
-69-

On the Universal Relation

Marc H. Graham

University of Toronto

Toronto, Canada

1. Introduction

At the 1978 Very Large Data Base conference a paper was presented in

which the wisdom of the "universal relation assumption" was questioned and

more research was called for [BBG]. Since then it has been discovered that the

test for the existence of an instance of the universal relation corresponding to a

given database is intractable [HLY]. This paper reviews that work and then

searches for schemas and databases for which efficient tests exist. The outline

of the paper is as follows: After the basic notation is given in Section 2, section 3

reviews the work of [HLY]. Sections 4 through B investigate a particular test for

join consistency and situations in which it may be applied. Section 9 briefly pur

sues a different course. Section 10 presents open questions for further research.

Basic Definitions and Notation

Very rarely in a discussion of databases is it necessary to introduce an

infinite object. All the objects to be encountered in this paper are finite. In par

ticular. that which we call the universe. and denote. U is a finite set of tokens

hich are themselves called attributes. In real world examples. attributes are

ch things as EMPLOYEE NUMBER, SALARY, SKILLS, ...• for a personnel applica-

-70-

tion or IDENTIFIER, DATATYPE, STORAGE LOCATION •... , for a compiler's symbol

table. As we are to investigate technical aspects of relational database theory, it

is more convenient to use single letters, which we take from the beginning of the

latin alphabet and often subscript: A 1, A 2, •.. , B, C; as attributes. When neces

sary we will use capital letters towards the end of the la tin alphabet: X, Y, .. ., ; to

denote subsets of the universe and following established custom we write set

union as an operator free expression and deliberately confuse a single attribute

and the set containing only that attribute. Thus A
1
X should be read as iA

1
� LJX.

We now introduce data values which are things such as 12345 and real. Our

first step is to associate with each attribute a set of values called a domain. For

EMPLOYEE NUMBER we might use f "strings of length 5 over 0, 1. ... , 9''j; for DATA

TYPE: treal, integer, logical, string, �. Usually distinct attributes are allowed

to have either distinct or identical domains. We "Will be drawing no consequences

from the nature of the domains; therefore, we are free to assume all attributes

share· a single domain, denoted D. In our subsequent examples. D need be no

larger than !O, 1. 2), but our results hold for arbitrary assignments of finite

domains.

Attributes are assigned attribute values• in groups. The object which per

forms this assignment is called a tuple. A tuple is a function from the universe to

the domain. In symbols:

t: U ➔ D

We use the letters: t, u, v, .. ., occasionally subscripted, to denote tuples.

A tuple serves to identify and relate attribute values. So we might have a

tuple, t, with t(EMPLOYEE NUMBER) = 12345, t{SALARY) = 20000, t(IDENTIFIER) =

"IDENTIFIER'�, t(DATATYPE) = string. It ls easier to display tuples as vectors or

"ordered n-tuples" such as (12345, 20000, "IDENTIFIER". string) by arbitrarily

deciding upon some ordering of the attributes. {Thus the name, tuple.) This

-71-

makes the tuples appear to be elements of the Cartesian product of the nnderly

ing domain taken with itself and this was the original definition.

A tuple need not be defined on every attribute in the universe. Let the set of

attributes on which a given tuple. t. is defined be called its scheme and denoted

a(t). A set of tuples is uniform if each tuple has the same scheme. A relation is a

uniform set of tuples. A relation's scheme · (or schema) is the scheme of its

tuples. Relations are conventionally denoted by subscripted lowercase

r's: r1,r2, ... ,Ti,. .. , occasionally s; relation schemes by subscripted upper case

R's: R 1,R21 ... , Ri, ... , occasionally S; obeying the equation a(ri)=Ri· (a(ri) is

just a(t} for t an element of ri , which is fine whenever ri has any elements. The

empty set is certainly uniform and thus a relation but we do not know what

schema to give it. We will blithely assume a to be well defined everywhere and

that in particular when confronted with an empty relation it can distinguish

which empty relation it is.}

Relations may be displayed as tables or matrices in which the columns

represent attributes, each column being labelled by the attribute it represents,

and the rows are tuples in the vector display mode already mentioned. There are

examples of such displays in figures 1 thru 3.

When for some TJ we have a.(r3)=U, then we say r; is an instance of the

universal relation or merely an instance. An instance is often denoted by an

upper case I. The phrase "the universal relation" reflects the customary misuse

of the term "relation" for "relation schema." We will continue this custom, rely

ing on context for disa:mbiguation.

A database is a set of relations. These are denoted by an upper-case bold R

as in R=fr 1,. .. ,rk � for a database of k relations. A database schema is a set of

relation schemas and not surprisingly we write

-72-

it is easie:r to ignore the empty database than it was to ignore the empty rela

tidh. We also safeiy ignore databases in which distinct relations have the same

schettta..

We will be concerned with two operators of the relational algebra, projection

M.nd join. Projection forms its result relation by ignoring some of the attributes

df its operand relation. Let t be a tuple and let X be a subset of a(t). The projec

tion of t onto X. written t.X, is a tuple, u. with the properties that a:(u }=X and fot

ea.oh attribute A EX, t (A)=u (A). The projection of a relation onto a subset of its

attributes is the set formed by the projections of its tuples onto that set of attri

butes. Two or more tuples having the same projection are identified in the pro

jection of the relation. For r a relation and X�a(r), we write projection as nx(r)

and define it as

nx(r)=fu I 3 tErl\u=t.XJ

We use different notations for projection of tuples and projection of rela-

tions because the two operations behave differently. We can illustrate this

difference with the following rule which is obviously sound.

Subset Rule for Projecti01t: Let r 1, r2 be relations. Let Xkcx{r1}na(r2). If

n-x(r1}=irx(r2) then for every proper subset Y of X. ny(r1}=1ry(r2).

The same rule holds for projections of tuples. Somewhat surprisingly, the

converse of the subs'et rule is false for r'elations even though it is true for tuples.

:Figure 1 is a counterexample. We leave it to the reader to convince himself that

the proje'ctions of the relations in that figure on any subset of their attributes

are equal.

-73-

U=fA. B, CJ
D =fl. 2�

Tt T2

B C A B C

1 1 1 2 1
2 1 1 1 2 1

1 2 1 1 1 2

1 1 2

Figure 1

A counterexample to the
converse of the subset rule

The natural join takes two relations as operands and forms a new relation

whose schema is the union of the operand schemata. For relations r 1, r2 with

r 1 *r2=(t I (:J t 1Er1}(3 t2Er2)(t.R 1=f 1)""' (t.R 2=t2)j

We can calculate r1 *r2 by examining the tuples that appear in the projec-

tions of r 1 and r2 onto. their common attributes; i.e., the relations

both, namely s3=s 1 ns2. For each tuple u e:s 8 we find the tuples in each of

r 1 and r2 which have u as their common attribute projection and form a tuple of

r 1 *r2 for every pair. (This is not meant to be an efficient calculation technique

but only to help explain the definition.) Therefore any tuple of r 1 (or r 2) whose

projection onto a(r 1)na(r2) does not match any tuple of r2 {or·r 1} is lost from

the join. Conversely any tuple which does match appears indiscriminately with

all the matching tuples of the other relation. In the special case of

a(r 1) na{r2)=cp, the join is exactly the cross-product: every tuple of r1 appears

with every tupl� of r2. In the case a(r 1)ka(r2), the join is the intersection: those

tuples of r2 whose a{r 1) project.ion appears in r1•

It is not difficult to see that join is an associative and commutative opera-

\
\

'!

i
i

'i

I
. I

- 74-

writing the expression representing the join of a group of 'le relations as

T 1�2• ' ' ' *Tt

meaning the result of any one o f the implied sequences of binary joins. Fo:r c on

t
venience we abbreviate this to . • ri or, when joining all the relations of a data-

i= l

base R= fr 11 T2i . . . , r,t �, to *R. It c an easily be shown, by induc tion on k, that, for

3.. The General Case

We now begin our formal investigation into the difficulty of enforcing the

universal relation assumption as a database constraint. This section summar

izes the negative results of [HLY] and [L].

A pair of tuples s elected from distinct relations of a database are compati

ble if they agree on the attributes on which both are defined. Thus t, w are com

patible if t. (a(t) n a(w))=w. (a(t) na(w)) .

Proposition 1 . (The Compatible Tuples Condition). Let R= fr 1, . . . , rd be a data

base. Select r1 from R and u from 1"1 . An instance o f the univeral relation exists

for R if and only if a set of tuples, Iv 11 • • , • V.t J c an be found such that for all

• vi and Vt are compatible

Proof. The necessity is apparent: u is the projection onto a(r1) of some tuple of

I. The v, are the projections of that tuple onto the remaining relation schemes,

Conversely, the v,: build a tuple of I whose projection onto a(r1) is u and such a

tuple can be built for each tuple of each relation in R. 1111

l

s .

a

- 7 5-

Direct verification of the compatible tuples condition leads t o a "backtrack

ing" algorithm. However, the next proposition s eems to offer some hope.

Proposition 2. Let R be a d at abase satisfying the c ompatible tuples condition

and let I b e any c orresponding instance . Then we have

1) n ;:;; • R

2) TI'a(r)(• R)=r for every r ER

Proof. For part 1 s e e [ABU]. For part 2 s e e [HLY]. •

In [HLY] a database which s atisfies the universal- relation assumption is

c alled join consistent. P roposition 2 gives a justification for this name. It states

that the join of a j oin consistent database is its largest instance. This implies the

corre ctness of a simple algorithm to test j oin consistency: form the j oin and test

the projections. Regrettably, this algorithm has worst c ase behaviour O (mk) (k

the number of relations, m the size of each relation). It may b e deduc ed from

the next theorem that no algorithm with running time a polynomial of fixed

degree is likely to b e found to solve this problem in general.

Theorem 1 Determining j oin-consistency is NP-complete.

Proof. [HLY] A reduction from graph vertex 3-colorability is g iven. 111

Note Readers unfamiliar with the notion of NP-completeness are referred to [GJ].

For our purposes it will suffice to assert than an NP-complete problem is prob

ably too difficult to be solve d in a reasonable amount of time by any algorithm.

Knowing that a database is join-consistent does not seem to he lp in deter

mining i f a modified database will be j oin-consistent. This is p roven in [HLY] for

the c ase that the modification is a tuple insert.

- 7 6-

4-. Tract.able Subproblems

Since it appears that the p roblem of determining join c onsistency is

intractable in general, we turn our attention to subproblems which can be shown

to have efficient algorithms. In particular, we will give characterizations of sub

problems for which it is sufficie nt to te st the following c ondition, which is a

weakened form of the c omp atible tuple s condition.

Definition A database R= fr 1, • . . , r1c) satisfies the common intersection property

tions agree on their c ommon attributes . [Z, chap 5.]

The test for CIP is p olynomial-time bounded for any database. As the c om

patible tuple c ondition can b e shown to imply the common inters ection pro

perty, CIP will hold in any join-consistent database . The insufficiency of CIP can

be demonstrated by the example in figure 3, which also appears in [HLY] . The

:reader may verify that the database is not join c onsistent by forming the j oin.

We will formalize what "goe s wrong" with this example in a later section . .

U = !A, B, CJ

Tt r2 T3

A B B C C A

1 1 1 1 1
2 2 .2 2 2 1

Figure 3

So far we have considered properties define d on the data in a database,. We

now seek schema properties Yhich characterize database s in which CIP implie1

jtlm-<=:onsistency. Spe.cifi.cally we .e�amine the pattern of intersection of the rela ...

ti.on .scneme·s. Le't R =:iR 1, . . . • R't. J be a database s chema over a universe U. An

attribute A €.Rd ii ,said to be common if it appears in s ome interse ction

R1 nR.: f« some k •j. As we will be studying interse ctions. we c an ignore any

�y is

bown

sub-

is a

')erty

rela-

com

pro

:> can

The

join.

. We

plies

rela-

J. An

Jtion

any

- 7 7 -

attribute which i s not common. Consider, in justification, adding any s e t of attri

butes, X, to R 1 in figure 1. No way of assigning values to X will affect the conclu

sion that no universal in.stance exists. Now assume that for some distinct

schemes R
1
, Rt - we have R1 hRk . Then we are safe in studying the schema

R - iR; l , in the sense that any database satisfying CIP and having schema R will

have a universal instance just in case the database resulting from the removal of

a relation r
1

with schema R
1

has a universal instance. These observations lead to

the following algorithm. which outputs "ye s" only if its input is a s chema for

databases in which CIP implies join-consistency.

Algorithm 1

Input: A schema R = fR 1 • . • . • Rk � on universe U.

Ouput: "yes" or "no"

Procedure:

Step 1: For each i from 1 to k remove from Ri any non-common attributes.

If Ri becomes empty remove it from R.

Step2: Find. if possible , R;., Ri in R with R,;. t;;;..R
1. Remove Ri from R.

Step 3: Repeat steps 1 and 2 until no changes are made. If R is empty out

put "yes" ; otherwise output "no". 111

If the number of relations in R is k and the number of attributes in U is n,

then Step l can be done in time O (kn) ; step2 in time O (k 2n); step3 can c ause at

most le iterations . Therefore algorithm 1 is O (lc 3n).

A necessary' cqndition

We now apply some techniques of graph theory to our problem. It i s

assumed the reader is familiar with the elementary aspects of graph theory as

- 78-

For a given family of subsets o f a given set, a n intersection graph is a g raph

is which the subsets play the role of vertice s and an edge connects pairs of sub

sets whos e intersection is non-empty. A common attribut e graph (GAG) is a

labelled intersection graph in which the label on an e dge is the intersec tion giv

ing rise to the edg e and the label on a vertex is the union of the labels on the

edges incident to the verte x. Formally, if R is a database schema on U, then

GAG (R) = (V.E. l) where

• V=R

• E = HRi,R1) 1 R, nR;� r/JJ

• l : V LJE ➔P (U)

whe re P (U) is the set of all s ubsets of U and l is defined by

f,nR.1
l (x)= lY l ((x,y))

if x EE and x =(Ri,Ri)
if x E V and (x, y) EE

This c hoice of vertex labelling automatically removes non-c ommon attributes

from our atte ntion. There are examples of CAG graphs in figures 4 and 5.

We can rapidly e stablish some partial results by c onsidering graphs in

which the edge labels are pairwise disjoint.

Proposition 3 Let the e dge labels of CAG (R) be pairwise disjoint. Then R is a

scheme in which CIP implies join consistency if and only if GAG (R) is acyclic.

Proof

If It is e asy to see that algorithm 1 will output "yes" for any acyc lic graph. In

particular, the se} of c ommon attributes of any leaf in such a graph is exactly

the label on the edge connecting the leaf to the graph.

Only if

We construct a cou nterexample . Let C be any cycle and R;, any vertex of C.

Construct a relation for eac h vertex of CA G (R) other than Ri c ontaining two

- 7 9-

tuples: one a vector of all l ' s, one a vector of all 2' s. Let e be an edge of C

incident with R,. Construct a two tuple relation for R, as fol lows: one tuple c on- .

tains all 1 ' s except for attributes in l (e) which are assig ned 2's. The other tuple

has 2"s everywhere exc e pt for l ' s in l (e }. This construction s atisfies CIP by vir- ·

tue of the fact that no attribute appears in more than one e dge labeL

Now -� .R; is cle arly a relation on a.11 th e attributes of the universe and hav-
,.,..,

ing two tuples: one of all l 's a.nd one of all 2's . Just as clearly. (_� _R;) *Ri = r/>. Thus
., ... ,.

the constructe d database state satisfies CIP without being j oin c onsist e nt, as

required. 111

Let R be a s chema with CAG(R) as in the s tatement of proposition 3. Let W

be a set of attribute s not appe aring in R. Consider enlarging th e schemas of

some subset of R by adding W to each relation schema in the subset. Let the new

database schema be R ' . GAG (R ') will in gene ral n o longer have all pairwise dis

j oint edge labels; however, if GA G (R) c ontains cycles , the proof of p roposition 3

will go through for R ' if the attribute s in W are uniformally assigned the value 0.

We have e stablished the following

Corollary For any s chema, R, let R ' b e the result of removing from R any attri

bute app earing in three or more relations {equivalently, two or more e dg e

labels) . R i s a s chema for which CIP implie s join c onsistency only if GAG (R ') i s

acyclic . 111

6. A complete solution for databases on three relations

We are able to characterize all databases with thre e relati ons for which CIP

implie s j oin c onsistency. (It is obvious that CIP implies join con siste ncy for all

·· database s on two >!;"elations .) In the proce ss· we introduce a condition which will

.later be s een to be ·sufficient in the ge neral c ase .

- 8 0-

!J��t�n We say that a CAG, G, satisfies the CAG.:.c condition if every cycle of G

c�qt,�ifl1S two edg e s, s ay ei, e3 with l {ed:H (e1). ei , e
1

are c alled comparab le

eclg��- q i� c alled a CA c�c graph.

A grµph in which every cycle of length 4 or more has a chord is called tri

Cfff!Jt+lated or chordal. I t is e asy to see that any CAG-C g raph is chordal. The tri

angte� of CAG graphs have s om e useful propertie s which are summarized in the

ne�t propo sition .

.PrO]?osition 4 The Triangle Lemma

(1) In any CAG triangle , the intersection of any two edge labels is contained in

the third edge label.

(;z) Ip. �ny CAG-C trian�le, the inters ection of any two edge labels is non-empty.

(3) If two edges of a CAG-C triangle are inc omparable , the third e dg e lab el is

their intersection.

Pro<Jf

(1) Tile intersection of two ec:lge la� els is the intersection of all three relations

which is certainly containt3d in the intersection of the two relations formin8,

the third e dge �

(�) A§�l,Jme otherwise� By \µe OAQ-C property, the third eclge is c omparable \�

pp� o,f th� twq �Q.&e:s w�o�� int�r�ection is empty. By (1) . the intersection Qf

the twq cqmp��ble �qg�s, i.e . � t�� srn8iller of tlie twq, i s c ontaine d in tl'.\Ef ·

r�maining edge , viqb1tin,g t.pe assµmptiqn.

(:3) If \he th.ircl ed�e c qntai�eg one of the incomparable

vi;al{:lte��· 'fh\:!t�for-e tb:e thirq edg e is a l?wer b ound on the two incomp,a.fi

eq�e s qng must �fJ tti,� �r.ei;\�st lower p ound by { 1) which i s not the E3fllft

s�t py, (at ,

fig�r�� 4- and 5. �iv� the o,ply pqssible CAG tri�ngles for CAG-C ang. IlQ�·

-8 1 -

C triangles respectively. All letters in these figures repre sent non-empty, dis

joint sets of attributes exc ept where noted. From the triangle lemma and previ

ous con.siderations, we have

Theorem 2 The Triangle Theorem

If R is a database of three relations with s chema R, then CIP is e quivalent to

j oin c onsistency for R iff one of the relation schemes of R contains all of the

c ommon attributes of R.

Proof Figure 4 gives the c ase for CA G (R) a triangle. Inspection of the other

graphs on three points completes the proof.•

7. A technical result

The importance of the triangle theorem is that it shows that database s che

mas on three or fewer :relations are fully understood with regard to this prob

lem. The same is not true for larger schemata. The next result i s a technic al one

about CAG-C graphs . Having it will allow us to discuss related work in this area.

A c omplete graph is one in which an edge c onnects each pair of vertice s. A

triangle is the complete graph on 3 vertices. We now prove a result about c om

plete CAG-C graphs. A minimal edge of a CAG graph is one whose lab el i s

minimal among the set of all e dge labels in the graph. A maximal e dge i s the

dual notion. A smallest e dge has a label c ontained in every e dg e label of the

graph. The largest edge, is also defined. Every non-trivial CAG graph has a set of

tninmal (maximal) edges but may or may not have a sm·auest (larg est) edge.

:Proposition 5 Let R b e a database s chema with GAG (R) s atisfying. CAG-C. Then

iff there is;, a non-empty set of attributes which appear in

00! The if part is obvious . The only-if p art is obvious if R contains fewer than 3

ations. For larger schemas, we prove the stronger statement g iven next.

- 8 2-

Induction Hypothesis Let R = (R t• , . . , R71 J, (n �3) and a ssume CAG (R) is c om

plete. Let S = fS 1, • . . • Sn � be the c ollection of all subsets of R having n - 1 ele

ments. The n for all but at most two values for j, l�j �n

Basis The triangle lemma.

n n- 1

(lR,;.= n R;
lt;

i = 1 k = 1

Induction Assume the hypothesis has been proven for n �k. Consider a schema,

R, on k + 1 relations with CA G (R) a complete CAG-C graph. Choose a minimal

edge of GAG (R). There are � = �]= k - 1 subsets of size k which c ontain both end

points of this e dge . By the induction hypothesis this edge is smallest for each

subgraph induced by these subsets . But the subsets cover all the relations in R

and all the e dg e s in GAG (R). e stablishing the induction hypothesis for k + 1 . 111

Note that this proposition applies to any complete CAG graph each of whose

triangles are CAG-C.

We have introduced proposition 5 in order to comment on the work of

Zaniolo in chapter 5 of [Z]. That work investigates this problem with the help of

hypergraphs and in p articular the representative graph of a hypergraph. (See

[Be] for definitions o f hypergraphs .) Thes e representative graphs are CAG

graphs and what are called connection sets in [Z] are CAG edge labels. Zaniolo

shows our result for "simply-connected hypergraphs" which in our terms are

defined as follows: A CAG graph satifies the CA G -Z property if in e ach cycle of

the graph there is an e·�e whose l abel is c ontained in all other labels of the

cycle. It can be sh�\rn. a-s Et c onsequence of propositfon 5, that CAG-Z character

izes CAG-C graphs e ach of. whose blocks is c omplete. Therefore this work extends

the result to more schemas.

}

w

SC

CA

tio:

lab

(re

ma

to

cor

I
!

'

\
\

-83-

8. CAG-C is sufficient

Before proc eeding to the result of this section, we need the next lemma.

Lemma 6 A graph is CAG-C if and only if e ach cycle of the graph contains a pair

of adjacent. comparable e dges .

Proof The if part is immediate. The only-if p art is to be found in the appendix. 111

We are now nearly fully armed for our final assault of this section. Our main

weapon is a transformation which operates simultane ously on a database and its

schema.

Let R b e a database satisfying CIP, a{R)=R the schema for R, and assume

CAG(R) = G satisfie s CAG-C. Let L be a maximal label of G. Define a transforma-:

tion, TL{R G)={Tt(R), TL(G)) as follows: C ollect all the e dg e s of G having L as a

label and denote the resulting se t o f edges Et. Let Vt be the set of endpoints

(relation schemas) of the e dg e s in E1 and let Rt be the relations in R with sche

mas in Vt. Form Tt(R) by replacing Rt by • Hi,, the join of the relations incident

to edges labelled by L. Define TL(G} as follows: Let S = UVt be a relation schema

containing all the attributes in all the schema.ta of Vt. Form the vertex set of

Tt(G) by removing Vt and adding S. Form the edg e set of T1(G) by removing E1

and replacing the e dg e s between a vertex, R1, . not in VL and any vertex in Vt with

an edge (R;, , S) . The edges not incident to vertices in Vt appear unchanged.

We define the labelling function in TL(G) , denoted lr1(G), in terms of lG, the

llbel function in G. It suffice s to define its b ehaviour on e dges: An edge of Tt(G)

ich appear s in G has the label it had in G. Otherwise , a new edge • s label is the

ion of the labels on the e dge.s_, it replaced. This is formalized by

lhat if the relation S already appears in R, T1(G} is an induced subgraph of

-84-

G. It is easy to se e that TL{G} is the CAG graph of the schema of Tt(R} .

A key feature of this transformation is that the edges of EL form a c omplete

subgraph of G on the vertice s VL. In order to see this, consider two e dges,

e, f of EL with e = (R9 i, R6 2) ,f = (R1 1,R1 2) . Then all four relations contain all the

attributes in L. The re fore the e dg e (R6 1, R J 1), if it exists (it will not exist pre-

. cisely when e and J are incident with R8 1=RJ 1) , has a label which contains L. But

since L is maximal in G, the containment must be improper.

We will need to prove three propositions c oncerning this transformation.

The first is relatively simple .

Proposition 7 An instance of TL(R) , if i t exists, i s an instance of R

Proof Since the relation schemes in Vt e ach share exactly the attributes in L and

since R satisfie s CIP, the c ompatible tuples c ondition holds amongst the rela

tions in Rt and their join is an instance for them, by propositions 1 and 2. 111

Before proce e ding we need to make an observation. Let Rt b e a vertex of G

in V-VL which is adjacent to some vertex in V1. R ... appears in TL(G) adjacent to S.

Let lrL(G)((R,, S))=L 1X, whe re L 1 C L and X i s disjoint from L and non-empty. (If

no c andidate for R;, can be found with the se propertie s, we do not ne e d the

observation.)

Obsen,ation There is exactly one R; EVt such that XCR;.

Proof Clearly there cannot be two such relations sinc e X¢L. It remains to s how

there is at least one . Let X=AB · · · and assume the existenc e of two distinct

incornparable ,, in G and by the triangle lemma, part 3, l c((Rk , Rt))=L is their
,,. <�)�

intersection which is impossible s ince L is maximal in G. a

As a consequence of this observation we have that if an edge (Ri, S) in T1(G)

has e. label containing an attribute not in L, there is exactly one edg e incident to ·

-ss.:..

Ri in G having this label. (The c ase of S appearing in G is special; however, the

statement holds then as well .) Otherwise all edges b etwe en Ri and the vertic es of

VL have the same labe l in G; namely, lr
1
(G)((R,J S)) . The fact that the e dg es

adde d to G to form T1(G) do not have "fat" labels is crucial in the remainder of

the development.

Proposition 8 T1(R) satisfies CIP.

Proof Edges not incident to S represent parts of the CIP constraint not affecte d

by the transformation. The r emainder of the proof follows from proposition 7,

the observation, and the subset rule for projections. 111

.Proposition 9 TL(G) satisifies CAG-C.

Proof Let C be a cycle of T 1(G) which violates CAG-C. Each e dge of C not incident

to S has the same label as the equivalent edge in G. Let the e dges (Rt , S), {RJ, S),

in C have incomparable labels L 1X, L 2Y, respectively, with X and Y disjoint from

L. By the observation we c an c hoose R1c , R i in V1 such that lc((R, ,R1c))=L 1X and·

lG((R;,R z))=L 2 Y. If X and Y are comparable then we have Rk =Ri . Thus C is a

non-CAG-C cycle of G. If X and Y are incomparable, Rk �Rz and the se quence of

edges (R, ,RJ J, (R1c , Rz) , (Rz , R1) have incomparable labels. Therefore G has a cycle

without adjacent, comparable e dges and is not CAG-C by lemma 6. •

Theorem 3 If R is a database satisfying CIP, R is the schema of R and GAG (R)

<.' satisfies CAG-C, then R is join c onsistent.

Proof Continue to apply transformations of the type described to R and GAG (R)

· ntil a state is reache d in which no further transformation can b e made . These

ansformations generate a sequence of database , schema pairs: � <R0, R 0>,

· , R 1>, , sR,vRn > J with R0=R, R 0=R and each pair in the sequence a

sformation of the previous pair. Since each transformation results in a

ller schema, all such transformation sequences must terminate. Since no

formation can b e applied to GA G (Rn } it must be the c ase that GA G (Rn) has

- 86-

no e dges . Thus R.i. c onsists of a set of relations having no c ommon attributes.

Such a database is always j oin consistent. Since each <�. Ri> pair repres ent a

CAG-C schema and CIP database by propositions 8 and 9 , p roposition 7 allows us

to de duce the j oin c onsistency of R. •

9.. Yet another sufficient condition

This next, somewhat bizarre result s hows that there is at least som e c on

nection between join c o nsistency and dep e ndency theory.

A join dependency is written •[s] . where S is a set of sets of attributes. A

relation r all of whose attributes are in S satisfie s •[S] if r is a fixed p oint of the

"projection-join mapping" associated with S [BMSU]. If S = fS 1 • . . . • Sk L then r

satisfies •[SJ iff

* (1rs.(r))=r
i=1 '

See [R2] [F2] for more on j oin dependencies.

Proposition 10 Let R be a database satisfying CIP and having s chema R. If e ach

relation in R satisfies the join depend e ncy defined by labels of e dges incident to

it in CA G(R), then R is j oin consistent.

Proof. We show that the compatible tuples c ondition is satisfie d. Assume for

some tup le t 1 in relation r 1 that the c ondition fails to be satisfied. Let

S = l t 1 • • • • • ti: J be a maximal set of tuples {with t, from relation r,: no more than

one tuple from any relation) within which the re quirements of compatibility are

satisfied. We know that relation Tk-f. t (from which no tuple appe ars in S) has

tuples not necessarily distinct, such

sist.ent, therefore their j oin appear s in (the appropriate proje ction of) r1c + 1 i by

the join dependency. But this tuple may b e added to S, contradicting its maxi--, :

mality. •

-87-

The proof shows that an exhaustive search algorithm for the compatible

tuples c ondition succeeds in such a database without ever having to b acktrack.

This is hardly necessary for join consistency.

10. Open questions

There are many questions left open by this work. No s chema condition b oth

necessary and sufficient for CIP to imply join c onsiste ncy has been uncovered. It

is not known whether or not all CAG-C graphs are ac c epted by Algorithm 1.

There are some schemas acceptable to Algorithm 1 whose graphs are not CAG-C.

The c ondition of section 9 is independent of the other c onditions described. It

restricts the data rather than the s ch ema. It is much too restrictive. P:rehaps a

more useful contribution of dependency theory c an b e found.

D o any of the known schema desig n techniques guarantee an easy j oin c on

sistency test for their designs? Note that the s chema of example 3 is the output

of [BDB] given �A ➔ C, B ➔ Cl as input. Furthermore it is isomorphic to the exam ...

ple of [Ni] . Although current de sign criteria (in dependent c omponents in normal

form) do not produce s chemas in which CIP implies join c onsistency, this doe s

not mean that they may not have e asy tes ts.

Even if the class of schemas with polynomial time bounded join consistency

tests is very large , · one may argue on semantic grounds that the universal rela

tion as sumption over c onstrains the database. It requires every value of every

attribute to h ave s ome relation to som e value of every other attribute in the

. universe. This is frequently not the c as e in practice: a department in the plan-.

ing stage has no employees. An important goal of current research must b e to

· eaken the universal relation assumption to deal with these difficulties without

sing the advantag es the assumption provides .

- 8 8 -

References

[AJ Arm.strong, W.W� ; "Dependency structures of database relationships, "

Proc 1 974 IFIP Congress, pp 580-583, 1 974

[ABUJ Aho,A.V. ;Beeri,C . ;Ullman,J. ; "The The ory of Joins in Relational Data

bases , " TODS 4:3, pp 297-314, 1979

[BJ Bernstein,P.A.; "Synthesizing Third Normal Form Relations from Func

tional Dependencies , " TODS 1 :4, pp 277-298, 1 976

[BB] Beeri,C;Bernstein,P.A. ; "Computational Problems Related to the Design

of Normal Form Relational Schemas, " TODS 4: 1 , pp 30-59, 1 979

[BBGJ Beeri ,C ;Bernstein ,P.A. ;Goodman,N; "A Sophisticate ' s Introduction to

Database Normalization Theory, " Proc of 4 t h VLDB Conj. , pp 1 13- 124,

1978

[BDB) Biskup�J. ;Dayal, U. ;Bernstein,P.A. ; "Synthesizing Independent Database

Schemas, " Proc. SJGMOD Conf, pp 143- 1 5 1, 1979

[Be] Berge ,C. ; Graphs and Hypergraphs, North-Holland, 1973

[BFH] Bernstein.P.A. ; Fagin tR. ;Howard,J.H. ; "A c omplete axiomatizaton for func

tional and multivalued dependencies , " Proc SIGMOD Conf. pp47-61, 1977

[BG] Bernstein,P.A. ; Goodman.N. ; "What does Boyce -Codd Normal Form do?"

TR-07-79 Harvard University

[BMSU] Beeri,C;Mendelzon,A.O. ; Sagiv,Y;Ullman,J. D. ; "Equivalence of Relational

Database Schemes, n Proc. 1 1 th ACM Symp. on Theory of Comp. , pp 3 19-

329, 1 979

[C] Codd,E.F.; "Further Normalization of the Database Relational Model/'

Data Base System.s. Prentice-Hall, pp 33-64, 1 972

[f

[H

[L]

[Ni

[R1

(R2

-89-

[Fl] Fagin, R; "Multivalued dependencies and a new normal form for rela

tional databases," TODS 3:3, pp 20 1-222, 1978

(F2] Fagin.R; 0Norm al forms and relational database operators," Proc SIG

MOD Conf. , pp 153-160, 1 979

[F3] Fagin,R; A normal form for relational databases that is b ased on

domains and keys, IBM RJ2520, May 1979

[GJ] Garey,M.R. ; Johnson,D. S. ; Computers and Intractability, W.H.Freeman,

1979

[HJ Harary,F; Graph Theory, Addison-Wesley, 1972

[HLY] Honeyman,P. ; Ladner,R.E. ;Yannakakis, M; "Testing the Universal Instance

Assumption, " IPL 10: 1 Feb 80

[L] Ladner,R.E . ; private c ommunication

[Ni] Nicolas ,J .M. ; "Mutual dependencies and some results on undecompos

able relations , " Proc. VLDB Conj. , pp 360-367, 1978

[Rl] Rissanen,J ; "Independent comp onents o f relations , " TODS 2:4, pp 3 17-

325, 1 977

[R2] Rissanen,J: "Theory of Relations for Databases - A Tutorial Survey," Proc

7th Symp. on Math. Found. of Comp. Sci. , Springer-Verlag, pp 536-551,

1 978

Zaniolo, C; Analysis and Design of Relational Schemata for Database

Systems, UCLA-ENG-7669, 1976

.J·

- 90-

Appendix

The following notation is used in the proof of the next result. If e, f are

edges in a CAG graph, we write <e,f> to mean l(eJ� l(f) and [e,/] to mean e and /

are c omparable ; that is , e ither <e,f> or <f, e> holds. We use the symbol -. to

mean negation.

Lemma 6 (Only-If Part) A CAG graph containing a cycle in which no adjacent

pair of edges is comparable is not CAG-C.

Proof By contradiction. Let G = CA G (R) for some schema R. Choose

C=R o,R 1, , . . , Rt- t, a cycle of G and denote the edg e (R,-1, R,) as ei. (All index

arithmetic is done mod k.) Assume C is c hosen as a shortest cycle of G satisfying

(•)

Since G is a CAG-C graph, we may assume. without loss of generality, the

existence of i and i such that <ei, e1> and for all k 1, k 2 with O�i �k i<ke�J �k - 1

(••)

In the s et of edges from e, to ei inclusive, ei, e1 is the only comparable pair. It i s

easy t o see that j >i+2. Obviously, by (•) j �i +2. However j =i + 2 allows the fol

lowing computation

<e;;, ei+2> ➔ (Rt-1 ('\R;,) � (Ru-1 nRH2)

➔ (Ri nRi+ 1) d (R,-1 nR, nRi+ 1) � (RH1 nR'i.+2)

➔ < ei+t• e,+2>

which contradicts (*).

The attack for the remainder of this proof is to choose a sequence of chords

of C which subtend neste1 intervals of the path from R;,- 1 to R1 - The innermost

chord forms a triangle wit.h two edges of C. The label of this c hord is necessarily

contained in both these �dges, by the triangle lemma. It is then shown that the

label on each chord of the sequence contains the label of each chord which pre·

cedes it. This leads to a contradiction.

1

qo=(J;

The las1

We

This car

that at J

true for

subtend

fying (•)

By

Therefo1

The

(

But

- 91 -

The elements of the sequenc e are denoted by s ubscripted q's. Let

[qm.- 1, eJ:1+ 1] ➔ qm = (R1c1+ 1•Rt8}

[qm- 1, e.1: 2] ➔ qm = (Ri 1,R.1:2- 1)

If both antecedents hold,

the choice is arbitrary.

{see figure A. 1)

The last element of t h e sequence i s q11 for p = j -i -2.

(•••)

We must now show that. e ac h of q 0, q 1, • • • , q,, is a well specified edge of G.

This c an be done by induction. q o is an edg e of G by <e;., e;> . It s uffices t o show

that at least one of the two c o nditions of (•••) holds for l�m �p. Assume this i s

true for all m �m0 . Then qm0
is an e dg e of G . But qm0

and the edges of C which it

subtends form a cycle which is shorter than C. Since C is a shortest c ycle s atis

fying (•), one of the c onditions of (.. *) must hold.

By the construction in (***) , qm subtends one fewer e dges of C than qm -1•

Therefore ql' subte nds j -i + 1-(p + 1) = 2 e dges of C which we label as en and en+ l •

(That is t o say, q
,, = (Rn.- 1,Rn + 1)) , As advertised, < en, %, > and < en + t, qp > • We mus t

now show < qm , qm - i> for O<m �p. We proceed b y induction backwards from p.

There are two cases to c onsider in the basis.

qp - 1 = (Rn-2-Rn+ 1)

(see figure A. 2)

case 1 . [qp :... 1: �tJ.+2] by the second c ondition of (***). If < gp - 1, en+2> then

, en+2> sihce cj; , en+2J qp - 1 = (Rn- 1, Rn + 1), (Rn. + 1,Rn+2), (Rn+ 2,Rn -1) form a trian

But then < en + t> � +2> by the transitivity of < .> violating (*). Therefore

�2. qp - 1>. But t,hen <g,, , q,, _ 1> by the triangle lemma, as required. The

- 9 2 -

reasoning in c ase 2 and the induction step i s identical. subject t o the required

subscript cbang e s.

We can now deduce <en+ t, qo> - But we also have

<eii e;> ➔ (R,-1 nRi) :2 (R1-1 nR;)

➔ (Ri- 1 nR1) :2 (Ri- 1 f'tRi nR1) :2 (Rj-1 nR1)

➔ <qo, eJ>

Therefore <en+ t• e3> which violate s (**}. 11

