
228

Topic 3: Efficient query evaluation
Unit 2: Cyclic query evaluation
Lecture 21

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp23)
https://northeastern-datalab.github.io/cs7240/sp23/
3/28/2023

Updated 3/30/2023

https://northeastern-datalab.github.io/cs7240/sp23/

229

Outline: T3-2: Cyclic conjunctive queries

• T3-1: Acyclic conjunctive queries
• T3-2: Cyclic conjunctive queries

– 2SAT (a detour)
– Tree decompositions
– Decompositions of hypertrees
– Duality in Linear programming (a quick primer)
– AGM bound (maximal result size for full CQs) and

Worst-case optimal joins for the triangle query
– Worst-case optimal joins & the 4-cycle
– Optimal joins & the 4-cycle

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

cycles make everything
more complicated L

https://northeastern-datalab.github.io/cs7240/

230Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Why cyclic queries (other than social networks)

Source: http://demo.queryvis.com

https://northeastern-datalab.github.io/cs7240/
http://demo.queryvis.com/

231Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Why cyclic queries (other than social networks)

Source: http://demo.queryvis.com

https://northeastern-datalab.github.io/cs7240/
http://demo.queryvis.com/

232Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Why cyclic queries (other than social networks)

Source: http://demo.queryvis.com

https://northeastern-datalab.github.io/cs7240/
http://demo.queryvis.com/

233Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Joins in databases: one-at-a-time
How can we efficiently process multi-way joins with cycles?

Three possible plans
• (R ⋈ S)⋈ T
• (S ⋈ T)⋈ R
• (T⋈ R)⋈ S

Can we do better for cyclic queries? J

Q(x,y,z) :- R(x,y), S(y,z), T(x,z).

R(x,y)

S(y,z)

T(x,z)

L

There is no join tree! You can't fulfill
the running intersection property...

Recall:

xyz

Q(xyz)

xy yz

R(xy) S(yz)

⋈y

⋈x,z

T(xz)

xz

query plan as
"query tree"

L
• there is no full semijoin reducer
• intermediate result size bigger than output

https://northeastern-datalab.github.io/cs7240/

237

Outline: T3-2: Cyclic conjunctive queries

• T3-1: Acyclic conjunctive queries
• T3-2: Cyclic conjunctive queries

– 2SAT (a detour)
– Tree decompositions
– Decompositions of hypertrees
– Duality in Linear programming (a quick primer)
– AGM bound (maximal result size for full CQs) and

Worst-case optimal joins for the triangle query
– Worst-case optimal joins & the 4-cycle
– Optimal joins & the 4-cycle

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

238Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

2SAT

• Instance: A 2-CNF formula j
• Problem: To decide if j is satisfiable

• Theorem: 2SAT is polynomial-time decidable.
- Proof: We’ll show how to solve this problem efficiently using path searches

in graphs…

• Background: Given a graph G=(V,E) and two vertices s,tÎV, finding if
there is a path from s to t in G is linear-time decidable. Use some
search algorithm (DFS/BFS).

j = (xÚy)Ù(¬yÚz)Ù(¬xÚ¬z)Ù(zÚy)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

239Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

2SAT: Graph Construction

• Vertex for each variable and a negation of a variable

j = (xÚy)Ù(¬yÚz)Ù(¬xÚ¬z)Ù(zÚy)

x
y

¬x

¬z
z

¬y

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

240Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

2SAT: Graph Construction

• Vertex for each variable and a negation of a variable
• Edge (¬x→y) iff there exists a clause equivalent to (xÚy)
- Recall (xÚy) same as (¬x⇒y) and (¬y⇒x), thus also (¬y→x)

j = (xÚy)Ù(¬yÚz)Ù(¬xÚ¬z)Ù(zÚy)

x
y

¬x

¬z
z

¬y

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

241Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

2SAT: Graph Construction

• Vertex for each variable and a negation of a variable
• Edge (¬x→y) iff there exists a clause equivalent to (xÚy)
- Recall (xÚy) same as (¬x⇒y) and (¬y⇒x), thus also (¬y→x)

• Claim: a 2-CNF formula j is unsatisfiable
iff there exists a variable x, such that:
- there is a path from x to ¬x in the graph, and
- there is a path from ¬x to x in the graph

j = (xÚy)Ù(¬yÚz)Ù(¬xÚ¬z)Ù(zÚy)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

x
y

¬x

¬z
z

¬y

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

242Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

2SAT: Graph Construction

• Vertex for each variable and a negation of a variable
• Edge (¬x→y) iff there exists a clause equivalent to (xÚy)
- Recall (xÚy) same as (¬x⇒y) and (¬y⇒x), thus also (¬y→x)

• Claim: a 2-CNF formula j is unsatisfiable
iff there exists a variable x, such that:
- there is a path from x to ¬x in the graph, and
- there is a path from ¬x to x in the graph

j = (xÚy)Ù(¬yÚz)Ù(¬xÚ¬z)Ù(zÚy)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

x
y

¬x

¬z
z

¬y

not enough,
needs both directions!

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

243Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correctness (1)

• Suppose there are paths x..¬x and ¬x..x for some variable x, but
there’s also a satisfying assignment r.
- If r(x)=T:

- Similarly for r(x)=F...

j = (xÚy)Ù(¬yÚz)Ù(¬xÚ¬z)Ù(zÚy)

x
y

¬x

¬z
z

¬y

x ¬x ...

T T

recall, needs to hold in both directions!

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

244Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correctness (2)

• Suppose there are no variables with such paths.
• Construct an assignment as follows:

j = (xÚy)Ù(¬yÚz)Ù(¬xÚ¬z)Ù(zÚy)

x
y

¬x

¬z
z

¬y

1. pick an unassigned literal a, with no
path from a to ¬a, and assign it T

2. assign T to all
reachable vertices

3. assign F to their
negations

4. Repeat until all vertices are
assigned

x
y

¬x

¬z
z

¬y

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

245Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

2SAT is in P

We get the following PTIME algorithm for 2SAT:
- For each variable x find if there is a path from x to ¬x and vice-versa.
- Reject if any of these tests succeeded.
- Accept otherwise.

Þ 2SATÎP. n

https://northeastern-datalab.github.io/cs7240/

246

Outline: T3-2: Cyclic conjunctive queries

• T3-1: Acyclic conjunctive queries
• T3-2: Cyclic conjunctive queries

– 2SAT (a detour)
– Tree decompositions
– Decompositions of hypertrees
– Duality in Linear programming (a quick primer)
– AGM bound (maximal result size for full CQs) and

Worst-case optimal joins for the triangle query
– Worst-case optimal joins & the 4-cycle
– Optimal joins & the 4-cycle

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

247Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Join Processing: two approaches

1. Cardinality-based
- binary joins, consider the sizes of input relations as to reduce the intermediate sizes
- commercial DBMSs: series of pairwise joins, system R (Selinger), join size estimation

2. Structural approaches (next)
- acylicity: Yannakakis, GYO algorithm, join tree
- bounded "width": query width, hypertree width (hw), generalized hw (ghw). All go back

to notion of treewidth (work by Robertson & Seymour on graph minors)

AGM: fractional hw (fhw):
- consider both statistics on

relations and query structure

https://northeastern-datalab.github.io/cs7240/

248Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: https://en.wikipedia.org/wiki/Tree_decomposition

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Tree_decomposition

249Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Very incomplete history of treewdith
The treewidth of a graph is an important graph complexity parameter that determines the
runtime of practical algorithms. Intuitively measures how close a graph is to being a tree.

1970 1975 1980 1985 1990

Introduced in the context of
variable elimination orders by
Bertelé & Brioschi (1972) and
named "dimension" of a graph

Rediscovered
by Halin (1976)

Rediscovered in the context of
graph minors by Robertson &
Seymour (1984) and named
"tree-width"

Diestel (2017) provides a detailed history of what happened
afterwards but seems to be unaware of Bertelé & Brioschi
(1972). Bodlaender (1998) attributes the connection of
"dimension" with treewidth to Arnborg (1985) who actually
never uses the word "treewidth" nor references R&S (1984)...

Bertelè, Brioschi. Nonserial Dynamic Programming, 1972 (definition 2.7.8). https://dl.acm.org/doi/10.5555/578817 , Halin. S-functions for graphs, Journal of Geometry, 1976.
https://doi.org/10.1007%2FBF01917434 , Robertson, Seymour. Graph minors III: Planar tree-width, Journal of Combinatorial Theory, 1984 https://doi.org/10.1016%2F0095-
8956%2884%2990013-3 , Diestel. Graph theory, 5th ed, 2017 (section 12). https://doi.org/10.1007/978-3-662-53622-3 , Bodlaender. A partial k-arboretum of graphs with bounded treewidth
(tutorial), Theoretical Computer Science, 1998. https://doi.org/10.1016/S0304-3975(97)00228-4 , Arnborg. Efficient algorithms for combinatorial problems on graphs with bounded
decomposability -- a survey, BIT, 1985. https://dl.acm.org/doi/abs/10.5555/3765.3773

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/10.5555/578817
https://doi.org/10.1007%2FBF01917434
https://doi.org/10.1016%2F0095-8956%2884%2990013-3
https://doi.org/10.1016%2F0095-8956%2884%2990013-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1016/S0304-3975(97)00228-4
https://dl.acm.org/doi/abs/10.5555/3765.3773

251Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Definition of an attribute-connected tree

AB

EHCD

BC AE

EF

FG

DEFINITION: A tree is attribute-
connected if the subtree induced
by each attribute is connected

Same as the running intersection property
from join trees (also known as junction tree)

Also called "coherence"

https://northeastern-datalab.github.io/cs7240/

252Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition
A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/

253Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 1: a tree

a b c ?
tree decomposition

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

eab

ebc

https://northeastern-datalab.github.io/cs7240/

254Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 1: a tree

a b c 1 2

{a,b} {b,c}

That's why treewidth defined as max cardinality - 1

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

eab

ebc

https://northeastern-datalab.github.io/cs7240/

255Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 2

?
tree decomposition

Example from: https://en.wikipedia.org/wiki/Tree_decomposition

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Tree_decomposition

256Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 2

Treewidth = 2
Notice running intersection property

Example from: https://en.wikipedia.org/wiki/Tree_decomposition

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Tree_decomposition

257Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 3

?
tree decomposition

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

Example from: https://www.mi.fu-berlin.de/en/inf/groups/abi/teaching/lectures/lectures_past/WS0910/V____Discrete_Mathematics_for_Bioinformatics__P1/material/scripts/treedecomposition1.pdf

https://northeastern-datalab.github.io/cs7240/
https://www.mi.fu-berlin.de/en/inf/groups/abi/teaching/lectures/lectures_past/WS0910/V____Discrete_Mathematics_for_Bioinformatics__P1/material/scripts/treedecomposition1.pdf

258Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 3

Example from: https://www.mi.fu-berlin.de/en/inf/groups/abi/teaching/lectures/lectures_past/WS0910/V____Discrete_Mathematics_for_Bioinformatics__P1/material/scripts/treedecomposition1.pdf

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/
https://www.mi.fu-berlin.de/en/inf/groups/abi/teaching/lectures/lectures_past/WS0910/V____Discrete_Mathematics_for_Bioinformatics__P1/material/scripts/treedecomposition1.pdf

259Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 4: a cycle

?
tree decomposition

1

4 3

5 2

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/

260Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 4: a cycle

1

4 3

5 2 12 23 34 45 15

What about coherence?

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/

261Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 4: a cycle

1

4 3

5 2 12 123 134 145 15

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/

262Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 4: a cycle

1

4 3

5 2 123 134 145

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/

263Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 5: the triangle

y

x z

?
tree decomposition

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/

264Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 5: the triangle

y

x z

xy xyz xz

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/

265Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 5: the triangle

y

x z

xyz

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

More generally, a Kd (d-clique)
has a minimal treewidth of d-1

https://northeastern-datalab.github.io/cs7240/

266Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 6: a longer tree

?
tree decomposition

3

m 5

4

2
1

6

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/

267Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 6: a longer tree

3

m 5

34
4

2
1

6
m4

m5 56m2
12

34

m4
m5 56m2

12

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/

268Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 7

Example by: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

269Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 7

Example by: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

270Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 7

Example by: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

271Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 7

Example by: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

272Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 8

Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf

https://northeastern-datalab.github.io/cs7240/
http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf

273Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 8

Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf

https://northeastern-datalab.github.io/cs7240/
http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf

274Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 8

Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf

https://northeastern-datalab.github.io/cs7240/
http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf

276Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree Decompositions (TDs) for CSPs

• Solving CSP on a tree with k variables and domain size m is O(km2)
• TD algorithm: find all solutions within each supernode, which is O(mtw+1) where tw is the treewidth (= one

less than size of largest supernode). Recall treewidth of tree is 1, thus complexity O(m2)
• Then, use the tree-structured Yannakakis algorithm, treating the supernodes as new variables...
• Finding a tree decomposition of smallest treewidth is NP-complete, but good heuristic methods exist.

TD:
• If two variables are connected in the original

problem, they must appear together (along
with the constraint) in at least one supernode

• If a variable occurs in two supernodes in the TD,
it must appear in every supernode on the path
that connects the two (coherence)

• The only constraints between the supernodes
are that the variables take on the same values
across supernodes (like semi-join messages
from Yannakakis)

Figures: Fig 6.12 and 6.13 from Russell, Norvig. "Artificial intelligence: a modern approach". 3rd ed, 2010. https://dl.acm.org/doi/book/10.5555/1671238

Original CSP:
Map-coloring of Australia

Tree decomposition with
supernodes (sets of variables)

Notice here each node is a variable
with domain of size d (e.g. 3 colors)

Translates into O(ntw) where
n is size of constraints per edge

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/book/10.5555/1671238

277Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Alternative definition of Tree decomposition (TD)

ALTERNATIVE DEFINITION:
A tree decomposition of graph 𝐺(𝑁, 𝐸) is a pair 𝑇, 𝜒 where 𝑇(𝑉, 𝐹) is a tree, and 𝜒 is a
labeling function assigning to each vertex 𝑣 ∊ 𝑉 a set of vertices 𝜒(𝑣) ⊆ 𝑁, s.t. above
conditions (2) and (3) are satisfied.

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/

278Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Figure from: Otten, Dechter. Bounding Search Space Size via (Hyper)tree Decompositions. UAI 2008. https://arxiv.org/abs/1206.3284

Small decompositions allow to "compress" the search space

https://northeastern-datalab.github.io/cs7240/
https://arxiv.org/abs/1206.3284

279

Explaining
Treewidth with
cops & robbers

280Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Pursuit-evasion games

• Pursuit-evasion (sometimes called "cops and robber") is a family of
problems in which one group (cops) attempts to track down
members of another group (robbers) in some structured
environment, usually graphs.

• Related to pebble games and Ehrenfeucht–Fraïssé games

• Next: A variations of "Cops and Robber" can be used to describe the
treewidth of a graph

For more details see: https://en.wikipedia.org/wiki/Pursuit%E2%80%93evasion, https://en.wikipedia.org/wiki/Pebble_game,
https://en.wikipedia.org/wiki/Ehrenfeucht%E2%80%93Fra%C3%AFss%C3%A9_game, https://en.wikipedia.org/wiki/Cop_number#Special_classes_of_graphs

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Pursuit%E2%80%93evasion
https://en.wikipedia.org/wiki/Pebble_game
https://en.wikipedia.org/wiki/Ehrenfeucht%E2%80%93Fra%C3%AFss%C3%A9_game
https://en.wikipedia.org/wiki/Cop_number

281Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

THEOREM [Seymour & Thomas (1993)]
You have a winning strategy with 𝑘 cops iff
the tree-width of the graph is at most 𝑘−1.

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

282Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

283Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

284Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

285Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

286Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

287Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

288Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

You can never catch the robber with only one cop L

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

289Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

?
What is the best move with a 2nd cop

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

290Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

291Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

292Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

293Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

294Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

295Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

296Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Robbers cannot hide on trees with 2 cops

7 8 9 10 11 12 13 14

3 4 5 6

1

0

2

Tree

https://northeastern-datalab.github.io/cs7240/

297Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Robbers cannot hide on trees with 2 cops

7 8 9 10 11 12 13 14

3 4 5 6

1

0

2

6,146,135,125,11

4,104,93,7 3,8

1,3 1,4 0,2

2,5 2,6

0,1

Tree Tree decomposition

https://northeastern-datalab.github.io/cs7240/

298Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Robbers cannot hide on trees with 2 cops

7 8 9 10 11 12 13 14

3 4 5 6

1

0

2

6,146,135,125,11

4,104,93,7 3,8

1,3 1,4 0,2

2,5 2,6

0,1

Tree Tree decomposition

Start at the root and
move in on the robber

https://northeastern-datalab.github.io/cs7240/

299Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Robbers cannot hide on trees with 2 cops

7 8 9 10 11 12 13 14

3 4 5 6

1

0

2

6,146,135,125,11

4,104,93,7 3,8

1,3 1,4 0,2

2,5 2,6

0,1

Tree Tree decomposition

Start at the root and
move in on the robber

https://northeastern-datalab.github.io/cs7240/

300Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Robbers cannot hide on trees with 2 cops

7 8 9 10 11 12 13 14

3 4 5 6

1

0

2

6,146,135,125,11

4,104,93,7 3,8

1,3 1,4 0,2

2,5 2,6

0,1

Tree Tree decomposition

Start at the root and
move in on the robber

https://northeastern-datalab.github.io/cs7240/

301Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

4,10

Robbers cannot hide on trees with 2 cops

7 8 9 10 11 12 13 14

3 4 5 6

1

0

2

6,146,135,125,11

4,93,7 3,8

1,3 1,4 0,2

2,5 2,6

0,1

Tree Tree decomposition

Start at the root and
move in on the robber

https://northeastern-datalab.github.io/cs7240/

302Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree_decomposition

Graph with treewidth = 2

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Tree_decomposition

303Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree_decomposition

Graph with treewidth = 2
You will need 3 cops

Tree decomposition

BG

EG

BE

CE

BC

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Tree_decomposition

304Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree_decomposition

Pick some root

Graph with treewidth = 2 Tree decomposition
You will need 3 cops

BG

EG

BE

CE

BC

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Tree_decomposition

305Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree_decomposition

Graph with treewidth = 2 Tree decomposition

Pick some rootYou will need 3 cops

And now move
in on the robber

BG

EG

BE

CE

BC

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Tree_decomposition

306Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree_decomposition

You will need 3 cops
Graph with treewidth = 2 Tree decomposition

And now move
in on the robber

BG

EG

BE

CE

BC

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Tree_decomposition

307Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree_decomposition

You will need 3 cops
Graph with treewidth = 2 Tree decomposition

And now move
in on the robber

BG

EG

BE

CE

BC

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Tree_decomposition

308Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree_decomposition

You caught the robber!
You will need 3 cops
Graph with treewidth = 2 Tree decomposition

And now move
in on the robber

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Tree_decomposition

340

Topic 3: Efficient query evaluation
Unit 2: Cyclic query evaluation
Lecture 22

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp23)
https://northeastern-datalab.github.io/cs7240/sp23/
3/31/2023

Updated 3/31/2023

https://northeastern-datalab.github.io/cs7240/sp23/

341Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Pre-class conversations

• Last class summary
• Scribes
- Can you see my comments on your scribes and project notes?
- also posting scribes on Piazza

• Project: (P3: today FRI, 3/31)
• Feedback on my slides
• Today:
- Reducing cycles to trees (tree decompositions)
- Reducing cycles in CQs to trees based on the domain or based on atoms

(treewidth, query width hypertree decompositions)
- Linear Programming Duality

https://northeastern-datalab.github.io/cs7240/

342

Outline: T3-2: Cyclic conjunctive queries

• T3-1: Acyclic conjunctive queries
• T3-2: Cyclic conjunctive queries

– 2SAT (a detour)
– Tree decompositions
– Decompositions of hypertrees
– Duality in Linear programming (a quick primer)
– AGM bound (maximal result size for full CQs) and

Worst-case optimal joins for the triangle query
– Worst-case optimal joins & the 4-cycle
– Optimal joins & the 4-cycle

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

344Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

• A join tree for a hypergraph H=(V,E) is a labeled tree T =(N,F,𝜆) such that:
- The nodes of T are formed by the hyperedges. In other words, 𝜆: N→E s.t. for each

hyperedge e ∈ E of H, there exists n ∈ N such that e = 𝜆(n)
- For each node u ∈ V of H, the set {n ∈ N | u ∈ 𝜆(n)} induces a connected subtree of T.

(also called: running intersection property)

Acyclic Conjunctive Queries

x y

u

z

p w

R

W

S

T

U

U(z,p,w)

T(y,z,p) W(p,w,u)

R(x,y,z) S(y,p)

Q :- R(x,y,z), S(y,p), T(y,z,p), U(z,p,w), W(p,w,u).

https://northeastern-datalab.github.io/cs7240/

345Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

• A join tree for a hypergraph H=(V,E) is a labeled tree T =(N,F,𝜆) such that:
- The nodes of T are formed by the hyperedges. In other words, 𝜆: N→E s.t. for each

hyperedge e ∈ E of H, there exists n ∈ N such that e = 𝜆(n)
- For each node u ∈ V of H, the set {n ∈ N | u ∈ 𝜆(n)} induces a connected subtree of T.

(also called: running intersection property)

Acyclic Conjunctive Queries

x y

u

z

p w

R

W

S

T

U

U(z,p,w)

T(y,z,p) W(p,w,u)

R(x,y,z) S(y,p)

https://northeastern-datalab.github.io/cs7240/

346Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

• A join tree for a hypergraph H=(V,E) is a labeled tree T =(N,F,𝜆) such that:
- The nodes of T are formed by the hyperedges. In other words, 𝜆: N→E s.t. for each

hyperedge e ∈ E of H, there exists n ∈ N such that e = 𝜆(n)
- For each node u ∈ V of H, the set {n ∈ N | u ∈ 𝜆(n)} induces a connected subtree of T.

(also called: running intersection property)

Acyclic Conjunctive Queries

x y

u

z

p w

{z,p,w}

{y,z,p} {p,w,u}

{x,y,z} {y,p}

https://northeastern-datalab.github.io/cs7240/

347Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

• A join tree for a hypergraph H=(V,E) is a labeled tree T =(N,F,𝜆) such that:
- The nodes of T are formed by the hyperedges. In other words, 𝜆: N→E s.t. for each

hyperedge e ∈ E of H, there exists n ∈ N such that e = 𝜆(n)
- For each node u ∈ V of H, the set {n ∈ N | u ∈ 𝜆(n)} induces a connected subtree of T.

(also called: running intersection property)

Acyclic Conjunctive Queries

1 2

4

3

5 6

{3,5,6}

{2,3,5} {4,5,6}

{1,2,3} {2,5}

https://northeastern-datalab.github.io/cs7240/

348Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

3

64
5

7 8

0

A

B

C

D E

F

G
H

9

For queries that are not acyclic, what bounds can we give
on the data complexity of query evaluation, considering
various structural properties of the query?

We will see:
- Coherence (as in TDs) is still a key structural criterion

for efficiency!
- But treewidth does not generalize the notion of

hypergraph acyclicity (because acyclic families of
hypergraphs may have unbounded treewidth L)

- What will help is the number of atoms needed to
cover sets of variables J.

- Reason: size of database is determined by number of
tuples n not domain size m

Cyclic Conjunctive Queries
Hypergraph

Example adopted from: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

349Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Q(x,y,z,w) :- R(x,y,z,w).

Issues with standard Treewidth (TW) for CQs

Hypergraph Clique graph

Treewidth:

Treewidth based on graphs.
TW of CQ is TW of its clique graph (i.e. replace each hyperedge with a clique)

? ?
?

a clique is a graph where where every
vertex is connected to every other vertex

https://northeastern-datalab.github.io/cs7240/

350Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Q(x,y,z,w) :- R(x,y,z,w).

Issues with standard Treewidth (TW) for CQs

Hypergraph Clique graph

Treewidth:

Treewidth based on graphs.
TW of CQ is TW of its clique graph (i.e. replace each hyperedge with a clique)

?
?

x y

z w

a clique is a graph where where every
vertex is connected to every other vertex

https://northeastern-datalab.github.io/cs7240/

351Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Q(x,y,z,w) :- R(x,y,z,w).

Issues with standard Treewidth (TW) for CQs

Hypergraph Clique graph

Treewidth:

Treewidth based on graphs.
TW of CQ is TW of its clique graph (i.e. replace each hyperedge with a clique)

?

x y

z w

x y

z w

a clique is a graph where where every
vertex is connected to every other vertex

https://northeastern-datalab.github.io/cs7240/

352Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Q(x,y,z,w) :- R(x,y,z,w).

x y

Issues with standard Treewidth (TW) for CQs

z w

Hypertree Clique graph

x y

z w

Resulting complexity bound O(m4)!

That's a pretty bad bound. We know
we can evaluate this query in O(n).

Treewidth based on graphs.
TW of CQ is TW of its clique graph (i.e. replace each hyperedge with a clique)

Treewidth: 3

This is actually the best tree decomposition: Nodes
of a clique need to appear in the same supernode

https://northeastern-datalab.github.io/cs7240/

353Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

R

T
x

y

z

S

W

Q1(x,y,z) :- R(x,y), S(y,z), T(x,z).
Q2(x,y,z) :- R(x,y), S(y,z), T(x,z), W(x,y,z).

R

T
x

y

z

S

H1 H2

Issues with standard Treewidth (TW) for CQs
We also know that these two
queries have different maximal
output sizes: O(n1.5) vs. O(n).
But TW cannot distinguish them L

?

Clique graph

https://northeastern-datalab.github.io/cs7240/

354Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

R

T
x

y

z

S

W

Q1(x,y,z) :- R(x,y), S(y,z), T(x,z).
Q2(x,y,z) :- R(x,y), S(y,z), T(x,z), W(x,y,z).

R

T
x

y

z

S

x

y

z

H1 H2

Same clique graph. Therefore:
→ same TW 2.
→ same complexity bound O(m3)

Issues with standard Treewidth (TW) for CQs
We also know that these two
queries have different maximal
output sizes: O(n1.5) vs. O(n).
But TW cannot distinguish them L

Clique graph

https://northeastern-datalab.github.io/cs7240/

355Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Chekuri, Rajaraman. "Conjunctive query containment revisited", TCS 2000. https://doi.org/10.1016/S0304-3975(99)00220-0 (ICDT'97 conference paper, ICDT'16 test-of-time award)

"Query decomposition" [Chekuri, Rajaraman'97]
QUERY DECOMPOSITION
Tree decomposition with coherence conditions on both:
1) variables and 2) atoms.
Query width: max # of atoms in a supernode

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1016/S0304-3975(99)00220-0

356Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Important Observation 1

R(1,2,3), A(6,7)

B(1,7)

T(1,4,6), U(2,5,6)

C(2,7)

R(1,2,3), S(4,5,3)

Adopted from an example by Georg Gottlob

"Query decomposition" as defined by
[Chekuri, Rajaraman'97] is too strict
about atoms needing to be connected
and atoms not allowing projections

This decomposition would not be possible
for original "query decomposition"
because "3" is not connected.

But what if you project "3" away onto
𝑅 1,2 = 𝜋+:𝑅(1,2,3)

Some decomposition

https://northeastern-datalab.github.io/cs7240/

357Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Important Observation 1

R(1,2,_), A(6,7)

B(1,7)

T(1,4,6), U(2,5,6)

C(2,7)

R(1,2,3), S(4,5,3)

Adopted from an example by Georg Gottlob

Here the reuse of R(1,2,3) is harmless: we
could have added an atom R(1,2,_) here
without changing the query.

This leads to "generalized hypertree
decompositions" which define coherence only
based on variables, not atoms. More liberal
than "query decomposition", and thus can give
tighter bounds.

Idea: allow query atoms to be reused
partially (with projections) as long as
the full atom appears somewhere else.

Some decomposition

𝜋+:𝑅

https://northeastern-datalab.github.io/cs7240/

358Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

S(6,2,4,7,6), T(3,5,8,11,12)

R(1,2,3,4,5)

R(_,2,3,_,_), U(7,8,9) R(_,_,_,4,5), V(6,0,12)

A(2,9) B(3,9) E(5,0)C(4,0), D(6,_,0)

F(4,6,13) G(4,6,14)

Important Observation 2
One can avoid NP-hardness of finding a
minimal size decomposition by adding an
additional syntactic "descendant condition".
This leads to "hypertree decompositions"

Adopted from an example by Georg Gottlob

https://northeastern-datalab.github.io/cs7240/

359Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

S(6,2,4,7,6), T(3,5,8,11,12)

R(1,2,3,4,5)

R(_,2,3,_,_), U(7,8,9) R(1,2,3,4,5), V(6,0,12)

A(2,9) B(3,9) E(5,0)C(4,0), D(6,_,0)

F(4,6,13) G(4,6,14)

Important Observation 2
One can avoid NP-hardness of finding a
minimal size decomposition by adding an
additional syntactic "descendant condition".
This leads to "hypertree decompositions"

Each variable that
disappears at some
node, does not reappear
in the subtree rooted
at that node

Adopted from an example by Georg Gottlob

https://northeastern-datalab.github.io/cs7240/

360Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: Gottlob, Leone, Scarcello. "Hypertree decompositions and tractable queries." PODS 1999. https://doi.org/10.1145/303976.303979 (Gems of PODS 2016)

descendent condition

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/303976.303979

361Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

3

64
5

7 8

0

A

B

C

D E

F

G
H

9

1,3,4,6,0

3,4,6,9,0

4,6,8,9,0

4,5,6,7,8,0

1,2,3,6

How to check that this is
a valid tree decomposition? ?

Hypertree decomposition: full example
Hypergraph Tree decomposition

https://northeastern-datalab.github.io/cs7240/

362Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1

1,3,4,6,0

3,4,6,9,0

4,6,8,9,0

4,5,6,7,8,0

2

3

64
5

7 8

0

1,2,3,6

9

TREE DECOMPOSITION

1. Edge coverage: For every edge
e of G, there is a vertex in
T that contains both ends of e

2. Coherence

What is its width ?

Hypertree decomposition: full example
Clique graph of Hypergraph
(also primal or Gaifman graph)

Tree decomposition

https://northeastern-datalab.github.io/cs7240/

363Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1

1,3,4,6,0

3,4,6,9,0

4,6,8,9,0

4,5,6,7,8,0

2

3

64
5

7 8

0

1,2,3,6

9

TREE DECOMPOSITION

1. Edge coverage: For every edge
e of G, there is a vertex in
T that contains both ends of e

2. Coherence

tree width = 5:
= size of largest supernode - 1

Hypertree decomposition: full example
Tree decompositionClique graph of Hypergraph

(also primal or Gaifman graph)

guarantees evaluation in O(m6)
where m is the domain size or O(n5)
where n is size of largest relation

https://northeastern-datalab.github.io/cs7240/

364Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition
(width 5)

Hypergraph

1,3,4,6,0

3,4,6,9,0

4,6,8,9,0

4,5,6,7,8,0

1,2,3,6

Hypertree decomposition: full example

1 2

3

64
5

7 8

0

A

B

C

D E

F

G
H

9

TREE DECOMPOSITION (ALTERNATIVE)
1. Hyperedge coverage: For

every hyperedge h of H,
there is a vertex in T that
contains all its variables

2. Coherence

identical definition, because:
• hyperedge = clique in clique graph
• each clique needs to be contained

in one supernode of the TD

https://northeastern-datalab.github.io/cs7240/

365Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition
(width 5)

Hypergraph

Hypertree decomposition: full example
Generalized hypertree decomp.

(width 2)

Why is this a valid "general.
hypertree decomposition" ?

1 2

3

64
5

7 8

0

A

B

C

D E

F

G
H

9

1,3,4,6,0

3,4,6,9,0

4,6,8,9,0

4,5,6,7,8,0

1,2,3,6

Example adopted from: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

A{1,2}, F{2,3,6}

C{1,4,0}, F{2,3,6}

B{4,5,6}, H{3,9,0}

C{1,4,0}, E{6,8,9}

B{4,5,6}, G{7,8,0}

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

366Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

3

64
5

7 8

0

A

B

C

D E

F

G
H

9

Hypergraph

Hypertree decomposition: full example
Generalized hypertree decomp.

(width 2)

GENERALIZED HT DECOMP.
1. Hyperedge coverage: For

every hyperedge h of H,
there is a vertex in T that
contains all its variables

2. Coherence

Basically identical to tree decomposition.
Just the width measure is different!

Tree decomposition
(width 5)

Example adopted from: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

A{1,2}, F{2,3,6}

C{1,4,0}, F{2,3,6}

B{4,5,6}, H{3,9,0}

C{1,4,0}, E{6,8,9}

B{4,5,6}, G{7,8,0}

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

367Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

3

64
5

7 8

0

A

B

C

D E

F

G
H

9

Hypergraph

Hypertree decomposition: full example
Generalized hypertree decomp.

(width 2)

GENERALIZED HT DECOMP.
1. Hyperedge coverage: For

every hyperedge h of H,
there is a vertex in T that
contains all its variables

2. Coherence

A{1,2}, F{2,3,6}

C{1,4,0}, F{2,3,6}

B{4,5,6}, H{3,9,0}

C{1,4,0}, E{6,8,9}

B{4,5,6}, G{7,8,0}

Tree decomposition
(width 5)

Example adopted from: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

Basically identical to tree decomposition.
Just the width measure is different!

B and G together contain
all variables from D

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

368Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 A{1,2}, F{2,3,6}

C{1,4,0}, F{2,3,6}

B{4,5,6}, H{3,9,0}

C{1,4,0}, E{6,8,9}

B{4,5,6}, G{7,8,0}

2

3

64
5

7 8

0

A

B

C

D E

F

G
H

9

Hypergraph

Hypertree decomposition: full example
Generalized hypertree decomp.

(width 2)

Is this also a valid
"hypertree decomposition" ?

GENERALIZED HT DECOMP.
1. Hyperedge coverage: For

every hyperedge h of H,
there is a vertex in T that
contains all its variables

2. Coherence

Example adopted from: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

369Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

3

64
5

7 8

0

A

B

C

D E

F

G
H

9

Hypergraph

Hypertree decomposition: full example
Generalized hypertree decomp.

(width 2)

HT DECOMP.
1. Hyperedge coverage: For

every hyperedge h of H,
there is a vertex in T that
contains all its variables

2. Coherence
3. Descendant condition:

Variables projected away
from a hyperedge can
not reappear in the
subtree below

A{1,2}, F{2,3,6}

C{1,4,0}, F{2,3,6}

B{4,5,6}, H{3,9,0}

C{1,4,0}, E{6,8,9}

B{4,5,6}, G{7,8,0}

No: "5" got projected away,
but reappears below. Also
"1" in other direction

A condition to limit the search
space of valid HD decompositions

Example adopted from: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

370Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

3

64
5

7 8

0

A

B

C

D E

F

G
H

9

Hypergraph

Hypertree decomposition: full example
Hypertree decomposition

HT DECOMP.
1. Hyperedge coverage: For

every hyperedge h of H,
there is a vertex in T that
contains all its variables

2. Coherence
3. Descendant condition:

Variables projected away
from a hyperedge can
not reappear in the
subtree below

A{1,2}, C{1,4,0}, F{2,3,6}

B{4,5,6}, D{5,7}, E{6,8,9},
G{7,8,0}, H{3,9,0}

Example adopted from: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

371Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

3

64
5

7 8

0

A

B

C

D E

F

G
H

9

Hypergraph

Hypertree decomposition: full example
Hypertree decomposition

A{1,2}, C{1,4,0}, F{2,3,6}

What should be the "width"
of this HTD, i.e. what is the
complexity of materializing
this last supernode ?

B{4,5,6}, D{5,7}, E{6,8,9},
G{7,8,0}, H{3,9,0}

Example adopted from: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

372Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

3

64
5

7 8

0

A

B

C

D E

F

G
H

9

Hypergraph

Hypertree decomposition: full example
Hypertree decomposition

A{1,2}, C{1,4,0}, F{2,3,6}

Notice that 3 relations alone "cover" all the variables.
The join can only be a subset of those tuples.

B{4,5,6}, D{5,7}, E{6,8,9},
G{7,8,0}, H{3,9,0}B(4,5,6)⋈G(7,8,0)⋈H(3,9,0)

([(B(4,5,6) ⋈ G(7,8,0)) ⋈ H(3,9,0)]
⋉D(5,7)) ⋉E(6,8,9)

O(n3)

n... maximal size of relations
Example adopted from: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

373Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Hypergraph

Hypertree decomposition: full example
Hypertree decomposition

(width 3)

C,F: {1,2,3,4,6,0}

B,G,H:{3,4,5,6,7,8,9,0}

With of HTD = maximal width of any super node.
With of supernode = minimal number of relations
to cover all variables. Here covered by B⋈G⋈H

Results in a modified database and modified acyclic
query. Then perform Yannakakis: O(n3)

1 2

3

64
5

7 8

0

A

B

C

D E

F

G
H

9

B⋈G⋈H

Example adopted from: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

374Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: Gottlob, Leone, Scarcello. "Hypertree decompositions: a survey." MFCS 2001. https://dl.acm.org/doi/10.5555/645730.668191

descendent condition

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/10.5555/645730.668191

375Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: Adler, Gottlob, Grohe. "Hypertree width and related hypergraph invariants." European Journal of Combinatorics 2007 (EuroComp 2005). https://doi.org/10.1016/j.ejc.2007.04.013

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1016/j.ejc.2007.04.013

376Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: Gottlob, Miklos, Schwentick. "Generalized Hypertree decompositions: NP-hardness and tractable variants.", PODS 2007. https://doi.org/10.1145/1265530.1265533

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/1265530.1265533

377Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Generalized Hypertree Decomposition (GHD)
[Gottlob, Leone, Scarcello 2001]

Hypertree Decompositions and friends

Hypertree Decomposition (HD)
[Gottlob, Leone, Scarcello 1999]

Query decomposition
[Chekuri, Rajaraman 1997] NP-complete to find the optimum

PTIME to find the optimum

towards tighter bounds
(below is better)

NP-complete to find the optimum

towards tighter bounds
(below is better)

Chekuri, Rajaraman. "Conjunctive query containment revisited", TCS 2000. https://doi.org/10.1016/S0304-3975(99)00220-0 (ICDT'97 conference paper, ICDT'16 test-of-time award)
Gottlob, Leone, Scarcello. "Hypertree decompositions and tractable queries." PODS 1999. https://doi.org/10.1145/303976.303979 (Gems of PODS 2016)
Gottlob, Leone, Scarcello. "Hypertree decompositions: a survey." MFCS 2001. https://dl.acm.org/doi/10.5555/645730.668191

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1016/S0304-3975(99)00220-0
https://doi.org/10.1145/303976.303979
https://dl.acm.org/doi/10.5555/645730.668191

378Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1. Generalized Hypertree Decomposition (GHD):
explores the whole search space of valid decompositions
(illustrated here with a non-convex search space 𝑆 in blue)

Hypertree Decomposition: an unfortunate naming

2. Hypertree Decomposition (HD):
limits the search space in a way that makes it tractable
to find the optimal solution within that limited subspace
(illustrated here with a convex search space 𝑆′⊆𝑆)

Better names would be:
1. Hypertree Decomposition (HD) instead of GHD
2. Restricted Hypertree Decomposition (RHD) instead of HD

𝑆

𝑆′

https://northeastern-datalab.github.io/cs7240/

395

Topic 3: Efficient query evaluation
Unit 2: Cyclic query evaluation
Lecture 23

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp23)
https://northeastern-datalab.github.io/cs7240/sp23/
4/3/2023

Updated 4/3/2023

https://northeastern-datalab.github.io/cs7240/sp23/

396Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Pre-class conversations

• Last class summary
• Project: comments finished on about 1/3 (4)
• Scribes

• Today:
- Linear Programming Duality, min-cut-max-flow

https://northeastern-datalab.github.io/cs7240/

400

Outline: T3-2: Cyclic conjunctive queries

• T3-1: Acyclic conjunctive queries
• T3-2: Cyclic conjunctive queries

– 2SAT (a detour)
– Tree decompositions
– Decompositions of hypertrees
– Duality in Linear programming (a quick primer)
– AGM bound (maximal result size for full CQs) and

Worst-case optimal joins for the triangle query
– Worst-case optimal joins & the 4-cycle
– Optimal joins & the 4-cycle

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

401Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Topic Duality in Linear Programming (LP)

• Subtopics
- Connections between (max) set packing and (min) set covers in graphs
- Linear Programming (LP) and duality gaps
- LP relaxations of ILP problems (Integer Linear Programming)
- Duality b/w independent vertex sets and edge covers

Duality in linear programming: Intuitively, every Linear Program has a dual problem with the same optimal solution,
but the variables in the dual problem correspond to constraints in the primal problem and vice versa.
But the notion of duality is more general:
• "Over and over again, it turns out that one can associate with a given mathematical object a related, 'dual'

object that helps one ... understand the properties of the object one started with."
[The Princeton Companion to Mathematics, 2008]

• "Fundamentally, duality gives two different points of view of looking at the same object."
[Michael Atiyah, 2007]

https://northeastern-datalab.github.io/cs7240/

402Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Let's use graphs to explain duality in LP (Linear Programming)

• (max) Packing problems: max number of disjoint subsets
- max set packing: max number of subsets that are pairwise disjoint
- max independent (vertex) set: max number of vertices not sharing edges
- max independent edge set = matching: maximum number of edges that don't share any

nodes (every vertex can be in max one matching)

• (min) Coverings problems: min number of subsets to cover all elements
- min set cover: min number of subsets to cover the entire domain
- min vertex cover: min number of vertices to cover all edges
- min edge cover: min number of edges to cover all vertices

• Some packing problem is the dual problems of some covering problem
- Min Vertex Cover (VC) is the dual of Max matching
- Max Independent Set (IS) is the dual of Min edge cover

https://northeastern-datalab.github.io/cs7240/

403Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Independent set

1 2

5 4

6 7 3

Independent set (IS): set of vertices
that are not connected (white)

max

https://northeastern-datalab.github.io/cs7240/

404Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

5 4

6 7 3

VC vs. Ind set ?

Vertex cover (VC): set of vertices
that covers all edges

Independent set (IS): set of vertices
that are not connected (white)

?

Assume you are given an independent set.
How do you find a vertex cover?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

max

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

405Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

5 4

6 7 3

VC =c Ind set

Set S is a VC iff the complement Vc = V − S is an IS

Proof: for each edge at most one vertex is in Vc.
Thus at least one vertex is in Set S.

Vertex cover (VC): set of vertices
that covers all edges (orange)

Independent set (IS): set of vertices
that are not connected (white)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

max

min

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

406Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

5 4

6 7 3

Matching vs. VC?

Vertex cover (VC): set of vertices
that covers all edges (orange)

Matching (Ind edge set): set of
edges w/o common vertices (red)

?

What is a possible connection between VC and matchings

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

min

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

407Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Thus, any VC has at least the size of any matching
⇒ Size of any matching ≤ any VC

A VC needs to cover at least each edge from
any matching

1 2

5 4

6 7 3

Matching ≤ VC

Vertex cover (VC): set of vertices
that covers all edges (orange)

Matching (Ind edge set): set of
edges w/o common vertices (red)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

That turns out to be the dual:
Max Matching ≤ Min VC

max

min

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

408Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

5 4

6 7 3

Matching ≤ VC =c Ind set (summary so far)

Vertex cover (VC): set of vertices
that covers all edges (orange)

Matching (Ind edge set): set of
edges w/o common vertices (red)

Independent set (IS): set of vertices
that are not connected (white)

?What intuitive problem is missing

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

max

min

max

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

409Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

5 4

6 7 3

Cover problems: set of subsets that cover all elements

Packing problems: set of disjoint subsets

Matching ≤ VC =c Ind set (summary so far)

Vertex cover (VC): set of vertices
that covers all edges (orange)

Matching (Ind edge set): set of
edges w/o common vertices (red)

Independent set (IS): set of vertices
that are not connected (white)

e1

e2

e3

e4

e5

e6 e7

e8

e1 e2 e3 e4 e5 e6

1
2
3
4
5
6

o
o o

o
o

o
o

e7 e8

o
o

o
o

o o

7 o o

o

?What intuitive problem is missing

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Edges = Sets

Ve
rt

ic
es

 =
 e

le
m

en
ts

max

min

max

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

410Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

5 4

6 7 3

Matching ≤ VC =c Ind set vs. Edge cover

Vertex cover (VC): set of vertices
that covers all edges (orange)

Matching (Ind edge set): set of
edges w/o common vertices (red)

Independent set (IS): set of vertices
that are not connected (white)

e1

e2

e3

e4

e5

e6 e7

e8

e1 e2 e3 e4 e5 e6

1
2
3
4
5
6

o
o o

o
o

o
o

e7 e8

o
o

o
o

o o

7 o o

o

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Edges = Sets

Ve
rt

ic
es

 =
 e

le
m

en
ts

Cover problems: set of subsets that cover all elements
(min set cover: min vertex cover, min edge cover)

Packing problems: set of disjoint subsets
(max set packing: max ind set, max matching)

Edge cover: set of edges that cover
all vertices (blue)?

What is its
connection
to IS

max

min

max

min

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

411Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

5 4

6 7 3

Matching ≤ VC =c Ind set ≤ Edge cover

Vertex cover (VC): set of vertices
that covers all edges (orange)

Matching (Ind edge set): set of
edges w/o common vertices (red)

Independent set (IS): set of vertices
that are not connected (white)

e1

e2

e3

e4

e5

e6 e7

e8

e1 e2 e3 e4 e5 e6

1
2
3
4
5
6

o
o o

o
o

o
o

e7 e8

o
o

o
o

o o

7 o o

o

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Edges = Sets

Ve
rt

ic
es

 =
 e

le
m

en
ts

Edge cover: set of edges that cover
all vertices (blue)

Thus, any IS is lower bound to the size of any edge cover
⇒ Size of min edge cover ≥ max IS

An edge cover needs to cover at least each
vertex from any IS

Duality: Max IS ≤ Min edge cover

max

min

max

min

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

412Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

4 graph problems in the incidence matrix

Set
Cover

Set
Packing

Choose Vertices Choose Edges

Independent
Set

Matching =
Ind. edge set

Vertex Cover Edge Cover

1 2

5 4

6 7 3

e1

e2

e3

e4

e5

e6 e7

e8

e1 e2 e3 e4 e5 e6

1
2
3
4
5
6

o
o o

o
o

o
o

e7 e8

o
o

o
o

o o

7 o o

o

Edges = Sets

Ve
rt

ic
es

 =
 e

le
m

en
ts

≥ dual

complement
≤ dual

min=4

max=3

min=4

max=3

https://northeastern-datalab.github.io/cs7240/

413Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

4 graph problems in the incidence matrix

Set
Cover

Set
Packing

Choose Vertices Choose Edges

Independent
Set

Matching =
Ind. edge set

Vertex Cover Edge Cover

1 2

5 4

6 7 3

e1

e2

e3

e4

e5

e6 e7

e8

e1 e2 e3 e4 e5 e6

1
2
3
4
5
6

o
o o

o
o

o
o

e7 e8

o
o

o
o

o o

7 o o

o

Edges = Sets

Ve
rt

ic
es

 =
 e

le
m

en
ts

≥ dual

complement

NP-complete PTIME

≤ dual

min=4

max=3

min=4

max=3

https://northeastern-datalab.github.io/cs7240/

414Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

4 graph problems in the incidence matrix

Set
Cover

Set
Packing

Choose Vertices Choose Edges

Independent
Set

Matching =
Ind. edge set

Vertex Cover Edge Cover

1 2

5 4

6 7 3

e1

e2

e3

e4

e5

e6 e7

e8

e1 e2 e3 e4 e5 e6

1
2
3
4
5
6

o
o o

o
o

o
o

e7 e8

o
o

o
o

o o

7 o o

o

Edges = Sets

Ve
rt

ic
es

 =
 e

le
m

en
ts

≥ dual

complement

NP-complete PTIME

≤ dual

𝜏=4 (min)

𝛼=3 (max)

𝜌=4 (min)

𝜇=3 (max)

https://northeastern-datalab.github.io/cs7240/

415Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Source: Scheinerman, Ullman. "Fractional Graph Theory: A Rational Approach to the Theory of Graphs", 1997/2008. https://www.ams.jhu.edu/ers/books/fractional-graph-theory-a-rational-
approach-to-the-theory-of-graphs/

≥ dual

(min) vertex cover

(min) edge cover

(max) matching
(independent edge set)

(max) independent vertex set

≥ dual

(𝛼)(𝜌)

complement

Finding a maximum matching in a 3-uniform
hypergraph is NP-hard (3-dimensional matching),
but is in PTIME for simple (2-uniform) graphs.

hyperedge cover

vertex cover

https://northeastern-datalab.github.io/cs7240/
https://www.ams.jhu.edu/ers/books/fractional-graph-theory-a-rational-approach-to-the-theory-of-graphs/
https://www.ams.jhu.edu/ers/books/fractional-graph-theory-a-rational-approach-to-the-theory-of-graphs/

416Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Background: MAX independent (vertex) set ≤ MIN edge cover

• Assume graph G is connected. Thus, every vertex has at least one edge (unless just one vertex)
• Suppose 𝑆 is an independent set and 𝐸 is an edge cover.
• Then for each vertex 𝑣∈𝑆 there exists at least one edge 𝑒∈𝐸 incident with 𝑣.
• By definition of independent set no two 𝑢,𝑣∈𝑆, have a common edge in 𝐸.
• Therefore |𝑆|≤|𝐸|
Examples from: http://www.csie.ntnu.edu.tw/~u91029/Domination.html
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

≤ dual

https://northeastern-datalab.github.io/cs7240/
http://www.csie.ntnu.edu.tw/~u91029/Domination.html
https://northeastern-datalab.github.io/cs7240/

417Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

3

4

6

7

9

10

1

2

5

8

Matching ≤ VC: what changes in bipartite graphs?

Thus, min VC at least the size of any matching
⇒ Size of any matching ≤ any VC

A VC needs to cover at least each edge from
any matching

Vertex cover (VC): set of vertices
that covers all edges (orange)

Matching (Ind edge set): set of
edges w/o common vertices (red)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

max

min

𝐿 𝑅
Nodes are partitioned into Left and Right

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

418Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

3

4

6

7

9

10

1

2

5

8

matching = VC ... in bipartite graphs!

Kőnig-Egeváry theorem for bipartite graphs:
Max matching equivalent to Min VC

Vertex cover (VC): set of vertices
that covers all edges (orange)

Matching (Ind edge set): set of
edges w/o common vertices (red)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

max

min

𝐿 𝑅

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

419Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

All for 4 problems become easy in bipartite graphs

Set
Cover

Set
Packing

Choose Vertices Choose Edges

Independent
Set

Matching =
Ind. edge set

Vertex Cover Edge Cover

= dual

complement

PTIME

= dual
3

4

6

7

9

10

1

2

5

8

𝐿 𝑅

https://northeastern-datalab.github.io/cs7240/

420Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Cuts and Flows in directed graphs G = (V, E)

3

4

6

7

9

10

1

2

5

8s t

𝐿 𝑅

https://northeastern-datalab.github.io/cs7240/

421Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Cuts and Flows in directed graphs G = (V, E)

3

4

6

7

9

10

1

2

5

8s t

1

1

1

1

Each edge (𝑢, 𝑣) has a capacity 𝑐"# which is the max amount of flow that can pass through it.

1

1

1

1

1

1

1

1

1
1 1

𝐿 𝑅

https://northeastern-datalab.github.io/cs7240/

422Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Cuts and Flows in directed graphs G = (V, E)

3

4

6

7

9

10

1

2

5

8s t

A flow is a mapping of edges to flows 𝑓: 𝐸 → ℝ$
s.t. that flows obey their capacities 𝑓"# ≤ 𝑐"# and
conservation laws. The value |𝑓| of a flow is the
amount moved from 𝑆 to 𝑇 through the network.

Each edge (𝑢, 𝑣) has a capacity 𝑐"# = 1 which is the max amount of flow that can pass through it.

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

𝐿 𝑅

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

423Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Cuts and Flows in directed graphs G = (V, E)

3

4

6

7

9

10

1

2

5

8s t

1

0

1

0

Each edge (𝑢, 𝑣) has a capacity 𝑐"# = 1 which is the max amount of flow that can pass through it.

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

0

1

1

1

1

1

1

1

0
0 0

𝐿 𝑅

|𝑓|= 3

A flow is a mapping of edges to flows 𝑓: 𝐸 → ℝ$
s.t. that flows obey their capacities 𝑓"# ≤ 𝑐"# and
conservation laws. The value |𝑓| of a flow is the
amount moved from 𝑆 to 𝑇 through the network.

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

424Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Cuts and Flows in directed graphs G = (V, E)

3

4

6

7

9

10

1

2

5

8s t

1

1

1

1

Each edge (𝑢, 𝑣) has a capacity 𝑐"# = 1 which is the max amount of flow that can pass through it.

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

1

1

1

1

1

1

1

1

0
0 0

𝐿 𝑅

|𝑓|= 4

A flow is a mapping of edges to flows 𝑓: 𝐸 → ℝ$
s.t. that flows obey their capacities 𝑓"# ≤ 𝑐"# and
conservation laws. The value |𝑓| of a flow is the
amount moved from 𝑆 to 𝑇 through the network.

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

425Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Cuts and Flows in directed graphs G = (V, E)

A flow is a mapping of edges to flows 𝑓: 𝐸 → ℝ$
s.t. that flows obey their capacities 𝑓"# ≤ 𝑐"# and
conservation laws. The value |𝑓| of a flow is the
amount moved from 𝑆 to 𝑇 through the network.

Each edge (𝑢, 𝑣) has a capacity 𝑐"# = 1 which is the max amount of flow that can pass through it.

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

An s-t cut 𝐶 = (𝑆, 𝑇) is a partition of 𝑉 s.t. 𝑠 ∈ 𝑆
and 𝑡 ∈ 𝑇. The cut-set 𝑋% of a cut 𝐶 is the set of
edges that connect the source part of the cut to
the sink part. The capacity 𝑐(𝑆, 𝑇) of an s-t cut is
the sum of the capacities of the edges in its cut-set.

4

6

7

9

10

1

2

5

8 t

𝐿 𝑅

3s

Nodes to the left of the dashed line are in S, the rest in T.

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

426Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Cuts and Flows in directed graphs G = (V, E)

A flow is a mapping of edges to flows 𝑓: 𝐸 → ℝ$
s.t. that flows obey their capacities 𝑓"# ≤ 𝑐"# and
conservation laws. The value |𝑓| of a flow is the
amount moved from 𝑆 to 𝑇 through the network.

Each edge (𝑢, 𝑣) has a capacity 𝑐"# = 1 which is the max amount of flow that can pass through it.

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

An s-t cut 𝐶 = (𝑆, 𝑇) is a partition of 𝑉 s.t. 𝑠 ∈ 𝑆
and 𝑡 ∈ 𝑇. The cut-set 𝑋% of a cut 𝐶 is the set of
edges that connect the source part of the cut to
the sink part. The capacity 𝑐(𝑆, 𝑇) of an s-t cut is
the sum of the capacities of the edges in its cut-set.

4

6

7

9

10

1

2

5

8 t

𝐿 𝑅

Nodes to the left of the dashed line are in S, the rest in T.

This line is not in the cut-set
because it goes from T to S!

1

1

1

1

1

𝑐(𝑆, 𝑇) = 5

3s

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

427Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Cuts and Flows in directed graphs G = (V, E)

A flow is a mapping of edges to flows 𝑓: 𝐸 → ℝ$
s.t. that flows obey their capacities 𝑓"# ≤ 𝑐"# and
conservation laws. The value |𝑓| of a flow is the
amount moved from 𝑆 to 𝑇 through the network.

Each edge (𝑢, 𝑣) has a capacity 𝑐"# = 1 which is the max amount of flow that can pass through it.

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

An s-t cut 𝐶 = (𝑆, 𝑇) is a partition of 𝑉 s.t. 𝑠 ∈ 𝑆
and 𝑡 ∈ 𝑇. The cut-set 𝑋% of a cut 𝐶 is the set of
edges that connect the source part of the cut to
the sink part. The capacity 𝑐(𝑆, 𝑇) of an s-t cut is
the sum of the capacities of the edges in its cut-set.

Nodes to the left of the dashed line are in S, the rest in T.

4

6

7

9

10

1

2

5

8 t

𝐿 𝑅

1

1

1

1

𝑐(𝑆, 𝑇) = 4

3s

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

428Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Cuts and Flows in directed graphs G = (V, E)

A flow is a mapping of edges to flows 𝑓: 𝐸 → ℝ$
s.t. that flows obey their capacities 𝑓"# ≤ 𝑐"# and
conservation laws. The value |𝑓| of a flow is the
amount moved from 𝑆 to 𝑇 through the network.

Each edge (𝑢, 𝑣) has a capacity 𝑐"# = 1 which is the max amount of flow that can pass through it.

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

An s-t cut 𝐶 = (𝑆, 𝑇) is a partition of 𝑉 s.t. 𝑠 ∈ 𝑆
and 𝑡 ∈ 𝑇. The cut-set 𝑋% of a cut 𝐶 is the set of
edges that connect the source part of the cut to
the sink part. The capacity 𝑐(𝑆, 𝑇) of an s-t cut is
the sum of the capacities of the edges in its cut-set.

3

4

6

7

9

10

1

2

5

8s t

𝐿 𝑅

𝑐(𝑆, 𝑇) = 4

|𝑓|= 4

MAX-FLOW MIN-CUT THEOREM.
The maximum value of an s-t flow is equal to the minimum capacity over all s-t cuts.

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

429Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Proof Kőnig-Egeváry: outline

3

4

6

7

9

10

1

2

5

8s t

Proof outline:
Consider the flow graph to the left with capacities
chosen to avoid a cut between 𝐿 and 𝑅. We will show:
1. every integral flow ⇔ some matching
2. every (finite capacity) cut ⇔ some VC
3. Then we know that max matching = min VC,

from the max-flow min-cut theorem

∞1 1
Notice the now infinite capacities in the middle:

𝐿 𝑅

https://northeastern-datalab.github.io/cs7240/

430Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Proof Kőnig-Egeváry 1: matching = flow

3

4

6

7

9

10

1

2

5

8s t

∞1 1
1. A matching of size 𝑥 corresponds to an
integral flow of same value.

𝐿 𝑅

#VC = 5

https://northeastern-datalab.github.io/cs7240/

431Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Proof Kőnig-Egeváry 1: matching = flow

3

4

6

7

9

10

1

2

5

8s t

∞1 1
1. A matching of size 𝑥 corresponds to an
integral flow of same value.

𝐿 𝑅

https://northeastern-datalab.github.io/cs7240/

432Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Proof Kőnig-Egeváry 1: matching = flow

3

4

6

7

9

10

1

2

5

8s t

∞1 1
1. A matching of size 𝑥 corresponds to an
integral flow of same value.

𝐿 𝑅

https://northeastern-datalab.github.io/cs7240/

433Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Proof Kőnig-Egeváry 2: VC = cut

∞1 1

3

4

6

7

9

10

1

2

5

8s t

𝐿 𝑅
1. A matching of size 𝑥 corresponds to an
integral flow of same value.

2. Any VC of size 𝑥 defines a cut of same capacity.

Then define: 𝑆 ≔ 𝑠 ⋃ 𝐿 − 𝐶 𝐿 ⋃ 𝐶(𝑅)
𝑇 ≔ 𝑡 ⋃ 𝑅 − 𝐶 𝑅 ⋃ 𝐶(𝐿)

Let 𝐶 be the VC, 𝐶 𝐿 = 𝐶 ∩ 𝐿, 𝐶 𝑅 = 𝐶 ∩ 𝑅.

#VC = 5

https://northeastern-datalab.github.io/cs7240/

434Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Proof Kőnig-Egeváry 2: VC = cut

1. A matching of size 𝑥 corresponds to an
integral flow of same value.

∞1 1

2. Any VC of size 𝑥 defines a cut of same capacity.

3

4

6

7

9

10

1

2

5

8s t Then define:

𝐿 𝑅

𝑆 ≔ 𝑠 ⋃ 𝐿 − 𝐶 𝐿 ⋃ 𝐶(𝑅)
𝑇 ≔ 𝑡 ⋃ 𝑅 − 𝐶 𝑅 ⋃ 𝐶(𝐿)

Let 𝐶 be the VC, 𝐶 𝐿 = 𝐶 ∩ 𝐿, 𝐶 𝑅 = 𝐶 ∩ 𝑅.

#VC = 𝑐(𝑆, 𝑇) = 5

Nodes to the left of the dashed
line are in S, the rest in T

This line is not in the cut-set
because it goes from T to S!

https://northeastern-datalab.github.io/cs7240/

435Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Proof Kőnig-Egeváry 2: VC = cut

∞1 1

3

4

6

7

9

10

1

2

5

8s t

𝐿 𝑅
1. A matching of size 𝑥 corresponds to an
integral flow of same value.

2. Any VC of size 𝑥 defines a cut of same capacity.

Then define: 𝑆 ≔ 𝑠 ⋃ 𝐿 − 𝐶 𝐿 ⋃ 𝐶(𝑅)
𝑇 ≔ 𝑡 ⋃ 𝑅 − 𝐶 𝑅 ⋃ 𝐶(𝐿)

Let 𝐶 be the VC, 𝐶 𝐿 = 𝐶 ∩ 𝐿, 𝐶 𝑅 = 𝐶 ∩ 𝑅.

Nodes to the left of the dashed
line are in S, the rest in T

#VC = 𝑐(𝑆, 𝑇) = 5This line is not in the cut-set
because it goes from T to S!

https://northeastern-datalab.github.io/cs7240/

436Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Proof Kőnig-Egeváry 2: VC = cut

∞1 1

3

4

6

7

9

10

1

2

5

8s t

𝐿 𝑅
1. A matching of size 𝑥 corresponds to an
integral flow of same value.

2. Any VC of size 𝑥 defines a cut of same capacity.

Then define: 𝑆 ≔ 𝑠 ⋃ 𝐿 − 𝐶 𝐿 ⋃ 𝐶(𝑅)
𝑇 ≔ 𝑡 ⋃ 𝑅 − 𝐶 𝑅 ⋃ 𝐶(𝐿)

Let 𝐶 be the VC, 𝐶 𝐿 = 𝐶 ∩ 𝐿, 𝐶 𝑅 = 𝐶 ∩ 𝑅.

#VC = 𝑐(𝑆, 𝑇) = 4

Nodes to the left of the dashed
line are in S, the rest in T

https://northeastern-datalab.github.io/cs7240/

437Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Proof Kőnig-Egeváry 2: VC = cut

∞1 1

2. Any VC of size 𝑥 defines a cut of same capacity.

3

4

6

7

9

10

1

2

5

8s t Then define:

𝐿 𝑅

𝑆 ≔ 𝑠 ⋃ 𝐿 − 𝐶 𝐿 ⋃ 𝐶(𝑅)
𝑇 ≔ 𝑡 ⋃ 𝑅 − 𝐶 𝑅 ⋃ 𝐶(𝐿)

Let 𝐶 be the VC, 𝐶 𝐿 = 𝐶 ∩ 𝐿, 𝐶 𝑅 = 𝐶 ∩ 𝑅.

1. A matching of size 𝑥 corresponds to an
integral flow of same value.

#VC = 𝑐(𝑆, 𝑇) = 4

https://northeastern-datalab.github.io/cs7240/

438Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Proof Kőnig-Egeváry 3: max-flow = min-cut
⇒ max matching = min VC

∞1 1

2. Any VC of size 𝑥 defines a cut of same capacity.

3

4

6

7

9

10

1

2

5

8s t Then define:

𝐿 𝑅

𝑆 ≔ 𝑠 ⋃ 𝐿 − 𝐶 𝐿 ⋃ 𝐶(𝑅)
𝑇 ≔ 𝑡 ⋃ 𝑅 − 𝐶 𝑅 ⋃ 𝐶(𝐿)

Let 𝐶 be the VC, 𝐶 𝐿 = 𝐶 ∩ 𝐿, 𝐶 𝑅 = 𝐶 ∩ 𝑅.

1. A matching of size 𝑥 corresponds to an
integral flow of same value.

3. Since max flow = min cut, therefore also
max matching = min VC

#VC = 𝑐(𝑆, 𝑇) = 4
#matching = |𝑓| = 4

https://northeastern-datalab.github.io/cs7240/

442

LP (Linear Programming)
and duality gaps

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

443Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

• A maximization problem M and a minimization problem N,
defined on the same instances (such as graphs, constraints) s.t.:
1. for every candidate solution M to M and every candidate solution N to N,

the value of M is less than or equal to the value of N
2. obtaining candidate solutions M and N that have the same value proves

that M and N are optimal solutions for that instance.

Dual Optimization Problem
(e.g., min edge cover)(e.g, max independent set)

https://northeastern-datalab.github.io/cs7240/

444Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A quick primer on Duality in Linear Programming

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

𝑥5

𝑥6

30𝑐+:

𝑐::

𝑐;:

𝑐!
𝑐"

𝑐#𝑥5 + 𝑥6 ≤ 40
𝑥6 ≤ 30
𝑥5 ≤ 20

𝑥5, 𝑥6 ≥ 0
20

Assume I give you the solution 𝑥5, 𝑥6 = (10,30) with objective value = 190.
How could you prove it is indeed the maximum feasible value?

max 1𝑥5 + 6𝑥6

?

https://northeastern-datalab.github.io/cs7240/
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

445Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

× 1

A quick primer on Duality in Linear Programming

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

𝑥5

𝑥6

30𝑐+:

𝑐::

𝑐;:

𝑐!
𝑐"

𝑐#

1𝑥5 + 1𝑥6 ≤ 50

𝑥5 + 𝑥6 ≤ 40
𝑥6 ≤ 30
𝑥5 ≤ 20

𝑥5, 𝑥6 ≥ 0
20

× 1
× 0

non-negative multipliers!

max 1𝑥5 + 6𝑥6

Assume I give you the solution 𝑥5, 𝑥6 = (10,30) with objective value = 190.
How could you prove it is indeed the maximum feasible value?

https://northeastern-datalab.github.io/cs7240/
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

446Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A quick primer on Duality in Linear Programming

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

𝑥5

𝑥6

30𝑐+:

𝑐::

𝑐;:

𝑐!
𝑐"

𝑐#𝑥5 + 𝑥6 ≤ 40
𝑥6 ≤ 30
𝑥5 ≤ 20

𝑥5, 𝑥6 ≥ 0
20

× 0

× 1
× 2

1𝑥5 + 2𝑥6 ≤ 80

max 1𝑥5 + 6𝑥6

Assume I give you the solution 𝑥5, 𝑥6 = (10,30) with objective value = 190.
How could you prove it is indeed the maximum feasible value?

non-negative multipliers!

https://northeastern-datalab.github.io/cs7240/
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

447Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A quick primer on Duality in Linear Programming

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

𝑥5

𝑥6

30𝑐+:

𝑐::

𝑐;:

𝑐!
𝑐"

𝑐#𝑥5 + 𝑥6 ≤ 40
𝑥6 ≤ 30
𝑥5 ≤ 20

𝑥5, 𝑥6 ≥ 0
20

× 0

× 1
× 6

1𝑥5 + 6𝑥6 ≤ 200

max 1𝑥5 + 6𝑥6

Assume I give you the solution 𝑥5, 𝑥6 = (10,30) with objective value = 190.
How could you prove it is indeed the maximum feasible value?

non-negative multipliers!

upper bound to the objective function!

https://northeastern-datalab.github.io/cs7240/
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

448Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

× 0.5

A quick primer on Duality in Linear Programming

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

𝑥5

𝑥6

30𝑐+:

𝑐::

𝑐;:

𝑐!
𝑐"

𝑐#𝑥5 + 𝑥6 ≤ 40
𝑥6 ≤ 30
𝑥5 ≤ 20

𝑥5, 𝑥6 ≥ 0
20

× 0.5
× 5.5

1𝑥5 + 6𝑥6 ≤ 195

max 1𝑥5 + 6𝑥6

Assume I give you the solution 𝑥5, 𝑥6 = (10,30) with objective value = 190.
How could you prove it is indeed the maximum feasible value?

non-negative multipliers!

upper bound to the objective function!

https://northeastern-datalab.github.io/cs7240/
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

449Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

× 0

A quick primer on Duality in Linear Programming

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

𝑥5

𝑥6

30𝑐+:

𝑐::

𝑐;:

𝑐!
𝑐"

𝑐#𝑥5 + 𝑥6 ≤ 40
𝑥6 ≤ 30
𝑥5 ≤ 20

𝑥5, 𝑥6 ≥ 0
20

× 1
× 5

minimum upper bound to the objective function!

certificate of
optimality

1𝑥5 + 6𝑥6 ≤ 190

max 1𝑥5 + 6𝑥6

Assume I give you the solution 𝑥5, 𝑥6 = (10,30) with objective value = 190.
How could you prove it is indeed the maximum feasible value?

non-negative multipliers!

https://northeastern-datalab.github.io/cs7240/
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

450Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A quick primer on Duality in Linear Programming

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

𝑥5

𝑥6

30𝑐+:

𝑐::

𝑐;:

𝑐!
𝑐"

𝑐#𝑥5 + 𝑥6 ≤ 40
𝑥6 ≤ 30
𝑥5 ≤ 20

𝑥5, 𝑥6 ≥ 0
20

𝑦5+𝑦7

× 𝑦6
× 𝑦7

× 𝑦5

𝑦6+𝑦7
≥ ≥

Assume I give you the solution 𝑥5, 𝑥6 = (10,30) with objective value = 190.
How could you prove it is indeed the maximum feasible value?

max 1𝑥5 + 6𝑥6

non-negative multipliers!

1𝑥5 + 6𝑥6 ≤ 20𝑦5 + 30𝑦6 + 40𝑦7
find a convex combination of the constraints
to get the minimum upper bound to the objective function!

https://northeastern-datalab.github.io/cs7240/
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

451Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A quick primer on Duality in Linear Programming

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

𝑥5 + 𝑥6 ≤ 40
𝑥6 ≤ 30
𝑥5 ≤ 20

𝑥5, 𝑥6 ≥ 0

Primal solution 𝑥5, 𝑥6 = (10, 30) Dual solution 𝑦5, 𝑦6, 𝑦7 = (0,5,1)

× 𝑦6
× 𝑦7

× 𝑦5
max 1𝑥5 + 6𝑥6 min 20𝑦5 + 30𝑦6 + 40𝑦7

𝑦5, 𝑦6, 𝑦7 ≥ 0
𝑦6 + 𝑦7 ≥ 6
𝑦5 + 𝑦7 ≥ 1

(𝑦++𝑦;)𝑥+ + (𝑦:+𝑦;)𝑥: ≤ 20𝑦+ + 30𝑦: + 40𝑦;

≥ ≥

https://northeastern-datalab.github.io/cs7240/
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

452Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A quick primer on Duality in Linear Programming

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

𝑥5 + 𝑥6 ≤ 40
𝑥6 ≤ 30
𝑥5 ≤ 20

𝑥5, 𝑥6 ≥ 0

min 20𝑦5 + 30𝑦6 + 40𝑦7

𝑦5, 𝑦6, 𝑦7 ≥ 0
𝑦6 + 𝑦7 ≥ 6
𝑦5 + 𝑦7 ≥ 1

× 𝑦6
× 𝑦7

× 𝑦5
max 1𝑥5 + 6𝑥6

(𝑦++𝑦;)𝑥+ + (𝑦:+𝑦;)𝑥: ≤ 20𝑦+ + 30𝑦: + 40𝑦;

≥ × 𝑥6

× 𝑥5

𝑥+𝑦+ + 𝑥:𝑦: + (𝑥++𝑥:)𝑦; ≥ 1𝑥+ + 6𝑥:

≤ ≤ ≤

≥

10𝑦+ + 30𝑦: + 10+30 𝑦; ≥ 1⋅10 + 6⋅301𝑥+ + 6𝑥: ≤ 20⋅0 + 30⋅5 + 40⋅1
1⋅10 + 6⋅30 ≤ 190 10⋅𝑦+ + 30⋅𝑦: + 40 ⋅𝑦; ≥ 190

Primal solution 𝑥5, 𝑥6 = (10, 30) Dual solution 𝑦5, 𝑦6, 𝑦7 = (0,5,1)

https://northeastern-datalab.github.io/cs7240/
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

453Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

LP in Canonical Form and Matrix-vector notation

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

𝑥5 + 𝑥6 ≤ 40
𝑥6 ≤ 30
𝑥5 ≤ 20

𝑥5, 𝑥6 ≥ 0
𝑦5, 𝑦6, 𝑦7 ≥ 0
𝑦6 + 𝑦7 ≥ 6
𝑦5 + 𝑦7 ≥ 1

min 20𝑦5 + 30𝑦6 + 40𝑦7max 1𝑥5 + 6𝑥6

𝐀𝐓𝒚 ≥ 𝒄

max 𝒄𝐓𝒙 min 𝒃𝐓𝒚

𝐀𝒙 ≤ 𝒃

𝒙 ≥ 0 𝒚 ≥ 0

Canonical form:
objective vector

constraint
matrix

constraint vector

https://northeastern-datalab.github.io/cs7240/
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

454Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A quick primer on Duality in Linear Programming

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

1 1
1 1 𝒚 ≥ 1

6

𝐀𝐓𝒚 ≥ 𝒄

max 𝒄𝐓𝒙 min 𝒃𝐓𝒚

𝒚 ≥ 0

min
20
30
40

𝐓

𝒚

1
1

1 1
𝒙 ≤

20
30
40

𝒙 ≥ 0

max 1
6

𝐓

𝒙

𝐀𝒙 ≤ 𝒃

𝒙 ≥ 0 𝒚 ≥ 0

https://northeastern-datalab.github.io/cs7240/
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

456Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A quick primer on Duality in Linear Programming

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

https://northeastern-datalab.github.io/cs7240/
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

468

Topic 3: Efficient query evaluation
Unit 2: Cyclic query evaluation
Lecture 24

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp23)
https://northeastern-datalab.github.io/cs7240/sp23/
4/7/2023

Updated 4/7/2023

https://northeastern-datalab.github.io/cs7240/sp23/

469Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Pre-class conversations

• Last class summary
• Project: comments on comments (think rapid prototyping

https://en.wikipedia.org/wiki/Rapid_application_development)
• Please prepare written comments for the class feedback phase

Today:
- End of efficient query evaluation for cycles
- Pointers to recorded tutorial on optimization problems & top-k

• Next time:
- last class by me, on graphs
- then you present

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Rapid_application_development

470Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Suggestion for final report: iterate on my comments

https://northeastern-datalab.github.io/cs7240/

473

Outline: T3-2: Cyclic conjunctive queries

• T3-1: Acyclic conjunctive queries
• T3-2: Cyclic conjunctive queries

– 2SAT (a detour)
– Tree decompositions
– Decompositions of hypertrees
– Duality in Linear programming (a quick primer)
– AGM bound (maximal result size for full CQs) and

Worst-case optimal joins for the triangle query
– Worst-case optimal joins & the 4-cycle
– Optimal joins & the 4-cycle

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

474Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Topic Duality in Linear Programming (LP)

• Subtopics
- Connections between (max) set packing and (min) set covers in graphs
- Linear Programming (LP) and duality gaps
- LP relaxations of ILP problems (Integer Linear Programming)
- Duality b/w independent vertex sets and edge covers

Duality in linear programming: Intuitively, every Linear Program has a dual problem with the same optimal solution,
but the variables in the dual problem correspond to constraints in the primal problem and vice versa.
But the notion of duality is more general:
• "Over and over again, it turns out that one can associate with a given mathematical object a related, 'dual'

object that helps one to understand the properties of the object one started with." [The Princeton Companion to
Mathematics, 2008]

• "Fundamentally, duality gives two different points of view of looking at the same object.[Michael Atiyah 2007]

https://northeastern-datalab.github.io/cs7240/

475

LP relaxations of
ILP problems

(Integer Linear Programming)

476Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

? ?

Example: Minimal (Fractional) Vertex Cover in k-clique

Objective: min∑=∈ ?𝑤𝑣 𝑤𝑣 +𝑤𝑢 ≥ 1 for each edge

𝑤𝑣 ∈ {0,1} for each node for integral solution (ILP)

s.t.

0 ≤ 𝑤𝑣 ≤ 1 for each node for fractional solution (LP)or

? ?

? ?

? ?

? ?

?

Minimal Integral Vertex Cover: Minimal Fractional Vertex Cover:

ILP:

and

? ? ?LP:

a fractional & convex relaxation

https://northeastern-datalab.github.io/cs7240/

477Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Minimal (Fractional) Vertex Cover in k-clique

Objective: min∑=∈ ?𝑤𝑣 𝑤𝑣 +𝑤𝑢 ≥ 1 for each edges.t.

or

1 1

1 1

1

Minimal Integral Vertex Cover: Minimal Fractional Vertex Cover:

ILP: 5 = k-1

and

for k-clique

? ?

? ?

? ? ?LP:

𝑤𝑣 ∈ {0,1} for each node for integral solution (ILP)

0 ≤ 𝑤𝑣 ≤ 1 for each node for fractional solution (LP)

https://northeastern-datalab.github.io/cs7240/

478Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Minimal (Fractional) Vertex Cover in k-clique

Objective: min∑=∈ ?𝑤𝑣 𝑤𝑣 +𝑤𝑢 ≥ 1 for each edges.t.

or

0.5 0.5

0.5 0.5

0.5 0.5

1 1

1 1

1

Minimal Integral Vertex Cover: Minimal Fractional Vertex Cover:

ILP: 5 = k-1 LP: 3 = k/2

and

for k-clique

𝑤𝑣 ∈ {0,1} for each node for integral solution (ILP)

0 ≤ 𝑤𝑣 ≤ 1 for each node for fractional solution (LP)or

https://northeastern-datalab.github.io/cs7240/

480Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

? ?

Example: Minimal (Fractional) Vertex Cover in even k-cycle

Objective: min∑=∈ ?𝑤𝑣 𝑤𝑣 +𝑤𝑢 ≥ 1 for each edges.t.

or

? ?

? ?

? ?

? ?

?

Minimal Integral Vertex Cover: Minimal Fractional Vertex Cover:

and

? ? ?ILP: LP:

𝑤𝑣 ∈ {0,1} for each node for integral solution (ILP)

0 ≤ 𝑤𝑣 ≤ 1 for each node for fractional solution (LP)

https://northeastern-datalab.github.io/cs7240/

481Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Minimal (Fractional) Vertex Cover in even k-cycle

Objective: min∑=∈ ?𝑤𝑣 𝑤𝑣 +𝑤𝑢 ≥ 1 for each edges.t.

or

1

1

1

Minimal Integral Vertex Cover: Minimal Fractional Vertex Cover:

ILP: 3 = k/2

and

for even cycle
of length k

? ?

? ?

? ? ?LP:

𝑤𝑣 ∈ {0,1} for each node for integral solution (ILP)

0 ≤ 𝑤𝑣 ≤ 1 for each node for fractional solution (LP)

https://northeastern-datalab.github.io/cs7240/

482Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Minimal (Fractional) Vertex Cover in even k-cycle

Objective: min∑=∈ ?𝑤𝑣 𝑤𝑣 +𝑤𝑢 ≥ 1 for each edges.t.

or

0.5 0.5

0.5 0.5

0.5 0.5

1

1

1

Minimal Integral Vertex Cover: Minimal Fractional Vertex Cover:

ILP: 3 = k/2 LP: 3 = k/2

and

for even cycle
of length k

𝑤𝑣 ∈ {0,1} for each node for integral solution (ILP)

0 ≤ 𝑤𝑣 ≤ 1 for each node for fractional solution (LP)

https://northeastern-datalab.github.io/cs7240/

483Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

? ?

Example: Minimal (Fractional) Vertex Cover in odd k-cycle

Objective: min∑=∈ ?𝑤𝑣 𝑤𝑣 +𝑤𝑢 ≥ 1 for each edges.t.

or

?

?

Minimal Integral Vertex Cover: Minimal Fractional Vertex Cover:

LP:

and

? ? ?
? ?

?

? ?
ILP:

𝑤𝑣 ∈ {0,1} for each node for integral solution (ILP)

0 ≤ 𝑤𝑣 ≤ 1 for each node for fractional solution (LP)

https://northeastern-datalab.github.io/cs7240/

484Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

0.5 0.5

0.5

1 1

Example: Minimal (Fractional) Vertex Cover in odd k-cycle

Objective: min∑=∈ ?𝑤𝑣 𝑤𝑣 +𝑤𝑢 ≥ 1 for each edges.t.

or

1

Minimal Integral Vertex Cover: Minimal Fractional Vertex Cover:

and

0.5 0.5
ILP: 3 = (k+1)/2 LP: 2.5 = k/2

for odd cycle
of length k

𝑤𝑣 ∈ {0,1} for each node for integral solution (ILP)

0 ≤ 𝑤𝑣 ≤ 1 for each node for fractional solution (LP)

https://northeastern-datalab.github.io/cs7240/

485Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

ILP and its LP relaxation

Source: https://en.wikipedia.org/wiki/Linear_programming_relaxation

ILP (Integer program or
Integer Linear program)

LP-relaxation obtained from an
ILP by relaxing the integrality
constraints for variables x and y

Notice the search space gets
enlarged and becomes convex.
Contrast with GHD vs HD: there
the search space got restricted...

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Linear_programming_relaxation

486

Duality b/w
independent vertex sets

and edge covers

487Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A quick primer on Duality in Linear Programming

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

Primal: Max Independence (Vertex) set

𝑣3𝑣2

𝑣1

≤ 1≤ 1

≤ 1

𝑣1+ 𝑣2 ≤ 1
𝑣1 + 𝑣3 ≤ 1

𝑣2+ 𝑣3 ≤ 1

max	𝑣1+ 𝑣2+ 𝑣3 , s.t.

https://northeastern-datalab.github.io/cs7240/
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

488Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A quick primer on Duality in Linear Programming

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

Primal: Max Independence (Vertex) set

non-negative multiplier per edge

𝑢1
𝑢2
𝑢3

(𝑢1+ 𝑢2)𝑣1+ (𝑢1+ 𝑢3)𝑣2+ (𝑢2+ 𝑢3)𝑣3 ≤ 𝑢1+ 𝑢2 +𝑢3

≥ 1if
for each vertex

≥ 1 ≥ 1 then the right side ∑: 𝑢𝑗
is an upper bound for
the primal objective ∑; 𝑣𝑖

𝑣3𝑣2

𝑣1

≤ 1≤ 1

≤ 1

𝑣1+ 𝑣2 ≤ 1
𝑣1 + 𝑣3 ≤ 1

𝑣2+ 𝑣3 ≤ 1

max	𝑣1+ 𝑣2+ 𝑣3 , s.t.

https://northeastern-datalab.github.io/cs7240/
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

489Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A quick primer on Duality in Linear Programming

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

Primal: Max Independence (Vertex) set

(𝑢1+ 𝑢2)𝑣1+ (𝑢1+ 𝑢3)𝑣2+ (𝑢2+ 𝑢3)𝑣3 ≤ 𝑢1+ 𝑢2 +𝑢3

≥ 1if
for each vertex

then the right side ∑: 𝑢𝑗
is an upper bound for
the primal objective ∑; 𝑣𝑖

≥ 1 ≥ 1

What is this dual problem

min	𝑢1+ 𝑢2+ 𝑢3 , s.t.

𝑣3𝑣2

𝑣1

≤ 1≤ 1

≤ 1

max	𝑣1+ 𝑣2+ 𝑣3 , s.t.
𝑣1+ 𝑣2 ≤ 1
𝑣1 + 𝑣3 ≤ 1

𝑣2+ 𝑣3 ≤ 1

𝑢1+ 𝑢2 ≥ 1
𝑢1 + 𝑢3 ≥ 1

𝑢2+ 𝑢3 ≥ 1

?

https://northeastern-datalab.github.io/cs7240/
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

490Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A quick primer on Duality in Linear Programming

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

Primal: Max Independence (Vertex) set

(𝑢1+ 𝑢2)𝑣1+ (𝑢1+ 𝑢3)𝑣2+ (𝑢2+ 𝑢3)𝑣3 ≤ 𝑢1+ 𝑢2 +𝑢3

≥ 1if
for each vertex

then the right side ∑: 𝑢𝑗
is an upper bound for
the primal objective ∑; 𝑣𝑖

≥ 1 ≥ 1

Dual: Min Edge cover

min	𝑢1+ 𝑢2+ 𝑢3 , s.t.

𝑣3𝑣2

𝑣1

≤ 1≤ 1

≤ 1

𝑢2

≥ 1

𝑢1

𝑢3

≥ 1

≥ 1

max	𝑣1+ 𝑣2+ 𝑣3 , s.t.
𝑣1+ 𝑣2 ≤ 1
𝑣1 + 𝑣3 ≤ 1

𝑣2+ 𝑣3 ≤ 1

𝑢1+ 𝑢2 ≥ 1
𝑢1 + 𝑢3 ≥ 1

𝑢2+ 𝑢3 ≥ 1

https://northeastern-datalab.github.io/cs7240/
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

491Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Independent Sets & Edge covers in the Triangle

Fractional edge cover number (𝜌∗)
min sum of weights 𝑢1, 𝑢2, … 𝑢ℓ ≥ 0 on edges (relations)

s.t. for all xi: ∑A:0" ∈ C# 𝑢A ≥ 1

𝛼∗ = 𝜌∗

½

≥ 1

½

½

Fractional independence number (𝛼∗)
max sum of weights 𝑣1, 𝑣2, … 𝑣𝑘 ≥ 0 on vertices (variables)
s.t. for all E(i,j): 𝑣𝑖 + 𝑣𝑗 ≤ 1

max	𝑣1+ 𝑣2+ 𝑣3 , s.t.
𝑣1+ 𝑣2 ≤ 1
𝑣1+ 𝑣3 ≤ 1
𝑣2+ 𝑣3 ≤ 1

min	𝑢1+ 𝑢2+ 𝑢3 , s.t.
𝑢1+ 𝑢2 ≥ 1
𝑢1+ 𝑢3 ≥ 1
𝑢2+ 𝑢3 ≥ 1

½½

½

≤ 1𝛼∗ =	max	∑D 𝑣𝑖

𝜌∗ =	min	∑A 𝑢𝑗

https://northeastern-datalab.github.io/cs7240/

492Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Independent Sets & Edge covers in the Triangle

Fractional matching (edge packing) number (𝜈∗)
max sum of weights 𝑢1, 𝑢2, … 𝑢ℓ ≥ 0 on edges (relations)

s.t. for all xi: ∑A:0" ∈ E# 𝑢A ≤ 1

𝜏∗ = 𝜈∗

½

≤ 1

½

½

Fractional vertex cover number (𝜏∗)
min sum of weights 𝑣1, 𝑣2, … 𝑣𝑘 ≥ 0 on vertices (variables)
s.t. for all E(i,j): 𝑣𝑖 + 𝑣𝑗 ≥ 1

min	𝑣1+ 𝑣2+ 𝑣3 , s.t.
𝑣1+ 𝑣2 ≥ 1
𝑣1+ 𝑣3 ≥ 1
𝑣2+ 𝑣3 ≥ 1

max	𝑢1+ 𝑢2+ 𝑢3 , s.t.
𝑢1+ 𝑢2 ≤ 1
𝑢1+ 𝑢3 ≤ 1
𝑢2+ 𝑢3 ≤ 1

½½

½

≥ 1𝜏∗=	min	∑D 𝑣𝑖

𝜈∗=	max	∑A 𝑢𝑗

https://northeastern-datalab.github.io/cs7240/

493Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

𝑣2 𝑣3

Fractional vertex cover in the triangle
https://sagecell.sagemath.org/
inequalities: -1+v1+v2>=0, -1+v2+v3>=0, -1+v1+v3>=0, 1-v1>=0, 1-v2>=0, 1-v3>=0
p = Polyhedron(ieqs = [[-1,1,1,0],[-1,0,1,1],[-1,1,0,1],[0,1,0,0],[0,0,1,0],[0,0,0,1]])
p.plot()

min	𝑣1+ 𝑣2+ 𝑣3 , s.t.
𝑣1+ 𝑣2 ≥ 1
𝑣1+ 𝑣3 ≥ 1
𝑣2+ 𝑣3 ≥ 1

½½

½

≥ 1

(1,1,0): 2

𝑣3

𝑣1
𝑣2

(1,0,1): 2(0,1,1): 2

(0.5,0.5,0.5): 1.5𝑣2

𝑣3

𝑣1
(0.5,0.5,0.5): 1.5

0,0,1 : 1

(1,0,0): 1

(0,1,0): 1

𝑣1

≥ 1

≥ 1

not feasible

https://northeastern-datalab.github.io/cs7240/
https://sagecell.sagemath.org/

494Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Fractional vertex cover in bipartite graph
https://sagecell.sagemath.org/
inequalities: -1+v1+v2>=0, -1+v2+v3>=0, 1-v1>=0, 1-v2>=0, 1-v3>=0
p = Polyhedron(ieqs = [[-1,1,1,0],[-1,0,1,1],[0,1,0,0],[0,0,1,0],[0,0,0,1]])
p.plot()

min	𝑣1+ 𝑣2+ 𝑣3 , s.t.
𝑣1+ 𝑣2 ≥ 1
𝑣1+ 𝑣3 ≥ 1

0

1

≥ 1

𝑣2

𝑣3

𝑣1

(0,0,1)

(0,1,0)

𝑣1

≥ 1

(1,0,0): 1
a

b

c

(0,1,1): 1

(1,0,0) : 1

(1,0,0): 1
𝑣2 𝑣3

0

https://northeastern-datalab.github.io/cs7240/
https://sagecell.sagemath.org/

498

Outline: T3-2: Cyclic conjunctive queries

• T3-1: Acyclic conjunctive queries
• T3-2: Cyclic conjunctive queries

– 2SAT (a detour)
– Tree decompositions
– Decompositions of hypertrees
– Duality in Linear programming (a quick primer)
– AGM bound (maximal result size for full CQs) and

Worst-case optimal joins for the triangle query
– Worst-case optimal joins & the 4-cycle
– Optimal joins & the 4-cycle

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

499

What do we know about
bounding the size of the

answer?
(. . .and enumerating all solutions)

32
Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
https://northeastern-datalab.github.io/cs7240/

500

Upper bound
Observation: If the hypergraph has edge cover number ⇢ and
every relation has size at most N, then there are at most N⇢ tuples
in the answer.

33
Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

minimal edge cover

http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
https://northeastern-datalab.github.io/cs7240/

501

minimal edge cover

Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
https://northeastern-datalab.github.io/cs7240/

502

Lower bound
Observation: If the hypergraph has independence number ↵, then
one can construct an instance where every relation has size N at
the answer has size N↵.

Definition of the relations:
If variable A is in the independent set, then it can take any
value in [N].
Otherwise it is forced to 1.

34

maximal independent set

Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Lower bound
Observation: If the hypergraph has independence number ↵, then
one can construct an instance where every relation has size N at
the answer has size N↵.

Definition of the relations:
If variable A is in the independent set, then it can take any
value in [N].
Otherwise it is forced to 1.

34

http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
https://northeastern-datalab.github.io/cs7240/

503

Lower bound
Observation: If the hypergraph has independence number ↵, then
one can construct an instance where every relation has size N at
the answer has size N↵.

Definition of the relations:
If variable A is in the independent set, then it can take any
value in [N].
Otherwise it is forced to 1.

34

maximal independent set

Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Lower bound
Observation: If the hypergraph has independence number ↵, then
one can construct an instance where every relation has size N at
the answer has size N↵.

Definition of the relations:
If variable A is in the independent set, then it can take any
value in [N].
Otherwise it is forced to 1.

34

http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
https://northeastern-datalab.github.io/cs7240/

504
Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
https://northeastern-datalab.github.io/cs7240/

505
Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
https://northeastern-datalab.github.io/cs7240/

508Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 1
1 2
1 3
2 1

A B
R

1 1
2 1
3 1
1 2

B C
S

1 1
2 1
3 1
1 2

C A
T

2 2
2 3
3 1
3 2

2 2
3 2
1 3
2 3

2 2
3 2
1 3
2 3

3 3 3 3 3 3

Q∆ (A,B,C) = R(A,B) ⋈ S(B,C) ⋈ T(C,A)

R

S

T

1 2 3
A

1
2

3B 1
2

3

C

A B
1
2
3

1
2
3

C
1
2
3

A
1
2
3

R S T

Q(x,y,z) :- R(x,y), S(y,z), T(z,x).

A tight example for AGM bound O(n1.5) for triangle Q∆

𝑛 = 9 number of tuples per relation (= DB size for self-joins)
Q(x,y,z) :- R(x,y), R(y,z), R(z,x).𝑚 = 𝑛 = 3 domain size

|𝑂𝑈𝑇| = 𝑛5.? = 27 output tuples

Notice every tuple is part
of 3 join results, e.g.
shown here for R(1,1)

https://northeastern-datalab.github.io/cs7240/

509Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

0 1
0 2
...

0 m

A B
R

1 0
2 0
...

m 0

B C
S

0 1
0 2
...

0 m

C A
T

1 0
2 0
...

m 0

0 1
0 2
...

0 m

1 0
2 0
...

m 0
r r r r r r

Q∆ (A,B,C) = R(A,B) ⋈ S(B,C) ⋈ T(C,A)

Q(x,y,z) :- R(x,y), S(y,z), T(z,x).

When binary joins give O(n2) intermediate sizes for Q∆

𝑛 = 2𝑚 + 1 tuples per relation
𝑚+ 2 domain size
|𝑂𝑈𝑇| = 1 output tuple

|R⋈BS| = |R⋈AT| = |S⋈BT| = m2 = Θ(n2)

A B
0
1
2

0
1
2

C
0
1
2

A
0
1
2

R S T

...
m

...
m

...
m

...
m

r r r r

R

⋈

S
B T

⋈AC

R

⋈

T
A S

⋈BC

S

⋈

T
B R

⋈AC

In whatever sequence we join
the three tables, the size of the
first join will always be Θ(n2)

https://northeastern-datalab.github.io/cs7240/

510Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

0 1
0 2
...

0 m

A B
R

1 0
2 0
...

m 0

B C
S

0 1
0 2
...

0 m

C A
T

1 0
2 0
...

m 0

0 1
0 2
...

0 m

1 0
2 0
...

m 0
r r r r r r

Q∆ (A,B,C) = R(A,B) ⋈ S(B,C) ⋈ T(C,A)

Q(x,y,z) :- R(x,y), S(y,z), T(z,x).

Solution: partition the data

A B
0
1
2

0
1
2

C
0
1
2

A
0
1
2

R S T

...
m

...
m

...
m

...
m

r r r r

𝑛 = 2𝑚 + 1 tuples per relation
𝑚+ 2 domain size
|𝑂𝑈𝑇| = 1 output tuple

RH
A

⋈

S
B T

⋈AC

RL
A

⋈

T
A S

⋈BC

R=RH
A ∪ RL

A

RH
A = {(a,b) ∈ R : |𝜎A=aR| > n0.5}

∪
RL

A = {(a,b) ∈ R : |𝜎A=aR| ≤ n0.5}

Trick: partition by outdegree,
and use two plans in parallel!

https://northeastern-datalab.github.io/cs7240/

511Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

0 1
0 2
...

0 m

A B
R

1 0
2 0
...

m 0

A B
R

0 1
0 2
...

0 m

A B
R

1 0
2 0
...

m 0

0 1
0 2
...

0 m

1 0
2 0
...

m 0
r r r r r r

Q(x,y,z) :- R(x,y), R(y,z), R(z,x).

Solution: partition the data 602

m=2000:

m=4000:

tQ1=2409 msec

tQ1=8912 msec

tQ2=7 msec

tQ2=14 msec
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

m+2 = domain size
(2m+1) database size
1 = output size

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

512Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Q(x,y,z) :- R(x,y), R(y,z), R(z,x).

Solution: partition the data 603

m=100:

m=200:

tQ1=0.60 sec

tQ1=5.8 sec

tQ2=0.94 sec

tQ2=10.3 sec
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

1 1
1 2
1 3
2 1

A B
R

1 1
2 1
3 1
1 2

A B
R

1 1
2 1
3 1
1 2

A B
R

2 2
2 3
3 1
3 2

2 2
3 2
1 3
2 3

2 2
3 2
1 3
2 3

3 3 3 3 3 3

m=domain size
m2 database size
m3 output size

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

513Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: Alon, Yuster, Zwick. "Finding and counting given length cycles", Algorithmica, 1997. https://doi.org/10.1007/BF02523189

= "heavy": ∆ = E1/2 for triangle

k=2 for triangle

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1007/BF02523189

514Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Examples

Min edge
cover (𝛼) :

Max independ.
(vertex) set (𝜌):

? ? ?

? ? ?

?

?

https://northeastern-datalab.github.io/cs7240/

515Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Examples

Min edge
cover (𝛼) :

Max independ.
(vertex) set (𝜌): ? ? ? ?

2 2 32

https://northeastern-datalab.github.io/cs7240/

516Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Examples

Min edge
cover (𝛼) :

2 2 3

1 2 3

2

2

Max independ.
(vertex) set (𝜌):

https://northeastern-datalab.github.io/cs7240/

520Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Pointers to some related work
• "AGM bound": Atserias, Grohe, Marx. Size bounds and query plans for relational joins. SIAM J. Comput. 2013.

https://doi.org/10.1137/110859440 (also FOCS 2008)
• "Worst-Case Optimal (WCO) joins": Ngo, Porat, Re, Rudra. Worst-case optimal join algorithms. JACM 2018.

https://doi.org/10.1145/3180143 (also PODS 2012)
• "FAQ paper": Khamis, Ngo, Rudra. FAQ: Questions Asked Frequently. PODS 2016.

https://doi.org/10.1145/2902251.2902280 (see also SIGMOD record 2017).
• Khamis, Ngo, Suciu. What do Shannon-type inequalities, submodular width, and disjunctive Datalog have to do with one

another? PODS 2017. https://doi.org/10.1145/3034786.3056105
• Robertson, Seymour. Graph minors. II. Algorithmic aspects of tree-width. Journal of Algorithms. 1986.

https://doi.org/10.1016/0196-6774(86)90023-4
• Chekuri, Rajaraman. Conjunctive query containment revisited. Elsevier Theoretical Computer Science 2000.

https://doi.org/10.1016/S0304-3975(99)00220-0
• Gottlob, Leone, Scarcello. Hypertree Decompositions and Tractable Queries. JCSS 2002.

https://doi.org/10.1006/jcss.2001.1809
• Grohe, Marx. Constraint Solving via Fractional Edge Covers. ACM Trans. Algorithms 2014.

https://doi.org/10.1145/2636918
• Marx. Tractable Hypergraph Properties for Constraint Satisfaction and Conjunctive Queries. JACM 2014.

https://doi.org/10.1145/2535926
• Alon, Yuster, Zwick. Finding and counting given length cycles. Algorithmica 1997.

https://doi.org/10.1007/BF02523189

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1137/110859440
https://doi.org/10.1145/3180143
https://doi.org/10.1145/2902251.2902280
https://doi.org/10.1145/3034786.3056105
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1016/S0304-3975(99)00220-0
https://doi.org/10.1006/jcss.2001.1809
https://doi.org/10.1145/2636918
https://doi.org/10.1145/2535926
https://doi.org/10.1007/BF02523189

522

Outline: T3-2: Cyclic conjunctive queries

• T3-1: Acyclic conjunctive queries
• T3-2: Cyclic conjunctive queries

– 2SAT (a detour)
– Tree decompositions
– Decompositions of hypertrees
– Duality in Linear programming (a quick primer)
– AGM bound (maximal result size for full CQs) and

Worst-case optimal joins for the triangle query
– Worst-case optimal joins & the 4-cycle
– Optimal joins & the 4-cycle

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

not covered this year!

https://northeastern-datalab.github.io/cs7240/

