
1

Topic 1: Data models and query languages
Unit 3: Relational Algebra (RA)
Lecture 6

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
https://northeastern-datalab.github.io/cs7240/sp24/
1/29/2024

Updated 1/29/2024

https://northeastern-datalab.github.io/cs7240/sp24/

2

Algebra and the connection to logic and queries

• Algebra
• Relational Algebra

– Operators
– Independence
– Power of algebra: optimizations

• Equivalence RA and safe RC (Codd's theorem)
– RA → RC
– RC → RA

3Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What is “Algebra”?

• Algebra is the study of mathematical symbols and the rules for
manipulating these symbols
- e.g., Linear Algebra
- e.g., Relational Algebra
- e.g., Boolean Algebra
- e.g., Elementary algebra
- e.g., Abstract algebra

(groups, rings, fields, ...)

Also watch "What is abstract algebra?", Socratica, 2016: https://www.youtube.com/watch?v=IP7nW_hKB7I
Picture source: https://en.wikipedia.org/wiki/Algebraic_expression

https://northeastern-datalab.github.io/cs7240/
https://www.youtube.com/watch?v=IP7nW_hKB7I
https://en.wikipedia.org/wiki/Algebraic_expression

4Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What is “Abstract Algebra”?
• Abstract algebra: studies algebraic structures, which consist of:

- A domain (i.e. a set of elements)
- A collection of operators (acting on operands)

• each of arity d; maps a domain of sequences (x1,…,xd) to an element y of its codomain (usually that is also the domain)

- A set of axioms (or identities) that these operators must satisfy.
• e.g. commutativity: x ⊕ y ≡ y ⊕ x or ⊕(x,y) ≡ ⊕(y, x) or op(x,y) ≡ op(y,x)

• Examples:
- Boolean algebra: ({true,false},{∧,∨,¬})
- Ring of integers: (𝕫,{+,·})
- Relational algebra

• The definition of an operator allows for composition:

- e.g. op1(op2(x),op1(y,op4(x,z)))

ring: set equipped with two binary operations with certain
properties like distributivity of multiplication over addition

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

5Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Function composition

Sources: https://www.coursehero.com/sg/college-algebra/composition-of-functions/, https://upload.wikimedia.org/wikipedia/commons/2/21/Function_machine5.svg ,
https://en.wikibooks.org/wiki/Algebra/Functions , http://www.statisticslectures.com/topics/compositionoffunctions/

https://northeastern-datalab.github.io/cs7240/
https://www.coursehero.com/sg/college-algebra/composition-of-functions/
https://upload.wikimedia.org/wikipedia/commons/2/21/Function_machine5.svg
https://en.wikibooks.org/wiki/Algebra/Functions
http://www.statisticslectures.com/topics/compositionoffunctions/

6Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Distributivity = efficient factorization

What is the shortest
path from s to t?

a

c

b

d

g

e

f
ts m

=3

=6

=5

=2

=8

=4

=7

?

https://northeastern-datalab.github.io/cs7240/

7Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Distributivity = efficient factorization

What is the shortest
path from s to t?

Answer: 5 = 3 + 2

a

c

b

d

g

e

f
ts m

=3

=6

=5

=2

=8

=4

=7

min [a + d, a + e, a + f, a + g, ..., c + g]
min[3+2, 3+4, 3+7, 3+8, ..., 6+8]

?

https://northeastern-datalab.github.io/cs7240/

8Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Distributivity = efficient factorization

min

= min

[a + d, a + e, a + f, a + g, ..., c + g]

[a, b, c] + min [d, e, f, g]

What is the shortest
path from s to t?

Answer: 5 = 3 + 2

min[3+2, 3+4, 3+7, 3+8, ..., 6+8]

min[3,5,6] + min[2,4,7,8]

a

c

b

d

g

e

f
ts m

=3

=6

=5

=2

=8

=4

=7

min[x,y]+z = min[(x+z), (y+z)]
(+ distributes over min)

https://northeastern-datalab.github.io/cs7240/

9Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Distributivity = efficient factorization

• Semiring (ℝ∞,min,+,∞,0)

min

= min

[a + d, a + e, a + f, a + g, ..., c + g]

[a, b, c] + min [d, e, f, g]

What is the shortest
path from s to t?

Answer: 5 = 3 + 2

min[3+2, 3+4, 3+7, 3+8, ..., 6+8]

min[3,5,6] + min[2,4,7,8]

(Tropical semiring)

a

c

b

d

g

e

f
ts m

=3

=6

=5

=2

=8

=4

=7

min[x,y]+z = min[(x+z), (y+z)]
(+ distributes over min)

Principle of optimality from Dynamic Programming:
irrespective of the initial state and decision, an optimal
solution continues optimally from the resulting state

https://northeastern-datalab.github.io/cs7240/

10Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Distributivity = efficient factorization

How many paths are
there from s to t?

a

c

b

d

g

e

f
ts m

?

https://northeastern-datalab.github.io/cs7240/

11Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Distributivity = efficient factorization

How many paths are
there from s to t?

Answer: 12 = 3 ⋅ 4

a

c

b

d

g

e

f
ts m

https://northeastern-datalab.github.io/cs7240/

12Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Distributivity = efficient factorization

• Semiring (ℝ,+,⋅,0,1)

How many paths are
there from s to t?

Answer: 12 = 3 ⋅ 4

a

c

b

d

g

e

f
ts m

=1

=1

=1

=1

=1

=1

=1

+[x,y] ⋅ z = +[x⋅z,y⋅z]
(⋅ distributes over +)

count

= count

[a⋅d, a⋅e, a ⋅ f, a ⋅ g, ..., c ⋅ g]

[a, b, c] ⋅ count [d, e, f, g]

count[1⋅1, 1⋅1, 1⋅1, 1⋅1, ..., 1⋅1]

count[1,1,1] ⋅ count[1,1,1,1]

12

(Ring of real numbers)

https://northeastern-datalab.github.io/cs7240/

13Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Distributivity = efficient factorization

• Semiring (S,⊕,⊗,0,1)

⊕

= ⊕

[a⊗d, a⊗e, a⊗f, a⊗g, ..., c⊗g]

[a, b, c] ⊗ ⊕[d, e, f, g]

a

c

b

d

g

e

f
ts m

⊕[x,y] ⊗ z = ⊕[x ⊗ z,y ⊗ z]
(⊗ distributes over ⊕)

Semirings generalize this idea

https://northeastern-datalab.github.io/cs7240/

14Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Matrix multiplication

How many paths of
length 2 are there
from 7 to 6?

Example graph taken from "Kepner, Gilbert. Graph algorithms in the language of linear algebra, 2011" https://doi.org/10.1137/1.9780898719918

?

A... Adjacency matrix, or Arcs
think of dots as "1"s

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1137/1.9780898719918

15Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Matrix multiplication

How many paths of
length 2 are there
from 7 to 6?

matrix
multiplication

=
⋅ ⋅

⋅⋅⨀

Example graph taken from "Kepner, Gilbert. Graph algorithms in the language of linear algebra, 2011" https://doi.org/10.1137/1.9780898719918

A... Adjacency matrix, or Arcs

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1137/1.9780898719918

16Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Matrix multiplication

How many paths of
length 2 are there
from 7 to 6?

matrix
multiplication

2

=
⋅

⋅⋅
= 0⋅0 + 0⋅0 +

1⋅1
+ 1⋅0 + 1⋅1 + ...

⨀

Example graph taken from "Kepner, Gilbert. Graph algorithms in the language of linear algebra, 2011" https://doi.org/10.1137/1.9780898719918

A... Adjacency matrix, or Arcs

1

1

1

1

only diagonals and
7→6 are shown

⋅

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1137/1.9780898719918

17Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Matrix multiplication

matrix
multiplication

2

=
⋅

⋅⋅
= 0⋅0 + 0⋅0 +

1⋅1
+ 1⋅0 + 1⋅1 + ...

⨀

Example graph taken from "Kepner, Gilbert. Graph algorithms in the language of linear algebra, 2011" https://doi.org/10.1137/1.9780898719918

A... Adjacency matrix, or Arcs

1

1

1

1

only diagonals and
7→6 are shown

How long is the "shortest
path" (minimal sum of
weights) from 7 to 6?

3
2

9

8

?

⋅

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1137/1.9780898719918

18Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Matrix multiplication

How long is the "shortest
path" (minimal sum of
weights) from 7 to 6?

5

only diagonals and
7→6 are shown

=

= min[∞+∞, ∞+∞,
3+2, 3+∞, 9+8, ...]

+

Example graph taken from "Kepner, Gilbert. Graph algorithms in the language of linear algebra, 2011" https://doi.org/10.1137/1.9780898719918

A... Adjacency matrix, or Arcs

3
2

9

8
3 9

8

2

Neutral element ∞ instead of 0

⋅ ⋅
⋅

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1137/1.9780898719918

19Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The Relational Algebra
• In the relational algebra (RA) the elements are relations
- A relation is a schema together with a finite set of tuples

• RA has 5 primitive operators:
- Unary: projection, selection
- Binary: union, difference, Cartesian product

• Each of the 5 is essential or "independent": we cannot define it using the others
- We will see what exactly this means and how this can be proved

• In practice, we allow many more useful operators that can be defined by the primitive ones
(thus also called derived operators)
- For example, equi-joins via Cartesian product and selection

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

Company
cid CName StockPrice Country
1 GizmoWorks 25 USA
2 Canon 65 Japan
3 Hitachi 15 Japan

https://northeastern-datalab.github.io/cs7240/

20Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RA vs other Query Languages (QLs)

• There are some subtle (yet important) differences between RA and
other QLs. In RA, ...
- ... can tables have duplicate records?

- ... are missing (NULL) values allowed?

- ... is there any order among records?

- ...is the answer dependent on the domain from which values are taken (not
just the database at hand)?

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?
?
?

?

https://northeastern-datalab.github.io/cs7240/

21Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RA vs other Query Languages (QLs)

• There are some subtle (yet important) differences between RA and
other QLs. In RA, ...
- ... can tables have duplicate records?

• (RA vs. SQL)
- ... are missing (NULL) values allowed?

• (RA vs. SQL)
- ... is there any order among records?

• (RA vs. SQL)
- ...is the answer dependent on the domain from which values are taken (not

just the database at hand)?
• (RA vs. unsafe RC)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

22Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Recall: Virtues of the relational model

• "Separation of concerns": physical/logic independence, declarative language

• Simple, elegant clean: Everything is a relation

• Why did it take multiple years to make it happen?
- Big doubts it could be done efficiently.

System R is a database system built as a
research project at IBM San Jose Research
(now IBM Almaden Research Center) in
the 1970's. System R introduced the SQL
language and also demonstrated that a
relational system could provide good
transaction processing performance.

See also: "The 1995 SQL Reunion: People, Projects, and Politic", edited by Paul McJones 1997. https://www.mcjones.org/System_R/SQL_Reunion_95/index.html

https://northeastern-datalab.github.io/cs7240/
https://www.mcjones.org/System_R/SQL_Reunion_95/index.html

23Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RDBMS Architecture

• How does a SQL engine work ?

SQL
Query

Relational
Algebra (RA)

Plan

Optimized
RA Plan Execution

Declarative
query (from
user)

Translate to
relational algebra
expression

Find logically
equivalent- but
more efficient- RA
expression

Execute each
operator of the
optimized plan!

Relational Algebra allows us to translate declarative
(SQL) queries into precise and optimizable expressions!

https://northeastern-datalab.github.io/cs7240/

24

Algebra and the connection to logic and queries

• Algebra
• Relational Algebra

– Operators
– Independence
– Power of algebra: optimizations

• Equivalence RA and safe RC (Codd's theorem)
– RA → RC
– RC → RA

25Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Relational Algebra (RA) operators

• Five basic operators:
1. Selection: s ("sigma")
2. Projection: P
3. Cartesian Product: ´
4. Union: ⋃
5. Difference: –

• Auxiliary operators (sometimes counted as basic):
6. Renaming: ρ ("rho")

• Derived
7. Joins ⨝ (natural, equi-join, theta join, semi-join)
8. Intersection / complement
9. Division

• Extended RA
1. Duplicate elimination δ
2. Grouping and aggregation ɣ
3. Sorting 𝛕

Relational difference R–S can also be written as R\S like set difference. "–" is used e.g. by [Silberschatz+'20], [Ramakrishnan+'03], [Garcia-Molina+2014], and [Elmasri+'15]

RDBMSs use multisets (bags),
however in RA we will consider sets

Two perspectives:
• mainly named perspective, where every attribute

must have a unique name, thus attribute order does
not matter. E.g. "R.A=4" same for R(A,B) or R(B,A)

• contrast with vectors: E.g. R(x,y), x=4

All operators take in 1 or more
relations as inputs (operands)
and return another relation

https://northeastern-datalab.github.io/cs7240/

26Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Relational Algebra (RA) operators extending classical Set Theory
Traditional
set operators

Specific
relational operators

Basic
operators

Derived
operators

Extended
operators

𝜋𝑨(𝑅) (projection)
𝑅 − 𝑆 (difference)
𝑅✕𝑆 (Cartesian prod.)

𝑅⋂𝑆 (intersection)

𝑅⋃𝑆 (union)

𝑅 ⊳ 𝑆 (anti-join)

𝜎" 𝑅 (selection)

𝑅⟗𝑆 (outerjoin)

𝑅 ⋉ 𝑆 (semi-join)

𝑅 ÷ 𝑆 (division)

𝛿(𝑅) (duplicate elimination)
𝛾𝑨,𝐚𝐠𝐠 & 	(𝑅) (grouping and aggregates)
𝜏' 𝑅 (sorting)

𝜋𝒇(𝑨)(𝑅) (extended projection)

𝑅 ⋈ 𝑆 (join)
Notice that the Cartesian product in set theory is non-
commutative (cp. unnamed with named perspective)
https://en.wikipedia.org/wiki/Cartesian_product

binary unary

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Cartesian_product

28

• Five basic operators:
1. Selection: s ("sigma")
2. Projection: P
3. Cartesian Product: ´
4. Union: ⋃
5. Difference: –

• Auxiliary (or special) operator
6. Renaming: ρ ("rho") for named perspective

• Derived (or implied) operators
7. Joins ⨝ (natural, theta join, equi-join, [semi-join: moved to T3-U1])
8. Intersection / complement
9. Division: ÷

Relational Algebra (RA) operators

29Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1. Selection (𝜎)

• Returns all tuples which satisfy a
condition

• Notation: sc (R)
• Examples
- Employee(ssn, name, salary)
- sSalary > 40000 (Employee)
- sname = “Smith” (Employee)

• The condition c can be comparison
predicates =, <, £, >, ³, <>
combined with AND, OR, NOT

SELECT *
FROM Employee
WHERE salary > 40000

SQL:

RA:

Employee(ssn, name, salary)

?

https://northeastern-datalab.github.io/cs7240/

30Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1. Selection (𝜎)

• Returns all tuples which satisfy a
condition

• Notation: sc (R)
• Examples
- Employee(ssn, name, salary)
- sSalary > 40000 (Employee)
- sname = “Smith” (Employee)

• The condition c can be comparison
predicates =, <, £, >, ³, <>
combined with AND, OR, NOT

SELECT *
FROM Employee
WHERE salary > 40000

SQL:

RA:

Employee(ssn, name, salary)

sSalary > 40000(Employee)

https://northeastern-datalab.github.io/cs7240/

31Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

sSalary > 40000 (Employee)

SSN Name Salary
1234545 John 20000
5423341 Smith 60000
4352342 Fred 50000

?

Employee
1. Selection example

https://northeastern-datalab.github.io/cs7240/

32Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

sSalary > 40000 (Employee)

SSN Name Salary
5423341 Smith 60000
4352342 Fred 50000

Employee
1. Selection example

SSN Name Salary
1234545 John 20000
5423341 Smith 60000
4352342 Fred 50000

https://northeastern-datalab.github.io/cs7240/

33Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

2. Projection (𝜋)

• Eliminates columns, then removes
duplicates (set perspective!)

• Notation: 𝜋A1,…,An (R)
• Alternative: 𝜋-B1,…,Bn (R)

• Example: project on social-security
number and names:
- Employee(ssn, name, salary)
- 𝜋SSN, Name (Employee)
- Output schema: Answer(SSN, Name) ?

"project away" operator (not standard)

SELECT DISTINCT name, salary
FROM Employee

SQL:

RA:

Employee(ssn, name, salary)

https://northeastern-datalab.github.io/cs7240/

34Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

2. Projection (𝜋)

• Eliminates columns, then removes
duplicates (set perspective!)

• Notation: 𝜋A1,…,An (R)
• Alternative: 𝜋-B1,…,Bn (R)

• Example: project on social-security
number and names:
- Employee(ssn, name, salary)
- 𝜋SSN, Name (Employee)
- Output schema: Answer(SSN, Name)

SELECT DISTINCT name, salary
FROM Employee

SQL:

RA:

𝜋name, salary (Employee)

"project away" operator (not standard)

Employee(ssn, name, salary)

https://northeastern-datalab.github.io/cs7240/

35Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

𝜋name, salary (Employee)

2. Projection example

?

SSN Name Salary
1234545 Ciara 20000
5423341 Ciara 60000
4352342 Ciara 20000

Employee

https://northeastern-datalab.github.io/cs7240/

36Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

𝜋name, salary (Employee)

2. Projection example

Bag semantics

?

SSN Name Salary
1234545 Ciara 20000
5423341 Ciara 60000
4352342 Ciara 20000

Employee

Name Salary
Ciara 20000
Ciara 60000

https://northeastern-datalab.github.io/cs7240/

37Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

𝜋name, salary (Employee)

2. Projection example

Bag semantics

Which semantics is
more efficient? ?

SSN Name Salary
1234545 Ciara 20000
5423341 Ciara 60000
4352342 Ciara 20000

Employee

Name Salary
Ciara 20000
Ciara 60000

Name Salary
Ciara 20000
Ciara 60000
Ciara 20000

https://northeastern-datalab.github.io/cs7240/

38Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Composing RA Operators

no name zip disease
1 p1 98125 flu
2 p2 98125 heart
3 p3 98120 lung
4 p4 98120 heart

Patient
zip disease
98125 flu
98125 heart
98120 lung
98120 heart

𝜋zip,disease(Patient)

zip disease
98125 heart
98120 heart

σdisease=‘heart’ (𝜋zip,disease (Patient))

https://northeastern-datalab.github.io/cs7240/

39Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Composing RA Operators

Patient

σdisease=‘heart’(Patient)

no name zip disease
2 p2 98125 heart
4 p4 98120 heart

𝜋zip,disease(Patient)

𝜋zip,disease(σdisease=‘heart’(Patient))

σdisease=‘heart’ (𝜋zip,disease (Patient))

How do we call what we see on this page
/ the property of these two operators ?

no name zip disease
1 p1 98125 flu
2 p2 98125 heart
3 p3 98120 lung
4 p4 98120 heart

zip disease
98125 flu
98125 heart
98120 lung
98120 heart

zip disease
98125 heart
98120 heart

https://northeastern-datalab.github.io/cs7240/

40Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Composing RA Operators

Patient

σdisease=‘heart’(Patient)

𝜋zip,disease(Patient)

𝜋zip,disease(σdisease=‘heart’(Patient))

σdisease=‘heart’ (𝜋zip,disease (Patient))

"commuting operators"

no name zip disease
1 p1 98125 flu
2 p2 98125 heart
3 p3 98120 lung
4 p4 98120 heart

zip disease
98125 flu
98125 heart
98120 lung
98120 heart

zip disease
98125 heart
98120 heart

no name zip disease
2 p2 98125 heart
4 p4 98120 heart

https://northeastern-datalab.github.io/cs7240/

41Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RA Operators are compositional, in general

𝜋zip,disease(σdisease=‘heart’(Patient))

σdisease=‘heart’ (𝜋zip,disease (Patient))

zip disease
98125 heart
98120 heart

SELECT DISTINCT zip, disease
FROM Patient
WHERE disease = 'heart'

Patient
no name zip disease
1 p1 98125 flu
2 p2 98125 heart
3 p3 98120 lung
4 p4 98120 heart

Both RA expressions are
logically equivalent J

https://northeastern-datalab.github.io/cs7240/

42Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Logical Equivalece of RA Plans

?Do projection & selection
commute in this example?

R(A,B)

𝜋! 𝜎!"# 𝑅 	 ⇔
?
	 𝜎!"# 𝜋! 𝑅

https://northeastern-datalab.github.io/cs7240/

43Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Logical Equivalece of RA Plans

Do projection & selection
commute in this example?

R(A,B)

?What about here?

Yes J𝜋! 𝜎!"# 𝑅 	 ⇔
?
	 𝜎!"# 𝜋! 𝑅

𝜋% 𝜎!"# 𝑅 	 ⇔
?
	 𝜎!"# 𝜋% 𝑅

https://northeastern-datalab.github.io/cs7240/

44Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Logical Equivalece of RA Plans

Do projection & selection
commute in this example?

R(A,B)

𝜋! 𝜎!"# 𝑅 	 ⇔
?
	 𝜎!"# 𝜋! 𝑅

𝜋% 𝜎!"# 𝑅 	 ⇔
?
	 𝜎!"# 𝜋% 𝑅 What about here?

Yes J

No J

https://northeastern-datalab.github.io/cs7240/

45

Topic 1: Data models and query languages
Unit 3: Relational Algebra (RA)
Lecture 7

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
https://northeastern-datalab.github.io/cs7240/sp24/
2/2/2024

Updated 2/2/2024

https://northeastern-datalab.github.io/cs7240/sp24/

46Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Pre-class conversations

• Last class summary
• Please keep on pointing out any errors on the slides
• It is time to start to hand in your first scribes (some ideas today)
• Project discussions (in 2 weeks: Fri 2/16: project ideas)

• today:
- we continue with relational algebra (RA)
- next week: equivalence of RA and *safe* RC (Codd's theorem)

• next time:
- Recursion (Datalog)

https://northeastern-datalab.github.io/cs7240/

47Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Commuting functions: a digression

• Do functions commute with taking the expectation?
- 𝔼[f(x)] = f(𝔼[x]) ?

Side-topic

?

https://northeastern-datalab.github.io/cs7240/

48Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Commuting functions: a digression

• Do functions commute with taking the expectation?
- 𝔼[f(x)] = f(𝔼[x]) ?

• Only for linear functions
- Thus f(x)=ax + b
- 𝔼[ax+b] = a 𝔼[x] + b

• Jensen's inequality for convex f

Side-topic

?

https://northeastern-datalab.github.io/cs7240/

49Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Commuting functions: a digression

• Do functions commute with taking the expectation?
- 𝔼[f(x)] = f(𝔼[x]) ?

• Only for linear functions
- Thus f(x)=ax + b
- 𝔼[ax+b] = a 𝔼[x] + b

• Jensen's inequality for convex f
- 𝔼[f(x)] ≥ f(𝔼[x])

• Example f(x) = x2

- Assume 0 £ x £ 1
- f(𝔼[x]) = f(0.5) = 0.25

- 𝔼[f(x)] =
∫"
"
$%&

= ##$

'
$
& = 0.33 0 1

1

0.25

0
0.5

0.33

Side-topic

https://northeastern-datalab.github.io/cs7240/

50Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Ratio of averages != average of ratios Side-topic

• Assume you developed a new variant "1" for creating "output" (the higher the better)
and want to experimentally compare it against a baseline variant "2".

• Your Professor suggests to compare the methods on two data points (Alice and Bob)
and report the AVG of their relative ratios. How does this sound? ?

https://northeastern-datalab.github.io/cs7240/

51Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Ratio of averages != average of ratios Side-topic

Variant 1 Variant 2 Ratio ()*+),-	/
()*+),-	0

Alice

Bob

20

10

10

20

20/10 = ?

10/20 = ?

AVG = ?

• Assume you developed a new variant "1" for creating "output" (the higher the better)
and want to experimentally compare it against a baseline variant "2".

• Your Professor suggests to compare the methods on two data points (Alice and Bob)
and report the AVG of their relative ratios. How does this sound?

DATA (higher ↑ is better):

https://northeastern-datalab.github.io/cs7240/

52Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Ratio of averages != average of ratios Side-topic

Variant 1 Variant 2 Ratio ()*+),-	/
()*+),-	0

20

10

10

20

20/10 = 2

10/20 = 0.5

AVG = ?

• Assume you developed a new variant "1" for creating "output" (the higher the better)
and want to experimentally compare it against a baseline variant "2".

• Your Professor suggests to compare the methods on two data points (Alice and Bob)
and report the AVG of their relative ratios. How does this sound?

DATA (higher ↑ is better):

Alice

Bob

https://northeastern-datalab.github.io/cs7240/

53Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Ratio of averages != average of ratios Side-topic

Variant 1 Variant 2 Ratio ()*+),-	/
()*+),-	0

20

10

10

20

20/10 = 2

10/20 = 0.5

AVG = 1.25 + 25%

• Assume you developed a new variant "1" for creating "output" (the higher the better)
and want to experimentally compare it against a baseline variant "2".

• Your Professor suggests to compare the methods on two data points (Alice and Bob)
and report the AVG of their relative ratios. How does this sound?

DATA (higher ↑ is better):

Alice

Bob

https://northeastern-datalab.github.io/cs7240/

54Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Ratio of averages != average of ratios Side-topic

Variant 1 Variant 0 Ratio ()*+),-	/
()*+),-	1

20

10

10

20

20/10 = 2

10/20 = 0.5

AVG = 1.25 + 25%

Variant 1 is on average
25% better

?L

• Assume you developed a new variant "1" for creating "output" (the higher the better)
and want to experimentally compare it against a baseline variant "2".

• Your Professor suggests to compare the methods on two data points (Alice and Bob)
and report the AVG of their relative ratios. How does this sound?

DATA (higher ↑ is better):

CONCLUSION

See https://arxiv.org/pdf/2401.04758 Appendix O.1 for a more detailed discussion and suggestion to use the median. I only just learned that this exact problem is widely known in the computer benchmarking
literature which suggests the geometric mean: "Fleming, Wallace. How not to lie with statistics: the correct way to summarize benchmark results. CACM 1986. https://dl.acm.org/doi/abs/10.1145/5666.5673

Alice

Bob

https://northeastern-datalab.github.io/cs7240/
https://arxiv.org/pdf/2401.04758
https://dl.acm.org/doi/abs/10.1145/5666.5673

57

• Five basic operators:
1. Selection: s ("sigma")
2. Projection: P
3. Cartesian Product: ´
4. Union: ⋃
5. Difference: –

• Auxiliary (or special) operator
6. Renaming: ρ ("rho") for named perspective

• Derived (or implied) operators
7. Joins ⨝ (natural, theta join, equi-join, [semi-join: moved to T3-U1])
8. Intersection / complement
9. Division: ÷

Relational Algebra (RA) operators

58Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

3. Cartesian Product (×), or Cross-product

• Each tuple in R with each tuple in S
• Notation: R´S
• R´S := {(r, s) | r ∈ R, s ∈ S}
• Example:
- Students ´ Advisors

• Rare in practice; mainly used to
express joins

SELECT *
FROM People, Student

SQL:

RA:

Student(sid,sname,gpa)
People(ssn,pname,address)

?

https://northeastern-datalab.github.io/cs7240/

59Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

3. Cartesian Product (×), or Cross-product

• Each tuple in R with each tuple in S
• Notation: R´S
• R´S := {(r, s) | r ∈ R, s ∈ S}
• Example:
- Students ´ Advisors

• Rare in practice; mainly used to
express joins

SELECT *
FROM People, Student

SQL:

RA:
People	×	Student

Student(sid,sname,gpa)
People(ssn,pname,address)

https://northeastern-datalab.github.io/cs7240/

60Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

ssn pname address
1234545 John 216 Rosse
5423341 Bob 217 Rosse

sid sname gpa
001 John 3.4
002 Bob 1.3

People	×	Student

×

People Student

3. Cross join example

?

https://northeastern-datalab.github.io/cs7240/

61Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

People	×	Student

×

ssn pname address sid sname gpa
1234545 John 216 Rosse 001 John 3.4
5423341 Bob 217 Rosse 001 John 3.4
1234545 John 216 Rosse 002 Bob 1.3

5423341 Bob 216 Rosse 002 Bob 1.3

People Student

3. Cross join example

ssn pname address
1234545 John 216 Rosse
5423341 Bob 217 Rosse

sid sname gpa
001 John 3.4
002 Bob 1.3

https://northeastern-datalab.github.io/cs7240/

63

• Five basic operators:
1. Selection: s ("sigma")
2. Projection: P
3. Cartesian Product: ´
4. Union: ⋃
5. Difference: –

• Auxiliary (or special) operator
6. Renaming: ρ ("rho") for named perspective

• Derived (or implied) operators
7. Joins ⨝ (natural, theta join, equi-join, [semi-join: moved to T3-U1])
8. Intersection / complement
9. Division: ÷

Relational Algebra (RA) operators

64Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

• Examples:
- Students ∪ Faculty
- AllNEUEmployees – RetiredFaculty

4. Union (∪) and 5. Difference (–)

What about the union of
Student and Faculty? ?
Student (neuid, fname, lname)
Faculty (neuid, fname, lname, college)

R ∪ S
R – S

R ∪ S := {x | x ∈ R ∨ x ∈ S}

R – S := {x | x ∈ R ∧ x ∉ S}

Relational difference R–S can also be written as R\S like set difference. "–" is used e.g. by [Silberschatz+'20], [Ramakrishnan+'03], [Garcia-Molina+2014], and [Elmasri+'15]

R S

R S

https://northeastern-datalab.github.io/cs7240/

65Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

4. Union (∪) and 5. Difference (–)

No! Only makes sense if R and S are "union
compatible", thus have the same schema!

Relational difference R–S can also be written as R\S like set difference. "–" is used e.g. by [Silberschatz+'20], [Ramakrishnan+'03], [Garcia-Molina+2014], and [Elmasri+'15]

Student (neuid, fname, lname)
Faculty (neuid, fname, lname, college)

What about the union of
Student and Faculty?

𝜋-college()

Other example: find actor ids
who don't play in any movie:

?

Actor (aid, fname, lname)
Play (aid, mid, role)

R ∪ S
R – S

R ∪ S := {x | x ∈ R ∨ x ∈ S}

R – S := {x | x ∈ R ∧ x ∉ S}
R S

R S

• Examples:
- Students ∪ Faculty
- AllNEUEmployees – RetiredFaculty

https://northeastern-datalab.github.io/cs7240/

66Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

4. Union (∪) and 5. Difference (–)

R ∪ S
R – S

No! Only makes sense if R and S are "union
compatible", thus have the same schema!

Relational difference R–S can also be written as R\S like set difference. "–" is used e.g. by [Silberschatz+'20], [Ramakrishnan+'03], [Garcia-Molina+2014], and [Elmasri+'15]

Student (neuid, fname, lname)
Faculty (neuid, fname, lname, college)

What about the union of
Student and Faculty?

𝜋-college()

πaid(Actor)–πaid(Play)

Other example: find actor ids
who don't play in any movie:

Actor (aid, fname, lname)
Play (aid, mid, role)

R ∪ S := {x | x ∈ R ∨ x ∈ S}

R – S := {x | x ∈ R ∧ x ∉ S}
R S

R S

• Examples:
- Students ∪ Faculty
- AllNEUEmployees – RetiredFaculty

https://northeastern-datalab.github.io/cs7240/

67Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

VENN diagrams for join types: rows vs column
Which columns are returned:

Left UnionWhich rows
are returned

Left

Intersection

Left (Outer) Join

(Left) Semi-Join

(Left) Anti-Join

Union

Inner

Full (Outer) Join

Left Right

columns
(schema):

rows
(data):

a
b
c

c
d
e

https://northeastern-datalab.github.io/cs7240/

68Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

VENN diagrams for join types: rows vs column
Which columns are returned:

Left Union

Join keys from
which rows
are returned:

Left

Intersection

Left (Outer) Join

(Left) Semi-Join

(Left) Anti-Join

Union

Union

Inner

Intersection

Full (Outer) Join

This insight led to a 7240 class project and subsequent paper: Khatiwada, Shraga, Gatterbauer, Miller. Integrating Data Lake Tables. PVLDB 2022. https://doi.org/10.14778/3574245.3574274

union = full join (for identical schemas)

Left Right

columns
(schema):

rows
(data):

a
b
c

c
d
e

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.14778/3574245.3574274

69Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

VENN diagrams for join types: rows vs column

Source: https://learn.microsoft.com/en-us/azure/data-explorer/kusto/query/join-operator?pivots=azuredataexplorer

?

https://northeastern-datalab.github.io/cs7240/
https://learn.microsoft.com/en-us/azure/data-explorer/kusto/query/join-operator?pivots=azuredataexplorer

70Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

VENN diagrams for join types: rows vs column

Source: https://learn.microsoft.com/en-us/azure/data-explorer/kusto/query/join-operator?pivots=azuredataexplorer

?

"Right" is redundant

Leftouter
returns
both!

https://northeastern-datalab.github.io/cs7240/
https://learn.microsoft.com/en-us/azure/data-explorer/kusto/query/join-operator?pivots=azuredataexplorer

75

• Five basic operators:
1. Selection: s ("sigma")
2. Projection: P
3. Cartesian Product: ´
4. Union: ⋃
5. Difference: –

• Auxiliary (or special) operator
6. Renaming: ρ ("rho") for named perspective

• Derived (or implied) operators
7. Joins ⨝ (natural, theta join, equi-join, [semi-join: moved to T3-U1])
8. Intersection / complement
9. Division: ÷

Relational Algebra (RA) operators

76Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

𝜌!(𝑅)

Student(sid,sname,gpa)

6. Renaming (𝜌 rho)

• Does not change the instance, only the
schema (table or attribute names)

• Only needed in named perspective, thus a
'special' operator (neither basic nor derived)

• Several existing conventions:

SELECT
 sid AS studId,
 sname AS name,
 gpa AS gradePtAvg
FROM Student

SQL:

RA:

?
𝜌!(#(,…,#))(𝑅)
𝜌!('(→#(,…,')→#))(𝑅)
𝜌'(→#(,…,')→#)(𝑅)

S new table name

𝜌#(,…,#)(𝑅)

if positions can be used

if attribute names,
not order matters

Alternative to "𝐴! → 𝐵!" is the substitution symbol "𝐵!/𝐴!" (notice the difference in sequencing)

https://northeastern-datalab.github.io/cs7240/

77Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Student(sid,sname,gpa)

6. Renaming (𝜌 rho)

• Does not change the instance, only the
schema (table or attribute names)

• Only needed in named perspective, thus a
'special' operator (neither basic nor derived)

• Several existing conventions:

SELECT
 sid AS studId,
 sname AS name,
 gpa AS gradePtAvg
FROM Student

SQL:

RA:

ρ+,-./.,0123,451.36,784(Student)

𝜌!(𝑅)
𝜌!(#(,…,#))(𝑅)
𝜌!('(→#(,…,')→#))(𝑅)
𝜌'(→#(,…,')→#)(𝑅)

S new table name

𝜌#(,…,#)(𝑅)

if positions can be used

if attribute names,
not order matters

Alternative to "𝐴! → 𝐵!" is the substitution symbol "𝐵!/𝐴!" (notice the difference in sequencing)

https://northeastern-datalab.github.io/cs7240/

78Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

6. Why we need renaming in the named perspective
R

?

A B
1 2
3 4

B C D
2 5 6
4 7 8
9 10 11

R ´ S

S

https://northeastern-datalab.github.io/cs7240/

79Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

6. Why we need renaming in the named perspective
R

R ´ S

S

What if we use renaming ?

A B
1 2
3 4

A R.B S.B C D
1 2 2 5 6
1 2 4 7 8
1 2 9 10 11
3 4 2 5 6
3 4 4 7 8
3 4 9 10 11

B C D
2 5 6
4 7 8
9 10 11

https://northeastern-datalab.github.io/cs7240/

80Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

6. Why we need renaming
R

R ´ S

S

A B
1 2
3 4

A R.B S.B C D
1 2 2 5 6
1 2 4 7 8
1 2 9 10 11
3 4 2 5 6
3 4 4 7 8
3 4 9 10 11

B C D
2 5 6
4 7 8
9 10 11

𝜌!→#(R) ´ S

A E B C D
1 2 2 5 6
1 2 4 7 8
1 2 9 10 11
3 4 2 5 6
3 4 4 7 8
3 4 9 10 11

We would *really* need renaming if we had R ´ R:
(Compare to table aliases)

https://northeastern-datalab.github.io/cs7240/

81Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

6. Named vs Unnamed perspective (=positional notation)
Q: Nodes that have a grand-child

1

32

4
In DRC:

{1,2}

1 2
2 1
2 3
1 4
3 4

A:
S T

?A for arc or adjacency

https://northeastern-datalab.github.io/cs7240/

82Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

6. Named vs Unnamed perspective (=positional notation)
Q: Nodes that have a grand-child

1

32

4

{	x	|	∃y,z.[A(x,y)	⋀	A(y,z)]}
In DRC:

{1,2}

1 2
2 1
2 3
1 4
3 4

A:
S T

?

A for arc or adjacency

In RA:

{	x	|	∃y,z,u,w.[A(y,z)	⋀	A(u,w)	⋀	z=u	⋀	y=x]}

https://northeastern-datalab.github.io/cs7240/

83Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

6. Named vs Unnamed perspective (=positional notation)
Q: Nodes that have a grand-child

1

32

4

{	x	|	∃y,z.[A(x,y)	⋀	A(y,z)]}
In DRC:

{1,2}

unnamed perspective

1 2
2 1
2 3
1 4
3 4

A:
S T

1 2
2 1
2 3
1 4
3 4

S2 T2

?

A for arc or adjacency

In RA:

{	x	|	∃y,z,u,w.[A(y,z)	⋀	A(u,w)	⋀	z=u	⋀	y=x]}

named perspective𝜋4(𝜎5640(𝐴´𝜌4→40,4→40 𝐴)

unnamed= positional

https://northeastern-datalab.github.io/cs7240/

84Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

6. Named vs Unnamed perspective (=positional notation)
Q: Nodes that have a grand-child

1

32

4

{	x	|	∃y,z.[A(x,y)	⋀	A(y,z)]}
In DRC:

{1,2}

𝜋$/ 𝜎$06$:(𝐴´𝐴) unnamed perspective

unnamed= positional

1 2
2 1
2 3
1 4
3 4

A:
S T

1 2
2 1
2 3
1 4
3 4

S2 T2
$1 $2 $3 $4

?

I adopt the notation $2 from [Ullman'99] (also mentioned by [Silberschatz+'20]. It is often just written as "𝜋% 𝜎&'((𝐴´𝐴) ",
which is ambiguous. A more recent database textbook uses " ̇2 = 3" for ”$2=$3" which gets confusing for ”$2=3"...

In RA:

{	x	|	∃y,z,u,w.[A(y,z)	⋀	A(u,w)	⋀	z=u	⋀	y=x]}

named perspective𝜋4(𝜎5640(𝐴´𝜌4→40,4→40 𝐴)

In TRC: "named":

https://northeastern-datalab.github.io/cs7240/

85Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

6. Named vs Unnamed perspective (=positional notation)
Q: Nodes that have a grand-child

1

32

4

{	x	|	∃y,z.[A(x,y)	⋀	A(y,z)]}
In DRC:

{1,2}

In RA:

𝜋$/ 𝜎$06$:(𝐴´𝐴)

{	x	|	∃y,z,u,w.[A(y,z)	⋀	A(u,w)	⋀	z=u	⋀	y=x]}

named perspective

{	q(S)	|	∃a1,	a2∈A[a1.T=a2.S	⋀	a1.S=q.S]}

unnamed perspective

"named":

1 2
2 1
2 3
1 4
3 4

A:
S T

1 2
2 1
2 3
1 4
3 4

S2 T2

𝜋4(𝜎5640(𝐴´𝜌4→40,4→40 𝐴)

$1 $2 $3 $4 In TRC:

I adopt the notation $2 from [Ullman'99] (also mentioned by [Silberschatz+'20]. It is often just written as "𝜋% 𝜎&'((𝐴´𝐴) ",
which is ambiguous. A more recent database textbook uses " ̇2 = 3" for ”$2=$3" which gets confusing for ”$2=3"...

unnamed for TRC (not typical!)?

unnamed= positional

https://northeastern-datalab.github.io/cs7240/

86Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

6. Named vs Unnamed perspective (=positional notation)
Q: Nodes that have a grand-child

1

32

4

{	x	|	∃y,z.[A(x,y)	⋀	A(y,z)]}
In DRC:

{1,2}

In RA:

𝜋$/ 𝜎$06$:(𝐴´𝐴)

{	x	|	∃y,z,u,w.[A(y,z)	⋀	A(u,w)	⋀	z=u	⋀	y=x]}

named perspective

{	q(S)	|	∃a1,	a2∈A[a1.T=a2.S	⋀	a1.S=q.S]}

unnamed perspective

1 2
2 1
2 3
1 4
3 4

A:
S T

1 2
2 1
2 3
1 4
3 4

S2 T2

𝜋4(𝜎5640(𝐴´𝜌4→40,4→40 𝐴)

$1 $2 $3 $4 In TRC:

I adopt the notation $2 from [Ullman'99] (also mentioned by [Silberschatz+'20]. It is often just written as "𝜋% 𝜎&'((𝐴´𝐴) ",
which is ambiguous. A more recent database textbook uses " ̇2 = 3" for ”$2=$3" which gets confusing for ”$2=3"...

{	q	|	∃a1,	a2∈A[a1.$2=a2.$1	⋀	a1.$1=q.$1]}

unnamed= positional

"named":

unnamed for TRC (not typical!)

https://northeastern-datalab.github.io/cs7240/

87Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Write in RA

Q: Find the ID and name of those employees who earn more than
the employee whose ID is 123?

Employee(id, name, salary)

?

https://northeastern-datalab.github.io/cs7240/

88Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Write in RA

Q: Find the ID and name of those employees who earn more than
the employee whose ID is 123?

𝜋3.:.,3.0123 𝜎3.+1;15<=>.+1;15< 𝜌3 employee ×𝜎:.?@AB(𝜌>(employee))

Employee(id, name, salary)

𝜋:.,0123 𝜎+1;15<=+ employee	×	(𝜌+1;15<→+(𝜋+1;15<	(𝜎:.?@AB(employee)))

𝜋$@,$A 𝜎$F?@AB	∧	$B=$H employee	×employee

https://northeastern-datalab.github.io/cs7240/

89

• Five basic operators:
1. Selection: s ("sigma")
2. Projection: P
3. Cartesian Product: ´
4. Union: ⋃
5. Difference: –

• Auxiliary (or special) operator
6. Renaming: ρ ("rho") for named perspective

• Derived (or implied) operators
7. Joins ⨝ (natural, theta join, equi-join, [semi-join: moved to T3-U1])
8. Intersection / complement
9. Division: ÷

Relational Algebra (RA) operators

Derived relational operators:
• can be expressed in basic RA; thus not needed
But enhancing the basic operator set with derived
operators is a good idea:
• Queries become easier to write/understand/maintain
• Easier for DBMS to apply specialized optimizations

(recall the conceptual evaluation strategy)

most important

we discuss later in class in detail
(SJs are at the heart of efficient algorithms)

90Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7a. Natural Join (⋈)

• Notation: R ⋈ S
• Joins R and S on equality of all shared attributes

- Only makes sense in named perspective!
- If R has attribute set A, and S has attribute set B, and they

share attributes A⋂B = C, can also be written as R⋈C S

• Natural join in basic RA:
- Meaning: R⋈ S = 𝜋A U B(sR.C=S.C(R ´ S))
- Meaning: R ⋈ S = 𝜋A U B(sC=D(𝜌$→%(R) ´ S))

• The rename 𝜌!→# renames the shared attributes in one of
the relations

• The selection sC=D checks equality of the shared attributes
• The projection 𝜋A U B eliminates the duplicate common

attributes

SQL

316Product(pname, price, category, cid)
Company(cid, cname, stockprice, country)

SELECT pname, price, category,
P.cid, cname, stockprice, country
FROM Product P, Company C
WHERE P.cid= C.cid

SQL (alternative syntax)

?

https://northeastern-datalab.github.io/cs7240/

91Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7a. Natural Join (⋈)

• Notation: R ⋈ S
• Joins R and S on equality of all shared attributes

- Only makes sense in named perspective!
- If R has attribute set A, and S has attribute set B, and they

share attributes A⋂B = C, can also be written as R⋈C S

• Natural join in basic RA:
- Meaning: R⋈ S = 𝜋A U B(sR.C=S.C(R ´ S))
- Meaning: R ⋈ S = 𝜋A U B(sC=D(𝜌$→%(R) ´ S))

• The rename 𝜌!→# renames the shared attributes in one of
the relations

• The selection sC=D checks equality of the shared attributes
• The projection 𝜋A U B eliminates the duplicate common

attributes

SELECT *
FROM Product
NATURAL JOIN Company

SQL

RA:

316Product(pname, price, category, cid)
Company(cid, cname, stockprice, country)

SELECT pname, price, category,
P.cid, cname, stockprice, country
FROM Product P, Company C
WHERE P.cid= C.cid

SQL (alternative syntax)

?

https://northeastern-datalab.github.io/cs7240/

92Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7a. Natural Join (⋈)

• Notation: R ⋈ S
• Joins R and S on equality of all shared attributes

- Only makes sense in named perspective!
- If R has attribute set A, and S has attribute set B, and they

share attributes A⋂B = C, can also be written as R⋈C S

• Natural join in basic RA:
- Meaning: R⋈ S = 𝜋A U B(sR.C=S.C(R ´ S))
- Meaning: R ⋈ S = 𝜋A U B(sC=D(𝜌$→%(R) ´ S))

• The rename 𝜌!→# renames the shared attributes in one of
the relations

• The selection sC=D checks equality of the shared attributes
• The projection 𝜋A U B eliminates the duplicate common

attributes

SELECT *
FROM Product
NATURAL JOIN Company

SQL

RA:
Product	 ⋈ Company

316Product(pname, price, category, cid)
Company(cid, cname, stockprice, country)

SELECT pname, price, category,
P.cid, cname, stockprice, country
FROM Product P, Company C
WHERE P.cid= C.cid

SQL (alternative syntax)

https://northeastern-datalab.github.io/cs7240/

93Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7a. Natural Join (⋈): an alternative perspective

Source of Figure: Garcia-Molina, Ullman, Widom. Database Systems -- The Complete Book (2nd ed, international ed), 2014. http://infolab.stanford.edu/~ullman/dscb.html
Source of text: https://en.wikipedia.org/wiki/Relational_algebra#Natural_join

We only want to pair those tuples that match in some way.

https://northeastern-datalab.github.io/cs7240/
http://infolab.stanford.edu/~ullman/dscb.html
https://en.wikipedia.org/wiki/Relational_algebra

94Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7a. Natural Join (⋈): An example
A B
1 2
3 4

R
B C D
2 5 6
4 7 8
9 10 11

S

𝜌!→#(R) ´ S

?

https://northeastern-datalab.github.io/cs7240/

95Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7a. Natural Join (⋈): An example
A B
1 2
3 4

R

R ⨝ S

B C D
2 5 6
4 7 8
9 10 11

S

𝜌!→#(R) ´ S

A E B C D
1 2 2 5 6
1 2 4 7 8
1 2 9 10 11
3 4 2 5 6
3 4 4 7 8
3 4 9 10 11

?

https://northeastern-datalab.github.io/cs7240/

96Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7a. Natural Join (⋈): An example
A B
1 2
3 4

R

R ⨝ S

A B C D
1 2 5 6
3 4 7 8

B C D
2 5 6
4 7 8
9 10 11

S

𝜌!→#(R) ´ S

A E B C D
1 2 2 5 6
1 2 4 7 8
1 2 9 10 11
3 4 2 5 6
3 4 4 7 8
3 4 9 10 11

R ⨝ S = in basic RA

?

https://northeastern-datalab.github.io/cs7240/

97Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7a. Natural Join (⋈): An example
A B
1 2
3 4

R

R ⨝ S

A B C D
1 2 5 6
3 4 7 8

B C D
2 5 6
4 7 8
9 10 11

S

𝜌!→#(R) ´ S

A E B C D
1 2 2 5 6
1 2 4 7 8
1 2 9 10 11
3 4 2 5 6
3 4 4 7 8
3 4 9 10 11

R ⨝ S =
PA,R.B,C,D(sR.B=S.B(R × S)) =
PA,B,C,D(sB=E(𝜌!→#(R) ´ S)) =
P$1,$2,$4,$5 (s$2=$3 (R ´ S)) =

https://northeastern-datalab.github.io/cs7240/

98Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7a. Natural Join (⋈): practice

?
• Given schemas R(A, B, C, D), S(A, C, E), what is the schema of R ⋈	S ?

https://northeastern-datalab.github.io/cs7240/

99Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7a. Natural Join (⋈): practice

• Given schemas R(A, B, C, D), S(A, C, E), what is the schema of R ⋈	S ?

Answer(A, B, C, D,E)

• Given R(A, B, C), S(D, E), what is R ⋈ S ?

?

https://northeastern-datalab.github.io/cs7240/

100Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7a. Natural Join (⋈): practice

• Given schemas R(A, B, C, D), S(A, C, E), what is the schema of R ⋈	S ?

Answer(A, B, C, D,E)

• Given R(A, B, C), S(D, E), what is R ⋈ S ?

• Given R(A, B), S(A, B), what is R ⋈ S ?

?

R ´ S

no condition in the selection
that could be violated:

https://northeastern-datalab.github.io/cs7240/

101Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7a. Natural Join (⋈): practice

• Given schemas R(A, B, C, D), S(A, C, E), what is the schema of R ⋈	S ?

Answer(A, B, C, D,E)

• Given R(A, B, C), S(D, E), what is R ⋈ S ?

• Given R(A, B), S(A, B), what is R ⋈ S ?

?

R ´ S

R ∩ S

https://northeastern-datalab.github.io/cs7240/

102Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7a. Natural Join (⋈): practice

• Given schemas R(A, B, C, D), S(A, C, E), what is the schema of R ⋈	S ?

Answer(A, B, C, D,E)

• Given R(A, B, C), S(D, E), what is R ⋈ S ?

• Given R(A, B), S(A, B), what is R ⋈ S ?

R ´ S

R ∩ S

https://northeastern-datalab.github.io/cs7240/

103Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7b. Theta Join (⋈q)

• A join that involves a predicate

• q ("theta") can be any condition
• No projection: #attributes in output

= sum #attributes in input
• Example: band-joins for approx.

matchings across tables
AnonPatient (age, zip, disease)
Voters (name, age, zip)

?

𝑅)⨝q𝑅* = sq 𝑅)×𝑅*

Assume relatively fresh
data (within 1 year)

Note that natural join is
a theta join + a selection

https://northeastern-datalab.github.io/cs7240/

104Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7b. Theta Join (⋈q)

• A join that involves a predicate

• q ("theta") can be any condition
• No projection: #attributes in output

= sum #attributes in input
• Example: band-joins for approx.

matchings across tables

SELECT *
FROM
 Students, People
WHERE q

SQL:

RA:

AnonPatient (age, zip, disease)
Voters (name, age, zip)

Student(sid,name,gpa)
People(ssn,name,address)

?

𝑅)⨝q𝑅* = sq 𝑅)×𝑅*

Assume relatively fresh
data (within 1 year)

Note that natural join is
a theta join + a selection

A ⨝P.zip=V.zip ∧ P.age>=V.age -1 ∧ P.age<=V.age +1 V

https://northeastern-datalab.github.io/cs7240/

105Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7b. Theta Join (⋈q)

• A join that involves a predicate

• q ("theta") can be any condition
• No projection: #attributes in output

= sum #attributes in input
• Example: band-joins for approx.

matchings across tables

SELECT *
FROM
 Students, People
WHERE q

SQL:

RA:

A ⨝P.zip=V.zip ∧ P.age>=V.age -1 ∧ P.age<=V.age +1 V

AnonPatient (age, zip, disease)
Voters (name, age, zip)

Student(sid,name,gpa)
People(ssn,name,address)

𝑅)⨝q𝑅* = sq 𝑅)×𝑅*

Assume relatively fresh
data (within 1 year)

Note that natural join is
a theta join + a selection

Students ⋈' People

https://northeastern-datalab.github.io/cs7240/

109Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7c. Equi-join (⋈ A=B)

• A theta join where q is an equality

• Example over Gizmo DB:
- Product ⋈ manufacturer=cname Company

• Most common join in practice!

SQL:

Student(sid,sname,gpa)
People(ssn,pname,address)

SELECT *
FROM
 Students S, People P
WHERE sname = pname

RA:

?

𝑅)⨝A=B𝑅* = sA=B 𝑅)×𝑅*

https://northeastern-datalab.github.io/cs7240/

110Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7c. Equi-join (⋈ A=B)

• A theta join where q is an equality

• Example over Gizmo DB:
- Product ⋈ manufacturer=cname Company

• Most common join in practice!

SQL:

Student(sid,sname,gpa)
People(ssn,pname,address)

SELECT *
FROM
 Students S, People P
WHERE sname = pname

RA:

𝑅)⨝A=B𝑅* = sA=B 𝑅)×𝑅*

S ⋈()*+,-.)*+, P

What is the connection with a natural join? ?

https://northeastern-datalab.github.io/cs7240/

111Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7d. Semi-join (⋉) [moved to T3-U1]

• R ⋉ S: Return tuples from R for which there is a matching tuple in S
that is equal on their common attribute names.

See "Part 3: Acyclic queries & Enumeration": https://northeastern-datalab.github.io/responsive-dbms-tutorial/slides/Responsive-DBMS-tutorial-part-3-AcyclicQueries-Enumeration.pdf,
https://www.youtube.com/watch?list=PL_72ERGKF6DTInW_P3a9zTYPSNLwbqOAx&v=toi7ysuyRkw from ICDE'22 tutorial "Toward Responsive DBMS: Optimal Join Algorithms, Enumeration,
Factorization, Ranking, and Dynamic Programming" by Tziavelis et al. https://doi.org/10.1109/ICDE53745.2022.00299, https://northeastern-datalab.github.io/responsive-dbms-tutorial/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/responsive-dbms-tutorial/slides/Responsive-DBMS-tutorial-part-3-AcyclicQueries-Enumeration.pdf
https://www.youtube.com/watch?list=PL_72ERGKF6DTInW_P3a9zTYPSNLwbqOAx&v=toi7ysuyRkw
https://doi.org/10.1109/ICDE53745.2022.00299
https://northeastern-datalab.github.io/responsive-dbms-tutorial/

112Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Join Summary

• Theta-join: R ⨝q S = σq (R × S)
- Join of R and S with a join condition θ
- Cross-product followed by selection θ
- No projection

• Equijoin: R ⨝θ S = σθ (R × S)
- Join condition θ consists only of equalities
- No projection

• Natural join: R ⨝ S = πA (σθ (R × S))
- Equality on all fields with same name in R and in S
- Projection πA drops all redundant attributes

https://northeastern-datalab.github.io/cs7240/

113Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Converting SFW Query to RA
Student(sid,name,gpa)
People(ssn,name,address)

SELECT DISTINCT gpa, address
FROM Student S, People P
WHERE S.name = P.name
AND gpa > 3.5

How do we represent this query in RA?

?

https://northeastern-datalab.github.io/cs7240/

114Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Converting SFW Query to RA

Π+,-,-../011(𝜎+,-23.5(𝑆 ⋈ 𝑃))

Student(sid,name,gpa)
People(ssn,name,address)

SELECT DISTINCT gpa, address
FROM Student S, People P
WHERE S.name = P.name
AND gpa > 3.5

How do we represent this query in RA?

Π+,-,-../011(𝜎+,-23.5	∧	6.7-809:.7-80(𝑆×𝑃))
Π+,-,-../011(𝜎+,-23.5	∧	7-8097-80*(𝑆×𝜌7-80⟶7-80*𝑃))

https://northeastern-datalab.github.io/cs7240/

115Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Some Examples

Find names of suppliers of parts with size greater than 10

Find names of suppliers of red parts or parts with size greater than 10

?
?

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

https://northeastern-datalab.github.io/cs7240/

116Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Some Examples

Find names of suppliers of parts with size greater than 10

Find names of suppliers of red parts or parts with size greater than 10

?

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

πsname(Supplier ⨝ Supply ⨝ (σpsize>10 (Part))
πsname(σpsize>10(Supplier ⨝ Supply ⨝ Part))

https://northeastern-datalab.github.io/cs7240/

117Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Some Examples

Find names of suppliers of parts with size greater than 10

Find names of suppliers of red parts or parts with size greater than 10

πsname(Supplier ⨝ Supply ⨝ (σpsize>10 (Part))

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

πsname(σpsize>10(Supplier ⨝ Supply ⨝ Part))

πsname(Supplier ⨝ Supply ⨝ (σ psize>10 ∨pcolor='red' (Part)))
πsname(Supplier ⨝ Supply ⨝ (σ psize>10 (Part) ∪ σpcolor='red' (Part)))

Representation
of RA as tree? ?

https://northeastern-datalab.github.io/cs7240/

118Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Some Examples

Find names of suppliers of parts with size greater than 10

Find names of suppliers of red parts or parts with size greater than 10

πsname(Supplier ⨝ Supply ⨝ (σpsize>10 (Part))

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

πsname(σpsize>10(Supplier ⨝ Supply ⨝ Part))

πsname(Supplier ⨝ Supply ⨝ (σ psize>10 ∨pcolor='red' (Part)))
πsname(Supplier ⨝ Supply ⨝ (σ psize>10 (Part) ∪ σpcolor='red' (Part))) Part

Supplyσpsize >10

πsname

Answer

Supplier
Representation
of RA as tree?

Usually unary or binary. Think of:
• abstract syntax trees
• binary expression trees
• parse trees
• data flow graph

https://en.wikipedia.org/wiki/Binary_expression_tree

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Binary_expression_tree

119Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query (Evaluation / Execution) Tree, Data flow graph

[Elmasri+'15] Elmasri, Navathe. Fundamentals of Database Systems, 7th ed, 2015. Section 8.35 https://www.pearson.com/us/higher-education/program/Elmasri-Fundamentals-of-Database-Systems-7th-Edition/PGM189052.html

root = result

non-leave nodes
= operators

intermediate results

leaves = base relations

https://northeastern-datalab.github.io/cs7240/
https://www.pearson.com/us/higher-education/program/Elmasri-Fundamentals-of-Database-Systems-7th-Edition/PGM189052.html

120

• Five basic operators:
1. Selection: s ("sigma")
2. Projection: P
3. Cartesian Product: ´
4. Union: ⋃
5. Difference: –

• Auxiliary (or special) operator
6. Renaming: ρ ("rho") for named perspective

• Derived (or implied) operators
7. Joins ⨝ (natural, theta join, equi-join, [semi-join: moved to T3-U1])
8. Intersection / complement
9. Division: ÷

Relational Algebra (RA) operators

121Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

8. What about Intersection ∩?

• As derived operator using union and minus
R S?

https://northeastern-datalab.github.io/cs7240/

122Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

8. What about Intersection ∩?

• As derived operator using union and minus
R S? (R-S)

https://northeastern-datalab.github.io/cs7240/

123Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

8. What about Intersection ∩?

• As derived operator using union and minus
R S? (S-R)(R-S)(R∪S) - -

https://northeastern-datalab.github.io/cs7240/

124Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

8. What about Intersection ∩?

• As derived operator using union and minus
R S

https://northeastern-datalab.github.io/cs7240/

125Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

8. What about Intersection ∩?

• As derived operator using union and minus

• Derived operator using minus only!

R SR ∩ S = ((R ∪ S) − (R − S)) − (S − R)
 R ∩ S = (R ∪ S) − ((R − S) ∪ (S − R))

?

https://northeastern-datalab.github.io/cs7240/

126Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

8. What about Intersection ∩?

• As derived operator using union and minus

• Derived operator using minus only!

• Derived using join

R S

?

R ∩ S = S − (S − R)

R ∩ S = ((R ∪ S) − (R − S)) − (S − R)
 R ∩ S = (R ∪ S) − ((R − S) ∪ (S − R))

https://northeastern-datalab.github.io/cs7240/

127Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

8. What about Intersection ∩?

• As derived operator using union and minus

• Derived operator using minus only!

• Derived using join
R ∩ S = R ⨝ S

R S

R ∩ S = S − (S − R)

Legal input: schemas need to be union
compatible (same schema). E.g. not:
 R(A,B,C)
 S(A,B)

R ∩ S = ((R ∪ S) − (R − S)) − (S − R)
 R ∩ S = (R ∪ S) − ((R − S) ∪ (S − R))

If R and S have the same schema,
then R ⨝ S and R ⋉ S equal to R ∩ S

https://northeastern-datalab.github.io/cs7240/

128

• Five basic operators:
1. Selection: s ("sigma")
2. Projection: P
3. Cartesian Product: ´
4. Union: ⋃
5. Difference: –

• Auxiliary (or special) operator
6. Renaming: ρ ("rho") for named perspective

• Derived (or implied) operators
7. Joins ⨝ (natural, theta join, equi-join, [semi-join: moved to T3-U1])
8. Intersection / complement
9. Division: ÷

Relational Algebra (RA) operators

129Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

9. Division (R ÷ S)

• Consider two relations R(X,Y) and S(Y)
• Then R ÷ S is ...

X, Y are sets of attributes
Legal input: att(R) ⊃ att(S)

?What could be a meaningful definition of division

Compare to Integer division: 7/2=3

3 is the biggest integer that multiplied with 2 is smaller or equal to 7

https://northeastern-datalab.github.io/cs7240/

130Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

9. Division (R ÷ S)

• Consider two relations R(X,Y) and S(Y)
• Then R ÷ S is ...
- ... the largest relation T(X) s.t. S ✕ T ⊆ R

X, Y are sets of attributes
Legal input: att(R) ⊃ att(S)

(safety: T ⊆ πXR)

https://northeastern-datalab.github.io/cs7240/

131Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

9. Division (R ÷ S)

• Consider two relations R(X,Y) and S(Y)
• Then R ÷ S is ...
- ... the largest relation T(X) s.t. S ✕ T ⊆ R, or
- ... the relation T(X) that contains the X's that occur with all Y's in S, or
- ... {t(X) | ∀s(Y)∊S.[∃r(X,Y)∊R]} (+ safety)

X, Y are sets of attributes
Legal input: att(R) ⊃ att(S)

?

(safety: T ⊆ πXR)

R S TDivisorDividend

X Y
Alice 1
Alice 2
Bob 1
Bob 2
Bob 3

Y
1
2
3

https://northeastern-datalab.github.io/cs7240/

132Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

9. Division (R ÷ S)

• Consider two relations R(X,Y) and S(Y)
• Then R ÷ S is ...
- ... the largest relation T(X) s.t. S ✕ T ⊆ R, or
- ... the relation T(X) that contains the X's that occur with all Y's in S, or
- ... {t(X) | ∀s(Y)∊S.[∃r(X,Y)∊R]} (+ safety)

X
Bob

X, Y are sets of attributes
Legal input: att(R) ⊃ att(S)

(safety: T ⊆ πXR)

R TDividend

X Y
Alice 1
Alice 2
Bob 1
Bob 2
Bob 3

Y
1
2
3

S Divisor

https://northeastern-datalab.github.io/cs7240/

135Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Questions

?

?

÷ =

÷ =

Studies Course

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

sid student course
1 Alice AI
1 Alice DB
2 Bob DB
2 Bob ML
3 Charly AI
3 Charly DB
3 Charly ML

course
AI
DB
ML

course
ML

https://northeastern-datalab.github.io/cs7240/

136Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Questions

÷ =

÷ =

(RxS)÷S =

(RxS)÷R =

?
?

recall set semantics for RA

Assume R,S have disjoint attribute sets (possibly by renaming)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

sid student course
1 Alice AI
1 Alice DB
2 Bob DB
2 Bob ML
3 Charly AI
3 Charly DB
3 Charly ML

course
AI
DB
ML

course
ML

sid student
2 Bob
3 Charly

sid student
3 Charly

Studies Course

https://northeastern-datalab.github.io/cs7240/

137Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Questions

÷ =

÷ =

(RxS)÷S =

(RxS)÷R =

R

S

recall set semantics for RA

Assume R,S have disjoint attribute sets (possibly by renaming)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

Q: If R has 1000 tuples
and S has 100 tuples, how
many tuples can be in R÷S?

Q: If R has 1000 tuples
and S has 1001 tuples, how
many tuples can be in R÷S?

?
?

sid student course
1 Alice AI
1 Alice DB
2 Bob DB
2 Bob ML
3 Charly AI
3 Charly DB
3 Charly ML

course
AI
DB
ML

course
ML

sid student
2 Bob
3 Charly

sid student
3 Charly

Studies Course

https://northeastern-datalab.github.io/cs7240/

138Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Questions

÷sid student course
1 Alice AI
1 Alice DB
2 Bob DB
2 Bob ML
3 Charly AI
3 Charly DB
3 Charly ML

=

÷ =

(RxS)÷S =

(RxS)÷R =

course
AI
DB
ML

course
ML

sid student
2 Bob
3 Charly

sid student
3 Charly

R

S

recall set semantics for RA

Assume R,S have disjoint attribute sets (possibly by renaming)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

Q: If R has 1000 tuples
and S has 100 tuples, how
many tuples can be in R÷S?

Q: If R has 1000 tuples
and S has 1001 tuples, how
many tuples can be in R÷S?

Studies Course

https://northeastern-datalab.github.io/cs7240/

139Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Questions

course type
AI elective
DB core
ML core

Who took all core courses in RA with relational division?

?
Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

sid student course
1 Alice AI
1 Alice DB
2 Bob DB
2 Bob ML
3 Charly AI
3 Charly DB
3 Charly ML

Studies Course Type

https://northeastern-datalab.github.io/cs7240/

140Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Questions

Studies	÷ 𝜋<=>/10 𝜎?@,09!<=/0!CourseType
Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

Who took all core courses in RA with relational division?

sid student course
1 Alice AI
1 Alice DB
2 Bob DB
2 Bob ML
3 Charly AI
3 Charly DB
3 Charly ML

course type
AI elective
DB core
ML core

Studies Course Type

https://northeastern-datalab.github.io/cs7240/

141Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

How to write R÷S in Primitive RA? (×,−, π)

R(X,Y)	÷	S(Y) X Y
a 0
a 1
a 2
b 1

Y
1
2
?

R S Q÷ =

https://northeastern-datalab.github.io/cs7240/

142Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

How to write R÷S in Primitive RA? (×,−, π)

R(X,Y)	÷	S(Y)

?

X Y
a 0
a 1
a 2
b 1

Y
1
2

X
a

b 2

1

2

3
4: {a} = {a,b} – {b}

R S Q÷ =

in primite RA

https://northeastern-datalab.github.io/cs7240/

143Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

How to write R÷S in Primitive RA? (×,−, π)

Each X of R w/ each Y of S

R(X,Y)	÷	S(Y)

πXR	×	S

X Y
a 0
a 1
a 2
b 1

Y
1
2

X
a

b 2

1

2

3
4: {a} = {a,b} – {b}

R S Q÷ =

https://northeastern-datalab.github.io/cs7240/

144Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

How to write R÷S in Primitive RA? (×,−, π)

Each X of R w/ each Y of S

(X,Y) s.t. X in R, Y in S, but (X,Y) not in R

R(X,Y)	÷	S(Y)

πXR	×	S()	−	R

X Y
a 0
a 1
a 2
b 1

Y
1
2

X
a

b 2

1

2

3
4: {a} = {a,b} – {b}

R S Q÷ =

https://northeastern-datalab.github.io/cs7240/

145Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

How to write R÷S in Primitive RA? (×,−, π)

Each X of R w/ each Y of S

(X,Y) s.t. X in R, Y in S, but (X,Y) not in R

Xs in R where for some Y in S, (X,Y) is not in R

R(X,Y)	÷	S(Y)

πX()πXR	×	S()	−	R

X Y
a 0
a 1
a 2
b 1

Y
1
2

X
a

b 2

1

2

3
4: {a} = {a,b} – {b}

R S Q÷ =

https://northeastern-datalab.github.io/cs7240/

146Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

How to write R÷S in Primitive RA? (×,−, π)

Each X of R w/ each Y of S

(X,Y) s.t. X in R, Y in S, but (X,Y) not in R

Xs in R where for some Y in S, (X,Y) is not in R

R÷S

R(X,Y)	÷	S(Y) X Y
a 0
a 1
a 2
b 1

Y
1
2

X
a

b 2

πX()πXR	×	S()	−	RπXR	− 1

2

3
4: {a} = {a,b} – {b}

R S Q÷ =

https://northeastern-datalab.github.io/cs7240/

147Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What if S=∅?

R(X,Y)	÷	S(Y) X Y
a 0
a 1
a 2
b 1

Y
R S Q÷ =

?

https://northeastern-datalab.github.io/cs7240/

148Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What if S=∅?

R(X,Y)	÷	S(Y) X Y
a 0
a 1
a 2
b 1

Y X
a
b

πX()πXR	×	S()	−	RπXR	−

R S Q÷ =

Now you see why we needed the safety condition "T ⊆ πXR" when
defining "R ÷ S as the largest relation T(X) s.t. S ✕ T ⊆ R"

Recall: {(x) | ∀s(y)∊S.[∃r(x,y)∊R]} (+ safety)

https://northeastern-datalab.github.io/cs7240/

150Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

R÷S in Primitive RA vs. RC

In RA:

In DRC:

πXR	×	S()	−	RπXR	− πX()
?

R(X,Y)	÷	S(Y)
R S Q÷ =
X Y
a 0
a 1
a 2
b 1

Y
1
2

X
a

b 2

R S Q÷ =

https://northeastern-datalab.github.io/cs7240/

151Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

R÷S in Primitive RA vs. RC

In RA:

{	x	|	∃z.[R(x,z)]	⋀																																							}
In DRC:

πXR	×	S()	−	RπXR	− πX()

X is "guarded": safe and thus domain independent

R(X,Y)	÷	S(Y)

?

R S Q÷ =

b 2

R S Q÷ =
X Y
a 0
a 1
a 2
b 1

Y
1
2

X
a

https://northeastern-datalab.github.io/cs7240/

152Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

R÷S in Primitive RA vs. RC

In RA:

In DRC:

πXR	×	S()	−	RπXR	− πX()
what if S(Y)=∅ ? ?

R(X,Y)	÷	S(Y)
R S Q÷ =

b 2

R S Q÷ =
X Y
a 0
a 1
a 2
b 1

Y
1
2

X
a

{	x	|	∃z.[R(x,z)]	⋀	∀y.[S(y)	→	R(x,y)]	}

https://northeastern-datalab.github.io/cs7240/

153Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

R÷S in Primitive RA vs. RC

In RA:

In DRC:

πXR	×	S()	−	RπXR	− πX()

? without universal quantification

R(X,Y)	÷	S(Y)
R S Q÷ =

b 2

R S Q÷ =
X Y
a 0
a 1
a 2
b 1

Y
1
2

X
a

{	x	|	∃z.[R(x,z)]	⋀	∀y.[S(y)	→	R(x,y)]	}

https://northeastern-datalab.github.io/cs7240/

154Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

R÷S in Primitive RA vs. RC

In RA:

In DRC:

πXR	×	S()	−	RπXR	− πX()

?

R(X,Y)	÷	S(Y)
R S Q÷ =

b 2

R S Q÷ =

In TRC:

X Y
a 0
a 1
a 2
b 1

Y
1
2

X
a

{	x	|	∃z.[R(x,z)]	⋀	∀y.[S(y)	→	R(x,y)]	}
{	x	|	∃z.[R(x,z)]	⋀	∄y.[S(y)	∧	¬R(x,y)]	}

https://northeastern-datalab.github.io/cs7240/

155Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

R÷S in Primitive RA vs. RC

In RA:

{	x	|	∃z.[R(x,z)]	⋀	∀y.[S(y)	→	R(x,y)]	}
In DRC:

{	x	|	∃z.[R(x,z)]	⋀	∄y.[S(y)	∧	¬R(x,y)]	}

πXR	×	S()	−	RπXR	− πX()

{	r.X	|	r∊R.[∄s∊S.[∄r2∊R.[r2.Y=s.Y	∧	r2.X=r.X]]]}
In TRC:

?

R(X,Y)	÷	S(Y)
R S Q÷ =

b 2

R S Q÷ =
X Y
a 0
a 1
a 2
b 1

Y
1
2

X
a

https://northeastern-datalab.github.io/cs7240/

156Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

R÷S in Primitive RA vs. RC

In RA:

{	x	|	∃z.[R(x,z)]	⋀	∀y.[S(y)	→	R(x,y)]	}
In DRC:

{	x	|	∃z.[R(x,z)]	⋀	∄y.[S(y)	∧	¬R(x,y)]	}

πXR	×	S()	−	RπXR	− πX()

{	r.X	|	r∊R.[∄s∊S.[∄r2∊R.[r2.Y=s.Y	∧	r2.X=r.X]]]}
In TRC:

? in SQL

R(X,Y)	÷	S(Y)
R S Q÷ =

b 2

R S Q÷ =
X Y
a 0
a 1
a 2
b 1

Y
1
2

X
a

https://northeastern-datalab.github.io/cs7240/

157Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

R÷S in Primitive RA vs. RC

b 2

In SQL

SELECT DISTINCT R.X
FROM R
WHERE not exists(
 SELECT *
 FROM S
 WHERE not exists(
 SELECT *
 FROM R AS R2
 WHERE R2.Y = S.Y
 AND R2.X = R.X))

R S Q÷ =

{	r.X	|	r∊R.[∄s∊S.[∄r2∊R.[r2.Y=s.Y	∧	r2.X=r.X]]]}
In TRC:

X Y
a 0
a 1
a 2
b 1

Y
1
2

X
a

https://northeastern-datalab.github.io/cs7240/

158Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

πX()

RA vs. RC

In RA:

{	x	|	∃z.[R(x,z)]	⋀	∀y.[S(y)	→	R(x,y)]	}
In DRC:

()	−	RπXR	−

{	r.X	|	r∊R.[∄s∊S.[∄r2∊R.[r2.Y=s.Y	∧	r2.X=r.X]]]}
In TRC:

R(X,Y)	÷	S(Y)

πXR	×	S

There are logical expressions that
cannot be expressed in basic RA with
the same number of table references

3 references to R in RA,
but only 2 references in RC

On the Reasonable Effectiveness of Relational Diagrams: Explaining Relational Query Patterns and the Pattern Expressiveness of Relational Languages, SIGMOD 2024. https://arxiv.org/pdf/2401.04758

https://northeastern-datalab.github.io/cs7240/
https://arxiv.org/pdf/2401.04758

159Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

R÷S as set-containment join (not part of standard RA)

As set containment join

{	x	|	{y	|	R(x,y)}	⊇	{	y	|	S(y)}	}
In DRC (extended with set containment):

R	⋈R.Y⊇S.Y	S

R(X,Y)	÷	S(Y)
R S Q÷ =
X Y
a 0
a 1
a 2
b 1

Y
1
2

X
a

R S Q÷ =

https://northeastern-datalab.github.io/cs7240/

160Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Set-containment joins (not part of standard RA)

More general set containment join

{(A,D)	|	{B	|	R(A,B)}	⊇	{	C	|	S(C,D)}	}
In DRC (extended with set containment):

R	⋈B⊇C	S

R S Q
A B
a 0
a 1
a 2
b 1

R S =⋈B⊇C

C D
1 a
2 a
1 b

A D
a a
a b
b b

https://northeastern-datalab.github.io/cs7240/

161Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Set-containment joins generalize equi-joins

Equi-join as instance of set intersection join

R S Q
A B
a 0
a 1
a 2
b 1

R S =⋈B=C

C D
1 a
2 a
1 b

A D
a a
a b
b b
b a?

𝜋−B,C()

https://northeastern-datalab.github.io/cs7240/

162Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Set-containment joins generalize equi-joins

"non-empty set intersection" join

{(A,D)	|	{B	|	R(A,B)}	∩	{	C	|	S(C,D)}	≠∅	}

R	⋈B∩C≠∅	S

A B
a 0
a 1
a 2
b 1

C D
1 a
2 a
1 b

A D
a a
a b
b b
b a≡	𝜋−B,C(R	⋈B=C	S)

{(A,D)	|	∃B	[R(A,B)	∧	S(B,D)]	}

In DRC (extended with set containment):

R S QR S =⋈B=C𝜋−B,C()

https://northeastern-datalab.github.io/cs7240/

163Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Parentheses Convention

• We have defined 3 unary operators (w/ renaming) and 3 binary
operators

• It is acceptable to omit the parentheses from o(R) when o is unary
- Then, unary operators take precedence over binary ones

• Example:

(scourse='DB'(Course)) ×(rcid→cid1(Studies))

becomes

scourse='DB'Course× rcid→cid1Studies

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

181

Topic 1: Data models and query languages
Unit 3: Relational Algebra (RA)
Lecture 8

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
https://northeastern-datalab.github.io/cs7240/sp24/
2/6/2024

Updated 2/6/2024

https://northeastern-datalab.github.io/cs7240/sp24/

182Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Pre-class conversations

• Last class summary
• Please keep on pointing out any errors on the slides
• It is time to start to hand in your first scribes (some ideas today)
• Project discussions (in 2 weeks: Fri 2/16: project ideas)

• today:
- we continue with relational algebra (RA)
- next week: equivalence of RA and *safe* RC (Codd's theorem)

• next time:
- Recursion (Datalog)

https://northeastern-datalab.github.io/cs7240/

183

Algebra and the connection to logic and queries

• Algebra
• Relational Algebra

– Operators
– Independence
– Power of algebra: optimizations

• Equivalence RA and safe RC (Codd's theorem)
– RA → RC
– RC → RA

184Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

5 Primitive Operators

1. Projection (p)
2. Selection (s)
3. Union (⋃)
4. Set Difference (−)
5. Cross Product (×)

Is this a well chosen set of primitives? ?

https://northeastern-datalab.github.io/cs7240/

185Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

5 Primitive Operators

1. Projection (p)
2. Selection (s)
3. Union (⋃)
4. Set Difference (−)
5. Cross Product (×)

Could we drop an operator "without losing anything"?

Is this a well chosen set of primitives?

independent not independent

2D3D

https://northeastern-datalab.github.io/cs7240/

186Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Independence among Primitives

• Let o be an RA operator, and let A be a set of RA operators

• We say that o is independent of A if o cannot be expressed in A;
that is, no expression in A is equivalent to o

THEOREM: Each of the five primitives
is independent of the other four {π, σ,×, ⋃, –}

Proof:
• Separate argument for each of the 5 (For each operator, we need to discover a

property that is uniquely possessed by that operator, and thus not by any RA
expression that involves only the other 4 operations)

• Arguments follow a common pattern (union as example next slides)
Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

187Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Recipe for Proving Independence of an operator o

1. Fix a schema S and an instance D over S

2. Find some property P over relations

3. Prove: for every expression φ that does not use o, the relation φ(D) satisfies P

4. Find an expression ψ such that ψ uses o and ψ(D) violates P

Such proofs are typically by induction on the size of the
expression, since operators compose

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

188Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Concrete Example: Proving Independence of Union ∪

1. Fix a schema S and an instance D over S
S: R(A), S(A) D: {R(0), S(1)}

2. Find some property P over relations
#tuples < 2

3. Prove: for every expression φ that does not use o, the relation φ(D) satisfies P
Induction base: R and S have #tuples<2

4. Find an expression ψ such that ψ uses o and ψ(D) violates P

ψ=R∪S

Induction step: If φ1(D) and φ2(D) have #tuples<2, then so do:
 σc(φ1(D)), pA(φ1(D)), φ1(D)×φ2(D), φ1(D)−φ2(D), ρA→B(φ1(D))

R
A
0

S
A
1

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

190

Algebra and the connection to logic and queries

• Algebra
• Relational Algebra

– Operators
– Independence
– Power of algebra: optimizations

• Equivalence RA and safe RC (Codd's theorem)
– RA → RC
– RC → RA

191Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

• The basic commutators:
- Push projection through selection, join, union
- Push selection through projection, join, union
- Also: Joins can be re-ordered!

• Note that this is not an exhaustive set of operations

Commutativity and distributivity of RA operators

This simple set of tools allows us to greatly improve the
execution time of queries by optimizing RA plans!

We next illustrate with an SFW (Select-From-Where) query

What about sorting and joins?

𝜋𝐀 𝑅⋃𝑆 = 𝜋𝐀 𝑅 ⋃𝜋' 𝑆
𝜎" 𝑅⋃𝑆 = 𝜎" 𝑅 ⋃𝜎" 𝑆
𝑅⋃𝑆 ×𝑇 = (𝑅×𝑇)⋃(𝑆×𝑇)

https://northeastern-datalab.github.io/cs7240/

193Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT R.A,T.D
FROM R,S,T
WHERE R.B = S.B
 and S.C = T.C
 and R.A < 10;

R(A,B) S(B,C) T(C,D)

An example: SQL to RA to Optimized RA

?

in RA

https://northeastern-datalab.github.io/cs7240/

194Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

𝜋?,@

R(A,B) S(B,C)

T(C,D)

sA<10

𝜋1,3 𝜎1456 𝑇 ⋈ 𝑅 ⋈ 𝑆

SELECT R.A,T.D
FROM R,S,T
WHERE R.B = S.B
 and S.C = T.C
 and R.A < 10;

R(A,B) S(B,C) T(C,D)

An example: SQL to RA to Optimized RA

Query tree / expression tree /
computation tree / data flow graph

1. Leaves are
base relations

in RA

2. Other nodes
are operators

3. Root node
= query results

Heuristic: have selection and projection earlier to
have fewer (or smaller) "intermediate" tuples

https://northeastern-datalab.github.io/cs7240/

195Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

𝜋?,@

R(A,B) S(B,C)

T(C,D)

sA<10

An example: SQL to RA to Optimized RA

SELECT R.A,T.D
FROM R,S,T
WHERE R.B = S.B
 and S.C = T.C
 and R.A < 10;

R(A,B) S(B,C) T(C,D)

Heuristic: have selection and projection earlier to
have fewer (or smaller) "intermediate" tuples

Pushing down may be suboptimal if selection condition is very expensive (e.g. running some image
processing algorithm). Projection could be unnecessary effort (but more rarely).

𝜋1,3 𝜎1456 𝑇 ⋈ 𝑅 ⋈ 𝑆

1. Push down selection on A

in RA

https://northeastern-datalab.github.io/cs7240/

196Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

R(A,B)

S(B,C)

T(C,D)

An example: SQL to RA to Optimized RA

sA<10

SELECT R.A,T.D
FROM R,S,T
WHERE R.B = S.B
 and S.C = T.C
 and R.A < 10;

R(A,B) S(B,C) T(C,D)

𝜋1,3 𝑇 ⋈ 𝜎1456𝑅 ⋈ 𝑆

𝜋?,@

Heuristic: have selection and projection earlier to
have fewer (or smaller) "intermediate" tuples

1. Push down selection on A

in RA

https://northeastern-datalab.github.io/cs7240/

197Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

An example: SQL to RA to Optimized RA

SELECT R.A,T.D
FROM R,S,T
WHERE R.B = S.B
 and S.C = T.C
 and R.A < 10;

R(A,B) S(B,C) T(C,D)

R(A,B)

S(B,C)

T(C,D)

sA<10𝜋1,3 𝑇 ⋈ 𝜎1456𝑅 ⋈ 𝑆

𝜋?,@

𝜋-B,C

𝜋-B,C

Heuristic: have selection and projection earlier to
have fewer (or smaller) "intermediate" tuples

1. Push down selection on A

2. Push down projection

in RA

https://northeastern-datalab.github.io/cs7240/

198Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

An example: SQL to RA to Optimized RA

SELECT R.A,T.D
FROM R,S,T
WHERE R.B = S.B
 and S.C = T.C
 and R.A < 10;

R(A,B) S(B,C) T(C,D)

𝜋1,3 𝑇 ⋈ 𝜋1,7 𝜎1456𝑅 ⋈ 𝑆
R(A,B)

S(B,C)

T(C,D)

𝜋?,@

sA<10

𝜋?,A

We now eliminate B earlier

In general, when is an
attribute not needed?

𝜋-C 𝜋-B

𝜋-C

𝜋-B

Variable Elimination!

in RA

https://northeastern-datalab.github.io/cs7240/

215

Algebra and the connection to logic and queries

• Algebra
• Relational Algebra

– Operators
– Independence
– Power of algebra: optimizations

• Equivalence RA and safe RC (Codd's theorem)
– RA → RC
– RC → RA

216Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

"Clear" variables*

∀x. ∃y. R x, y, z ∧ ¬∃x. S(y, x)

Formula	with	clear	variables	:	each	quantifier	"has	its	own	variables"	&	
each	variable	has	only	free	or	only	bound	occurrences

? which variables are free or bound?

* "Clear variable" is a non-standard term used in excellent slides on logic by Marie Duzi: http://www.cs.vsb.cz/duzi/

https://northeastern-datalab.github.io/cs7240/
http://www.cs.vsb.cz/duzi/

217Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

"Clear" variables*

∀x. ∃y. R x, y, z ∧ ¬∃x. S(y, x)

Formula	with	clear	variables	:	each	quantifier	"has	its	own	variables"	&	
each	variable	has	only	free	or	only	bound	occurrences

bound boundfree

notice operator precedence: ∃ before ∧:
∀x.∃y.[R(x,y,z)]∧¬∃x.[S(y,x)]

? how to make it "clear"

* "Clear variable" is a non-standard term used in excellent slides on logic by Marie Duzi: http://www.cs.vsb.cz/duzi/

Not “clear”: Two x's and y's are
different variables.

https://northeastern-datalab.github.io/cs7240/
http://www.cs.vsb.cz/duzi/

218Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

"Clear" variables*

∀x. ∃y. R x, y, z ∧ ¬∃x. S(y, x)

Formula	with	clear	variables	:	each	quantifier	"has	its	own	variables"	&	
each	variable	has	only	free	or	only	bound	occurrences

bound boundfree

notice operator precedence: ∃ before ∧:
∀x.∃y.[R(x,y,z)]∧¬∃x.[S(y,x)]

Not “clear”: Two x's and y's are
different variables.

∀x. ∃y. R x, y, z ∧ ¬∃u. S(v, u)

z, v 	 ∀x. ∃y. R x, y, z ∧ ¬∃u. S v, u } Now a query. But how to
make it domain-independent

now “clear”

* "Clear variable" is a non-standard term used in excellent slides on logic by Marie Duzi: http://www.cs.vsb.cz/duzi/

?

https://northeastern-datalab.github.io/cs7240/
http://www.cs.vsb.cz/duzi/

219Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

"Clear" variables*

∀x. ∃y. R x, y, z ∧ ¬∃x. S(y, x)

Formula	with	clear	variables	:	each	quantifier	"has	its	own	variables"	&	
each	variable	has	only	free	or	only	bound	occurrences

bound boundfree

notice operator precedence: ∃ before ∧:
∀x.∃y.[R(x,y,z)]∧¬∃x.[S(y,x)]

Not “clear”: Two x's and y's are
different variables.

z, v 	 ∀x. ∃y. R x, y, z ∧ ¬∃u. S v, u }

* "Clear variable" is a non-standard term used in excellent slides on logic by Marie Duzi: http://www.cs.vsb.cz/duzi/

∃s,t.R(s,t,z) ∧ ∃p.S(p,v) ∧

∀x. ∃y. R x, y, z ∧ ¬∃u. S(v, u) now “clear”

Now a query. But how to
make it domain-independent

https://northeastern-datalab.github.io/cs7240/
http://www.cs.vsb.cz/duzi/

220Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

"Clear" variables*

∀x. ∃y. R x, y, z ∧ ¬∃x. S(y, x)

Formula	with	clear	variables	:	each	quantifier	"has	its	own	variables"	&	
each	variable	has	only	free	or	only	bound	occurrences

bound boundfree

notice operator precedence: ∃ before ∧:
∀x.∃y.[R(x,y,z)]∧¬∃x.[S(y,x)]

Not “clear”: Two x's and y's are
different variables.

z, v 	 ∀x. ∃y. R x, y, z ∧ ¬∃u. S v, u }

* "Clear variable" is a non-standard term used in excellent slides on logic by Marie Duzi: http://www.cs.vsb.cz/duzi/

∀x.[∃w,t.R(x,w,t) → ∃y.R(x,y,z)]

∃s,t.R(s,t,z) ∧ ∃p.S(p,v) ∧

∀x. ∃y. R x, y, z ∧ ¬∃u. S(v, u) now “clear”

Now a query. But how to
make it domain-independent

https://northeastern-datalab.github.io/cs7240/
http://www.cs.vsb.cz/duzi/

222Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Repeated variable names

Which of the following formulas imply each other??

In sentences with multiple quantifiers, distinct variables do not need
to range over distinct objects! (cp. homomorphism vs. isomorphism)

$x.$y.	E(x,y)	

"x."y.	E(x,y) "x.	E(x,x)

$x.	E(x,x)

https://northeastern-datalab.github.io/cs7240/

223Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

$x.$y.	E(x,y)	

Repeated variable names

In sentences with multiple quantifiers, distinct variables do not need
to range over distinct objects! (cp. homomorphism vs. isomorphism)

"x."y.	E(x,y) "x.	E(x,x)

$x.	E(x,x)

⟹

⟸

s t
1 1
1 2
2 1
2 2

E

s t
1 2

E

Assume DOM = {1, 2}:

https://northeastern-datalab.github.io/cs7240/

224Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Repeated variable names

⇓Only if domain is
not empty! Dom ≠ ∅⇓

In sentences with multiple quantifiers, distinct variables do not need
to range over distinct objects! (cp. homomorphism vs. isomorphism)

$x.$y.	E(x,y)	

"x."y.	E(x,y) "x.	E(x,x)

$x.	E(x,x)

⟹

⟸

s t
E

Assume DOM = ∅ :

https://northeastern-datalab.github.io/cs7240/

225Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example RC→RA Person(id, name, country)
Spouse(id1, id2)

{	x	|	∃z,w.	Person(x,z,w)	⋀	∀y.[¬Spouse(x,y)]	}
In DRC:

Q: ?

https://northeastern-datalab.github.io/cs7240/

226Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example RC→RA Person(id, name, country)
Spouse(id1, id2)

?

{	x	|	∃z,w.	Person(x,z,w)	⋀	∀y.[¬Spouse(x,y)]	}

In RA:

In DRC:

Q: "Find persons without a spouse"

https://northeastern-datalab.github.io/cs7240/

227Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example RC→RA

πidPerson	−	πid1Spouse

{	x	|	∃z,w.	Person(x,z,w)	⋀	∀y.[¬Spouse(x,y)]	}

In RA:

In DRC:

πidPerson	−	rid1→id	(πid1Spouse)
Recall: named vs ordered perspective

Person(id, name, country)
Spouse(id1, id2)

{	x	|	∃z,w.	Person(x,z,w)	⋀	¬∃y.[Spouse(x,y)]	}

https://northeastern-datalab.github.io/cs7240/

228Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example RA→RC for R(X,Y)	÷ S(Y)

In RA:

{	x	|	∃z.[R(x,z)]	⋀				∀y.[S(y)		→		R(x,y)]	}
In DRC:

{	x	|	∃z.[R(x,z)]	⋀	¬∃y.[S(y)	⋀	¬R(x,y)]	}
−

πX πX
−

×
πX
R

R
R

S?

https://northeastern-datalab.github.io/cs7240/

229Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example RA→RC for R(X,Y)	÷ S(Y)

πXR	−	πX((πXR	×	S)	−	R)
In RA:

{	x	|	∃z.[R(x,z)]	⋀				∀y.[S(y)		→		R(x,y)]	}
In DRC:

{	x	|	∃z.[R(x,z)]	⋀	¬∃y.[S(y)	⋀	¬R(x,y)]	}
−

πX πX
−

×
πX
R

R
R

S

Translation back into DRC:

?

https://northeastern-datalab.github.io/cs7240/

230Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example RA→RC for R(X,Y)	÷ S(Y)

πXR	−	πX((πXR	×	S)	−	R)
In RA:

{	x	|	∃z.[R(x,z)]	⋀				∀y.[S(y)		→		R(x,y)]	}
In DRC:

{	x	|	∃z.[R(x,z)]	⋀	¬∃y.[S(y)	⋀	¬R(x,y)]	}
−

πX πX
−

×
πX
R

R
R

S

{	x	|	∃z.[R(x,z)]	⋀	¬∃y.[∃z.[R(x,z)]	⋀	S(y)	⋀	¬R(x,y)]	}
Translation back into DRC:

https://northeastern-datalab.github.io/cs7240/

231Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Equivalence Between RA and Domain-Independent RC

More formally, on every schema S:

1. For every RA expression E, there is a
domain-independent RC query Q s.t. Q	≡	E

2. For every domain-independent RC query Q,
there is an RA expression E s.t. Q	≡	E

CODD'S THEOREM:
RA and domain-independent RC
have the same expressive power.

The proof has two directions:

RA→RC:
 by induction on the size
 of the RA expression
RC→RA:
 more involved

See also: https://en.wikipedia.org/wiki/Codd%27s_theorem

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Codd%27s_theorem

232

Algebra and the connection to logic and queries

• Algebra
• Relational Algebra

– Operators
– Independence
– Power of algebra: optimizations

• Equivalence RA and safe RC (Codd's theorem)
– RA → RC
– RC → RA

233Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RA → DRC: Intuition
• Construction by induction
• Key technical detail: need to maintain a mapping b/w attribute names and variables

RA	expression

R (n	columns)

E1	×	E2

π'#,…,'.(E1)

σ* E1

DRC	formula	ϕ

R(X1,…,Xn)

Here, ϕi is the formula constructed for expression Ei

Intuition: {x |∃y.[R(x,y)] ⋀ ∃y.[S(x,y)]}
contrast with: {x |∃y.[R(x,y)] ⋀ ∃z.[S(x,z)]}

E1 − E2

E1 ∪ E2

Q(1) ← R(1,2), S(1,3)
y=2 y=3

https://northeastern-datalab.github.io/cs7240/

234Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RA → DRC: Intuition
• Construction by induction
• Key technical detail: need to maintain a mapping b/w attribute names and variables

RA	expression

R (n	columns)

E1	×	E2

π'#,…,'.(E1)

σ* E1

R(X1,…,Xn)

ϕ1 ∧ ϕ2 disjoint variables (rename)

contrast with:

ϕ1 ∧ ¬ϕ2 use idenBcal variables (rename)

ϕ1 ∨ ϕ2 use idenBcal variables (rename)

E1 − E2

E1 ∪ E2

DRC	formula	ϕ Here, ϕi is the formula constructed for expression Ei

Intuition: {x |∃y.[R(x,y)] ⋀ ∃y.[S(x,y)]}
{x |∃y.[R(x,y)] ⋀ ∃z.[S(x,z)]}

https://northeastern-datalab.github.io/cs7240/

235Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RA → DRC: Intuition
• Construction by induction
• Key technical detail: need to maintain a mapping b/w attribute names and variables

RA	expression

R (n	columns)

E1	×	E2

E1 − E2

E1 ∪ E2

π'#,…,'.(E1)

σ* E1

R(X1,…,Xn)

ϕ1 ∧ ϕ2 disjoint variables (rename)

ϕ1 ∧ ¬ϕ2 use idenBcal variables (rename)

ϕ1 ∨ ϕ2 use idenBcal variables (rename)

∃X1…∃X+. ϕ1 where X1, …, X+	are the variables not among	𝐴,, … , 𝐴-
ϕ1 ∧ c

contrast with:

Correspondence more natural with
project-away operator: πL'!,…,'"(E1)

DRC	formula	ϕ Here, ϕi is the formula constructed for expression Ei

Intuition: {x |∃y.[R(x,y)] ⋀ ∃y.[S(x,y)]}
{x |∃y.[R(x,y)] ⋀ ∃z.[S(x,z)]}

https://northeastern-datalab.github.io/cs7240/

237Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RA → DRC: Example R÷S
RA DRC

R(A,B)			S(B)

π. π. R ×S − R

π. R −
π. π. R ×S − R

π. R ×S − R

π. R ×S

S

π. R

R

Mapping

https://northeastern-datalab.github.io/cs7240/

238Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RA → DRC: Example R÷S
RA DRC

R(A,B)			S(B)

π. π. R ×S − R

π. R −
π. π. R ×S − R

π. R ×S − R

π. R ×S

S

π. R

R

S(y)

∃z. R x, z

R x, z

Mapping
x:R.A,	z:R.B

x:R.A

y:S.B

https://northeastern-datalab.github.io/cs7240/

239Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RA → DRC: Example R÷S
RA DRC

R(A,B)			S(B)

π. π. R ×S − R

¬∃y. ∃z. R x, z ∧ S y ∧ ¬R(x, y)	

∃z. R x, z ∧ S(y)

∃z. R x, z ∧ S y ∧ ¬R(x, y)

∃y. ∃z. R x, z ∧ S y ∧ ¬R(x, y)	
∃z. R x, z ∧π. R −

π. π. R ×S − R

π. R ×S − R

π. R ×S

S

π. R

R

S(y)

∃z. R x, z

R x, z

Mapping
x:R.A,	z:R.B

x:R.A

y:S.B

x:R.A,	y:S.B

x:R.A,	y:S.B

x:R.A

x:R.Ax's need to be same variable

y's don't need to be same variable

y needs to be
different from z

https://northeastern-datalab.github.io/cs7240/

240Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RA → DRC: Example R÷S R(A,B)			S(B)

{	x	|	∃z.[R(x,z)]	⋀	¬∃y.[S(y)	⋀	¬R(x,y)]}

This is the DRC expression we got by translating from RA:

This is the DRC expression for relational division that we saw earlier.

Claim: there is no logically equivalent RA expression that uses the table R only twice.
For details see: "On the Reasonable Effectiveness of Relational Diagrams: Explaining
Relational Query Patterns and the Pattern Expressiveness of Relational Languages",
SIGMOD'24. https://arxiv.org/pdf/2401.04758

{	x	|	∃z.[R(x,z)]	⋀	¬∃y.[∃z.[R(x,z)]	⋀	S(y)	⋀	¬R(x,y)]}

https://northeastern-datalab.github.io/cs7240/
https://arxiv.org/pdf/2401.04758

244

Algebra and the connection to logic and queries

• Algebra
• Relational Algebra

– Operators
– Independence
– Power of algebra: optimizations

• Equivalence RA and safe RC (Codd's theorem)
– RA → RC
– RC → RA

245Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

DRC → RA: Intuition

Proof (Sketch):
• Show first that for every relational database schema S, there is a

relational algebra expression E such that for every database
instance D, we have that ADom(D) = E(D).
- Tip: just the union of all columns

• Use the above fact and induction on the construction of RC formulas
to obtain a translation of RC under the active domain interpretation
to RA.

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases

246Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

DRC → RA: Intuition

• In this translation, the most interesting part is the simulation of the
universal quantifier ∀ in relational algebra

∀y. ϕ ≡

E(A,B)

uses the logical equivalence:

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

?

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases

247Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

DRC → RA: Intuition

• In this translation, the most interesting part is the simulation of the
universal quantifier ∀ in relational algebra

• As an illustration, consider:
¬∃y.¬ϕ∀y. ϕ ≡

∀y. E(x, y) ≡

E(A,B)

uses the logical equivalence:

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

?

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases

248Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

DRC → RA: Intuition

• In this translation, the most interesting part is the simulation of the
universal quantifier ∀ in relational algebra

• As an illustration, consider:

ADom(D)=
¬∃y.¬E x, y
¬∃y. ¬ϕ∀y. ϕ ≡

∀y. E(x, y) ≡

E(A,B)

uses the logical equivalence:

and recall:

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

?

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases

249Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

DRC → RA: Intuition

• In this translation, the most interesting part is the simulation of the
universal quantifier ∀ in relational algebra

• As an illustration, consider:

RA	expression	for	ϕadomDRC	formula	ϕ

¬∃y.¬E x, y

πA E ∪πB EADom(D)=
¬∃y.¬E x, y
¬∃y. ¬ϕ∀y. ϕ ≡

∀y. E(x, y) ≡

E(A,B)

uses the logical equivalence:

and recall:

∃y.¬E x, y
¬E x, y

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

?

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases

250Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

DRC → RA: Intuition

• In this translation, the most interesting part is the simulation of the
universal quantifier ∀ in relational algebra

• As an illustration, consider:

RA	expression	for	ϕadomDRC	formula	ϕ

¬∃y.¬E x, y

πA E ∪πB EADom(D)=
¬∃y.¬E x, y
¬∃y. ¬ϕ∀y. ϕ ≡

∀y. E(x, y) ≡

E(A,B)

uses the logical equivalence:

and recall:

∃y.¬E x, y
¬E x, y 𝜌?(ADom(D))×𝜌L(ADom(D)) − E

π? 𝜌?(ADom(D))×𝜌L(ADom(D)) − E	
π? 𝜌?(ADom(D))×𝜌L(ADom(D)) − E	𝜌?(ADom(D)) −

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases

254Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Entire Story in One Slide (repeated slide)

1. RC = FOL over DB

2. RC can express “bad queries” that depend not only on the DB, but also on
the domain from which values are taken (domain dependence)

3. We cannot test whether an RC query is “good,” but we can use a ”good”
subset of RC that captures all “good” queries (safety)

4. “Good” RC and RA can express the same queries! (equivalence = Codd's theorem)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

255Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Discussion

• What is the monotone fragment of RA ?

• What are the safe queries in RA ?

• Where do we use RA (applications) ?

?
?

?

Source: Dan Suciu, CSE 554, 2011.

https://northeastern-datalab.github.io/cs7240/

256Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Discussion

• What is the monotone fragment of RA ?
- Basic except difference (–): ∪, 𝜎, 𝜋, ⋈

• What are the safe queries in RA ?

• Where do we use RA (applications) ?

?
?

Source: Dan Suciu, CSE 554, 2011.

https://northeastern-datalab.github.io/cs7240/

257Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Discussion

• What is the monotone fragment of RA ?
- Basic except difference (–): ∪, 𝜎, 𝜋, ⋈

• What are the safe queries in RA ?
- All RA queries are safe

• Where do we use RA (applications) ?

?
Source: Dan Suciu, CSE 554, 2011.

https://northeastern-datalab.github.io/cs7240/

258Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Discussion

• What is the monotone fragment of RA ?
- Basic except difference (–): ∪, 𝜎, 𝜋, ⋈

• What are the safe queries in RA ?
- All RA queries are safe

• Where do we use RA (applications) ?
- Translating SQL (from WHAT to HOW)
- Directly as query languages (e.g. Pig-Latin) See next pages

Source: Dan Suciu, CSE 554, 2011.

https://northeastern-datalab.github.io/cs7240/

259Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: Olston, Reed, Srivastava, Kumar, Tomkins . Pig Latin -- a not-so-foreign language for data processing. SIGMOD 2008. https://doi.org/10.1145/1376616.1376726

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/1376616.1376726

260Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: Olston, Reed, Srivastava, Kumar, Tomkins . Pig Latin -- a not-so-foreign language for data processing. SIGMOD 2008. https://doi.org/10.1145/1376616.1376726

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/1376616.1376726

261Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: Olston, Reed, Srivastava, Kumar, Tomkins . Pig Latin -- a not-so-foreign language for data processing. SIGMOD 2008. https://doi.org/10.1145/1376616.1376726

For more, see:
https://pig.apache.org/docs/r0.17.0/basic.html

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/1376616.1376726
https://pig.apache.org/docs/r0.17.0/basic.html

