
1

Topic 1: Data models and query languages
Unit 1: SQL
Lecture 1

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
https://northeastern-datalab.github.io/cs7240/sp24/
1/9/2024

Updated 1/12/2024

https://northeastern-datalab.github.io/cs7240/sp24/

4Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

PRELIMINARY

https://northeastern-datalab.github.io/cs7240/

7

Outline: T1-U1: SQL

• SQL
– Schema, keys, referential integrity
– Joins
– Aggregates and grouping
– Nested queries (Subqueries)
– Union and Theta Joins
– Nulls & Outer joins
– Top-k
– [Recursion: moved to T1-U4: Datalog]

8Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: https://spectrum.ieee.org/top-programming-languages-2022

https://northeastern-datalab.github.io/cs7240/
https://spectrum.ieee.org/top-programming-languages-2022

9Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Fun question: What is the most popular PL?

?

https://northeastern-datalab.github.io/cs7240/

10Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Fun question: What is the most popular PL?

Source: https://www.microsoft.com/en-us/research/blog/lambda-the-ultimatae-excel-worksheet-function/

Possibly interesting
class scribe: Why is Excel
Turing-complete?

https://northeastern-datalab.github.io/cs7240/
https://www.microsoft.com/en-us/research/blog/lambda-the-ultimatae-excel-worksheet-function/

11Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Structured Query Language: SQL

• Influenced by relational calculus (= First Order Logic)

• SQL is a declarative query language
- We say what we want to get
- We don’t say how we should get it ("separation of concerns")

https://northeastern-datalab.github.io/cs7240/

12Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SQL: Declarative Programming

SQL

Procedural Language: you have to specify exact
steps to get the result.

Declarative Language: you say what you want
without having to say how to do it.

https://northeastern-datalab.github.io/cs7240/

13Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SQL: was not the only Attempt

SQL

Source: http://en.wikipedia.org/wiki/QUEL_query_languages

QUEL

Commercially not used anymore since ~1980

reading order:

3
1

2

3
1

2

https://northeastern-datalab.github.io/cs7240/
http://en.wikipedia.org/wiki/QUEL_query_languages

14Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Why PostgreSQL instead of MariaDB (or MySQL)

Source: https://db-engines.com/en/ranking_trend

SQLite likely has the most number of installations: its is an
embedded serverless database (not a server-client databas)

https://northeastern-datalab.github.io/cs7240/
https://db-engines.com/en/ranking_trend

15Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Why PostgreSQL instead of MariaDB (or MySQL)

Source: https://www.theguardian.com/info/2018/nov/30/bye-bye-mongo-hello-postgres

I also prefer PostgreSQL over MySQL because it has a more principled
interpretation of SQL (and a powerful EXPLAIN command)

Source: https://db-engines.com/en/ranking_trend

https://northeastern-datalab.github.io/cs7240/
https://www.theguardian.com/info/2018/nov/30/bye-bye-mongo-hello-postgres
https://db-engines.com/en/ranking_trend

16Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Simple SQL Query

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

Product

302

SELECT pName, price
FROM Product
WHERE price > 100

?

Our friend here shows that you can follow along in Postgres.
Just install the database from the text file "302 - ..."
available in our sql folder from our course web page

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

17Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Simple SQL Query
Product

302

SELECT pName, price
FROM Product
WHERE price > 100

Our friend here shows that you can follow along in Postgres.
Just install the database from the text file "302 - ..."
available in our sql folder from our course web page

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

PName Price
SingleTouch $149.99
MultiTouch $203.99

Selection
& Projection

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

18Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

How to install PostgreSQL? As always: if you find something that does
not work, PLEASE let me know to fix it!

https://northeastern-datalab.github.io/cs7240/

19Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Selection vs. Projection

PName Price
SingleTouch $149.99
MultiTouch $203.99

Product

302

SELECT pName, price
FROM Product
WHERE price > 100

Where does the
selection happen? ?

Selection
& Projection

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

20Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

Selection vs. Projection
Product

One selects certain
entires=tuples (rows)
-> happens in the
WHERE clause
-> acts like a filter

302

SELECT pName, price
FROM Product
WHERE price > 100

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

PName Price
SingleTouch $149.99
MultiTouch $203.99

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

21Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

Selection vs. Projection
Product

One projects onto
some attributes
(columns)
-> happens in the
SELECT clause

One selects certain
entires=tuples (rows)
-> happens in the
WHERE clause
-> acts like a filter

302

SELECT pName, price
FROM Product
WHERE price > 100

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

PName Price
SingleTouch $149.99
MultiTouch $203.99

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

22Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Eliminating Duplicates 302

?SELECT category
FROM Product

Product

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

23Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Eliminating Duplicates

Category
Gadgets
Gadgets

Photography
Household

Set vs. Bag
semantics

302

?
Category
Gadgets

Photography
Household

SELECT category
FROM Product

Product

Think of a
dictionary:
keys mapping to
of occurences

Gadgets : 2
Photography :
1Houshold : 1

underlying set also
called the "support"
of the bag

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

24Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT DISTINCT category
FROM Product

Eliminating Duplicates 302

SELECT category
FROM Product

Set vs. Bag
semantics

Product

Think of a
dictionary:
keys mapping to
of occurences

Gadgets : 2
Photography :
1Houshold : 1

underlying set also
called the "support"
of the bag

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Category
Gadgets
Gadgets

Photography
Household

Category
Gadgets

Photography
Household

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

25

Outline: T1-U1: SQL

• SQL
– Schema, keys, referential integrity
– Joins
– Aggregates and grouping
– Nested queries (Subqueries)
– Union and Theta Joins
– Nulls & Outer joins
– Top-k
– [Recursion: moved to T1-U4: Datalog]

26Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Keys and Foreign Keys

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

Product

Company
CName StockPrice Country
GizmoWorks 25 USA
Canon 65 Japan
Hitachi 15 Japan

What is here
a key vs.

a foreign key?

302

?
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

27Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

CName StockPrice Country
GizmoWorks 25 USA
Canon 65 Japan
Hitachi 15 Japan

Keys and Foreign Keys

Product

Company

Foreign key

302

Keys and foreign keys
are special cases of
more general
constraints. Which??

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Keys

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

28Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

CName StockPrice Country
GizmoWorks 25 USA
Canon 65 Japan
Hitachi 15 Japan

Keys and Foreign Keys

Product

Company
Foreign key

302

Keys

Screenshots from: Deutsch. FOL Modeling of Integrity Constraints (Dependencies). Encyclopedia of Database Systems, 2018. https://doi.org/10.1007/978-1-4614-8265-9_980

[𝑍]

𝑍

𝑍

𝑍

𝑍
𝑍

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1007/978-1-4614-8265-9_980

29Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

... X Y ...

... 1 7 ...

... 1 7 ...

... 2 5 ...

... 3 7 ...

Keys and Foreign Keys

R

Screenshots from: Deutsch. FOL Modeling of Integrity Constraints (Dependencies). Encyclopedia of Database Systems, 2018. https://doi.org/10.1007/978-1-4614-8265-9_980

... Z ...

... 1 ...

... 2 ...

... 2 ...

... 3 ...

... 4 ...

S

R[X] functionally determines R[Y]:
Y = f(X)

R[X] is included in S[Z]:
R[X] ⊆ S[Z]

[𝑍]

𝑍

𝑍

𝑍

𝑍
𝑍

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1007/978-1-4614-8265-9_980

30

Topic 1: Data models and query languages
Unit 1: SQL (continued)
Lecture 2

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
https://northeastern-datalab.github.io/cs7240/sp24/
1/12/2024

Updated 1/12/2024

https://northeastern-datalab.github.io/cs7240/sp24/

31Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Pre-class conversations

• Last class summary
• Class procedures based on past suggestions:
- Your experience Canvas vs Piazza?
- Example past scribe posted on Canvas; Secondary posting of class scribes

to Piazza (optionally anonymous). I comment on both Canvas and Piazza
- Already installed Postgres?
- A downside of HWs with self-determined deadlines: you are in charge
- Next week TUE online, no class FRI; see links for current research

• Today:
- SQL continued

https://northeastern-datalab.github.io/cs7240/

32

Outline: T1-U1: SQL

• SQL
– Schema, keys, referential integrity
– Joins
– Aggregates and grouping
– Nested queries (Subqueries)
– Union and Theta Joins
– Nulls & Outer joins
– Top-k
– [Recursion: moved to T1-U4: Datalog]

33Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Referential Integrity
PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company
CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Key constraint: minimal subset of the attributes of
a relation is a unique identifier for a tuple.

Foreign key: attribute in a relational table that
matches a candidate key of another table

302

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

34Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Referential Integrity
Product Company

?Insert into Product values ('Gizmo', 14.99, 'Gadgets', 'Hitachi');

302

Key constraint: minimal subset of the attributes of
a relation is a unique identifier for a tuple.

Foreign key: attribute in a relational table that
matches a candidate key of another table

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Gizmo $14.99 Gadgets Hitachi

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

35Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Referential Integrity
Product Company

Insert into Product values ('Gizmo', 14.99, 'Gadgets', 'Hitachi');

tuple violates key constraint

302

Key constraint: minimal subset of the attributes of
a relation is a unique identifier for a tuple.

Foreign key: attribute in a relational table that
matches a candidate key of another table

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Gizmo $14.99 Gadgets Hitachi

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

36Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Referential Integrity
Product Company

?

Insert into Product values ('Gizmo', 14.99, 'Gadgets', 'Hitachi');

Insert into Product values ('SuperTouch', 249.99, 'Computer', 'NewCom');

tuple violates key constraint

302

Key constraint: minimal subset of the attributes of
a relation is a unique identifier for a tuple.

Foreign key: attribute in a relational table that
matches a candidate key of another table

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Gizmo $14.99 Gadgets Hitachi

SuperTouch $249.99 Computer NewCom

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

37Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Referential Integrity
Product Company

Insert into Product values ('Gizmo', 14.99, 'Gadgets', 'Hitachi');

Insert into Product values ('SuperTouch', 249.99, 'Computer', 'NewCom');

tuple violates key constraint

tuple violates
foreign key constraint

302

Key constraint: minimal subset of the attributes of
a relation is a unique identifier for a tuple.

Foreign key: attribute in a relational table that
matches a candidate key of another table

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Gizmo $14.99 Gadgets Hitachi

SuperTouch $249.99 Computer NewCom

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

38Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Referential Integrity
Product Company

?Delete from Company
where CName = 'Canon';

Insert into Product values ('Gizmo', 14.99, 'Gadgets', 'Hitachi');

Insert into Product values ('SuperTouch', 249.99, 'Computer', 'NewCom');

tuple violates key constraint

tuple violates
foreign key constraint

302

Key constraint: minimal subset of the attributes of
a relation is a unique identifier for a tuple.

Foreign key: attribute in a relational table that
matches a candidate key of another table

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Gizmo $14.99 Gadgets Hitachi

SuperTouch $249.99 Computer NewCom

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

39Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Referential Integrity
Product Company

Gizmo $14.99 Gadgets Hitachi

SuperTouch $249.99 Computer NewCom
Delete from Company
where CName = 'Canon';

Insert into Product values ('Gizmo', 14.99, 'Gadgets', 'Hitachi');

Insert into Product values ('SuperTouch', 249.99, 'Computer', 'NewCom');

tuple violates key constraint

tuple violates
foreign key constraint

302

Key constraint: minimal subset of the attributes of
a relation is a unique identifier for a tuple.

Foreign key: attribute in a relational table that
matches a candidate key of another table

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

40Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Schema specification in SQL 302

Example SQL code and database: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

41

Outline: T1-U1: SQL

• SQL
– Schema, keys, referential integrity
– Joins
– Aggregates and grouping
– Nested queries (Subqueries)
– Union and Theta Joins
– Nulls & Outer joins
– Top-k
– [Recursion: moved to T1-U4: Datalog]

42Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Joins

Product Company

Q: Find all products under $200 manufactured in Japan;
return their names and prices!

302

?
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

43Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Joins

Product Company

SELECT pName, price
FROM Product, Company
WHERE manufacturer=cName
 and country='Japan'
 and price <= 200

Q: Find all products under $200 manufactured in Japan;
return their names and prices!

Join b/w Product
and Company

PName Price

SingleTouch $149.99

302

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

44Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Joins

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

302

CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Product Company

SELECT *
FROM Product, Company
WHERE manufacturer=cName ?

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

45Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Joins

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

CName StockPrice Country

GizmoWorks 25 USA

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

302

SELECT *
FROM Product, Company
WHERE manufacturer=cName

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

46Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Meaning (Semantics) of SELECT-FROM-WHERE queries

Answer = {}
for x1 in R1 do
 for x2 in R2 do
 …..
 for xn in Rn do
 if Conditions
 then Answer = Answer È {(a1,…,ak)}
return Answer

SELECT a1, a2, …, ak
FROM R1 as x1, R2 as x2, …, Rn as xn
WHERE Conditions

Conceptual evaluation strategy (nested for loops):

https://northeastern-datalab.github.io/cs7240/

47Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Meaning (Semantics) of SELECT-FROM-WHERE queries

Answer = {}
for x1 in R1 do
 for x2 in R2 do
 …..
 for xn in Rn do
 if Conditions
 then Answer = Answer È {(a1,…,ak)}
return Answer

att1 att2 ... attk
...

...

...

...

R1
att1 att2 ... attk
...

...

...

...

R2
att1 att2 ... attk
...

...

...

...

R3

Conceptual evaluation strategy (nested for loops):

https://northeastern-datalab.github.io/cs7240/

48Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Meaning (Semantics) of SELECT-FROM-WHERE queries

Answer = {}
for x1 in R1 do
 for x2 in R2 do
 …..
 for xn in Rn do
 if Conditions
 then Answer = Answer È {(a1,…,ak)}
return Answer

R1 R2 R3
att1 att2 ... attk
...

...

...

...

att1 att2 ... attk
...

...

...

...

att1 att2 ... attk
...

...

...

...

Notice that these queries are "monotone":
whenever we add tuples to the input,
the output can never decrease:
 if 𝑅! ⊆ 𝑅!" , 𝑅# ⊆ 𝑅#" , 𝑅$ ⊆ 𝑅$"
 then 𝑄 𝑅!, 𝑅#, 𝑅$ ⊆ 𝑄 𝑅!" , 𝑅#" , 𝑅$"

https://northeastern-datalab.github.io/cs7240/

49Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Meaning (Semantics) of conjunctive SQL Queries
R1 R2 R3
att1 att2 ... attk
...

...

...

...

att1 att2 ... attk
...

...

...

...

att1 att2 ... attk
...

...

...

...

Notice that these queries are "monotone":
whenever we add tuples to the input,
the output can never decrease:
 if 𝑅! ⊆ 𝑅!" , 𝑅# ⊆ 𝑅#" , 𝑅$ ⊆ 𝑅$"
 then 𝑄 𝑅!, 𝑅#, 𝑅$ ⊆ 𝑄 𝑅!" , 𝑅#" , 𝑅$"

DEFINITION: A function f(x) is "monotone"
(or better "monotonically increasing") if:
 if 𝑥 ≤ 𝑦
 then 𝑓(𝑥) ≤ 𝑓(𝑦)

https://northeastern-datalab.github.io/cs7240/

52Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Conceptual Evaluation Strategy

• Semantics of an SQL query defined in terms of the following conceptual
evaluation strategy:
- FROM: Compute the cross-product of the relations. This is a new set of larger tuples.
- WHERE: Only keep the tuples that pass the qualifications ("selection", filter)
- SELECT: Delete attributes that are not in listed attributes
- If DISTINCT is specified, eliminate duplicate rows.

• This strategy is probably the least efficient way to compute a query! An
optimizer will find (algebraically equivalent but) more efficient strategies to
compute the same answers.

• We say “semantics” not “execution order”. Why?

?

https://northeastern-datalab.github.io/cs7240/

53Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Conceptual Evaluation Strategy

• Semantics of an SQL query defined in terms of the following conceptual
evaluation strategy:
- FROM: Compute the cross-product of the relations. This is a new set of larger tuples.
- WHERE: Only keep the tuples that pass the qualifications ("selection", filter)
- SELECT: Delete attributes that are not in listed attributes
- If DISTINCT is specified, eliminate duplicate rows.

• This strategy is probably the least efficient way to compute a query! An
optimizer will find (algebraically equivalent but) more efficient strategies to
compute the same answers.

• We say “semantics” not “execution order”. Why?
- The preceding slides show what a join means (semantics = meaning): "the logic"
- Not actually how the DBMS actually executes it (separation of concerns): algebra

https://northeastern-datalab.github.io/cs7240/

54Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Table Alias (Tuple Variables)

Person (pName, address, works_for)
University (uName, address)

312

SELECT DISTINCT pName, address
FROM Person, University
WHERE works_for = uName ?What will this

query return

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

55Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Table Alias (Tuple Variables)

SELECT DISTINCT pName, address
FROM Person, University
WHERE works_for = uName

SELECT DISTINCT pName, University.address
FROM Person, University
WHERE Person.works_for = University.uName

SELECT DISTINCT X.pName, Y.address
FROM Person as X, University Y
WHERE X.works_for = Y.uName

which address?
Error!

Notice that the use of "as" is not necessary, it is optional !!

Person (pName, address, works_for)
University (uName, address)

312

https://northeastern-datalab.github.io/cs7240/

56Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Using the Formal Semantics

SELECT R.a
FROM R, S, T
WHERE R.a=S.a
 or R.a=T.a

What do these queries compute?

SELECT R.a
FROM R, S
WHERE R.a=S.a

T
a

2

305

R
a

1

2

S
a

1

R(a), S(a), T(a)

?

?
Example originally proposed in Garcia-Molina, Ullman, Widom. Database Systems. 2001. Ch. 6.2.4 Interpreting Multirelation Queries. http://infolab.stanford.edu/~ullman/dscb.html
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
http://infolab.stanford.edu/~ullman/dscb.html
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

57Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Using the Formal Semantics

SELECT R.a
FROM R, S, T
WHERE R.a=S.a
 or R.a=T.a

What do these queries compute?

SELECT R.a
FROM R, S
WHERE R.a=S.a

Returns R Ç S
(intersection)

T

a

1

305

R S

R(a), S(a), T(a)

?
Example originally proposed in Garcia-Molina, Ullman, Widom. Database Systems. 2001. Ch. 6.2.4 Interpreting Multirelation Queries. http://infolab.stanford.edu/~ullman/dscb.html
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

a

2

a

1

2

a

1

https://northeastern-datalab.github.io/cs7240/
http://infolab.stanford.edu/~ullman/dscb.html
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

58Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Using the Formal Semantics

SELECT R.a
FROM R, S, T
WHERE R.a=S.a
 or R.a=T.a

Returns R Ç (S È T)
if S ≠ ∅ and T ≠ ∅

What do these queries compute?

SELECT R.a
FROM R, S
WHERE R.a=S.a

Returns R Ç S
(intersection)

T

a

1

2

305

R S

R(a), S(a), T(a)

Example originally proposed in Garcia-Molina, Ullman, Widom. Database Systems. 2001. Ch. 6.2.4 Interpreting Multirelation Queries. http://infolab.stanford.edu/~ullman/dscb.html
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

a

2

a

1

2

a

1

a

1

https://northeastern-datalab.github.io/cs7240/
http://infolab.stanford.edu/~ullman/dscb.html
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

59Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

a

1

2

a

1

a

2

a

1

2

a

1

Using the Formal Semantics

Returns R Ç (S È T)
if S ≠ ∅ and T ≠ ∅

What do these queries compute?

SELECT R.a
FROM R, S
WHERE R.a=S.a

Returns R Ç S
(intersection)

T2

305

R S

R(a), S(a), T2(a)

?

?

Next, we are
removing the
input tuple
"(2)"

SELECT R.a
FROM R, S, T2 as T
WHERE R.a=S.a
 or R.a=T.a

Example originally proposed in Garcia-Molina, Ullman, Widom. Database Systems. 2001. Ch. 6.2.4 Interpreting Multirelation Queries. http://infolab.stanford.edu/~ullman/dscb.html
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Our colorful hands
represent "team
exercises" If we are
online, please make a
screenshot!

https://northeastern-datalab.github.io/cs7240/
http://infolab.stanford.edu/~ullman/dscb.html
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

60Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

a

1

2

Using the Formal Semantics

Returns R Ç (S È T)
if S ≠ ∅ and T ≠ ∅

What do these queries compute?

SELECT R.a
FROM R, S
WHERE R.a=S.a

Returns R Ç S
(intersection)

305R(a), S(a), T2(a)

?

Next, we are
removing the
input tuple
"(2)"

SELECT R.a
FROM R, S, T2 as T
WHERE R.a=S.a
 or R.a=T.a

Example originally proposed in Garcia-Molina, Ullman, Widom. Database Systems. 2001. Ch. 6.2.4 Interpreting Multirelation Queries. http://infolab.stanford.edu/~ullman/dscb.html
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

a

2

a

1

2

a

1

T2R S

a

1

https://northeastern-datalab.github.io/cs7240/
http://infolab.stanford.edu/~ullman/dscb.html
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

61Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Using the Formal Semantics

What do these queries compute?

SELECT R.a
FROM R, S
WHERE R.a=S.a

Returns R Ç S
(intersection)

305R(a), S(a), T2(a)

Next, we are
removing the
input tuple
"(2)"

Returns ∅
if S = ∅ or T = ∅

Can seem counterintuitive! But remember conceptual evaluation
strategy: Nested loops. If one table is empty -> no looping

a
SELECT R.a
FROM R, S, T2 as T
WHERE R.a=S.a
 or R.a=T.a

Example originally proposed in Garcia-Molina, Ullman, Widom. Database Systems. 2001. Ch. 6.2.4 Interpreting Multirelation Queries. http://infolab.stanford.edu/~ullman/dscb.html
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

a

2

a

1

2

a

1

T2R S

a

1

https://northeastern-datalab.github.io/cs7240/
http://infolab.stanford.edu/~ullman/dscb.html
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

62Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Illustration with Python

The comparison gets never evaluated

306

"Premature optimization
is the root of all evil."
Donald Knuth (1974)

"When you are diagnosing
problems, don’t think about
how you will solve them—just
diagnose them. Blurring the
steps leads to suboptimal
outcomes because it
interferes with uncovering
the true problems."
Ray Dalio (Principles, 2017)

Python file

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

64Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Quiz

SELECT DISTINCT cName
FROM
WHERE

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

302Our colorful hands represent "team exercises"
If we are online, please make a screenshot!

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

65Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT DISTINCT cName
FROM Product as P, Company
WHERE country = 'USA'
 and P.price < 20
 and P.price > 25
 and P.manufacturer = cName

Quiz: Answer 1

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

What about this query?

302

?

Our colorful hands represent "team exercises"
If we are online, please make a screenshot!

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

66Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Quiz: Answer 1

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

SELECT DISTINCT cName
FROM Product as P, Company
WHERE country = 'USA'
 and P.price < 20
 and P.price > 25
 and P.manufacturer = cName

Wrong! Gives empty
result: There is no
product with price
<20 and >25

302

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

67Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT DISTINCT cName
FROM Product as P, Company
WHERE country = 'USA'
 and (P.price < 20
 or P.price > 25)
 and P.manufacturer = cName

Quiz: Answer 2

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

302

What about this query?

?
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

68Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Quiz: Answer 2

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

SELECT DISTINCT cName
FROM Product as P, Company
WHERE country = 'USA'
 and (P.price < 20
 or P.price > 25)
 and P.manufacturer = cName

Returns companies
with single product
w/price (<20 or >25)

P.price<20 or
P.price>25

C

P

302

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

69Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Quiz: Answer 1

P.price < 20 and / or
P.price > 25

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

C

P

302

country='USA'

?
What do we actually want?

https://northeastern-datalab.github.io/cs7240/

70Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Quiz: Answer 1 vs. what we actually want

P.price < 20 and / or
P.price > 25

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

C

P P.price < 20

C

P1

P2 P.price > 25

302

country='USA' country='USA'

https://northeastern-datalab.github.io/cs7240/

71Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Quiz: correct answer: we need "self-joins"!

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

302

P.price < 20

C

P1

P2 P.price > 25

country='USA'

SELECT DISTINCT cName
FROM Product as P1, Product as P2, Company
WHERE country = 'USA'
 and P1.price < 20
 and P2.price > 25
 and P1.manufacturer = cName
 and P2.manufacturer = cName

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

72Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

CName StockPrice Country
GizmoWorks 25 USA
Canon 65 Japan
Hitachi 15 Japan

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

Quiz response: we need "self-joins"! 302
P1

Company

P2

SELECT DISTINCT cName
FROM Product as P1, Product as P2, Company
WHERE country = 'USA'
 and P1.price < 20
 and P2.price > 25
 and P1.manufacturer = cName
 and P2.manufacturer = cName

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

73Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

CName StockPrice Country
GizmoWorks 25 USA
Canon 65 Japan
Hitachi 15 Japan

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

Quiz response: we need "self-joins"! 302

SELECT DISTINCT cName
FROM Product as P1, Product as P2, Company
WHERE country = 'USA'
 and P1.price < 20
 and P2.price > 25
 and P1.manufacturer = cName
 and P2.manufacturer = cName

CName
GizmoWorks

P1

Company

P2

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

75

Outline: T1-U1: SQL

• SQL
– Schema, keys, referential integrity
– Joins
– Aggregates and grouping
– Nested queries (Subqueries)
– Union and Theta Joins
– Nulls & Outer joins
– Top-k
– [Recursion: moved to T1-U4: Datalog]

76Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Grouping and Aggregation

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

Q: For each product, find Total Quantities (TQ = sum of quantities) purchased,
for all products with price >1.

Purchase
308

?

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

77Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Grouping and Aggregation

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

Purchase
308

Q: For each product, find Total Quantities (TQ = sum of quantities) purchased,
for all products with price >1.

Product TQ
Bagel ?
Banana ?

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

78Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Grouping and Aggregation

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

Purchase
308

Q: For each product, find Total Quantities (TQ = sum of quantities) purchased,
for all products with price >1.

Product TQ
Bagel 40
Banana 20

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

79Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Product TQ
Bagel 40
Banana 20

From ® Where ® Group By ® Select

SELECT product, sum(quantity) as TQ
FROM Purchase
WHERE price > 1
GROUP BY product

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

1
2
3

4

Select contains
• grouped attributes
• and aggregates

Purchase
308

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Tuples grouped together
need to share the same
value for attribute "product"

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

81Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Groupings illustrated with colored shapes

SELECT color,
 avg(numc) anc
FROM Shapes
GROUP BY color

group by color

SELECT numc
FROM Shapes
GROUP BY numc

? ?

group by numc (# of corners)

https://northeastern-datalab.github.io/cs7240/

82Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Groupings illustrated with colored shapes

SELECT color,
 avg(numc) anc
FROM Shapes
GROUP BY color

group by color

SELECT numc
FROM Shapes
GROUP BY numc

??

group by numc (# of corners)
color numc
blue 3
blue 4
blue 5
orange 4
orange 5
orange 6

https://northeastern-datalab.github.io/cs7240/

83Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Groupings illustrated with colored shapes

SELECT color,
 avg(numc) anc
FROM Shapes
GROUP BY color

group by color

color anc
blue 4
orange 5

SELECT numc
FROM Shapes
GROUP BY numc

?

group by numc (# of corners)
color numc
blue 3
blue 4
blue 5
orange 4
orange 5
orange 6

https://northeastern-datalab.github.io/cs7240/

84Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Groupings illustrated with colored shapes

SELECT color,
 avg(numc) anc
FROM Shapes
GROUP BY color

group by color

color anc
blue 4
orange 5

SELECT numc
FROM Shapes
GROUP BY numc

numc
3
4
5
6

group by numc (# of corners)
color numc
blue 3
blue 4
blue 5
orange 4
orange 5
orange 6

Without group by?

https://northeastern-datalab.github.io/cs7240/

85Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Groupings illustrated with colored shapes

SELECT DISTINCT numc
FROM Shapes

Same as:

color numc
blue 3
blue 4
blue 5
orange 4
orange 5
orange 6

SELECT color,
 avg(numc) anc
FROM Shapes
GROUP BY color

group by color group by numc (# of corners)

color anc
blue 4
orange 5

SELECT numc
FROM Shapes
GROUP BY numc

numc
3
4
5
6

Without group by!

https://northeastern-datalab.github.io/cs7240/

87

Outline: T1-U1: SQL

• SQL
– Schema, keys, referential integrity
– Joins
– Aggregates and grouping
– Nested queries (Subqueries)
– Union and Theta Joins
– Nulls & Outer joins
– Top-k
– [Recursion: moved to T1-U4: Datalog]

88Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Subqueries = Nested queries

• We can nest queries because SQL is compositional:
- Input & Output are represented as relations (multisets)
- Subqueries also return relations; thus the output of one query can thus be

used as the input to another (nesting)
• This is extremely powerful (think in terms of input/output)
• A complication: subqueries can be correlated (not just in-/output)

We focus mainly on nestings in
the WHERE clause, which are the
most expressive type of nesting.

SELECT ...
FROM ...
WHERE ...
HAVING ...

(SELECT ...
 FROM ...
 WHERE ...)

Outer block Inner block

https://northeastern-datalab.github.io/cs7240/

90Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Subqueries in
 SELECT clause
 FROM clause
 WHERE clause
 HAVING clause

(also called "derived tables")

https://northeastern-datalab.github.io/cs7240/

91Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Product TQ
Bagel 40
Banana 70

Subqueries in FROM clause = Derived tables

SELECT product, SUM(quantity) as TQ
FROM Purchase
GROUP BY product

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

Purchase
308

Q1: For each product, find total
quantities (sum of quantities) purchased.

MTQ
70

Q2: Find the maximal total quantities
purchased across all products.

?
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

92Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Subqueries in FROM clause = Derived tables

SELECT product, SUM(quantity) as TQ
FROM Purchase
GROUP BY product

Purchase
308

Q1: For each product, find total
quantities (sum of quantities) purchased.

Q2: Find the maximal total quantities
purchased across all products.

?

X
Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

MTQ
70

Product TQ
Bagel 40
Banana 70

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

93Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Subqueries in FROM clause = Derived tables

SELECT product, SUM(quantity) as TQ
FROM Purchase
GROUP BY product

308

Q1: For each product, find total
quantities (sum of quantities) purchased.

Q2: Find the maximal total quantities
purchased across all products.

SELECT MAX(TQ) as MTQ
FROM X

Purchase X
Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

MTQ
70

Product TQ
Bagel 40
Banana 70

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

94Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT MAX(TQ) as MTQ
FROM (SELECT product, SUM(quantity) as TQ
 FROM Purchase
 GROUP BY product) X

Subqueries in FROM clause = Derived tables

SELECT product, SUM(quantity) as TQ
FROM Purchase
GROUP BY product

Purchase
308

Q1: For each product, find total
quantities (sum of quantities) purchased.

Q2: Find the maximal total quantities
purchased across all products.

SELECT MAX(TQ) as MTQ
FROM X

Purchase
Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

MTQ
70

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

95Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Common Table Expressions (CTE): WITH clause
Purchase

308

SELECT MAX(TQ) as MTQ
FROM (SELECT product, SUM(quantity) as TQ
 FROM Purchase
 GROUP BY product) X

Purchase
Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

MTQ
70

CTE (Common
Table Expression)

Query using CTE

WITH X as
 (SELECT product, SUM(quantity) as TQ
 FROM Purchase
 GROUP BY product)
SELECT MAX(TQ) as MTQ
FROM X

The WITH clause defines a temporary
relation that is available only to the
query in which it occurs. Sometimes
easier to read. Very useful for queries
that need to access the same
intermediate result multiple times

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

96Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Subqueries in
 SELECT clause
 FROM clause
 WHERE clause
 HAVING clause

(including IN, ANY, ALL)

https://northeastern-datalab.github.io/cs7240/

97Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Subqueries in WHERE clause
What do these queries return?

SELECT a
FROM R
WHERE a IN
 (SELECT a FROM W)

?

305R
a
1
2

SELECT a
FROM R
WHERE a < ANY
 (SELECT a FROM W)

SELECT a
FROM R
WHERE a < ALL
 (SELECT a FROM W)

W
a b
2 0
3 0
4 0

?

?
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

98Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Subqueries in WHERE clause

Since 2 is in the set (bag)
(2, 3, 4)

a
2

R 305

?

?

a
1
2

a b
2 0
3 0
4 0

W

What do these queries return?

SELECT a
FROM R
WHERE a IN
 (SELECT a FROM W)

SELECT a
FROM R
WHERE a < ANY
 (SELECT a FROM W)

SELECT a
FROM R
WHERE a < ALL
 (SELECT a FROM W)

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

99Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Subqueries in WHERE clause

Since 2 is in the set (bag)
(2, 3, 4)

R

a
1
2

Since 1 and 2 are <
than at least one
("any") of 2, 3 or 4

305

?

a
1
2

a b
2 0
3 0
4 0

W

a
2

What do these queries return?

SELECT a
FROM R
WHERE a IN
 (SELECT a FROM W)

SELECT a
FROM R
WHERE a < ANY
 (SELECT a FROM W)

SELECT a
FROM R
WHERE a < ALL
 (SELECT a FROM W)

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

100Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

a
1
2

a b
2 0
3 0
4 0

Subqueries in WHERE clause

Since 2 is in the set (bag)
(2, 3, 4)

R

a
1

Since 1 and 2 are <
than at least one
("any") of 2, 3 or 4

Since 1 is < than
each ("all") of 2, 3,
and 4

305W

a
1
2

a
2

What do these queries return?

SELECT a
FROM R
WHERE a IN
 (SELECT a FROM W)

SELECT a
FROM R
WHERE a < ANY
 (SELECT a FROM W)

SELECT a
FROM R
WHERE a < ALL
 (SELECT a FROM W)

SQLlite does not support "ANY" or "ALL" L

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

101Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correlated subqueries

• In all previous cases, the nested subquery in the inner select block
could be entirely evaluated before processing the outer select block.
- Recall the "compositional" nature of relational queries
- This is no longer the case for correlated nested queries.

• Whenever a condition in the WHERE clause of a nested query
references some column of a table declared in the outer query, the
two queries are said to be correlated.
- The nested query is then evaluated once for each tuple (or combination of

tuples) in the outer query (that's the conceptual evaluation strategy)

https://northeastern-datalab.github.io/cs7240/

102Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correlated subquery (existential $)

Using IN: Set / Bag membership

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid
 FROM Product P
 WHERE P.price < 25)

316

Q1: Find all companies that make some product(s) with price < 25

PName Price Category cid

Gizmo $19.99 Gadgets 1

Powergizmo $29.99 Gadgets 1

SingleTouch $14.99 Photography 2

MultiTouch $203.99 Household 3

Product Company
cid CName StockPrice Country

1 GizmoWorks 25 USA

2 Canon 65 Japan

3 Hitachi 15 Japan

slightly
different
product
database!

Is this a correlated
nested query ?

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

103Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Using IN: Set / Bag membership

Correlated subquery (existential $)

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid
 FROM Product P
 WHERE P.price < 25)

316

Q1: Find all companies that make some product(s) with price < 25

PName Price Category cid

Gizmo $19.99 Gadgets 1

Powergizmo $29.99 Gadgets 1

SingleTouch $14.99 Photography 2

MultiTouch $203.99 Household 3

Product Company
cid CName StockPrice Country

1 GizmoWorks 25 USA

2 Canon 65 Japan

3 Hitachi 15 Japan

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (1, 2)

slightly
different
product
database!

Not a correlated nested query!

Inner query does not reference
outer query! You could first
evaluate the inner query by itself.

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

104Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Using EXISTS: TRUE if the subquery's result is NOT empty

Correlated subquery (existential $)

SELECT DISTINCT C.cname
FROM Company C
WHERE EXISTS (SELECT *
 FROM Product P
 WHERE P.cid = C.cid
 and P.price < 25)

316

PName Price Category cid

Gizmo $19.99 Gadgets 1

Powergizmo $29.99 Gadgets 1

SingleTouch $14.99 Photography 2

MultiTouch $203.99 Household 3

Product Company
cid CName StockPrice Country

1 GizmoWorks 25 USA

2 Canon 65 Japan

3 Hitachi 15 Japan

Q1: Find all companies that make some product(s) with price < 25

Is this a correlated
nested query ?

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

105Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correlated subquery (existential $)

SELECT DISTINCT C.cname
FROM Company C
WHERE EXISTS (SELECT *
 FROM Product P
 WHERE P.cid = C.cid
 and P.price < 25)

316

PName Price Category cid

Gizmo $19.99 Gadgets 1

Powergizmo $29.99 Gadgets 1

SingleTouch $14.99 Photography 2

MultiTouch $203.99 Household 3

Product Company
cid CName StockPrice Country

1 GizmoWorks 25 USA

2 Canon 65 Japan

3 Hitachi 15 Japan

Q1: Find all companies that make some product(s) with price < 25

This is a correlated nested query!
Notice the additional join condition
referencing a relation from the
outer query.

Recall our conceptual evaluation
strategy!

Using EXISTS: TRUE if the subquery's result is NOT empty

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

106Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correlated subquery (existential $)

SELECT DISTINCT C.cname
FROM Company C
WHERE 25 > ANY (SELECT price
 FROM Product P
 WHERE P.cid = C.cid)

316

PName Price Category cid

Gizmo $19.99 Gadgets 1

Powergizmo $29.99 Gadgets 1

SingleTouch $14.99 Photography 2

MultiTouch $203.99 Household 3

Product Company
cid CName StockPrice Country

1 GizmoWorks 25 USA

2 Canon 65 Japan

3 Hitachi 15 Japan

Q1: Find all companies that make some product(s) with price < 25

But do we really need
to write this query as
nested query ?

Using ANY (also SOME): again set / bag comparison

SQLlite does not support "ANY" L
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

107Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correlated subquery (existential $)

SELECT DISTINCT C.cname
FROM Company C, Product P
WHERE C.cid = P.cid
and P.price < 25

We did not need to write nested queries;
we can "unnest" it!

Existential quantifiers are easy J

316

PName Price Category cid

Gizmo $19.99 Gadgets 1

Powergizmo $29.99 Gadgets 1

SingleTouch $14.99 Photography 2

MultiTouch $203.99 Household 3

Product Company
cid CName StockPrice Country

1 GizmoWorks 25 USA

2 Canon 65 Japan

3 Hitachi 15 Japan

Q1: Find all companies that make some product(s) with price < 25

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

108Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correlated subquery (universal ") 316

PName Price Category cid

Gizmo $19.99 Gadgets 1

Powergizmo $29.99 Gadgets 1

SingleTouch $14.99 Photography 2

MultiTouch $203.99 Household 3

Product Company
cid CName StockPrice Country

1 GizmoWorks 25 USA

2 Canon 65 Japan

3 Hitachi 15 Japan

Q2: Find all companies that make only products with price < 25
≡ Q2: Find all companies for which all products have price < 25

Universal quantifiers are more complicated ! L
(Think about the companies that should not be returned)

≡ Q2: Find all companies that do not have any product with price >= 25

Q1: Find all companies that make some product(s) with price < 25

All three formulations are equivalent: a company with no product will be returned!
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

110Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correlated subquery (universal " = not exists ∄) 316

Step 2: Q2: Find all companies that make no products with price ≥ 25

First think about the
companies that should
not be returned!

Step 1: Q2': Find the other companies that make some product(s) with price ≥ 25

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid NOT IN (SELECT P.cid
 FROM Product P
 WHERE P.price >= 25)

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid
 FROM Product P
 WHERE P.price >= 25)

Q2: Find all companies that make only products with price < 25

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

111Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correlated subquery (universal " = not exists ∄) 316

SELECT DISTINCT C.cname
FROM Company C
WHERE NOT EXISTS (SELECT *
 FROM Product P
 WHERE C.cid = P.cid
 and P.price >= 25)

SELECT DISTINCT C.cname
FROM Company C
WHERE EXISTS (SELECT *
 FROM Product P
 WHERE C.cid = P.cid
 and P.price >= 25)

Step 2: Q2: Find all companies that make no products with price ≥ 25

Step 1: Q2': Find the other companies that make some product(s) with price ≥ 25
Q2: Find all companies that make only products with price < 25

First think about the
companies that
should not be
returned!

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

112Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correlated subquery (universal " = not exists ∄) 316

SELECT DISTINCT C.cname
FROM Company C
WHERE 25 > ALL (SELECT P.price
 FROM Product P
 WHERE C.cid = P.cid)

SELECT DISTINCT C.cname
FROM Company C
WHERE 25 <= ANY (SELECT P.price
 FROM Product P
 WHERE C.cid = P.cid)

Step 2: Q2: Find all companies that make no products with price ≥ 25

Step 1: Q2': Find the other companies that make some product(s) with price ≥ 25
Q2: Find all companies that make only products with price < 25

First think about the
companies that
should not be
returned!

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

113Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correlated subquery (universal " = not exists ∄) 316

SELECT DISTINCT C.cname
FROM Company C
WHERE 25 > ALL (SELECT P.price
 FROM Product P
 WHERE C.cid = P.cid)

SELECT DISTINCT C.cname
FROM Company C
WHERE 25 <= ANY (SELECT P.price
 FROM Product P
 WHERE C.cid = P.cid)

Step 2: Q2: Find all companies that make no products with price ≥ 25

Step 1: Q2': Find the other companies that make some product(s) with price ≥ 25
Q2: Find all companies that make only products with price < 25

First think about the
companies that
should not be
returned!

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

114Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A natural question

• How can we unnest (no GROUP BY) the universal quantifier query ?

?

Source: Dan Suciu

SELECT ...
FROM ...
WHERE ...

Q2: Find all companies that make only products with price < 25

https://northeastern-datalab.github.io/cs7240/

115

Topic 1: Data models and query languages
Unit 1: SQL (continued)
Lecture 3

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp24)
https://northeastern-datalab.github.io/cs7240/sp24/
1/16/2024

Updated 1/16/2024

https://northeastern-datalab.github.io/cs7240/sp24/

116Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A natural question

• How can we unnest (no GROUP BY) the universal quantifier query ?

?

Source: Dan Suciu

SELECT ...
FROM ...
WHERE ...

Q2: Find all companies that make only products with price < 25

https://northeastern-datalab.github.io/cs7240/

117Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Queries that must be nested

• Definition: A query Q is monotone if:
- Whenever we add tuples to one or more of the tables…
- … the answer to the query cannot contain fewer tuples

• Fact: all unnested queries are monotone
- Proof: using the "nested for loops" semantics

• Fact: Query with universal quantifier is not monotone
- Add one tuple violating the condition. Then "all" returns fewer tuples

• Consequence: we cannot unnest a query with a universal quantifier

Source: Dan Suciu

https://northeastern-datalab.github.io/cs7240/

118Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Pre-class conversations

• Last class summary
• New class members: next time quick introduction
• Please point out any errors on slides, web page, Canvas, etc.
• Any questions on class policies

• Today:
- SQL continued
- Recall: no class this FRI, we resume TUE in person

https://northeastern-datalab.github.io/cs7240/

119Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

PRELIMINARY

https://northeastern-datalab.github.io/cs7240/

120

Revisiting our question
from first class

121Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Question: How to deal with cut-offs when binning?

• These are the true points that you
would get if you could run the
experiments long enough.

Size (log)

Time (log)

100k

10k

1k

100

10

1

1 10 100 1k 10k 100k

Notice the log-log scale!

https://northeastern-datalab.github.io/cs7240/

122Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Question: How to deal with cut-offs when binning?

• These are the true points that you
would get if you could run the
experiments long enough.

• Here is what the aggregate would
look like like if we could get all points
and then aggregated for each size

Size (log)

Time (log)

100k

10k

1k

100

10

1

1 10 100 1k 10k 100k

Notice the log-log scale!

https://northeastern-datalab.github.io/cs7240/

123Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Question: How to deal with cut-offs when binning?

• These are the true points that you
would get if you could run the
experiments long enough.

• Here is what the aggregate would
look like like if we could get all points
and then aggregated for each size

• However, some experiments take too
long and we thus have to cut them off
after some time.

Size (log)

Time (log)

100k

10k

1k

100

10

1

1 10 100 1k 10k 100k

Notice the log-log scale!

Time
cut-off

Question: There is an overall trend,
yet big variation for each
experiment. We still like to capture
the overall trend with some smart
aggregations. What can we do?

https://northeastern-datalab.github.io/cs7240/

124Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Question: How to deal with cut-offs when binning?

• Option 1: What if we terminate
experiments that take too long, and
only average over the "seen points"?

Size (log)

Time (log)

100k

10k

1k

100

10

1

1 10 100 1k 10k 100k

Time
cut-off

?

https://northeastern-datalab.github.io/cs7240/

125Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Question: How to deal with cut-offs when binning

• Option 1: What if we terminate
experiments that take too long, and
only average over the "seen points"?

Time
cut-off

What would you do

We will discuss next class

?

Size (log)

Time (log)

100k

10k

1k

100

10

1

1 10 100 1k 10k 100k

https://northeastern-datalab.github.io/cs7240/

126Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

How to deal with cut-offs when binning: Option 1

• Option 1: What if we terminate
experiments that take too long, and
only average over the "seen points"?

• Option 2: What if we cut the points
off and still use the cut-off points, and
then average?

Time
cut-off

?

Size (log)

Time (log)

https://northeastern-datalab.github.io/cs7240/

127Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

How to deal with cut-offs when binning: Option 1

• Option 1: What if we terminate
experiments that take too long, and
only average over the "seen points"?

• Option 2: What if we cut the points
off and still use the cut-off points, and
then average?

Time
cut-off

Size (log)

Time (log)

https://northeastern-datalab.github.io/cs7240/

128Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

How to deal with cut-offs when binning: Option 2

• Option 1: What if we terminate
experiments that take too long, and
only average over the "seen points"?

• Option 2: What if we cut the points
off and still use the cut-off points, and
then average?

• Option 3: What if we *only* use
those sizes (x-axis) for which all
experiments finish in time?

Time
cut-off

?

Size (log)

Time (log)

https://northeastern-datalab.github.io/cs7240/

129Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

How to deal with cut-offs when binning: Option 2

• Option 1: What if we terminate
experiments that take too long, and
only average over the "seen points"?

• Option 2: What if we cut the points
off and still use the cut-off points, and
then average?

• Option 3: What if we *only* use
those sizes (x-axis) for which all
experiments finish in time?

Time
cut-off

Size (log)

Time (log)

https://northeastern-datalab.github.io/cs7240/

130Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

How to deal with cut-offs when binning: Option 3

• Option 1: What if we terminate
experiments that take too long, and
only average over the "seen points"?

• Option 2: What if we cut the points
off and still use the cut-off points, and
then average?

• Option 3: What if we *only* use
those sizes (x-axis) for which all
experiments finish in time?

• Option 4: What if we take the median
over all seen and cut-off points?

Time
cut-off

?

Size (log)

Time (log)

https://northeastern-datalab.github.io/cs7240/

131Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

How to deal with cut-offs when binning: Option 3

• Option 1: What if we terminate
experiments that take too long, and
only average over the "seen points"?

• Option 2: What if we cut the points
off and still use the cut-off points, and
then average?

• Option 3: What if we *only* use
those sizes (x-axis) for which all
experiments finish in time?

• Option 4: What if we take the median
over all seen and cut-off points?

Time
cut-off

Size (log)

Time (log)

Notice the informal "semantics" of
median: If more points are "above you"
then you are pulled by their number, not
by their distance (in contrast to average
where distance is kind of a weight)

https://northeastern-datalab.github.io/cs7240/

132Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

How to deal with cut-offs when binning: Suggestion

• Suggestion: Take the median over all
seen and cut-off points, as long as
there are <50% cut-off points!

Time
cut-off

Size (log)

Time (log)

Notice the informal "semantics" of
median: If more points are "above
you" then you are pulled by their
number, not by their distance (in
contrast to average where
distance is kind of a weight)

https://northeastern-datalab.github.io/cs7240/

133Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Some type of error guaran-
tees (smaller is better)

101 102 103 104

Lineage Size

10°3

10°2

10°1

100

101

102

103

T
im

e
(s

ec
)

MB: relative epsilon-approximation

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Example: Experiments figures from [SIGMOD'19]

notice the log log scale!

MB	(prior):	model-based
10	random	bounds

Source: Van der Heuvel, Ivanov, Gatterbauer, Geerts, Theobald. Anytime approximation in probabilistic databases via scaled dissociations. SIGMOD 2019. https://doi.org/10.1145/3299869.3319900

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3299869.3319900

134Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

101 102 103 104

Lineage Size

10°3

10°2

10°1

100

101

102

103

T
im

e
(s

ec
)

MB: relative epsilon-approximation

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Example: Experiments figures from [SIGMOD'19]
MB	(prior):	model-based
10	random	bounds

Source: Van der Heuvel, Ivanov, Gatterbauer, Geerts, Theobald. Anytime approximation in probabilistic databases via scaled dissociations. SIGMOD 2019. https://doi.org/10.1145/3299869.3319900

Some type of error guaran-
tees (smaller is better)

notice the log log scale!

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3299869.3319900

135Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

101 102 103 104

Lineage Size

10°3

10°2

10°1

100

101

102

103

T
im

e
(s

ec
)

MB: relative epsilon-approximation

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Example: Experiments figures from [SIGMOD'19]
MB	(prior):	model-based
10	random	bounds

Median	time	to	
reach	a	certain	
error	guarantee	
for	fixed	lin.	size

Source: Van der Heuvel, Ivanov, Gatterbauer, Geerts, Theobald. Anytime approximation in probabilistic databases via scaled dissociations. SIGMOD 2019. https://doi.org/10.1145/3299869.3319900

Some type of error guaran-
tees (smaller is better)

notice the log log scale!

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3299869.3319900

136Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

101 102 103 104

Lineage Size

10°3

10°2

10°1

100

101

102

103

T
im

e
(s

ec
)

MB: relative epsilon-approximation

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Example: Experiments figures from [SIGMOD'19]

Median	time	to	
reach	a	certain	
error	guarantee	
for	fixed	lin.	size

MB	(prior):	model-based
10	random	bounds

Source: Van der Heuvel, Ivanov, Gatterbauer, Geerts, Theobald. Anytime approximation in probabilistic databases via scaled dissociations. SIGMOD 2019. https://doi.org/10.1145/3299869.3319900

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3299869.3319900

137Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

101 102 103 104

Lineage Size

10°3

10°2

10°1

100

101

102

103

T
im

e
(s

ec
)

PGD: relative epsilon-approximation

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Example: Experiments figures from [SIGMOD'19]

PGD	(our):	projected	
gradient	descent

Source: Van der Heuvel, Ivanov, Gatterbauer, Geerts, Theobald. Anytime approximation in probabilistic databases via scaled dissociations. SIGMOD 2019. https://doi.org/10.1145/3299869.3319900

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3299869.3319900

138Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

101 102 103 104

Lineage Size

10°3

10°2

10°1

100

101

102

103

T
im

e
(s

ec
)

399x faster

MB and PGD: relative epsilon-approximation

MB 0.0
MB 0.2
MB 0.4
PGD 0.0
PGD 0.2
PGD 0.4

Example: Experiments figures from [SIGMOD'19]

PGD	(our):	projected	
gradient	descent

MB	(prior):	model-based
10	random	bounds

Take-away
• considerable	
speed-ups	
possible	J

median	>100	sec	(timed	out)

>	1000	x	faster

100	msec

Source: Van der Heuvel, Ivanov, Gatterbauer, Geerts, Theobald. Anytime approximation in probabilistic databases via scaled dissociations. SIGMOD 2019. https://doi.org/10.1145/3299869.3319900

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3299869.3319900

139Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: Matt Welsh, CAMC 2023. https://cacm.acm.org/magazines/2023/1/267976-the-end-of-programming/fulltext, https://doi.org/10.1145/3570220

Why do I think we should
care about experimental
setups, even in theory!

https://northeastern-datalab.github.io/cs7240/
https://cacm.acm.org/magazines/2023/1/267976-the-end-of-programming/fulltext
https://doi.org/10.1145/3570220

140

Outline: T1-U1: SQL

• SQL
– Schema, keys, referential integrity
– Joins
– Aggregates and grouping
– Nested queries (Subqueries)
– Union and Theta Joins
– Nulls & Outer joins
– Top-k
– [Recursion: moved to T1-U4: Datalog]

141

Understanding
nested queries with
"Relational Diagrams"

142Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Schema and several of the following queries taken from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

The sailors database
340

Sailor Reserves Boat

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

https://northeastern-datalab.github.io/cs7240/
http://pages.cs.wisc.edu/~dbbook/

143Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 1

Q:

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

?
SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid IN
 (SELECT R.sid
 FROM Reserves R
 WHERE R.bid IN
 (SELECT B.bid
 FROM Boat B
 WHERE B.color = 'red'))

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

144Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 1

Q: Find the names of sailors who have reserved a red boat.

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid IN
 (SELECT R.sid
 FROM Reserves R
 WHERE R.bid IN
 (SELECT B.bid
 FROM Boat B
 WHERE B.color = 'red'))

{S.sname | ∃S∈Sailor.(∃R∈Reserves.(R.sid=S.sid ⋀ ∃B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

145Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 1

Q: Find sailors who have reserved a red boat.

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

SELECT DISTINCT S.sname
FROM Sailor S
WHERE EXISTS
 (SELECT R.sid
 FROM Reserves R
 WHERE R.sid=S.sid
 AND EXISTS
 (SELECT B.bid
 FROM Boat B
 WHERE B.bid = R.bid
 AND B.color = 'red'))

This is an alternative way to write
the previous query with EXISTS and
correlated nested queries that
matches the Relational Calculus
below.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

{S.sname | ∃S∈Sailor.(∃R∈Reserves.(R.sid=S.sid ⋀ ∃B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

146Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 2
340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Q: ?

Dashed lines represent
not exists ∄

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT DISTINCT S.sname
FROM Sailor S
WHERE EXISTS
 (SELECT R.sid
 FROM Reserves R
 WHERE R.sid=S.sid
 AND NOT EXISTS
 (SELECT B.bid
 FROM Boat B
 WHERE B.bid = R.bid
 AND B.color = 'red'))

{S.sname | ∃S∈Sailor.(∃R∈Reserves.(R.sid=S.sid ⋀ ∄B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

147Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 2

Q: Find sailors who have reserved a boat that is not red.

340

Dashed lines represent
not exists ∄

They must have reserved at least one boat
in another color. They can also have
reserved a red boat in addition.

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT DISTINCT S.sname
FROM Sailor S
WHERE EXISTS
 (SELECT R.sid
 FROM Reserves R
 WHERE R.sid=S.sid
 AND NOT EXISTS
 (SELECT B.bid
 FROM Boat B
 WHERE B.bid = R.bid
 AND B.color = 'red'))

{S.sname | ∃S∈Sailor.(∃R∈Reserves.(R.sid=S.sid ⋀ ∄B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

148Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 3
340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Q: ?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS
 (SELECT R.sid
 FROM Reserves R
 WHERE R.sid=S.sid
 AND EXISTS
 (SELECT B.bid
 FROM Boat B
 WHERE B.bid = R.bid
 AND B.color = 'red'))

{S.sname | ∃S∈Sailor.(∄R∈Reserves.(R.sid=S.sid ⋀ ∃B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

149Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 3
340

They can have reserved 0 or more
boats in another color, but must
not have reserved any red boat.

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Q: Find sailors who have not reserved a red boat.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS
 (SELECT R.sid
 FROM Reserves R
 WHERE R.sid=S.sid
 AND EXISTS
 (SELECT B.bid
 FROM Boat B
 WHERE B.bid = R.bid
 AND B.color = 'red'))

{S.sname | ∃S∈Sailor.(∄R∈Reserves.(R.sid=S.sid ⋀ ∃B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

150Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Quiz: Dustin?
340

Sailor Reserves Boat

Schema and several of the following queries taken from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

Q3: Find sailors who have not reserved a red boat.
Q2: Find sailors who have reserved a boat that is not red.

Should Dustin be in the output
of either of the two queries?

?

https://northeastern-datalab.github.io/cs7240/
http://pages.cs.wisc.edu/~dbbook/

151Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Quiz: Dustin?
340

Sailor Reserves Boat

Schema and several of the following queries taken from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

Q3: Find sailors who have not reserved a red boat.
Q2: Find sailors who have reserved a boat that is not red.

Should Dustin be in the output
of either of the two queries?

Yes!
No!

https://northeastern-datalab.github.io/cs7240/
http://pages.cs.wisc.edu/~dbbook/

152Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 4
340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Q: ?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS
 (SELECT R.sid
 FROM Reserves R
 WHERE R.sid=S.sid
 AND NOT EXISTS
 (SELECT B.bid
 FROM Boat B
 WHERE B.bid = R.bid
 AND B.color = 'red'))

{S.sname | ∃S∈Sailor.(∄R∈Reserves.(R.sid=S.sid ⋀ ∄B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

153Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 4

= Find sailors who have reserved only red boats
Q: Find sailors who have not reserved a boat that is not red.

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

They can have reserved 0 or more
boats in red, just no other color.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

They can have reserved 0 or more boats in red, just no other color.

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS
 (SELECT R.sid
 FROM Reserves R
 WHERE R.sid=S.sid
 AND NOT EXISTS
 (SELECT B.bid
 FROM Boat B
 WHERE B.bid = R.bid
 AND B.color = 'red'))

{S.sname | ∃S∈Sailor.(∄R∈Reserves.(R.sid=S.sid ⋀ ∄B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

154Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS
 (SELECT R.sid
 FROM Reserves R
 WHERE R.sid=S.sid
 AND NOT EXISTS
 (SELECT B.bid
 FROM Boat B
 WHERE B.bid = R.bid
 AND B.color = 'red'))

Nested query 4 (universal)

= Find sailors who have reserved only red boats
Q: Find sailors who have not reserved a boat that is not red.

340

{S.sname | ∃S∈Sailor.(∄R∈Reserves.(R.sid=S.sid ⋀ ∄B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

They can have reserved 0 or more
boats in red, just no other color.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

They can have reserved 0 or more boats in red, just no other color.

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

{S.sname | ∃S∈Sailor.(∀R∈Reserves.(R.sid=S.sid → ∃B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

155Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 4 (another variant)

= Find sailors who have reserved only red boats
Q: Find sailors who have not reserved a boat that is not red.

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color<>'red'

They can have reserved 0 or more
boats in red, just no other color.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS
 (SELECT R.sid
 FROM Reserves R
 WHERE R.sid=S.sid
 AND EXISTS
 (SELECT B.bid
 FROM Boat B
 WHERE B.bid = R.bid
 AND B.color <> 'red'))

Equivalence with previous variant
only because of FK-PK constraint!

{S.sname | ∃S∈Sailor.(∄R∈Reserves.(R.sid=S.sid ⋀ ∃B∈Boat.(B.bid=R.bid ⋀ B.color<>'red')))}

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

156Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 5
340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Q: ?
SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
{S.sname | ∃S∈Sailor.(∄B∈Boat.(B.color='red' ⋀ ∄R∈Reserves.(B.bid=R.bid ⋀ R.sid=S.sid)))}

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS
 (SELECT B.bid
 FROM Boat B
 WHERE B.color = 'red'
 AND NOT EXISTS
 (SELECT R.bid
 FROM Reserves R
 WHERE R.bid = B.bid
 AND R.sid = S.sid))

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

157Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 5

= Find sailors who have reserved all red boats
Q: Find sailors so there is no red boat that is not reserved by the sailor.

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

I don't know of a way to write that query
with IN instead of EXISTS and without
an explicit cross product between sailors
and red boats. (More on that in a moment
and also later when we discuss this query
in relational algebra.)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

{S.sname | ∃S∈Sailor.(∄B∈Boat.(B.color='red' ⋀ ∄R∈Reserves.(B.bid=R.bid ⋀ R.sid=S.sid)))}

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS
 (SELECT B.bid
 FROM Boat B
 WHERE B.color = 'red'
 AND NOT EXISTS
 (SELECT R.bid
 FROM Reserves R
 WHERE R.bid = B.bid
 AND R.sid = S.sid))

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

158Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS
 (SELECT B.bid
 FROM Boat B
 WHERE B.color = 'red'
 AND NOT EXISTS
 (SELECT R.bid
 FROM Reserves R
 WHERE R.bid = B.bid
 AND R.sid = S.sid))

Nested query 5 (universal)

= Find sailors who have reserved all red boats
Q: Find sailors so there is no red boat that is not reserved by the sailor.

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

I don't know of a way to write that query
with IN instead of EXISTS and without
an explicit cross product between sailors
and red boats. (More on that in a moment
and also later when we discuss this query
in relational algebra.)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

{S.sname | ∃S∈Sailor.(∀B∈Boat.(B.color='red' → ∃R∈Reserves.(B.bid=R.bid ⋀ R.sid=S.sid))))}
{S.sname | ∃S∈Sailor.(∄B∈Boat.(B.color='red' ⋀ ∄R∈Reserves.(B.bid=R.bid ⋀ R.sid=S.sid)))}

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

159Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 5 (w/o correlation)

= Find sailors who have reserved all red boats
Q: Find sailors so there is no red boat that is not reserved by the sailor.

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid NOT IN
 (SELECT S2.sid
 FROM Sailor S2, Boat B
 WHERE B.color = 'red'
 AND (S2.sid, B.bid) NOT IN
 (SELECT R.sid, R.bid
 FROM Reserves R))

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
{S.sname | ∃S∈Sailor.(∄S2∈Sailor, ∄B∈Boat.(B.color='red' ⋀ S2.sid=S.sid ⋀ ∄R∈Reserves.(B.bid=R.bid ⋀ R.sid=S.sid)))}
{S.sname | ∃S∈Sailor.(∀S2∈Sailor, ∀B∈Boat.(B.color='red' ⋀ S2.sid=S.sid → ∃R∈Reserves.(B.bid=R.bid ⋀ R.sid=S2.sid))))}

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Sailor

sid
sname

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

160Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 5 (w/o correlation)

= Find sailors who have reserved all red boats
Q: Find sailors so there is no red boat that is not reserved by the sailor.

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS
 (SELECT *
 FROM Sailor S2, Boat B
 WHERE B.color = 'red'
 AND S.sid = S2.sid
 AND NOT EXISTS
 (SELECT *
 FROM Reserves R
 WHERE B.bid = R.bid
 AND S2.sid = R.sid))

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
{S.sname | ∃S∈Sailor.(∄S2∈Sailor, ∄B∈Boat.(B.color='red' ⋀ S2.sid=S.sid ⋀ ∄R∈Reserves.(B.bid=R.bid ⋀ R.sid=S.sid)))}
{S.sname | ∃S∈Sailor.(∀S2∈Sailor, ∀B∈Boat.(B.color='red' ⋀ S2.sid=S.sid → ∃R∈Reserves.(B.bid=R.bid ⋀ R.sid=S2.sid))))}

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Sailor

sid
sname

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

163Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Sailors who have not reserved a red boat Sailors who reserved only red boats Sailors who reserved all red boats

SQL

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Towards SQL patterns

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(
 SELECT *
 FROM Reserves R, Boat B
 WHERE R.sid = S.sid
 AND R.bid = B.bid
 AND B.color = 'red')

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(
 SELECT *
 FROM Reserves R
 WHERE R.sid = S.sid
 AND NOT EXISTS(
 SELECT *
 FROM Boat B
 WHERE R.bid = B.bid
 AND B.color = 'red'))

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(
 SELECT *
 FROM Boat B
 WHERE B.color = 'red'
 AND NOT EXISTS(
 SELECT *
 FROM Reserves R
 WHERE R.bid = B.bid
 AND R.sid = S.sid))

https://northeastern-datalab.github.io/cs7240/

164Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Sailors who have not reserved a red boat Sailors who reserved only red boats Sailors who reserved all red boats

SQL

RD

Towards SQL patterns

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(
 SELECT *
 FROM Reserves R, Boat B
 WHERE R.sid = S.sid
 AND R.bid = B.bid
 AND B.color = 'red')

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(
 SELECT *
 FROM Reserves R
 WHERE R.sid = S.sid
 AND NOT EXISTS(
 SELECT *
 FROM Boat B
 WHERE R.bid = B.bid
 AND B.color = 'red'))

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(
 SELECT *
 FROM Boat B
 WHERE B.color = 'red'
 AND NOT EXISTS(
 SELECT *
 FROM Reserves R
 WHERE R.bid = B.bid
 AND R.sid = S.sid))

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

https://northeastern-datalab.github.io/cs7240/

165Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Sailors
renting
boats

not only all

Sa
ilo

rs have not reserved
a red boat

Sailors
renting
boats

reserved only
red boats

reserved all
red boats

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

https://northeastern-datalab.github.io/cs7240/

166Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Sailors
renting
boats

Students
taking
classes

not only all

Sa
ilo

rs
St

ud
en

ts

have not reserved
a red boat

Sailors
renting
boats

Students
taking
classes

reserved only
red boats

reserved all
red boats

took no art
class

took only art
classes

took all art
classes

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Student (sid, sname)
Takes (sid, cid, semester)
Course (cid, cname, department)

https://northeastern-datalab.github.io/cs7240/

167Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Sailors
renting
boats

Students
taking
classes

Actors
playing in
movies

not only all

Sa
ilo

rs
St

ud
en

ts
Ac

to
rs

have not reserved
a red boat

Sailors
renting
boats

Students
taking
classes

Actors
playing in
movies

reserved only
red boats

reserved all
red boats

took no art
class

took only art
classes

took all art
classes

did not play in a
Hitchcock movie

played only
Hitchcock movies

played in all
Hitchcock movies

Actor (aid, aname)
Plays (aid, mid, role)
Movie (mid, mname, director)

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Student (sid, sname)
Takes (sid, cid, semester)
Course (cid, cname, department)

https://northeastern-datalab.github.io/cs7240/

168Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

not only all

SELECT DISTINCT S.sname
FROM Student S
WHERE NOT EXISTS(
 SELECT *
 FROM Takes T
 WHERE T.sid = S.sid
 AND NOT EXISTS(
 SELECT *
 FROM Class C
 WHERE T.cid = C.cid
 AND C.department= 'art'))

Actor (aid, aname)
Plays (aid, mid, role)
Movie (mid, mname, director)

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Student (sid, sname)
Takes (sid, cid, semester)
Course (cid, cname, department)

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(
 SELECT *
 FROM Reserves R, Boat B
 WHERE R.sid = S.sid
 AND R.bid = B.bid
 AND B.color = 'red')

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(
 SELECT *
 FROM Reserves R
 WHERE R.sid = S.sid
 AND NOT EXISTS(
 SELECT *
 FROM Boat B
 WHERE R.bid = B.bid
 AND B.color = 'red'))

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(
 SELECT *
 FROM Boat B
 WHERE B.color = 'red'
 AND NOT EXISTS(
 SELECT *
 FROM Reserves R
 WHERE R.bid = B.bid
 AND R.sid = S.sid))

SELECT DISTINCT S.sname
FROM Student S
WHERE NOT EXISTS(
 SELECT *
 FROM Takes T, Class C
 WHERE T.sid = S.sid
 AND T.cid = C.bid
 AND C.department = art')

SELECT DISTINCT S.sname
FROM Student S
WHERE NOT EXISTS(
 SELECT *
 FROM Class C
 WHERE C.department = 'art'
 AND NOT EXISTS(
 SELECT *
 FROM Takes T
 WHERE T.cid = C.cid
 AND T.sid = S.sid))

SELECT DISTINCT A.aname
FROM Actor A
WHERE NOT EXISTS(
 SELECT *
 FROM Plays P
 WHERE P.aid = A.sid
 AND NOT EXISTS(
 SELECT *
 FROM Movie M
 WHERE P.mid = M.mid
 AND M.director= 'Hitchcock'))

SELECT DISTINCT A.aname
FROM Actor A
WHERE NOT EXISTS(
 SELECT *
 FROM Plays P, Movie M
 WHERE P.aid = A.aid
 AND P.mid = M.mid
 AND M.director= 'Hitchcock')

SELECT DISTINCT A.aname
FROM Actor A
WHERE NOT EXISTS(
 SELECT *
 FROM Movie M
 WHERE M.director= 'Hitchcock'
 AND NOT EXISTS(
 SELECT *
 FROM Plays P
 WHERE P.mid = M.mid
 AND P.aid = A.aid))

Sa
ilo

rs
St

ud
en

ts
Ac

to
rs

https://northeastern-datalab.github.io/cs7240/

169Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

not only all

Sa
ilo

rs
St

ud
en

ts
Ac

to
rs

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

SELECT
sname

Student

sid
sname

Takes

sid
cid

Class
cid

department='art'

SELECT
aname

Actor

aid
aname

Plays

aid
mid

Movie
mid

director='Hitchcock'

SELECT
sname

Student

sid
sname

Takes

sid
cid

Class
cid

department='art'

SELECT
aname

Actor

aid
aname

Plays

aid
mid

Movie
mid

director='Hitchcock'

SELECT
sname

Student

sid
sname

Takes

sid
cid

Class
cid

department='art'

SELECT
aname

Actor

aid
aname

Plays

aid
mid

Movie
mid

director='Hitchcock'

Actor (aid, aname)
Plays (aid, mid, role)
Movie (mid, mname, director)

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Student (sid, sname)
Takes (sid, cid, semester)
Course (cid, cname, department)

https://northeastern-datalab.github.io/cs7240/

170Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Logical SQL Patterns

Logical patterns are the building blocks of most SQL queries.

Patterns are very hard to extract from the SQL text.

A pattern can appear across different database schemas.

Think of queries like:
• Find sailors who reserved all red boats
• Find students who took all art classes
• Find actors who played in all movies by Hitchcock

For a formal definition of relational query patterns see: Gatterbauer, Dunne. On the Reasonable Effectiveness of Relational Diagrams: Explaining Relational Query Patterns and the
Pattern Expressiveness of Relational Languages, SIGMOD 2024, https://arxiv.org/pdf/2401.04758 , https://relationaldiagrams.com

https://northeastern-datalab.github.io/cs7240/
https://arxiv.org/pdf/2401.04758
https://relationaldiagrams.com/

171Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT L1.drinker
FROM Likes L1
WHERE not exists
 (SELECT *
 FROM Likes L2
 WHERE L1.drinker <> L2.drinker
 AND not exists
 (SELECT *
 FROM Likes L3
 WHERE L3.drinker = L2.drinker
 AND not exists
 (SELECT *
 FROM Likes L4
 WHERE L4.drinker = L1.drinker
 AND L4.beer = L3.beer))
 AND not exists
 (SELECT *
 FROM Likes L5
 WHERE L5. drinker = L1. drinker
 AND not exists
 (SELECT *
 FROM Likes L6
 WHERE L6.drinker = L2.drinker
 AND L6.beer= L5.beer)))

Likes(drinker,beer)What does this query return?

https://northeastern-datalab.github.io/cs7240/

172Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Likes(drinker,beer)

Likes
drinker

Likes

drinker
SELECT
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer

Likes
beer

drinker

<>

SELECT L1.drinker
FROM Likes L1
WHERE not exists
 (SELECT *
 FROM Likes L2
 WHERE L1.drinker <> L2.drinker
 AND not exists
 (SELECT *
 FROM Likes L3
 WHERE L3.drinker = L2.drinker
 AND not exists
 (SELECT *
 FROM Likes L4
 WHERE L4.drinker = L1.drinker
 AND L4.beer = L3.beer))
 AND not exists
 (SELECT *
 FROM Likes L5
 WHERE L5. drinker = L1. drinker
 AND not exists
 (SELECT *
 FROM Likes L6
 WHERE L6.drinker = L2.drinker
 AND L6.beer= L5.beer)))

Relational Diagrams scoping

What does this query return?

https://northeastern-datalab.github.io/cs7240/

173Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Likes(drinker,beer)Q: Finder drinkers with a unique beer taste

Likes
drinker

Likes

drinker
SELECT
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer

Likes
beer

drinker

<>

SELECT L1.drinker
FROM Likes L1
WHERE not exists
 (SELECT *
 FROM Likes L2
 WHERE L1.drinker <> L2.drinker
 AND not exists
 (SELECT *
 FROM Likes L3
 WHERE L3.drinker = L2.drinker
 AND not exists
 (SELECT *
 FROM Likes L4
 WHERE L4.drinker = L1.drinker
 AND L4.beer = L3.beer))
 AND not exists
 (SELECT *
 FROM Likes L5
 WHERE L5. drinker = L1. drinker
 AND not exists
 (SELECT *
 FROM Likes L6
 WHERE L6.drinker = L2.drinker
 AND L6.beer= L5.beer)))

Relational Diagrams scoping

https://northeastern-datalab.github.io/cs7240/

174Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT L1.drinker
FROM Likes L1
WHERE not exists
 (SELECT *
 FROM Likes L2
 WHERE L1.drinker <> L2.drinker
 AND not exists
 (SELECT *
 FROM Likes L3
 WHERE L3.drinker = L2.drinker
 AND not exists
 (SELECT *
 FROM Likes L4
 WHERE L4.drinker = L1.drinker
 AND L4.beer = L3.beer))
 AND not exists
 (SELECT *
 FROM Likes L5
 WHERE L5. drinker = L1. drinker
 AND not exists
 (SELECT *
 FROM Likes L6
 WHERE L6.drinker = L2.drinker
 AND L6.beer= L5.beer)))

Likes(drinker,beer)Q: Finder drinkers with a unique beer taste

Likes
drinker

Likes

drinker
SELECT
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer

Likes
beer

drinker

<>

Relational Diagrams scoping

https://northeastern-datalab.github.io/cs7240/

175Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT L1.drinker
FROM Likes L1
WHERE not exists
 (SELECT *
 FROM Likes L2
 WHERE L1.drinker <> L2.drinker
 AND not exists
 (SELECT *
 FROM Likes L3
 WHERE L3.drinker = L2.drinker
 AND not exists
 (SELECT *
 FROM Likes L4
 WHERE L4.drinker = L1.drinker
 AND L4.beer = L3.beer))
 AND not exists
 (SELECT *
 FROM Likes L5
 WHERE L5. drinker = L1. drinker
 AND not exists
 (SELECT *
 FROM Likes L6
 WHERE L6.drinker = L2.drinker
 AND L6.beer= L5.beer)))

Likes(drinker,beer)Q: Finder drinkers with a unique beer taste

Likes
drinker

Likes

drinker
SELECT
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer

Likes
beer

drinker

<>

Relational Diagrams scoping

https://northeastern-datalab.github.io/cs7240/

176Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT L1.drinker
FROM Likes L1
WHERE not exists
 (SELECT *
 FROM Likes L2
 WHERE L1.drinker <> L2.drinker
 AND not exists
 (SELECT *
 FROM Likes L3
 WHERE L3.drinker = L2.drinker
 AND not exists
 (SELECT *
 FROM Likes L4
 WHERE L4.drinker = L1.drinker
 AND L4.beer = L3.beer))
 AND not exists
 (SELECT *
 FROM Likes L5
 WHERE L5. drinker = L1. drinker
 AND not exists
 (SELECT *
 FROM Likes L6
 WHERE L6.drinker = L2.drinker
 AND L6.beer= L5.beer)))

Likes(drinker,beer)

Likes
drinker

Likes

drinker
SELECT
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer

Likes
beer

drinker

<>

Q: Finder drinkers with a unique beer taste

QueryVis scoping Relational Diagrams scoping

https://northeastern-datalab.github.io/cs7240/

177Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Likes(drinker,beer)Q: Finder drinkers with a unique beer taste

Likes
drinker

Likes

drinker
SELECT
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer

Likes
beer

drinker

<>

SELECT L1.drinker
FROM Likes L1
WHERE not exists
 (SELECT *
 FROM Likes L2
 WHERE L1.drinker <> L2.drinker
 AND not exists
 (SELECT *
 FROM Likes L3
 WHERE L3.drinker = L2.drinker
 AND not exists
 (SELECT *
 FROM Likes L4
 WHERE L4.drinker = L1.drinker
 AND L4.beer = L3.beer))
 AND not exists
 (SELECT *
 FROM Likes L5
 WHERE L5. drinker = L1. drinker
 AND not exists
 (SELECT *
 FROM Likes L6
 WHERE L6.drinker = L2.drinker
 AND L6.beer= L5.beer)))

QueryVis scoping Relational Diagrams scoping

https://northeastern-datalab.github.io/cs7240/

178Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

help

help

QueryViz
Y o u r I n p u t

Specify or choose a pre-defined schema

Employee and Department

EMP(eid,name,sal,did)
DEPT(did,dname,mgr)

Specify or choose an SQL Query

Query 8

SELECT e1.name
FROM EMP e1, EMP e2, DEPT d
WHERE e1.did = d.did
AND d.mgr = e2.eid
AND e1.sal > e2.sal

Submit

Q u e r y V i z R e s u l t

Input: Schema

Output: Visualization

Input Query

https://demo.queryvis.com

http://www.youtube.com/watch?v=kVFnQRGAQls
https://queryvis.com/

Source: Danaparamita, Gatterbauer: QueryViz: Helping users understand SQL queries and their patterns. EDBT 2011. https://doi.org/10.14778/3402755.3402805
See also: Gatterbauer, Dunne, Jagadish, Riedewald: Principles of Query Visualization. IEEE Debull 2023. http://sites.computer.org/debull/A22sept/p47.pdf

https://northeastern-datalab.github.io/cs7240/
https://demo.queryvis.com/
http://www.youtube.com/watch?v=kVFnQRGAQls
https://queryvis.com/
https://doi.org/10.14778/3402755.3402805
http://sites.computer.org/debull/A22sept/p47.pdf

179Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Preregistered, randomized user study on AMT

Source: Gatterbauer, Dunne. On the Reasonable Effectiveness of Relational Diagrams: Explaining Relational Query Patterns and the Pattern Expressiveness of Relational Languages, SIGMOD 2024, https://arxiv.org/pdf/2401.04758 ,

Speed Accuracy

n = 50 participants, preregistration: https://osf.io/4zpsk

https://northeastern-datalab.github.io/cs7240/
https://arxiv.org/pdf/2401.04758
https://osf.io/4zpsk

180Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Preregistered, randomized user study on AMT

Source: Gatterbauer, Dunne. On the Reasonable Effectiveness of Relational Diagrams: Explaining Relational Query Patterns and the Pattern Expressiveness of Relational Languages, SIGMOD 2024, https://arxiv.org/pdf/2401.04758 ,

Learning

n = 50 participants, preregistration: https://osf.io/4zpsk

H1 = first 16 questions
H2 = second 16 questions

https://northeastern-datalab.github.io/cs7240/
https://arxiv.org/pdf/2401.04758
https://osf.io/4zpsk

183

Outline: T1-U1: SQL

• SQL
– Schema, keys, referential integrity
– Joins
– Aggregates and grouping
– Nested queries (Subqueries)
– Union and Theta Joins
– Nulls & Outer joins
– Top-k
– [Recursion: moved to T1-U4: Datalog]

184Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Union 305

SELECT a
FROM R
UNION
SELECT a
FROM U

?

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

R
a
1
2

U
a
2
3
4

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

185Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Union uses set semantics 305

SELECT a
FROM R
UNION
SELECT a
FROM U

a
1
2
3
4

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

?
What if we wanted also the duplicates

a
1
2
2
3
4

R
a
1
2

U
a
2
3
4

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

186Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Union ALL uses bag semantics 305

SELECT a
FROM R
UNION ALL
SELECT a
FROM U

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

a
1
2
2
3
4

R
a
1
2

U
a
2
3
4

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

187Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Theta joins
What do these queries compute?

SELECT R.a, U.a as b
FROM R, U
WHERE R.a < U.a ?
SELECT R.a, U.a as b
FROM R, U
WHERE R.a >= U.a ?

A Theta-join allows for arbitrary comparison relationships (such as ≥).
An equijoin is a theta join using the equality operator.

305R
a
1
2

U
a
2
3
4

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

188Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Theta joins
What do these queries compute?

SELECT R.a, U.a as b
FROM R, U
WHERE R.a < U.a

305R U

SELECT R.a, U.a as b
FROM R, U
WHERE R.a >= U.a

A Theta-join allows for arbitrary comparison relationships (such as ≥).
An equijoin is a theta join using the equality operator.

a b
1 2
1 3
1 4
2 3
2 4

?

a
1
2

a
2
3
4

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

189Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Theta joins
What do these queries compute?

SELECT R.a, U.a as b
FROM R, U
WHERE R.a < U.a

305R U

SELECT R.a, U.a as b
FROM R, U
WHERE R.a >= U.a

A Theta-join allows for arbitrary comparison relationships (such as ≥).
An equijoin is a theta join using the equality operator.

a b
1 2
1 3
1 4
2 3
2 4

a b
2 2

Think about these two
queries as a partition
of the Cartesian
product

a
1
2

a
2
3
4

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

193

Outline: T1-U1: SQL

• SQL
– Schema, keys, referential integrity
– Joins
– Aggregates and grouping
– Nested queries (Subqueries)
– Union and Theta Joins
– Nulls & Outer joins
– Top-k
– [Recursion: moved to T1-U4: Datalog]

195Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

3-valued logic example

• Three logicians walk into a bar. The bartender asks:
"Do all of you want a drink?"

• The 1st logician says: "I don't know."
• The 2nd logician says: "I don't know."
• The 3rd logician says: "Yes!"

What is going on here ?

https://northeastern-datalab.github.io/cs7240/

196Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nulls in SQL

• Whenever we don't have a value, we can put a NULL

• Can mean many things, e.g.:

?

https://northeastern-datalab.github.io/cs7240/

197Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nulls in SQL

• Whenever we don't have a value, we can put a NULL

• Can mean many things, e.g.:
- Value exists but is unknown
- Value not applicable (yet)

• The schema specifies for each attribute if it can be NULL (nullable
attribute) or not ("NOT NULL")

• Lots of ongoing research on NULLs
• Next: How does SQL cope with tables that have NULLs ?

Student Class Semester grade
Alice cs3200 Fall 2023 B+
Bob cs3200 Spring 2024 null

A new class without a grade

https://northeastern-datalab.github.io/cs7240/

198Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Null Values

• In SQL there are three Boolean values ("ternary logic")
- FALSE, TRUE, UNKNOWN

• If x = NULL then
- Boolean conditions are also NULL. E.g: x = 'Joe'
- Arithmetic operations produce NULL. E.g: 4*(3-x)/7
- But aggregates ignore NULL values (exception: count(*))

• Logical reasoning:
- FALSE = 0 x AND y = min(x,y)
- TRUE = 1 x OR y = max(x,y)
- UNKNOWN = 0.5 NOT x = (1 – x)

https://northeastern-datalab.github.io/cs7240/

199Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

etext eid fid ftext
One 1 1 Un
Three 3 3 Trois
Four 4 4 Quatre
Five 5 5 Cinq
Six 6 6 Siz

Join Illustration
fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French

SELECT *
FROM English, French
WHERE eid = fid

361

SELECT *
FROM English JOIN French
ON eid = fid

Same as (alternative join syntax):

An "inner join":

shortform of "INNER JOIN"

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

200Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT *
FROM English JOIN French
ON eid = fid

etext eid fid ftext
One 1 1 Un
Two 2 NULL NULL
Three 3 3 Trois
Four 4 4 Quatre
Five 5 5 Cinq
Six 6 6 Siz
NULL NULL 7 Sept
NULL NULL 8 Huit

Join Illustration
fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French 361

Null also sometimes
just shown as empty

?How do we get a join
with the full data

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

201Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

etext eid fid ftext
One 1 1 Un
Two 2 NULL NULL
Three 3 3 Trois
Four 4 4 Quatre
Five 5 5 Cinq
Six 6 6 Siz
NULL NULL 7 Sept
NULL NULL 8 Huit

Join Illustration
fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French

SELECT *
FROM English FULL JOIN French
ON English.eid = French.fid

shortform of:
"FULL OUTER JOIN"

361

Null also sometimes
just shown as empty

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

SELECT *
FROM English JOIN French
ON eid = fid

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

202Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

etext eid fid ftext
One 1 1 Un
Two 2 NULL NULL
Three 3 3 Trois
Four 4 4 Quatre
Five 5 5 Cinq
Six 6 6 Siz

Join Illustration
fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French 361

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

SELECT *
FROM English LEFT JOIN French
ON English.eid = French.fid

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

203Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

2 7,81,3,
4-6

Join Illustration
fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French

Source: Fig. 7-2, Hoffer et al., Modern Database Management, 10ed ed, 2011.

= FULL (OUTER) JOIN

= (INNER) JOIN

361

= LEFT (OUTER) JOIN

https://northeastern-datalab.github.io/cs7240/

204Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: http://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

Check this web page for illustrating examples

Detailed Illustration with Examples (follow the link)

also called "anti-join"

https://northeastern-datalab.github.io/cs7240/
http://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

205Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Let's practice anti-joins

fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French
361

?
Results

SELECT <select_list>
FROM L
LEFT JOIN R
ON L.key = R.key
WHERE R.key IS NULL

L R

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

206Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Let's practice anti-joins

fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French
361

?

How to write in SQL?

eText eid
Two 2

Results

SELECT <select_list>
FROM L
LEFT JOIN R
ON L.key = R.key
WHERE R.key IS NULL

L R

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

207Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Let's practice anti-joins

fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French
361

SELECT eText, eid
FROM English
LEFT JOIN French
ON eid = fid
WHERE fid IS NULL

How to write in SQL? Any alternative?

?

eText eid
Two 2

Results

SELECT <select_list>
FROM L
LEFT JOIN R
ON L.key = R.key
WHERE R.key IS NULL

L R

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

208Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Let's practice anti-joins

SELECT <select_list>
FROM L
LEFT JOIN R
ON L.key = R.key
WHERE R.key IS NULL

fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French
361

SELECT eText, eid
FROM English
LEFT JOIN French
ON eid = fid
WHERE fid IS NULL

How to write in SQL?

eText eid
Two 2

Results

SELECT *
FROM English
WHERE eid NOT IN
 (SELECT fid
 FROM French)

Any alternative?

L R

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

209Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semi-joins: kind of the anti-anti-joins...

fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French
361

SELECT *
FROM English
WHERE eid NOT IN
 (SELECT fid
 FROM French)

SELECT eText, eid
FROM English
LEFT JOIN French
ON eid = fid
WHERE fid IS NULL

eText eid
One 1
Three 3
Four 4
Five 5
Six 6

Results

What do we have to
change to these queries
to get the tuples in
English that have a
partner in French?

?

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

210Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semi-joins: kind of the anti-anti-joins...

fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French
361

SELECT *
FROM English
WHERE eid IN
 (SELECT fid
 FROM French)

SELECT eText, eid
FROM English
LEFT JOIN French
ON eid = fid
WHERE fid IS NOT NULL

eText eid
One 1
Three 3
Four 4
Five 5
Six 6

Results

What do we have to
change to these queries
to get the tuples in
English that have a
partner in French?

?
What if fid is not a key?

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

211Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semi-joins: kind of the anti-anti-joins...

fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French
361

SELECT *
FROM English
WHERE eid IN
 (SELECT fid
 FROM French)

SELECT eText, eid
FROM English
LEFT JOIN French
ON eid = fid
WHERE fid IS NOT NULL

eText eid
One 1
Three 3
Four 4
Five 5
Six 6

Results

What do we have to
change to these queries
to get the tuples in
English that have a
partner in French?

What if fid is not a key?

DISTINCT

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

These queries express "semi-joins"

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

212Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semi-joins: kind of the anti-anti-joins... 361

SELECT *
FROM English
WHERE eid IN
 (SELECT fid
 FROM French)

SELECT eText, eid
FROM English
LEFT JOIN French
ON eid = fid
WHERE fid IS NOT NULL

Get the tuples in
English that have a
partner in French?

DISTINCT

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

These queries express "semi-joins"

Which of these two VENN
diagrams from earlier
correspond to a semi-join?

?

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

213Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semi-joins: kind of the anti-anti-joins... 361

SELECT *
FROM English
WHERE eid IN
 (SELECT fid
 FROM French)

SELECT eText, eid
FROM English
LEFT JOIN French
ON eid = fid
WHERE fid IS NOT NULL

Get the tuples in
English that have a
partner in French?

DISTINCT

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

These queries express "semi-joins"

Which of these two VENN
diagrams from earlier
correspond to a semi-join?

Only preserve
tuples from A that
also appear in B...

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

214Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

etext eid fid ftext
One 1 1 Un
Two 2 NULL NULL
Three 3 3 Trois
Four 4 4 Quatre
Five 5 5 Cinq
Six 6 6 Siz
NULL NULL 7 Sept
NULL NULL 8 Huit

Another look at Outer Joins
fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French

SELECT *
FROM English FULL JOIN French
ON English.eid = French.fid

361

FULL JOIN can be
written as union of inner
join with anti-joins

?
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

215Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

etext eid fid ftext
One 1 1 Un
Two 2 NULL NULL
Three 3 3 Trois
Four 4 4 Quatre
Five 5 5 Cinq
Six 6 6 Siz
NULL NULL 7 Sept
NULL NULL 8 Huit

Another look at Outer Joins
fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French

SELECT *
FROM English FULL JOIN French
ON English.eid = French.fid

361

SELECT etext,eid, fid, ftext
FROM English INNER JOIN French
ON English.eid = French.fid
UNION ALL
SELECT etext, eid, NULL, NULL
FROM English
WHERE NOT EXISTS(
 SELECT *
 FROM French
 WHERE eid=fid)
UNION ALL
SELECT NULL, NULL, fid, ftext
FROM French
WHERE NOT EXISTS(
 SELECT *
 FROM English
 WHERE eid=fid)

anti-join

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

216Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Are these two queries equivalent? 316

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid NOT IN (SELECT P.cid
 FROM Product P
 WHERE P.price >= 25)

Q2: Find all companies that make only products with price < 25

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

SELECT C.name
FROM Company C, Product P
WHERE C.cid=P.cid
GROUP BY cname
HAVING MAX(P.price) < 25

Is the following query identical to the one above?

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

217Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Are these two queries equivalent? 316

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid NOT IN (SELECT P.cid
 FROM Product P
 WHERE P.price >= 25)

Q2: Find all companies that make only products with price < 25

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

SELECT C.name
FROM Company C, Product P
WHERE C.cid=P.cid
GROUP BY cname
HAVING MAX(P.price) < 25

Is the following query identical to the one above?

Almost, but not really.
The upper query would
return a company that
has no product, the
one below would not.

!

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

218Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Outer Joins,
Coalesce, and

non-associativity

https://northeastern-datalab.github.io/cs7240/

219Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Coalesce function 333

a
1
2

M
a
2
3

N SELECT M.a, N.a, COALESCE(M.a, N.a) as b
FROM M
FULL JOIN N
ON M.a = N.a

SELECT COALESCE(1, NULL)

SELECT COALESCE(NULL, 3)

SELECT COALESCE(1, 2)

SELECT COALESCE(NULL, NULL)

?

COALESCE: takes first non-NULL value,

Also see use of COALESCE across programming languages: https://en.wikipedia.org/wiki/Null_coalescing_operator
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Null_coalescing_operator
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

220Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Coalesce function 333

a
1
2

M
a
2
3

N SELECT M.a, N.a, COALESCE(M.a, N.a) as b
FROM M
FULL JOIN N
ON M.a = N.a

M.a N.a
Result

b

? ?

SELECT COALESCE(1, NULL)

SELECT COALESCE(NULL, 3)

SELECT COALESCE(1, 2)

1

3

1

SELECT COALESCE(NULL, NULL) NULL

COALESCE: takes first non-NULL value,
C(x,y,z)=C(x,C(y,z))=C(C(x,y),z)

Also see use of COALESCE across programming languages: https://en.wikipedia.org/wiki/Null_coalescing_operator
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Null_coalescing_operator
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

221Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Coalesce function 333

a
1
2

M
a
2
3

N SELECT M.a, N.a, COALESCE(M.a, N.a) as b
FROM M
FULL JOIN N
ON M.a = N.a

SELECT COALESCE(1, NULL)

SELECT COALESCE(NULL, 3)

SELECT COALESCE(1, 2)

COALESCE: takes first non-NULL value,

1

3

1

SELECT COALESCE(NULL, NULL) NULL

M.a N.a
Result

b
1 NULL
2 2
NULL 3

1
2
3

C(x,y,z)=C(x,C(y,z))=C(C(x,y),z)

Also see use of COALESCE across programming languages: https://en.wikipedia.org/wiki/Null_coalescing_operator
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Null_coalescing_operator
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

222Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Coalesce, Natural Outer Join, Union 333

a
1
2

M
a
2
3

N SELECT *
FROM M
NATURAL FULL JOIN N

Result
a
1
2
3

Natural full join models "coalesce"

Join vs. Union – it is actually the same:
Union is a special case of a join J
(under set semantics)

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

224Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Do we need "union"? 305

SELECT a
FROM R
UNION
SELECT a
FROM U

a
1
2
3
4

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

?

R
a
1
2

U
a
2
3
4

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

225Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Do we need "union"? 305

SELECT a
FROM R
UNION
SELECT a
FROM U

a
1
2
3
4

SELECT COALESCE(R.a,U.a) as a
FROM R FULL JOIN U
on R.a = U.a

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

R
a
1
2

U
a
2
3
4

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

226Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Quick recap: Commutativity & Associativity

1 2
3 4

Multiplication Matrix multiplication

3
1

• • =3 2 4 24 • •

Multiplication is
associative J

=

?

1 1
2 3

https://northeastern-datalab.github.io/cs7240/

227Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Quick recap: Commutativity & Associativity

1 2
3 4

Multiplication Matrix multiplication

3
1

• • =3 2 4 24

• • =3 2 4 24

• •

Multiplication is
associative J

and commutative J

=

Order of operations can be
exchanged:

?

1 1
2 3

https://northeastern-datalab.github.io/cs7240/

228Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Quick recap: Commutativity & Associativity

1 2
3 4

Multiplication Matrix multiplication

3
1

• • =3 2 4 24

• • =3 2 4 24

•4 2

• •

Multiplication is
associative J

and commutative J

=

Order of operands can be exchanged:

Order of operations can be
exchanged: ?

1 1
2 3

https://northeastern-datalab.github.io/cs7240/

229Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Quick recap: Commutativity & Associativity

1 2
3 4

Multiplication Matrix multiplication

1 1
2 3

3
1

18
49

• • =

1 2
3 4

3
1• • =

1 2
3 4

3
1 •

#col ≠ #row

Matrix multipl.
is associative J

... but *not*
commutative L

3 2 4 24

• • =3 2 4 24

•4 2

• •

Multiplication is
associative J

and commutative J

=

It turns out this is mainly a problem of syntax, not semantics. Einstein notation (and similar more recent
extensions like "EINSUM") solves that. See e.g. Laue et al. A Simple and Efficient Tensor Calculus. AAAI 2020.
https://arxiv.org/abs/2010.03313 . Alternatively, think about the relational join operator as a commutative
notation for sparse matrix multiplication (also Cartesian product under named or unnamed perspective)

Order of operands can be exchanged:

Order of operations can be
exchanged:

1 1
2 3

18
49

https://northeastern-datalab.github.io/cs7240/
https://arxiv.org/abs/2010.03313

230Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The power of associativity

1 2
3 4

1 1
2 3

3
1

18
49

1 2
3 4

3
1• • =

• • =

Which option would you choose to evaluate this matrix multiplication

1 1
2 3

18
49

Option 1:

Option 2:

?

https://northeastern-datalab.github.io/cs7240/

231Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The power of associativity

1 2
3 4

1 1
2 3

3
1

18
49

4 6
11 16

1 2
3 4

3
1• • =

5
13

• • =

1 1
2 3

18
49

Option 1:

Option 2:

All variants give the same result. But some are faster.
Intuition: we like to have small intermediate result sizes!

https://northeastern-datalab.github.io/cs7240/

232Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Matrix chain multiplication

See also https://en.wikipedia.org/wiki/Catalan_number , https://en.wikipedia.org/wiki/Matrix_chain_multiplication , https://en.wikipedia.org/wiki/Matrix_multiplication#Associativity
Source figure: https://bruceoutdoors.wordpress.com/2015/11/24/matrix-chain-multiplication-with-c-code-part-3-extracting-the-sequence/

Given n matrices, what is the optimal sequence to multiply them?

This is an example
optimal factorization.
What is its cost? ?

?

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Catalan_number
https://en.wikipedia.org/wiki/Matrix_chain_multiplication
https://en.wikipedia.org/wiki/Matrix_multiplication
https://bruceoutdoors.wordpress.com/2015/11/24/matrix-chain-multiplication-with-c-code-part-3-extracting-the-sequence/

233Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Matrix chain multiplication
Given n matrices, what is the optimal sequence to multiply them?

MinCost: (30*35*5 + (35*15*5)) + 30*5*25 + (5*10*20) + 5*20*25)

Via Dynamic programming: O(n3)

Nave method: all possible way to place closed parentheses: "Catalan numbers"

Best known: O(n log n)

This is an example
optimal factorization.
What is its cost? ?

?

See also https://en.wikipedia.org/wiki/Catalan_number , https://en.wikipedia.org/wiki/Matrix_chain_multiplication , https://en.wikipedia.org/wiki/Matrix_multiplication#Associativity
Source figure: https://bruceoutdoors.wordpress.com/2015/11/24/matrix-chain-multiplication-with-c-code-part-3-extracting-the-sequence/

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Catalan_number
https://en.wikipedia.org/wiki/Matrix_chain_multiplication
https://en.wikipedia.org/wiki/Matrix_multiplication
https://bruceoutdoors.wordpress.com/2015/11/24/matrix-chain-multiplication-with-c-code-part-3-extracting-the-sequence/

234Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Commutativity & Associativity
Outer joins

A B
1 2

R

SELECT A, B, C
FROM (R
NATURAL FULL JOIN S)
NATURAL FULL JOIN T

B C
2 3

S
A C
4 5

T

SELECT A, B, C
FROM R
NATURAL FULL JOIN (S
NATURAL FULL JOIN T)

Result Result

333

? ?
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

235Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Commutativity & Associativity
Outer joins

A B
1 2

R

SELECT A, B, C
FROM (R
NATURAL FULL JOIN S)
NATURAL FULL JOIN T

B C
2 3

S
A C
4 5

T

SELECT A, B, C
FROM R
NATURAL FULL JOIN (S
NATURAL FULL JOIN T)

Result Result

333

? ?
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

236Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Commutativity & Associativity
Outer joins

A B
1 2

R

SELECT A, B, C
FROM (R
NATURAL FULL JOIN S)
NATURAL FULL JOIN T

B C
2 3

S
A C
4 5

T

SELECT A, B, C
FROM R
NATURAL FULL JOIN (S
NATURAL FULL JOIN T)

A B C
1 2 3
4 NULL 5

Result Result

333

?
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

237Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Commutativity & Associativity
Outer joins

A B
1 2

R

SELECT A, B, C
FROM (R
NATURAL FULL JOIN S)
NATURAL FULL JOIN T

B C
2 3

S
A C
4 5

T

SELECT A, B, C
FROM R
NATURAL FULL JOIN (S
NATURAL FULL JOIN T)

A B C
1 2 3
4 NULL 5

Result Result

333

?
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

238Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Commutativity & Associativity
Outer joins

A B
1 2

R

SELECT A, B, C
FROM (R
NATURAL FULL JOIN S)
NATURAL FULL JOIN T

B C
2 3

S
A C
4 5

T

SELECT A, B, C
FROM R
NATURAL FULL JOIN (S
NATURAL FULL JOIN T)

A B C
1 2 3
4 NULL 5

Result
A B C
1 2 NULL
NULL 2 3
4 NULL 5

Result

333

Thus outer joins are not associative! (but they are commutative)
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

239Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Commutativity & Associativity
Outer joins

A B
1 2

R

SELECT R.a RA, T.a TA, coalesce(R.a, T.a) a,
 R.b RB, S.b SB, coalesce(R.b, S.b) b,
 S.c SC, T.c TC, coalesce(S.c, T.c) c
FROM (R
FULL JOIN S on R.B=S.B)
FULL JOIN T on S.C=T.C AND R.A = T.A

B C
2 3

S
A C
4 5

T

SELECT R.a RA, T.a TA, coalesce(R.a, T.a) a,
 R.b RB, S.b SB, coalesce(R.b, S.b) b,
 S.c SC, T.c TC, coalesce(S.c, T.c) c
FROM R
FULL JOIN (S
FULL JOIN T on S.C=T.C) on R.B=S.B AND R.A = T.A

333

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

240Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Data Sources on Tourist Information

Country Climate
Canada diverse
Bahamas tropical
UK temperate

Climates
Country City Hotel Stars
Canada Toronto Plaza 4
Canada London Ramada 3
Bahamas Nassau Hilton

Accommodations
Country City Site
Canada London Air show
Canada Mount Logan
UK London Buckingham
UK London Hyde Park

Sites

335

SELECT *
FROM (Accommodations
NATURAL FULL JOIN Climates)
NATURAL FULL JOIN Sites

Result

Example from: Cohen, Fadida, Kanza, Kimelfeld, Sagiv. "Full Disjunctions: Polynomial-Delay Iterators in Action", VLDB 2006. http://vldb.org/conf/2006/p739-cohen.pdf

?
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
http://vldb.org/conf/2006/p739-cohen.pdf
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

241Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Data Sources on Tourist Information

Country Climate
Canada diverse
Bahamas tropical
UK temperate

Climates
Country City Hotel Stars
Canada Toronto Plaza 4
Canada London Ramada 3
Bahamas Nassau Hilton

Accommodations
Country City Site
Canada London Air show
Canada Mount Logan
UK London Buckingham
UK London Hyde Park

Sites

335

SELECT *
FROM (Accommodations
NATURAL FULL JOIN Climates)
NATURAL FULL JOIN Sites

Country City Climate Hotel Stars Site
Canada Toronto diverse Plaza 4
Canada London diverse Ramada 3 Air Show
Canada Mount Logan
UK London Buckingham
UK London Hyde Park
UK temperate
Bahamas Nassau Tropical Hilton

Result

Example from: Cohen, Fadida, Kanza, Kimelfeld, Sagiv. "Full Disjunctions: Polynomial-Delay Iterators in Action", VLDB 2006. http://vldb.org/conf/2006/p739-cohen.pdf
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
http://vldb.org/conf/2006/p739-cohen.pdf
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

242Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Data Sources on Tourist Information

Country Climate
Canada diverse
Bahamas tropical
UK temperate

Climates
Country City Hotel Stars
Canada Toronto Plaza 4
Canada London Ramada 3
Bahamas Nassau Hilton

Accommodations
Country City Site
Canada London Air show
Canada Mount Logan
UK London Buckingham
UK London Hyde Park

Sites

335

SELECT *
FROM (Accommodations
NATURAL FULL JOIN Climates)
NATURAL FULL JOIN Sites

Country City Climate Hotel Stars Site
Canada Toronto diverse Plaza 4
Canada London diverse Ramada 3 Air Show
Canada Mount Logan
UK London Buckingham
UK London Hyde Park
UK temperate
Bahamas Nassau Tropical Hilton

Result

Example from: Cohen, Fadida, Kanza, Kimelfeld, Sagiv. "Full Disjunctions: Polynomial-Delay Iterators in Action", VLDB 2006. http://vldb.org/conf/2006/p739-cohen.pdf
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
http://vldb.org/conf/2006/p739-cohen.pdf
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

243Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Data Sources on Tourist Information

Country Climate
Canada diverse
Bahamas tropical
UK temperate

Climates
Country City Hotel Stars
Canada Toronto Plaza 4
Canada London Ramada 3
Bahamas Nassau Hilton

Accommodations
Country City Site
Canada London Air show
Canada Mount Logan
UK London Buckingham
UK London Hyde Park

Sites

335

SELECT *
FROM (Accommodations
NATURAL FULL JOIN Climates)
NATURAL FULL JOIN Sites

Country City Climate Hotel Stars Site
Canada Toronto diverse Plaza 4
Canada London diverse Ramada 3 Air Show
Canada Mount Logan
UK London Buckingham
UK London Hyde Park
UK temperate
Bahamas Nassau Tropical Hilton

Result

Example from: Cohen, Fadida, Kanza, Kimelfeld, Sagiv. "Full Disjunctions: Polynomial-Delay Iterators in Action", VLDB 2006. http://vldb.org/conf/2006/p739-cohen.pdf
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
http://vldb.org/conf/2006/p739-cohen.pdf
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

244Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Data Sources on Tourist Information

Country Climate
Canada diverse
Bahamas tropical
UK temperate

Climates
Country City Hotel Stars
Canada Toronto Plaza 4
Canada London Ramada 3
Bahamas Nassau Hilton

Accommodations
Country City Site
Canada London Air show
Canada Mount Logan
UK London Buckingham
UK London Hyde Park

Sites

335

SELECT *
FROM Accommodations
NATURAL FULL JOIN (Climates
NATURAL FULL JOIN Sites)

Country City Climate Hotel Stars Site
Canada Toronto Plaza 4
Canada London diverse Ramada 3 Air Show
Canada diverse Mount Logan
UK London temperate Buckingham
UK London temperate Hyde Park
Bahamas Tropical
Bahamas Nassau Hilton

Result

Example from: Cohen, Fadida, Kanza, Kimelfeld, Sagiv. "Full Disjunctions: Polynomial-Delay Iterators in Action", VLDB 2006. http://vldb.org/conf/2006/p739-cohen.pdf
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
http://vldb.org/conf/2006/p739-cohen.pdf
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

245Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Data Sources on Tourist Information

Country Climate
Canada diverse
Bahamas tropical
UK temperate

Climates
Country City Hotel Stars
Canada Toronto Plaza 4
Canada London Ramada 3
Bahamas Nassau Hilton

Accommodations
Country City Site
Canada London Air show
Canada Mount Logan
UK London Buckingham
UK London Hyde Park

Sites

335

SELECT *
FROM Accommodations
NATURAL FULL JOIN (Climates
NATURAL FULL JOIN Sites)

Country City Climate Hotel Stars Site
Canada Toronto Plaza 4
Canada London diverse Ramada 3 Air Show
Canada diverse Mount Logan
UK London temperate Buckingham
UK London temperate Hyde Park
Bahamas Tropical
Bahamas Nassau Hilton

Result

Example from: Cohen, Fadida, Kanza, Kimelfeld, Sagiv. "Full Disjunctions: Polynomial-Delay Iterators in Action", VLDB 2006. http://vldb.org/conf/2006/p739-cohen.pdf
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
http://vldb.org/conf/2006/p739-cohen.pdf
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

246Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Full disjunction

Country Climate
Canada diverse
Bahamas tropical
UK temperate

Climates
Country City Hotel Stars
Canada Toronto Plaza 4
Canada London Ramada 3
Bahamas Nassau Hilton

Accommodations
Country City Site
Canada London Air show
Canada Mount Logan
UK London Buckingham
UK London Hyde Park

Sites

335

SELECT *
FROM FULL DISJUNCTION(Climates,
(Accommodations, Sites) Country City Climate Hotel Stars Site

Canada Toronto diverse Plaza 4
Canada London diverse Ramada 3 Air Show
Canada diverse Mount Logan
UK London temperate Buckingham
UK London temperate Hyde Park
Bahamas Nassau tropical Hilton

Result

FD: variation of the join operator that
maximally combines join consistent tuples
from connected relations, while preserving
all information in the relations.

Not available in SQL! We may discuss later
in class in more detail (or skip this year)

Example from: Cohen, Fadida, Kanza, Kimelfeld, Sagiv. "Full Disjunctions: Polynomial-Delay Iterators in Action", VLDB 2006. http://vldb.org/conf/2006/p739-cohen.pdf
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
http://vldb.org/conf/2006/p739-cohen.pdf
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

247Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Full disjunction: definition

Country Climate
Canada diverse
Bahamas tropical
UK temperate

Climates
Country City Hotel Stars
Canada Toronto Plaza 4
Canada London Ramada 3
Bahamas Nassau Hilton

Accommodations
Country City Site
Canada London Air show
Canada Mount Logan
UK London Buckingham
UK London Hyde Park

Sites

335

Country City Climate Hotel Stars Site
Canada Toronto diverse Plaza 4
Canada London diverse Ramada 3 Air Show
Canada diverse Mount Logan
UK London temperate Buckingham
UK London temperate Hyde Park
Bahamas Nassau tropical Hilton

Result

Example from: Cohen, Fadida, Kanza, Kimelfeld, Sagiv. "Full Disjunctions: Polynomial-Delay Iterators in Action", VLDB 2006. http://vldb.org/conf/2006/p739-cohen.pdf

• Two tuples (max one from each relation) are
join consistent if they agree on common
attributes, e.g. t1/t2, t3/t4. A set of tuples is
join consistent if every pair is join consistent.

• Set of tuples (max one from each relation) is
connected if the schema is connected, thus
share attributes

• A tuple is in the Full disjunction if it is the
inner join from tuples that are connected, join
consistent, and there is no superset with both
conditions (related to "subsumption").

t1

t3

t2

t4

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
http://vldb.org/conf/2006/p739-cohen.pdf
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

258

Outline: T1-U1: SQL

• SQL
– Schema, keys, referential integrity
– Joins
– Aggregates and grouping
– Nested queries (Subqueries)
– Union and Theta Joins
– Nulls & Outer joins
– Top-k
– [Recursion: moved to T1-U4: Datalog]

259Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

select A, R.B, S.C, D

from R, S, T
where R.B=S.B and S.C=T.C

𝑅
𝐴

1

2

3

4

𝐵

0

0

0

1

𝑆
𝐵

0

0

0

0

𝐶

1

1

1

2

𝑇
𝐶 𝐷

1 1

1 2

2 3

2 4

605Sorting & Top-k evaluation with SQL

Result

How many results
do we get?

?
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

260Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

select A, R.B, S.C, D

from R, S, T
where R.B=S.B and S.C=T.C

𝑅
𝐴

1

2

3

4

𝐵

0

0

0

1

𝑆
𝐵

0

0

0

0

𝐶

1

1

1

2

𝑇
𝐶 𝐷

1 1

1 2

2 3

2 4

join join

605Sorting & Top-k evaluation with SQL

Result

How many results
do we get?

?
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

261Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

select A, R.B, S.C, D

from R, S, T
where R.B=S.B and S.C=T.C

𝑅
𝐴

1

2

3

4

𝐵

0

0

0

1

𝑆
𝐵

0

0

0

0

𝐶

1

1

1

2

𝑇
𝐶 𝐷

1 1

1 2

2 3

2 4

join join

605

24 total results

Sorting & Top-k evaluation with SQL

A B C D
1 0 2 3
2 0 2 3
3 0 2 3
1 0 1 1
2 0 1 1
3 0 1 1
1 0 1 1
...

Result

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

262Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

select A, R.B, S.C, D

from R, S, T
where R.B=S.B and S.C=T.C

select A, R.B, S.C, D,
 R.w + S.w + T.w as weight
from R, S, T
where R.B=S.B and S.C=T.C
order by weight ASC

605

A B C D weight

Result

Sorting & Top-k evaluation with SQL

?
What do we get now?

𝑅
𝑤𝐴

11

22

33

44

𝐵

0

0

0

1

𝑆
𝐵 𝑤

0

0

0

0

𝐶

1

1

1

2

𝑇
𝐶 𝐷

1 1

1 2

2 3

2 4

𝑤

5

7

8

6

20

40

10

30

join join

Weights

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

263Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

select A, R.B, S.C, D

from R, S, T
where R.B=S.B and S.C=T.C

select A, R.B, S.C, D,
 R.w + S.w + T.w as weight
from R, S, T
where R.B=S.B and S.C=T.C
order by weight ASC

Return all 24 results in
order of sum of weights

605

A B C D weight
1 0 2 3 17
2 0 2 3 18
3 0 2 3 19
1 0 1 1 26
2 0 1 1 27
3 0 1 1 28
1 0 1 1 28
...

Result

Sorting & Top-k evaluation with SQL

𝑅
𝑤𝐴

11

22

33

44

𝐵

0

0

0

1

𝑆
𝐵 𝑤

0

0

0

0

𝐶

1

1

1

2

𝑇
𝐶 𝐷

1 1

1 2

2 3

2 4

𝑤

5

7

8

6

20

40

10

30

join join

Weights

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

264Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

select A, R.B, S.C, D

from R, S, T
where R.B=S.B and S.C=T.C

select A, R.B, S.C, D,
 R.w + S.w + T.w as weight
from R, S, T
where R.B=S.B and S.C=T.C
order by weight ASC
limit 6

605

A B C D weight
1 0 2 3 17
2 0 2 3 18
3 0 2 3 19
1 0 1 1 26
2 0 1 1 27
3 0 1 1 28
1 0 1 1 28
...

Result

Sorting & Top-k evaluation with SQL

?What do we get now?

𝑅
𝑤𝐴

11

22

33

44

𝐵

0

0

0

1

𝑆
𝐵 𝑤

0

0

0

0

𝐶

1

1

1

2

𝑇
𝐶 𝐷

1 1

1 2

2 3

2 4

𝑤

5

7

8

6

20

40

10

30

join join

Weights

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

265Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

select A, R.B, S.C, D

from R, S, T
where R.B=S.B and S.C=T.C

select A, R.B, S.C, D,
 R.w + S.w + T.w as weight
from R, S, T
where R.B=S.B and S.C=T.C
order by weight ASC
limit 6

605

A B C D weight
1 0 2 3 17
2 0 2 3 18
3 0 2 3 19
1 0 1 1 26
2 0 1 1 27
3 0 1 1 28
1 0 1 1 28
...

Result

Sorting & Top-k evaluation with SQL

What do we get now?

𝑅
𝑤𝐴

11

22

33

44

𝐵

0

0

0

1

𝑆
𝐵 𝑤

0

0

0

0

𝐶

1

1

1

2

𝑇
𝐶 𝐷

1 1

1 2

2 3

2 4

𝑤

5

7

8

6

20

40

10

30

join join

Weights

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

266Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

select A, R.B, S.C,
 R.w + S.w as weight
from R, S
where R.B=S.B
order by weight ASC
limit 1

𝑅
𝑤𝐴

11

22

33

…...

𝐵

0

0

0

0

𝑆
𝐵 𝑤

0

0

0

0

𝐶

1

2

3

...

1

2

3

…

join

606

𝑛n 0 0 n 𝑛

Top-k is evaluated inefficiently by modern DBMS's

?
What will this query return?

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

267Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

select A, R.B, S.C,
 R.w + S.w as weight
from R, S
where R.B=S.B
order by weight ASC
limit 1

𝑅
𝑤𝐴

11

22

33

…...

𝐵

0

0

0

0

𝑆
𝐵 𝑤

0

0

0

0

𝐶

1

2

3

...

1

2

3

…

join

606

A B C weight
1 0 1 2
1 0 2 3
2 0 1 3
3 0 1 4
2 0 2 4
1 0 3 4
4 0 1 5
...
n 0 n n*n

Result

Can you see any possible problem of this query as n gets bigger?

𝑛n 0 0 n 𝑛

Top-k is evaluated inefficiently by modern DBMS's

?
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

268Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

select A, R.B, S.C,
 R.w + S.w as weight
from R, S
where R.B=S.B
order by weight ASC
limit 1

𝑅
𝑤𝐴

11

22

33

…...

𝐵

0

0

0

0

𝑆
𝐵 𝑤

0

0

0

0

𝐶

1

2

3

...

1

2

3

…

join

606

A B C weight
1 0 1 2
1 0 2 3
2 0 1 3
3 0 1 4
2 0 2 4
1 0 3 4
4 0 1 5
...
n 0 n n*n

Result

n2 total results. But we are only interested in the top-1.

𝑛n 0 0 n 𝑛

Problem: Database first calculates all n2 results before sorting.

Top-k is evaluated inefficiently by modern DBMS's

Question: is there any way to push the sorting behind the join??SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

269Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Digression: Distributivity = efficient factorization

What is the shortest
path from s to t?

a

c

b

d

g

e

f
ts m

=3

=6

=5

=2

=8

=4

=7

?

https://northeastern-datalab.github.io/cs7240/

270Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Digression: Distributivity = efficient factorization

What is the shortest
path from s to t?

Answer: 5 = 3 + 2

a

c

b

d

g

e

f
ts m

=3

=6

=5

=2

=8

=4

=7

min [a + d, a + e, a + f, a + g, ..., c + g]
min[3+2, 3+4, 3+7, 3+8, ..., 6+8]

?

https://northeastern-datalab.github.io/cs7240/

271Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Digression: Distributivity = efficient factorization

min

= min

[a + d, a + e, a + f, a + g, ..., c + g]

[a, b, c] + min [d, e, f, g]

What is the shortest
path from s to t?

Answer: 5 = 3 + 2

min[3+2, 3+4, 3+7, 3+8, ..., 6+8]

min[3,5,6] + min[2,4,7,8]

a

c

b

d

g

e

f
ts m

=3

=6

=5

=2

=8

=4

=7

min[x,y]+z = min[(x+z), (y+z)]
(+ distributes over min)

Principle of optimality from Dynamic Programming:
irrespective of the initial state and decision, an optimal
solution continues optimally from the resulting state

https://northeastern-datalab.github.io/cs7240/

272Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Digression: Distributivity = efficient factorization

How many paths are
there from s to t?

a

c

b

d

g

e

f
ts m

?

https://northeastern-datalab.github.io/cs7240/

273Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Digression: Distributivity = efficient factorization

How many paths are
there from s to t?

Answer: 12 = 3 ⋅ 4

a

c

b

d

g

e

f
ts m

https://northeastern-datalab.github.io/cs7240/

274Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Digression: Distributivity = efficient factorization

How many paths are
there from s to t?

Answer: 12 = 3 ⋅ 4

a

c

b

d

g

e

f
ts m

=1

=1

=1

=1

=1

=1

=1

+[x,y] ⋅ z = +[x⋅z,y⋅z]
(⋅ distributes over +)

count

= count

[a⋅d, a⋅e, a ⋅ f, a ⋅ g, ..., c ⋅ g]

[a, b, c] ⋅ count [d, e, f, g]

count[1⋅1, 1⋅1, 1⋅1, 1⋅1, ..., 1⋅1]

count[1,1,1] ⋅ count[1,1,1,1]

12

The more general algebraic structure
behind these two examples are "semirings"
(much more on those later in class)

https://northeastern-datalab.github.io/cs7240/

275Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

𝑅
𝑤𝐴

11

22

33

…...

𝐵

0

0

0

0

𝑆
𝐵 𝑤

0

0

0

0

𝐶

1

2

3

...

1

2

3

…

join

606

𝑛n 0 0 n 𝑛

n=1000:

n=5000:

tQ1= 0.88 sec

tQ1=18.6 sec

Top-k is evaluated inefficiently by modern DBMS's

?

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

tQ2=2 msec

tQ2=8 msec

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

276Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

𝑅
𝑤𝐴

11

22

33

…...

𝐵

0

0

0

0

𝑆
𝐵 𝑤

0

0

0

0

𝐶

1

2

3

...

1

2

3

…

join

606

𝑛n 0 0 n 𝑛

Maximal intermediate
result size is O(n) J
What is this algorithm
called?

n=1000:

n=5000:

tQ1= 0.88 sec

tQ1=18.6 sec

tQ2=2 msec

tQ2=8 msec

Top-k is evaluated inefficiently by modern DBMS's

?

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

277Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

𝑅
𝑤𝐴

11

22

33

…...

𝐵

0

0

0

0

𝑆
𝐵 𝑤

0

0

0

0

𝐶

1

2

3

...

1

2

3

…

join

606

𝑛n 0 0 n 𝑛

Maximal intermediate
result size is O(n) J
What is this algorithm
called?

n=1000:

n=5000:

tQ1= 0.88 sec

tQ1=18.6 sec

tQ2=2 msec

tQ2=8 msec

Dynamic programming

Top-k is evaluated inefficiently by modern DBMS's

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

278Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Any-k: Faster and more versatile than Top-k

https://northeastern-datalab.github.io/anyk/
https://northeastern-datalab.github.io/topk-join-tutorial/
https://northeastern-datalab.github.io/responsive-dbms-tutorial/
https://www.youtube.com/watch?v=KpUQayBuaQI&list=PL_72ERGKF6DR7kvGNwwjWlbpScKtGjt9R&index=2
Tziavelis, Ajwani, Gatterbauer, Riedewald, Yang. Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries. PVLDB 2020. https://doi.org/10.14778/3397230.3397250

Path query with constant
size output and increasing
query size

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/anyk/
https://northeastern-datalab.github.io/topk-join-tutorial/
https://northeastern-datalab.github.io/responsive-dbms-tutorial/
https://www.youtube.com/watch?v=KpUQayBuaQI&list=PL_72ERGKF6DR7kvGNwwjWlbpScKtGjt9R&index=2
https://doi.org/10.14778/3397230.3397250

279Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

𝑅
𝐴

1

2

3

...

𝐵

0

0

0

0

𝑆
𝐵

0

0

0

0

𝐶

1

2

3

...

join

608

n 0 0 n

n=1000:

n=5000:

tQ1= 0.374 sec

tQ1= 10.021 sec

tQ2=3 msec

tQ2=5 msec

Even Grouping Aggregates can be improved

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

T

T

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

281

Outline: T1-U1: SQL

• SQL
– Schema, keys, referential integrity
– Joins
– Aggregates and grouping
– Nested queries (Subqueries)
– Union and Theta Joins
– Nulls & Outer joins
– Top-k
– [Recursion: moved to T1-U4: Datalog]

