
1

Topic 1: Data models and query languages
Unit 2: Logic & relational calculus
Lecture 4

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
https://northeastern-datalab.github.io/cs7240/sp24/
1/23/2024

Updated 1/24/2024

https://northeastern-datalab.github.io/cs7240/sp24/

2Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Pre-class conversations

• Last class summary
• New class members: quick introduction

1. What area are you working on? Who is your PhD advisor?
2. What do you hope to get out of this course J
3. What is your biggest fear for this course L
4. What the topic from the course that are you most familiar with or excited about?

• Quick comments on my "slide posting policy"
• Please keep asking questions, in class and/or on Piazza

• Today:
- Logic as the foundation for relational databases

https://northeastern-datalab.github.io/cs7240/

3Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

PRELIMINARY

https://northeastern-datalab.github.io/cs7240/

4Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

PRELIMINARY

https://northeastern-datalab.github.io/cs7240/

5Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Please feel free to
point me to other
interesting material
you find or alrady know
of J

https://northeastern-datalab.github.io/cs7240/

6

Queries and the connection to logic

• Why logic?
• A crash course in FOL
• Relational Calculus (RC)

– Syntax and Semantics
– Domain RC (DRC) vs Tuple RC (TRC)
– Domain Independence and Safety

• 4 categorical propositions

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

7Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Logic as foundation of Computer Science and Databases
• Logic has had an immense impact on CS
• Computing has strongly driven a particular branch of logic: finite model theory

- That is, First-order logic (FOL) restricted to finite models
- Has strong connections to complexity theory
- The basis of various branches in Artificial Intelligence (not the ones favored today)

• It is a natural tool to capture and attack fundamental problems in data management
- Relations as first-class citizens
- Inference for assuring data integrity (integrity constraints)
- Inference for question answering (queries)

• It has been used for developing and analyzing the relational model from the early days
[Codd'72]

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.
See also: Halpern, Harper, Immerman, Kolaitis, Vardi, Vianu. "On the unusual effectiveness of logic in computer science", 2001. https://doi.org/10.2307/2687775
A play on: Wigner. "The unreasonable effectiveness of mathematics in the natural sciences", 1960. https://doi.org/10.1142/9789814503488_0018

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.2307/2687775
https://doi.org/10.1142/9789814503488_0018

8Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Why has Logic turned out to be so powerful?

• Basic Question: What on earth does an obscure, old intellectual
discipline have to do with the youngest intellectual discipline?

• Cosma R. Shalizi, CMU:
- “If, in 1901, a talented and sympathetic outsider had been called upon

(say, by a granting-giving agency) to survey the sciences and name the
branch that would be least fruitful in century ahead, his choice might well
have settled upon mathematical logic, an exceedingly recondite field
whose practitioners could all have fit into a small auditorium. It had no
practical applications, and not even that much mathematics to show for
itself: its crown was an exceedingly obscure definition of cardinal
numbers.”

Source: Moshe Vardi: Database Queries: Logic and Complexity, talk 2012. https://abiteboul.com/College/1.140312.Vardi.pdf

See here for pointers to some of these discussions:
https://en.wikipedia.org/wiki/Cardinal_number

https://northeastern-datalab.github.io/cs7240/
https://abiteboul.com/College/1.140312.Vardi.pdf
https://en.wikipedia.org/wiki/Cardinal_number

9Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Logics as the start of everything ["Mephistopheles" 1806]

Source: Johan Wolfgang von Goethe. Faust Part I: Scene IV: The Study. ~1806. https://www.deutschestextarchiv.de/book/view/goethe_faust01_1808?p=124 ,
English Translation: https://www.poetryintranslation.com/PITBR/German/FaustIScenesIVtoVI.php

GERMAN

Mephistopheles.
Gebraucht der Zeit, sie geht so schnell von hinnen,
Doch Ordnung lehrt Euch Zeit gewinnen.
Mein teurer Freund, ich rat Euch drum
Zuerst Collegium Logicum.
Da wird der Geist Euch wohl dressiert,
In spanische Stiefeln eingeschnürt,
Daß er bedächtiger so fortan
Hinschleiche die Gedankenbahn,
Und nicht etwa, die Kreuz und Quer,
Irrlichteliere hin und her.
...

ENGLISH TRANSLATION

Mephistopheles.
Use your time well: it slips away so fast, yet
Discipline will teach you how to win it.
My dear friend, I’d advise, in sum,
First, the Collegium Logicum.
There your mind will be trained,
As if in Spanish boots, constrained,
So that painfully, as it ought,
It creeps along the way of thought,
Not flitting about all over,
Wandering here and there.
...

https://northeastern-datalab.github.io/cs7240/
https://www.deutschestextarchiv.de/book/view/goethe_faust01_1808?p=124
https://www.poetryintranslation.com/PITBR/German/FaustIScenesIVtoVI.php

10Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Back to The Future

• M. Davis (1988): Influences of Mathematical Logic on Computer
Science:
- “When I was a student, even the topologists regarded mathematical

logicians as living in outer space. Today the connections between logic and
computers are a matter of engineering practice at every level of computer
organization.”

• Question: Why on earth?

Source: Moshe Vardi: Database Queries: Logic and Complexity, talk 2012. https://abiteboul.com/College/1.140312.Vardi.pdf

https://northeastern-datalab.github.io/cs7240/
https://abiteboul.com/College/1.140312.Vardi.pdf

11Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Birth of Computer Science: 1930s

• Church, Gödel, Kleene, Post, Turing: Mathematical proofs have to
be “machine checkable” - computation lies at the heart of
mathematics!
- Fundamental Question: What is “machine checkable”?

• Fundamental Concepts:
- algorithm: a procedure for solving a problem by carrying out a precisely

determined sequence of simpler, unambiguous steps
- distinction between hardware and software
- a universal machine: a machine that can execute arbitrary programs
- a programming language: notation to describe algorithms

Source: Moshe Vardi: Database Queries: Logic and Complexity, talk 2012. https://abiteboul.com/College/1.140312.Vardi.pdf

https://northeastern-datalab.github.io/cs7240/
https://abiteboul.com/College/1.140312.Vardi.pdf

12Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Leibniz’s Dream

An Amazing Dream: a universal mathematical language, lingua
characteristica universalis, in which all human knowledge can be
expressed, and calculational rules, calculus ratiocinator, carried out by
machines, to derive all logical relationships
• “If controversies were to arise, there would be no more need of

disputation between two philosophers than between two
accountants. For it would suffice to take their pencils in their hands,
and say to each other: Calculemus–Let us calculate.”

Source: Moshe Vardi: Database Queries: Logic and Complexity, talk 2012. https://abiteboul.com/College/1.140312.Vardi.pdf

https://northeastern-datalab.github.io/cs7240/
https://abiteboul.com/College/1.140312.Vardi.pdf

13Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Aristotle’ Syllogisms

• “All humans are mortal”

?

Based on: Moshe Vardi: Database Queries: Logic and Complexity, talk 2012. https://abiteboul.com/College/1.140312.Vardi.pdf

https://northeastern-datalab.github.io/cs7240/
https://abiteboul.com/College/1.140312.Vardi.pdf

14Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Aristotle’ Syllogisms

• “All humans are mortal”

• “For all x, if x is a human, then x is mortal”

?

Based on: Moshe Vardi: Database Queries: Logic and Complexity, talk 2012. https://abiteboul.com/College/1.140312.Vardi.pdf

https://northeastern-datalab.github.io/cs7240/
https://abiteboul.com/College/1.140312.Vardi.pdf

15Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Aristotle’ Syllogisms

• “All humans are mortal”

• “For all x, if x is a human, then x is mortal”

• ∀x [Human(x) → Mortal(x)]

Based on: Moshe Vardi: Database Queries: Logic and Complexity, talk 2012. https://abiteboul.com/College/1.140312.Vardi.pdf

Do you see the connection to
referential integrity constraints?

PName Price Category cid
Gizmo $19.99 Gadgets 1
Powergizmo $29.99 Gadgets 1
SingleTouch $14.99 Photography 2
MultiTouch $203.99 Household 3

Product Company
cid CName StockPrice Country
1 GizmoWorks 25 USA
2 Canon 65 Japan
3 Hitachi 15 Japan

316

https://northeastern-datalab.github.io/cs7240/
https://abiteboul.com/College/1.140312.Vardi.pdf

16Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Aristotle’ Syllogisms

• “All humans are mortal”

• “For all x, if x is a human, then x is mortal”

• ∀x [Human(x) → Mortal(x)]

Based on: Moshe Vardi: Database Queries: Logic and Complexity, talk 2012. https://abiteboul.com/College/1.140312.Vardi.pdf

Do you see the connection to
referential integrity constraints

PName Price Category cid
Gizmo $19.99 Gadgets 1
Powergizmo $29.99 Gadgets 1
SingleTouch $14.99 Photography 2
MultiTouch $203.99 Household 3

Product Company
cid CName StockPrice Country
1 GizmoWorks 25 USA
2 Canon 65 Japan
3 Hitachi 15 Japan

316

∀x [Product(_,_,_,x) →
Company(x,_,_,_)]

https://northeastern-datalab.github.io/cs7240/
https://abiteboul.com/College/1.140312.Vardi.pdf

17Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Logic and Databases

Two main uses of logic in databases:
• Logic used as a database query language to express questions asked

against databases (our main focus)
• Logic used as specification language to express integrity constraints

in databases (product/company example from previous slide)

Why Logic?
• Logic provides both a unifying framework and a set of tools for

formalizing and studying data management tasks.

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases

18Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Logic in Computer Science

• During the past fifty years there has been extensive, continuous, and growing
interaction between logic and computer science. In many respects, logic
provides computer science with both a unifying foundational framework and
a tool for modeling computational systems. In fact, logic has been called “the
calculus of computer science”.

• The argument is that logic plays a fundamental role in computer science,
similar to that played by calculus in the physical sciences and traditional
engineering disciplines.
- Indeed, logic plays an important role in areas of computer science as disparate as

machine architecture, computer-aided design, programming languages, databases,
artificial intelligence, algorithms, and computability and complexity.

Source: Moshe Vardi: Database Queries: Logic and Complexity, talk 2012. https://abiteboul.com/College/1.140312.Vardi.pdf

https://northeastern-datalab.github.io/cs7240/
https://abiteboul.com/College/1.140312.Vardi.pdf

19

Queries and the connection to logic

• Why logic?
• A crash course in FOL
• Relational Calculus (RC)

– Syntax and Semantics
– Domain RC (DRC) vs Tuple RC (TRC)
– Domain Independence and Safety

• 4 categorical propositions

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

20Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

First-Order Logic: some notions

• Objects, e.g., “2” or “Alice”
• Predicates (relations), e.g., “2 < 3”
- notice predicates are Boolean-valued functions (the codomain is Boolean)
- e.g., Define f(x,y)=true iff x<y. Thus f(2,3)=true

• Operations (non-Boolean functions), e.g., “2 + 3”
- such functions usually return an object from the same domain as the inputs

• Logical operations, e.g., “and” (∧), “or” (∨), “implies” (→)
- Both inputs and outputs are Boolean

• Quantifiers, e.g., “for all” (∀), “exists” (∃)

https://northeastern-datalab.github.io/cs7240/

21Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

First-Order Logic

• A formalism for specifying properties of mathematical structures, such as
graphs, partial orders, groups, rings, fields, . . .

• For any given structure, we can verify whether the properties hold

• Mathematical Structure:
- 𝐴 = 𝐷, 𝑅!, … , 𝑅", 𝑓!, … , 𝑓#
- 𝐷 is a non-empty set: universe, or domain
- 𝑅$ is an 𝑚-ary relation on 𝐷, for some 𝑚 (i.e., 𝑅$ ⊆ 𝐷%)
- 𝑓& is an 𝑛-ary function on 𝐷, for some 𝑛 (i.e., 𝑓$: 𝐷' → 𝐷)

Based on: Moshe Vardi: Database Queries: Logic and Complexity, talk 2012. https://abiteboul.com/College/1.140312.Vardi.pdf

𝐷 = {1,2,3}	
A B C
1 1 1
2 1 3

R

𝐷% → {𝑇, 𝐹}

⊆ 𝐷×𝐷×𝐷
 3 ⋅ 3 ⋅ 3 = 27

𝑓 𝑤!, 𝑤(= 𝑤! +𝑤(

x y
1 2
1 3
2 3

<

⊆ 𝐷×𝐷
 3 ⋅ 3 = 9

https://northeastern-datalab.github.io/cs7240/
https://abiteboul.com/College/1.140312.Vardi.pdf

22Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Two examples of "Mathematical Structures"

• Graph 𝐺 = 𝑉, 𝐸

• Groups 𝐺 = 𝐷, ·
?

?

https://northeastern-datalab.github.io/cs7240/

23Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Two examples of "Mathematical Structures"

• Graph 𝐺 = 𝑉, 𝐸
- 𝑉: set of nodes
- 𝐸⊆𝑉*: edges, a binary relation on 𝑉

• Groups 𝐺 = 𝐷, ·

?

https://northeastern-datalab.github.io/cs7240/

24Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Two examples of "Mathematical Structures"

• Graph 𝐺 = 𝑉, 𝐸
- 𝑉: set of nodes
- 𝐸⊆𝑉*: edges, a binary relation on 𝑉

• Groups 𝐺 = 𝐷, ·
- 𝐷: elements
- “· ”: 𝐷* → 𝐷: group operation
- Example: ℤ, + : Integers under addition

• groups also require following conditions:
- an identity element 𝑒 specified by ∃𝑒Î𝐷 "𝑥Î𝐷[𝑒+𝑥 = 𝑥+𝑒 = 𝑥] and often

written explicitly as in ℤ, +, 0
- the associativity of the operation 𝑥+𝑦 +𝑧 = 𝑥+(𝑦+𝑧), and
- an inverse element "𝑥Î𝐷 ∃(−𝑥)Î𝐷 [(−𝑥)+𝑥 = 𝑥+(−𝑥) = 𝑒]

https://northeastern-datalab.github.io/cs7240/

25Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

First-Order Logic on Graphs

Syntax:
• First-order variables: 𝑥, 𝑦, 𝑧, … (range over nodes)
• Atomic formulas: 𝐸 𝑥, 𝑦 , 𝑥 = 𝑦
• Formulas:
- Atomic Formulas, and
- Boolean Connectives (∨, ∧, ¬), and
- First-Order Quantifiers ∃𝑥, ∀𝑥

Source: Moshe Vardi: Database Queries: Logic and Complexity, talk 2012. https://abiteboul.com/College/1.140312.Vardi.pdf

How to represent that
graph in relations?

?

https://northeastern-datalab.github.io/cs7240/
https://abiteboul.com/College/1.140312.Vardi.pdf

26Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

First-Order Logic on Graphs

Syntax:
• First-order variables: 𝑥, 𝑦, 𝑧, … (range over nodes)
• Atomic formulas: 𝐸 𝑥, 𝑦 , 𝑥 = 𝑦
• Formulas:
- Atomic Formulas, and
- Boolean Connectives (∨, ∧, ¬), and
- First-Order Quantifiers ∃𝑥, ∀𝑥

Source: Moshe Vardi: Database Queries: Logic and Complexity, talk 2012. https://abiteboul.com/College/1.140312.Vardi.pdf

from to
A B
B B
C B
B C

Edge

binary edge relation

notice that we will use "edge" and "E" for both directed
and undirected edges (instead of "arc" for directed)

name
A
B
C

Vertex

https://northeastern-datalab.github.io/cs7240/
https://abiteboul.com/College/1.140312.Vardi.pdf

27Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example properties for graph

• “node 'a' has at least two distinct neighbors”

• “each node has at least two distinct neighbors”

?

?
Example adopted from: Moshe Vardi: Database Queries: Logic and Complexity, talk 2012. https://abiteboul.com/College/1.140312.Vardi.pdf

Assume schema E(source, target) is undirected.
Thus for every edge E(x,y), we also have E(y,x).

https://northeastern-datalab.github.io/cs7240/
https://abiteboul.com/College/1.140312.Vardi.pdf

28Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example properties for graph

• “node 'a' has at least two distinct neighbors”
- ∃𝑦 ∃𝑧 [𝐸 ′𝑎), 𝑦 ∧ 𝐸 ′𝑎), 𝑧 ∧ 𝑦≠𝑧]
- Notice that if we replace ′𝑎) with a variable 𝑥 (which is then free) in the above formula,

then this becomes a query (find nodes 𝑥 that have ...). Let's do that!

• “each node has at least two distinct neighbors”

?
Example adopted from: Moshe Vardi: Database Queries: Logic and Complexity, talk 2012. https://abiteboul.com/College/1.140312.Vardi.pdf

Assume schema E(source, target) is undirected.
Thus for every edge E(x,y), we also have E(y,x).

https://northeastern-datalab.github.io/cs7240/
https://abiteboul.com/College/1.140312.Vardi.pdf

29Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example properties for graph

• “node x has at least two distinct neighbors”
- ∃𝑦 ∃𝑧 [𝐸 𝑥, 𝑦 ∧ 𝐸 𝑥, 𝑧 ∧ 𝑦≠𝑧]
- Notice: x is free in the above formula, which expresses a property of a node 𝑥.
- You can also think about this as a query (find nodes 𝑥 that have ...)

• “each node has at least two distinct neighbors”

?
Example adopted from: Moshe Vardi: Database Queries: Logic and Complexity, talk 2012. https://abiteboul.com/College/1.140312.Vardi.pdf

Assume schema E(source, target) is undirected.
Thus for every edge E(x,y), we also have E(y,x).

https://northeastern-datalab.github.io/cs7240/
https://abiteboul.com/College/1.140312.Vardi.pdf

30Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example properties for graph

• “node x has at least two distinct neighbors”
- ∃𝑦 ∃𝑧 [𝐸 𝑥, 𝑦 ∧ 𝐸 𝑥, 𝑧 ∧ 𝑦≠𝑧]
- Notice: x is free in the above formula, which expresses a property of a node 𝑥.
- You can also think about this as a query (find nodes 𝑥 that have ...)

• “each node has at least two distinct neighbors”
- ∀𝑥 ∃𝑦 ∃𝑧 [𝐸 𝑥, 𝑦 ∧ 𝐸 𝑥, 𝑧 ∧ 𝑦≠𝑧]
- The above is a sentence, that is, a formula with no free variables; it expresses a

property of graphs.

We will sometimes use ∃x,y,z as short form for ∃x∃y∃z
Example adopted from: Moshe Vardi: Database Queries: Logic and Complexity, talk 2012. https://abiteboul.com/College/1.140312.Vardi.pdf

Assume schema E(source, target) is undirected.
Thus for every edge E(x,y), we also have E(y,x).

https://northeastern-datalab.github.io/cs7240/
https://abiteboul.com/College/1.140312.Vardi.pdf

31Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT exists
 (

)

Now in SQL

• “Find nodes that have at least two distinct neighbors” (query)
- 𝑥 ∃𝑦∃𝑧 [𝐸 𝑥, 𝑦 ∧ 𝐸 𝑥, 𝑧 ∧ 𝑦≠𝑧]}

• “each node has at least two distinct neighbors” (statement = Boolean query)
- ∀𝑥 ∃𝑦 ∃𝑧 [𝐸 𝑥, 𝑦 ∧ 𝐸 𝑥, 𝑧 ∧ 𝑦≠𝑧]

501

P.price < 20

C

P1

P2 P.price > 25

E(S,T)

?
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

P.pname

C

P1

P2 P.pname
≠

SELECT
FROM
WHERE
 ?

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

32Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Now in SQL

• “Find nodes that have at least two distinct neighbors” (query)
- 𝑥 ∃𝑦∃𝑧 [𝐸 𝑥, 𝑦 ∧ 𝐸 𝑥, 𝑧 ∧ 𝑦≠𝑧]}

• “each node has at least two distinct neighbors” (statement = Boolean query)
- ∀𝑥 ∃𝑦 ∃𝑧 [𝐸 𝑥, 𝑦 ∧ 𝐸 𝑥, 𝑧 ∧ 𝑦≠𝑧]
- ¬(∃𝑥 ¬(∃𝑦∃𝑧[𝐸 𝑥, 𝑦 ∧𝐸 𝑥, 𝑧 ∧𝑦≠𝑧]))

501

SELECT
S

E

T
S

E

T
S

≠

E(S,T)

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

P.pname

C

P1

P2 P.pname
≠

SELECT DISTINCT E1.S
FROM E E1, E E2
WHERE E1.S = E2.S
AND E1.T <> E2.T

SELECT exists
 (

)

?

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

33Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Now in SQL

• “Find nodes that have at least two distinct neighbors” (query)
- 𝑥 ∃𝑦∃𝑧 [𝐸 𝑥, 𝑦 ∧ 𝐸 𝑥, 𝑧 ∧ 𝑦≠𝑧]}

• “each node has at least two distinct neighbors”
- ∀𝑥 ∃𝑦 ∃𝑧 [𝐸 𝑥, 𝑦 ∧ 𝐸 𝑥, 𝑧 ∧ 𝑦≠𝑧]
- ¬(∃𝑥 ¬(∃𝑦∃𝑧[𝐸 𝑥, 𝑦 ∧𝐸 𝑥, 𝑧 ∧𝑦≠𝑧]))

501

E

T
S

E

T
S

≠

E(S,T)

SELECT not exists
 (SELECT *
 FROM E E1
 WHERE not exists
 (SELECT *
 FROM E E2
 WHERE E1.S = E2.S
 AND E1.T <> E2.T))

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

SELECT DISTINCT E1.S
FROM E E1, E E2
WHERE E1.S = E2.S
AND E1.T <> E2.T

≠

SELECT
S

E

T
S

E

T
S

≠

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

34Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Now in SQL

• “Find nodes that have at least two distinct neighbors” (query)
- 𝑥 ∃𝑦∃𝑧 [𝐸 𝑥, 𝑦 ∧ 𝐸 𝑥, 𝑧 ∧ 𝑦≠𝑧]}

• “each node has at least two distinct neighbors”
- ∀𝑥 ∃𝑦 ∃𝑧 [𝐸 𝑥, 𝑦 ∧ 𝐸 𝑥, 𝑧 ∧ 𝑦≠𝑧]
- ¬(∃𝑥 ¬(∃𝑦∃𝑧[𝐸 𝑥, 𝑦 ∧𝐸 𝑥, 𝑧 ∧𝑦≠𝑧]))

501

SELECT DISTINCT E1.S
FROM E E1, E E2
WHERE E1.S = E2.S
AND E1.T <> E2.T5

3

4

2

1

5

3

4

2

1

E(S,T)

?
SELECT not exists
 (SELECT *
 FROM E E1
 WHERE not exists
 (SELECT *
 FROM E E2
 WHERE E1.S = E2.S
 AND E1.T <> E2.T))?

What do the queries return over the
shown "graph database" instance

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

SELECT
S

E

T
S

E

T
S

≠

E

T
S

E

T
S

≠

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

35Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Now in SQL

• “Find nodes that have at least two distinct neighbors” (query)
- 𝑥 ∃𝑦∃𝑧 [𝐸 𝑥, 𝑦 ∧ 𝐸 𝑥, 𝑧 ∧ 𝑦≠𝑧]}

• “each node has at least two distinct neighbors”
- ∀𝑥 ∃𝑦 ∃𝑧 [𝐸 𝑥, 𝑦 ∧ 𝐸 𝑥, 𝑧 ∧ 𝑦≠𝑧]
- ¬(∃𝑥 ¬(∃𝑦∃𝑧[𝐸 𝑥, 𝑦 ∧𝐸 𝑥, 𝑧 ∧𝑦≠𝑧]))

501

SELECT DISTINCT E1.S
FROM E E1, E E2
WHERE E1.S = E2.S
AND E1.T <> E2.T5

3

4

2

1

5

3

4

2

1

E(S,T)

SELECT not exists
 (SELECT *
 FROM E E1
 WHERE not exists
 (SELECT *
 FROM E E2
 WHERE E1.S = E2.S
 AND E1.T <> E2.T))

false

SELECT
S

E

T
S

E

T
S

≠ {1, 2, 3, 4}

E

T
S

E

T
S

≠

What do the queries return over the
shown "graph database" instance

as
answer

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

36Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Now in SQL

• “Find nodes that have at least two distinct neighbors” (query)
- 𝑥 ∃𝑦∃𝑧 [𝐸 𝑥, 𝑦 ∧ 𝐸 𝑥, 𝑧 ∧ 𝑦≠𝑧]}

• “each node has at least two distinct neighbors”
- ∀𝑥 ∃𝑦 ∃𝑧 [𝐸 𝑥, 𝑦 ∧ 𝐸 𝑥, 𝑧 ∧ 𝑦≠𝑧]
- ¬(∃𝑥 ¬(∃𝑦∃𝑧[𝐸 𝑥, 𝑦 ∧𝐸 𝑥, 𝑧 ∧𝑦≠𝑧]))

501

SELECT DISTINCT E1.S
FROM E E1, E E2
WHERE E1.S = E2.S
AND E1.T <> E2.T5

3

4

2

1

5

3

4

2

1

E(S,T)

SELECT not exists
 (SELECT *
 FROM E E1
 WHERE not exists
 (SELECT *
 FROM E E2
 WHERE E1.S = E2.S
 AND E1.T <> E2.T))

?What is a minimal change to the two queries
to evaluate them only over nodes 1-4

SELECT
S

E

T
S

E

T
S

≠

E

T
S

E

T
S

≠
false

{1, 2, 3, 4}

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

37Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Now in SQL

• “Find nodes that have at least two distinct neighbors” (query)
- 𝑥 ∃𝑦∃𝑧 𝐸 𝑥, 𝑦 ∧ 𝐸 𝑥, 𝑧 ∧ 𝑦≠𝑧 ∧ 𝑥 < 5}

• “each node has at least two distinct neighbors”
- ∀𝑥 [𝑥 < 5⇒ ∃𝑦 ∃𝑧 [𝐸 𝑥, 𝑦 ∧ 𝐸 𝑥, 𝑧 ∧ 𝑦≠𝑧]]
- ¬(∃𝑥 [𝑥 < 5 ∧ ¬(∃𝑦∃𝑧[𝐸 𝑥, 𝑦 ∧𝐸 𝑥, 𝑧 ∧𝑦≠𝑧]))

501

SELECT not exists
 (SELECT *
 FROM E E1
 WHERE E1.S<5
 AND not exists
 (SELECT *
 FROM E E2
 WHERE E1.S = E2.S
 AND E1.T <> E2.T))

5

3

4

2

1

5

3

4

2

1

E(S,T)

SELECT DISTINCT E1.S
FROM E E1, E E2
WHERE E1.S = E2.S
AND E1.T <> E2.T
AND E1.S<5

A minimal change to the two queries
to evaluate them only over nodes 1-4:

SELECT
S

E

T
S<5

E

T
S

≠

E

T
S<5

E

T
S

≠

still allows x=5 in the neighbors

true

{1, 2, 3, 4}

https://northeastern-datalab.github.io/cs7240/

38Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Now in SQL with grouping

• “Find nodes that have at least two distinct neighbors” (query)

• “each node has at least two distinct neighbors”

501

5

3

4

2

1

5

3

4

2

1

E(S,T)

SELECT not exists
 (SELECT *
 FROM E E1
 WHERE not exists
 (SELECT *
 FROM E E2
 WHERE E1.S = E2.S
 AND E1.T <> E2.T))

?

?
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

SELECT DISTINCT E1.S
FROM E E1, E E2
WHERE E1.S = E2.S
AND E1.T <> E2.T

false

{1, 2, 3, 4}

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

39Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Now in SQL with grouping

• “Find nodes that have at least two distinct neighbors” (query)

• “each node has at least two distinct neighbors”

501

5

3

4

2

1

5

3

4

2

1

E(S,T)

SELECT not exists
 (SELECT *
 FROM E E1
 WHERE not exists
 (SELECT *
 FROM E E2
 WHERE E1.S = E2.S
 AND E1.T <> E2.T))

SELECT DISTINCT S
FROM E
GROUP BY S
HAVING COUNT(T)>=2

?
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

SELECT DISTINCT E1.S
FROM E E1, E E2
WHERE E1.S = E2.S
AND E1.T <> E2.T

false

{1, 2, 3, 4}

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

40Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Now in SQL with grouping

• “Find nodes that have at least two distinct neighbors” (query)

• “each node has at least two distinct neighbors”

501

SELECT DISTINCT E1.S
FROM E E1, E E2
WHERE E1.S = E2.S
AND E1.T <> E2.T5

3

4

2

1

5

3

4

2

1

E(S,T)

SELECT not exists
 (SELECT *
 FROM E E1
 WHERE not exists
 (SELECT *
 FROM E E2
 WHERE E1.S = E2.S
 AND E1.T <> E2.T))

SELECT not exists
 (SELECT S
 FROM E
 GROUP BY S
 HAVING COUNT(T)=1)

SELECT DISTINCT S
FROM E
GROUP BY S
HAVING COUNT(T)>=2

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql false

{1, 2, 3, 4}

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

42Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

More practice

• "A small, happy dog is at home"

• "Every small dog that is at home is happy."

• "Jiahui owns a small, happy dog"

• "Jiahui owns every small, happy dog."

Example adopted from Barker-Plummer, Barwise, Etchemendy - Language, Proof, And Logic (book, 2nd ed), 2011. https://www.gradegrinder.net/

?
?
?
?

Exercise for
next class J

https://northeastern-datalab.github.io/cs7240/
https://www.gradegrinder.net/

43Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

One more example

• "There are infinitely many prime numbers"

?

Source: Vasco Brattka. Logic and computation (lecture notes), 2007. http://cca-net.de/vasco/lc/

Exercise for
next class J

https://northeastern-datalab.github.io/cs7240/
http://cca-net.de/vasco/lc/

44Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semantics of First-Order Logic on Graphs

Semantics:
• First-order variables range over (can be " bound to") elements of

the universes of structures
• To evaluate a formula 𝜑, we need a graph 𝐺 and a binding 𝛼 that

maps the free variables of 𝜑 to nodes of 𝐺
- Notation: 𝐺 ⊨𝛼 𝜑 𝑥+, … , 𝑥,

Fundamental Distinction: Syntax vs. semantics (Tarski, 1930)
• Syntax: grammar, how to construct correct sentence, the

combinatorics of units of a language (e.g. "This water is triangular.")
• Semantics: relates to meaning
Source: Moshe Vardi: Database Queries: Logic and Complexity, talk 2012. https://abiteboul.com/College/1.140312.Vardi.pdf

E(x,y)
Parent('Alice','Bob')

https://northeastern-datalab.github.io/cs7240/
https://abiteboul.com/College/1.140312.Vardi.pdf

45Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Relational Databases

Codd’s Two Fundamental Ideas:

• Tables are relations: a row in a table is just a tuple in a relation;
order of rows/tuples does not matter!

• Formulas are queries: they specify the What rather then the How!
That's declarative programming

Source: Moshe Vardi: Database Queries: Logic and Complexity, talk 2012. https://abiteboul.com/College/1.140312.Vardi.pdf

https://northeastern-datalab.github.io/cs7240/
https://abiteboul.com/College/1.140312.Vardi.pdf

46Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

3 Components of FOL

1. Syntax (or language)

2. Interpretation

3. Semantics

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?
?
?

https://northeastern-datalab.github.io/cs7240/

47Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

3 Components of FOL

1. Syntax (or language)
- What are the allowed syntactic expressions?

2. Interpretation
- Mapping symbols to an actual world

3. Semantics
- When is a statement “true” under some interpretation?

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

48Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

3 Components of FOL

1. Syntax (or language)
- What are the allowed syntactic expressions?
- For DB's:

2. Interpretation
- Mapping symbols to an actual world
- For DB's:

3. Semantics
- When is a statement “true” under some interpretation?
- For DB's:

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?

?

?

https://northeastern-datalab.github.io/cs7240/

49Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

3 Components of FOL

1. Syntax (or language)
- What are the allowed syntactic expressions?
- For DB's:

2. Interpretation
- Mapping symbols to an actual world
- For DB's:

3. Semantics
- When is a statement “true” under some interpretation?
- For DB's:

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

schema, constraints, query language

database

meaning of integrity constraints and query results
(recall the conceptual evaluation strategy of SQL)

https://northeastern-datalab.github.io/cs7240/

50Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

• Alphabet: symbols in use
- Variables, constants, function symbols, predicate symbols, connectives, quantifiers, punctuation symbols

• Term: expression that stands for an element or object
- Variable, constant
- Inductively f(t1,…,tn)	where ti are terms, f a function symbol

• (Well-formed) formula: parameterized statement
- Atom p(t1,…,tn) where p is a predicate symbol, ti terms (atomic formula, together with predicates t1=t2)
- Inductively, for formulas F, G, variable x:

F⋀G F⋁G ¬F F⟶G F⟷G ∀x	F ∃x	F

• A first-order language refers to the set of all formulas over an alphabet

Components of FOL: (1) Syntax = First-order language

relation b/w objects

MotherOf(MotherOf(x))

terms

vocabulary

x = 'Alice'

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

51Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Components of FOL: (2) Interpretation

• How to assign meaning to the symbols of a formal language
• An interpretation INT for an alphabet consists of:
- A non-empty set Dom, called domain

• {Alice, Bob, Charly}

- An assignment of an element in Dom to each constant symbol
• Alice (recall we often write constants with quotation marks 'Alice')

- An assignment of a function Domn⟶Dom to each n-ary function symbol
• Alice = MotherOf(Bob)

- An assignment of a function Domn⟶{true, false} (i.e., a relation) to each n-ary
predicate symbol
• Friends(Bob, Charly) = TRUE

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

52Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Components of FOL: (3) Semantics
• A variable assignment V to a formula in an interpretation INT assigns to each free variable X

a value from Dom
- Recall, a free variable is one that is not quantified

• Truth value for formula F under interpretation INT and variable assignment V:
- Atom p(t1,…,tn): q(s1,…,sn) where q is the interpretation of the predicate p and si the interpretation of ti
- F⋀G F⋁G ¬F F⟶G F⟷G: according to truth table

- ∃𝑋𝐹: true iff there exists d∈Dom such that if V assigns d to X then the truth value of F is true; otherwise
false

- ∀𝑋𝐹: true iff for all d∈Dom, if V assigns d to X then the truth value of F is true; otherwise false

• If a formula has no free vars (closed formula or sentence), we can simply refer to its truth
value under INT

Person(X) ∃Y Married(X,Y)

∀X: Person(X) ⟶	Mortal(X)
Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

Formula
Sentence

Query

https://northeastern-datalab.github.io/cs7240/

53Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Operator precedence

Source: http://intrologic.stanford.edu/glossary/operator_precedence.html

https://northeastern-datalab.github.io/cs7240/
http://intrologic.stanford.edu/glossary/operator_precedence.html

59

Queries and the connection to logic

• Why logic?
• A crash course in FOL
• Relational Calculus (RC)

– Syntax and Semantics
– Domain RC (DRC) vs Tuple RC (TRC)
– Domain Independence and Safety

• 4 categorical propositions

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

60Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The entire story of Relational Calculus (RC) in 1 slide

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

• RC is, essentially, first-order logic (FOL) over the schema relations
- A query has the form “find all tuples (x1,...,xk) that satisfy an FOL condition”
- Thus RC is a declarative query language: a query is not defined by a sequence of operations, but rather by

a logical condition that the result should satisfy

1. RC = FOL over DB's
2. RC can express “bad queries” that depend not only on the DB, but also on the domain from

which values are taken (called “domain dependence” which is bad)
3. We cannot test whether an RC query is “good,” but we can use a “good” subset of RC that

captures all “good” queries (safety)
4. “Good” RC and RA can express the same queries! (equivalence = Codd's theorem)

https://northeastern-datalab.github.io/cs7240/

61

Queries and the connection to logic

• Why logic?
• A crash course in FOL
• Relational Calculus (RC)

– Syntax and Semantics
– Domain RC (DRC) vs Tuple RC (TRC)
– Domain Independence and Safety

• 4 categorical propositions

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

62Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RC Query

{	(x,u)	|	Person(u,	'female',	'Canada')	⋀
	 ∃z,y	[Parent(z,y)	⋀	Parent(y,x)	⋀	
	 ∃w	[Parent(z,w)	⋀	y≠w	⋀		(u=w	⋁	Spouse(u,w))]]	}

Person(id, gender, country)
Parent(parent, child)
Spouse(person1, person2)

x

y

z

w u

ParentParent

Parent Spouse
≠

assume symmetric relation
(a,b)∊Spouse ⇔ (b,a)∊Spouse

Which relatives does
this query find? ?

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

disjunction not shown here (difficult to visualize)

https://northeastern-datalab.github.io/cs7240/

63Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RC Query

{	(x,u)	|	Person(u,	'female',	'Canada')	⋀
	 ∃z,y	[Parent(z,y)	⋀	Parent(y,x)	⋀	
	 ∃w	[Parent(z,w)	⋀	y≠w	⋀		(u=w	⋁	Spouse(u,w))]]	}

Person(id, gender, country)
Parent(parent, child)
Spouse(person1, person2)

x

y

z

w u

ParentParent

Parent Spouse
≠

assume symmetric relation
(a,b)∊Spouse ⇔ (b,a)∊Spouse

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

Persons and their Canadian aunts
(incl. female spouses of uncles and aunts)

Which relatives does
this query find?

disjunction not shown here (difficult to visualize)

https://northeastern-datalab.github.io/cs7240/

64Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RC Symbols (more precisely “Domain RC” = DRC)

• Constant values:
- Values that may appear in table cells (optionally with quotation marks)

• Variables:
- Range over the values that may appear in table cells

• Relation symbols:
- Each with a specified arity (fixed by the given relational schema)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?

?

?

https://northeastern-datalab.github.io/cs7240/

65Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RC Symbols (more precisely “Domain RC” = DRC)

• Constant values:
- Values that may appear in table cells (optionally with quotation marks)

• Variables:
- Range over the values that may appear in table cells

• Relation symbols:
- Each with a specified arity (fixed by the given relational schema)
- Two variants:

• No attribute names, only attribute positions: “unnamed perspective”
• Attribute names: “named perspective”

• What about functions

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

'female', 'Canada'

x, y, z, w, u

Person, Parent, Spouse

?

https://northeastern-datalab.github.io/cs7240/

66Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RC Symbols (more precisely “Domain RC” = DRC)

• Constant values:
- Values that may appear in table cells (optionally with quotation marks)

• Variables:
- Range over the values that may appear in table cells

• Relation symbols:
- Each with a specified arity (fixed by the given relational schema)
- Two variants:

• No attribute names, only attribute positions: “unnamed perspective”
• Attribute names: “named perspective”

• Unlike general FOL, no function symbols!

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

'female', 'Canada'

x, y, z, w, u

Person, Parent, Spouse

https://northeastern-datalab.github.io/cs7240/

67

Topic 1: Data models and query languages
Unit 2: Logic & relational calculus
Lecture 5

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
https://northeastern-datalab.github.io/cs7240/sp24/
1/26/2024

Updated 1/26/2024

https://northeastern-datalab.github.io/cs7240/sp24/

68Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Pre-class conversations

• Last class recapitulation
• Scribes: perfect example for first iteration posted to Piazza. Thanks!

• today:
- logic continued (likely next time algebra and the connection)
- logic is super important for our class; thus lots of practice today J
- in particular the concept of "undecidability": intuition for why things can

quickly get complicated without giving proofs

https://northeastern-datalab.github.io/cs7240/

69Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: Ray Dalio. "Principles", 2017. https://en.wikipedia.org/wiki/Principles_(book)

Separation of
concerns: WHAT
from HOW

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Principles_(book)

70Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

More practice

• "A small, happy dog is at home"

• "Every small dog that is at home is happy."

• "Jiahui owns a small, happy dog"

• "Jiahui owns every small, happy dog."

Example adopted from Barker-Plummer, Barwise, Etchemendy - Language, Proof, And Logic (book, 2nd ed), 2011. https://www.gradegrinder.net/

?
?
?
?

https://northeastern-datalab.github.io/cs7240/
https://www.gradegrinder.net/

71Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

More practice

• "A small, happy dog is at home"
- ∃x [(Small(x) ∧ Happy (x) ∧ Dog (x)) ∧ Home(x)]

• "Every small dog that is at home is happy."

• "Jiahui owns a small, happy dog"

• "Jiahui owns every small, happy dog."

?
?
?

Example adopted from Barker-Plummer, Barwise, Etchemendy - Language, Proof, And Logic (book, 2nd ed), 2011. https://www.gradegrinder.net/

associativity of conjunction: no need of
evaluation to follow blue parentheses

https://northeastern-datalab.github.io/cs7240/
https://www.gradegrinder.net/

72Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

More practice

• "A small, happy dog is at home"
- ∃x [(Small(x) ∧ Happy (x) ∧ Dog (x)) ∧ Home(x)]

• "Every small dog that is at home is happy."
- ∀x [(Small(x) ∧ Dog (x) ∧ Home(x)) → Happy (x)]

• "Jiahui owns a small, happy dog"

• "Jiahui owns every small, happy dog."
?
?

Example adopted from Barker-Plummer, Barwise, Etchemendy - Language, Proof, And Logic (book, 2nd ed), 2011. https://www.gradegrinder.net/

associativity of conjunction: no need of
evaluation to follow blue parentheses

here evaluation needs to follow blue
parentheses

https://northeastern-datalab.github.io/cs7240/
https://www.gradegrinder.net/

73Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

More practice

• "A small, happy dog is at home"
- ∃x [(Small(x) ∧ Happy (x) ∧ Dog (x)) ∧ Home(x)]

• "Every small dog that is at home is happy."
- ∀x [(Small(x) ∧ Dog (x) ∧ Home(x)) → Happy (x)]

• "Jiahui owns a small, happy dog"
- ∃x [(Small(x) ∧ Happy (x) ∧ Dog (x)) ∧ Owns('Jiahui', x)]

• "Jiahui owns every small, happy dog."

notice that we deviate
here from the usual
notation in logics of
constants like 'Jiahui'
written w/o quotation
marks ?

Example adopted from Barker-Plummer, Barwise, Etchemendy - Language, Proof, And Logic (book, 2nd ed), 2011. https://www.gradegrinder.net/

associativity of conjunction: no need of
evaluation to follow blue parentheses

here evaluation needs to follow blue
parentheses

https://northeastern-datalab.github.io/cs7240/
https://www.gradegrinder.net/

74Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

More practice

• "A small, happy dog is at home"
- ∃x [(Small(x) ∧ Happy (x) ∧ Dog (x)) ∧ Home(x)]

• "Every small dog that is at home is happy."
- ∀x [(Small(x) ∧ Dog (x) ∧ Home(x)) → Happy (x)]

• "Jiahui owns a small, happy dog"
- ∃x [(Small(x) ∧ Happy (x) ∧ Dog (x)) ∧ Owns('Jiahui', x)]

• "Jiahui owns every small, happy dog."
- ∀x [(Small(x) ∧ Happy (x) ∧ Dog (x)) → Owns('Jiahui', x)]

notice that we deviate
here from the usual
notation in logics of
constants like 'Jiahui'
written w/o quotation
marks

Example adopted from Barker-Plummer, Barwise, Etchemendy - Language, Proof, And Logic (book, 2nd ed), 2011. https://www.gradegrinder.net/

associativity of conjunction: no need of
evaluation to follow blue parentheses

here evaluation needs to follow blue
parentheses

https://northeastern-datalab.github.io/cs7240/
https://www.gradegrinder.net/

75Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Two more examples

• "There are infinitely many prime numbers"

?

Source first example: Vasco Brattka. Logic and computation (lecture notes), 2007. http://cca-net.de/vasco/lc/

https://northeastern-datalab.github.io/cs7240/
http://cca-net.de/vasco/lc/

76Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Two more examples

• "There are infinitely many prime numbers"
- ∀x ∃y [y > x ∧ Prime(y)]

Source first example: Vasco Brattka. Logic and computation (lecture notes), 2007. http://cca-net.de/vasco/lc/

https://northeastern-datalab.github.io/cs7240/
http://cca-net.de/vasco/lc/

77Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Two more examples

• "There are infinitely many prime numbers"
- ∀x ∃y [y > x ∧ Prime(y)]

• ∀x ∃y [y = sqrt(x)]

?

Source first example: Vasco Brattka. Logic and computation (lecture notes), 2007. http://cca-net.de/vasco/lc/

https://northeastern-datalab.github.io/cs7240/
http://cca-net.de/vasco/lc/

78Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Two more examples

• "There are infinitely many prime numbers"
- ∀x ∃y [y > x ∧ Prime(y)]

• ∀x ∃y [y = sqrt(x)]
- Truth of this expression depends on domain:

• evaluates to false if x and y have the domain of the real numbers ℝ
• evaluates to true if their domain is the complex numbers ℂ

Source first example: Vasco Brattka. Logic and computation (lecture notes), 2007. http://cca-net.de/vasco/lc/

https://northeastern-datalab.github.io/cs7240/
http://cca-net.de/vasco/lc/

81

Queries and the connection to logic

• Why logic?
• A crash course in FOL
• Relational Calculus (RC)

– Syntax and Semantics
– Domain RC (DRC) vs Tuple RC (TRC)
– Domain Independence and Safety

• 4 categorical propositions

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

82Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RC Formulas (atomic and non-atomic)

• Atomic formulas:
- R(t1,...,tk)

• R is a k-ary relation, Each ti is a variable or a constant
• Semantically it states that (t1,...,tk) is a tuple in R

- x op u
• x is a variable, u is a variable/constant, op is one of >, <, =, ≠
• Simply binary predicates, predefined interpretation

• Formula:
- Atomic formula
- If φ and ψ are formulas then these are formulas:

φ ⋀ ψ φ ⋁ ψ φ → ψ φ → ψ ¬φ ∃x φ ∀x φ

Person(u, 'female', 'Canada')

u=w, y≠w, z>5, z='female'

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

Person(u, 'female', 'Canada') ⋀
∃z,y [Parent(z,y) ⋀ Parent(y,x)]

https://northeastern-datalab.github.io/cs7240/

83Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Free Variables

• Intuitively: free variable are not bound to quantifiers
• Formally:
- A free variable of an atomic formula is a variable that occurs in the atomic formula

- A free variable of φ ⋀	ψ,φ ⋁	ψ,	φ⟶ ψ is a free variable of either φ or ψ

- A free variable of ¬φ is a free variable of φ

- A free variable of ∃x φ and ∀x φ is a free variable y of φ such that y≠x
• We write φ(x1,...,xk) to state that x1,...,xk are the free variables of formula φ

(in some order)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

∃x [x=y]
... is y free ?

https://northeastern-datalab.github.io/cs7240/

84Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Free Variables

• Intuitively: free variable are not bound to quantifiers
• Formally:
- A free variable of an atomic formula is a variable that occurs in the atomic formula

- A free variable of φ ⋀	ψ,φ ⋁	ψ,	φ⟶ ψ is a free variable of either φ or ψ

- A free variable of ¬φ is a free variable of φ

- A free variable of ∃x φ and ∀x φ is a free variable y of φ such that y≠x
• We write φ(x1,...,xk) to state that x1,...,xk are the free variables of formula φ

(in some order)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

∃x [x=y]
y is free

https://northeastern-datalab.github.io/cs7240/

85Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Back to our earlier example

Person(u,	'female',	'Canada')	⋀
	 ∃z,y	[Parent(z,y)	⋀	Parent(y,x)	⋀	
	 	 ∃w	[Parent(z,w)	⋀	y≠w	⋀		(u=w	⋁	Spouse(u,w))]]	

What are the free
variables? ?

This is a formula!

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

x

y

z

w u

ParentParent

Parent Spouse
≠

https://northeastern-datalab.github.io/cs7240/

86Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Back to our earlier example

Notation:

φ(x,u) or CanadianAunt(u,x)

Person(u,	'female',	'Canada')	⋀
	 ∃z,y	[Parent(z,y)	⋀	Parent(y,x)	⋀	
	 	 ∃w	[Parent(z,w)	⋀	y≠w	⋀		(u=w	⋁	Spouse(u,w))]]	

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

x

y

z

w u

ParentParent

Parent Spouse
≠

https://northeastern-datalab.github.io/cs7240/

87Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RC query

Person(u,	'female',	'Canada')	⋀
	 ∃z,y	[Parent(z,y)	⋀	Parent(y,x)	⋀	
	 	 ∃w	[Parent(z,w)	⋀	y≠w	⋀		(u=w	⋁	Spouse(u,w))]]	

{	(x,u)	|

}

{	(x1,...,xk)	| φ(x1,...,xk)	}

φ(x,u) or CanadianAunt(u,x)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

x

y

z

w u

ParentParent

Parent Spouse
≠

https://northeastern-datalab.github.io/cs7240/

88Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Relation Calculus Query

• An RC query is an expression of the form

{	(x1,...,xk)	|	φ(x1,...,xk)	}
where φ(x1,...,xk) is an RC formula

• An RC query is over a relational schema S if all the relation symbols
belong to S (with matching arities)

some condition on the variables
COND(x1,...,xk)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

89

Queries and the connection to logic

• Why logic?
• A crash course in FOL
• Relational Calculus (RC)

– Syntax and Semantics
– Domain RC (DRC) vs Tuple RC (TRC)
– Domain Independence and Safety

• 4 categorical propositions

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

90Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

DRC vs. TRC (Domain vs. Tuple RC)

Two common variants of RC:
• DRC (Domain RC): attributes as sets (what we have seen so far)
- DRC applies typical FO: terms interpreted as attribute (domain) values, relations have

arity but no attribute names (= unnamed perspective)
- Example: 𝑥 = 4 ∧ 𝑅 𝑥, 𝑦

• TRC (Tuple RC): tuples as sets
- TRC is more “database friendly”: terms interpreted as tuples with named attributes
- Example: 𝑅. 𝐴 = 4 for schema 𝑅 𝐴, 𝐵

• There are easy conversions between the two formalisms

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

91Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

DRC vs. TRC (Domain vs. Tuple RC)

{	(x,y)	|	R(x,y)	∧	y>2	}

{	r	|	r∈R	∧	r.B>2	}
{	r	|	r∈R[r.B>2]}

{	(x)	|	∃y[R(x,y)	∧	y>2]	}

domain variables range over the domain

tuple variables range over relations
(domain of tuple variable)

predicate (named)

?

DRC

TRC

DRC

TRC

A B
1 3
1 4
2 2

R

predicate (unnamed)

https://northeastern-datalab.github.io/cs7240/

92Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

DRC vs. TRC (Domain vs. Tuple RC)

{	(x,y)	|	R(x,y)	∧	y>2	}

{	r	|	r∈R	∧	r.B>2	}
{	r	|	r∈R[r.B>2]}

{	(x)	|	∃y[R(x,y)	∧	y>2]	}

{	q	|	∃r∈R[q.A=r.A	∧	r.B>2]	}

domain variables range over the domain

Which are here bound and
which are free variables ?

DRC

TRC

DRC

TRC

predicate (named)

predicate (unnamed)

Other sources often use "t" as tuple variable. I prefer to
use "q" to identify the output relation with the query

A B
1 3
1 4
2 2

R

tuple variables range over relations
(domain of tuple variable)

https://northeastern-datalab.github.io/cs7240/

93Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

DRC vs. TRC (Domain vs. Tuple RC)

{	(x,y)	|	R(x,y)	∧	y>2	}

{	r	|	r∈R	∧	r.B>2	}
{	r	|	r∈R[r.B>2]}

{	(x)	|	∃y[R(x,y)	∧	y>2]	}

{	q	|	∃r∈R[q.A=r.A	∧	r.B>2]	}

domain variables range over the domain

free bound

free bound

{	q	|	∃r∈R[q.A=r.A	∧	q.B=r.B	∧	r.B>2]	}

{	q(A,B)	|	∃r∈R[q.A=r.A	∧	q.B=r.B	∧	r.B>2]	}

DRC

TRC

DRC

TRC

predicate (named)

predicate (unnamed)

A B
1 3
1 4
2 2

R

tuple variables range over relations
(domain of tuple variable)

https://northeastern-datalab.github.io/cs7240/

94Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Our Example in TRC

{ q | ∃a ∈ Person [a.gender = 'female' ⋀ a.country = 'Canada'] ⋀
 ∃p,r,w ∈ Parent [p.child = q.nephew ⋀ r.child = p.parent ⋀
 w.parent = r.parent ⋀ w.child ≠ r.child ⋀ a.id = q.aunt ⋀
 (w.child = a.id ⋁ ∃s [s ∈ Spouse ⋀ s.person1 = w.child ⋀ s.person2 = a.id])]]}

Person(id, gender, country)
Parent(parent, child)
Spouse(person1, person2)

tuple variables like in SQL instead
of domain variables: { q | COND(q)}

p

r w
s

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018. However, notice I prefer and follow here the notation of
[Ramakrishnan, Gehrke' 03] and [Elmasri, Navathe'15] of using a.country = 'Canada', instead of the alternative notation a[country]='Canada' used by [Silberschatz, Korth, Sudarshan 2010]

often used short forms:
∀x∊R[φ] same as ∀x[x∊R ⇒ φ]
∃x∊R[φ] same as ∃x[x∊R ⋀ φ]

optionally "q(nephew, aunt)"

≠

https://northeastern-datalab.github.io/cs7240/

95Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Different TRC notations
Find persons who frequent only bars that serve some drinks they like.
(Find persons for whom there does not exist a bar they frequent that serves no drink they do not like.)

{q(person) | ∃f ∊ Frequents [f.person=q.person ⋀ ¬(∃f2 ∊ Frequents [f2.person=f.person ⋀ my preferred notation
 ¬(∃l ∊ Likes, ∃s ∊ Serves [l.drink=s.drink ⋀ f2.bar=s.bar ⋀ f2.person=l.person])])]}

{Q.person | ∃F ∊ Frequents.(Q.person=F.person ⋀ (∄F2 ∊ Frequents.(F2.person=F.person ⋀ my earlier pref. notation
 (∄L ∊ Likes, ∄S ∊ Serves.(L.drink=S.drink ⋀ F2.bar=S.bar ⋀ F2.person=L.person)))))}

{t: Person | ∃f ∊ Frequents [t(Person)=f(Person) ⋀ ¬∃f2 ∊ Frequents [F2(person)=F(person) ⋀ [Deutsch 2019]
 ¬(∃l ∊ Likes ∃s ∊ Serves) [l(Drink)=s(Drink) ⋀ f2(Bar)=s(Bar) ⋀ f2(Person)=l(Person)]]]}

{f.Person | Frequents(f) AND (NOT(∃f2)(Frequents(f2) AND f2.person=f.person ⋀ [Elmasri 2015]
 (NOT(∃l)(∃s)(Likes(l) AND Serves(s) AND l.drink=s.drink AND f2.bar=s.bar AND f2.person=l.person))))}

{𝜇(1) | (∃𝜌(2)) (Frequents(𝜌) ⋀ 𝜌[1]= 𝜇[1] ⋀ ¬((∃𝜆(2))(Frequents(𝜆) ⋀ 𝜆[1] = 𝜌[1] ⋀ [Ullman 1988]
 ¬((∃𝜈(2))(∃𝜃(2))(Likes(𝜈) ⋀ Serves(𝜃) ⋀ 𝜈(2)= 𝜃(2) ⋀ 𝜆(2)=𝜃(1) ⋀ 𝜆(1)=𝜈(1)))))}

{P| ∃F ∊ Frequents (F.person=P.person ⋀ ¬∃F2 ∊ Frequents(F2.person=F.person ⋀ [Ramakrishnan 2003]
 ¬(∃L ∊ Likes ∃S ∊ Serves (L.drink=S.drink ⋀ F2.bar=S.bar ⋀ F2.person=L.person))))}

331

Likes(person, drink)
Frequents(person, bar)
Serves(bar, drink)

Deutsch (based on Vianu), CSE132A: Database System Principles, fall 2019. https://cseweb.ucsd.edu/classes/fa19/cse132A-a/slides/relational-calculus.pdf , Elmasri , Navathe.
Fundamentals of database systems (7 ed), 2015. https://dl.acm.org/doi/book/10.5555/2842853 , Ullman. Principles of Database and Knowledge-base Systems, Vol. 1, 1988.
https://dl.acm.org/doi/book/10.5555/42790 , Ramakrishnan, Gehrke. Database Management Systems (3 ed), 2003. https://dl.acm.org/doi/book/10.5555/560733
SQL database available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://cseweb.ucsd.edu/classes/fa19/cse132A-a/slides/relational-calculus.pdf
https://dl.acm.org/doi/book/10.5555/2842853
https://dl.acm.org/doi/book/10.5555/42790
https://dl.acm.org/doi/book/10.5555/560733
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

96Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

TRC vs. Relational Diagrams
Find persons who frequent only bars that serve some drinks they like.
(Find persons for whom there does not exist a bar they frequent that serves no drink they do not like.)

{q(person) | ∃f ∊ Frequents [f.person=q.person ⋀ ¬(∃f2 ∊ Frequents [f2.person=f.person ⋀ my preferred notation
 ¬(∃l ∊ Likes, ∃s ∊ Serves [l.drink=s.drink ⋀ f2.bar=s.bar ⋀ f2.person=l.person])])]}

331

Likes(person, drink)
Frequents(person, bar)
Serves(bar, drink)

SQL database available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Q
person

Frequents
person

Frequents

bar
person

Likes

drink
person

Serves

drink
bar

SELECT DISTINCT F.person
FROM Frequents F
WHERE not exists
 (SELECT *
 FROM Frequents F2
 WHERE F2.person=F.person
 AND not exists
 (SELECT *
 FROM Likes L, Serves S
 WHERE L.person=F2.person
 AND L.drink=S.drink
 AND S.bar=F2.bar))

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

97Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

In DRC, SQL, RD, and now in TRC

• “Find nodes that have at least two distinct neighbors” (query)
- 𝑥 ∃𝑦∃𝑧 [𝐸 𝑥, 𝑦 ∧ 𝐸 𝑥, 𝑧 ∧ 𝑦≠𝑧]}
- in TRC

• “each node has at least two distinct neighbors”
- ∀𝑥 ∃𝑦 ∃𝑧 [𝐸 𝑥, 𝑦 ∧ 𝐸 𝑥, 𝑧 ∧ 𝑦≠𝑧]
- ¬(∃𝑥 ¬(∃𝑦∃𝑧 𝐸 𝑥, 𝑦 ∧𝐸 𝑥, 𝑧 ∧𝑦≠𝑧))

- in TRC

501

SELECT DISTINCT E1.S
FROM E E1, E E2
WHERE E1.S = E2.S
AND E1.T <> E2.T

E(S,T)

SELECT not exists
 (SELECT *
 FROM E E1
 WHERE not exists
 (SELECT *
 FROM E E2
 WHERE E1.S = E2.S
 AND E1.T <> E2.T))

SELECT
S

E

T
S

E

T
S

≠

E

T
S

E

T
S

≠

?

?

5

3

4

2

1

false

{1, 2, 3, 4}

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

98Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

In DRC, SQL, RD, and now in TRC

• “Find nodes that have at least two distinct neighbors” (query)
- 𝑥 ∃𝑦∃𝑧 [𝐸 𝑥, 𝑦 ∧ 𝐸 𝑥, 𝑧 ∧ 𝑦≠𝑧]}
- 𝑞 ∃𝑒1∊𝐸, ∃𝑒2∊𝐸[𝑞. 𝑆=𝑒1. 𝑆 ⋀ 𝑒1. 𝑆=𝑒2. 𝑆 ⋀𝑒1. 𝑇≠𝑒2. 𝑇]}

• “each node has at least two distinct neighbors”
- ∀𝑥 ∃𝑦 ∃𝑧 [𝐸 𝑥, 𝑦 ∧ 𝐸 𝑥, 𝑧 ∧ 𝑦≠𝑧]
- ¬(∃𝑥 ¬(∃𝑦∃𝑧 𝐸 𝑥, 𝑦 ∧𝐸 𝑥, 𝑧 ∧𝑦≠𝑧))

- in TRC

501

SELECT DISTINCT E1.S
FROM E E1, E E2
WHERE E1.S = E2.S
AND E1.T <> E2.T

E(S,T)

SELECT not exists
 (SELECT *
 FROM E E1
 WHERE not exists
 (SELECT *
 FROM E E2
 WHERE E1.S = E2.S
 AND E1.T <> E2.T))

SELECT
S

E

T
S

E

T
S

≠

E

T
S

E

T
S

≠

?

5

3

4

2

1

false

{1, 2, 3, 4}

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

99Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

In DRC, SQL, RD, and now in TRC

• “Find nodes that have at least two distinct neighbors” (query)
- 𝑥 ∃𝑦∃𝑧 [𝐸 𝑥, 𝑦 ∧ 𝐸 𝑥, 𝑧 ∧ 𝑦≠𝑧]}
- 𝑞 ∃𝑒1∊𝐸, ∃𝑒2∊𝐸[𝑞. 𝑆=𝑒1. 𝑆 ⋀ 𝑒1. 𝑆=𝑒2. 𝑆 ⋀𝑒1. 𝑇≠𝑒2. 𝑇]}

• “each node has at least two distinct neighbors”
- ∀𝑥 ∃𝑦 ∃𝑧 [𝐸 𝑥, 𝑦 ∧ 𝐸 𝑥, 𝑧 ∧ 𝑦≠𝑧]
- ¬(∃𝑥 ¬(∃𝑦∃𝑧 𝐸 𝑥, 𝑦 ∧𝐸 𝑥, 𝑧 ∧𝑦≠𝑧))

- ¬(∃𝑒1∊𝐸[¬(∃𝑒2∊𝐸 𝑒1. 𝑆=𝑒2. 𝑆 ⋀ 𝑒1. 𝑇≠𝑒2. 𝑇)])

501

SELECT DISTINCT E1.S
FROM E E1, E E2
WHERE E1.S = E2.S
AND E1.T <> E2.T5

3

4

2

1

E(S,T)

SELECT not exists
 (SELECT *
 FROM E E1
 WHERE not exists
 (SELECT *
 FROM E E2
 WHERE E1.S = E2.S
 AND E1.T <> E2.T))

SELECT
S

E

T
S

E

T
S

≠

E

T
S

E

T
S

≠

false

{1, 2, 3, 4}

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

106

Queries and the connection to logic

• Why logic?
• A crash course in FOL
• Relational Calculus (RC)

– Syntax and Semantics
– Domain RC (DRC) vs Tuple RC (TRC)
– Domain Independence and Safety

• 4 categorical propositions

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

107Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Intuition for what we are trying to avoid

1) What's the answer to Q1? S	=	{3,	4}

Q1:	{	(x)	|	¬S(x)	}

https://northeastern-datalab.github.io/cs7240/

108Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Intuition for what we are trying to avoid

1) What's the answer to Q1? S	=	{3,	4}

Dom	=	ℕ!!""

Q1:	{	(x)	|	¬S(x)	}

2) What now?

https://northeastern-datalab.github.io/cs7240/

109Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Intuition for what we are trying to avoid

Q2:	{	(x)	|	R(x)	⋀	¬S(x)	}

1) What's the answer to Q1? S	=	{3,	4}

R	=	{1,	2,	3}

Dom	=	ℕ!!""

Q1:	{	(x)	|	¬S(x)	}

2) What now?

3) What's the answer to Q2?

https://northeastern-datalab.github.io/cs7240/

110Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Intuition for what we are trying to avoid

Q2:	{	(x)	|	R(x)	⋀	¬S(x)	}

1) What's the answer to Q1? S	=	{3,	4}

R	=	{1,	2,	3}

Dom	=	ℕ!!""

Q1:	{	(x)	|	¬S(x)	}

2) What now?

3) What's the answer to Q2?

Dom	=	ℕ!!""" 4) What now?

https://northeastern-datalab.github.io/cs7240/

111Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Intuition for what we are trying to avoid

Q2:	{	(x)	|	R(x)	⋀	¬S(x)	}

1) What's the answer to Q1? S	=	{3,	4}

R	=	{1,	2,	3}

Dom	=	ℕ!!""

A
1
2
3

R
A
3
4

S

Q1:	{	(x)	|	¬S(x)	}

2) What now?

3) What's the answer to Q2?

Dom	=	ℕ!!""" 4) What now?

Q2 is "domain-independent", i.e. we don't care whether
Dom	is	ℕ!!"" or ℕ!!""". We only care about the database D:

That's easy to see,
but it gets more
complicated L

We "don't like this query" because we can't
evaluate it by only looking at the database

https://northeastern-datalab.github.io/cs7240/

112Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Bringing in the Domain

• Let S be a schema, D a database over S, and Q an RC query over S
• Then D gives an unambiguous interpretation for the underlying FOL
- Predicates ⟶ relations; constants copied; no functions

Is this true ?

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

113Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Bringing in the Domain

• Let S be a schema, D a database over S, and Q an RC query over S
• Then D gives an unambiguous interpretation for the underlying FOL
- Predicates ⟶ relations; constants copied; no functions
- Not yet! We need to answer first: What is the domain?

• The active domain ADom (of D and Q) is the set of all the values that occur in
either D or Q

• The query Q is evaluated over D with respect to a domain Dom that contains
the active domain (Dom ⊇ ADom)

• Denote by QDom(D) the result of evaluating Q over D relative to the domain
Dom

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

114Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Domain Independence

• Let S be a schema, and let Q be an RC query over S
• We say that Q is domain independent if for every database D over S

and ...

How could we continue the definition?

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

115Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Domain Independence

• Let S be a schema, and let Q be an RC query over S
• We say that Q is domain independent if for every database D over S

and every two domains Dom1 and Dom2 that contain the active
domain, we have:

QDom1(D) = QDom2(D) = QADom(D)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

ADom

Dom1 Dom2

https://northeastern-datalab.github.io/cs7240/

116Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

First bad news ... and then good news ...

We would like be able to tell whether a given RC query is domain independent,
and then reject “bad queries”

• Bad: This problem is undecidable L!
- That is, there is no algorithm that takes as input an RC query and returns true iff the

query is domain independent

• Good: Domain-independent RC has an "effective syntax", that is:
- A syntactic restriction of RC in which every query is domain independent
- Restricted queries are said to be safe

- Safety can be tested automatically (and efficiently)
• Most importantly, for every domain independent RC query there exists an equivalent safe RC query!

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.
First observed in "Di Paola. The Recursive Unsolvability of the Decision Problem for the Class of Definite Formulas, JACM 1969. https://doi.org/10.1145/321510.321524"

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/321510.321524

117Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Safety

• We don’t cover the formal definition of the safe syntax
• Details on the safe syntax can be found e.g. in [Alice'95]
• Example:

- Every variable xi	is guarded by R(x1,...,xk)	
- In ''∃x	φ'', the variable x should be guarded by φ
- In ''ψ ⋀	(x=y)'', the variable x is guarded iff

either x or y is guarded by ψ
- ...

[Alice'95] Abiteboul, Hull, Vianu. Foundations of Databases, 1995. Chapter 5.4 Syntactic Restrictions for Domain Independence. http://webdam.inria.fr/Alice/
An more accessible overview of issues involving safety is: Topor, Safety and Domain Independence, Encyclopedia of Database Systems. https://doi.org/10.1007/978-0-387-39940-9_1255

https://northeastern-datalab.github.io/cs7240/
http://webdam.inria.fr/Alice/
https://doi.org/10.1007/978-0-387-39940-9_1255

118Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent?

{	(x)	|	¬Person(x,	'female',	'Canada')	}

{	(x,y)	|∃z	[Spouse(x,z)	⋀	y=z]	}

{	(x,y)	|∃z	[Spouse(x,z)	⋀	y≠z]	}

?

?

?

ADom = {1, 2, 3, 'female', 'Canada'}
Dom = ADom ⋃ {'elefant', 'car', 'lemon', 𝜋, ...}

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

https://northeastern-datalab.github.io/cs7240/

119Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent?

{	(x)	|	¬Person(x,	'female',	'Canada')	}

{	(x,y)	|∃z	[Spouse(x,z)	⋀	y=z]	}

{	(x,y)	|∃z	[Spouse(x,z)	⋀	y≠z]	}

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?

?

Not DI

? What are example fixes:

Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

https://northeastern-datalab.github.io/cs7240/

120Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent? Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

{	(x)	|	¬Person(x,	'female',	'Canada')	}

{	(x,y)	|∃z	[Spouse(x,z)	⋀	y=z]	}

{	(x,y)	|∃z	[Spouse(x,z)	⋀	y≠z]	}

⋀ Person(x,_,'Canada')

⋀ ∃y,z.Person(x,y,z)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?

?

Not DI

⋀ Person(x,_,_) What are example fixes:

⋀ x='1' or x='2'

https://northeastern-datalab.github.io/cs7240/

121Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent?

{	(x)	|	¬Person(x,	'female',	'Canada')	}

{	(x,y)	|∃z	[Spouse(x,z)	⋀	y=z]	}

{	(x,y)	|∃z	[Spouse(x,z)	⋀	y≠z]	}

same as {(x,y) | Spouse(x,y)} = Spouse(x,y)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?

Not DI

DI

⋀ Person(x,_,'Canada')

⋀ ∃y,z.Person(x,y,z)
⋀ Person(x,_,_) What are example fixes:

⋀ x='1' or x='2'

Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

https://northeastern-datalab.github.io/cs7240/

122Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent?

{	(x)	|	¬Person(x,	'female',	'Canada')	}

{	(x,y)	|∃z	[Spouse(x,z)	⋀	y=z]	}

{	(x,y)	|∃z	[Spouse(x,z)	⋀	y≠z]	}
D: Spouse('Alice','Bob')
ADom={'Alice','Bob'}
Dom={'Alice','Bob','Charly'}

→
→Dom ⊇ ADom

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?

Not DI

DI

⋀ Person(x,_,'Canada')

⋀ ∃y,z.Person(x,y,z)
⋀ Person(x,_,_) What are example fixes:

⋀ x='1' or x='2'

Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

same as {(x,y) | Spouse(x,y)} = Spouse(x,y)

?
?

https://northeastern-datalab.github.io/cs7240/

123Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent?

{	(x)	|	¬Person(x,	'female',	'Canada')	}

{	(x,y)	|∃z	[Spouse(x,z)	⋀	y=z]	}

{	(x,y)	|∃z	[Spouse(x,z)	⋀	y≠z]	}
D: Spouse('Alice','Bob')
ADom={'Alice','Bob'}
Dom={'Alice','Bob','Charly'} →Dom ⊇ ADom

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?

Not DI

DI

⋀ Person(x,_,'Canada')

⋀ ∃y,z.Person(x,y,z)
⋀ Person(x,_,_) What are example fixes:

⋀ x='1' or x='2'

Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

same as {(x,y) | Spouse(x,y)} = Spouse(x,y)

?
→ {('Alice','Alice')}

https://northeastern-datalab.github.io/cs7240/

124Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent?

{	(x)	|	¬Person(x,	'female',	'Canada')	}

{	(x,y)	|∃z	[Spouse(x,z)	⋀	y=z]	}

{	(x,y)	|∃z	[Spouse(x,z)	⋀	y≠z]	}
D: Spouse('Alice','Bob')
ADom={'Alice','Bob'}
Dom={'Alice','Bob','Charly'}

→ {('Alice','Alice')}
→ {('Alice','Alice'), ('Alice','Charly')}Dom ⊇ ADom

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

Not DI

DI

⋀ Person(x,_,'Canada')

⋀ ∃y,z.Person(x,y,z)
⋀ Person(x,_,_) What are example fixes:

⋀ x='1' or x='2'

Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

same as {(x,y) | Spouse(x,y)} = Spouse(x,y)

Not DI

https://northeastern-datalab.github.io/cs7240/

125Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent?

{	(x)	|∃z,w	Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{	(x)	|∃z,w	Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{	(x)	|∃z,w	Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}
Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

https://northeastern-datalab.github.io/cs7240/

126Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent?

Person('Alice',	'female',	'Canada')
Person('Beate',	'female',	'Canada')
Person('Cecile',	'female',	'Canada')

Likes('Alice',	'Beate')

ADom =

D

{	(x)	|∃z,w	Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{	(x)	|∃z,w	Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{	(x)	|∃z,w	Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}

Likes('Alice',	'Cecile')

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

Likes('Alice',	'Alice')

?

Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

https://northeastern-datalab.github.io/cs7240/

127Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent?

Person('Alice',	'female',	'Canada')
Person('Beate',	'female',	'Canada')
Person('Cecile',	'female',	'Canada')

Likes('Alice',	'Beate')

ADom =	{'Alice',	'Beate',	'Cecile',	'female',	'Canada')

{	(x)	|∃z,w	Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{	(x)	|∃z,w	Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{	(x)	|∃z,w	Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}

Likes('Alice',	'Cecile')

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

Likes('Alice',	'Alice')

Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)D

https://northeastern-datalab.github.io/cs7240/

128Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent?

Person('Alice',	'Alice',	'Alice')
Person('Beate',	'Beate',	'Beate')
Person('Cecile',	'Cecile',	'Cecile')

Likes('Alice',	'Beate')

ADom =	{'Alice',	'Beate',	'Cecile')
Dom =	{'Alice',	'Beate',	'Cecile',	'Dora')

{	(x)	|∃z,w	Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{	(x)	|∃z,w	Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{	(x)	|∃z,w	Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}

Likes('Alice',	'Cecile')

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?
?

Likes('Alice',	'Alice')

?

Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)D

... for the sake of the exercise

Exercise for
next class J

https://northeastern-datalab.github.io/cs7240/

129

Topic 1: Data models and query languages
Unit 2: Logic & relational calculus
Lecture 6

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
https://northeastern-datalab.github.io/cs7240/sp24/
1/30/2024

Updated 1/30/2024

https://northeastern-datalab.github.io/cs7240/sp24/

130Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Pre-class conversations

• Last class recapitulation
• Thanks Haoen for finding a mistake in the slides J

• today:
- we continue with logic (RC) & start with relational algebra (RA)
- (next week: equivalence of the two)

https://northeastern-datalab.github.io/cs7240/

131Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent?

Person('Alice',	'Alice',	'Alice')
Person('Beate',	'Beate',	'Beate')
Person('Cecile',	'Cecile',	'Cecile')

Likes('Alice',	'Beate')

ADom =	{'Alice',	'Beate',	'Cecile')
Dom =	{'Alice',	'Beate',	'Cecile',	'Dora')

{	(x)	|∃z,w	Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{	(x)	|∃z,w	Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{	(x)	|∃z,w	Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}

Likes('Alice',	'Cecile')

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?
?

Likes('Alice',	'Alice')

?

Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)D

https://northeastern-datalab.github.io/cs7240/

132Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent?

Person('Alice',	'Alice',	'Alice')
Person('Beate',	'Beate',	'Beate')
Person('Cecile',	'Cecile',	'Cecile')

Likes('Alice',	'Beate')

ADom =	{'Alice',	'Beate',	'Cecile')
Dom =	{'Alice',	'Beate',	'Cecile',	'Dora')

{	(x)	|∃z,w	Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{	(x)	|∃z,w	Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{	(x)	|∃z,w	Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}

Likes('Alice',	'Cecile')

Example fix:

Alice is in the output only if Dom ⊃ ADom (e.g., Dora ∈Dom)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?
?

Likes('Alice',	'Alice')

?
Not DI

Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)D

answerADom: Beate, Cecile

https://northeastern-datalab.github.io/cs7240/

133Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent?

Person('Alice',	'Alice',	'Alice')
Person('Beate',	'Beate',	'Beate')
Person('Cecile',	'Cecile',	'Cecile')

Likes('Alice',	'Beate')

ADom =	{'Alice',	'Beate',	'Cecile')
Dom =	{'Alice',	'Beate',	'Cecile',	'Dora')

{	(x)	|∃z,w	Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{	(x)	|∃z,w	Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{	(x)	|∃z,w	Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}

Likes('Alice',	'Cecile')

Example fix:

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?
?

Likes('Alice',	'Alice')

Person(y,_,_)

Not DI

Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)D

... ⋀ ∃u,v [Person(y,u,v)]

Alice is in the output only if Dom ⊃ ADom (e.g., Dora ∈Dom)
answerADom: Beate, Cecile

https://northeastern-datalab.github.io/cs7240/

134Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent?

Person('Alice',	'Alice',	'Alice')
Person('Beate',	'Beate',	'Beate')
Person('Cecile',	'Cecile',	'Cecile')

Likes('Alice',	'Beate')

ADom =	{'Alice',	'Beate',	'Cecile')
Dom =	{'Alice',	'Beate',	'Cecile',	'Dora')

{	(x)	|∃z,w	Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{	(x)	|∃z,w	Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{	(x)	|∃z,w	Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}

Likes('Alice',	'Cecile')

x never occurs in Likes(x,_): Beate, Cecile

... ⋀ ∃u,v [Person(y,u,v)]Example fix:

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?

Likes('Alice',	'Alice')

Not DI

DI

Person(y,_,_)

Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)D

Alice is in the output only if Dom ⊃ ADom (e.g., Dora ∈Dom)
answerADom: Beate, Cecile

https://northeastern-datalab.github.io/cs7240/

135Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent?

Person('Alice',	'Alice',	'Alice')
Person('Beate',	'Beate',	'Beate')
Person('Cecile',	'Cecile',	'Cecile')

Likes('Alice',	'Beate')

ADom =	{'Alice',	'Beate',	'Cecile')
Dom =	{'Alice',	'Beate',	'Cecile',	'Dora')

{	(x)	|∃z,w	Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{	(x)	|∃z,w	Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{	(x)	|∃z,w	Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}

Not DI

DI

DI

Likes('Alice',	'Cecile')

x never occurs in Likes(x,_): Beate, Cecile

implication (absorption) if Dom ≠ ∅, which is necessary for there to be Person(x,_,_)

... ⋀ ∃u,v [Person(y,u,v)]Example fix:

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

Likes('Alice',	'Alice')

Person(y,_,_)

Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)D

Alice is in the output only if Dom ⊃ ADom (e.g., Dora ∈Dom)
answerADom: Beate, Cecile

https://northeastern-datalab.github.io/cs7240/

136Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What is the meaning of following unsafe expressions?

{	x	|	x	≥	10}

{	x	|	∀y	R(x,y)}

{	x	|	∃y.	R(x)} ?
?
?

https://northeastern-datalab.github.io/cs7240/

137Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What is the meaning of following unsafe expressions?

{	x	|	x	≥	10}

{	x	|	∀y	R(x,y)}

{	x	|	∃y.	R(x)} logically equivalent to { x | R(x)} = R(x)

?
?

https://northeastern-datalab.github.io/cs7240/

138Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What is the meaning of following unsafe expressions?

{	x	|	x	≥	10}

{	x	|	∀y	R(x,y)}

{	x	|	R(x)	⋀	x	≥	10}

{	x	|	∃y.	R(x)} logically equivalent to { x | R(x)} = R(x)

DI:

?
What if Dom=ℕ?

https://northeastern-datalab.github.io/cs7240/

139Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What is the meaning of following unsafe expressions?

{	x	|	x	≥	10}

{	x	|	∀y	R(x,y)}

{	x	|	R(x)	⋀	x	≥	10}

{	x	|	∀y	[S(y)	→	R(x,y)]}

{	x	|	∃y.	R(x)}

D: R('a','a')
ADom={'a'}
Dom={'a','Chile'}

logically equivalent to { x | R(x)} = R(x)

DI:

DI ?:

?

What if Dom=ℕ?

https://northeastern-datalab.github.io/cs7240/

141Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What is the meaning of following unsafe expressions?

{	x	|	x	≥	10}

{	x	|	∀y	R(x,y)}

{	x	|	R(x)	⋀	x	≥	10}

{	x	|	∀y	[S(y)	→	R(x,y)]}

{	x	|	∃y.	R(x)}

What if Dom=ℕ?

logically equivalent to { x | R(x)} = R(x)

D: R('a','a')
ADom={'a'}
Dom={'a','Chile'}

{	x	|	∀y	[¬S(y)	⋁	R(x,y)]}
1. always true for S=∅

DI:

DI ?:

what if relation S is empty?

See https://en.wikipedia.org/wiki/Vacuous_truth: A conditional statement is vacuously true when the antecedent is false regardless of whether the conclusion or consequent is true or false.

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Vacuous_truth

142Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What is the meaning of following unsafe expressions?

{	x	|	x	≥	10}

{	x	|	∀y	R(x,y)}

{	x	|	R(x)	⋀	x	≥	10}

{	x	|	∀y	[S(y)	→	R(x,y)]}

{	x	|	∃y.	R(x)}

What if Dom=ℕ?

logically equivalent to { x | R(x)} = R(x)

{	x	|	∀y	[¬S(y)	⋁	R(x,y)]}
1. always true for S=∅

2. alternative
way to see that

D: R('a','a')
ADom={'a'}
Dom={'a','Chile'}

DI:

not DI:

what if relation S is empty?

?
What are the
neutral elements of
these operations

∑:
∏:
⋁:
⋀:

MIN:
See https://en.wikipedia.org/wiki/Vacuous_truth: A conditional statement is vacuously true when the antecedent is false regardless of whether the conclusion or consequent is true or false.

Neutral	element	(identity)	for	∀	is	TRUE

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Vacuous_truth

143Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What is the meaning of following unsafe expressions?

{	x	|	x	≥	10}

{	x	|	∀y	R(x,y)}

{	x	|	R(x)	⋀	x	≥	10}

{	x	|	∀y	[S(y)	→	R(x,y)]}

{	x	|	∃y.	R(x)}

What if Dom=ℕ?

logically equivalent to { x | R(x)} = R(x)

{	x	|	∀y	[¬S(y)	⋁	R(x,y)]}
1. always true for S=∅

2. alternative
way to see that

D: R('a','a')
ADom={'a'}
Dom={'a','Chile'}

DI:

not DI:

what if relation S is empty?

?
?

∑:
∏:
⋁:
⋀:

MIN:

0	+	x	=	x

FALSE	⋁	x	=	x
TRUE	⋀	x	=	x

1	⋅	x	=	x

∀:
∃	:

MIN(∞,	x)	=	x
See https://en.wikipedia.org/wiki/Vacuous_truth: A conditional statement is vacuously true when the antecedent is false regardless of whether the conclusion or consequent is true or false.

Neutral	element	(identity)	for	∀	is	TRUE

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Vacuous_truth

144Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What is the meaning of following unsafe expressions?

{	x	|	x	≥	10}

{	x	|	∀y	R(x,y)}

{	x	|	R(x)	⋀	x	≥	10}

{	x	|	∀y	[S(y)	→	R(x,y)]}

{	x	|	∃y.	R(x)}

What if Dom=ℕ?

logically equivalent to { x | R(x)} = R(x)

Neutral	element	(identity)	for	∀	is	TRUE
∑:
∏:
⋁:
⋀:

MIN:

0	+	x	=	x

FALSE	⋁	x	=	x
TRUE	⋀	x	=	x

1	⋅	x	=	x

∀:
∃	:

{	x	|	∀y	[¬S(y)	⋁	R(x,y)]}

x1	⋀	x2	⋀	...	⋀	TRUE
x1	⋁	x2	⋁	...	⋁	FALSE	

MIN(∞,	x)	=	x

1. always true for S=∅

2. alternative
way to see that

D: R('a','a')
ADom={'a'}
Dom={'a','Chile'}

DI:

not DI:

what if relation S is empty?

See https://en.wikipedia.org/wiki/Vacuous_truth: A conditional statement is vacuously true when the antecedent is false regardless of whether the conclusion or consequent is true or false.

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Vacuous_truth

145Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What is the meaning of following unsafe expressions?

{	x	|	x	≥	10}

{	x	|	∀y	R(x,y)}

{	x	|	R(x)	⋀	x	≥	10}

{	x	|	∀y	[S(y)	→	R(x,y)]}
what if relation S is empty?

{	x	|	∃y.	R(x)}

What if Dom=ℕ?

logically equivalent to { x | R(x)} = R(x)

{	x	|	∀y	[¬S(y)	⋁	R(x,y)]}
1. always true for S=∅

2. alternative
way to see that

D: R('a','a')
ADom={'a'}
Dom={'a','Chile'}

DI:

not DI:

∀y	[R(y)]

is vacuously true if the domain for y is empty set:

∀y	[y∈Dom→R(y)]

another way to see it: The following sentence

See https://en.wikipedia.org/wiki/Vacuous_truth: A conditional statement is vacuously true when the antecedent is false regardless of whether the conclusion or consequent is true or false.

Neutral	element	(identity)	for	∀	is	TRUE

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Vacuous_truth

146Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What is the meaning of following unsafe expressions?

{	x	|	x	≥	10}

{	x	|	∀y	R(x,y)}

{	x	|	R(x)	⋀	x	≥	10}

{	x	|	∀y	[S(y)	→	R(x,y)]}

{	x	|	∃y.	R(x)}

What if Dom=ℕ?

logically equivalent to { x | R(x)} = R(x)

DI:

DI: ?
not DI:

https://northeastern-datalab.github.io/cs7240/

147Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What is the meaning of following unsafe expressions?

{	x	|	x	≥	10}

{	x	|	∀y	R(x,y)}

{	x	|	R(x)	⋀	x	≥	10}

{	x	|	∀y	[S(y)	→	R(x,y)]}

{	x	|	∃y.	R(x)}

What if Dom=ℕ?

logically equivalent to { x | R(x)} = R(x)

DI:

{	x	|	R(x,_)	⋀	∀y	[S(y)	→	R(x,y)]}DI:

{	x	|	R(x,_)	⋀	∄y	[S(y)	⋀	¬R(x,y)]}

∃z[R(x,z) ⋀ ...]

We will see this last expression again in a future class J
In the meantime, try for yourself. How to write in TRC?

not DI:

https://northeastern-datalab.github.io/cs7240/

148Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Another example on domain-independence

Source: Topor, Safety and Domain Independence, Encyclopedia of Database Systems. 2009. https://doi.org/10.1007/978-0-387-39940-9_1255

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1007/978-0-387-39940-9_1255

149Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Querying a Graph

1 2
2 1
2 3
1 4
3 4

E:

What do these queries return ?1

32

4

{	x	|	∃y.	E(x,y)	}

{	x	|	∃y,z,u.[E(x,y)	⋀	E(y,z)	⋀	E(z,u)]}

{	(x,y)	|	∀z.[E(x,z)	→	E(y,z)]}

?

?

?
Based on an example by Dan Suciu from CSE 554, 2011.

https://northeastern-datalab.github.io/cs7240/

150Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Querying a Graph

1 2
2 1
2 3
1 4
3 4

What do these queries return ?1

32

4

{	(x,y)	|	∀z.[E(x,z)	→	E(y,z)]}
?

?

Nodes	that	have	at	least	one	child: ?

Based on an example by Dan Suciu from CSE 554, 2011.

E:

{	x	|	∃y.	E(x,y)	}

{	x	|	∃y,z,u.[E(x,y)	⋀	E(y,z)	⋀	E(z,u)]}

https://northeastern-datalab.github.io/cs7240/

151Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Querying a Graph

1 2
2 1
2 3
1 4
3 4

What do these queries return ?1

32

4

{	(x,y)	|	∀z.[E(x,z)	→	E(y,z)]}
?

?

Nodes	that	have	at	least	one	child: {1,2,3}

Based on an example by Dan Suciu from CSE 554, 2011.

E:

{	x	|	∃y.	E(x,y)	}

{	x	|	∃y,z,u.[E(x,y)	⋀	E(y,z)	⋀	E(z,u)]}

https://northeastern-datalab.github.io/cs7240/

152Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Querying a Graph

1 2
2 1
2 3
1 4
3 4

What do these queries return ?1

32

4

{	(x,y)	|	∀z.[E(x,z)	→	E(y,z)]}

?

Nodes	that	have	at	least	one	child: {1,2,3}

Nodes	that	have	a	great-grand-child: ?

Based on an example by Dan Suciu from CSE 554, 2011.

E:

{	x	|	∃y.	E(x,y)	}

{	x	|	∃y,z,u.[E(x,y)	⋀	E(y,z)	⋀	E(z,u)]}

https://northeastern-datalab.github.io/cs7240/

153Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Querying a Graph

1 2
2 1
2 3
1 4
3 4

What do these queries return ?1

32

4

{	(x,y)	|	∀z.[E(x,z)	→	E(y,z)]}

?

Nodes	that	have	at	least	one	child: {1,2,3}

Nodes	that	have	a	great-grand-child: {1,2}
y≠u not necessary!
Contrast homomorphism
vs. isomorphism
("Hamiltonian Path")

Based on an example by Dan Suciu from CSE 554, 2011.

E:

{	x	|	∃y.	E(x,y)	}

{	x	|	∃y,z,u.[E(x,y)	⋀	E(y,z)	⋀	E(z,u)]}

https://northeastern-datalab.github.io/cs7240/

154Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Querying a Graph

1 2
2 1
2 3
1 4
3 4

What do these queries return ?1

32

4

{	(x,y)	|	∀z.[E(x,z)	→	E(y,z)]}

Nodes	that	have	at	least	one	child: {1,2,3}

Nodes	that	have	a	great-grand-child: {1,2}

Every	child	of	x	is	a	child	of	y.

Which of the
following tuples
fulfill the condition?

(1,3) (3,1)

∄z.[E(x,z) ⋀ ¬E(y,z)]

?
Based on an example by Dan Suciu from CSE 554, 2011.

E:

{	x	|	∃y.	E(x,y)	}

{	x	|	∃y,z,u.[E(x,y)	⋀	E(y,z)	⋀	E(z,u)]}

https://northeastern-datalab.github.io/cs7240/

155Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Querying a Graph

1 2
2 1
2 3
1 4
3 4

What do these queries return ?1

32

4

{	(x,y)	|	∀z.[E(x,z)	→	E(y,z)]}

Nodes	that	have	at	least	one	child: {1,2,3}

Nodes	that	have	a	great-grand-child: {1,2}

Every	child	of	x	is	a	child	of	y.

Which of the
following tuples
fulfill the condition?

(1,3) (3,1)

∄z.[E(x,z) ⋀ ¬E(y,z)]

Based on an example by Dan Suciu from CSE 554, 2011.
{(1,1),(2,2),(3,1),(3,3),(4,1),	(4,2),	(4,3),	(4,4)}

if domain is set
of nodes!

E:

{	x	|	∃y.	E(x,y)	}

{	x	|	∃y,z,u.[E(x,y)	⋀	E(y,z)	⋀	E(z,u)]}

https://northeastern-datalab.github.io/cs7240/

156Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Querying a Graph

1 2
2 1
2 3
1 4
3 4

E:

What do these queries return ?1

32

4

{	x	|	∃y.	E(x,y)	}

{	x	|	∃y,z,u.[E(x,y)	⋀	E(y,z)	⋀	E(z,u)]}

{	(x,y)	|	∀z.[E(x,z)	→	E(y,z)]}

Nodes	that	have	at	least	one	child: {1,2,3}

Nodes	that	have	a	great-grand-child: {1,2}

Every	child	of	x	is	a	child	of	y.

Which of the
following tuples
fulfill the condition?

∄z.[E(x,z) ⋀ ¬E(y,z)]

Based on an example by Dan Suciu from CSE 554, 2011.
{(1,1),(2,2),(3,1),(3,3),(4,1),	(4,2),	(4,3),	(4,4)}

if domain is set
of nodes!

{	(x,y)	|	V(x)	⋀	V(y)	⋀	∀z.[E(x,z)	→	E(y,z)]}

https://northeastern-datalab.github.io/cs7240/

157Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The person/bar/drinks schema Likes(person, drink)
Frequents(person, bar)
Serves(bar, drink)

331

{	x	|	∀y.[Frequents(x,y)	→	∃z.[Serves(y,z)	⋀ Likes(x,z)]}

What does the following query return?

Schema adapted from Jeff Ullman's drinkers/bars/beers example to avoid attributes with same first letters. https://dl.acm.org/doi/book/10.5555/42790

?

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/book/10.5555/42790

158Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The person/bar/drinks schema 331

{	x	|	∀y.[Frequents(x,y)	→	∃z.[Serves(y,z)	⋀ Likes(x,z)]}

Find drinkers who frequent only bars
that serve some drink they like.

What does the following query return?

Is this query domain independent?

Likes(person, drink)
Frequents(person, bar)
Serves(bar, drink)

?
Schema adapted from Jeff Ullman's drinkers/bars/beers example to avoid attributes with same first letters. https://dl.acm.org/doi/book/10.5555/42790
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/book/10.5555/42790
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

159Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The person/bar/drinks schema 331

{	x	|	∀y.[Frequents(x,y)	→	∃z.[Serves(y,z)	⋀ Likes(x,z)]}

Find drinkers who frequent only bars
that serve some drink they like.

What does the following query return?

This query is not domain independent.

Likes(person, drink)
Frequents(person, bar)
Serves(bar, drink)

? How to fix?

Schema adapted from Jeff Ullman's drinkers/bars/beers example to avoid attributes with same first letters. https://dl.acm.org/doi/book/10.5555/42790
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Its output would include all
values from the domain that do
not appear in the Frequents(x,_)

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/book/10.5555/42790
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

160Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The person/bar/drinks schema 331

{	x	|	∀y.[Frequents(x,y)	→	∃z.[Serves(y,z)	⋀ Likes(x,z)]}

Find drinkers who frequent only bars
that serve some drink they like.

Likes(person, drink)
Frequents(person, bar)
Serves(bar, drink)

Frequents(x,_) ⋀ ...
Likes(x,_) ⋀ ... ?

Schema adapted from Jeff Ullman's drinkers/bars/beers example to avoid attributes with same first letters. https://dl.acm.org/doi/book/10.5555/42790

Are those two options to
make it safe identical

What does the following query return?

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/book/10.5555/42790
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

161Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The person/bar/drinks schema 331

{	x	|	∀y.[Frequents(x,y)	→	∃z.[Serves(y,z)	⋀ Likes(x,z)]}

Find drinkers who frequent only bars
that serve some drink they like.

Challenge: write this query without the ∀ quantifier!
And then in SQL

Likes(person, drink)
Frequents(person, bar)
Serves(bar, drink)

?

Both safe, but not identical. Tip: Should a drinker who
likes a drink but does not frequent any bar be returned?

Schema adapted from Jeff Ullman's drinkers/bars/beers example to avoid attributes with same first letters. https://dl.acm.org/doi/book/10.5555/42790

What does the following query return?

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Frequents(x,_) ⋀ ...
Likes(x,_) ⋀ ...

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/book/10.5555/42790
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

162Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The person/bar/drinks example

Find persons who frequent some bar that serves some drink they like.

Find persons who frequent only bars that serve some drink they like.

Find persons who frequent only bars that serve only drinks they like.
(= Find persons who like all drinks that are served in all the bars they visit.)
(= Find persons for which there does not exist a bar they frequent that serves a drink they do not like.)

Find persons who frequent some bar that serves only drinks they like.

Challenge: write these in SQL.
Solutions at: https://demo.queryvis.com

331

Schema adapted from Jeff Ullman's drinkers/bars/beers example to avoid attributes with same first letters. https://dl.acm.org/doi/book/10.5555/42790

Likes(person, drink)
Frequents(person, bar)
Serves(bar, drink)

{	x	|	∃w.[Frequents(x,w)	⋀	∀y.[Frequents(x,y)	→	∃z.[Serves(y,z)	⋀	Likes(x,z)]]}

?

?

?
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://demo.queryvis.com/
https://dl.acm.org/doi/book/10.5555/42790
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

173

Queries and the connection to logic

• Why logic?
• A crash course in FOL
• Relational Calculus (RC)

– Syntax and Semantics
– Domain RC (DRC) vs Tuple RC (TRC)
– Domain Independence and Safety

• 4 categorical propositions

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

174Wolfgang Gatterbauer. A Tutorial on Visual Representations of Relational Queries, VLDB tutorial 2023. https://northeastern-datalab.github.io/visual-query-representation-tutorial/

4 categorical propositions

All S are P No S is P

Some S is P Not all S are P (= Some S is not P)

S... subject
P... predicate

https://northeastern-datalab.github.io/visual-query-representation-tutorial/

175Wolfgang Gatterbauer. A Tutorial on Visual Representations of Relational Queries, VLDB tutorial 2023. https://northeastern-datalab.github.io/visual-query-representation-tutorial/

4 categorical propositions / square of opposition

All S are P No S is P

Some S is P Not all S are P (= Some S is not P)

co
ntra

dict
ion

contradiction

S... subject
P... predicate

https://northeastern-datalab.github.io/visual-query-representation-tutorial/

176Wolfgang Gatterbauer. A Tutorial on Visual Representations of Relational Queries, VLDB tutorial 2023. https://northeastern-datalab.github.io/visual-query-representation-tutorial/

4 categorical propositions / square of opposition

shaded areas
are empty

S P

"x" shows that
something exists

All S are P No S is P

S P

Some S is P Not all S are P (= Some S is not P)

S P

x

S P

xco
ntra

dict
ion

contradiction

S... subject
P... predicate

Notation follows "Venn-I" diagrams by Shin (1994), itself a variant of the extension by Peirce (~1896) of Venn diagrams (1880)

https://northeastern-datalab.github.io/visual-query-representation-tutorial/

177Wolfgang Gatterbauer. A Tutorial on Visual Representations of Relational Queries, VLDB tutorial 2023. https://northeastern-datalab.github.io/visual-query-representation-tutorial/

4 categorical propositions / square of opposition

shaded areas
are empty

S P

"x" shows that
something exists

All S are P No S is P

S P

Some S is P Not all S are P (= Some S is not P)
∃𝑥[𝑆 𝑥 ∧ ¬𝑃 𝑥]

∀𝑥[𝑆 𝑥 ⇒ 𝑃 𝑥]
¬∃𝑥[𝑆 𝑥 ∧ ¬𝑃 𝑥]

∀𝑥[𝑆 𝑥 ⇒ ¬𝑃 𝑥]
¬∃𝑥[𝑆 𝑥 ∧ 𝑃 𝑥]

∃𝑥[𝑆 𝑥 ∧ 𝑃 𝑥]

S P

x

S P

xco
ntra

dict
ion

contradiction

S... subject
P... predicate

https://northeastern-datalab.github.io/visual-query-representation-tutorial/

178Wolfgang Gatterbauer. A Tutorial on Visual Representations of Relational Queries, VLDB tutorial 2023. https://northeastern-datalab.github.io/visual-query-representation-tutorial/

4 categorical propositions / square of opposition

shaded areas
are empty

S P

"x" shows that
something exists

All S are P No S is P

S P

Some S is P Not all S are P (= Some S is not P)
∃𝑥[𝑆 𝑥 ∧ ¬𝑃 𝑥]

∀𝑥[𝑆 𝑥 ⇒ 𝑃 𝑥]
¬∃𝑥[𝑆 𝑥 ∧ ¬𝑃 𝑥]

∀𝑥[𝑆 𝑥 ⇒ ¬𝑃 𝑥]
¬∃𝑥[𝑆 𝑥 ∧ 𝑃 𝑥]

∃𝑥[𝑆 𝑥 ∧ 𝑃 𝑥]

S P

x

S P

x

For more details see: https://en.wikipedia.org/wiki/Square_of_opposition

Universal
propositions:

Particular
propositions

A ("Affirmo" = I affirm)

I ("affIrmo" = I affirm)

E ("nEgo" = I deny)

O ("negO" = I deny)

co
ntra

dict
ion

contradiction

S... subject
P... predicate

https://northeastern-datalab.github.io/visual-query-representation-tutorial/
https://en.wikipedia.org/wiki/Square_of_opposition

179Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

4 categorical propositions with Sailors
340

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

NL Sailors who reserved
some red boat

Sailors who did not reserve
any red boat

Sailors who did not reserve
all red boats

Sailors who reserved
all red boats

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

180Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Cat.
Some 𝑆 is 𝐵.

∃𝑥[𝑆 𝑥 ∧ 𝐵 𝑥]
No 𝑆 is 𝐵. (All 𝑆 are not 𝐵)

¬∃𝑥[𝑆 𝑥 ∧ 𝐵 𝑥]

NL Sailors who reserved
some red boat

Sailors who did not reserve
any red boat

Sailors who did not reserve
all red boats

Sailors who reserved
all red boats

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

4 categorical propositions with Sailors
340

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

S BS B
x

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

181Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Cat.
Some 𝑆 is 𝐵.

∃𝑥[𝑆 𝑥 ∧ 𝐵 𝑥]
No 𝑆 is 𝐵. (All 𝑆 are not 𝐵)

¬∃𝑥[𝑆 𝑥 ∧ 𝐵 𝑥]
Some 𝐵 is not 𝑆.
∃𝑥[𝐵 𝑥 ∧ ¬𝑆 𝑥]

All 𝐵 are 𝑆.
¬∃𝑥[𝐵 𝑥 ∧ ¬𝑆 𝑥]

NL Sailors who reserved
some red boat

Sailors who did not reserve
any red boat

Sailors who did not reserve
all red boats

Sailors who reserved
all red boats

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

4 categorical propositions with Sailors
340

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

S BS B
x

S BS B
x

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

182Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Cat.
Some 𝑆 is 𝐵.

∃𝑥[𝑆 𝑥 ∧ 𝐵 𝑥]
No 𝑆 is 𝐵. (All 𝑆 are not 𝐵)

¬∃𝑥[𝑆 𝑥 ∧ 𝐵 𝑥]
Some 𝐵 is not 𝑆.
∃𝑥[𝐵 𝑥 ∧ ¬𝑆 𝑥]

All 𝐵 are 𝑆.
¬∃𝑥[𝐵 𝑥 ∧ ¬𝑆 𝑥]

NL Sailors who reserved
some red boat

Sailors who did not reserve
any red boat

Sailors who did not reserve
all red boats

Sailors who reserved
all red boats

SQL

4 categorical propositions with Sailors Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color) 340

SELECT S.sname
FROM Sailor S
WHERE EXISTS(
 SELECT *
 FROM Reserves R
 WHERE R.sid = S.sid
 AND EXISTS(
 SELECT *
 FROM Boat B
 WHERE B.color = 'red'
 AND B.bid = R.bid))

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

S BS B
x

S BS B
x

SELECT S.sname
FROM Sailor S
WHERE EXISTS(
 SELECT *
 FROM Boat B
 WHERE B.color = 'red'
 AND NOT EXISTS(
 SELECT *
 FROM Reserves R
 WHERE R.bid = B.bid
 AND R.sid = S.sid))

SELECT S.sname
FROM Sailor S
WHERE NOT EXISTS(
 SELECT *
 FROM Reserves R
 WHERE R.sid = S.sid
 AND EXISTS(
 SELECT *
 FROM Boat B
 WHERE B.color = 'red'
 AND B.bid = R.bid))

SELECT S.sname
FROM Sailor S
WHERE NOT EXISTS(
 SELECT *
 FROM Boat B
 WHERE B.color = 'red'
 AND NOT EXISTS(
 SELECT *
 FROM Reserves R
 WHERE R.bid = B.bid
 AND R.sid = S.sid))

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

183Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Cat.
Some 𝑆 is 𝐵.

∃𝑥[𝑆 𝑥 ∧ 𝐵 𝑥]
No 𝑆 is 𝐵. (All 𝑆 are not 𝐵)

¬∃𝑥[𝑆 𝑥 ∧ 𝐵 𝑥]
Some 𝐵 is not 𝑆.
∃𝑥[𝐵 𝑥 ∧ ¬𝑆 𝑥]

All 𝐵 are 𝑆.
¬∃𝑥[𝐵 𝑥 ∧ ¬𝑆 𝑥]

NL Sailors who reserved
some red boat

Sailors who did not reserve
any red boat

Sailors who did not reserve
all red boats

Sailors who reserved
all red boats

SQL

RD
Q

sname

Sailor

sname

sid

Boat

bid

color='red'

Reserves

bid

sid

SELECT S.sname
FROM Sailor S
WHERE EXISTS(
 SELECT *
 FROM Reserves R
 WHERE R.sid = S.sid
 AND EXISTS(
 SELECT *
 FROM Boat B
 WHERE B.color = 'red'
 AND B.bid = R.bid))

SELECT S.sname
FROM Sailor S
WHERE NOT EXISTS(
 SELECT *
 FROM Reserves R
 WHERE R.sid = S.sid
 AND EXISTS(
 SELECT *
 FROM Boat B
 WHERE B.color = 'red'
 AND B.bid = R.bid))

SELECT S.sname
FROM Sailor S
WHERE EXISTS(
 SELECT *
 FROM Boat B
 WHERE B.color = 'red'
 AND NOT EXISTS(
 SELECT *
 FROM Reserves R
 WHERE R.bid = B.bid
 AND R.sid = S.sid))

SELECT S.sname
FROM Sailor S
WHERE NOT EXISTS(
 SELECT *
 FROM Boat B
 WHERE B.color = 'red'
 AND NOT EXISTS(
 SELECT *
 FROM Reserves R
 WHERE R.bid = B.bid
 AND R.sid = S.sid))

4 categorical propositions with Sailors

dashed box = not exists

Q

sname

Sailor

sname

sid

Boat

bid

color='red'

Reserves

bid

sid

Q

sname

Sailor

sname

sid

Boat

bid

color='red'

Reserves

bid

sid

Q

sname

Sailor

sname

sid

Boat

bid

color='red'

Reserves

bid

sid

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color) 340

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

S BS B
x

S BS B
x

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

184Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Cat. ? No 𝑆 is 𝐵. (All 𝑆 are not 𝐵)
¬∃𝑥[𝑆 𝑥 ∧ 𝐵 𝑥]

Some 𝐵 is not 𝑆.
∃𝑥[𝐵 𝑥 ∧ ¬𝑆 𝑥]

All 𝐵 are 𝑆.
¬∃𝑥[𝐵 𝑥 ∧ ¬𝑆 𝑥]

NL Sailors who reserved
only red boats

Sailors who did not reserve
any red boat

Sailors who did not reserve
all red boats

Sailors who reserved
all red boats

SQL

RD
Q

sname

Sailor

sname

sid

Boat

bid

color='red'

Reserves

bid

sid

Q

sname

Sailor

sname

sid

Boat

bid

color='red'

Reserves

bid

sid

Q

sname

Sailor

sname

sid

Boat

bid

color='red'

Reserves

bid

sid

A 5th proposition?

SELECT S.sname
FROM Sailor S
WHERE NOT EXISTS(
 SELECT *
 FROM Reserves R
 WHERE R.sid = S.sid
 AND NOT EXISTS(
 SELECT *
 FROM Boat B
 WHERE B.color = 'red'
 AND B.bid = R.bid))

Q

sname

Sailor

sname

sid

Boat

bid

color='red'

Reserves

bid

sid

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color) 340

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

S B S BS B
x

SELECT S.sname
FROM Sailor S
WHERE NOT EXISTS(
 SELECT *
 FROM Reserves R
 WHERE R.sid = S.sid
 AND EXISTS(
 SELECT *
 FROM Boat B
 WHERE B.color = 'red'
 AND B.bid = R.bid))

SELECT S.sname
FROM Sailor S
WHERE EXISTS(
 SELECT *
 FROM Boat B
 WHERE B.color = 'red'
 AND NOT EXISTS(
 SELECT *
 FROM Reserves R
 WHERE R.bid = B.bid
 AND R.sid = S.sid))

SELECT S.sname
FROM Sailor S
WHERE NOT EXISTS(
 SELECT *
 FROM Boat B
 WHERE B.color = 'red'
 AND NOT EXISTS(
 SELECT *
 FROM Reserves R
 WHERE R.bid = B.bid
 AND R.sid = S.sid))

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

185Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Cat.
All 𝑆 is 𝐵.

¬∃𝑥[𝑆 𝑥 ∧ ¬𝐵 𝑥]
No 𝑆 is 𝐵. (All 𝑆 are not 𝐵)

¬∃𝑥[𝑆 𝑥 ∧ 𝐵 𝑥]
Some 𝐵 is not 𝑆.
∃𝑥[𝐵 𝑥 ∧ ¬𝑆 𝑥]

All 𝐵 are 𝑆.
¬∃𝑥[𝐵 𝑥 ∧ ¬𝑆 𝑥]

NL Sailors who reserved
only red boats

Sailors who did not reserve
any red boat

Sailors who did not reserve
all red boats

Sailors who reserved
all red boats

SQL

RD
Q

sname

Sailor

sname

sid

Boat

bid

color='red'

Reserves

bid

sid

Q

sname

Sailor

sname

sid

Boat

bid

color='red'

Reserves

bid

sid

Q

sname

Sailor

sname

sid

Boat

bid

color='red'

Reserves

bid

sid

"Just" the other direction...

Q

sname

Sailor

sname

sid

Boat

bid

color='red'

Reserves

bid

sid

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color) 340

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

SELECT S.sname
FROM Sailor S
WHERE NOT EXISTS(
 SELECT *
 FROM Reserves R
 WHERE R.sid = S.sid
 AND NOT EXISTS(
 SELECT *
 FROM Boat B
 WHERE B.color = 'red'
 AND B.bid = R.bid))

S B S BS B
x

S B

SELECT S.sname
FROM Sailor S
WHERE NOT EXISTS(
 SELECT *
 FROM Reserves R
 WHERE R.sid = S.sid
 AND EXISTS(
 SELECT *
 FROM Boat B
 WHERE B.color = 'red'
 AND B.bid = R.bid))

SELECT S.sname
FROM Sailor S
WHERE EXISTS(
 SELECT *
 FROM Boat B
 WHERE B.color = 'red'
 AND NOT EXISTS(
 SELECT *
 FROM Reserves R
 WHERE R.bid = B.bid
 AND R.sid = S.sid))

SELECT S.sname
FROM Sailor S
WHERE NOT EXISTS(
 SELECT *
 FROM Boat B
 WHERE B.color = 'red'
 AND NOT EXISTS(
 SELECT *
 FROM Reserves R
 WHERE R.bid = B.bid
 AND R.sid = S.sid))

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

186Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Cat.
All 𝑆 is 𝐵.

¬∃𝑥[𝑆 𝑥 ∧ ¬𝐵 𝑥]
? All 𝐵 are 𝑆.

¬∃𝑥[𝐵 𝑥 ∧ ¬𝑆 𝑥]

NL Sailors who reserved
only red boats

Red boats that were
reserved by all sailors

Sailors who reserved
all red boats

SQL

RD
Q

sname

Sailor

sname

sid

Boat

bid

color='red'

Reserves

bid

sid

Limits of Monadic FOL...
S B

Q

sname

Sailor

sname

sid

Boat

bid

color='red'

Reserves

bid

sid

Q

bid

Sailor

sname

sid

Boat

bid

color='red'

Reserves

bid

sid

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color) 340

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

SELECT B.bid
FROM Boat B
WHERE B.color = 'red'
AND NOT EXISTS(
 SELECT *
 FROM Sailor S
 WHERE NOT EXISTS(
 SELECT *
 FROM Reserves R
 WHERE R.bid = B.bid
 AND R.sid = S.sid))

SELECT S.sname
FROM Sailor S
WHERE NOT EXISTS(
 SELECT *
 FROM Reserves R
 WHERE R.sid = S.sid
 AND NOT EXISTS(
 SELECT *
 FROM Boat B
 WHERE B.color = 'red'
 AND B.bid = R.bid))

S B

SELECT S.sname
FROM Sailor S
WHERE NOT EXISTS(
 SELECT *
 FROM Boat B
 WHERE B.color = 'red'
 AND NOT EXISTS(
 SELECT *
 FROM Reserves R
 WHERE R.bid = B.bid
 AND R.sid = S.sid))

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

187Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Cat.
All 𝑆 is 𝐵.

¬∃𝑥[𝑆 𝑥 ∧ ¬𝐵 𝑥]
All 𝑆 is 𝐵.

¬∃𝑥[𝑆 𝑥 ∧ ¬𝐵 𝑥]
All 𝐵 are 𝑆.

¬∃𝑥[𝐵 𝑥 ∧ ¬𝑆 𝑥]

NL Sailors who reserved
only red boats

Red boats that were
reserved by all sailors

Sailors who reserved
all red boats

SQL

RD
Q

sname

Sailor

sname

sid

Boat

bid

color='red'

Reserves

bid

sid

Limits of Monadic FOL...
S B

Q

sname

Sailor

sname

sid

Boat

bid

color='red'

Reserves

bid

sid

Q

bid

Sailor

sname

sid

Boat

bid

color='red'

Reserves

bid

sid

S B

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color) 340

See also: https://en.wikipedia.org/wiki/Monadic_predicate_calculus#Relationship_with_term_logic

SELECT B.bid
FROM Boat B
WHERE B.color = 'red'
AND NOT EXISTS(
 SELECT *
 FROM Sailor S
 WHERE NOT EXISTS(
 SELECT *
 FROM Reserves R
 WHERE R.bid = B.bid
 AND R.sid = S.sid))

SELECT S.sname
FROM Sailor S
WHERE NOT EXISTS(
 SELECT *
 FROM Reserves R
 WHERE R.sid = S.sid
 AND NOT EXISTS(
 SELECT *
 FROM Boat B
 WHERE B.color = 'red'
 AND B.bid = R.bid))

S Bmonadic FOL (which
only allows unary
predicates, and
slightly generalizes
syllogistic logic)
cannot distinguish
between these two
queries on the left SELECT S.sname

FROM Sailor S
WHERE NOT EXISTS(
 SELECT *
 FROM Boat B
 WHERE B.color = 'red'
 AND NOT EXISTS(
 SELECT *
 FROM Reserves R
 WHERE R.bid = B.bid
 AND R.sid = S.sid))

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Monadic_predicate_calculus

188Wolfgang Gatterbauer. A Tutorial on Visual Representations of Relational Queries, VLDB tutorial 2023. https://northeastern-datalab.github.io/visual-query-representation-tutorial/

some not any not all all

Sa
ilo

rs

Example taken from: https://queryvis.com/example.html

Sailor (sid, sname, rating, bdate)
Reserves (sid, bid, day)
Boat (bid, bname, color, pdate)

Sailors
renting
boats

have not reserved
any red boat

reserved not
all red boats

reserved all
red boats

have reserved
some red boat

https://northeastern-datalab.github.io/visual-query-representation-tutorial/
https://queryvis.com/example.html

189Wolfgang Gatterbauer. A Tutorial on Visual Representations of Relational Queries, VLDB tutorial 2023. https://northeastern-datalab.github.io/visual-query-representation-tutorial/

some not any not all all

Sa
ilo

rs
St

ud
en

ts

Example taken from: https://queryvis.com/example.html

Student (sid, sname)
Takes (sid, cid, semester)
Course (cid, cname, depart)

Sailor (sid, sname, rating, bdate)
Reserves (sid, bid, day)
Boat (bid, bname, color, pdate)

Sailors
renting
boats

Students
taking
classes

have not reserved
any red boat

reserved not
all red boats

reserved all
red boats

took no art
class

took not all
art classes

took all art
classes

have reserved
some red boat

took some
art class

https://northeastern-datalab.github.io/visual-query-representation-tutorial/
https://queryvis.com/example.html

190Wolfgang Gatterbauer. A Tutorial on Visual Representations of Relational Queries, VLDB tutorial 2023. https://northeastern-datalab.github.io/visual-query-representation-tutorial/

some not any not all all

Sa
ilo

rs
St

ud
en

ts
Ac

to
rs

Example taken from: https://queryvis.com/example.html

Student (sid, sname)
Takes (sid, cid, semester)
Course (cid, cname, depart)

Sailor (sid, sname, rating, bdate)
Reserves (sid, bid, day)
Boat (bid, bname, color, pdate)

Actor (aid, aname)
Plays (aid, mid, role)
Movie (mid, mname, dir)

Sailors
renting
boats

Students
taking
classes

Actors
playing in
movies

have not reserved
any red boat

reserved not
all red boats

reserved all
red boats

took no art
class

took not all
art classes

took all art
classes

did not play in a
Hitchcock movie

played not in all
Hitchcock movies

played in all
Hitchcock movies

have reserved
some red boat

took some
art class

played in some
Hitchcock movie

https://northeastern-datalab.github.io/visual-query-representation-tutorial/
https://queryvis.com/example.html

191Wolfgang Gatterbauer. A Tutorial on Visual Representations of Relational Queries, VLDB tutorial 2023. https://northeastern-datalab.github.io/visual-query-representation-tutorial/

some not any not all all

Sa
ilo

rs
St

ud
en

ts
Ac

to
rs

Example taken from: https://queryvis.com/example.html

Student (sid, sname)
Takes (sid, cid, semester)
Course (cid, cname, depart)

Sailor (sid, sname, rating, bdate)
Reserves (sid, bid, day)
Boat (bid, bname, color, pdate)

Actor (aid, aname)
Plays (aid, mid, role)
Movie (mid, mname, dir)

SELECT S.sname
FROM Sailor S
WHERE EXISTS(
 SELECT *
 FROM Reserves R
 AND R.sid = S.sid
 WHERE EXISTS(
 SELECT *
 FROM Boat B
 WHERE B.color = 'red'
 AND B.bid = R.bid))

SELECT S.sname
FROM Sailor S
WHERE NOT EXISTS(
 SELECT *
 FROM Reserves R
 AND R.sid = S.sid
 WHERE EXISTS(
 SELECT *
 FROM Boat B
 WHERE B.color = 'red'
 AND B.bid = R.bid))

SELECT S.sname
FROM Sailor S
WHERE EXISTS(
 SELECT *
 FROM Boat B
 WHERE B.color = 'red'
 AND NOT EXISTS(
 SELECT *
 FROM Reserves R
 WHERE R.bid = B.bid
 AND R.sid = S.sid))

SELECT S.sname
FROM Sailor S
WHERE NOT EXISTS(
 SELECT *
 FROM Boat B
 WHERE B.color = 'red'
 AND NOT EXISTS(
 SELECT *
 FROM Reserves R
 WHERE R.bid = B.bid
 AND R.sid = S.sid))
SELECT S.sname
FROM Student S
WHERE NOT EXISTS(
 SELECT *
 FROM Class C
 WHERE C.depart = 'art'
 AND NOT EXISTS(
 SELECT *
 FROM Takes T
 WHERE T.cid = C.cid
 AND T.sid = S.sid))

SELECT S.sname
FROM Student S
WHERE NOT EXISTS(
 SELECT *
 FROM Takes T
 AND T.sid = S.sid
 WHERE EXISTS(
 SELECT *
 FROM Class C
 WHERE C.depart = 'art'
 AND C.cid = T.cid))

SELECT S.sname
FROM Student S
WHERE EXISTS(
 SELECT *
 FROM Class C
 WHERE C.depart = 'art'
 AND NOT EXISTS(
 SELECT *
 FROM Takes T
 WHERE T.cid = C.cid
 AND T.sid = S.sid))

SELECT S.sname
FROM Student S
WHERE EXISTS(
 SELECT *
 FROM Takes T
 AND T.sid = S.sid
 WHERE EXISTS(
 SELECT *
 FROM Class C
 WHERE C.depart = 'art'
 AND C.cid = T.cid))

SELECT A.aname
FROM Actor A
WHERE NOT EXISTS(
 SELECT *
 FROM Movie M
 WHERE M.dir = 'Hitchcock'
 AND NOT EXISTS(
 SELECT *
 FROM Plays P
 WHERE P.mid = M.mid
 AND P.aid = A.aid))

SELECT A.aname
FROM Actor A
WHERE NOT EXISTS(
 SELECT *
 FROM Plays P
 AND P.aid = A.aid
 WHERE EXISTS(
 SELECT *
 FROM Movie M
 WHERE M.dir = 'Hitchcock'
 AND M.mid = P.mid))

SELECT A.aname
FROM Actor A
WHERE EXISTS(
 SELECT *
 FROM Movie M
 WHERE M.dir = 'Hitchcock'
 AND NOT EXISTS(
 SELECT *
 FROM Plays P
 WHERE P.mid = M.mid
 AND P.aid = A.aid))

SELECT A.aname
FROM Actor A
WHERE EXISTS(
 SELECT *
 FROM Plays P
 AND P.aid = A.aid
 WHERE EXISTS(
 SELECT *
 FROM Movie M
 WHERE M.dir = 'Hitchcock'
 AND M.mid = P.mid))

https://northeastern-datalab.github.io/visual-query-representation-tutorial/
https://queryvis.com/example.html

192Wolfgang Gatterbauer. A Tutorial on Visual Representations of Relational Queries, VLDB tutorial 2023. https://northeastern-datalab.github.io/visual-query-representation-tutorial/

some not any not all all

Sa
ilo

rs
St

ud
en

ts
Ac

to
rs

Example taken from: https://queryvis.com/example.html

Student (sid, sname)
Takes (sid, cid, semester)
Course (cid, cname, depart)

Sailor (sid, sname, rating, bdate)
Reserves (sid, bid, day)
Boat (bid, bname, color, pdate)

Actor (aid, aname)
Plays (aid, mid, role)
Movie (mid, mname, dir)

Q

sname

Sailor

sname

sid

Boat

bid

color='red'

Reserves

bid

sid

Q

sname

Sailor

sname

sid

Boat

bid

color='red'

Reserves

bid

sid

Q

sname

Sailor

sname

sid

Boat

bid

color='red'

Reserves

bid

sid

Q

sname

Sailor

sname

sid

Boat

bid

color='red'

Reserves

bid

sid

Q

sname

Student

sname

sid

Class

cid

depart='art'

Takes

cid

sid

Q

sname

Sailor

sname

sid

Boat

cid

depart='art'

Takes

cid

sid

Q

sname

Sailor

sname

sid

Class

cid

depart='art'

Takes

cid

sid

Q

sname

Student

sname

sid

Class

cid

depart='art'

Takes

cid

sid

Q

aname

Actor

aname

aid

Movie

mid

dir='Hitchcok'

Plays

mid

aid

Q

aname

Actor

aname

aid

Movie

mid

dir='Hitchcok'

Plays

mid

aid

Q

aname

Actor

aname

aid

Movie

mid

dir='Hitchcok'

Plays

mid

aid

Q

aname

Actor

aname

aid

Movie

mid

dir='Hitchcok'

Plays

mid

aid

https://northeastern-datalab.github.io/visual-query-representation-tutorial/
https://queryvis.com/example.html

193Wolfgang Gatterbauer. A Tutorial on Visual Representations of Relational Queries, VLDB tutorial 2023. https://northeastern-datalab.github.io/visual-query-representation-tutorial/

some not any not all all

Sa
ilo

rs
St

ud
en

ts
Ac

to
rs

Example taken from: https://queryvis.com/example.html

Student (sid, sname)
Takes (sid, cid, semester)
Course (cid, cname, depart)

Sailor (sid, sname, rating, bdate)
Reserves (sid, bid, day)
Boat (bid, bname, color, pdate)

Actor (aid, aname)
Plays (aid, mid, role)
Movie (mid, mname, dir)

Q

sname

Sailor

sname

sid

Boat

bid

color='red'

Reserves

bid

sid

Q

sname

Sailor

sname

sid

Boat

bid

color='red'

Reserves

bid

sid

Q

sname

Sailor

sname

sid

Boat

bid

color='red'

Reserves

bid

sid

Q

sname

Sailor

sname

sid

Boat

bid

color='red'

Reserves

bid

sid

Q

sname

Student

sname

sid

Class

cid

depart='art'

Takes

cid

sid

Q

sname

Sailor

sname

sid

Boat

cid

depart='art'

Takes

cid

sid

Q

sname

Sailor

sname

sid

Class

cid

depart='art'

Takes

cid

sid

Q

sname

Student

sname

sid

Class

cid

depart='art'

Takes

cid

sid

Q

aname

Actor

aname

aid

Movie

mid

dir='Hitchcok'

Plays

mid

aid

Q

aname

Actor

aname

aid

Movie

mid

dir='Hitchcok'

Plays

mid

aid

Q

aname

Actor

aname

aid

Movie

mid

dir='Hitchcok'

Plays

mid

aid

Q

aname

Actor

aname

aid

Movie

mid

dir='Hitchcok'

Plays

mid

aid

https://northeastern-datalab.github.io/visual-query-representation-tutorial/
https://queryvis.com/example.html

194Wolfgang Gatterbauer. A Tutorial on Visual Representations of Relational Queries, VLDB tutorial 2023. https://northeastern-datalab.github.io/visual-query-representation-tutorial/

some not any not all all

Sa
ilo

rs
St

ud
en

ts
Ac

to
rs

Example taken from: https://queryvis.com/example.html

Student (sid, sname)
Takes (sid, cid, semester)
Course (cid, cname, depart)

Sailor (sid, sname, rating, bdate)
Reserves (sid, bid, day)
Boat (bid, bname, color, pdate)

Actor (aid, aname)
Plays (aid, mid, role)
Movie (mid, mname, dir)

Q

sname

Sailor

sname

sid

Reserves

bid

sid

Q

sname

Sailor

sname

sid

Boat

bid

color='red'

Q

sname

Sailor

sname

sid

Q

sname

Sailor

sname

sid

Boat

bid

color='red'

Reserves

bid

sid

Q

sname

Student

sname

sid

Takes

cid

sid

Q

sname

Sailor

sname

sid

Boat

cid

depart='art'

Q

sname

Sailor

sname

sid

Q

sname

Student

sname

sid

Class

cid

depart='art'

Takes

cid

sid

Q

aname

Actor

aname

aid

Plays

mid

aid

Q

aname

Actor

aname

aid

Movie

mid

dir='Hitchcok'

Q

aname

Actor

aname

aid

Q

aname

Actor

aname

aid

Movie

mid

dir='Hitchcok'

Plays

mid

aid

Boat

bid

color='red'

Reserves

bid

sid

Class

cid

depart='art'

Takes

cid

sid

Movie

mid

dir='Hitchcok'

Plays

mid

aid

Reserves

bid

sid

Takes

cid

sid

Plays

mid

aid

Boat

bid

color='red'

Class

cid

depart='art'

Movie

mid

dir='Hitchcok'

https://northeastern-datalab.github.io/visual-query-representation-tutorial/
https://queryvis.com/example.html

