizations
- Equivalence RA and safe RC (Codd's theorem)
- RA \rightarrow RC
- RC \rightarrow RA

Commutativity and distributivity of RA operators

- The basic commutators:
- Push projection through selection, join, union

$$
\begin{aligned}
& \pi_{\mathbf{A}}(R \cup S)=\pi_{\mathbf{A}}(R) \cup \pi_{A}(S) \\
& \sigma_{\theta}(R \cup S)=\sigma_{\theta}(R) \cup \sigma_{\theta}(S) \\
& (R \cup S) \times T=(R \times T) \cup(S \times T)
\end{aligned}
$$

- Note that this is not an exhaustive set of operations

What about sorting and joins?
This simple set of tools allows us to greatly improve the execution time of queries by optimizing RA plans!

We next illustrate with an SFW (Select-From-Where) query

An example: SQL to RA to Optimized RA

$$
R(A, B) S(B, C) T(C, D)
$$

SELECT R.A,T.D
FROM R,S,T
WHERE R.B = S.B
and S.C = T.C
and R.A < 10;
in RA
?

An example: SQL to RA to Optimized RA

Heuristic: have selection and projection earlier to have fewer (or smaller) "intermediate" tuples

\[

\]

Query tree / expression tree / computation tree / data flow graph

An example: SQL to RA to Optimized RA

Heuristic: have selection and projection earlier to have fewer (or smaller) "intermediate" tuples

Pushing down may be suboptimal if selection condition is very expensive (e.g. running some image processing algorithm). Projection could be unnecessary effort (but more rarely).

An example: SQL to RA to Optimized RA

Heuristic: have selection and projection earlier to have fewer (or smaller) "intermediate" tuples

An example: SQL to RA to Optimized RA

Heuristic: have selection and projection earlier to have fewer (or smaller) "intermediate" tuples

An example: SQL to RA to Optimized RA

Variable Elimination!

$$
\begin{gathered}
\begin{array}{|l}
\hline \mathrm{R}(\mathrm{~A}, \mathrm{~B}) \mathrm{S}(\mathrm{~B}, \mathrm{C}) \mathrm{T}(\mathrm{C}, \mathrm{D}) \\
\text { SELECT R.A,T.D } \\
\text { FROM } \mathrm{R}, \mathrm{~S}, \mathrm{~T} \\
\text { WHERE } \mathrm{R} \cdot \mathrm{~B}=\mathrm{S} \cdot \mathrm{~B} \\
\text { and } \mathrm{S} \cdot \mathrm{C}=\mathrm{T} \cdot \mathrm{C} \\
\text { and } \mathrm{R} \cdot \mathrm{~A}<10 ; \\
\operatorname{in~} \mathrm{RA}
\end{array} \\
\pi_{A, D}\left(T 凶 \pi_{A, C}\left(\sigma_{A<10} R \bowtie S\right)\right) \\
\pi_{-C} \quad \pi_{-B} \\
\text { We now eliminate Bearlier }
\end{gathered}
$$

Algebra and the connection to logic and queries

- Algebra
- Relational Algebra
- Operators
- Independence
- Power of algebra: optimizations
- Equivalence RA and safe RC (Codd's theorem)
- RA \rightarrow RC
- $R C \rightarrow R A$
"Clear" variables*
Formula with clear variables : each quantifier "has its own variables" \& each variable has only free or only bound occurrences

$$
\forall x . \exists y . R(x, y, z) \wedge \neg \exists x . S(y, x)
$$

$?$
which variables are free or bound?

"Clear" variables*

Formula with clear variables : each quantifier "has its own variables" \& each variable has only free or only bound occurrences

notice operator precedence: \exists before \wedge : $\forall x . \exists y \cdot[R(x, y, z)] \wedge \neg \exists x .[S(y, x)]$

Not "clear": Two x's and y's are different variables.
? now to make it "clear"

"Clear" variables*

Formula with clear variables : each quantifier "has its own variables" \& each variable has only free or only bound occurrences

notice operator precedence: \exists before \wedge : $\forall x . \exists y \cdot[R(x, y, z)] \wedge \neg \exists x .[S(y, x)]$

Not "clear": Two x's and y's are different variables.
$\forall x . \exists y . R(x, y, z) \wedge \neg \exists u . S(v, u)$
now "clear"
$\{(\mathrm{z}, \mathrm{v}) \mid \forall \mathrm{x} . \exists \mathrm{y} . \mathrm{R}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \wedge \neg \exists \mathrm{u} . \mathrm{S}(\mathrm{v}, \mathrm{u})\}$
Now a query. But how to make it domain-independent

"Clear" variables*

Formula with clear variables : each quantifier "has its own variables" \& each variable has only free or only bound occurrences

notice operator precedence: \exists before \wedge : $\forall x . \exists y .[R(x, y, z)] \wedge \neg \exists x .[S(y, x)]$

Not "clear": Two x's and y 's are different variables.

$$
\forall x . \exists y . R(x, y, z) \wedge \neg \exists u . S(v, u)
$$

now "clear"

$$
\begin{aligned}
& \exists s,+\cdot R(s, t, z) \wedge \\
& \exists p . S(p, v) \wedge \\
& \{(\mathrm{z}, \mathrm{v}) \| \forall \mathrm{x} . \exists \mathrm{y} . \mathrm{R}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \wedge \perp \neg \exists \mathrm{u} . \mathrm{S}(\mathrm{v}, \mathrm{u})\}
\end{aligned}
$$

Now a query. But how to
make it domain-independent

"Clear" variables*

Formula with clear variables : each quantifier "has its own variables" \& each variable has only free or only bound occurrences

notice operator precedence: \exists before \wedge : $\forall x . \exists y .[R(x, y, z)] \wedge \neg \exists x .[S(y, x)]$

Not "clear": Two x's and y 's are different variables.

$$
\forall x . \exists y . R(x, y, z) \wedge \neg \exists u . S(v, u)
$$

now "clear"

$$
\begin{gathered}
\exists s,+R(s, t, z) \wedge \quad \exists p \cdot S(p, v) \wedge \\
\{(\mathrm{z}, \mathrm{v})|\forall \mathrm{v} \cdot \exists y \cdot \mathrm{R}(\mathrm{n}, \mathrm{y}, \mathrm{z}) \wedge| \neg \exists \mathrm{u} . \mathrm{S}(\mathrm{v}, \mathrm{u})\} \\
\forall \mathrm{x} \cdot[\exists w,+\mathrm{R}(\mathrm{x}, \mathrm{w}, \mathrm{t}) \rightarrow \exists y \cdot \mathrm{R}(\mathrm{x}, y, z)]
\end{gathered}
$$

Repeated variable names

In sentences with multiple quantifiers, distinct variables do not need to range over distinct objects! (cp. homomorphism vs. isomorphism)

Which of the following formulas imply each other?
$\forall \mathrm{x} . \forall \mathrm{y} . \mathrm{E}(\mathrm{x}, \mathrm{y})$
$\forall \mathrm{x} . \mathrm{E}(\mathrm{x}, \mathrm{x})$
$\exists \mathrm{x} . \exists \mathrm{y} . \mathrm{E}(\mathrm{x}, \mathrm{y})$
$\exists \mathrm{x} . \mathrm{E}(\mathrm{x}, \mathrm{x})$

Repeated variable names

In sentences with multiple quantifiers, distinct variables do not need to range over distinct objects! (cp. homomorphism vs. isomorphism)

Repeated variable names

In sentences with multiple quantifiers, distinct variables do not need to range over distinct objects! (cp. homomorphism vs. isomorphism)

$$
\text { Assume DOM = } \varnothing \text { : }
$$

Example RC \rightarrow RA
Q: ?
In DRC:
$\{\mathrm{x} \mid \exists \mathrm{z}, \mathrm{w} . \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y} \cdot[\neg \operatorname{Spouse}(\mathrm{x}, \mathrm{y})]\}$

Example $\mathrm{RC} \rightarrow \mathrm{RA}$

Person(id, name, country) Spouse(id1, id2)
Q: "Find persons without a spouse"

In DRC:
$\{\mathrm{x} \mid \exists \mathrm{z}, \mathrm{w} . \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y} \cdot[\neg \operatorname{Spouse}(\mathrm{x}, \mathrm{y})]\}$

?

In DRC:
$\{x \mid \exists \mathrm{z}, \mathrm{w} . \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y} \cdot[\neg \operatorname{Spouse}(\mathrm{x}, \mathrm{y})]\}$
$\{x \mid \exists \mathrm{z}, \mathrm{w} . \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \neg \exists \mathrm{y} .[\operatorname{Spouse}(\mathrm{x}, \mathrm{y})]\}$

π_{id} Person $-\pi_{\mathrm{id} 1}$ Spouse
$\pi_{i d}$ Person $-\rho_{\mathrm{id} 1 \rightarrow \mathrm{id}}\left(\pi_{\mathrm{id} 1}\right.$ Spouse $)$
Recall: named vs ordered perspective

Example $R A \rightarrow R C$ for $R(X, Y) \div S(Y)$

In DRC:

$$
\begin{aligned}
& \{\mathrm{x} \mid \exists \mathrm{z} \cdot[\mathrm{R}(\mathrm{x}, \mathrm{z})] \wedge \quad \forall \mathrm{y} \cdot[\mathrm{~S}(\mathrm{y}) \rightarrow \mathrm{R}(\mathrm{x}, \mathrm{y})]\} \\
& \{\mathrm{x} \mid \exists \mathrm{z} \cdot[\mathrm{R}(\mathrm{x}, \mathrm{z})] \wedge \neg \exists \mathrm{y} \cdot[\mathrm{~S}(\mathrm{y}) \wedge \neg \mathrm{R}(\mathrm{x}, \mathrm{y})]\}
\end{aligned}
$$

In $R A$:

Example $R A \rightarrow R C$ for $R(X, Y) \div S(Y)$

In DRC:

$$
\begin{aligned}
& \{\mathrm{x} \mid \exists \mathrm{z} \cdot[\mathrm{R}(\mathrm{x}, \mathrm{z})] \wedge \quad \forall \mathrm{y} \cdot[\mathrm{~S}(\mathrm{y}) \rightarrow \mathrm{R}(\mathrm{x}, \mathrm{y})]\} \\
& \{\mathrm{x} \mid \exists \mathrm{z} \cdot[\mathrm{R}(\mathrm{x}, \mathrm{z})] \wedge \neg \exists \mathrm{y} \cdot[\mathrm{~S}(\mathrm{y}) \wedge \neg \mathrm{R}(\mathrm{x}, \mathrm{y})]\}
\end{aligned}
$$

In RA:

$$
\pi_{X} R-\pi_{X}\left(\left(\pi_{X} R \times S\right)-R\right)
$$

Translation back into DRC:

Example $R A \rightarrow R C$ for $R(X, Y) \div S(Y)$

In DRC:

$$
\begin{aligned}
& \{\mathrm{x} \mid \exists \mathrm{z} .[\mathrm{R}(\mathrm{x}, \mathrm{z})] \wedge \quad \forall \mathrm{y} .[\mathrm{S}(\mathrm{y}) \rightarrow \mathrm{R}(\mathrm{x}, \mathrm{y})]\} \\
& \{\mathrm{x} \mid \exists \mathrm{z} .[\mathrm{R}(\mathrm{x}, \mathrm{z})] \wedge \neg \exists \mathrm{y} \cdot[\mathrm{~S}(\mathrm{y}) \wedge \neg \mathrm{R}(\mathrm{x}, \mathrm{y})]\}
\end{aligned}
$$

InRA:

$(\pi_{X}(R)-\pi_{x}(\underbrace{\left.\left(\pi_{x}, R\right) \times S\right)}_{0}-(R))$

$$
\{\mathrm{x} \mid \exists \mathrm{z} \cdot[\mathrm{R}(\mathrm{x}, \mathrm{z})] \wedge \neg \exists \mathrm{y} \cdot[\exists \mathrm{z} \cdot[\mathrm{R}(\mathrm{x}, \mathrm{z})] \wedge \mathrm{S}(\mathrm{y}) \wedge \neg \mathrm{R}(\mathrm{x}, \mathrm{y})]\}
$$

Equivalence Between RA and Domain-Independent RC

CODD's THEOREM:
 RA and domain-independent RC have the same expressive power.

More formally, on every schema \mathbf{S} :

1. For every RA expression E, there is a domain-independent RC query Q s.t. $\mathrm{Q} \equiv \mathrm{E}$
2. For every domain-independent $R C$ query Q, there is an RA expression E s.t. $\mathrm{Q} \equiv \mathrm{E}$

The proof has two directions:

```
RA }->\mathrm{ RC:
    by induction on the size
    of the RA expression
RC}->RA
    more involved
```


Algebra and the connection to logic and queries

- Algebra
- Relational Algebra
- Operators
- Independence
- Power of algebra: optimizations
- Equivalence RA and safe RC (Codd's theorem)
- RA \rightarrow RC
$-R C \rightarrow R A$

RA \rightarrow DRC: Intuition

- Construction by induction
- Key technical detail: need to maintain a mapping b/w attribute names and variables

$$
\begin{array}{r}
Q(1) \leftarrow R(1,2), S(1,3) \\
y=2 \quad \begin{array}{r}
y=3
\end{array}
\end{array}
$$

RA expression	DRC formula ϕ Here, ϕ_{i} is the formula constructed for expression E_{i}
$R(n$ columns $)$	$R\left(X_{1}, \ldots, X_{n}\right)$

$\mathrm{E}_{1} \cup \mathrm{E}_{2}$
$E_{1}-E_{2}$
$\pi_{A_{1}, \ldots, A_{k}}\left(\mathrm{E}_{1}\right)$
$\sigma_{\mathrm{c}}\left(\mathrm{E}_{1}\right)$

RA \rightarrow DRC: Intuition

- Construction by induction
- Key technical detail: need to maintain a mapping b/w attribute names and variables

RA \rightarrow DRC: Intuition

- Construction by induction
- Key technical detail: need to maintain a mapping b/w attribute names and variables

RA expression \mid DRC formula ϕ Here, $\boldsymbol{\phi}_{i}$ is the formula constructed for expression E_{i}

R (n columns) $\quad \mathrm{R}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)$

$\mathrm{E}_{1} \times \mathrm{E}_{2}$	$\phi_{1} \wedge \phi_{2}$ disjoint variables (rename)
$\mathrm{E}_{1} \cup \mathrm{E}_{2}$	$\phi_{1} \vee \phi_{2}$ use identical variables (rename)
$\mathrm{E}_{1}-\mathrm{E}_{2}$	$\phi_{1} \wedge \neg \phi_{2}$ use identical variables (rename)

$\pi_{A_{1}, \ldots, A_{k}}\left(\mathrm{E}_{1}\right)_{4}$	$\exists \mathrm{X}_{1} \ldots \mathrm{\exists} \mathrm{X}_{m} \cdot \phi_{1}$ where $\mathrm{X}_{1}, \ldots, \mathrm{X}_{m}$ are the variables not among A_{1}, \ldots, A_{k}
$\sigma_{\mathrm{c}}\left(\mathrm{E}_{1}\right)$	correspondence more natural with
project-away operator: $\pi_{-A_{1}, \ldots, A_{m}}\left(\mathrm{E}_{1}\right)$	

RA \rightarrow DRC: Example $R \div S$
$R(A, B) \quad S(B)$

RA	DRC	Mapping
R		
$\pi_{A}(R)$		
S		
$\pi_{A}(R) \times S$		
$\left(\pi_{A}(R) \times S\right)-R$		
$\pi_{A}\left(\left(\pi_{A}(R) \times S\right)-R\right)$		
$\pi_{A}(R)-$		
$\pi_{A}\left(\left(\pi_{A}(R) \times S\right)-R\right)$		

RA \rightarrow DRC: Example $R \div S$
$R(A, B) \quad S(B)$

RA	DRC	Mapping
R	$R(x, z)$	$x: R . A, z: R . B$
$\pi_{A}(R)$	$\exists z . R(x, z)$	x:R.A
S	$S(y)$	$y: S . B$
$\pi_{A}(R) \times S$		
$\left(\pi_{A}(R) \times S\right)-R$		
$\pi_{A}\left(\left(\pi_{A}(R) \times S\right)-R\right)$		
$\pi_{A}(R)-$		

RA \rightarrow DRC: Example $R \div S$
$R(A, B) \quad S(B)$

RA	DRC	Mapping
R	$\mathrm{R}(\mathrm{x}, \mathrm{z})$	x:R.A, z:R.B
$\pi_{A}(\mathrm{R})$	ヨz. R(x, z)	x:R.A
S	S(y)	y:S.B
$\pi_{A}(\mathrm{R}) \times \mathrm{S}$	$\mathrm{z} \cdot[\mathrm{R}(\mathrm{x}, \mathrm{z})] \wedge \mathrm{S}(\mathrm{y}) \quad \begin{aligned} & \begin{array}{l} 4 \text { needs to be } \\ \text { different from } \mathrm{z} \end{array} \end{aligned}$	$x: R . A, y: S . B$
$\left(\pi_{A}(R) \times S\right)-R$	\#z. $\mathrm{R}(\mathrm{x}, \mathrm{z}) \wedge \mathrm{S}(\mathrm{y}) \wedge \neg \mathrm{R}(\mathrm{x}, \mathrm{y})$	$x: R . A, ~ y: S . B$
$\pi_{A}\left(\left(\pi_{A}(R) \times S\right)-R\right)$		x:R.A
$\begin{aligned} & \pi_{A}(R)- \\ & \pi_{A}((\pi \sqrt{(R)} \times S)-R) \end{aligned}$	$\begin{gathered} \exists \mathrm{z} \cdot\left(\hat{\mathrm{R}(x, z)} \wedge \mathrm{x}^{\prime}\right. \text { need to be same variabl } \\ \neg \exists \mathrm{y} \cdot[\mathrm{zz} \cdot \mathrm{R(x}, \mathrm{z}) \wedge \mathrm{S}(\mathrm{y}) \wedge \neg \mathrm{R}(x, y)] \end{gathered}$	x:R.A

This is the DRC expression we got by translating from RA.

$$
\{x \mid \exists \mathrm{z} \cdot[\mathrm{R}(\mathrm{x}, \mathrm{z})] \wedge \neg \exists \mathrm{y} \cdot[\exists \mathrm{\ell} \cdot[\mathrm{R}(\mathrm{x}, \mathrm{z})] \wedge \mathrm{S}(\mathrm{y}) \wedge-(\mathrm{R}(\mathrm{x}, \mathrm{y})]\}
$$

This is the DRC expression for relational division that we saw earlier.

$$
\{x \mid \exists \mathrm{z} \cdot[\mathrm{R}(\mathrm{x}, \mathrm{z})] \wedge \neg \exists \mathrm{y} \cdot[
$$

$$
S(y) \wedge\lceil\widehat{R}(x, y)]\}
$$

Claim: there is no logically equivalent RA expression that uses the table R only twice. For details see: "On the Reasonable Effectiveness of Relational Diagrams: Explaining Relational Query Patterns and the Pattern Expressiveness of Relational Languages", SIGMOD'24. https://arxiv.org/pdf/2401.04758

Algebra and the connection to logic and queries

- Algebra
- Relational Algebra
- Operators
- Independence
- Power of algebra: optimizations
- Equivalence RA and safe RC (Codd's theorem)
- RA \rightarrow RC
- $\mathrm{RC} \rightarrow \mathrm{RA}$

DRC \rightarrow RA: Intuition

Proof (Sketch):

- Show first that for every relational database schema \mathbf{S}, there is a relational algebra expression E such that for every database instance \mathbf{D}, we have that $\operatorname{ADom}(\mathbf{D})=E(\mathbf{D})$.
- Tip: just the union of all columns
- Use the above fact and induction on the construction of RC formulas to obtain a translation of RC under the active domain interpretation to RA.
- In this translation, the most interesting part is the simulation of the universal quantifier \forall in relational algebra uses the logical equivalence: $\forall y . \phi \equiv$?
- In this translation, the most interesting part is the simulation of the universal quantifier \forall in relational algebra

$$
\text { uses the logical equivalence: } \forall y . \phi \equiv \quad \neg \exists y . \neg \phi
$$

- As an illustration, consider: $\forall y . \mathrm{E}(\mathrm{x}, \mathrm{y}) \equiv$?
- In this translation, the most interesting part is the simulation of the universal quantifier \forall in relational algebra

$$
\text { uses the logical equivalence: } \forall y . \phi \equiv \quad \neg \exists y . \neg \phi
$$

- As an illustration, consider: $\forall y . \mathrm{E}(\mathrm{x}, \mathrm{y}) \equiv \neg \exists \mathrm{y} . \neg \mathrm{E}(\mathrm{x}, \mathrm{y})$

$$
\text { and recall: } \quad \operatorname{ADom}(D)=?
$$

- In this translation, the most interesting part is the simulation of the universal quantifier \forall in relational algebra
uses the logical equivalence: $\forall y . \phi \equiv \quad \neg \exists y \cdot \neg \phi$
- As an illustration, consider: $\forall y . \mathrm{E}(\mathrm{x}, \mathrm{y}) \equiv \neg \exists \mathrm{y} . \neg \mathrm{E}(\mathrm{x}, \mathrm{y})$

$$
\text { and recall: } \operatorname{ADom}(D)=\pi_{A}(E) \cup \pi_{B}(E)
$$

DRC formula ϕ	RA expression for $\phi^{\text {adom }}$
(x, y)	

$$
\begin{array}{r}
\neg \mathrm{E}(\mathrm{x}, \mathrm{y}) \\
\exists \mathrm{y} . \neg \mathrm{E}(\mathrm{x}, \mathrm{y}) \\
\neg \exists \mathrm{y} . \neg \mathrm{E}(\mathrm{x}, \mathrm{y})
\end{array}
$$

DRC \rightarrow RA: Intuition

- In this translation, the most interesting part is the simulation of the universal quantifier \forall in relational algebra
uses the logical equivalence: $\forall y . \phi \equiv \quad \neg \exists y . \neg \phi$
- As an illustration, consider: $\forall y . \mathrm{E}(\mathrm{x}, \mathrm{y}) \equiv \neg \exists \mathrm{y} . \neg \mathrm{E}(\mathrm{x}, \mathrm{y})$

$$
\text { and recall: } \quad \operatorname{ADom}(\mathrm{D})=\pi_{A}(\mathrm{E}) \cup \pi_{B}(\mathrm{E})
$$

DRC formula ϕ RA expression for $\phi^{\text {adom }}$

$$
\begin{array}{r|r}
\neg \mathrm{E}(\mathrm{x}, \mathrm{y}) & \pi_{-\mathrm{B}} \quad \rho_{A}(\operatorname{ADom}(\mathrm{D})) \times \rho_{B}(\operatorname{ADom}(\mathrm{D}))-\mathrm{E} \\
\exists \mathrm{y} . \neg \mathrm{E}(\mathrm{x}, \mathrm{y}) & \\
\neg \exists \mathrm{y} . \neg \mathrm{E}(\mathrm{x}, \mathrm{y}) & \left.\rho_{A}(\operatorname{ADom}(\mathrm{D}))-\rho_{A}(\mathrm{ADom}(\mathrm{D})) \times \rho_{B}(\operatorname{ADom}(\mathrm{D}))-\mathrm{E}\right]
\end{array}
$$

Entire Story in One Slide (repeated slide)

1. $\mathrm{RC}=\mathrm{FOL}$ over DB
2. RC can express "bad queries" that depend not only on the DB, but also on the domain from which values are taken (domain dependence)
3. We cannot test whether an RC query is "good," but we can use a "good" subset of RC that captures all "good" queries (safety)
4. "Good" RC and RA can express the same queries! (equivalence = Codd's theorem)

Discussion

- What is the monotone fragment of RA ?

- What are the safe queries in RA ?
?
- Where do we use RA (applications) ?
?

Discussion

- What is the monotone fragment of RA ?
- Basic except difference (-): U, σ, π, \bowtie
- What are the safe queries in RA ?

?

- Where do we use RA (applications) ?
?

Discussion

- What is the monotone fragment of RA ?
- Basic except difference (-): U, σ, π, \bowtie

- What are the safe queries in RA ?
- All RA queries are safe
- Where do we use RA (applications) ?

Discussion

- What is the monotone fragment of RA ?
- Basic except difference (-): U, σ, π, \bowtie
- What are the safe queries in RA ?
- All RA queries are safe
- Where do we use RA (applications) ?
- Translating SQL (from WHAT to HOW)
- Directly as query languages (e.g. Pig-Latin)

Example 1. Suppose we have a table urls: (url, category, pagerank). The following is a simple SQL query that finds, for each sufficiently large category, the average pagerank of high-pagerank urls in that category.

```
SELECT category, AVG(pagerank)
FROM urls WHERE pagerank > 0.2
GROUP BY category HAVING COUNT(*) > 10'
```

An equivalent Pig Latin program is the following. (Pig Latin is described in detail in Section 3; a detailed understanding of the language is not required to follow this example.)
good_urls = FILTER urls BY pagerank > 0.2;
groups = GROUP good_urls BY category;
big_groups $=$ FILTER groups BY COUNT(good_urls) $>10^{6}$;
output = FOREACH big_groups GENERATE
category, AVG(good_urls.pagerank);

Example 1. Suppose we have a table urls: (url, category, pagerank). The following is a simple SQL query that finds, for each sufficiently large category, the average pagerank of high-pagerank urls in that category.
 FROM- Wx 7 S (WHERE pagerank >0.2

Latin is described if detail in Section 3; a detailed qnderstanding of the lanquage is rot required to follow this example.)
good_urls. $=$ FILTER url/s BY pagerank >0.2;
groups =GROOP good_urls BY category;
big_groups $=$ FILTER groups BY COUNT(good_ur1s) $>10^{6}$;
output = FOREACH big_groups GENERATE
category, AVG (good_urls.pagerank);

> For more, see: https://pig.apache.org/docs/r0.17.0/basic.html

3.5.2 JOIN in Pig Latin

Not all users need the flexibility offered by COGROUP. In many cases, all that is required is a regular equi-join. Thus, Pig Latin provides a JOIN keyword for equi-joins. For example,

$$
\begin{aligned}
\text { join_result }= & \text { JOIN results BY queryString, } \\
& \text { revenue BY queryString; }
\end{aligned}
$$

It is easy to verify that JOIN is only a syntactic shortcut for COGROUP followed by flattening. The above join command is equivalent to:

$$
\left.\begin{array}{rl}
\text { temp_var } & = \\
\text { COGROUP results BY queryString, } \\
\text { revenue BY queryString; }
\end{array}\right\} \begin{aligned}
& \text { FOREACH temp_var GENERATE } \\
& \text { join_result }
\end{aligned}
$$

[^0]: What is the shortest path from s to t?

