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1. Introduction 

At the 1978 Very Large Data Base conference a paper was presented in 

which the wisdom of the "universal relation assumption" was questioned and 

more research was called for [BBG]. Since then it has been discovered that the 

test for the existence of an instance of the universal relation corresponding to a 

given database is intractable [HLY]. This paper reviews that work and then 

searches for schemas and databases for which efficient tests exist. The outline 

of the paper is as follows: After the basic notation is given in Section 2, section 3 

reviews the work of [HLY]. Sections 4 through B investigate a particular test for 

join consistency and situations in which it may be applied. Section 9 briefly pur

sues a different course. Section 10 presents open questions for further research. 

Basic Definitions and Notation 

Very rarely in a discussion of databases is it necessary to introduce an 

infinite object. All the objects to be encountered in this paper are finite. In par

ticular. that which we call the universe. and denote. U is a finite set of tokens 

hich are themselves called attributes. In real world examples. attributes are 

ch things as EMPLOYEE NUMBER, SALARY, SKILLS, ...• for a personnel applica-
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tion or IDENTIFIER, DATATYPE, STORAGE LOCATION •... , for a compiler's symbol 

table. As we are to investigate technical aspects of relational database theory, it 

is more convenient to use single letters, which we take from the beginning of the 

latin alphabet and often subscript: A 1, A 2, •.. , B, C; as attributes. When neces

sary we will use capital letters towards the end of the la tin alphabet: X, Y, .. ., ; to 

denote subsets of the universe and following established custom we write set 

union as an operator free expression and deliberately confuse a single attribute 

and the set containing only that attribute. Thus A
1
X should be read as iA

1 
� LJX. 

We now introduce data values which are things such as 12345 and real. Our 

first step is to associate with each attribute a set of values called a domain. For 

EMPLOYEE NUMBER we might use f "strings of length 5 over 0, 1. ... , 9''j; for DATA

TYPE: treal, integer, logical, string, .... �. Usually distinct attributes are allowed 

to have either distinct or identical domains. We "Will be drawing no consequences 

from the nature of the domains; therefore, we are free to assume all attributes 

share· a single domain, denoted D. In our subsequent examples. D need be no 

larger than !O, 1. 2), but our results hold for arbitrary assignments of finite 

domains. 

Attributes are assigned attribute values• in groups. The object which per

forms this assignment is called a tuple. A tuple is a function from the universe to 

the domain. In symbols: 

t: U ➔ D 

We use the letters: t, u, v, .. ., occasionally subscripted, to denote tuples. 

A tuple serves to identify and relate attribute values. So we might have a 

tuple, t, with t(EMPLOYEE NUMBER) = 12345, t{SALARY) = 20000, t(IDENTIFIER) = 

"IDENTIFIER'�, t(DATATYPE) = string. It ls easier to display tuples as vectors or 

"ordered n-tuples" such as (12345, 20000, "IDENTIFIER". string) by arbitrarily 

deciding upon some ordering of the attributes. {Thus the name, tuple.) This 
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makes the tuples appear to be elements of the Cartesian product of the nnderly

ing domain taken with itself and this was the original definition. 

A tuple need not be defined on every attribute in the universe. Let the set of 

attributes on which a given tuple. t. is defined be called its scheme and denoted 

a(t ). A set of tuples is uniform if each tuple has the same scheme. A relation is a 

uniform set of tuples. A relation's scheme · (or schema) is the scheme of its 

tuples. Relations are conventionally denoted by subscripted lowercase 

r's: r1,r2, ... ,Ti,. .. , occasionally s; relation schemes by subscripted upper case 

R's: R 1,R21 ... , Ri, ... , occasionally S; obeying the equation a(ri)=Ri· (a(ri) is 

just a(t} for t an element of ri , which is fine whenever ri has any elements. The 

empty set is certainly uniform and thus a relation but we do not know what 

schema to give it. We will blithely assume a to be well defined everywhere and 

that in particular when confronted with an empty relation it can distinguish 

which empty relation it is.} 

Relations may be displayed as tables or matrices in which the columns 

represent attributes, each column being labelled by the attribute it represents, 

and the rows are tuples in the vector display mode already mentioned. There are 

examples of such displays in figures 1 thru 3. 

When for some TJ we have a.(r3)=U, then we say r; is an instance of the 

universal relation or merely an instance. An instance is often denoted by an 

upper case I. The phrase "the universal relation" reflects the customary misuse 

of the term "relation" for "relation schema." We will continue this custom, rely

ing on context for disa:mbiguation. 

A database is a set of relations. These are denoted by an upper-case bold R 

as in R=fr 1,. .. ,rk � for a database of k relations. A database schema is a set of 

relation schemas and not surprisingly we write 
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it is easie:r to ignore the empty database than it was to ignore the empty rela

tidh. We also safeiy ignore databases in which distinct relations have the same 

schettta.. 

We will be concerned with two operators of the relational algebra, projection 

M.nd join. Projection forms its result relation by ignoring some of the attributes 

df its operand relation. Let t be a tuple and let X be a subset of a(t ). The projec

tion of t onto X. written t.X, is a tuple, u. with the properties that a:(u }=X and fot 

ea.oh attribute A EX, t (A )=u (A). The projection of a relation onto a subset of its 

attributes is the set formed by the projections of its tuples onto that set of attri

butes. Two or more tuples having the same projection are identified in the pro

jection of the relation. For r a relation and X�a(r ), we write projection as nx(r) 

and define it as 

nx(r)=fu I 3 tErl\u=t.XJ 

We use different notations for projection of tuples and projection of rela-

tions because the two operations behave differently. We can illustrate this 

difference with the following rule which is obviously sound. 

Subset Rule for Projecti01t: Let r 1, r2 be relations. Let Xkcx{r1}na(r2). If 

n-x(r1}=irx(r2) then for every proper subset Y of X. ny(r1}=1ry(r2). 

The same rule holds for projections of tuples. Somewhat surprisingly, the 

converse of the subs'et rule is false for r'elations even though it is true for tuples. 

:Figure 1 is a counterexample. We leave it to the reader to convince himself that 

the proje'ctions of the relations in that figure on any subset of their attributes 

are equal. 
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U=fA. B, CJ 
D =fl. 2� 

Tt T2 

B C A B C 

1 1 1 2 1 
2 1 1 1 2 1 

1 2 1 1 1 2 

1 1 2 

Figure 1 

A counterexample to the 
converse of the subset rule 

The natural join takes two relations as operands and forms a new relation 

whose schema is the union of the operand schemata. For relations r 1, r2 with 

r 1 *r2=(t I (:J t 1Er1}(3 t2Er2)(t.R 1=f 1)""' (t.R 2=t2)j 

We can calculate r1 *r2 by examining the tuples that appear in the projec-

tions of r 1 and r2 onto. their common attributes; i.e., the relations 

both, namely s3=s 1 ns2. For each tuple u e:s 8 we find the tuples in each of 

r 1 and r2 which have u as their common attribute projection and form a tuple of 

r 1 *r2 for every pair. (This is not meant to be an efficient calculation technique 

but only to help explain the definition.) Therefore any tuple of r 1 ( or r 2) whose 

projection onto a(r 1)na(r2) does not match any tuple of r2 {or·r 1} is lost from 

the join. Conversely any tuple which does match appears indiscriminately with 

all the matching tuples of the other relation. In the special case of 

a(r 1) na{r2)=cp, the join is exactly the cross-product: every tuple of r1 appears 

with every tupl� of r2. In the case a(r 1)ka(r2), the join is the intersection: those 

tuples of r2 whose a{r 1) project.ion appears in r1• 

It is not difficult to see that join is an associative and commutative opera-
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writing the expression representing the join of a group of  'le relations as 

T 1�2• ' ' '  *Tt 

meaning the result of any one o f  the implied sequences of binary joins.  Fo:r c on

t 
venience we abbreviate this to . • ri or, when joining all the relations of a data-

i= l 

base R= fr 11 T2i . . .  , r,t �,  to  *R. It c an easily be  shown, by induc tion on k, that, for 

3.. The General Case 

We now begin our formal investigation into the difficulty of enforcing the 

universal relation assumption as a database constraint. This section summar

izes the negative results of [HLY] and [L]. 

A pair of tuples s elected from distinct relations of a database are compati

ble if they agree on the attributes  on which both are defined. Thus t, w are com

patible if t. (a(t ) n a(w ) )=w. (a(t ) na(w ) ) .  

Proposition 1 .  (The Compatible Tuples Condition). Let R= fr 1, . . . , rd be a data

base.  Select r1 from R and u from 1"1 . An instance o f  the univeral relation exists 

for R if and only if a set of tuples, Iv 11 • •  , • V.t J c an be found such that for all 

• vi and Vt are compatible 

Proof. The necessity is apparent: u is the projection onto a(r1 ) of some tuple of 

I. The v, are the projections of that tuple onto the remaining relation schemes, 

Conversely, the v,: build a tuple of I whose projection onto a(r1 ) is u and such a 

tuple can be built for each tuple of each relation in R. 1111 
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Direct verification of the compatible tuples condition leads t o  a "backtrack

ing" algorithm. However, the next proposition s eems to offer some hope. 

Proposition 2. Let R be a d at abase satisfying the c ompatible tuples condition 

and let I b e  any c orresponding instance .  Then we have 

1 )  n ;:;; • R  

2) TI'a(r)(  • R)=r for every r ER 

Proof. For part 1 s e e  [ABU]. For part 2 s e e  [HLY]. • 

In [HLY] a database which s atisfies the universal- relation assumption is  

c alled join consistent. P roposition 2 gives a justification for  this name. It  states 

that the join of a j oin consistent database is its largest instance.  This implies the 

corre ctness of a simple algorithm to test j oin consistency: form the j oin and test 

the projections. Regrettably, this algorithm has worst c ase  behaviour O (mk) (k 

the number of relations, m the size of each relation). It may b e  deduc ed from 

the next theorem that no algorithm with running time a polynomial of fixed 

degree is likely to b e  found to solve this problem in general. 

Theorem 1 Determining j oin-consistency is NP-complete. 

Proof. [HLY] A reduction from graph vertex 3-colorability is g iven. 111 

Note Readers unfamiliar with the notion of NP-completeness are referred  to [GJ]. 

For our purposes it will suffice to assert than an NP-complete problem is prob

ably too difficult to be solve d  in a reasonable amount of time by any algorithm. 

Knowing that a database is join-consistent does not seem to he lp in deter

mining i f  a modified database will be j oin-consistent. This is p roven in [HLY] for 

the c ase that the modification is a tuple insert. 



- 7 6-

4-. Tract.able Subproblems 

Since it appears that the p roblem of determining join c onsistency is 

intractable in general, we turn our attention to subproblems which can be shown 

to have efficient algorithms. In particular, we will give characterizations of sub

problems for which it is sufficie nt to te st the following c ondition, which is a 

weakened form of the c omp atible tuple s condition. 

Definition A database R= fr 1, • . .  , r1c ) satisfies the common intersection property 

tions agree on their c ommon attributes .  [Z, chap 5. ] 

The test for CIP is p olynomial-time bounded for any database. As the c om

patible tuple c ondition can b e  shown to imply the common inters ection pro

perty, CIP will hold in any join-consistent database .  The insufficiency of CIP can 

be demonstrated by the example in figure 3, which also appears in [HLY] . The 

:reader may verify that the database is not join c onsistent by forming the j oin. 

We will formalize what "goe s wrong" with this example in a later section . .  

U = !A, B, CJ 

Tt r2 T3 

A B B C C A 

1 1 1 1 1 
2 2 .2 2 2 1 

Figure 3 

So far we have considered properties define d on the data in a database,. We 

now seek schema properties Yhich characterize database s  in which CIP implie1 

jtlm-<=:onsistency. Spe.cifi.cally we .e�amine the pattern of intersection of the rela ... 

ti.on .scneme·s. Le't R =:iR 1, . . . • R't. J be a database s chema over a universe U. An 

attribute A €.Rd ii ,said to be common if it appears in s ome interse ction 

R1 nR.: f« some k •j. As we will be studying interse ctions.  we c an ignore any 
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attribute which i s  not common. Consider, in justification, adding any s e t  of attri

butes, X, to R 1 in figure 1. No way of assigning values to X will affect the conclu

sion that no universal in.stance exists. Now assume that for some distinct 

schemes R
1
, Rt - we have R1 hRk . Then we are safe in studying the schema 

R - iR; l ,  in the sense that any database satisfying CIP and having schema R will 

have a universal instance just in case the database resulting from the removal of 

a relation r
1 

with schema R
1 

has a universal instance. These  observations lead to 

the following algorithm. which outputs "ye s" only if its input is a s chema for 

databases  in which CIP implies join-consistency. 

Algorithm 1 

Input: A schema R = fR 1 • . • . •  Rk � on universe U. 

Ouput: "yes"  or "no" 

Procedure: 

Step 1: For each  i from 1 to k remove from Ri any non-common attributes. 

If Ri becomes empty remove it from R. 

Step2: Find. if possible ,  R;., Ri in R with R,;. t;;;..R
1. Remove Ri from R. 

Step 3: Repeat steps 1 and 2 until no changes are made. If R is empty out

put "yes" ;  otherwise output "no". 111 

If the number of relations in R is k and the number of attributes in U is  n, 

then Step l  can be  done in time O (kn ) ;  step2 in time O (k 2n ); step3 can c ause at 

most le iterations .  Therefore algorithm 1 is O (lc 3n ). 

A necessary' cqndition 

We now apply some techniques of graph theory to our problem. It i s  

assumed the reader is familiar with the elementary aspects  of graph theory as 
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For a given family of subsets o f  a given set,  a n  intersection graph is a g raph 

is which the subsets play the role of  vertice s  and an edge connects pairs of sub

sets whos e  intersection is non-empty. A common attribut e graph (GAG) is a 

labelled intersection graph in which the label  on an e dge is the intersec tion giv

ing rise to the edg e  and the label  on a vertex is  the union of  the labels on the 

edges incident to the verte x. Formally, if  R is a database schema on U, then 

GAG (R ) = ( V.E. l ) where 

• V=R 

• E = HRi,R1 ) 1 R, nR;� r/JJ 

• l : V LJE ➔P ( U ) 

whe re P (U ) is the set  of  all s ubsets  of U and l is defined by 

f,nR.1 
l (x )= lY l ((x,y )) 

if x EE and x =(Ri,Ri ) 
if x E V  and (x, y  ) EE 

This c hoice of vertex labelling automatically removes non-c ommon attributes 

from our atte ntion. There are examples of CAG graphs in figures 4 and 5. 

We can rapidly e stablish some partial results by c onsidering graphs in 

which the edge labels are pairwise disjoint. 

Proposition 3 Let the e dge labels of CAG (R ) be pairwise disjoint. Then R is  a 

scheme in which CIP implies  join consistency if and only if GAG (R ) is acyclic. 

Proof 

If It is e asy to see  that algorithm 1 will output "yes" for any acyc lic graph. In 

particular, the se} of c ommon attributes of  any leaf in such a graph is exactly 

the label on the edge connecting the leaf to the graph. 

Only if 

We construct a cou nterexample . Let C be any cycle and R;, any vertex of C. 

Construct a relation for eac h  vertex of CA G (R )  other than Ri c ontaining two 
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tuples: one a vector of all l ' s, one a vector of all 2' s. Let e be an edge of C 

incident with R,.  Construct a two tuple relation for R, as fol lows: one tuple  c on- . 

tains all 1 ' s  except for attributes  in l ( e )  which are assig ned 2's. The other tuple 

has 2"s everywhere exc e pt for l ' s  in l (e }. This construction s atisfies CIP by vir- · 

tue of the fact that no attribute appears in more than one e dge labeL 

Now -� .R; is cle arly a relation on a.11 th e  attributes  of the universe and hav-
,.,.., 

ing two tuples: one of all l 's  a.nd one of all 2's .  Just as clearly. ( _� _R; ) *Ri = r/>. Thus 
., ... ,. 

the  constructe d  database state satisfies CIP without being j oin c onsist e nt, as 

required.  111 

Let R be a s chema with CAG(R) as in the s tatement of proposition 3. Let W 

be a set of attribute s  not appe aring in R. Consider enlarging th e  schemas of 

some subset of R by adding W to each relation schema in the subset. Let the new 

database schema be  R ' .  GAG (R ' )  will in gene ral n o  longer have all pairwise dis

j oint edge labels;  however, if GA G (R ) c ontains cycles ,  the proof of  p roposition 3 

will go  through for R '  if the attribute s  in W are uniformally assigned the value 0. 

We have e stablished the following 

Corollary For any s chema, R, let R '  b e  the result of removing from R any attri

bute app earing in three or more relations {equivalently, two or more e dg e  

labels) .  R i s  a s chema for which CIP implie s  join c onsistency only if GAG (R ' )  i s  

acyclic . 111 

6. A complete solution for databases on three relations 

We are able to characterize all databases  with thre e  relati ons for which CIP 

implie s  j oin c onsistency. (It is obvious that CIP implies join con siste ncy for all 

·· database s  on two >!;"elations . )  In the proce ss· we introduce  a condition which will 

.later be  s een to be ·sufficient in the ge neral c ase .  
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!J��t�n We say that a CAG, G, satisfies the CAG.:.c condition if every cycle of G 

c�qt,�ifl1S two edg e s, s ay ei, e3 with l {ed:H (e1). ei , e
1 

are c alled comparab le 

eclg��- q i� c alled a CA c�c graph. 

A grµph in which every cycle of length 4 or more has a chord is called tri

Cfff!Jt+lated or chordal. I t  is e asy to see that any CAG-C g raph is chordal. The tri

angte� of CAG graphs have s om e  useful propertie s which are summarized in the 

ne�t propo sition . 

.PrO]?osition 4 The Triangle Lemma 

(1)  In any CAG triangle , the intersection of any two edge labels is contained in 

the third edge label. 

(;z) Ip. �ny CAG-C trian�le,  the inters ection of any two edge  labels is non-empty. 

(3) If two edges of a CAG-C triangle are inc omparable , the third e dg e  lab el  is 

their intersection. 

Pro<Jf 

(1) Tile intersection of two ec:lge la� els is the intersection of all three relations 

which is certainly containt3d in the intersection of the two relations formin8, 

the third e dge �  

(�) A§�l,Jme otherwise� By \µe OAQ-C property, the third eclge  is c omparable \� 

pp� o,f th� twq �Q.&e:s w�o�� int�r�ection is empty. By ( 1 ) .  the intersection Qf 

the twq cqmp��ble �qg�s, i.e . � t�� srn8iller  of tlie twq, i s  c ontaine d in tl'.\Ef · 

r�maining edge ,  viqb1tin,g t.pe assµmptiqn. 

(:3) If \he th.ircl ed�e c qntai�eg one of the incomparable 

vi;al{:lte��· 'fh\:!t�for-e tb:e thirq edg e  is a l?wer b ound on the two incomp,a.fi 

eq�e s  qng must �fJ tti,� �r.ei;\�st lower p ound by { 1) which i s  not the E3fllft 

s�t py, (at , 

fig�r�� 4- and 5. �iv� the o,ply pqssible CAG tri�ngles for CAG-C ang. IlQ�· 
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C triangles respectively. All letters in these  figures repre sent non-empty, dis

joint sets of attributes exc ept where noted. From the triangle lemma and previ

ous con.siderations, we have 

Theorem 2 The Triangle Theorem 

If R is a database of three relations with s chema R, then CIP is e quivalent to  

j oin c onsistency for R iff one of  the  relation schemes of  R contains all of  the 

c ommon attributes  of R.  

Proof Figure 4 gives the c ase for CA G (R ) a triangle. Inspection of  the other 

graphs on three points completes the proof.• 

7. A technical result 

The importance of the triangle theorem is that it shows that database  s che

mas on three or fewer :relations are fully understood with regard to this prob

lem. The same is not true for larger schemata. The next result i s  a technic al one 

about CAG-C graphs . Having it  will allow us to discuss related work in this area. 

A c omplete graph is one in which an edge c onnects each pair of vertice s. A 

triangle is the complete graph on 3 vertices. We now prove a result about c om

plete CAG-C graphs. A minimal edge of a CAG graph is one whose  lab el i s  

minimal among the set  of all e dge  labels in the graph. A maximal e dge i s  the 

dual notion. A smallest e dge  has a label c ontained in every e dg e  label of the 

graph. The largest edge, is also defined. Every non-trivial CAG graph has a set  of 

tninmal (maximal) edges but may or may not have a sm·auest (larg est) edge.  

:Proposition 5 Let R b e  a database s chema with GAG (R ) s atisfying. CAG-C. Then 

iff there is;, a non-empty set of  attributes which appear in 

00! The if part is obvious . The only-if p art is obvious if R contains fewer than 3 

ations. For larger schemas, we prove the stronger statement g iven next. 
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Induction Hypothesis Let R = (R t• , . .  , R71 J, (n �3) and a ssume CAG (R )  is c om

plete.  Let S = fS 1, • . . •  Sn � be  the c ollection of all subsets of R having n - 1 ele

ments. The n  for all but at most two values for j, l�j �n 

Basis The triangle lemma. 

n n- 1 

(lR,;.= n R;
lt; 

i = 1  k = 1 

Induction Assume the hypothesis has been proven for n �k. Consider a schema, 

R,  on k + 1  relations with CA G (R )  a complete  CAG-C graph. Choose a minimal 

edge of GAG (R ). There  are � = �]= k - 1  subsets of size k which c ontain both end 

points of this e dge .  By the induction hypothesis this edge is smallest for each 

subgraph induced by these  subsets . But the subsets cover  all the relations in R 

and all the e dg e s  in GAG (R ). e stablishing the induction hypothesis for k +  1 .  111 

Note that this proposition applies to any complete CAG graph each of whose 

triangles are CAG-C. 

We have introduced proposition 5 in order to comment on the work of 

Zaniolo in chapter 5 of [Z]. That work investigates  this problem with the help of 

hypergraphs and in p articular the representative graph of a hypergraph. (See  

[Be] for definitions o f  hypergraphs . )  Thes e  representative graphs are CAG 

graphs and what are called connection sets in [Z] are CAG edge labels. Zaniolo 

shows our result for "simply-connected hypergraphs" which in our terms are 

defined as follows: A CAG graph satifies the CA G -Z property if in e ach cycle of 

the graph there is an e·�e whose l abel  is c ontained in all other labels of the 

cycle. It can be sh�\rn. a-s Et c onsequence of propositfon 5, that CAG-Z character

izes CAG-C graphs e ach of. whose blocks is c omplete. Therefore this work extends 

the result to more schemas. 

} 
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8. CAG-C is sufficient 

Before proc eeding to the result of this section, we need the next lemma. 

Lemma 6 A graph is CAG-C if and only if e ach cycle of the graph contains a pair 

of adjacent. comparable e dges .  

Proof The if  part is immediate. The only-if p art is to  be found in the appendix. 111 

We are now nearly fully armed for our final assault of this section. Our main 

weapon is a transformation which operates  simultane ously on a database and its 

schema. 

Let R b e  a database satisfying CIP, a{R)=R the schema for R, and assume 

CAG(R) = G satisfie s  CAG-C. Let L be a maximal label of G. Define a transforma-:

tion, TL{R G)={Tt(R), TL(G)) as follows: C ollect all the e dg e s  of G having L as a 

label and denote the resulting se t  o f  edges Et. Let Vt be the set of endpoints 

(relation schemas) of the e dg e s  in E1 and let Rt be the relations in R with sche

mas in Vt. Form Tt(R) by replacing Rt by • Hi,, the join of the relations incident 

to edges  labelled by L. Define TL(G} as follows: Let S =  UVt be  a relation schema 

containing all the attributes in all the schema.ta  of Vt. Form the vertex set of 

Tt(G) by removing Vt and adding S. Form the edg e  set of T1(G) by removing E1 

and replacing the e dg e s  between a vertex, R1, . not in VL and any vertex in Vt with 

an edge  (R;, , S) .  The edges not incident to vertices  in Vt appear unchanged. 

We define the labelling function in TL(G) ,  denoted lr1(G), in terms of lG, the 

llbel function in G. It suffice s  to define its b ehaviour on e dges:  An edge of Tt(G) 

ich appear s  in G has the label it had in G. Otherwise , a new edge • s  label is the 

ion of the labels on the e dge.s_, it replaced.  This is formalized by 

lhat if the relation S already appears  in R, T1(G} is an induced subgraph of 
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G. It is easy to  se e that TL{G} is the CAG graph of the  schema of  Tt(R} . 

A key feature of this transformation is that the edges of EL form a c omplete 

subgraph of G on the vertice s  VL. In order to see this, consider two e dges, 

e, f of EL with e = (R9 i, R6 2) ,f = (R1 1,R1 2) .  Then all four relations contain all the 

attributes  in L. The re fore the e dg e  (R6 1, R  J 1 ), if it exists (it will not exist pre-

. cisely when e and J are incident with R8 1=RJ 1 ) ,  has a label  which contains L. But 

since L is maximal in G, the containment must be improper. 

We will need to prove three propositions c oncerning this transformation. 

The first  is relatively simple .  

Proposition 7 An instance of  TL(R) , if  i t  exists,  i s  an  instance of  R 

Proof Since the relation schemes in Vt e ach share exactly the attributes in L and 

since R satisfie s CIP, the c ompatible tuples c ondition holds amongst the rela

tions in Rt and their join is an instance  for them, by propositions 1 and 2. 111 

Before proce e ding we need to make an observation. Let Rt b e  a vertex of G 

in V-VL which is  adjacent to some vertex  in V1. R ... appears in TL(G) adjacent to S. 

Let lrL(G)((R,, S )  )=L 1X, whe re L 1 C L and X i s  disjoint from L and non-empty. (If 

no c andidate for R;, can be found with the se propertie s, we do not ne e d  the 

observation. ) 

Obsen,ation There is exactly one R; EVt such that XCR;. 

Proof Clearly there cannot be two such relations sinc e X¢L. It remains to s how 

there is at least one .  Let X=AB · · · and assume the existenc e of two distinct 

incornparable ,, in G and by the triangle lemma, part 3, l c((Rk , Rt ))=L is their 
,,. <�)� 

intersection which is impossible s ince  L is maximal in G. a 

As a consequence of this observation we have that if an edge (Ri, S ) in T1(G) 

has e. label containing an attribute not in L, there is exactly one edg e  incident to · 
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Ri in G having this label. (The c ase of S appearing in G is  special; however, the 

statement holds then as well . )  Otherwise all edges b etwe en Ri and the vertic es of 

VL have the same labe l  in G; namely, lr
1
(G)((R,J S )  ) .  The fact that the e dg es 

adde d  to G to form T1(G) do not have "fat" labels is crucial in the remainder of 

the development. 

Proposition 8 T1(R) satisfies CIP. 

Proof Edges not incident to S represent parts of the CIP constraint not affecte d  

by the transformation. The r emainder of the proof follows from proposition 7, 

the observation, and the subset rule for projections. 111 

.Proposition 9 TL(G) satisifies CAG-C. 

Proof Let C be a cycle of T 1(G) which violates CAG-C. Each e dge  of C not incident 

to S has the same label  as the equivalent edge  in G. Let the e dges  (Rt , S  ), {RJ, S  ), 

in C have incomparable labels L 1X, L 2Y, respectively, with X and Y disjoint from 

L. By the observation we c an c hoose R1c , R i in V1 such that lc((R, ,R1c ) )=L 1X and· 

lG((R;,R z ) )=L 2 Y. If X and Y are comparable then we have Rk =Ri . Thus C is a 

non-CAG-C cycle of G. If X and Y are incomparable,  Rk �Rz and the se quence of 

edges (R, ,RJ J, (R1c , Rz ) ,  (Rz , R1 ) have incomparable labels. Therefore G has a cycle 

without adjacent, comparable e dges and is not CAG-C by lemma 6. • 

Theorem 3 If R is a database satisfying CIP, R is the schema of R and GAG (R )  

<.' satisfies CAG-C, then R is join c onsistent. 

Proof Continue to apply transformations of the type described to R and GAG (R ) 

· ntil a state is reache d  in which no further transformation can b e  made .  These 

ansformations generate a sequence of database ,  schema pairs: � <R0, R  0>, 

· , R 1>, , . . . .  sR,vRn > J  with R0=R, R 0=R and each pair in the sequence a 

sformation of the previous pair. Since each transformation results in a 

ller schema, all such transformation sequences must terminate. Since no 

formation can b e  applied to GA G (Rn } it must be  the c ase that GA G (Rn ) has 
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no e dges .  Thus R.i. c onsists of a set of relations having no c ommon attributes.  

Such a database is always j oin consistent. Since each <�. Ri> pair repres ent a 

CAG-C schema and CIP database by propositions 8 and 9 ,  p roposition 7 allows us 

to de duce the j oin c onsistency of R. • 

9.. Yet another sufficient condition 

This next, somewhat bizarre result s hows that there is at least som e  c on

nection between join c o nsistency and dep e ndency theory. 

A join dependency is written •[s] . where S is a set of sets of attributes.  A 

relation r all of whose attributes are in S satisfie s •[S] if r is  a fixed p oint of  the 

"projection-join mapping" associated with S [BMSU]. If S = fS 1 • . . . • Sk L then r 

satisfies •[SJ iff 

* (1rs.(r ) )=r 
i=1  ' 

See [R2] [F2] for more on j oin dependencies.  

Proposition 10 Let R be a database satisfying CIP and having s chema R. If e ach 

relation in R satisfies the join depend e ncy defined by labels of e dges  incident to 

it in CA G(R), then R is j oin consistent.  

Proof. We show that the compatible tuples c ondition is  satisfie d. Assume for 

some tup le t 1 in relation r 1 that the c ondition fails to  be  satisfied. Let 

S = l t 1 • • • • •  ti: J be a maximal set of tuples {with t, from relation r,: no more than 

one tuple from any relation) within which the re quirements of compatibility are 

satisfied. We know that relation Tk-f. t (from which no tuple appe ars in S) has 

tuples not necessarily distinct, such 

sist.ent, therefore their j oin appear s  in (the appropriate proje ction of) r1c + 1 i  by 

the join dependency. But this tuple may b e  added to S, contradicting its maxi--, : 

mality. • 
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The proof shows that an exhaustive search algorithm for the compatible 

tuples c ondition succeeds in such a database without ever having to b acktrack. 

This is hardly necessary for join consistency. 

10. Open questions 

There are many questions left open by this work. No s chema condition b oth 

necessary and sufficient for CIP to imply join c onsiste ncy has been uncovered. It 

is not known whether or  not all CAG-C graphs are ac c epted by Algorithm 1. 

There are some schemas acceptable to Algorithm 1 whose  graphs are not CAG-C. 

The c ondition of section 9 is independent of the other c onditions described. It 

restricts the data rather than the s ch ema. It is much too restrictive. P:rehaps a 

more useful contribution of dependency theory c an b e  found. 

D o  any of  the known schema desig n  techniques guarantee an easy j oin c on

sistency test for their designs? Note that the s chema of example 3 is the output 

of [BDB] given �A ➔ C, B ➔ Cl as input. Furthermore it is isomorphic to the exam ... 

ple of [Ni] .  Although current de sign  criteria (in dependent c omponents in normal 

form) do not produce s chemas in which CIP implies join c onsistency, this doe s  

not mean that they may not have e asy tes ts.  

Even  if  the class of schemas with polynomial time bounded join consistency 

tests is very large , ·  one may argue on semantic grounds that the universal rela

tion as sumption over c onstrains the database. It requires every value of every 

attribute to  h ave s ome relation to som e  value  of every other attribute in the 

. universe.  This is  frequently not the c as e  in practice: a department in the plan-. 

ing stage  has no employees.  An important goal  of current research must b e  to  

· eaken the universal relation assumption to  deal with these  difficulties without 

sing the advantag es the assumption provides .  
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Appendix 

The following notation is used in the proof of the next result. If e, f are 

edges  in a CAG graph, we write <e,f> to mean l(eJ� l(f) and [e,/] to mean e and / 

are c omparable ;  that is ,  e ither <e,f> or <f, e> holds. We use the symbol -. to 

mean negation. 

Lemma 6 (Only-If Part) A CAG graph containing a cycle in which no adjacent 

pair of edges  is comparable is not CAG-C. 

Proof By contradiction. Let G = CA G (R ) for some schema R. Choose 

C=R o,R 1, ,  . .  , Rt- t, a cycle of G and denote the edg e  (R,-1, R,) as ei. (All index 

arithmetic is done mod k.) Assume C is c hosen as a shortest cycle of G satisfying 

(•) 

Since G is a CAG-C graph, we may assume. without loss of generality, the 

existence of i and i such  that <ei, e1> and for all k 1, k 2 with O�i �k i<ke�J �k - 1  

(••) 

In the s et of  edges from e, to ei inclusive, ei, e1 is the only comparable pair. It i s  

easy t o  see  that j >i+2. Obviously, by (•)  j �i +2. However j =i + 2  allows the fol

lowing computation 

<e;;, ei+2> ➔ (Rt-1 ('\R;,)  � (Ru-1 nRH2) 

➔ (Ri nRi+ 1) d (R,-1 nR, nRi+ 1) � (RH1 nR'i.+2) 

➔ < ei+t• e,+2> 

which contradicts (*). 

The attack for the remainder of  this proof is to choose a sequence of chords  

of  C which subtend neste1 intervals of the path from R;,- 1 to  R1 - The innermost 

chord forms a triangle wit.h two edges  of C. The label of this c hord is necessarily 

contained in both these �dges, by the triangle lemma. It is then shown that the 

label on each chord of the sequence contains the label of each chord which pre· 

cedes it. This leads to a contradiction. 

1 

qo=(J; 

The las1 

We 

This car 

that at J 

true for 

subtend 

fying ( •) 

By 

Therefo1 

The 

( 

But 
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The elements of the sequenc e  are denoted by s ubscripted q's. Let 

[qm.- 1, eJ:1+ 1] ➔ qm = (R1c1+ 1•Rt8} 

[ qm- 1, e.1: 2] ➔ qm = (Ri 1,R.1:2- 1) 

If both antecedents hold, 

the choice is arbitrary. 

{see figure A. 1 )  

The last element of t h e  sequence i s  q11 for p = j -i -2. 

(•••) 

We must now show that. e ac h  of q 0, q 1, • • •  , q,, is a well specified edge of G. 

This c an be done by induction. q o  is an edg e  of G by <e;., e;> .  It s uffices t o  show 

that at least one of the two c o nditions of (•••) holds for l�m �p. Assume this i s  

true for all m �m0 . Then qm0 
is an e dg e  of G .  But qm0 

and the edges of  C which it 

subtends form a cycle which is shorter than C. Since C is a shortest  c ycle s atis

fying ( •), one of the c onditions of ( .. *) must hold. 

By the construction in ( ***) ,  qm subtends one fewer e dges of C than qm -1• 

Therefore ql' subte nds j -i + 1-(p + 1) = 2  e dges of C which we label as en and en+ l •  

(That is t o  say, q
,, = (Rn.- 1,Rn + 1 ) ) ,  As advertised, < en, %, >  and < en + t, qp > •  We mus t  

now show < qm , qm - i> for O<m �p. We proceed b y  induction backwards from p. 

There are two cases  to  c onsider in the basis. 

qp - 1 = (Rn-2-Rn+ 1 ) 

(see figure A. 2) 

case 1 .  [ qp :... 1: �tJ.+2] by the second c ondition of ( ***). If < gp - 1, en+2> then 

, en+2> sihce cj; , en+2J qp - 1 = (Rn- 1, Rn + 1 ), (Rn. + 1,Rn+2), (Rn+ 2,Rn -1 ) form a trian

But then < en + t> � +2> by the transitivity of < .> violating (*). Therefore 

�2. qp - 1>.  But t,hen <g,, , q,, _ 1> by the triangle lemma, as required. The 
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reasoning in c ase 2 and the induction step i s  identical. subject t o  the required 

subscript cbang e s. 

We can now deduce <en+ t, qo> - But we also have 

<eii e;> ➔ (R,-1 nRi) :2 (R1-1 nR;) 

➔ (Ri- 1 nR1) :2 (Ri- 1 f'tRi nR1) :2 (Rj-1 nR1) 

➔ <qo, eJ> 

Therefore <en+ t• e3> which violate s  ( **}. 11 


