Topic 1: Data models and query languages Unit 2: Logic \& relational calculus Lecture 4

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
https://northeastern-datalab.github.io/cs7240/sp24/
1/23/2024

Pre-class conversations

- Last class summary
- New class members: quick introduction

1. What area are you working on? Who is your PhD advisor?
2. What do you hope to get out of this course ©
3. What is your biggest fear for this course $:$
4. What the topic from the course that are you most familiar with or excited about?

- Quick comments on my "slide posting policy"
- Please keep asking questions, in class and/or on Piazza
- Today:
- Logic as the foundation for relational databases

CS 7240: Topics and approximate agenda (Spring'24)

This schedule will be updated regularly as the class progresses. Check back frequently. I will usually post lecture slides by the end of the day following a lecture (thus the next day), or latest two days after class. Notice that I post one single slide deck for each unit (e.g. Topic 1 - Unit 1- SQL), and I keep those slide decks updated as we progress with the unit across lectures. I post them here on this website (or in Canvas if I think they are not yet ready to be released in public). Please also check our DATA lab seminar for talks o interest.

Topic 1: Data Models and Query Languages

- Lecture 1 (Tue 1/9): Course introduction / T1-U1 SQL / PostgreSQL setup / SQL Activities
- Lecture 2 (Fri 1/12): T1-U1 SQL T1-U1 SQL
- Lecture 3 (Tue 1/16) via Zoom: T1-U1 SQL
- Lecture 4 (Fri 1/19): no class
- Lecture 5 (Tue 1/23): T1-U2 Logic \& Relational Calculus
- Lecture 6 (Fri 1/26): T1-U2 Logic \& Relational Calculus
- Lecture 7 (Tue 1/30): T1-U3 Relational Algebra \& Codd's Theorem
- Lecture 8 (Fri 2/2): T1-U3 Relational Algebra \& Codd's Theorem
- Lecture 9 (Tue 2/6): T1-U4 Datalog \& Recursion \& ASP
- Lecture 10 (Tue 2/9): T1-U4 Datalog \& Recursion \& ASP
- Lecture 11 (Tue 2/13): T1-U4 Datalog \& Recursion \& ASP
- Lecture 12 (Fri 2/16): T1-U4 Datalog \& Recursion \& ASP

Topic 2: Complexity of Query Evaluation \& Reverse Data Management

- Lecture 11 (Tue 2/14): T2-U1 Conjunctive Queries
- Lecture 12 (Fri 2/17): T2-U1 Conjunctive Queries
- Lecture 13 (Tue 2/21): T2-U2 Beyond Conjunctive Queries
- Lecture 14 (Fri 2/24): T2-U3 Provenance
- Lecture 15 (Tue 2/28): T2-U3 Provenance
- Lecture 16 (Fri 3/3): T2-U4 Reverse Data Management

Topic 3: Efficient Query Evaluation \& Factorized Representations

- Spring break (Tue 3/7, Fri 3/10: Northeast Database day 2023 @ Northeastern)
- Lecture 17 (Tue 3/14): T3-U1 Acyclic Queries
- Lecture 18 (Fri 3/17): T3-U1 Acyclic Queries
- Lecture 19 (Tue 3/21): T3-U2 Cyclic Queries
- Lecture 20 (Fri 3/24): T3-U2 Cyclic Queries
- Lecture 21 (Tue 3/28): T3-U2 Cyclic Queries
- Lecture 22 (Fri 3/31): T3-U2 Cyclic Queries
- Lecture 23 (Tue 4/4): T3-U3 Factorized Representations
- Lecture 24 (Fri 4/7): T3-U4 Optimization Problems \& Top-k
- Lecture 25 (Tue 4/11): T3-U4 Optimization Problems \& Top-k

Topic 4: Normalization, Information Theory \& Axioms for Uncertainty

- Lecture: Normal Forms \& Information Theory
- Lecture: Axioms for Uncertainty

Topic 5: Linear Algebra \& Iterative Graph Algorithms

- Lecture: Graphs \& Linear Algebra
- Lecture: Computation Graphs

Project presentations

- Lecture 26 (Fri 4/14): P4 Project presentations
- Lecture 27 (Tue 4/18): P4 Project presentations

Topic 1: Data Models and Query Languages

- Lecture 1 (Tue 1/10): Course introduction / T1-U1 SQL / PostgreSQL setup / SQL Activities
- Lecture 2 (Fri 1/13): T1-U1 SQL
- Lecture 3 (Tue 1/17): T1-U1 SQL
- Lecture 4 (Fri 1/20): T1-U2 Logic \& Relational Calculus
- Lecture 5 (Tue 1/24): T1-U1 Logic \& Relational Calculus
- Lecture 6 (Fri 1/27): T1-U3 Relational Algebra \& Codd's Theorem
- Lecture 7 (Tue 1/31): T1-U3 Relational Algebra \& Codd's Theorem
- Lecture 8 (Fri 2/3): T1-U4 Datalog \& Recursion
- Lecture 9 (Tue 2/7): T1-U4 Datalog \& Recursion
- Lecture 10 (Tue 2/10): T1-U4 Datalog \& Recursion

Pointers to relevant concepts \& supplementary material:

- Unit 1. SQL: [SAMS'12], [CS 3200], [Cow'03] Ch3 \& Ch5, [Complete'08] Ch6, [Silberschatz+'20] Ch3.8
- Unit 2. Logic \& Relational Calculus: First-Order Logic (FOL), relational calculus (RC): [Barland+'08] 4.1.2 \& 4.2.1 \& 4.4, [Genesereth+] Ch6, [Halpern+'01], [Cow'03] Ch4.3 \& 4.4, [Elmasri, Navathe'15] Ch8.6 \& Ch8.7, [Silberschatz+'20] Ch27.1 \& Ch27.2, [Alice'95] Ch3.1-3.3 \& Ch4.2 \& Ch4.4 \& Ch5.3-5.4, [Barker-Plummer+'11] Ch11
\circ Unit 3. Relational Algebra \& Codd's Theorem: Relational Algebra (RA), Codd's theorem: [Cow'03] Ch4.2, [Complete'08] Ch2.4 \& Ch5.1-5.2, [Elmasri, Navathe'15] Ch8, [Silberschatz+'20] Ch2.6, [Alice'95] Ch4.4 \& Ch5.4
- Unit 4. Datalog \& Recursion: Datalog, recursion, Stratified Datalog with negation, Datalog evaluation strategies, Stable Model semantics, Answer Set Programming (ASP): [Complete'08] Ch5.3, [Cow'03] Ch 24, [Koutris'19] L9 \& L10, [G., Suciu'10]
- Unit 5. Alternative Data Models: NoSQL: [Hellerstein, Stonebraker'05], [Sadalage, Fowler'12], [Harrison'16]

Topic 1: Data models and query languages

- U1: SQL
- [SAMS'19] SAMS: Teach yourself SQL in 10min by Forta. 5th ed. 2019. It is available for free for Northeastern students from Safari books eBook (you may have to first login from our library website, then try again the previous link). If the book is checked out online, you can use the 4th edition (there is almost no difference between 4th and 5th ed) as Safari books eBook, or as EBSCOhost eBook.
- [cs3200] PostgreSQL setup, PgAdmin 4 tutorial. Files to follow along our SQL lectures: SQL Activities.
- [Cow'03] Ramakrishnan, Gehrke. Database Management Systems. 3rd ed 2003. Ch 5: SQL.
- [Complete'08] Garcia-Molina, Ullman, Widom. Database Systems. 2nd ed 2008. Ch 6: SQL.
- [Elmasri, Navathe'15] Fundamentals of Database Systems. 7th ed 2015. Ch 6: SQL
- [Silberschatz+'10] Silberschatz, Korth, Sudarshan. Database system concepts. 6th ed 2011. Ch 3.8: Nested sumqueries.
- U2: Logic, elational calculus
- TBarland+'08] Barland, Kolaitis, Vardi, Felleisen, Greiner. Intro to Logic, (alternative PDF version). 4.1.2 FirstOrder Logic: bound variables, free variables, 4.2.1 First-Order Logic: equivalences, 4.4 Exercises for First-Order Logic.
- [Genesereth+] Genesereth et al. Introduction to logics. Ch 6: Relational Logic.
- [Halpern+'01] Halpern, Harper, Immerman, Kolaitis, Vardi, Vianu. On the Unusual Effectiveness of Logic in Computer Science. Bulletin of Symbolic Logic 2001.
- [Cow'03] Ramakrishnan, Gehrke. Database Management Systems. 3rd ed 2003. Ch 4.3: Relational calculus, Ch 4.4: Safety.
- [Elmasri, Navathe'15] Fundamentals of Database Systems. 7th ed 2015. Ch 8.6: Tuple relational calculus, Ch 8.7: Domain relational calculus.
- [Silberschatz+'10] Silberschatz, Korth, Sudarshan. Database system concepts. 6th ed 2011. Ch 6.2: Tuple relational calculus, Ch 6.3: Domain relational calculus.
- [Alice'95] Abiteboul, Hull, Vianu. Foundations of Databases. 1995. Ch 3.1: Structure of the relational model, Ch 3.2: Named vs. unnamed perspective, Ch 3.3: Conventioanl vs. logic programming perspective, Ch 4.2: Logicbased perspective, Ch 4.4: Algebraic perspectives, Ch 5.3: Relational calculus, domain independence, Codd's theorem, Ch 5.4: Syntactic Restrictions for Domain Independence.
Barker-Plummer+'11]: Barker-Plummer, Barwise, Etchemendy. Language, Proof and Logic. 2nd ed. 2011. Ch 11: Multiple Quantifiers.

Please feel free to point me to other interesting material you find or alrady know of (:)

Queries and the connection to logic

-Why logic?

- A crash course in FOL
- Relational Calculus (RC)
- Syntax and Semantics
- Domain RC (DRC) vs Tuple RC (TRC)
- Domain Independence and Safety
- 4 categorical propositions

Logic as foundation of Computer Science and Databases

- Logic has had an immense impact on CS
- Computing has strongly driven a particular branch of logic: finite model theory
- That is, First-order logic (FOL) restricted to finite models
- Has strong connections to complexity theory
- The basis of various branches in Artificial Intelligence (not the ones favored today)
- It is a natural tool to capture and attack fundamental problems in data management
- Relations as first-class citizens
- Inference for assuring data integrity (integrity constraints)
- Inference for question answering (queries)
- It has been used for developing and analyzing the relational model from the early days [Codd'72]

Why has Logic turned out to be so powerful?

- Basic Question: What on earth does an obscure, old intellectual discipline have to do with the youngest intellectual discipline?
- Cosma R. Shalizi, CMU:
- "If, in 1901, a talented and sympathetic outsider had been called upon (say, by a granting-giving agency) to survey the sciences and name the branch that would be least fruitful in century ahead, his choice might well have settled upon mathematical logic, an exceedingly recondite field whose practitioners could all have fit into a small auditorium. It had no practical applications, and not even that much mathematics to show for itself: its crown was an exceedingly obscure definition of cardinal numbers."

Logics as the start of everything［＂Mephistopheles＂1806］

Ein wenig 马repbeit uno Seitvertreib， 2n ídínen ©ommerfeiertagen．

かephiftopbeles．

Grebraudt ber zeit，fie geft io ichnell von binmen， Dod Dromung lebrt ench Beit gewtunen． Sxein theurer greund，id）rath＇eud orum Suertit Collegium Logicam．
Da with ber（seift end wobl drefift， In fpanifiche Stiefeln eingeiduurt， Daf er bedádtiger fo fort an Sinid）leide die cbedanfenbatin， Itud nidt etwa，bie sireus＇und suer， Jrlictatelire bin und ber．
Danin legret man eum manden \｛ag， Das，was ilut fonit auf einen ©कlag （S）etrieben，wie Effen ano Irinfen frey， Eing！3wey！Drey！Dazu nothig fey． Şar ift＇s mit Der Gebanten＝Fabrit Wie mit cinein Weber＝刃reifterftuid， $\mathfrak{W O}$ Ein ©ritt taufend Fiden regt， Die ভબifflein berůber binủber \｛diejen， Die siben unseieben fliefen，

German

Mephistopheles．
Gebraucht der Zeit，sie geht so schnell von hinnen， Doch Ordnung lehrt Euch Zeit gewinnen．
Mein teurer Freund，ich rat Euch drum Zuerst Collegium Logicum．

Da wird der Geist Euch wohl dressiert， In spanische Stiefeln eingeschnürt， Daß er bedächtiger so fortan Hinschleiche die Gedankenbahn， Und nicht etwa，die Kreuz und Quer， Irrlichteliere hin und her．

English translation

Mephistopheles．
Use your time well：it slips away so fast，yet Discipline will teach you how to win it． My dear friend，l＇d advise，in sum， First，the Collegium Logicum． There your mind will be trained， As if in Spanish boots，constrained， So that painfully，as it ought， It creeps along the way of thought， Not flitting about all over， Wandering here and there．

Back to The Future

- M. Davis (1988): Influences of Mathematical Logic on Computer Science:
- "When I was a student, even the topologists regarded mathematical logicians as living in outer space. Today the connections between logic and computers are a matter of engineering practice at every level of computer organization."
- Question: Why on earth?

Birth of Computer Science: 1930s

- Church, Gödel, Kleene, Post, Turing: Mathematical proofs have to be "machine checkable" - computation lies at the heart of mathematics!
- Fundamental Question: What is "machine checkable"?
- Fundamental Concepts:
- algorithm: a procedure for solving a problem by carrying out a precisely determined sequence of simpler, unambiguous steps
- distinction between hardware and software
- a universal machine: a machine that can execute arbitrary programs
- a programming language: notation to describe algorithms

Leibniz's Dream

An Amazing Dream: a universal mathematical language, lingua characteristica universalis, in which all human knowledge can be expressed, and calculational rules, calculus ratiocinator, carried out by machines, to derive all logical relationships

- "If controversies were to arise, there would be no more need of disputation between two philosophers than between two accountants. For it would suffice to take their pencils in their hands, and say to each other: Calculemus-Let us calculate."

Example: Aristotle’ Syllogisms

- "All humans are mortal"

?

Example: Aristotle’ Syllogisms

- "All humans are mortal"
- "For all x , if x is a human, then x is mortal"
- "All humans are mortal"
- "For all x, if x is a human, then x is mortal"
- $\forall x[\operatorname{Human}(x) \rightarrow \operatorname{Mortal}(x)] \begin{aligned} & \text { Do you see the connection to } \\ & \text { referential integrity constraints }\end{aligned}$?

Product

PName	Price	Category	cid
Gizmo	$\$ 19.99$	Gadgets	1
Powergizmo	$\$ 29.99$	Gadgets	1
SingleTouch	$\$ 14.99$	Photography	2
MultiTouch	$\$ 203.99$	Household	3

Company

cid	CName	StockPrice	Country
1	GizmoWorks	25	USA
2	Canon	65	Japan
3	Hitachi	15	Japan

- "All humans are mortal"
- "For all x, if x is a human, then x is mortal"
- $\forall x[\operatorname{Human}(\mathrm{x}) \rightarrow$ Mortal(x)] Do you see the connection to referential integrity constraints

$$
\begin{aligned}
& \forall x[\operatorname{Product}(\ldots, 1, x) \rightarrow \\
& \text { company (} \mathrm{X}, 1,1,1 \text {) }]
\end{aligned}
$$

Company

cid	CName	StockPrice	Country
1	GizmoWorks	25	USA
2	Canon	65	Japan
3	Hitachi	15	Japan

Logic and Databases

Two main uses of logic in databases:

- Logic used as a database query language to express questions asked against databases (our main focus)
- Logic used as specification language to express integrity constraints in databases (product/company example from previous slide)

Why Logic?

- Logic provides both a unifying framework and a set of tools for formalizing and studying data management tasks.

Logic in Computer Science

- During the past fifty years there has been extensive, continuous, and growing interaction between logic and computer science. In many respects, logic provides computer science with both a unifying foundational framework and a tool for modeling computational systems. In fact, logic has been called "the calculus of computer science".
- The argument is that logic plays a fundamental role in computer science, similar to that played by calculus in the physical sciences and traditional engineering disciplines.
- Indeed, logic plays an important role in areas of computer science as disparate as machine architecture, computer-aided design, programming languages, databases, artificial intelligence, algorithms, and computability and complexity.

Queries and the connection to logic

-Why logic?

- A crash course in FOL
- Relational Calculus (RC)
- Syntax and Semantics
- Domain RC (DRC) vs Tuple RC (TRC)
- Domain Independence and Safety
- 4 categorical propositions

First-Order Logic: some notions

- Objects, e.g., "2" or "Alice"
- Predicates (relations), e.g., " 2 < 3"
- notice predicates are Boolean-valued functions (the codomain is Boolean)
- e.g., Define $f(x, y)=$ true iff $x<y$. Thus $f(2,3)=$ true
- Operations (non-Boolean functions), e.g., " $2+3$ "
- such functions usually return an object from the same domain as the inputs
- Logical operations, e.g., "and" (\wedge), "or" (V), "implies" (\rightarrow)
- Both inputs and outputs are Boolean
- Quantifiers, e.g., "for all" (\forall), "exists" (\exists)

First-Order Logic

- A formalism for specifying properties of mathematical structures, such as graphs, partial orders, groups, rings, fields, . . .
- For any given structure, we can verify whether the properties hold

$$
D=\{1,2,3\}
$$

- Mathematical Structure: $D^{m} \rightarrow\{T, F\}$
- $A=\left(D, R_{1}, \ldots, R_{k}, f_{1}, \ldots, f_{l}\right)$
\mathbf{R}

A	B	C
1	1	1
2	1	3

\subseteq| $D \times D \times D$ |
| :--- |
| $3 \cdot 3 \cdot 3=27$ |

$<$
x y 1 2 1 3 2 3

$\subseteq D \times D$ $3 \cdot 3=9$

- R_{i} is an m-ary relation on D, for some m (i.e., $R_{i} \subseteq D^{m}$)
- f_{j} is an n-ary function on D, for some n (i.e., $f_{i}: D^{n} \rightarrow D$)

$$
f\left(w_{1}, w_{2}\right)=w_{1}+w_{2}
$$

Two examples of "Mathematical Structures"

- Graph $G=(V, E)$

- $\operatorname{Groups} G=(D, \cdot)$

?

Two examples of "Mathematical Structures"

- Graph $G=(V, E)$
- V : set of nodes
- $E \subseteq V^{2}$: edges, a binary relation on V
- $\operatorname{Groups} G=(D, \cdot)$

?

Two examples of "Mathematical Structures"

- Graph $G=(V, E)$
- V : set of nodes
- $E \subseteq V^{2}$: edges, a binary relation on V
- $\operatorname{Groups} G=(D, \cdot)$
- D : elements
- ".": $D^{2} \rightarrow D$: group operation
- Example: $(\mathbb{Z},+)$: Integers under addition
- groups also require following conditions:
- an identity element e specified by $\exists e \in D \forall x \in D[e+x=x+e=x]$ and often written explicitly as in $(\mathbb{Z},+, 0)$
- the associativity of the operation $(x+y)+z=x+(y+z)$, and
- an inverse element $\forall x \in D \exists(-x) \in D[(-x)+x=x+(-x)=e]$

First-Order Logic on Graphs

Syntax:

- First-order variables: x, y, z, \ldots (range over nodes)
- Atomic formulas: $E(x, y), x=y$
- Formulas:
- Atomic Formulas, and
- Boolean Connectives (\vee, \wedge, \neg), and
- First-Order Quantifiers $\exists x, \forall x$

How to represent that graph in relations?

First-Order Logic on Graphs

Syntax:

- First-order variables: x, y, z, \ldots (range over nodes)
- Atomic formulas: $E(x, y), x=y$
- Formulas:
- Atomic Formulas, and

- Boolean Connectives (\vee, \wedge, \neg), and
- First-Order Quantifiers $\exists x, \forall x$
notice that we will use "edge" and "E" for both directed and undirected edges (instead of "arc" for directed)
binary edge relation
Edge

from	to
A	B
B	B
C	B
B	C

Vertex

name
A
B
C

Example properties for graph
Assume schema E(source, target) is undirected. Thus for every edge $E(x, y)$, we also have $E(y, x)$.

- "node 'a' has at least two distinct neighbors"

- "each node has at least two distinct neighbors"

?

- "node 'a' has at least two distinct neighbors"
- $\exists y \exists z\left[E\left(a^{\prime}, y\right) \wedge E\left({ }^{\prime} a^{\prime}, z\right) \wedge y \neq z\right]$
- Notice that if we replace ' a ' with a variable x (which is then free) in the above formula, then this becomes a query (find nodes x that have ...). Let's do that!
- "each node has at least two distinct neighbors"

?

- "node x has at least two distinct neighbors"
- $\exists y \exists z[E(x, y) \wedge E(x, z) \wedge y \neq z]$
- Notice: x is free in the above formula, which expresses a property of a node x.
- You can also think about this as a query (find nodes x that have ...)
- "each node has at least two distinct neighbors"

- "node x has at least two distinct neighbors"
- $\exists y \exists z[E(x, y) \wedge E(x, z) \wedge y \neq z]$
- Notice: x is free in the above formula, which expresses a property of a node x.
- You can also think about this as a query (find nodes x that have ...)
- "each node has at least two distinct neighbors"
- $\forall x \exists y \exists z[E(x, y) \wedge E(x, z) \wedge y \neq z]$
- The above is a sentence, that is, a formula with no free variables; it expresses a property of graphs.

$$
\text { We will sometimes use } \exists x, y, z \text { as short form for } \exists x \exists y \exists z
$$

Now in SQL

- "Find nodes that have at least two distinct neighbors" (query)
$-\{x \mid \exists y \exists z[E(x, y) \wedge E(x, z) \wedge y \neq z]\}$

- "each node has at least two distinct neighbors" (statement = Boolean query)
- $\forall x \exists y \exists z[E(x, y) \wedge E(x, z) \wedge y \neq z]$

SELECT exists

Now in SQL

- "Find nodes that have at least two distinct neighbors" (query)
- $\{x \mid \exists y \exists z[E(x, y) \wedge E(x, z) \wedge y \neq z]\}$

SELECT DISTINCT E1.S FROM E E1, E E2
 WHERE E1.S = E2.S AND E1.T <> E2.T

- "each node has at least two distinct neighbors" (statement = Boolean query)
- $\forall x \exists y \exists z[E(x, y) \wedge E(x, z) \wedge y \neq z]$
- $\neg(\exists x \neg(\exists y \exists z[E(x, y) \wedge E(x, z) \wedge y \neq z]))$

SELECT exists

Now in SQL

- "Find nodes that have at least two distinct neighbors" (query)
- $\{x \mid \exists y \exists z[E(x, y) \wedge E(x, z) \wedge y \neq z]\}$

SELECT DISTINCT E1.S FROM E E1, E E2
 WHERE E1.S = E2.S AND E1.T <> E2.T

- "each node has at least two distinct neighbors"
- $\forall x \exists y \exists z[E(x, y) \wedge E(x, z) \wedge y \neq z]$
$-\neg(\exists x \neg(\exists y \exists z[E(x, y) \wedge E(x, z) \wedge y \neq z]))$

Now in SQL
What do the queries return over the shown "graph database" instance

- "Find nodes that have at least two distinct neighbors" (query)
- $\{x \mid \exists y \exists z[E(x, y) \wedge E(x, z) \wedge y \neq z]\}$

- "each node has at least two distinct neighbors"
- $\forall x \exists y \exists z[E(x, y) \wedge E(x, z) \wedge y \neq z]$
- $\neg(\exists x \neg(\exists y \exists z[E(x, y) \wedge E(x, z) \wedge y \neq z]))$

SELECT DISTINCT E1.S FROM E E1, E E2 WHERE E1.S = E2.S AND E1.T <> E2.T

SELECT not exists
(SELECT *
FROM E E1
WHERE not exists (SELECT * FROM E E2 WHERE E1.S = E2.S AND E1.T <> E2.T))

Now in SQL
What do the queries return over the shown "graph database" instance

- "Find nodes that have at least two distinct neighbors" (query)
- $\{x \mid \exists y \exists z[E(x, y) \wedge E(x, z) \wedge y \neq z]\}$

SELECT DISTINCT E1.S
FROM E E1, E E2

- "each node has at least two distinct neighbors"
- $\forall x \exists y \exists z[E(x, y) \wedge E(x, z) \wedge y \neq z]$
$-\neg(\exists x \neg(\exists y \exists z[E(x, y) \wedge E(x, z) \wedge y \neq z]))$

- "Find nodes that have at least two distinct neighbors" (query)
- $\{x \mid \exists y \exists z[E(x, y) \wedge E(x, z) \wedge y \neq z]\}$

- "each node has at least two distinct neighbors"
- $\forall x \exists y \exists z[E(x, y) \wedge E(x, z) \wedge y \neq z]$
- $\neg(\exists x \neg(\exists y \exists z[E(x, y) \wedge E(x, z) \wedge y \neq z]))$

- "Find nodes that have at least two distinct neighbors" (query)
$-\{x \mid \exists y \exists z[E(x, y) \wedge E(x, z) \wedge y \neq z] \wedge x<5\}$

SELECT DISTINCT E1.S FROM E E1, E E2 WHERE E1.S = E2.S

AND	$\mathrm{E} 1 . \mathrm{T}<>$
AND	$\mathrm{E} 1 . \mathrm{S}<5$

$\{1,2,3,4\}$

- "each node has at least two distinct neighbors"
$-\forall x[x<5 \Rightarrow \exists y \exists z[E(x, y) \wedge E(x, z) \wedge y \neq z]]$
$-\neg(\exists x[x<5 \wedge \neg(\exists y \exists z[E(x, y) \wedge E(x, z) \wedge y \neq z]))$


```
SELECT not exists
    (SELECT *
    FROM E E1
    WHERE E1.S<5
    AND not exists
        (SELECT *
        FROM E E2
        WHERE E1.S = E2.S
        AND E1.T <> E2.T))
```

Now in SQL with grouping

- "Find nodes that have at least two distinct neighbors" (query)

SELECT	DISTINCT E1.S
FROM	E E1, E E2
WHERE	E1.S $=$ E2.S
AND	E1.T <> E2.T

$\{1,2,3,4\}$

- "each node has at least two distinct neighbors"

SELECT not exists
(SELECT *
FROM E E1
WHERE not exists (SELECT *
FROM E E2
WHERE E1.S = E2.S
AND E1.T <> E2.T))

Now in SQL with grouping

- "Find nodes that have at least two distinct neighbors" (query)

SELECT	DISTINCT E1.S
FROM	E E1, E E2
WHERE	E1.S $=$ E2.S
AND	E1.T <> E2.T

$\{1,2,3,4\}$

- "each node has at least two distinct neighbors"

```
SELECT not exists
    (SELECT *
    FROM E E1
    WHERE not exists
        (SELECT *
        FROM E E2
        WHERE E1.S = E2.S
        AND E1.T <> E2.T))
```

Now in SQL with grouping

- "Find nodes that have at least two distinct neighbors" (query)

SELECT	DISTINCT E1.S
FROM	E E1, E E2
WHERE	E1.S $=$ E2.S
AND	E1.T <> E2.T

$\{1,2,3,4\}$

- "each node has at least two distinct neighbors"

SELECT not exists

(SELECT * FROM E E1
WHERE not exists (SELECT * FROM E E2 WHERE E1.S = E2.S AND E1.T <> E2.T))

More practice

- "A small, happy dog is at home"

- "Every small dog that is at home is happy."

- "Jiahui owns a small, happy dog"

Exercise for next class :)

- "Jiahui owns every small, happy dog."

One more example

- "There are infinitely many prime numbers"

Exercise for next class :)

Semantics of First-Order Logic on Graphs
Semantics:

- First-order variables range over (can be " bound to") elements of the universes of structures
- To evaluate a formula φ, we need a graph G and a binding α that maps the free variables of φ to nodes of G
- Notation: $G \vDash_{\alpha} \varphi\left(x_{1}, \ldots, x_{k}\right)$

Fundamental Distinction: Syntax vs. semantics (Tarski, 1930)

- Syntax: grammar, how to construct correct sentence, the combinatorics of units of a language (e.g. "This water is triangular.")
- Semantics: relates to meaning

Relational Databases

Codd's Two Fundamental Ideas:

- Tables are relations: a row in a table is just a tuple in a relation; order of rows/tuples does not matter!
- Formulas are queries: they specify the What rather then the How! That's declarative programming

3 Components of FOL

1. Syntax (or language)

2. Interpretation

3. Semantics

3 Components of FOL

1. Syntax (or language)

- What are the allowed syntactic expressions?

2. Interpretation

- Mapping symbols to an actual world

3. Semantics

- When is a statement "true" under some interpretation?

3 Components of FOL

1. Syntax (or language)

- What are the allowed syntactic expressions?
- For DB's:

2. Interpretation

- Mapping symbols to an actual world
- For DB's:

3. Semantics

- When is a statement "true" under some interpretation?
- For DB's: ?

3 Components of FOL

1. Syntax (or language)

- What are the allowed syntactic expressions?
- For DB's: schema, constraints, query language

2. Interpretation

- Mapping symbols to an actual world
- For DB's: database

3. Semantics

- When is a statement "true" under some interpretation?
- For DB's: meaning of integrity constraints and query results (recall the conceptual evaluation strategy of SQL)

Components of FOL: (1) Syntax = First-order language

- Alphabet: symbols in use

vocabulary

- Variables, constants, function symbols, predicate symbols, connectives, quantifiers, punctuation symbols

- Term: expression that stands for an element or object
- Variable, constant
- Inductively $f\left(t_{1}, \ldots, t_{n}\right)$ where t_{i} are terms, f a function symbol MotherOf(MotherOf(x))
- (Well-formed) formula: parameterized statement
- Atom $\mathrm{p}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right)$ where p is a predicate symbol, t_{i} terms (atomic formula, together with predicates $\mathrm{t}_{1}=\mathrm{t}_{2}$)
- Inductively, for formulas F, G, variable x:

$$
\mathrm{F} \wedge \mathrm{G} \quad \mathrm{~F} V G \quad \neg \mathrm{~F} \quad \mathrm{~F} \rightarrow \mathrm{G} \quad \mathrm{~F} \leftrightarrow \mathrm{G} \quad \forall \mathrm{xF} \quad \exists \mathrm{xF}
$$

- A first-order language refers to the set of all formulas over an alphabet

Components of FOL: (2) Interpretation

- How to assign meaning to the symbols of a formal language
- An interpretation INT for an alphabet consists of:
- A non-empty set Dom, called domain
- \{Alice, Bob, Charly\}
- An assignment of an element in Dom to each constant symbol
- Alice (recall we often write constants with quotation marks 'Alice')
- An assignment of a function Dom ${ }^{n} \rightarrow$ Dom to each n-ary function symbol
- Alice $=$ Motherof(Bob)
- An assignment of a function Dom ${ }^{n} \rightarrow\{$ true, false $\}$ (i.e., a relation) to each n-ary predicate symbol
- Friends(Bob, Charly) = TRUE

Components of FOL: (3) Semantics

- A variable assignment V to a formula in an interpretation INT assigns to each free variable \mathbf{X} a value from Dom
- Recall, a free variable is one that is not quantified

- Truth value for formula F under interpretation INT and variable assignment V :
- Atom $\mathrm{p}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right): \mathrm{q}\left(\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{n}}\right)$ where q is the interpretation of the predicate p and s_{i} the interpretation of t_{i}
- F $\wedge \mathrm{G} \quad \mathrm{F} V \mathrm{G} \neg \mathrm{F} \quad \mathrm{F} \rightarrow \mathrm{G} \quad \mathrm{F} \leftrightarrow \mathrm{G}$: according to truth table
- $\exists X F$: true iff there exists $d \in D o m$ such that if V assigns d to X then the truth value of F is true; otherwise false
- $\forall X F$: true iff for all $\mathrm{d} \in \mathrm{D}$ om, if V assigns d to X then the truth value of F is true; otherwise false
- If a formula has no freepars (closed formula or sentence), we can simply refer to its truth value under INT

Operator precedence

Operator precedence is an ordering of logical operators designed to allow the dropping of parentheses in logical expressions. The following table gives a hierarchy of precedences for the operators of propositional logic. The \neg operator has higher precedence than \wedge; \wedge has higher precedence than \vee; and \vee has higher precedence than \Rightarrow and \Leftrightarrow.

$$
\begin{gathered}
\neg \\
\wedge \\
\vee \\
\Rightarrow \Leftrightarrow
\end{gathered}
$$

In unparenthesized sentences, it is often the case that an expression is flanked by operators, one on either side. In interpreting such sentences, the question is whether the expression associates with the operator on its left or the one on its right. We can use precedence to make this determination. In particular, we agree that an operand in such a situation always associates with the operator of higher precedence. When an operand is surrounded by operators of equal precedence, the operand associates to the right. The following examples show how these rules work in various cases. The expressions on the right are the fully parenthesized versions of the expressions on the left.

$$
\begin{array}{ll}
\neg p \wedge q & ((\neg p) \wedge q) \\
p \wedge \neg q & (p \wedge(\neg q)) \\
p \wedge q \vee r & ((p \wedge q) \vee r) \\
p \vee q \wedge r & (p \vee(q \wedge r) \\
\hline p \Rightarrow q \Rightarrow r & (p \Rightarrow(q \Rightarrow r)) \\
\hline p \Rightarrow q \Leftrightarrow r & (p \Rightarrow(q \Leftrightarrow r))
\end{array}
$$

Queries and the connection to logic

-Why logic?

- A crash course in FOL
- Relational Calculus (RC)
- Syntax and Semantics
- Domain RC (DRC) vs Tuple RC (TRC)
- Domain Independence and Safety
- 4 categorical propositions

1. $\mathrm{RC}=\mathrm{FOL}$ over DB's

2. RC can express "bad queries" that depend not only on the DB, but also on the domain from which values are taken (called "domain dependence" which is bad)
3. We cannot test whether an RC query is "good," but we can use a "good" subset of RC that captures all "good" queries (safety)
4. "Good" RC and RA can express the same queries! (equivalence = Codd's theorem)

- RC is, essentially, first-order logic (FOL) over the schema relations
- A query has the form "find all tuples $\left(x_{1}, \ldots, x_{k}\right)$ that satisfy an FOL condition"
- Thus RC is a declarative query language: a query is not defined by a sequence of operations, but rather by a logical condition that the result should satisfy

Queries and the connection to logic

-Why logic?

- A crash course in FOL
- Relational Calculus (RC)
- Syntax and Semantics
- Domain RC (DRC) vs Tuple RC (TRC)
- Domain Independence and Safety
- 4 categorical propositions

Person(id, gender, country) Parent(parent, child) Spouse(person1, person2)
assume symmetric relation $(a, b) \in$ Spouse $\Leftrightarrow(b, a) \in$ Spouse
$\{(x, u) \mid \operatorname{Person}(u$, 'female', 'Canada') \wedge $\exists z, y[\operatorname{Parent}(z, y) \wedge \operatorname{Parent}(y, x) \wedge$
$\exists \mathrm{w}[\operatorname{Parent}(\mathrm{z}, \mathrm{w}) \wedge \mathrm{y} \neq \mathrm{w} \wedge(\mathrm{u}=\mathrm{w} \vee \operatorname{Spouse}(\mathrm{u}, \mathrm{w}))]]\}$

Which relatives does this query find?

Person(id, gender, country) Parent(parent, child) Spouse(person1, person2)
$\{(x, u) \mid \operatorname{Person}(u$, 'female', 'Canada') \wedge

Which relatives does this query find?

Persons and their Canadian aunts (incl. female spouses of uncles and aunts)
disjunction not shown here (difficult to visualize)

RC Symbols (more precisely "Domain RC" = DRC)

- Constant values: ?
- Values that may appear in table cells (optionally with quotation marks)
- Variables:

?

- Range over the values that may appear in table cells
- Relation symbols: ?
- Each with a specified arity (fixed by the given relational schema)

RC Symbols (more precisely "Domain RC" = DRC)

- Constant values: 'female', 'Canada'
- Values that may appear in table cells (optionally with quotation marks)
- Variables:

$$
x, y, z, w, u
$$

- Range over the values that may appear in table cells
- Relation symbols: Person, Parent, Spouse
- Each with a specified arity (fixed by the given relational schema)
- Two variants:
- No attribute names, only attribute positions: "unnamed perspective"
- Attribute names: "named perspective"
- What about functions ?

RC Symbols (more precisely "Domain RC" = DRC)

- Constant values: 'female', 'Canada'
- Values that may appear in table cells (optionally with quotation marks)
- Variables:

$$
x, y, z, w, u
$$

- Range over the values that may appear in table cells
- Relation symbols: Person, Parent, Spouse
- Each with a specified arity (fixed by the given relational schema)
- Two variants:
- No attribute names, only attribute positions: "unnamed perspective"
- Attribute names: "named perspective"
- Unlike general FOL, no function symbols!

Topic 1: Data models and query languages Unit 2: Logic \& relational calculus Lecture 5

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
https://northeastern-datalab.github.io/cs7240/sp24/
1/26/2024

Pre-class conversations

- Last class recapitulation
- Scribes: perfect example for first iteration posted to Piazza. Thanks!
- today:
- logic continued (likely next time algebra and the connection)
- logic is super important for our class; thus lots of practice today ()
- in particular the concept of "undecidability": intuition for why things can quickly get complicated without giving proofs
order. For example, when setting goals, just set goals. Don't think about how you will achieve them or what you will do if something goes wrong. When you are diagnosing problems, don't think about how you will solve them-just diagnose them. Blurring the steps leads to suboptimal outcomes because it interferes with uncovering the true problems. The process is iterative: Doing each step thoroughly will provide you with the information you need to move on to the next step and do it well.
a. Focus on the "what is" before deciding "what to do about it." It is a common mistake to move in a nanosecond from identifying a tough problem to proposing a solution for it. Strategic thinking requires both diagnosis and design. A good diagnosis typically takes between fifteen minutes and an hour, depending on how well it's done and how complex the issue is. It involves speaking with the relevant people and looking at the evidence together to determine the root causes. Like principles, root causes manifest themselves over and over again in seemingly different situations. Finding them and dealing with them pays dividends again and again.
f. Recognize that it doesn't take a lot of time to design a good plan. A plan can be sketched out and refined in just hours or spread out over days or weeks. But the process is essential because it determines what you will have to do to be effective. Too many people make the mistake of spending virtually no time on designing because they are preoccupied with execution. Remember: Designing precedes doing!
b. Good work habits are vastly underrated. People who push through successfully have to-do lists that are reasonably prioritized, and they make certain each item is ticked off in order.

Separation of concerns: WHAT from HOW

More practice

- "A small, happy dog is at home"

- "Every small dog that is at home is happy."

- "Jiahui owns a small, happy dog"

- "Jiahui owns every small, happy dog."

More practice

$$
\exists x \in \operatorname{soc}[\ldots . .]
$$

- "A small, happy dog is at home"
- $\exists \mathrm{x}[(\operatorname{Small}(\mathrm{x}) \wedge$ Happy $(\mathrm{x}) \wedge \operatorname{Dog}(\mathrm{x})) \wedge \operatorname{Home}(\mathrm{x})]$
associativity of conjunction: no need of evaluation to follow blue parentheses
- "Every small dog that is at home is happy."

- "Jiahui owns a small, happy dog"

- "Jiahui owns every small, happy dog."

More practice

- "A small, happy dog is at home"
- ヨx[(Small(x) \wedge Happy $(x) \wedge \operatorname{Dog}(x)) \wedge$ Home(x)] $\begin{aligned} & \text { associativity of conjunction: no need of } \\ & \text { evaluation to follow blue parentheses }\end{aligned}$
- "Every small dog that is at home is happy." here evaluation needs to follow blue
- $\forall x[(\operatorname{Small}(\mathrm{x}) \wedge \operatorname{Dog}(\mathrm{x}) \wedge \operatorname{Home}(\mathrm{x})) \rightarrow$ Happy $(\mathrm{x})]$ parentheses
- "Jiahui owns a small, happy dog"

- "Jiahui owns every small, happy dog."

More practice

- "A small, happy dog is at home"
- $\exists x\left[(\right.$ Small $(x) \wedge$ Happy $(x) \wedge \operatorname{Dog}(x)) \wedge$ Home(x)] $\begin{array}{l}\text { associativity of conjunction: no need of } \\ \text { evaluation to follow blue parentheses }\end{array}$
- "Every small dog that is at home is happy." here evaluation needs to follow blue
- $\forall x[(S m a l l(x) \wedge \operatorname{Dog}(x) \wedge \operatorname{Home}(x)) \rightarrow$ Happy $(x)]$ parentheses
- "Jiahui owns a small, happy dog"
- ヨx [(Small(x) ^Happy (x) ^Dog (x)) ^ Owns('Jiahui', x)]
- "Jiahui owns every small, happy dog."

notice that we deviate here from the usual notation in logics of constants like 'Jiahui' written w/o quotation marks

More practice

- "A small, happy dog is at home"
- ヨx[(Small(x) \wedge Happy $(x) \wedge \operatorname{Dog}(x)) \wedge$ Home(x)] $\begin{aligned} & \text { associativity of conjunction: no need of } \\ & \text { evaluation to follow blue parentheses }\end{aligned}$
- "Every small dog that is at home is happy." here evaluation needs to follow blue
- $\forall x[(S m a l l(x) \wedge \operatorname{Dog}(x) \wedge \operatorname{Home}(x)) \rightarrow$ Happy (x)] parentheses
- "Jiahui owns a small, happy dog"
- ヨx [(Small(x) ^Happy (x) ^Dog (x)) ^ Owns('Jiahui', x)]
- "Jiahui owns every small, happy dog."
- $\forall x$ [(Small(x) $\wedge \operatorname{Happy}(x) \wedge \operatorname{Dog}(x)) \rightarrow$ Owns('Jiahui', $x)]$
notice that we deviate here from the usual notation in logics of constants like 'Jiahui' written w/o quotation marks

Two more examples

- "There are infinitely many prime numbers"
?

Two more examples

- "There are infinitely many prime numbers"
- $\forall x \exists y[y>x \wedge$ Prime(y)]

Two more examples

- "There are infinitely many prime numbers"
- $\forall x \exists y[y>x \wedge$ Prime(y)]
- $\forall x \exists y[y=\operatorname{sqrt}(x)]$

Two more examples

- "There are infinitely many prime numbers"
- $\forall x \exists y[y>x \wedge$ Prime(y)]
- $\forall x \exists y[y=\operatorname{sqrt}(x)]$
- Truth of this expression depends on domain:
- evaluates to false if x and y have the domain of the real numbers \mathbb{R}
- evaluates to true if their domain is the complex numbers \mathbb{C}

Queries and the connection to logic

-Why logic?

- A crash course in FOL
- Relational Calculus (RC)
- Syntax and Semantics
- Domain RC (DRC) vs Tuple RC (TRC)
- Domain Independence and Safety
- 4 categorical propositions

RC Formulas (atomic and non-atomic)

- Atomic formulas:
- $R\left(t_{1}, \ldots, t_{k}\right)$ Person(u, 'female', 'Canada')
- R is a k-ary relation, Each t_{i} is a variable or a constant
- Semantically it states that $\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{k}}\right)$ is a tuple in R
- x op u $u=w, y \neq w, z>5, z=$ 'female'
- x is a variable, u is a variable/constant, op is one of $\rangle,<,=, \neq$
- Simply binary predicates, predefined interpretation
- Formula:
- Atomic formula
- If ϕ and ψ are formulas then these are formulas:
$\phi \wedge \psi \quad \phi \vee \psi \quad \phi \rightarrow \psi \quad \phi \rightarrow \psi \quad-\phi \quad \exists x \phi \quad \forall x \phi$

Free Variables

- Intuitively: free variable are not bound to quantifiers
- Formally:
- A free variable of an atomic formula is a variable that occurs in the atomic formula
- A free variable of $\varphi \wedge \psi, \varphi \vee \psi, \varphi \rightarrow \psi$ is a free variable of either φ or ψ
- A free variable of $\neg \varphi$ is a free variable of φ
- A free variable of $\exists \mathrm{x} \varphi$ and $\forall \mathrm{x} \varphi$ is a free variable y of φ such that $\mathrm{y} \neq \mathrm{x}$
- We write $\varphi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)$ to state that $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}$ are the free variables of formula φ (in some order)

$\exists x[x=y]$
... is y free

Free Variables

- Intuitively: free variable are not bound to quantifiers
- Formally:
- A free variable of an atomic formula is a variable that occurs in the atomic formula
- A free variable of $\varphi \wedge \psi, \varphi \vee \psi, \varphi \rightarrow \psi$ is a free variable of either φ or ψ
- A free variable of $\neg \varphi$ is a free variable of φ
- A free variable of $\exists \mathrm{x} \varphi$ and $\forall \mathrm{x} \varphi$ is a free variable y of φ such that $\mathrm{y} \neq \mathrm{x}$
- We write $\varphi\left(\mathrm{x}_{1}, \ldots, \mathrm{X}_{\mathrm{k}}\right)$ to state that $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}$ are the free variables of formula φ (in some order)

$$
\begin{aligned}
& \exists x[x=y] \\
& y \text { is free }
\end{aligned}
$$

This is a formula!

```
Person(u, 'female', 'Canada') \(\wedge\)
\(\exists \mathrm{z}, \mathrm{y}[\operatorname{Parent}(\mathrm{z}, \mathrm{y}) \wedge \operatorname{Parent}(\mathrm{y}, \mathrm{x}) \wedge\)
\(\exists \mathrm{w}[\operatorname{Parent}(\mathrm{z}, \mathrm{w}) \wedge \mathrm{y} \neq \mathrm{w} \wedge(\mathrm{u}=\mathrm{w} \vee \operatorname{Spouse}(\mathrm{u}, \mathrm{w}))]]\)
```


What are the free variables?

Person(u,'female', 'Canada') \wedge
 $\exists z, y[\operatorname{Parent}(z, y) \wedge \operatorname{Parent}(, x) \wedge$
 $\exists \mathrm{w}[\operatorname{Parent}(\mathrm{z}, \mathrm{w}) \wedge \mathrm{y} \neq \mathrm{w} \wedge(\mathrm{u}=\mathrm{w} \vee \operatorname{Spouse}(\mathrm{u}, \mathrm{w}))]]$

Notation:
$\varphi(\mathrm{x}, \mathrm{u})$ or CanadianAunt($\mathrm{u}, \mathrm{x})$

$\{(\mathrm{x}, \mathrm{u}) \mid$ Person (u.)'female', 'Canada') \wedge $\exists z, y[\operatorname{Parent}(z, y) \wedge \operatorname{Parent}(\%, X) \wedge$ $\exists \mathrm{w}[\operatorname{Parent}(\mathrm{z}, \mathrm{w}) \wedge \mathrm{y} \neq \mathrm{w} \wedge(\mathrm{u}=\mathrm{w} \vee \operatorname{Spouse}(\mathrm{u}, \mathrm{w}))]]\}$

$$
\begin{aligned}
& \left\{\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right) \mid \varphi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)\right\} \\
& \varphi(\mathrm{x}, \mathrm{u}) \text { or CanadianAunt }(\mathrm{u}, \mathrm{x})
\end{aligned}
$$

Relation Calculus Query

- An RC query is an expression of the form

$$
\begin{aligned}
& \text { an expression of the form }\left\{\left(x_{, y}\right) \mid x<\gamma\right\} \\
& \left\{\left(x_{1}, \ldots, x_{k}\right) \mid \varphi\left(x_{1}, \ldots, x_{k}\right)\right\} \\
& \text { where } \varphi\left(x_{1}, \ldots, x_{k}\right) \text { is an RC formula }
\end{aligned}
$$

- An RC query is over a relational schema \mathbf{S} if all the relation symbols belong to \mathbf{S} (with matching arities)

Queries and the connection to logic
-Why logic?

- A crash course in FOL
- Relational Calculus (RC)
- Syntax and Semantics
- Domain RC (DRC) vs Tuple RC (TRC)
- Domain Independence and Safety
- 4 categorical propositions

DRC vs. TRC (Domain vs. Tuple RC)

Two common variants of RC:

- DRC (Domain RC): attributes as sets (what we have seen so far)
- DRC applies typical FO: terms interpreted as attribute (domain) values, relations have arity but no attribute names (= unnamed perspective)
- Example: $x=4 \wedge R(x, y)$
- TRC (Tuple RC): tuples as sets
- TRC is more "database friendly": terms interpreted as tuples with named attributes
- Example: R. $A=4$ for schema $R(A, B)$
- There are easy conversions between the two formalisms

DRC vs. TRC (Domain vs. Tuple RC) domain variables range over the domain

DRC

$$
\{(x, y) \mid R(x, y) \wedge y>2\}
$$

TRC

$$
\{r \mid r \in R \wedge r . B>2\} \quad \text { predicate (unnamed) }
$$

\mathbf{R}

A	B
1	3
1	4
2	2

tuple variables range over relations (domain of tuple variable)

DRC
 $$
\{(\mathrm{x}) \mid \exists \mathrm{y}[\mathrm{R}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{y}>2]\}
$$

TRC

DRC vs. TRC (Domain vs. Tuple RC)
domain variables range over the domain
DRC $\quad\{(x, y) \mid R(x, y) \wedge y>2\}$
TRC $\quad\{r \mid r \in R \wedge r . B>2\}$
predicate (unnamed)

$\{r \mid r \in R[r . B>2]\} \quad$ predicate (named)
tuple variables range over relations (domain of tuple variable)

DRC $\quad\{(x) \mid \exists y[R(x, y) \wedge y>2]\} \quad$ which are here bound and
TRC $\quad\{q \mid \exists r \in R[q \cdot A=r . A \wedge r . B>2]\}$ which are free variables
Other sources often use " + " as tuple variable. I prefer to use " q " to identify the output relation with the query

DRC vs. TRC (Domain vs. Tuple RC)
domain variables range over the domain

free bound
DRC $\quad\{(x) \mid \exists y[R(x, y) \wedge y>2]\}$

Our Example in TRC
optionally " (nephew, aunt)"
Person(id, gender, country) Parent(parent, child)
Spouse(person1, person2)
$\left\{\mathbf{q}^{2} \mid \exists \mathrm{a} \in \operatorname{Person}[\right.$ a.gender = 'female' \wedge a.country = 'Canada'] \wedge
$\exists \mathrm{p}, \mathrm{r}, \mathrm{w} \in$ Parent [p.child $=\mathbf{q}$. nephew Λ r.child $=$ p.parent Λ
w. parent $=$ r.parent Λ w.child \neq r.child Λ a.id $=q$.aunt Λ
(w.child $=$ a.id $\vee \exists s[s \in$ Spouse \wedge s.person1 $=w . c h i l d ~ \wedge s . p e r s o n 2=$ a.id $])]\}$

tuple variables like in SQL instead of domain variables: $\{a \mid \operatorname{COND}(q)\}$
often used short forms:
$\forall x \in R[\varphi]$ same as $\forall x[x \in R \Rightarrow \varphi]$
$\exists x \in R[\varphi]$ same as $\exists x[x \in R \wedge \varphi]$

Different TRC notations

Find persons who frequent only bars that serve some drinks they like.

Likes(person, drink)
Frequents(person, bar) Serves(bar, drink) (Find persons for whom there does not exist a bar they frequent that serves no drink they do not like.)
$\{q($ person) | $\exists f \in$ Frequents [f.person=q.person $\Lambda \neg(\exists f 2 \in$ Frequents [f2.person=f.person $\Lambda \quad$ my preferred notation $\neg(\exists \mid \in$ Likes, $\exists s \in$ Serves $[1 . d r i n k=s . d r i n k ~ \wedge f 2 . b a r=s . b a r ~ \wedge f 2 . p e r s o n=l . p e r s o n])])]\}$
$\{Q$. person $\mid \exists F \in$ Frequents.(Q.person=F.person $\Lambda(\nexists F 2 \in$ Frequents.(F2.person=F.person Λ my earlier pref. notation ($\nexists \mathrm{L} \in$ Likes, $\nexists \mathrm{S} \in \operatorname{Serves}$.(L.drink=S.drink \wedge F2.bar=S.bar \wedge F2.person=L.person))))) \}
$\{t$: Person $\mid \exists f \in$ Frequents $[t($ Person $)=f($ Person $) ~ \wedge \neg \exists f 2 \in$ Frequents [F2(person) $=F($ person $) ~ \wedge$
[Deutsch 2019] $\neg(\exists l \in \operatorname{Likes} \exists s \in$ Serves) $[1($ Drink $)=s($ Drink $) ~ \wedge f 2$ (Bar)=s(Bar) \wedge f2(Person)=l(Person)]]]\}
\{f.Person | Frequents(f) AND (NOT(ヨf2)(Frequents(f2) AND f2.person=f.person \wedge
$(\operatorname{NOT}(\exists I)(\exists s)($ Likes(I) AND Serves(s) AND I.drink=s.drink AND f2.bar=s.bar AND f2.person=l.person))))\}
$\left\{\mu^{(1)} \mid\left(\exists \rho^{(2)}\right)\left(\right.\right.$ Frequents $(\rho) \wedge \rho[1]=\mu[1] \wedge \neg\left(\left(\exists \lambda^{(2)}\right)(\right.$ Frequents $(\lambda) \wedge \lambda[1]=\rho[1] \wedge$
$\left.\left.\left.\neg\left(\left(\exists v^{(2)}\right)\left(\exists \theta^{(2)}\right)(\operatorname{Likes}(v) \wedge \operatorname{Serves}(\theta) \wedge v(2)=\theta(2) \wedge \lambda(2)=\theta(1) \wedge \lambda(1)=\nu(1))\right)\right)\right)\right\}$
[Elmasri 2015]
[Ullman 1988]
$\{P \mid \exists F \in$ Frequents (F.person=P.person $\wedge \neg \exists F 2 \in$ Frequents(F2.person=F.person \wedge
[Ramakrishnan 2003] $\neg(\exists L \in \operatorname{Likes} \exists S \in \operatorname{Serves}(L . d r i n k=S . d r i n k ~ \wedge ~ F 2 . b a r=S . b a r ~ \wedge ~ F 2 . p e r s o n=L . p e r s o n))))\} ~\} ~$

[^0]
TRC vs. Relational Diagrams

Find persons who frequent only bars that serve some drinks they like.

Likes(person, drink)
Frequents(person, bar) Serves(bar, drink) (Find persons for whom there does not exist a bar they frequent that serves no drink they do not like.)
$\{q($ person) $\mid \exists f \in$ Frequents [f.person=q.person $\Lambda \neg(\exists f 2 \in$ Frequents [f2.person=f.person $\Lambda \quad$ my preferred notation $\neg(\exists \mid \in$ Likes, $\exists \mathrm{s} \in \operatorname{Serves}[1 . d r i n k=s . d r i n k ~ \wedge f 2 . b a r=s . b a r ~ \wedge f 2$. person=l.person])]]]\}

SELECT DISTINCT F.person
FROM Frequents F
WHERE not exists
(SELECT *
FROM Frequents F2
WHERE F2.person=F.person
AND not exists
(SELECT *
FROM Likes L, Serves S
WHERE L.person=F2.person
AND L.drink=S.drink
AND S.bar=F2.bar))

- "Find nodes that have at least two distinct neighbors" (query)
- $\{x \mid \exists y \exists z[E(x, y) \wedge E(x, z) \wedge y \neq z]\}$
- in TRC?

SELECT	E	E
S	S	S
	T	T

- "each node has at least two distinct neighbors"
- $\forall x \exists y \exists z[E(x, y) \wedge E(x, z) \wedge y \neq z]$
- $\neg(\exists x \neg(\exists y \exists z[E(x, y) \wedge E(x, z) \wedge y \neq z]))$

SELECT DISTINCT E1.S
FROM E E1, E E2
WHERE E1.S = E2.S
AND E1.T <> E2.T
$\{1,2,3,4\}$
SELECT not exists
(SELECT * FROM E E1
WHERE not exists (SELECT *
FROM E E2
WHERE E1.S = E2.S AND E1.T <> E2.T))

- "Find nodes that have at least two distinct neighbors" (query)
- $\{x \mid \exists y \exists z[E(x, y) \wedge E(x, z) \wedge y \neq z]\}$
- $\left\{q \mid \exists e_{1} \in E, \exists e_{2} \in E\left[q \cdot S=e_{1} \cdot S \wedge e_{1} \cdot S=e_{2} \cdot S \wedge e_{1} \cdot T \neq e_{2} \cdot T\right]\right\}$

- "each node has at least two distinct neighbors"
- $\forall x \exists y \exists z[E(x, y) \wedge E(x, z) \wedge y \neq z]$
- $\neg(\exists x \neg(\exists y \exists z[E(x, y) \wedge E(x, z) \wedge y \neq z]))$

$$
- \text { in TRC? }
$$

SELECT DISTINCT E1.S
FROM E E1, E E2

WHERE E1.S = E2.S
AND E1.T <> E2.T
$\{1,2,3,4\}$

SELECT not exists
(SELECT * FROM E E1
WHERE not exists (SELECT *
FROM E E2
WHERE E1.S = E2.S AND E1.T <> E2.T))

In DRC, SQL, RD, and now in TRC

- "Find nodes that have at least two distinct neighbors" (query)
- $\{x \mid \exists y \exists z[E(x, y) \wedge E(x, z) \wedge y \neq z]\}$

SELECT DISTINCT E1.S

- $\left\{q \mid \exists e_{1} \in E, \exists e_{2} \in E\left[q . S=e_{1} . S \wedge e_{1} \cdot S=e_{2} . S \wedge e_{1} \cdot T \neq e_{2} \cdot T\right]\right\}$

FROM E E1, E E2
WHERE E1.S = E2.S
AND E1.T <> E2.T
$\{1,2,3,4\}$

- "each node has at least two distinct neighbors"
- $\forall x \exists y \exists z[E(x, y) \wedge E(x, z) \wedge y \neq z]$
- $\neg(\exists x \neg(\exists y \exists z[E(x, y) \wedge E(x, z) \wedge y \neq z]))$

$$
-\neg\left(\exists e_{1} \in E\left[\neg\left(\exists e_{2} \in E\left[e_{1} \cdot S=e_{2} \cdot S \wedge e_{1} \cdot T \neq e_{2} \cdot T\right]\right)\right]\right)
$$

SELECT not exists
(SELECT *
FROM E E1
WHERE not exists
(SELECT *
FROM E E2
WHERE E1.S = E2.S
AND E1.T <> E2.T))

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
false

Queries and the connection to logic

-Why logic?

- A crash course in FOL
- Relational Calculus (RC)
- Syntax and Semantics
- Domain RC (DRC) vs Tuple RC (TRC)
- Domain Independence and Safety
- 4 categorical propositions

Intuition for what we are trying to avoid
$\mathrm{Q}_{1}:\{(\mathrm{x}) \mid \neg \mathrm{S}(\mathrm{x})\}$

$$
S=\{3,4\} \quad \text { 1) What's the answer to } Q_{1} \text { ? }
$$

Intuition for what we are trying to avoid
$\mathrm{Q}_{1}:\{(\mathrm{x}) \mid \neg \mathrm{S}(\mathrm{x})\}$
$S=\{3,4\}$
Dom $=\mathbb{N}_{1}^{100}$

1) What's the answer to Q_{1} ?
2) What now?

Intuition for what we are trying to avoid

$$
\begin{aligned}
& \mathrm{Q}_{1}:\{(\mathrm{x}) \mid \neg \mathrm{S}(\mathrm{x})\} \\
& \quad \begin{array}{ll}
\mathrm{S}=\{3,4\} & \text { 1) What's the answer to } \mathrm{Q}_{1} \text { ? } \\
& \text { Dom }=\mathbb{N}_{1}^{100} \\
& \text { 2) What now? } \\
\mathrm{Q}_{2}:\{(\mathrm{x}) \mid \mathrm{R}(\mathrm{x}) \wedge \neg \mathrm{S}(\mathrm{x})\}
\end{array} \\
& \quad \mathrm{R}=\{1,2,3\} \\
& \\
& \quad \text { 3) What's the answer to } \mathrm{Q}_{2} \text { ? }
\end{aligned}
$$

Intuition for what we are trying to avoid

$$
\begin{aligned}
& \mathrm{Q}_{1}:\{(\mathrm{x}) \mid \neg \mathrm{S}(\mathrm{x})\} \\
& \\
& \\
& \mathrm{S}=\{3,4\} \\
& \\
& \\
& \text { Dom }=\mathbb{N}_{1}^{100}
\end{aligned} \quad \text { 1) What's the answer to } \mathrm{Q}_{1} \text { ? }
$$

Intuition for what we are trying to avoid
we "don'+ like this query" because we can't evaluate it by only looking at the database

$$
S=\{3,4\} \quad \text { 1) What's the answer to } Q_{1} \text { ? }
$$

Dom $=\mathbb{N}_{1}^{100} \quad$ 2) What now?
$\mathrm{Q}_{2}:\{(\mathrm{x}) \mid \mathrm{R}(\mathrm{x}) \wedge \neg \mathrm{S}(\mathrm{x})\}$
That's easy to see, but it gets more complicated :(

$$
\begin{array}{ll}
\mathrm{R}=\{1,2,3\} & \text { 3) What's the } \\
\text { Dom }=\mathbb{N}_{1}^{1000} & \text { 4) What now? }
\end{array}
$$

Q_{2} is "domain-independent", i.e. we don't care whether Dom is \mathbb{N}_{1}^{100} or \mathbb{N}_{1}^{1000}. We only care about the database D:

Bringing in the Domain

- Let \mathbf{S} be a schema, D a database over \mathbf{S}, and \mathbf{Q} an RC query over \mathbf{S}
- Then D gives an unambiguous interpretation for the underlying FOL
- Predicates \rightarrow relations; constants copied; no functions

Is this true

Bringing in the Domain

- Let \mathbf{S} be a schema, D a database over \mathbf{S}, and \mathbf{Q} an RC query over \mathbf{S}
- Then D gives an unambiguous interpretation for the underlying FOt
- Predicates \rightarrow relations; constants copied; no functions
- Not yet! We need to answer first: What is the domain?
- The active domain ADom (of D and Q) is the set of all the values that occur in either D or Q
- The query Q is evaluated over D with respect to a domain Dom that contains the active domain (Dom \supseteq ADom)
- Denote by $Q^{\operatorname{Dom}}(\mathrm{D})$ the result of evaluating Q over D relative to the domain Dom

Domain Independence

- Let \mathbf{S} be a schema, and let \mathbf{Q} be an RC query over \mathbf{S}
- We say that \mathbf{Q} is domain independent if for every database D over \mathbf{S} and ...

How could we continue the definition?

Domain Independence

- Let \mathbf{S} be a schema, and let \mathbf{Q} be an RC query over \mathbf{S}
- We say that \mathbf{Q} is domain independent if for every database D over \mathbf{S} and every two domains Dom_{1} and Dom_{2} that contain the active domain, we have:

$$
Q^{\operatorname{Dom} 1}(\mathrm{D})=\mathrm{Q}^{\operatorname{Dom} 2}(\mathrm{D})=\mathrm{Q}^{\mathrm{ADom}}(\mathrm{D})
$$

First bad news ... and then good news ...

We would like be able to tell whether a given RC query is domain independent, and then reject "bad queries"

- Bad: This problem is undecidable (:)!
- That is, there is no algorithm that takes as input an RC query and returns true iff the query is domain independent
- Good: Domain-independent RC has an "effective syntax", that is:
- A syntactic restriction of RC in which every query is domain independent
- Restricted queries are said to be safe
- Safety can be tested automatically (and efficiently)
- Most importantly, for every domain independent RC query there exists an equivalent safe RC query!

- We don't cover the formal definition of the safe syntax

- Details on the safe syntax can be found e.g. in [Alice'95]
- Example:
- Every variable x_{i} is guarded by $R\left(x_{1}, \ldots, x_{k}\right)$
- In ' $\exists \mathrm{x} \varphi$ ', the variable x should be guarded by φ
- In " $\psi \wedge(x=y)$ ", the variable x is guarded iff either x or y is guarded by ψ

The basic idea of these definitions is to ensure that every free variable in the query is somehow bound to an element in the active domain of the database or, in the presence of nontrivial operations, to one of a finite number of domain elements. In the absence of operations, this is typically done by ensuring that every free or existentially quantified variable in a query occurs positively in its scope, every universally quantified variable occurs negatively in its scope, and that the same free variables occur in every component of a disjunction. For example, the query $\{x \mid P(x) \wedge \forall y(Q$ $(x, y) \rightarrow R(x, y))\}$ is safe according to these ideas.

Which One is Domain Independent?
ADom $=\{1,2,3$, 'female', 'Canada' $\}$
Dom = ADom U \{'elefant', 'car', 'lemon', $\pi, \ldots\}$
$\{(\mathrm{x}) \mid \neg \operatorname{Person}(\mathrm{x}$, 'female', 'Canada') $\}$
$\{(x, y) \mid \exists z[\operatorname{Spouse}(x, z) \wedge y=z]\}$
$\{(x, y) \mid \exists z[\operatorname{Spouse}(x, z) \wedge y \neq z]\}$

Which One is Domain Independent?

What are example fixes:
?
Person(id, gender, country) Likes(person1, person2)
$\{(x) \mid \neg \operatorname{Person}(x$, 'female', 'Canada') $\}$
$\{(x, y) \mid \exists z[\operatorname{Spouse}(x, z) \wedge y=z]\}$
$\{(x, y) \mid \exists z[\operatorname{Spouse}(x, z) \wedge y \neq z]\}$
?
?

Which One is Domain Independent?

$\wedge \exists y, z, \operatorname{Person}(x, y, z)$

$\Lambda \operatorname{Person}(x, \ldots$,
$\Lambda \operatorname{Person}\left(x, \ldots, ' C a n a d a^{\prime}\right)$ $\Lambda x=^{\prime} 1^{\prime}$ or $x==^{\prime} 2^{\prime}$
$\{(x) \mid \neg \operatorname{Person}(x$, 'female', 'Canada') $\mid\}$
$\{(\mathrm{x}, \mathrm{y}) \mid \exists \mathrm{z}[\operatorname{Spouse}(\mathrm{x}, \mathrm{z}) \wedge \mathrm{y}=\mathrm{z}]\}$
$\{(\mathrm{x}, \mathrm{y}) \mid \exists \mathrm{z}[\operatorname{Spouse}(\mathrm{x}, \mathrm{z}) \wedge \mathrm{y} \neq \mathrm{z}]\}$

Person(id, gender, country) Likes(person1, person2) Spouse(person1, person2)

$$
\{(\mathrm{x}, \mathrm{y}) \mid \exists \mathrm{z}[\operatorname{Spouse}(\mathrm{x}, \mathrm{z}) \wedge \mathrm{y} \neq \mathrm{z}]\}
$$

Person(id, gender, country) Likes(person1, person2) Spouse(person1, person2)
\int same as $\{(x, y) \mid$ Spouse $(x, y)\}=$ Spouse (x, y)

Which One is Domain Independent?
$\wedge \exists y, z . \operatorname{Person}(x, y, z)$
Person(id, gender, country) Likes(person1, person2)
Spouse(person1, person2)

$$
\begin{aligned}
& \text { What are example fixes: } \wedge \operatorname{Person}(x, \ldots, 1) \\
& \wedge \operatorname{Person}(x, \ldots, ' \text { 'anada' }) \\
& \wedge x=11^{\prime} \text { or } x=2^{\prime} \\
&\{(\mathrm{x}) \mid \neg \text { Person(x, 'female', 'Canada') } \mid\}
\end{aligned}
$$

$$
\{(\mathrm{x}, \mathrm{y}) \mid \exists \mathrm{z}[\operatorname{Spouse}(\mathrm{x}, \mathrm{z}) \wedge \mathrm{y}=\mathrm{z}]\}
$$

$$
\text { same as }\{(x, y) \mid \text { Spouse }(x, y)\}=\text { Spouse }(x, y)
$$

$$
\{(x, y) \mid \exists z[\operatorname{Spouse}(x, z) \wedge y \neq z]\}
$$

$$
\begin{array}{ll}
\text { D: Spouse('Alice','Bob') } \\
\text { ADom }=\{\text { 'Alice','Bob' }\} & \rightarrow ?
\end{array}
$$

Which One is Domain Independent?
$\wedge \exists y, z . \operatorname{Person}(x, y, z)$
Person(id, gender, country) Likes(person1, person2)
Spouse(person1, person2)

$$
\begin{aligned}
& \text { What are example fixes: } \wedge \operatorname{Person}(x, \ldots, 1) \\
& \wedge \operatorname{Person}(x, 1, \text { canada') } \\
& \wedge x=11^{\prime} \text { or } x=2^{\prime} \\
&\{(\mathrm{x})|\neg \operatorname{Person(x,~'female',~'Canada')~}|\}
\end{aligned}
$$

$\{(x, y) \mid \exists z[\operatorname{Spouse}(x, z) \wedge y=z]\}$

$$
\text { same as }\{(x, y) \mid \text { Spouse }(x, y)\}=\text { Spouse }(x, y)
$$

$\{(x, y) \mid \exists z[\operatorname{Spouse}(x, z) \wedge y \neq z]\}$
D: Spouse('Alice','Bob')
ADom $=\{$ 'Alice',' 'Bob' $\} \quad \rightarrow$ \{('Alice','Alice') $\}$
Dom \supseteq ADom $\begin{aligned} & \text { ADom }=\left\{\text { Alice','Bob }=\left\{\text { 'Alice' }^{\prime}, ' \text { Bob',''Charly' }\right\} \rightarrow ?\right.\end{aligned}$

Which One is Domain Independent?
$\wedge \exists y, z . \operatorname{Person}(x, y, z)$
What are example fixes:
Λ Person ($\mathrm{x}, \ldots, \ldots$)
$\Lambda \operatorname{Person}(x, \ldots, ' C a n a d a ')$
$\wedge x=11^{\prime}$ or $x=\prime^{\prime}$
$\{(\mathrm{x}) \mid \neg \operatorname{Person(x,}$, 'female', 'Canada') $\mid\}$

$$
\{(\mathrm{x}, \mathrm{y}) \mid \exists \mathrm{z}[\operatorname{Spouse}(\mathrm{x}, \mathrm{z}) \wedge \mathrm{y}=\mathrm{z}]\}
$$

$$
\text { same as }\{(x, y) \mid \text { Spouse }(x, y)\}=\text { Spouse }(x, y)
$$

$$
\{(\mathrm{x}, \mathrm{y}) \mid \exists \mathrm{z}[\operatorname{Spouse}(\mathrm{x}, \mathrm{z}) \wedge \mathrm{y} \neq \mathrm{z}]\}
$$

Not DI

D: Spouse('Alice','Bob')
ADom $=\{$ 'Alice','Bob' $\} \rightarrow\left\{\left({ }^{\prime}\right.\right.$ 'Alice','Alice') $\}$
Dom 〇ADom Dom=\{'Alice','Bob','Charly'\} $\rightarrow\{(' A l i c e ', ' A l i c e '), ~(' A l i c e ', ' C h a r l y ') ~\} ~$

Which One is Domain Independent?
 Person(id, gender, country) Likes(person1, person2) Spouse(person1, person2)

$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$
$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$
$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})] \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$

Which One is Domain Independent?
D
Person('Alice', 'female', 'Canada') Likes('Alice', 'Beate')
Person('Beate', 'female', 'Canada') Likes('Alice', 'Cecile')
Person('Cecile', 'female', 'Canada') Likes('Alice', 'Alice')

$\mathrm{ADom}=$?

Person(id, gender, country) Likes(person1, person2) Spouse(person1, person2)
$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$
$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$
$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})] \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$

Which One is Domain Independent?
D
Person('Alice', 'female', 'Canada') Likes('Alice', 'Beate')
Person('Beate', 'female', 'Canada') Likes('Alice', 'Cecile')
Person('Cecile', 'female', 'Canada') Likes('Alice', 'Alice')
ADom = \{'Alice', 'Beate', 'Cecile', 'female', 'Canada')
$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$
$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$
$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})] \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$

Which One is Domain Independent?
D
Person('Alice', 'Alice', 'Alice')
Person('Beate', 'Beate', 'Beate')
Person('Cecile', 'Cecile', 'Cecile')
ADom $=$ \{'Alice', 'Beate', 'Cecile')
Dom = \{'Alice', 'Beate', 'Cecile', 'Dora')
Likes('Alice', 'Beate')
Person(id, gender, country) Likes(person1, person2)
Spouse(person1, person2)
$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$
$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})] \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$

Topic 1: Data models and query languages Unit 2: Logic \& relational calculus Lecture 6

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
https://northeastern-datalab.github.io/cs7240/sp24/
1/30/2024

Pre-class conversations

- Last class recapitulation
- Thanks Haoen for finding a mistake in the slides $)$
- today:
- we continue with logic (RC) \& start with relational algebra (RA)
- (next week: equivalence of the two)

Which One is Domain Independent? 㟫
D
Person('Alice', 'Alice', 'Alice')
Person('Beate', 'Beate', 'Beate')
Likes('Alice', 'Beate')
Likes('Alice', 'Cecile')
Likes('Alice', 'Alice')

Person(id, gender, country) Likes(person1, person2)

ADom $=$ \{'Alice', 'Beate', 'Cecile')
Dom = \{'Alice', 'Beate', 'Cecile', 'Dora')
$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$
$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w}$ Person $(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$
$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})] \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$

Which One is Domain Independent?
D
Person('Alice', 'Alice', 'Alice')
Person('Beate', 'Beate', 'Beate')
Person('Cecile', 'Cecile', 'Cecile')
Likes('Alice', 'Beate')
Person(id, gender, country) Likes(person1, person2)
Spouse(person1, person2)

ADom = \{'Alice', 'Beate', 'Cecile')
Dom = \{'Alice', 'Beate', 'Cecile', 'Dora')

Example fix:

?
$\{(x) \mid \exists \mathrm{z}, \mathrm{w}$ Person $(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$ answer $_{\text {ADom: }}$ Beate, cecile Not DI Alice is in the output only if Dom $\supset \operatorname{ADom}$ (e.g., Dora $\in \operatorname{Dom}$)
$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$
$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})] \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$

Which One is Domain Independent?
D
Person('Alice', 'Alice', 'Alice')
Person('Beate', 'Beate', 'Beate')
Person('Cecile', 'Cecile', 'Cecile')
Likes('Alice', 'Beate')
Person(id, gender, country) Likes(person1, person2)
Spouse(person1, person2)

ADom = \{'Alice', 'Beate', 'Cecile')
Dom = \{'Alice', 'Beate', 'Cecile', 'Dora')
$\operatorname{Person}(4, \ldots$,
Example fix: ... $\wedge \exists u, v[\operatorname{Person}(y, u, v)]$
$\{(x) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$ answer $_{\text {ADom: }}$ Beate, cecile Not DI Alice is in the output only if Dom $\supset \operatorname{ADom}$ (e.g., Dora $\in \operatorname{Dom}$)
$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$
$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})] \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$

Which One is Domain Independent?
D
Person('Alice', 'Alice', 'Alice')
Person('Beate', 'Beate', 'Beate')
Person('Cecile', 'Cecile', 'Cecile')

Person(id, gender, country) Likes(person1, person2)
Spouse(person1, person2)

ADom $=$ \{'Alice', 'Beate', 'Cecile')
Dom = \{'Alice', 'Beate', 'Cecile', 'Dora')
$\operatorname{Person}(4, \ldots$,

Example fix: ... $\wedge \exists u, v[\operatorname{Person}(y, u, v)]$
$\{(x) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$ answer $_{\text {ADom: }}$ Beate, cecile Not DI Alice is in the output only if Dom $\supset \operatorname{ADom}$ (e.g., Dora $\in \operatorname{Dom}$)
$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$
x never occurs in Likes $(x, 1)$: Beate, Cecile
$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})] \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$

Person('Alice', 'Alice', 'Alice')
Person('Beate', 'Beate', 'Beate')
Person('Cecile', 'Cecile', 'Cecile')

Likes('Alice', 'Beate')
Likes('Alice', 'Cecile')
Likes('Alice', 'Alice')

Person(id, gender, country) Likes(person1, person2) Spouse(person1, person2)

ADom $=$ \{'Alice', 'Beate', 'Cecile')
Dom $=$ \{'Alice', 'Beate', 'Cecile', 'Dora') Person($4, \ldots$)
Example fix: ... $\wedge \exists u, v[\operatorname{Person}(y, u, v)]$
$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$ answer $_{\text {ADom: }}$ Beate, cecile Not DI Alice is in the output only if Dom $\supset \operatorname{ADom}$ (e.g., Dora $\in \operatorname{Dom}$)
$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$
x never occurs in Likes (x, ,): Beate, Cecile
$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})] \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$
implication (absorption) if Dom $\neq \varnothing$, which is necessary for there to be Person (X, \square

What is the meaning of following unsafe expressions?
$\{\mathrm{x} \mid \exists \mathrm{y} . \mathrm{R}(\mathrm{x})\}$
?
$\{x \mid x \geq 10\}$
?
$\{x \mid \forall y R(x, y)\} ?$

What is the meaning of following unsafe expressions? $\{x \mid \exists y . R(x)\} \quad$ logically equivalent to $\{x \mid R(x)\}=R(x)$ $\{x \mid x \geq 10\}$
?
$\{x \mid \forall y R(x, y)\}$
?

What is the meaning of following unsafe expressions?
$\{\mathrm{x} \mid \exists \mathrm{y} . \mathrm{R}(\mathrm{x})\}$
$\{x \mid x \geq 10\} \quad$ What if Dom $=\mathbb{N}$? DI: $\{x \mid R(x) \wedge x \geq 10\}$
$\{x \mid \forall y R(x, y)\}$
$?$

What is the meaning of following unsafe expressions?
$\{\mathrm{x} \mid \exists \mathrm{y} . \mathrm{R}(\mathrm{x})\}$
logically equivalent to $\{x \mid R(x)\}=R(x)$

$$
\{x \mid x \geq 10\} \quad \text { What if Dom }=\mathbb{N} \text { ? } \quad D I:\{x \mid R(x) \wedge x \geq 10\}
$$

$\{x \mid \forall y R(x, y)\} \quad \begin{aligned} & D: \quad R\left(a^{\prime}, a^{\prime}\right. \\ & A D O M=\left\{a^{\prime}\right. \\ & \text { D }\end{aligned}$
$D I ?: \quad\{\mathrm{x} \mid \forall \mathrm{y}[\mathrm{S}(\mathrm{y}) \rightarrow \mathrm{R}(\mathrm{x}, \mathrm{y})]\}$
Dom=\{'a','Chile'\}

What is the meaning of following unsafe expressions?

$$
\begin{aligned}
& \{x \mid \exists y . R(x)\} \quad \text { logically equivalent to }\{x \mid R(x)\}=R(x) \\
& \{x \mid x \geq 10\} \quad \text { What if } \operatorname{Dom}=\mathbb{N} \text { ? } \quad D I:\{x \mid R(x) \wedge x \geq 10\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1. always true for } S=\varnothing \\
& \{x \mid \forall y \rightarrow S(y) \vee R(x, y)]\}
\end{aligned}
$$

What is the meaning of following unsafe expressions?
$\{x \mid \exists \mathrm{y} . \mathrm{R}(\mathrm{x})\}$ logically equivalent to $\{x \mid R(x)\}=R(x)$

$$
\{x \mid x \geq 10\} \quad \text { What if Dom }=\mathbb{N} \text { ? } \quad D I:\{x \mid R(x) \wedge x \geq 10\}
$$

$$
\{x \mid \forall y R(x, y)\} \quad D: R\left(a^{\prime}, a^{\prime}\right) \quad \text { not } D I:\{x \mid \forall y[S(y) \rightarrow R(x, y)]\}
$$

$$
A D O M=\left\{a^{\prime} a^{\prime}\right\}
$$

$$
\text { Dom } \left.=\varepsilon^{\prime} a^{\prime} a^{\prime}, \text { 'chile }^{\prime}\right\}
$$

what if relation S is empty?

Neutral element (identity) for \forall is TRUE

$\Sigma:$
П:
$\wedge:$
V : neutral elements of
these operations
What are the
2. alternative
way to see that

$$
\begin{aligned}
& \text { 1. always true for } s=\varnothing \\
& \{x \mid \forall y, \neg S(y) \vee R(x, y)]\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { What is the meaning of following unsafe expressions? } \\
& \{x \mid \exists y . R(x)\} \quad \text { logically equivalent to }\{x \mid R(x)\}=R(x) \\
& \{x \mid x \geq 10\} \quad \text { What if } \operatorname{Dom}=\mathbb{N} \text { ? DI: }\{x \mid R(x) \wedge x \geq 10\} \\
& \{x \mid \forall y R(x, y)\} \quad D: R\left(a^{\prime} a^{\prime} a^{\prime}\right) \quad \text { not } D I:\{x \mid \forall y[S(y) \rightarrow R(x, y)]\} \\
& A D O M=\left\{a^{\prime} a^{\prime}\right\} \\
& \text { Dom }=\left\{^{\prime} a^{\prime} \text { ', 'Chile' }\right\} \\
& \text { what if relation } S \text { is empty? } \\
& \text { Neutral element (identity) for } \forall \text { is TRUE } \\
& \sum: 0+\mathrm{x}=\mathrm{x} \\
& \Pi: 1 \cdot x=x \\
& \{x \mid \forall y \rightarrow \neg(y) \vee R(x, y)]\} \\
& \vee \text { : FALSE } \vee \mathrm{x}=\mathrm{x} \quad \exists \text { : } \\
& \wedge: \text { TRUE } \wedge \mathrm{x}=\mathrm{x} \quad \forall: \text { ? } \\
& \text { 1. always true for } S=\varnothing \\
& \{x \mid \forall y \neg S(y) \vee R(x, y)]\} \\
& \text { 2. alternative } \\
& \text { way to see that }
\end{aligned}
$$

What is the meaning of following unsafe expressions?

$$
\begin{aligned}
& \{x \mid \exists y . R(x)\} \quad \text { logically equivalent to }\{x \mid R(x)\}=R(x) \\
& \{x \mid x \geq 10\} \quad \text { What if } \operatorname{Dom}=\mathbb{N} \text { ? DI: }\{x \mid R(x) \wedge x \geq 10\} \\
& \{x \mid \forall y R(x, y)\} \quad D: R\left(a^{\prime} a^{\prime} a^{\prime}\right) \quad \text { not } D I:\{x \mid \forall y[S(y) \rightarrow R(x, y)]\} \\
& \text { ADOM }=\left\{a^{\prime} a^{\prime}\right\} \\
& \text { Dom }=\left\{^{\prime} a^{\prime} \text { ', 'Chile' }\right\} \\
& \text { what if relation } S \text { is empty? }
\end{aligned}
$$

Neutral element (identity) for \forall is TRUE
$\sum: 0+\mathrm{x}=\mathrm{x}$
П: $1 \cdot x=x$

1. always true for $S=\varnothing$ $\{x \mid \forall y, \neg S(y) \vee R(x, y)]\}$
V: FALSE $\vee \mathrm{x}=\mathrm{x} \quad \exists: \mathrm{x}_{1} \vee \mathrm{x}_{2} \vee \ldots$... V FALSE
$\wedge: \operatorname{TRUE} \wedge \mathrm{x}=\mathrm{x} \quad \forall: \mathrm{x}_{1} \wedge \mathrm{x}_{2} \wedge \ldots \wedge$ TRUE
$\operatorname{MIN}: \operatorname{MIN}(\infty, x)=x$
2. alternative way to see that

What is the meaning of following unsafe expressions?
$\{\mathrm{x} \mid \exists \mathrm{y} . \mathrm{R}(\mathrm{x})\}$ logically equivalent to $\{x \mid R(x)\}=R(x)$

$$
\{x \mid x \geq 10\} \quad \text { What if Dom }=\mathbb{N} \text { ? } \quad D I:\{x \mid R(x) \wedge x \geq 10\}
$$

$$
\{x \mid \forall y R(x, y)\} \quad D: R\left(a^{\prime}, a^{\prime}\right) \quad \text { not } D I:\{x \mid \forall y[S(y) \rightarrow R(x, y)]\}
$$

$$
A D O M=\left\{a^{\prime} a^{\prime}\right\}
$$

$$
\text { Dom }=\left\{^{\prime} a^{\prime}, ' \text { 'chile' }\right\}
$$

what if relation S is empty?

Neutral element (identity) for \forall is TRUE

another way to see it: The following sentence $\forall y[R(y)]$
is vacuously true if the domain for y is empty set:
$\forall y[y \in D o m \rightarrow R(y)]$

1. always true for $S=\varnothing$ $\{x \mid \forall y, \neg S(y) \vee R(x, y)]\}$
2. alternative way to see that

What is the meaning of following unsafe expressions?
$\{\mathrm{x} \mid \exists \mathrm{y} . \mathrm{R}(\mathrm{x})\}$
logically equivalent to $\{x \mid R(x)\}=R(x)$
$\{x \mid x \geq 10\} \quad$ What if Dom $=\mathbb{N}$? DI: $\{x \mid R(x) \wedge x \geq 10\}$
$\{x \mid \forall y R(x, y)\}$

$$
\operatorname{not} D I:\{\mathrm{x} \mid \forall \mathrm{y}[\mathrm{~S}(\mathrm{y}) \rightarrow \mathrm{R}(\mathrm{x}, \mathrm{y})]\}
$$

$$
D I:
$$

What is the meaning of following unsafe expressions?
$\{\mathrm{x} \mid \exists \mathrm{y} . \mathrm{R}(\mathrm{x})\}$
logically equivalent to $\{x \mid R(x)\}=R(x)$

$$
\{x \mid x \geq 10\} \quad \text { What if Dom }=\mathbb{N} \text { ? } \quad D I:\{x \mid R(x) \wedge x \geq 10\}
$$

$\{x \mid \forall y R(x, y)\}$

$$
\begin{aligned}
& \text { not } D I:\{x \mid \forall y[\mathrm{~S}(\mathrm{y}) \rightarrow \mathrm{R}(\mathrm{x}, \mathrm{y})]\} \\
& \mathrm{\exists}[\mathrm{R}(\mathrm{x}, \mathrm{z}) \wedge \ldots] \\
& D I:\{\mathrm{x} \mid \mathrm{R}(\mathrm{x}, \mathrm{)}) \wedge \forall \mathrm{y}[\mathrm{~S}(\mathrm{y}) \rightarrow \mathrm{R}(\mathrm{x}, \mathrm{y})]\} \\
&\{\mathrm{x} \mid \mathrm{R}(\mathrm{x}, \mathrm{l}) \wedge \nexists \mathrm{y}[\mathrm{~S}(\mathrm{y}) \wedge \neg \mathrm{R}(\mathrm{x}, \mathrm{y})]\}
\end{aligned}
$$

We will see this last expression again in a future class (); In the meantime, try for yourself. How to write in TRC?

Another example on domain-independence

More interestingly, if the domain is the set of natural numbers and the only operation on the domain is linear order, then the query

$$
\begin{aligned}
Q_{4}= & \{x \mid \forall y(\Delta(y) \rightarrow x>y) \\
& \wedge \forall y(y<x \rightarrow \exists z(\Delta(z) \wedge z \geq y)),
\end{aligned}
$$

where $\Delta(y)$ is true if and only if y is in the active domain of the database, defines the smallest integer greater than all the active domain elements, and is hence finite but not domain independent [7].

Example: Querying a Graph

What do these queries return ?

$$
\begin{gathered}
\{\mathrm{x} \mid \exists \mathrm{y} . \mathrm{E}(\mathrm{x}, \mathrm{y})\} \\
?
\end{gathered}
$$

E:

1	2
2	1
2	3
1	4
3	4

$\{x \mid \exists y, z, u \cdot[E(x, y) \wedge E(y, z) \wedge E(z, u)]\}$?
$\{(\mathrm{x}, \mathrm{y}) \mid \forall \mathrm{z} .[\mathrm{E}(\mathrm{x}, \mathrm{z}) \rightarrow \mathrm{E}(\mathrm{y}, \mathrm{z})]\}$
$?$

Example: Querying a Graph

What do these queries return ?

$$
\begin{aligned}
& \{\mathrm{x} \mid \exists \mathrm{y} . \mathrm{E}(\mathrm{x}, \mathrm{y})\} \\
& \quad \text { Nodes that have at least one child: }
\end{aligned}
$$

E:

1	2
2	1
2	3
1	4
3	4

$$
\begin{gathered}
\{\mathrm{x} \mid \exists \mathrm{y}, \mathrm{z}, \mathrm{u} \cdot[\mathrm{E}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{E}(\mathrm{y}, \mathrm{z}) \wedge \mathrm{E}(\mathrm{z}, \mathrm{u})]\} \\
? \\
\{(\mathrm{x}, \mathrm{y}) \mid \forall \mathrm{z} \cdot[\mathrm{E}(\mathrm{x}, \mathrm{z}) \rightarrow \mathrm{E}(\mathrm{y}, \mathrm{z})]\} \\
?
\end{gathered}
$$

Example: Querying a Graph

What do these queries return ?

$$
\{x \mid \exists y \cdot E(x, y)\}
$$

Nodes that have at least one child: $\quad\{1,2,3\}$
E:

1	2
2	1
2	3
1	4
3	4

$$
\begin{gathered}
\{\mathrm{x} \mid \exists \mathrm{y}, \mathrm{z}, \mathrm{u} \cdot[\mathrm{E}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{E}(\mathrm{y}, \mathrm{z}) \wedge \mathrm{E}(\mathrm{z}, \mathrm{u})]\} \\
? \\
\{(\mathrm{x}, \mathrm{y}) \mid \forall \mathrm{z} \cdot[\mathrm{E}(\mathrm{x}, \mathrm{z}) \rightarrow \mathrm{E}(\mathrm{y}, \mathrm{z})]\} \\
?
\end{gathered}
$$

Example: Querying a Graph

What do these queries return ?

$$
\{x \mid \exists y \cdot E(x, y)\}
$$

Nodes that have at least one child: $\quad\{1,2,3\}$
E:

1	2
2	1
2	3
1	4
3	4

$$
\begin{aligned}
& \{\mathrm{x} \mid \exists \mathrm{y}, \mathrm{z}, \mathrm{u} \cdot[\mathrm{E}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{E}(\mathrm{y}, \mathrm{z}) \wedge \mathrm{E} \\
& \text { Nodes that have a great- } \mathrm{g} \\
& \{(\mathrm{x}, \mathrm{y}) \mid \forall \mathrm{z} \cdot[\mathrm{E}(\mathrm{x}, \mathrm{z}) \rightarrow \mathrm{E}(\mathrm{y}, \mathrm{z})]\} \\
& ?
\end{aligned}
$$

Example: Querying a Graph

What do these queries return ?

$$
\{x \mid \exists y \cdot E(x, y)\}
$$

Nodes that have at least one child: $\quad\{1,2,3\}$
E:

1	2
2	1
2	3
1	4
3	4

$$
\{\mathrm{x} \mid \exists \mathrm{y}, \mathrm{z}, \mathrm{u} \cdot[\mathrm{E}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{E}(\mathrm{y}, \mathrm{z}) \wedge \mathrm{E}(\mathrm{z}, \mathrm{u})]\}
$$

Nodes that have a great-grand-child: $\{1,2\}$

$$
\{(\mathrm{x}, \mathrm{y}) \mid \forall \mathrm{z} \cdot[\mathrm{E}(\mathrm{x}, \mathrm{z}) \rightarrow \mathrm{E}(\mathrm{y}, \mathrm{z})]\} \quad \begin{aligned}
& y \neq \text { unot necessary! } \\
& \text { contrast homomorph } \\
& \text { vs. isomorphism } \\
& \text { ("Hamiltonian Path") }
\end{aligned}
$$

Example: Querying a Graph

What do these queries return ?

$$
\{x \mid \exists y \cdot E(x, y)\}
$$

Nodes that have at least one child: $\quad\{1,2,3\}$
E:

1	2
2	1
2	3
1	4
3	4

$\{x \mid \exists y, z, u \cdot[E(x, y) \wedge E(y, z) \wedge E(z, u)]\}$
Nodes that have a great-grand-child: $\{1,2\}$
$\{(x, y) \mid \forall z \cdot[E(x, z) \wedge \neg E(y, z)]\}$
Which of the
following tuples

Every child of x is a child of y. fulfill the condition?
$(3,1)$

Example: Querying a Graph

What do these queries return ?

$$
\{x \mid \exists y \cdot E(x, y)\}
$$

Nodes that have at least one child: $\quad\{1,2,3\}$
E:

1	2
2	1
2	3
1	4
3	4

$$
\left.\begin{array}{l}
\{\mathrm{x} \mid \exists \mathrm{y}, \mathrm{z}, \mathrm{u} \cdot[\mathrm{E}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{E}(\mathrm{y}, \mathrm{z}) \wedge \mathrm{E}(\mathrm{z}, \mathrm{u})]\} \\
\\
\\
\text { Nodes that have a great-grand-child: }\{1,2\} \\
\quad \nexists \mathrm{z} \cdot[\mathrm{E}(\mathrm{x}, \mathrm{z}) \wedge \neg \mathrm{A}(\mathrm{y}, \mathrm{z})] \\
\{(\mathrm{x}, \mathrm{y}) \mid
\end{array}\right) \quad \begin{aligned}
& \mathrm{z} \cdot[\mathrm{E}(\mathrm{x}, \mathrm{z}) \rightarrow \mathrm{E}(\mathrm{y}, \mathrm{z})]\} \quad \begin{array}{l}
\text { which of the } \\
\text { following tuples }
\end{array}
\end{aligned}
$$

Every child of x is a child of y. fulfill the condition?
$\{(1,1),(2,2),(3,1),(3,3),(4,1),(4,2),(4,3),(4,4)\}$ of nodes!

Example: Querying a Graph

What do these queries return ?

$$
\{x \mid \exists y \cdot \mathrm{E}(\mathrm{x}, \mathrm{y})\}
$$

Nodes that have at least one child: $\quad\{1,2,3\}$
E:

1	2
2	1
2	3
1	4
3	4

$$
\begin{aligned}
& \{x \mid \exists y, z, u \cdot[E(x, y) \wedge E(y, z) \wedge E(z, u)]\} \\
& \text { Nodes that have a great-grand-child: }\{1,2\} \\
& \quad \nexists z \cdot[E(x, z) \wedge \neg E(y, z)] \\
& \{(x, y) \mid \forall z \cdot[E(x, z) \rightarrow E(y, z)]\} \quad \text { which of the } \\
& \text { following tuples }
\end{aligned}
$$

Every child of x is a child of y. fulfill the condition?

$\{(x, y) \mid V(x) \wedge V(y) \wedge \forall z .[E(x, z) \rightarrow E(y, z)]\}$	if domain is set
$\{(1,1),(2,2),(3,1),(3,3),(4,1),(4,2),(4,3),(4,4)\}$ of nodes!	

The person/bar/drinks schema Serves(bar, drink)

What does the following query return?

$$
\{x \mid \forall y \cdot[\operatorname{Frequents}(x, y) \rightarrow \exists z \cdot[\operatorname{Serves}(y, z) \wedge \operatorname{Likes}(x, z)]\}
$$

The person/bar/drinks schema

What does the following query return?

$$
\{x \mid \forall y \cdot[\operatorname{Frequents}(x, y) \rightarrow \exists z \cdot[\operatorname{Serves}(y, z) \wedge \operatorname{Likes}(x, z)]\}
$$

Find drinkers who frequent only bars that serve some drink they like.

Is this query domain independent?

The person/bar/drinks schema

What does the following query return?

$$
\{x \mid \forall y \cdot[\operatorname{Frequents}(x, y) \rightarrow \exists z \cdot[\operatorname{Serves}(y, z) \wedge \operatorname{Likes}(x, z)]\}
$$

Find drinkers who frequent only bars that serve some drink they like.

Its output would include all
This query is not domain independent. values from the domain that do How to fix? not appear in the Frequents $(x, 1)$

The person/bar/drinks schema

Likes(person, drink)
Frequents(person, bar) Serves(bar, drink)

What does the following query return?

$$
\begin{gathered}
\text { Frequents }(x,) \wedge \ldots \quad \begin{array}{l}
\text { Are those two options to } \\
\text { Likes }(x,) \wedge \ldots
\end{array} \quad \begin{array}{l}
\text { make it safe identical }
\end{array} ? \\
\{\mathrm{x}\|\| \mathrm{y} \cdot[\text { Frequents }(\mathrm{x}, \mathrm{y}) \rightarrow \exists \mathrm{z} \cdot[\operatorname{Serves}(\mathrm{y}, \mathrm{z}) \wedge \operatorname{Likes}(\mathrm{x}, \mathrm{z})]\}
\end{gathered}
$$

Find drinkers who frequent only bars that serve some drink they like.

Frequents(person, bar) Serves(bar, drink)

What does the following query return?

$$
\begin{aligned}
& \text { Frequents }(x,) \wedge \ldots \text { Both safe, but not identical. Tip: Should a drinker who } \\
& \text { Likes }(x,) \wedge \ldots . . \begin{array}{l}
\text { likes a drink but does not frequent any bar be returned? }
\end{array} \\
& \{x \| \forall y .[\text { Frequents }(x, y) \rightarrow \exists z .[\text { Serves }(y, z) \wedge \operatorname{Likes}(x, z)]\}
\end{aligned}
$$

Find drinkers who frequent only bars that serve some drink they like.

Challenge: write this query without the \forall quantifier! And then in SQL
?

The person/bar/drinks example
Challenge: write these in SQL.
Solutions at: https://demo.queryvis.com Serves(bar, drink)

Find persons who frequent some bar that serves some drink they like.

Find persons who frequent only bars that serve some drink they like.
$\{x \mid \exists w .[F r e q u e n t s(x, w) \wedge \forall y .[F r e q u e n t s(x, y) \rightarrow \exists z .[\operatorname{Serves}(y, z) \wedge \operatorname{Likes}(x, z)]]\}$
Find persons who frequent some bar that serves only drinks they like.

Find persons who frequent only bars that serve only drinks they like.
(= Find persons who like all drinks that are served in all the bars they visit.)
(= Find persons for which there does not exist a bar they frequent that serves a drink they do not like.)
$?$

Queries and the connection to logic
-Why logic?

- A crash course in FOL
- Relational Calculus (RC)
- Syntax and Semantics
- Domain RC (DRC) vs Tuple RC (TRC)
- Domain Independence and Safety
- 4 categorical propositions

4 categorical propositions

All S are P

S... subject
P... predicate

Some S is P

Not all S are P (= Some S is not P)

4 categorical propositions / square of opposition

4 categorical propositions / square of opposition

4 categorical propositions / square of opposition

All S are P $\forall x[S(x) \Rightarrow P(x)]$ $\neg \exists x[S(x) \wedge \neg P(x)]$
A ("Affirmo" = I affirm)

No S is P
$\forall x[S(x) \Rightarrow \neg P(x)]$
$\neg \exists x[S(x) \wedge P(x)]$
E ("nEgo" = I deny)
shaded areas are empty
"x" shows that something exists
Not all S are P (= Some S is not P)

$$
\exists x[S(x) \wedge \neg P(x)]
$$

O ("negO" = I deny)

NL	Sailors who reserved some red boat	Sailors who did not reserve any red boat	Sailors who did not reserve all red boats	Sailors who reserved all red boats

4 categorical propositions with Sailors
Sailor (sid, sname, rating, age) Reserves (sid, bid, day)
Boat (bid, bname, color)

	Cat.	Some S is B. $\exists x[S(x) \wedge B(x)]$	No S is $B .($ All S are not $B)$ $\neg \exists x[S(x) \wedge B(x)]$	
NL	Sailors who reserved some red boat	Sailors who did not reserve any red boat	Sailors who did not reserve all red boats	Sailors who reserved all red boats

4 categorical propositions with Sailors

Sailor (sid, sname, rating, age) Reserves (sid, bid, day)
Boat (bid, bname, color) 340

Cat.	Some S is B. $\exists x[S(x) \wedge B(x)]$	No S is B. (All S are not B) $\neg \exists x[S(x) \wedge B(x)]$	Some B is not S. $\exists x[B(x) \wedge \neg S(x)]$	All B are S. $\neg \exists[B(x) \wedge \neg S(x)]$
NL	Sailors who reserved some red boat	Sailors who did not reserve any red boat	Sailors who did not reserve all red boats	Sailors who reserved all red boats

4 categorical propositions with Sailors

Sailor (sid, sname, rating, age) Reserves (sid, bid, day)
Boat (bid, bname, color)

Cat.	Some S is B. $\exists x[S(x) \wedge B(x)]$		Some B is not S. $\exists x[B(x) \wedge \neg S(x)]$	$\text { All } B \text { are } S \text {. }$
NL	Sailors who reserved some red boat	Sailors who did not reserve any red boat	Sailors who did not reserve all red boats	Sailors who reserved all red boats
SQL	SELECT S.sname FROM Sailor S WHERE EXISTS(SELECT * FROM Reserves R WHERE R.sid = S.sid AND EXISTS (SELECT * FROM Boat B WHERE B.color = 'red' AND B.bid = R.bid))	SELECT S.sname FROM Sailor S WHERE NOT EXISTS(SELECT * FROM Reserves R WHERE R.sid = S.sid AND EXISTS (SELECT * FROM Boat B WHERE B.color = 'red' AND B.bid = R.bid))	SELECT S.sname FROM Sailor S WHERE EXISTS (SELECT * FROM Boat B WHERE B.color = 'red' AND NOT EXISTS(SELECT * FROM Reserves R WHERE R.bid = B.bid AND R.sid = S.sid))	SELECT S.sname FROM Sailor S WHERE NOT EXISTS(SELECT * FROM Boat B WHERE B.color = 'red' AND NOT EXISTS (SELECT * FROM Reserves R WHERE R.bid = B.bid AND R.sid = S.sid))

4 categorical propositions with Sailors

Sailor (sid, sname, rating, age) Reserves (sid, bid, day)
Boat (bid, bname, color)

Cat.		No S is B. (All S are not B) $\neg \exists x[S(x) \wedge B(x)]$	Some B is not S. $\exists x[B(x) \wedge \neg S(x)]$	All B are S. $\neg \exists x[B(x) \wedge \neg S(x)]$
NL	Sailors who reserved some red boat	Sailors who did not reserve any red boat	Sailors who did not reserve all red boats	Sailors who reserved all red boats
SQL	SELECT S.sname FROM Sailor S WHERE EXISTS(SELECT * FROM Reserves R WHERE R.sid = S.sid AND EXISTS (FROM Boat B WHERE B.color = 'red' AND B.bid = R.bid))	SELECT S.sname FROM Sailor S WHERE NOT EXISTS(SELECT * FROM Reserves R WHERE R.sid = S.sid AND EXISTS (FROM Boat B WHERE B.color = 'red' AND B.bid = R.bid))	SELECT S.sname FROM Sailor S WHERE EXISTS SELECT * FROM Boat B WHERE B.color = 'red' AND NOT EXISTS(SELECT * FROM Reserves R WHERE R.bid = B.bid AND R.sid = S.sid))	SELECT S.sname FROM Sailor S WHERE NOT EXISTS(SELECT * FROM Boat B WHERE B.color = 'red' AND NOT EXISTS(SELECT * FROM Reserves R WHERE R.bid = B.bid AND R.sid = S.sid))
RD			Q Sailor Reserves Boat sname sname bid bid sid sid color='red	

A $5^{\text {th }}$ proposition?
Sailor (sid, sname, rating, age) Reserves (sid, bid, day)
Boat (bid, bname, color)

Cat.		No S is B. (All S are not B) $\neg \exists x[S(x) \wedge B(x)]$	Some B is not S. $\exists x[B(x) \wedge \neg S(x)]$	
NL	Sailors who reserved only red boats	Sailors who did not reserve any red boat	Sailors who did not reserve all red boats	Sailors who reserved all red boats
SQL	SELECT S.sname FROM Sailor S WHERE NOT EXISTS(SELECT * FROM Reserves R WHERE R.sid = S.sid AND NOT EXISTS(SELECT * FROM Boat B WHERE B.color = 'red' AND B.bid = R.bid))	SELECT S.sname FROM Sailor S WHERE NOT EXISTS(SELECT * FROM Reserves R WHERE R.sid = S.sid AND EXISTS (SELECT * FROM Boat B WHERE B.color = 'red' AND B.bid = R.bid))	SELECT S.sname FROM Sailor S WHERE EXISTS (SELECT * FROM Boat B WHERE B.color = 'red' AND NOT EXISTS(SELECT * FROM Reserves R WHERE R.bid = B.bid AND R.sid = S.sid))	SELECT S.sname FROM Sailor S WHERE NOT EXISTS(SELECT * FROM Boat B WHERE B.color = 'red' AND NOT EXISTS(SELECT * FROM Reserves R WHERE R.bid = B.bid AND R.sid = S.sid))
RD				

Sailor (sid, sname, rating, age) Reserves (sid, bid, day) Boat (bid, bname, color)

溉 340

Cat.		No S is B. (All S are not B) $\neg \exists x[S(x) \wedge B(x)]$	Some B is not S. $\exists x[B(x) \wedge \neg S(x)]$	$\text { All } B \text { are } S \text {. }$
NL	Sailors who reserved only red boats	Sailors who did not reserve any red boat	Sailors who did not reserve all red boats	Sailors who reserved all red boats
SQL	SELECT S.sname FROM Sailor S WHERE NOT EXISTS(SELECT * FROM Reserves R WHERE R.sid = S.sid AND NOT EXISTS(SELECT * FROM Boat B WHERE B.color = 'red' AND B.bid = R.bid))	SELECT S.sname FROM Sailor S WHERE NOT EXISTS(SELECT * FROM Reserves R WHERE R.sid = S.sid AND EXISTS (SELECT * FROM Boat B WHERE B.color = 'red' AND B.bid = R.bid))	SELECT S.sname FROM Sailor S WHERE EXISTS (SELECT * FROM Boat B WHERE B.color = 'red' AND NOT EXISTS(SELECT * FROM Reserves R WHERE R.bid = B.bid AND R.sid = S.sid))	SELECT S.sname FROM Sailor S WHERE NOT EXISTS(SELECT * FROM Boat B WHERE B.color = 'red' AND NOT EXISTS(SELECT * FROM Reserves R WHERE R.bid = B.bid AND R.sid = S.sid))
RD				

Limits of Monadic FOL...

Cat.	All S is B. $\neg \exists x[S(x) \wedge \neg B(x)]$	
NL	Sailors who reserved only red boats	Red boats that were reserved by all sailors
SQL	SELECT S.sname FROM Sailor S WHERE NOT EXISTS(SELECT * FROM Reserves R WHERE R.sid = S.sid AND NOT EXISTS(SELECT * FROM Boat B WHERE B.color = 'red' AND B.bid = R.bid))	SELECT B.bid FROM Boat B WHERE B.color = 'red' AND NOT EXISTS(SELECT * FROM Sailor S WHERE NOT EXISTS(SELECT * FROM Reserves R WHERE R.bid = B.bid AND R.sid = S.sid))
RD		

Sailor (sid, sname, rating, age) Reserves (sid, bid, day)
Boat (bid, bname, color)

Limits of Monadic FOL...

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color) 340

Cat.	All S is B. $\neg \exists x[S(x) \wedge \neg B(x)]$	All S is B. $\neg \exists x[S(x) \wedge \neg B(x)]$
NL	Sailors who reserved only red boats	Red boats that were reserved by all sailors
SQL	SELECT S.sname FROM Sailor S WHERE NOT EXISTS(SELECT * FROM Reserves R WHERE R.sid = S.sid AND NOT EXISTS(SELECT * FROM Boat B WHERE B.color = 'red' AND B.bid = R.bid))	SELECT B.bid FROM Boat B WHERE B.color = 'red' AND NOT EXISTS(SELECT * FROM Sailor S WHERE NOT EXISTS(SELECT * FROM Reserves R WHERE R.bid = B.bid AND R.sid = S.sid))
RD		

monadic FOL (which only allows unary predicates, and slightly generalizes syllogistic logic) cannot distinguish between these two queries on the left

Sailors who reserved all red boats

```
SELECT S.sname
FROM Sailor S
WHERE NOT EXISTS(
    SELECT *
    FROM Boat B
    WHERE B.color = 'red'
    AND NOT EXISTS(
        SELECT *
        FROM Reserves R
        WHERE R.bid = B.bid
        AND R.sid = S.sid))
```

Q	Sailor 1	Reserves	Boat
sname	sname	bid	bid
	sid	sid	color='red'

Sailor (sid, sname, rating, bdate) Reserves (sid, bid, day)
Boat (bid, bname, color, pdate)

	some	not any	not all	all
Sailors renting boats have reserved	have not reserved any red boat	reserved not all red boats	reserved all red boats	

Student (sid, sname) Takes (sid, cid, semester) Course (cid, cname, depart)

Sailor (sid, sname, rating, bdate) Reserves (sid, bid, day) Boat (bid, bname, color, pdate)

Actor (aid, aname) Plays (aid, mid, role) Movie (mid, mname, dir)

Student (sid, sname) Takes (sid, cid, semester) Course (cid, cname, depart)

Sailor (sid, sname, rating, bdate) Reserves (sid, bid, day) Boat (bid, bname, color, pdate)

some	not any	not all	all
Sailors renting have reserved boats some red boat	have not reserved any red boat	reserved not all red boats	reserved all red boats
Students took some taking art class classes	took no art class	took not all art classes	took all art classes
Actors playing in played in some Hitchcock movie movies	did not play in a Hitchcock movie	played not in all Hitchcock movies	played in all Hitchcock movies

Actor (aid, aname)
Plays (aid, mid, role)
Movie (mid, mname, dir)

Student (sid, sname)
Takes (sid, cid, semester) Course (cid, cname, depart)

Sailor (sid, sname, rating, bdate) Reserves (sid, bid, day) Boat (bid, bname, color, pdate)

	some	not any	not all	all
$\frac{\frac{n}{0}}{\sqrt{0}}$	SELECT S.sname FROM Sailor S WHERE EXISTS (SELECT * FROM Reserves R AND R.sid = S.sid WHERE EXISTS(SELECT * FROM Boat B WHERE B.color = 'red' AND B.bid = R.bid))	SELECT S.sname FROM Sailor S WHERE EXISTS(SELECT * FROM Boat B WHERE B.color = 'red' AND NOT EXISTS(SELECT * FROM Reserves R WHERE R.bid = B.bid AND R.sid = S.sid))	SELECT S.sname FROM Sailor S WHERE NOT EXISTS (SELECT * FROM Reserves R AND R.sid $=$ S.sid WHERE EXISTS(SELECT * FROM Boat B WHERE B.color = 'red' AND B.bid = R.bid))	SELECT S.sname FROM Sailor S WHERE NOT EXISTS(SELECT * FROM Boat B WHERE B.color = 'red' AND NOT EXISTS(SELECT * FROM Reserves R WHERE R.bid = B.bid AND R.sid = S.sid))
	SELECT S.sname FROM Student S WHERE EXISTS(SELECT * FROM Takes T AND T.sid = S.sid WHERE EXISTS (SELECT * FROM Class C WHERE C.depart = 'art' AND C.cid = T.cid))	SELECT S.sname FROM Student S WHERE EXISTS (SELECT * FROM Class C WHERE C.depart = 'art' AND NOT EXISTS(SELECT * FROM Takes T WHERE T.cid = C.cid AND T.sid = S.sid))	```SELECT S.sname FROM Student S WHERE NOT EXISTS(SELECT * FROM Takes T AND T.sid = S.sid WHERE EXISTS(SELECT * FROM Class C WHERE C.depart = 'art' AND C.cid = T.cid))```	SELECT S.sname FROM Student S WHERE NOT EXISTS(SELECT * FROM Class C WHERE C.depart = 'art' AND NOT EXISTS(SELECT * FROM Takes T WHERE T.cid = C.cid AND T.sid = S.sid))
$$	```SELECT A.aname FROM Actor A WHERE EXISTS(SELECT * FROM Plays P AND P.aid = A.aid WHERE EXISTS(SELECT * FROM Movie M WHERE M.dir = 'Hitchcock AND M.mid = P.mid))```	```SELECT A.aname FROM Actor A WHERE EXISTS(SELECT * FROM Movie M WHERE M.dir = 'Hitchcock' AND NOT EXISTS(SELECT * FROM Plays P WHERE P.mid = M.mid AND P.aid = A.aid))```	```SELECT A.aname FROM Actor A WHERE NOT EXISTS (SELECT * FROM Plays P AND P.aid = A.aid WHERE EXISTS(SELECT * FROM Movie M WHERE M.dir = 'Hitchcock' AND M.mid = P.mid))```	```SELECT A.aname FROM Actor A WHERE NOT EXISTS(SELECT * FROM Movie M WHERE M.dir = 'Hitchcock' AND NOT EXISTS(SELECT * FROM Plays P WHERE P.mid = M.mid AND P.aid = A.aid))```

Actor (aid, aname) Plays (aid, mid, role) Movie (mid, mname, dir)

Student (sid, sname) Takes (sid, cid, semester) Course (cid, cname, depart)

Sailor (sid, sname, rating, bdate) Reserves (sid, bid, day) Boat (bid, bname, color, pdate)

	some	not any	not all	al\|
$$				
n 0 4	Actor Plays Movie aname aname mid aid mid aid dir='Hitchcok'			

Actor (aid, aname)
Plays (aid, mid, role)
Movie (mid, mname, dir)

Student (sid, sname) Takes (sid, cid, semester) Course (cid, cname, depart)

Sailor (sid, sname, rating, bdate) Reserves (sid, bid, day) Boat (bid, bname, color, pdate)

	some	not any	not all	al\|
	Q Sailor Reserves Boat sname sname bid bid sid sid color='red'			
$$				
n 0 4				

Actor (aid, aname)
Plays (aid, mid, role) Movie (mid, mname, dir)

Student (sid, sname) Takes (sid, cid, semester) Course (cid, cname, depart)

Sailor (sid, sname, rating, bdate) Reserves (sid, bid, day) Boat (bid, bname, color, pdate)

	some	not any	not all	al
		Q Sailor Reserves Boat sname sname bid sid bid sid color='red'		
$$				Q Student Takes Class sname sname cid cid sid sid depart='art'
$\begin{aligned} & \frac{0}{0} \\ & + \\ & 4 \end{aligned}$				Q Actor Plays Movie aname aname mid aid mid aid dir='Hitchcok'

[^0]: Deutsch (based on Vianu), CSE132A: Database System Principles, fall 2019. https://cseweb.ucsd.edu/classes/fa19/cse132A-a/slides/relational-calculus.pdf , Elmasri , Navathe.
 Fundamentals of database systems (7 ed), 2015. https://dl.acm.org/doi/book/10.5555/2842853, Ullman. Principles of Database and Knowledge-base Systems, Vol. 1 , 1988.
 https://dl.acm.org/doi/book/10.5555/42790 , Ramakrishnan, Gehrke. Database Management Systems (3 ed), 2003. https://dl.acm.org/doi/book/10.5555/560733
 SQL database available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
 Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

