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Outline: T3-2: Cyclic conjunctive queries

• T3-1: Acyclic conjunctive queries
• T3-2: Cyclic conjunctive queries

– 2SAT (a detour)
– Tree decompositions
– Decompositions of hypertrees
– Duality in Linear programming (a quick primer)
– AGM bound (maximal result size for full CQs) and

Worst-case optimal joins for the triangle query
– Worst-case optimal joins & the 4-cycle
– Optimal joins & the 4-cycle

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

cycles make everything 
more complicated L

https://northeastern-datalab.github.io/cs7240/
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Why cyclic queries (other than social networks)

Source: http://demo.queryvis.com

https://northeastern-datalab.github.io/cs7240/
http://demo.queryvis.com/
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Why cyclic queries (other than social networks)

Source: http://demo.queryvis.com

https://northeastern-datalab.github.io/cs7240/
http://demo.queryvis.com/
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Why cyclic queries (other than social networks)

Source: http://demo.queryvis.com

https://northeastern-datalab.github.io/cs7240/
http://demo.queryvis.com/
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Joins in databases: one-at-a-time
How can we efficiently process multi-way joins with cycles?

Three possible plans
• (R ⋈ S)⋈ T
• (S ⋈ T)⋈ R
• (T⋈ R)⋈ S

Can we do better for cyclic queries? J

Q(x,y,z) :- R(x,y), S(y,z), T(x,z).

R(x,y)

S(y,z)

T(x,z)

L

There is no join tree! You can't fulfill 
the running intersection property...

Recall:

xyz

Q(xyz)

xy yz

R(xy) S(yz)

⋈y

⋈x,z

T(xz)

xz

query plan as
"query tree"

L
• there is no full semijoin reducer
• intermediate result size bigger than output

https://northeastern-datalab.github.io/cs7240/
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Outline: T3-2: Cyclic conjunctive queries

• T3-1: Acyclic conjunctive queries
• T3-2: Cyclic conjunctive queries

– 2SAT (a detour)
– Tree decompositions
– Decompositions of hypertrees
– Duality in Linear programming (a quick primer)
– AGM bound (maximal result size for full CQs) and

Worst-case optimal joins for the triangle query
– Worst-case optimal joins & the 4-cycle
– Optimal joins & the 4-cycle

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/
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2SAT

• Instance: A 2-CNF formula j
• Problem: To decide if j is satisfiable

• Theorem: 2SAT is polynomial-time decidable.
- Proof: We’ll show how to solve this problem efficiently using path searches

in graphs…

• Background: Given a graph G=(V,E) and two vertices s,tÎV, finding if 
there is a path from s to t in G is linear-time decidable. Use some 
search algorithm (DFS/BFS).

j = (xÚy)Ù(¬yÚz)Ù(¬xÚ¬z)Ù(zÚy)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/
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2SAT: Graph Construction

• Vertex for each variable and a negation of a variable

j = (xÚy)Ù(¬yÚz)Ù(¬xÚ¬z)Ù(zÚy)

x
y 

¬x 

¬z
z 

¬y

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/
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2SAT: Graph Construction

• Vertex for each variable and a negation of a variable
• Edge (¬x→y) iff there exists a clause equivalent to (xÚy)
- Recall (xÚy) same as (¬x⇒y) and (¬y⇒x), thus also (¬y→x)

j = (xÚy)Ù(¬yÚz)Ù(¬xÚ¬z)Ù(zÚy)

x
y 

¬x 

¬z
z 

¬y

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/
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2SAT: Graph Construction

• Vertex for each variable and a negation of a variable
• Edge (¬x→y) iff there exists a clause equivalent to (xÚy)
- Recall (xÚy) same as (¬x⇒y) and (¬y⇒x), thus also (¬y→x)

• Claim: a 2-CNF formula j is unsatisfiable 
iff there exists a variable x, such that:
- there is a path from x to ¬x in the graph, and
- there is a path from ¬x to x in the graph

j = (xÚy)Ù(¬yÚz)Ù(¬xÚ¬z)Ù(zÚy)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

x
y 

¬x 

¬z
z 

¬y

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/
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2SAT: Graph Construction

• Vertex for each variable and a negation of a variable
• Edge (¬x→y) iff there exists a clause equivalent to (xÚy)
- Recall (xÚy) same as (¬x⇒y) and (¬y⇒x), thus also (¬y→x)

• Claim: a 2-CNF formula j is unsatisfiable 
iff there exists a variable x, such that:
- there is a path from x to ¬x in the graph, and
- there is a path from ¬x to x in the graph

j = (xÚy)Ù(¬yÚz)Ù(¬xÚ¬z)Ù(zÚy)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

x
y 

¬x 

¬z
z 

¬y

not enough,
needs both directions!

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/


243Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correctness (1)

• Suppose there are paths x..¬x and ¬x..x for some variable x, but 
there’s also a satisfying assignment r. 
- If r(x)=T:

- Similarly for r(x)=F...

j = (xÚy)Ù(¬yÚz)Ù(¬xÚ¬z)Ù(zÚy)

x
y 

¬x 

¬z
z 

¬y

x ¬x ...

T T

recall, needs to hold in both directions!

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/
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Correctness (2)

• Suppose there are no variables with such paths.
• Construct an assignment as follows:

j = (xÚy)Ù(¬yÚz)Ù(¬xÚ¬z)Ù(zÚy)

x
y 

¬x 

¬z
z 

¬y

1. pick an unassigned literal a, with no 
path from a to ¬a, and assign it T

2. assign T to all 
reachable vertices

3. assign F to their 
negations

4. Repeat until all vertices are 
assigned

x
y 

¬x 

¬z
z 

¬y

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/
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2SAT is in P

We get the following PTIME algorithm for 2SAT:
- For each variable x find if there is a path from x to ¬x and vice-versa.
- Reject if any of these tests succeeded.
- Accept otherwise.

Þ 2SATÎP. n

https://northeastern-datalab.github.io/cs7240/
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Outline: T3-2: Cyclic conjunctive queries

• T3-1: Acyclic conjunctive queries
• T3-2: Cyclic conjunctive queries

– 2SAT (a detour)
– Tree decompositions
– Decompositions of hypertrees
– Duality in Linear programming (a quick primer)
– AGM bound (maximal result size for full CQs) and

Worst-case optimal joins for the triangle query
– Worst-case optimal joins & the 4-cycle
– Optimal joins & the 4-cycle

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
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Join Processing: two approaches

1. Cardinality-based
- binary joins, consider the sizes of input relations as to reduce the intermediate sizes
- commercial DBMSs: series of pairwise joins, system R (Selinger), join size estimation

2. Structural approaches (next)
- acylicity: Yannakakis, GYO algorithm, join tree
- bounded "width": query width, hypertree width (hw), generalized hw (ghw). All go back 

to notion of treewidth (work by Robertson & Seymour on graph minors)

AGM: fractional hw (fhw): 
- consider both statistics on 

relations and query structure

https://northeastern-datalab.github.io/cs7240/
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Source: https://en.wikipedia.org/wiki/Tree_decomposition

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Tree_decomposition
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Very incomplete history of treewdith
The treewidth of a graph is an important graph complexity parameter that determines the 
runtime of practical algorithms. Intuitively measures how close a graph is to being a tree.

1970 1975 1980 1985 1990

Introduced in the context of 
variable elimination orders by 
Bertelé & Brioschi (1972) and 
named "dimension" of a graph

Rediscovered 
by Halin (1976)

Rediscovered in the context of 
graph minors by Robertson & 
Seymour (1984) and named
"tree-width"

Diestel (2017) provides a detailed history of what happened 
afterwards but seems to be unaware of Bertelé & Brioschi
(1972). Bodlaender (1998) attributes the connection of 
"dimension" with treewidth to Arnborg (1985) who actually 
never uses the word "treewidth" nor references R&S (1984)...

Bertelè, Brioschi. Nonserial Dynamic Programming, 1972 (definition 2.7.8). https://dl.acm.org/doi/10.5555/578817 , Halin. S-functions for graphs, Journal of Geometry, 1976. 
https://doi.org/10.1007%2FBF01917434 , Robertson, Seymour. Graph minors III: Planar tree-width, Journal of Combinatorial Theory, 1984 https://doi.org/10.1016%2F0095-
8956%2884%2990013-3 , Diestel. Graph theory, 5th ed, 2017 (section 12). https://doi.org/10.1007/978-3-662-53622-3 , Bodlaender. A partial k-arboretum  of graphs with bounded treewidth 
(tutorial), Theoretical Computer Science, 1998.  https://doi.org/10.1016/S0304-3975(97)00228-4 , Arnborg. Efficient algorithms for combinatorial problems on graphs with bounded 
decomposability -- a survey, BIT, 1985. https://dl.acm.org/doi/abs/10.5555/3765.3773

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/10.5555/578817
https://doi.org/10.1007%2FBF01917434
https://doi.org/10.1016%2F0095-8956%2884%2990013-3
https://doi.org/10.1016%2F0095-8956%2884%2990013-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1016/S0304-3975(97)00228-4
https://dl.acm.org/doi/abs/10.5555/3765.3773
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Definition of an attribute-connected tree

AB

EHCD

BC AE

EF

FG

DEFINITION: A tree is attribute-
connected if the subtree induced 
by each attribute is connected 

Same as the running intersection property
from join trees (also known as junction tree)

Also called "coherence"

https://northeastern-datalab.github.io/cs7240/
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Tree decomposition
A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset 
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/
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Tree decomposition example 1: a tree

a b c ?
tree decomposition

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset 
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

eab

ebc

https://northeastern-datalab.github.io/cs7240/
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Tree decomposition example 1: a tree

a b c 1 2

{a,b} {b,c}

That's why treewidth defined as max cardinality - 1

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset 
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

eab

ebc

https://northeastern-datalab.github.io/cs7240/


255Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 2

?
tree decomposition

Example from: https://en.wikipedia.org/wiki/Tree_decomposition

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset 
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Tree_decomposition
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Tree decomposition example 2

Treewidth = 2
Notice running intersection property

Example from: https://en.wikipedia.org/wiki/Tree_decomposition

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset 
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Tree_decomposition
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Tree decomposition example 3

?
tree decomposition

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset 
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

Example from: https://www.mi.fu-berlin.de/en/inf/groups/abi/teaching/lectures/lectures_past/WS0910/V____Discrete_Mathematics_for_Bioinformatics__P1/material/scripts/treedecomposition1.pdf

https://northeastern-datalab.github.io/cs7240/
https://www.mi.fu-berlin.de/en/inf/groups/abi/teaching/lectures/lectures_past/WS0910/V____Discrete_Mathematics_for_Bioinformatics__P1/material/scripts/treedecomposition1.pdf
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Tree decomposition example 3

Example from: https://www.mi.fu-berlin.de/en/inf/groups/abi/teaching/lectures/lectures_past/WS0910/V____Discrete_Mathematics_for_Bioinformatics__P1/material/scripts/treedecomposition1.pdf

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset 
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/
https://www.mi.fu-berlin.de/en/inf/groups/abi/teaching/lectures/lectures_past/WS0910/V____Discrete_Mathematics_for_Bioinformatics__P1/material/scripts/treedecomposition1.pdf
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Tree decomposition example 4: a cycle

?
tree decomposition

1

4 3

5 2

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset 
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/
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Tree decomposition example 4: a cycle

1

4 3

5 2 12 23 34 45 15

What about coherence?

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset 
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/
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Tree decomposition example 4: a cycle

1

4 3

5 2 12 123 134 145 15

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset 
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/
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Tree decomposition example 4: a cycle

1

4 3

5 2 123 134 145

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset 
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/
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Tree decomposition example 5: the triangle

y

x z

?
tree decomposition

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset 
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/
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Tree decomposition example 5: the triangle

y

x z

xy xyz xz

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset 
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/
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Tree decomposition example 5: the triangle

y

x z

xyz

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset 
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

More generally, a Kd (d-clique) 
has a minimal treewidth of d-1

https://northeastern-datalab.github.io/cs7240/
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Tree decomposition example 6: a longer tree

?
tree decomposition

3

m 5

4

2
1

6

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset 
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/
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Tree decomposition example 6: a longer tree

3

m 5

34
4

2
1

6
m4

m5 56m2
12

34

m4
m5 56m2

12

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset 
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/
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Tree decomposition example 7

Example by: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en
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Tree decomposition example 8

Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf

https://northeastern-datalab.github.io/cs7240/
http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
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Tree decomposition example 8

Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf

https://northeastern-datalab.github.io/cs7240/
http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf


276Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree Decompositions (TDs) for CSPs

• Solving CSP on a tree with k variables and domain size m is O(km2)
• TD algorithm: find all solutions within each supernode, which is O(mtw+1) where tw is the treewidth (= one 

less than size of largest supernode). Recall treewidth of tree is 1, thus complexity O(m2)
• Then, use the tree-structured Yannakakis algorithm, treating the supernodes as new variables...
• Finding a tree decomposition of smallest treewidth is NP-complete, but good heuristic methods exist.

TD:
• If two variables are connected in the original 

problem, they must appear together (along 
with the constraint) in at least one supernode

• If a variable occurs in two supernodes in the TD, 
it must appear in every supernode on the path 
that connects the two (coherence)

• The only constraints between the supernodes
are that the variables take on the same values 
across supernodes (like semi-join messages 
from Yannakakis)

Figures: Fig 6.12 and 6.13 from Russell, Norvig. "Artificial intelligence: a modern approach". 3rd ed, 2010. https://dl.acm.org/doi/book/10.5555/1671238

Original CSP: 
Map-coloring of Australia

Tree decomposition with 
supernodes (sets of variables)

Notice here each node is a variable
with domain of size d (e.g. 3 colors)

Translates into O(ntw) where 
n is size of constraints per edge

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/book/10.5555/1671238
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Alternative definition of Tree decomposition (TD)

ALTERNATIVE DEFINITION:
A tree decomposition of graph 𝐺(𝑁, 𝐸) is a pair 𝑇, 𝜒 where 𝑇(𝑉, 𝐹) is a tree, and 𝜒 is a 
labeling function assigning to each vertex 𝑣 ∊ 𝑉 a set of vertices 𝜒(𝑣) ⊆ 𝑁, s.t. above 
conditions (2) and (3) are satisfied.

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset 
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/
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Figure from: Otten, Dechter. Bounding Search Space Size via (Hyper)tree Decompositions. UAI 2008. https://arxiv.org/abs/1206.3284

Small decompositions allow to "compress" the search space

https://northeastern-datalab.github.io/cs7240/
https://arxiv.org/abs/1206.3284
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Pursuit-evasion games

• Pursuit-evasion (sometimes called "cops and robber") is a family of 
problems in which one group (cops) attempts to track down 
members of another group (robbers) in some structured 
environment, usually graphs.

• Related to pebble games and Ehrenfeucht–Fraïssé games

• Next: A variations of "Cops and Robber" can be used to describe the 
treewidth of a graph

For more details see: https://en.wikipedia.org/wiki/Pursuit%E2%80%93evasion, https://en.wikipedia.org/wiki/Pebble_game, 
https://en.wikipedia.org/wiki/Ehrenfeucht%E2%80%93Fra%C3%AFss%C3%A9_game, https://en.wikipedia.org/wiki/Cop_number#Special_classes_of_graphs

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Pursuit%E2%80%93evasion
https://en.wikipedia.org/wiki/Pebble_game
https://en.wikipedia.org/wiki/Ehrenfeucht%E2%80%93Fra%C3%AFss%C3%A9_game
https://en.wikipedia.org/wiki/Cop_number
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Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths 
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops 
and want to catch the robber (catch = occupy the same node). A single move consists of: 
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

THEOREM [Seymour & Thomas (1993)]
You have a winning strategy with 𝑘 cops iff
the tree-width of the graph is at most 𝑘−1.

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027


282Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Treewidth with Cops and robber
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Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths 
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops 
and want to catch the robber (catch = occupy the same node). A single move consists of: 
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027


286Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Treewidth with Cops and robber
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Treewidth with Cops and robber
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Treewidth with Cops and robber

1 43 52

𝑘 cops and 1 robber move on vertices of a graph. The robber can move quickly along paths 
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops 
and want to catch the robber (catch = occupy the same node). A single move consists of: 
(1) A cop flies off the graph in a helicopter and announces a new landing vertex.
(2) While the cop flies, the robber can move quickly along the edges and escape.
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6 7

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

You can never catch the robber with only one cop L

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027
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Treewidth with Cops and robber
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Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027

?
What is the best move with a 2nd cop

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027
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Treewidth with Cops and robber
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Treewidth with Cops and robber
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Robbers cannot hide on trees with 2 cops

7 8 9 10 11 12 13 14

3 4 5 6
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Tree
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Robbers cannot hide on trees with 2 cops
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Robbers cannot hide on trees with 2 cops

7 8 9 10 11 12 13 14

3 4 5 6

1

0

2

6,146,135,125,11

4,104,93,7 3,8

1,3 1,4 0,2

2,5 2,6

0,1

Tree Tree decomposition

Start at the root and 
move in on the robber
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Robbers cannot hide on trees with 2 cops
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4,10

Robbers cannot hide on trees with 2 cops
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Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree_decomposition

Graph with treewidth = 2

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Tree_decomposition


303Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree_decomposition

Graph with treewidth = 2
You will need 3 cops

Tree decomposition

BG

EG

BE

CE

BC

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Tree_decomposition
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Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree_decomposition

Pick some root

Graph with treewidth = 2 Tree decomposition
You will need 3 cops

BG

EG

BE

CE

BC

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Tree_decomposition
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Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree_decomposition

Graph with treewidth = 2 Tree decomposition

Pick some rootYou will need 3 cops

And now move 
in on the robber

BG
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BE

CE

BC

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Tree_decomposition
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Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree_decomposition

You will need 3 cops
Graph with treewidth = 2 Tree decomposition

And now move 
in on the robber
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Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree_decomposition

You will need 3 cops
Graph with treewidth = 2 Tree decomposition

And now move 
in on the robber
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Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree_decomposition

You caught the robber!
You will need 3 cops
Graph with treewidth = 2 Tree decomposition

And now move 
in on the robber

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Tree_decomposition
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Pre-class conversations

• Last class summary
• Scribes
- Can you see my comments on your scribes and project notes?
- also posting scribes on Piazza

• Project: (P3: today FRI, 3/31)
• Feedback on my slides
• Today: 
- Reducing cycles to trees (tree decompositions)
- Reducing cycles in CQs to trees based on the domain or based on atoms 

(treewidth, query width hypertree decompositions)
- Linear Programming Duality

https://northeastern-datalab.github.io/cs7240/
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Outline: T3-2: Cyclic conjunctive queries

• T3-1: Acyclic conjunctive queries
• T3-2: Cyclic conjunctive queries

– 2SAT (a detour)
– Tree decompositions
– Decompositions of hypertrees
– Duality in Linear programming (a quick primer)
– AGM bound (maximal result size for full CQs) and

Worst-case optimal joins for the triangle query
– Worst-case optimal joins & the 4-cycle
– Optimal joins & the 4-cycle

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/


344Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

• A join tree for a hypergraph H=(V,E) is a labeled tree T =(N,F,𝜆) such that:
- The nodes of T are formed by the hyperedges. In other words, 𝜆: N→E s.t. for each 

hyperedge e ∈ E of H, there exists n ∈ N such that e = 𝜆(n)
- For each node u ∈ V of H, the set {n ∈ N | u ∈ 𝜆(n)} induces a connected subtree of T. 

(also called: running intersection property)

Acyclic Conjunctive Queries

x y

u

z

p w

R

W

S

T

U

U(z,p,w)

T(y,z,p) W(p,w,u)

R(x,y,z) S(y,p)

Q :- R(x,y,z), S(y,p), T(y,z,p), U(z,p,w), W(p,w,u). 

https://northeastern-datalab.github.io/cs7240/
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• A join tree for a hypergraph H=(V,E) is a labeled tree T =(N,F,𝜆) such that:
- The nodes of T are formed by the hyperedges. In other words, 𝜆: N→E s.t. for each 

hyperedge e ∈ E of H, there exists n ∈ N such that e = 𝜆(n)
- For each node u ∈ V of H, the set {n ∈ N | u ∈ 𝜆(n)} induces a connected subtree of T. 

(also called: running intersection property)

Acyclic Conjunctive Queries

x y

u

z

p w

R

W

S

T

U

U(z,p,w)

T(y,z,p) W(p,w,u)

R(x,y,z) S(y,p)

https://northeastern-datalab.github.io/cs7240/


346Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

• A join tree for a hypergraph H=(V,E) is a labeled tree T =(N,F,𝜆) such that:
- The nodes of T are formed by the hyperedges. In other words, 𝜆: N→E s.t. for each 

hyperedge e ∈ E of H, there exists n ∈ N such that e = 𝜆(n)
- For each node u ∈ V of H, the set {n ∈ N | u ∈ 𝜆(n)} induces a connected subtree of T. 

(also called: running intersection property)

Acyclic Conjunctive Queries

x y

u

z

p w

{z,p,w}

{y,z,p} {p,w,u}

{x,y,z} {y,p}

https://northeastern-datalab.github.io/cs7240/
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• A join tree for a hypergraph H=(V,E) is a labeled tree T =(N,F,𝜆) such that:
- The nodes of T are formed by the hyperedges. In other words, 𝜆: N→E s.t. for each 

hyperedge e ∈ E of H, there exists n ∈ N such that e = 𝜆(n)
- For each node u ∈ V of H, the set {n ∈ N | u ∈ 𝜆(n)} induces a connected subtree of T. 

(also called: running intersection property)

Acyclic Conjunctive Queries

1 2

4

3

5 6

{3,5,6}

{2,3,5} {4,5,6}

{1,2,3} {2,5}

https://northeastern-datalab.github.io/cs7240/


348Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

3

64
5

7 8

0

A

B

C

D E

F

G
H

9

For queries that are not acyclic, what bounds can we give 
on the data complexity of query evaluation, considering 
various structural properties of the query?

We will see:
- Coherence (as in TDs) is still a key structural criterion 

for efficiency!
- But treewidth does not generalize the notion of 

hypergraph acyclicity (because acyclic families of 
hypergraphs may have unbounded treewidth L)

- What will help is the number of atoms needed to 
cover sets of variables J. 

- Reason: size of database is determined by number of 
tuples n not domain size m

Cyclic Conjunctive Queries
Hypergraph

Example adopted from: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en
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Q(x,y,z,w) :- R(x,y,z,w).

Issues with standard Treewidth (TW) for CQs

Hypergraph Clique graph

Treewidth: 

Treewidth based on graphs. 
TW of CQ is TW of its clique graph (i.e. replace each hyperedge with a clique)

? ?
?

a clique is a graph where where every 
vertex is connected to every other vertex

https://northeastern-datalab.github.io/cs7240/
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Q(x,y,z,w) :- R(x,y,z,w).

Issues with standard Treewidth (TW) for CQs

Hypergraph Clique graph

Treewidth: 

Treewidth based on graphs. 
TW of CQ is TW of its clique graph (i.e. replace each hyperedge with a clique)

?
?

x y

z w

a clique is a graph where where every 
vertex is connected to every other vertex

https://northeastern-datalab.github.io/cs7240/
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Q(x,y,z,w) :- R(x,y,z,w).

Issues with standard Treewidth (TW) for CQs

Hypergraph Clique graph

Treewidth: 

Treewidth based on graphs. 
TW of CQ is TW of its clique graph (i.e. replace each hyperedge with a clique)

?

x y

z w

x y

z w

a clique is a graph where where every 
vertex is connected to every other vertex

https://northeastern-datalab.github.io/cs7240/
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Q(x,y,z,w) :- R(x,y,z,w).

x y

Issues with standard Treewidth (TW) for CQs

z w

Hypertree Clique graph

x y

z w

Resulting complexity bound O(m4)!

That's a pretty bad bound. We know 
we can evaluate this query in O(n).

Treewidth based on graphs. 
TW of CQ is TW of its clique graph (i.e. replace each hyperedge with a clique)

Treewidth: 3

This is actually the best tree decomposition: Nodes 
of a clique need to appear in the same supernode

https://northeastern-datalab.github.io/cs7240/
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R

T
x

y

z

S

W

Q1(x,y,z) :- R(x,y), S(y,z), T(x,z).
Q2(x,y,z) :- R(x,y), S(y,z), T(x,z), W(x,y,z).

R

T
x

y

z

S

H1 H2

Issues with standard Treewidth (TW) for CQs
We also know that these two 
queries have different maximal 
output sizes: O(n1.5) vs. O(n).
But TW cannot distinguish them L

?

Clique graph

https://northeastern-datalab.github.io/cs7240/
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R

T
x

y

z

S

W

Q1(x,y,z) :- R(x,y), S(y,z), T(x,z).
Q2(x,y,z) :- R(x,y), S(y,z), T(x,z), W(x,y,z).

R

T
x

y

z

S

x

y

z

H1 H2

Same clique graph. Therefore:
→ same TW 2.
→ same complexity bound O(m3)

Issues with standard Treewidth (TW) for CQs
We also know that these two 
queries have different maximal 
output sizes: O(n1.5) vs. O(n).
But TW cannot distinguish them L

Clique graph

https://northeastern-datalab.github.io/cs7240/
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Chekuri, Rajaraman. "Conjunctive query containment revisited", TCS 2000. https://doi.org/10.1016/S0304-3975(99)00220-0 (ICDT'97 conference paper, ICDT'16 test-of-time award)

"Query decomposition" [Chekuri, Rajaraman'97]
QUERY DECOMPOSITION
Tree decomposition with coherence conditions on both:
1) variables and 2) atoms.
Query width: max # of atoms in a supernode

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1016/S0304-3975(99)00220-0
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Important Observation 1

R(1,2,3), A(6,7)

B(1,7)

T(1,4,6), U(2,5,6)

C(2,7)

R(1,2,3), S(4,5,3)

Adopted from an example by Georg Gottlob

"Query decomposition" as defined by 
[Chekuri, Rajaraman'97] is too strict 
about atoms needing to be connected  
and atoms not allowing projections

This decomposition would not be possible 
for original "query decomposition" 
because "3" is not connected.

But what if you project "3" away onto
𝑅 1,2 = 𝜋+:𝑅(1,2,3)

Some decomposition

https://northeastern-datalab.github.io/cs7240/
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Important Observation 1

R(1,2,_), A(6,7)

B(1,7)

T(1,4,6), U(2,5,6)

C(2,7)

R(1,2,3), S(4,5,3)

Adopted from an example by Georg Gottlob

Here the reuse of R(1,2,3) is harmless: we 
could have added an atom R(1,2,_) here 
without changing the query.

This leads to "generalized hypertree 
decompositions" which define coherence only 
based on variables, not atoms. More liberal 
than "query decomposition", and thus can give 
tighter bounds. 

Idea: allow query atoms to be reused 
partially (with projections) as long as 
the full atom appears somewhere else.

Some decomposition

𝜋+:𝑅

https://northeastern-datalab.github.io/cs7240/
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S(6,2,4,7,6), T(3,5,8,11,12)

R(1,2,3,4,5)

R(_,2,3,_,_), U(7,8,9) R(_,_,_,4,5), V(6,0,12)

A(2,9) B(3,9) E(5,0)C(4,0), D(6,_,0)

F(4,6,13) G(4,6,14)

Important Observation 2
One can avoid NP-hardness of finding a 
minimal size decomposition by adding an 
additional syntactic "descendant condition". 
This leads to "hypertree decompositions"

Adopted from an example by Georg Gottlob

https://northeastern-datalab.github.io/cs7240/
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S(6,2,4,7,6), T(3,5,8,11,12)

R(1,2,3,4,5)

R(_,2,3,_,_), U(7,8,9) R(1,2,3,4,5), V(6,0,12)

A(2,9) B(3,9) E(5,0)C(4,0), D(6,_,0)

F(4,6,13) G(4,6,14)

Important Observation 2
One can avoid NP-hardness of finding a 
minimal size decomposition by adding an 
additional syntactic "descendant condition". 
This leads to "hypertree decompositions"

Each variable that
disappears at some 
node, does not reappear
in the subtree rooted
at that node

Adopted from an example by Georg Gottlob

https://northeastern-datalab.github.io/cs7240/
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Source: Gottlob, Leone, Scarcello. "Hypertree decompositions and tractable queries." PODS 1999. https://doi.org/10.1145/303976.303979 (Gems of PODS 2016)

descendent condition

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/303976.303979
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1 2
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H

9

1,3,4,6,0

3,4,6,9,0

4,6,8,9,0

4,5,6,7,8,0

1,2,3,6

How to check that this is 
a valid tree decomposition? ?

Hypertree decomposition: full example
Hypergraph Tree decomposition

https://northeastern-datalab.github.io/cs7240/
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1

1,3,4,6,0

3,4,6,9,0

4,6,8,9,0

4,5,6,7,8,0

2

3

64
5

7 8

0

1,2,3,6

9

TREE DECOMPOSITION

1. Edge coverage: For every edge 
e of G, there is a vertex in 
T that contains both ends of e

2. Coherence

What is its width ?

Hypertree decomposition: full example
Clique graph of Hypergraph
(also primal or Gaifman graph)

Tree decomposition

https://northeastern-datalab.github.io/cs7240/
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1

1,3,4,6,0

3,4,6,9,0

4,6,8,9,0

4,5,6,7,8,0

2

3

64
5

7 8

0

1,2,3,6

9

TREE DECOMPOSITION

1. Edge coverage: For every edge 
e of G, there is a vertex in 
T that contains both ends of e

2. Coherence

tree width = 5:
= size of largest supernode - 1

Hypertree decomposition: full example
Tree decompositionClique graph of Hypergraph

(also primal or Gaifman graph)

guarantees evaluation in O(m6)
where m is the domain size or O(n5)
where n is size of largest relation

https://northeastern-datalab.github.io/cs7240/
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Tree decomposition
(width 5)

Hypergraph

1,3,4,6,0

3,4,6,9,0

4,6,8,9,0

4,5,6,7,8,0

1,2,3,6

Hypertree decomposition: full example

1 2

3
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7 8
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D E

F
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9

TREE DECOMPOSITION (ALTERNATIVE)
1. Hyperedge coverage: For 

every hyperedge h of H, 
there is a vertex in T that 
contains all its variables

2. Coherence

identical definition, because:
• hyperedge = clique in clique graph
• each clique needs to be contained 

in one supernode of the TD

https://northeastern-datalab.github.io/cs7240/
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Tree decomposition
(width 5)

Hypergraph

Hypertree decomposition: full example
Generalized hypertree decomp.

(width 2)

Why is this a valid "general.
hypertree decomposition" ?

1 2

3

64
5

7 8

0

A

B

C

D E

F

G
H

9

1,3,4,6,0

3,4,6,9,0

4,6,8,9,0

4,5,6,7,8,0

1,2,3,6

Example adopted from: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

A{1,2}, F{2,3,6}

C{1,4,0}, F{2,3,6}

B{4,5,6}, H{3,9,0}

C{1,4,0}, E{6,8,9}

B{4,5,6}, G{7,8,0}

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en
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Hypergraph

Hypertree decomposition: full example
Generalized hypertree decomp.

(width 2)

GENERALIZED HT DECOMP.
1. Hyperedge coverage: For 

every hyperedge h of H, 
there is a vertex in T that 
contains all its variables

2. Coherence

Basically identical to tree decomposition.
Just the width measure is different!

Tree decomposition
(width 5)

Example adopted from: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

A{1,2}, F{2,3,6}

C{1,4,0}, F{2,3,6}

B{4,5,6}, H{3,9,0}

C{1,4,0}, E{6,8,9}

B{4,5,6}, G{7,8,0}

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en
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Hypergraph

Hypertree decomposition: full example
Generalized hypertree decomp.

(width 2)

GENERALIZED HT DECOMP.
1. Hyperedge coverage: For 

every hyperedge h of H, 
there is a vertex in T that 
contains all its variables

2. Coherence

A{1,2}, F{2,3,6}

C{1,4,0}, F{2,3,6}

B{4,5,6}, H{3,9,0}

C{1,4,0}, E{6,8,9}

B{4,5,6}, G{7,8,0}

Tree decomposition
(width 5)

Example adopted from: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

Basically identical to tree decomposition.
Just the width measure is different!

B and G together contain 
all variables from D

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en
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1 A{1,2}, F{2,3,6}

C{1,4,0}, F{2,3,6}

B{4,5,6}, H{3,9,0}

C{1,4,0}, E{6,8,9}

B{4,5,6}, G{7,8,0}

2

3
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Hypergraph

Hypertree decomposition: full example
Generalized hypertree decomp.

(width 2)

Is this also a valid 
"hypertree decomposition" ?

GENERALIZED HT DECOMP.
1. Hyperedge coverage: For 

every hyperedge h of H, 
there is a vertex in T that 
contains all its variables

2. Coherence

Example adopted from: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en
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Hypergraph

Hypertree decomposition: full example
Generalized hypertree decomp.

(width 2)

HT DECOMP.
1. Hyperedge coverage: For 

every hyperedge h of H, 
there is a vertex in T that 
contains all its variables

2. Coherence
3. Descendant condition:

Variables projected away 
from a hyperedge can 
not reappear in the 
subtree below

A{1,2}, F{2,3,6}

C{1,4,0}, F{2,3,6}

B{4,5,6}, H{3,9,0}

C{1,4,0}, E{6,8,9}

B{4,5,6}, G{7,8,0}

No: "5" got projected away, 
but reappears below. Also 
"1" in other direction

A condition to limit the search 
space of valid HD decompositions

Example adopted from: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en
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Hypergraph

Hypertree decomposition: full example
Hypertree decomposition

HT DECOMP.
1. Hyperedge coverage: For 

every hyperedge h of H, 
there is a vertex in T that 
contains all its variables

2. Coherence
3. Descendant condition:

Variables projected away 
from a hyperedge can 
not reappear in the 
subtree below

A{1,2}, C{1,4,0}, F{2,3,6}

B{4,5,6}, D{5,7}, E{6,8,9},
G{7,8,0}, H{3,9,0}

Example adopted from: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en
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Hypergraph

Hypertree decomposition: full example
Hypertree decomposition

A{1,2}, C{1,4,0}, F{2,3,6}

What should be the "width" 
of this HTD, i.e. what is the 
complexity of materializing 
this last supernode ?

B{4,5,6}, D{5,7}, E{6,8,9},
G{7,8,0}, H{3,9,0}

Example adopted from: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en
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Hypergraph

Hypertree decomposition: full example
Hypertree decomposition

A{1,2}, C{1,4,0}, F{2,3,6}

Notice that 3 relations alone "cover" all the variables. 
The join can only be a subset of those tuples.

B{4,5,6}, D{5,7}, E{6,8,9},
G{7,8,0}, H{3,9,0}B(4,5,6)⋈G(7,8,0)⋈H(3,9,0)

([(B(4,5,6) ⋈ G(7,8,0)) ⋈ H(3,9,0)]
⋉D(5,7)) ⋉E(6,8,9)

O(n3)

n... maximal size of relations
Example adopted from: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en
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Hypergraph

Hypertree decomposition: full example
Hypertree decomposition

(width 3)

C,F: {1,2,3,4,6,0}

B,G,H:{3,4,5,6,7,8,9,0}

With of HTD = maximal width of any super node.
With of supernode = minimal number of relations 
to cover all variables. Here covered by B⋈G⋈H

Results in a modified database and modified acyclic 
query. Then perform Yannakakis: O(n3)
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B⋈G⋈H

Example adopted from: Markus Krötzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en

https://northeastern-datalab.github.io/cs7240/
https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2016)/en
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Source: Gottlob, Leone, Scarcello. "Hypertree decompositions: a survey." MFCS 2001. https://dl.acm.org/doi/10.5555/645730.668191

descendent condition

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/10.5555/645730.668191
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Source: Adler, Gottlob, Grohe. "Hypertree width and related hypergraph invariants." European Journal of Combinatorics 2007 (EuroComp 2005). https://doi.org/10.1016/j.ejc.2007.04.013
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Source: Gottlob, Miklos, Schwentick. "Generalized Hypertree decompositions: NP-hardness and tractable variants.", PODS 2007. https://doi.org/10.1145/1265530.1265533
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Generalized Hypertree Decomposition (GHD)
[Gottlob, Leone, Scarcello 2001]

Hypertree Decompositions and friends

Hypertree Decomposition (HD)
[Gottlob, Leone, Scarcello 1999]

Query decomposition
[Chekuri, Rajaraman 1997] NP-complete to find the optimum

PTIME to find the optimum

towards tighter bounds
(below is better)

NP-complete to find the optimum

towards tighter bounds
(below is better)

Chekuri, Rajaraman. "Conjunctive query containment revisited", TCS 2000. https://doi.org/10.1016/S0304-3975(99)00220-0 (ICDT'97 conference paper, ICDT'16 test-of-time award)
Gottlob, Leone, Scarcello. "Hypertree decompositions and tractable queries." PODS 1999. https://doi.org/10.1145/303976.303979 (Gems of PODS 2016)
Gottlob, Leone, Scarcello. "Hypertree decompositions: a survey." MFCS 2001. https://dl.acm.org/doi/10.5555/645730.668191

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1016/S0304-3975(99)00220-0
https://doi.org/10.1145/303976.303979
https://dl.acm.org/doi/10.5555/645730.668191
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1. Generalized Hypertree Decomposition (GHD):
explores the whole search space of valid decompositions
(illustrated here with a non-convex search space 𝑆 in blue)

Hypertree Decomposition: an unfortunate naming

2. Hypertree Decomposition (HD):
limits the search space in a way that makes it tractable
to find the optimal solution within that limited subspace
(illustrated here with a convex search space 𝑆′⊆𝑆)

Better names would be:
1. Hypertree Decomposition (HD) instead of GHD
2. Restricted Hypertree Decomposition (RHD) instead of HD

𝑆

𝑆′

https://northeastern-datalab.github.io/cs7240/
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Pre-class conversations

• Last class summary
• Project: comments finished on about 1/3 (4)
• Scribes

• Today: 
- Linear Programming Duality, min-cut-max-flow

https://northeastern-datalab.github.io/cs7240/
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Outline: T3-2: Cyclic conjunctive queries

• T3-1: Acyclic conjunctive queries
• T3-2: Cyclic conjunctive queries

– 2SAT (a detour)
– Tree decompositions
– Decompositions of hypertrees
– Duality in Linear programming (a quick primer)
– AGM bound (maximal result size for full CQs) and

Worst-case optimal joins for the triangle query
– Worst-case optimal joins & the 4-cycle
– Optimal joins & the 4-cycle

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/
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Topic Duality in Linear Programming (LP)

• Subtopics
- Connections between (max) set packing and (min) set covers in graphs
- Linear Programming (LP) and duality gaps
- LP relaxations of ILP problems (Integer Linear Programming)
- Duality b/w independent vertex sets and edge covers

Duality in linear programming: Intuitively, every Linear Program has a dual problem with the same optimal solution, 
but the variables in the dual problem correspond to constraints in the primal problem and vice versa. 
But the notion of duality is more general:
• "Over and over again, it turns out that one can associate with a given mathematical object a related, 'dual' 

object that helps one ... understand the properties of the object one started with." 
[The Princeton Companion to Mathematics, 2008]

• "Fundamentally, duality gives two different points of view of looking at the same object."
[Michael Atiyah, 2007]

https://northeastern-datalab.github.io/cs7240/
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Let's use graphs to explain duality in LP (Linear Programming)

• (max) Packing problems: max number of disjoint subsets
- max set packing: max number of subsets that are pairwise disjoint 
- max independent (vertex) set: max number of vertices not sharing edges
- max independent edge set = matching: maximum number of edges that don't share any 

nodes (every vertex can be in max one matching)

• (min) Coverings problems: min number of subsets to cover all elements
- min set cover: min number of subsets to cover the entire domain
- min vertex cover: min number of vertices to cover all edges
- min edge cover: min number of edges to cover all vertices

• Some packing problem is the dual problems of some covering problem
- Min Vertex Cover (VC) is the dual of Max matching
- Max Independent Set (IS) is the dual of Min edge cover

https://northeastern-datalab.github.io/cs7240/
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Independent set

1 2

5 4

6 7 3

Independent set (IS): set of vertices 
that are not connected (white)

max

https://northeastern-datalab.github.io/cs7240/
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1 2

5 4

6 7 3

VC vs. Ind set ?

Vertex cover (VC): set of vertices 
that covers all edges

Independent set (IS): set of vertices 
that are not connected (white)

?

Assume you are given an independent set.
How do you find a vertex cover?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

max

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/
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VC =c Ind set

Set S is a VC iff the complement Vc = V − S is an IS

Proof: for each edge at most one vertex is in Vc. 
Thus at least one vertex is in Set S. 

Vertex cover (VC): set of vertices 
that covers all edges (orange)

Independent set (IS): set of vertices 
that are not connected (white)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

max

min

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/
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Matching vs. VC?

Vertex cover (VC): set of vertices 
that covers all edges (orange)

Matching (Ind edge set): set of 
edges w/o common vertices (red) 

?

What is a possible connection between VC and matchings

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

min

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/


407Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Thus, any VC has at least the size of any matching
⇒ Size of any matching ≤ any VC

A VC needs to cover at least each edge from 
any matching

1 2

5 4

6 7 3

Matching ≤ VC

Vertex cover (VC): set of vertices 
that covers all edges (orange)

Matching (Ind edge set): set of 
edges w/o common vertices (red) 

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

That turns out to be the dual: 
Max Matching ≤ Min VC

max

min

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/
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1 2
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6 7 3

Matching ≤ VC =c Ind set (summary so far)

Vertex cover (VC): set of vertices 
that covers all edges (orange)

Matching (Ind edge set): set of 
edges w/o common vertices (red) 

Independent set (IS): set of vertices 
that are not connected (white)

?What intuitive problem is missing

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

max

min

max

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/
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Cover problems: set of subsets that cover all elements

Packing problems: set of disjoint subsets

Matching ≤ VC =c Ind set (summary so far)

Vertex cover (VC): set of vertices 
that covers all edges (orange)

Matching (Ind edge set): set of 
edges w/o common vertices (red) 

Independent set (IS): set of vertices 
that are not connected (white)
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?What intuitive problem is missing

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Edges = Sets

Ve
rt

ic
es

 =
 e

le
m

en
ts

max

min

max

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/


410Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2

5 4

6 7 3

Matching ≤ VC =c Ind set   vs. Edge cover

Vertex cover (VC): set of vertices 
that covers all edges (orange)

Matching (Ind edge set): set of 
edges w/o common vertices (red) 

Independent set (IS): set of vertices 
that are not connected (white)
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Edges = Sets
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Cover problems: set of subsets that cover all elements 
(min set cover: min vertex cover, min edge cover)

Packing problems: set of disjoint subsets
(max set packing: max ind set, max matching)

Edge cover: set of edges that cover 
all vertices (blue)?

What is its 
connection
to IS

max

min

max

min
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Matching ≤ VC =c Ind set ≤ Edge cover

Vertex cover (VC): set of vertices 
that covers all edges (orange)

Matching (Ind edge set): set of 
edges w/o common vertices (red) 

Independent set (IS): set of vertices 
that are not connected (white)
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Edges = Sets
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Edge cover: set of edges that cover 
all vertices (blue)

Thus, any IS is lower bound to the size of any edge cover
⇒ Size of min edge cover ≥ max IS

An edge cover needs to cover at least each 
vertex from any IS

Duality: Max IS ≤ Min edge cover

max

min

max

min
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4 graph problems in the incidence matrix

Set 
Cover

Set 
Packing

Choose Vertices Choose Edges

Independent 
Set

Matching = 
Ind. edge set

Vertex Cover Edge Cover
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4 graph problems in the incidence matrix

Set 
Cover

Set 
Packing

Choose Vertices Choose Edges

Independent 
Set

Matching = 
Ind. edge set

Vertex Cover Edge Cover
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≥ dual

complement

NP-complete PTIME

≤ dual

min=4

max=3

min=4

max=3
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4 graph problems in the incidence matrix

Set 
Cover

Set 
Packing

Choose Vertices Choose Edges

Independent 
Set

Matching = 
Ind. edge set

Vertex Cover Edge Cover
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Edges = Sets

Ve
rt

ic
es

 =
 e

le
m

en
ts

≥ dual

complement

NP-complete PTIME

≤ dual

𝜏=4 (min)

𝛼=3 (max)

𝜌=4 (min)

𝜇=3 (max)

https://northeastern-datalab.github.io/cs7240/
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Source: Scheinerman, Ullman. "Fractional Graph Theory: A Rational Approach to the Theory of Graphs",  1997/2008. https://www.ams.jhu.edu/ers/books/fractional-graph-theory-a-rational-
approach-to-the-theory-of-graphs/

≥ dual

(min) vertex cover

(min) edge cover

(max) matching 
(independent edge set)

(max) independent vertex set

≥ dual

(𝛼)(𝜌)

complement

Finding a maximum matching in a 3-uniform 
hypergraph is NP-hard (3-dimensional matching), 
but is in PTIME for simple (2-uniform) graphs.

hyperedge cover

vertex cover

https://northeastern-datalab.github.io/cs7240/
https://www.ams.jhu.edu/ers/books/fractional-graph-theory-a-rational-approach-to-the-theory-of-graphs/
https://www.ams.jhu.edu/ers/books/fractional-graph-theory-a-rational-approach-to-the-theory-of-graphs/
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Background: MAX independent (vertex) set ≤ MIN edge cover

• Assume graph G is connected. Thus, every vertex has at least one edge (unless just one vertex)
• Suppose 𝑆 is an independent set and 𝐸 is an edge cover. 
• Then for each vertex 𝑣∈𝑆 there exists at least one edge 𝑒∈𝐸 incident with 𝑣.
• By definition of independent set no two 𝑢,𝑣∈𝑆, have a common edge in 𝐸.
• Therefore |𝑆|≤|𝐸|
Examples from: http://www.csie.ntnu.edu.tw/~u91029/Domination.html
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

≤ dual

https://northeastern-datalab.github.io/cs7240/
http://www.csie.ntnu.edu.tw/~u91029/Domination.html
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Matching ≤ VC: what changes in bipartite graphs?

Thus, min VC at least the size of any matching
⇒ Size of any matching ≤ any VC

A VC needs to cover at least each edge from 
any matching

Vertex cover (VC): set of vertices 
that covers all edges (orange)

Matching (Ind edge set): set of 
edges w/o common vertices (red) 

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

max

min

𝐿 𝑅
Nodes are partitioned into Left and Right

https://northeastern-datalab.github.io/cs7240/
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matching = VC ... in bipartite graphs!

Kőnig-Egeváry theorem for bipartite graphs: 
Max matching equivalent to Min VC

Vertex cover (VC): set of vertices 
that covers all edges (orange)

Matching (Ind edge set): set of 
edges w/o common vertices (red) 

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

max
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𝐿 𝑅
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All for 4 problems become easy in bipartite graphs

Set 
Cover

Set 
Packing

Choose Vertices Choose Edges

Independent 
Set

Matching = 
Ind. edge set

Vertex Cover Edge Cover

= dual

complement

PTIME

= dual
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𝐿 𝑅
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Cuts and Flows in directed graphs G = (V, E)
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𝐿 𝑅
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Cuts and Flows in directed graphs G = (V, E)

3

4

6

7

9

10

1

2

5

8s t

1

1

1

1

Each edge (𝑢, 𝑣) has a capacity 𝑐"# which is the max amount of flow that can pass through it. 
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Cuts and Flows in directed graphs G = (V, E)
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A flow is a mapping of edges to flows 𝑓: 𝐸 → ℝ$
s.t. that flows obey their capacities 𝑓"# ≤ 𝑐"# and 
conservation laws. The value |𝑓| of a flow is the 
amount moved from 𝑆 to 𝑇 through the network.

Each edge (𝑢, 𝑣) has a capacity 𝑐"# = 1 which is the max amount of flow that can pass through it. 

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

𝐿 𝑅

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem
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Cuts and Flows in directed graphs G = (V, E)
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Each edge (𝑢, 𝑣) has a capacity 𝑐"# = 1 which is the max amount of flow that can pass through it. 

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

0
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1

1

1

1

1

1

0
0 0

𝐿 𝑅

|𝑓|= 3

A flow is a mapping of edges to flows 𝑓: 𝐸 → ℝ$
s.t. that flows obey their capacities 𝑓"# ≤ 𝑐"# and 
conservation laws. The value |𝑓| of a flow is the 
amount moved from 𝑆 to 𝑇 through the network.

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem
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Cuts and Flows in directed graphs G = (V, E)
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Each edge (𝑢, 𝑣) has a capacity 𝑐"# = 1 which is the max amount of flow that can pass through it. 

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem
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1

0
0 0

𝐿 𝑅

|𝑓|= 4

A flow is a mapping of edges to flows 𝑓: 𝐸 → ℝ$
s.t. that flows obey their capacities 𝑓"# ≤ 𝑐"# and 
conservation laws. The value |𝑓| of a flow is the 
amount moved from 𝑆 to 𝑇 through the network.

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem
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Cuts and Flows in directed graphs G = (V, E)

A flow is a mapping of edges to flows 𝑓: 𝐸 → ℝ$
s.t. that flows obey their capacities 𝑓"# ≤ 𝑐"# and 
conservation laws. The value |𝑓| of a flow is the 
amount moved from 𝑆 to 𝑇 through the network.

Each edge (𝑢, 𝑣) has a capacity 𝑐"# = 1 which is the max amount of flow that can pass through it. 

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

An s-t cut 𝐶 = (𝑆, 𝑇) is a partition of 𝑉 s.t. 𝑠 ∈ 𝑆
and 𝑡 ∈ 𝑇. The cut-set 𝑋% of a cut 𝐶 is the set of 
edges that connect the source part of the cut to 
the sink part. The capacity 𝑐(𝑆, 𝑇) of an s-t cut is 
the sum of the capacities of the edges in its cut-set.
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𝐿 𝑅

3s

Nodes to the left of the dashed line are in S, the rest in T.

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem
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Cuts and Flows in directed graphs G = (V, E)

A flow is a mapping of edges to flows 𝑓: 𝐸 → ℝ$
s.t. that flows obey their capacities 𝑓"# ≤ 𝑐"# and 
conservation laws. The value |𝑓| of a flow is the 
amount moved from 𝑆 to 𝑇 through the network.

Each edge (𝑢, 𝑣) has a capacity 𝑐"# = 1 which is the max amount of flow that can pass through it. 

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

An s-t cut 𝐶 = (𝑆, 𝑇) is a partition of 𝑉 s.t. 𝑠 ∈ 𝑆
and 𝑡 ∈ 𝑇. The cut-set 𝑋% of a cut 𝐶 is the set of 
edges that connect the source part of the cut to 
the sink part. The capacity 𝑐(𝑆, 𝑇) of an s-t cut is 
the sum of the capacities of the edges in its cut-set.
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𝐿 𝑅

Nodes to the left of the dashed line are in S, the rest in T.

This line is not in the cut-set 
because it goes from T to S!

1

1

1

1

1

𝑐(𝑆, 𝑇) = 5

3s

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem
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Cuts and Flows in directed graphs G = (V, E)

A flow is a mapping of edges to flows 𝑓: 𝐸 → ℝ$
s.t. that flows obey their capacities 𝑓"# ≤ 𝑐"# and 
conservation laws. The value |𝑓| of a flow is the 
amount moved from 𝑆 to 𝑇 through the network.

Each edge (𝑢, 𝑣) has a capacity 𝑐"# = 1 which is the max amount of flow that can pass through it. 

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

An s-t cut 𝐶 = (𝑆, 𝑇) is a partition of 𝑉 s.t. 𝑠 ∈ 𝑆
and 𝑡 ∈ 𝑇. The cut-set 𝑋% of a cut 𝐶 is the set of 
edges that connect the source part of the cut to 
the sink part. The capacity 𝑐(𝑆, 𝑇) of an s-t cut is 
the sum of the capacities of the edges in its cut-set.

Nodes to the left of the dashed line are in S, the rest in T.
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𝐿 𝑅
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𝑐(𝑆, 𝑇) = 4

3s
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Cuts and Flows in directed graphs G = (V, E)

A flow is a mapping of edges to flows 𝑓: 𝐸 → ℝ$
s.t. that flows obey their capacities 𝑓"# ≤ 𝑐"# and 
conservation laws. The value |𝑓| of a flow is the 
amount moved from 𝑆 to 𝑇 through the network.

Each edge (𝑢, 𝑣) has a capacity 𝑐"# = 1 which is the max amount of flow that can pass through it. 

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

An s-t cut 𝐶 = (𝑆, 𝑇) is a partition of 𝑉 s.t. 𝑠 ∈ 𝑆
and 𝑡 ∈ 𝑇. The cut-set 𝑋% of a cut 𝐶 is the set of 
edges that connect the source part of the cut to 
the sink part. The capacity 𝑐(𝑆, 𝑇) of an s-t cut is 
the sum of the capacities of the edges in its cut-set.
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𝐿 𝑅

𝑐(𝑆, 𝑇) = 4

|𝑓|= 4

MAX-FLOW MIN-CUT THEOREM.
The maximum value of an s-t flow is equal to the minimum capacity over all s-t cuts.

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem
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Proof Kőnig-Egeváry: outline
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Proof outline: 
Consider the flow graph to the left with capacities 
chosen to avoid a cut between 𝐿 and 𝑅. We will show:
1. every integral flow ⇔ some matching
2. every (finite capacity) cut ⇔ some VC
3. Then we know that max matching = min VC, 

from the max-flow min-cut theorem

∞1 1
Notice the now infinite capacities in the middle:

𝐿 𝑅

https://northeastern-datalab.github.io/cs7240/


430Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Proof Kőnig-Egeváry 1: matching = flow
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∞1 1
1. A matching of size 𝑥 corresponds to an 
integral flow of same value.

𝐿 𝑅

#VC = 5

https://northeastern-datalab.github.io/cs7240/
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Proof Kőnig-Egeváry 1: matching = flow
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∞1 1
1. A matching of size 𝑥 corresponds to an 
integral flow of same value.

𝐿 𝑅

https://northeastern-datalab.github.io/cs7240/
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Proof Kőnig-Egeváry 1: matching = flow
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∞1 1
1. A matching of size 𝑥 corresponds to an 
integral flow of same value.

𝐿 𝑅

https://northeastern-datalab.github.io/cs7240/
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Proof Kőnig-Egeváry 2: VC = cut

∞1 1
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𝐿 𝑅
1. A matching of size 𝑥 corresponds to an 
integral flow of same value.

2. Any VC of size 𝑥 defines a cut of same capacity.

Then define: 𝑆 ≔ 𝑠 ⋃ 𝐿 − 𝐶 𝐿 ⋃ 𝐶(𝑅)
𝑇 ≔ 𝑡 ⋃ 𝑅 − 𝐶 𝑅 ⋃ 𝐶(𝐿)

Let 𝐶 be the VC, 𝐶 𝐿 = 𝐶 ∩ 𝐿, 𝐶 𝑅 = 𝐶 ∩ 𝑅. 

#VC = 5

https://northeastern-datalab.github.io/cs7240/
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Proof Kőnig-Egeváry 2: VC = cut

1. A matching of size 𝑥 corresponds to an 
integral flow of same value.

∞1 1

2. Any VC of size 𝑥 defines a cut of same capacity.
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8s t Then define:

𝐿 𝑅

𝑆 ≔ 𝑠 ⋃ 𝐿 − 𝐶 𝐿 ⋃ 𝐶(𝑅)
𝑇 ≔ 𝑡 ⋃ 𝑅 − 𝐶 𝑅 ⋃ 𝐶(𝐿)

Let 𝐶 be the VC, 𝐶 𝐿 = 𝐶 ∩ 𝐿, 𝐶 𝑅 = 𝐶 ∩ 𝑅. 

#VC = 𝑐(𝑆, 𝑇) = 5

Nodes to the left of the dashed 
line are in S, the rest in T

This line is not in the cut-set 
because it goes from T to S!

https://northeastern-datalab.github.io/cs7240/
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Proof Kőnig-Egeváry 2: VC = cut

∞1 1
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𝐿 𝑅
1. A matching of size 𝑥 corresponds to an 
integral flow of same value.

2. Any VC of size 𝑥 defines a cut of same capacity.

Then define: 𝑆 ≔ 𝑠 ⋃ 𝐿 − 𝐶 𝐿 ⋃ 𝐶(𝑅)
𝑇 ≔ 𝑡 ⋃ 𝑅 − 𝐶 𝑅 ⋃ 𝐶(𝐿)

Let 𝐶 be the VC, 𝐶 𝐿 = 𝐶 ∩ 𝐿, 𝐶 𝑅 = 𝐶 ∩ 𝑅. 

Nodes to the left of the dashed 
line are in S, the rest in T

#VC = 𝑐(𝑆, 𝑇) = 5This line is not in the cut-set 
because it goes from T to S!

https://northeastern-datalab.github.io/cs7240/


436Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Proof Kőnig-Egeváry 2: VC = cut

∞1 1
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𝐿 𝑅
1. A matching of size 𝑥 corresponds to an 
integral flow of same value.

2. Any VC of size 𝑥 defines a cut of same capacity.

Then define: 𝑆 ≔ 𝑠 ⋃ 𝐿 − 𝐶 𝐿 ⋃ 𝐶(𝑅)
𝑇 ≔ 𝑡 ⋃ 𝑅 − 𝐶 𝑅 ⋃ 𝐶(𝐿)

Let 𝐶 be the VC, 𝐶 𝐿 = 𝐶 ∩ 𝐿, 𝐶 𝑅 = 𝐶 ∩ 𝑅. 

#VC = 𝑐(𝑆, 𝑇) = 4

Nodes to the left of the dashed 
line are in S, the rest in T

https://northeastern-datalab.github.io/cs7240/
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Proof Kőnig-Egeváry 2: VC = cut

∞1 1

2. Any VC of size 𝑥 defines a cut of same capacity.
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8s t Then define:

𝐿 𝑅

𝑆 ≔ 𝑠 ⋃ 𝐿 − 𝐶 𝐿 ⋃ 𝐶(𝑅)
𝑇 ≔ 𝑡 ⋃ 𝑅 − 𝐶 𝑅 ⋃ 𝐶(𝐿)

Let 𝐶 be the VC, 𝐶 𝐿 = 𝐶 ∩ 𝐿, 𝐶 𝑅 = 𝐶 ∩ 𝑅. 

1. A matching of size 𝑥 corresponds to an 
integral flow of same value.

#VC = 𝑐(𝑆, 𝑇) = 4

https://northeastern-datalab.github.io/cs7240/
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Proof Kőnig-Egeváry 3: max-flow = min-cut 
⇒ max matching = min VC

∞1 1

2. Any VC of size 𝑥 defines a cut of same capacity.
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8s t Then define:

𝐿 𝑅

𝑆 ≔ 𝑠 ⋃ 𝐿 − 𝐶 𝐿 ⋃ 𝐶(𝑅)
𝑇 ≔ 𝑡 ⋃ 𝑅 − 𝐶 𝑅 ⋃ 𝐶(𝐿)

Let 𝐶 be the VC, 𝐶 𝐿 = 𝐶 ∩ 𝐿, 𝐶 𝑅 = 𝐶 ∩ 𝑅. 

1. A matching of size 𝑥 corresponds to an 
integral flow of same value.

3. Since max flow = min cut, therefore also
max matching = min VC

#VC = 𝑐(𝑆, 𝑇) = 4
#matching = |𝑓| = 4

https://northeastern-datalab.github.io/cs7240/


442

LP (Linear Programming)
and duality gaps
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• A maximization problem M and a minimization problem N,
defined on the same instances (such as graphs, constraints) s.t.:
1. for every candidate solution M to M and every candidate solution N to N, 

the value of M is less than or equal to the value of N
2. obtaining candidate solutions M and N that have the same value proves 

that M and N are optimal solutions for that instance.

Dual Optimization Problem
(e.g., min edge cover)(e.g, max independent set)

https://northeastern-datalab.github.io/cs7240/
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A quick primer on Duality in Linear Programming

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

𝑥5

𝑥6

30𝑐+:

𝑐::

𝑐;:

𝑐!
𝑐"

𝑐#𝑥5 + 𝑥6 ≤ 40
𝑥6 ≤ 30
𝑥5 ≤ 20

𝑥5, 𝑥6 ≥ 0
20

Assume I give you the solution 𝑥5, 𝑥6 = (10,30) with objective value = 190. 
How could you prove it is indeed the maximum feasible value?

max 1𝑥5 + 6𝑥6

?

https://northeastern-datalab.github.io/cs7240/
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
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× 1

A quick primer on Duality in Linear Programming

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

𝑥5

𝑥6

30𝑐+:

𝑐::

𝑐;:

𝑐!
𝑐"

𝑐#

1𝑥5 + 1𝑥6 ≤ 50

𝑥5 + 𝑥6 ≤ 40
𝑥6 ≤ 30
𝑥5 ≤ 20

𝑥5, 𝑥6 ≥ 0
20

× 1
× 0

non-negative multipliers!

max 1𝑥5 + 6𝑥6

Assume I give you the solution 𝑥5, 𝑥6 = (10,30) with objective value = 190. 
How could you prove it is indeed the maximum feasible value?

https://northeastern-datalab.github.io/cs7240/
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
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A quick primer on Duality in Linear Programming

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

𝑥5

𝑥6

30𝑐+:

𝑐::

𝑐;:

𝑐!
𝑐"

𝑐#𝑥5 + 𝑥6 ≤ 40
𝑥6 ≤ 30
𝑥5 ≤ 20

𝑥5, 𝑥6 ≥ 0
20

× 0

× 1
× 2

1𝑥5 + 2𝑥6 ≤ 80

max 1𝑥5 + 6𝑥6

Assume I give you the solution 𝑥5, 𝑥6 = (10,30) with objective value = 190. 
How could you prove it is indeed the maximum feasible value?

non-negative multipliers!

https://northeastern-datalab.github.io/cs7240/
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
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A quick primer on Duality in Linear Programming

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

𝑥5

𝑥6

30𝑐+:

𝑐::

𝑐;:

𝑐!
𝑐"

𝑐#𝑥5 + 𝑥6 ≤ 40
𝑥6 ≤ 30
𝑥5 ≤ 20

𝑥5, 𝑥6 ≥ 0
20

× 0

× 1
× 6

1𝑥5 + 6𝑥6 ≤ 200

max 1𝑥5 + 6𝑥6

Assume I give you the solution 𝑥5, 𝑥6 = (10,30) with objective value = 190. 
How could you prove it is indeed the maximum feasible value?

non-negative multipliers!

upper bound to the objective function!

https://northeastern-datalab.github.io/cs7240/
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
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× 0.5

A quick primer on Duality in Linear Programming

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

𝑥5

𝑥6

30𝑐+:

𝑐::

𝑐;:

𝑐!
𝑐"

𝑐#𝑥5 + 𝑥6 ≤ 40
𝑥6 ≤ 30
𝑥5 ≤ 20

𝑥5, 𝑥6 ≥ 0
20

× 0.5
× 5.5

1𝑥5 + 6𝑥6 ≤ 195

max 1𝑥5 + 6𝑥6

Assume I give you the solution 𝑥5, 𝑥6 = (10,30) with objective value = 190. 
How could you prove it is indeed the maximum feasible value?

non-negative multipliers!

upper bound to the objective function!

https://northeastern-datalab.github.io/cs7240/
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
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× 0

A quick primer on Duality in Linear Programming

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

𝑥5

𝑥6

30𝑐+:

𝑐::

𝑐;:

𝑐!
𝑐"

𝑐#𝑥5 + 𝑥6 ≤ 40
𝑥6 ≤ 30
𝑥5 ≤ 20

𝑥5, 𝑥6 ≥ 0
20

× 1
× 5

minimum upper bound to the objective function!

certificate of 
optimality

1𝑥5 + 6𝑥6 ≤ 190

max 1𝑥5 + 6𝑥6

Assume I give you the solution 𝑥5, 𝑥6 = (10,30) with objective value = 190. 
How could you prove it is indeed the maximum feasible value?

non-negative multipliers!

https://northeastern-datalab.github.io/cs7240/
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
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A quick primer on Duality in Linear Programming

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

𝑥5

𝑥6

30𝑐+:

𝑐::

𝑐;:

𝑐!
𝑐"

𝑐#𝑥5 + 𝑥6 ≤ 40
𝑥6 ≤ 30
𝑥5 ≤ 20

𝑥5, 𝑥6 ≥ 0
20

𝑦5+𝑦7

× 𝑦6
× 𝑦7

× 𝑦5

𝑦6+𝑦7
≥ ≥ 

Assume I give you the solution 𝑥5, 𝑥6 = (10,30) with objective value = 190. 
How could you prove it is indeed the maximum feasible value?

max 1𝑥5 + 6𝑥6

non-negative multipliers!

1𝑥5 + 6𝑥6 ≤ 20𝑦5 + 30𝑦6 + 40𝑦7
find a convex combination of the constraints 
to get the minimum upper bound to the objective function!

https://northeastern-datalab.github.io/cs7240/
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
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A quick primer on Duality in Linear Programming

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

𝑥5 + 𝑥6 ≤ 40
𝑥6 ≤ 30
𝑥5 ≤ 20

𝑥5, 𝑥6 ≥ 0

Primal solution 𝑥5, 𝑥6 = (10, 30) Dual solution 𝑦5, 𝑦6, 𝑦7 = (0,5,1)

× 𝑦6
× 𝑦7

× 𝑦5
max 1𝑥5 + 6𝑥6 min 20𝑦5 + 30𝑦6 + 40𝑦7

𝑦5, 𝑦6, 𝑦7 ≥ 0
𝑦6 + 𝑦7 ≥ 6
𝑦5 + 𝑦7 ≥ 1

(𝑦++𝑦;)𝑥+ + (𝑦:+𝑦;)𝑥: ≤ 20𝑦+ + 30𝑦: + 40𝑦;

≥ ≥ 

https://northeastern-datalab.github.io/cs7240/
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
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A quick primer on Duality in Linear Programming

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

𝑥5 + 𝑥6 ≤ 40
𝑥6 ≤ 30
𝑥5 ≤ 20

𝑥5, 𝑥6 ≥ 0

min 20𝑦5 + 30𝑦6 + 40𝑦7

𝑦5, 𝑦6, 𝑦7 ≥ 0
𝑦6 + 𝑦7 ≥ 6
𝑦5 + 𝑦7 ≥ 1

× 𝑦6
× 𝑦7

× 𝑦5
max 1𝑥5 + 6𝑥6

(𝑦++𝑦;)𝑥+ + (𝑦:+𝑦;)𝑥: ≤ 20𝑦+ + 30𝑦: + 40𝑦;

≥ × 𝑥6

× 𝑥5

𝑥+𝑦+ + 𝑥:𝑦: + (𝑥++𝑥:)𝑦; ≥ 1𝑥+ + 6𝑥:

≤ ≤ ≤ 

≥ 

10𝑦+ + 30𝑦: + 10+30 𝑦; ≥ 1⋅10 + 6⋅301𝑥+ + 6𝑥: ≤ 20⋅0 + 30⋅5 + 40⋅1
1⋅10 + 6⋅30 ≤ 190 10⋅𝑦+ + 30⋅𝑦: + 40 ⋅𝑦; ≥ 190

Primal solution 𝑥5, 𝑥6 = (10, 30) Dual solution 𝑦5, 𝑦6, 𝑦7 = (0,5,1)

https://northeastern-datalab.github.io/cs7240/
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
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LP in Canonical Form and Matrix-vector notation

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

𝑥5 + 𝑥6 ≤ 40
𝑥6 ≤ 30
𝑥5 ≤ 20

𝑥5, 𝑥6 ≥ 0
𝑦5, 𝑦6, 𝑦7 ≥ 0
𝑦6 + 𝑦7 ≥ 6
𝑦5 + 𝑦7 ≥ 1

min 20𝑦5 + 30𝑦6 + 40𝑦7max 1𝑥5 + 6𝑥6

𝐀𝐓𝒚 ≥ 𝒄

max 𝒄𝐓𝒙 min 𝒃𝐓𝒚

𝐀𝒙 ≤ 𝒃

𝒙 ≥ 0 𝒚 ≥ 0

Canonical form:
objective vector

constraint 
matrix

constraint vector

https://northeastern-datalab.github.io/cs7240/
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
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A quick primer on Duality in Linear Programming

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

1 1
1 1 𝒚 ≥ 1

6

𝐀𝐓𝒚 ≥ 𝒄

max 𝒄𝐓𝒙 min 𝒃𝐓𝒚

𝒚 ≥ 0

min
20
30
40

𝐓

𝒚

1
1

1 1
𝒙 ≤

20
30
40

𝒙 ≥ 0

max 1
6

𝐓

𝒙

𝐀𝒙 ≤ 𝒃

𝒙 ≥ 0 𝒚 ≥ 0

https://northeastern-datalab.github.io/cs7240/
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
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A quick primer on Duality in Linear Programming

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

https://northeastern-datalab.github.io/cs7240/
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
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Pre-class conversations

• Last class summary
• Project: comments on comments (think rapid prototyping 

https://en.wikipedia.org/wiki/Rapid_application_development) 
• Please prepare written comments for the class feedback phase 

Today: 
- End of efficient query evaluation for cycles
- Pointers to recorded tutorial on optimization problems & top-k

• Next time:
- last class by me, on graphs
- then you present

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Rapid_application_development
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Suggestion for final report: iterate on my comments

https://northeastern-datalab.github.io/cs7240/
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Outline: T3-2: Cyclic conjunctive queries

• T3-1: Acyclic conjunctive queries
• T3-2: Cyclic conjunctive queries

– 2SAT (a detour)
– Tree decompositions
– Decompositions of hypertrees
– Duality in Linear programming (a quick primer)
– AGM bound (maximal result size for full CQs) and

Worst-case optimal joins for the triangle query
– Worst-case optimal joins & the 4-cycle
– Optimal joins & the 4-cycle

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/
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Topic Duality in Linear Programming (LP)

• Subtopics
- Connections between (max) set packing and (min) set covers in graphs
- Linear Programming (LP) and duality gaps
- LP relaxations of ILP problems (Integer Linear Programming)
- Duality b/w independent vertex sets and edge covers

Duality in linear programming: Intuitively, every Linear Program has a dual problem with the same optimal solution, 
but the variables in the dual problem correspond to constraints in the primal problem and vice versa. 
But the notion of duality is more general:
• "Over and over again, it turns out that one can associate with a given mathematical object a related, 'dual' 

object that helps one to understand the properties of the object one started with." [The Princeton Companion to 
Mathematics, 2008]

• "Fundamentally, duality gives two different points of view of looking at the same object.[Michael Atiyah 2007]

https://northeastern-datalab.github.io/cs7240/
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LP relaxations of 
ILP problems

(Integer Linear Programming)
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? ?

Example: Minimal (Fractional) Vertex Cover in k-clique

Objective: min∑=∈ ?𝑤𝑣 𝑤𝑣 +𝑤𝑢 ≥ 1 for each edge

𝑤𝑣 ∈ {0,1} for each node for integral solution (ILP)

s.t.

0 ≤ 𝑤𝑣 ≤ 1 for each node for fractional solution (LP)or

? ?

? ?

? ?

? ?

?

Minimal Integral Vertex Cover: Minimal Fractional Vertex Cover:

ILP:

and

? ? ?LP:

a fractional & convex relaxation

https://northeastern-datalab.github.io/cs7240/
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Example: Minimal (Fractional) Vertex Cover in k-clique

Objective: min∑=∈ ?𝑤𝑣 𝑤𝑣 +𝑤𝑢 ≥ 1 for each edges.t.

or

1 1

1 1

1

Minimal Integral Vertex Cover: Minimal Fractional Vertex Cover:

ILP: 5 = k-1

and

for k-clique

? ?

? ?

? ? ?LP:

𝑤𝑣 ∈ {0,1} for each node for integral solution (ILP)

0 ≤ 𝑤𝑣 ≤ 1 for each node for fractional solution (LP)

https://northeastern-datalab.github.io/cs7240/


478Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Minimal (Fractional) Vertex Cover in k-clique

Objective: min∑=∈ ?𝑤𝑣 𝑤𝑣 +𝑤𝑢 ≥ 1 for each edges.t.

or

0.5 0.5

0.5 0.5

0.5 0.5

1 1

1 1

1

Minimal Integral Vertex Cover: Minimal Fractional Vertex Cover:

ILP: 5 = k-1 LP: 3 = k/2

and

for k-clique

𝑤𝑣 ∈ {0,1} for each node for integral solution (ILP)

0 ≤ 𝑤𝑣 ≤ 1 for each node for fractional solution (LP)or

https://northeastern-datalab.github.io/cs7240/
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? ?

Example: Minimal (Fractional) Vertex Cover in even k-cycle

Objective: min∑=∈ ?𝑤𝑣 𝑤𝑣 +𝑤𝑢 ≥ 1 for each edges.t.

or

? ?

? ?

? ?

? ?

?

Minimal Integral Vertex Cover: Minimal Fractional Vertex Cover:

and

? ? ?ILP: LP:

𝑤𝑣 ∈ {0,1} for each node for integral solution (ILP)

0 ≤ 𝑤𝑣 ≤ 1 for each node for fractional solution (LP)

https://northeastern-datalab.github.io/cs7240/
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Example: Minimal (Fractional) Vertex Cover in even k-cycle

Objective: min∑=∈ ?𝑤𝑣 𝑤𝑣 +𝑤𝑢 ≥ 1 for each edges.t.

or

1

1

1

Minimal Integral Vertex Cover: Minimal Fractional Vertex Cover:

ILP: 3 = k/2

and

for even cycle
of length k

? ?

? ?

? ? ?LP:

𝑤𝑣 ∈ {0,1} for each node for integral solution (ILP)

0 ≤ 𝑤𝑣 ≤ 1 for each node for fractional solution (LP)

https://northeastern-datalab.github.io/cs7240/
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Example: Minimal (Fractional) Vertex Cover in even k-cycle

Objective: min∑=∈ ?𝑤𝑣 𝑤𝑣 +𝑤𝑢 ≥ 1 for each edges.t.

or

0.5 0.5

0.5 0.5

0.5 0.5

1

1

1

Minimal Integral Vertex Cover: Minimal Fractional Vertex Cover:

ILP: 3 = k/2 LP: 3 = k/2

and

for even cycle
of length k

𝑤𝑣 ∈ {0,1} for each node for integral solution (ILP)

0 ≤ 𝑤𝑣 ≤ 1 for each node for fractional solution (LP)

https://northeastern-datalab.github.io/cs7240/
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? ?

Example: Minimal (Fractional) Vertex Cover in odd k-cycle

Objective: min∑=∈ ?𝑤𝑣 𝑤𝑣 +𝑤𝑢 ≥ 1 for each edges.t.

or

?

?

Minimal Integral Vertex Cover: Minimal Fractional Vertex Cover:

LP:

and

? ? ?
? ?

?

? ?
ILP:

𝑤𝑣 ∈ {0,1} for each node for integral solution (ILP)

0 ≤ 𝑤𝑣 ≤ 1 for each node for fractional solution (LP)

https://northeastern-datalab.github.io/cs7240/
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0.5 0.5

0.5

1 1

Example: Minimal (Fractional) Vertex Cover in odd k-cycle

Objective: min∑=∈ ?𝑤𝑣 𝑤𝑣 +𝑤𝑢 ≥ 1 for each edges.t.

or

1

Minimal Integral Vertex Cover: Minimal Fractional Vertex Cover:

and

0.5 0.5
ILP: 3 = (k+1)/2 LP: 2.5 = k/2

for odd cycle
of length k

𝑤𝑣 ∈ {0,1} for each node for integral solution (ILP)

0 ≤ 𝑤𝑣 ≤ 1 for each node for fractional solution (LP)

https://northeastern-datalab.github.io/cs7240/
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ILP and its LP relaxation

Source: https://en.wikipedia.org/wiki/Linear_programming_relaxation

ILP (Integer program or
Integer Linear program)

LP-relaxation obtained from an 
ILP by relaxing the integrality 
constraints for variables x and y

Notice the search space gets 
enlarged and becomes convex. 
Contrast with GHD vs HD: there 
the search space got restricted...

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Linear_programming_relaxation
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Duality b/w
independent vertex sets

and edge covers
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A quick primer on Duality in Linear Programming

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

Primal: Max Independence (Vertex) set

𝑣3𝑣2

𝑣1

≤ 1≤ 1

≤ 1

𝑣1+ 𝑣2 ≤ 1
𝑣1 + 𝑣3 ≤ 1

𝑣2+ 𝑣3 ≤ 1

max	𝑣1+ 𝑣2+ 𝑣3 , s.t.

https://northeastern-datalab.github.io/cs7240/
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
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A quick primer on Duality in Linear Programming

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

Primal: Max Independence (Vertex) set

non-negative multiplier per edge

𝑢1
𝑢2
𝑢3

(𝑢1+ 𝑢2)𝑣1+ (𝑢1+ 𝑢3)𝑣2+ (𝑢2+ 𝑢3)𝑣3 ≤ 𝑢1+ 𝑢2 +𝑢3

≥ 1if
for each vertex

≥ 1 ≥ 1 then the right side ∑: 𝑢𝑗
is an upper bound for 
the primal objective ∑; 𝑣𝑖

𝑣3𝑣2

𝑣1

≤ 1≤ 1

≤ 1

𝑣1+ 𝑣2 ≤ 1
𝑣1 + 𝑣3 ≤ 1

𝑣2+ 𝑣3 ≤ 1

max	𝑣1+ 𝑣2+ 𝑣3 , s.t.

https://northeastern-datalab.github.io/cs7240/
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf


489Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A quick primer on Duality in Linear Programming

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

Primal: Max Independence (Vertex) set

(𝑢1+ 𝑢2)𝑣1+ (𝑢1+ 𝑢3)𝑣2+ (𝑢2+ 𝑢3)𝑣3 ≤ 𝑢1+ 𝑢2 +𝑢3

≥ 1if
for each vertex

then the right side ∑: 𝑢𝑗
is an upper bound for 
the primal objective ∑; 𝑣𝑖

≥ 1 ≥ 1

What is this dual problem

min	𝑢1+ 𝑢2+ 𝑢3 , s.t.

𝑣3𝑣2

𝑣1

≤ 1≤ 1

≤ 1

max	𝑣1+ 𝑣2+ 𝑣3 , s.t.
𝑣1+ 𝑣2 ≤ 1
𝑣1 + 𝑣3 ≤ 1

𝑣2+ 𝑣3 ≤ 1

𝑢1+ 𝑢2 ≥ 1
𝑢1 + 𝑢3 ≥ 1

𝑢2+ 𝑢3 ≥ 1

?

https://northeastern-datalab.github.io/cs7240/
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
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A quick primer on Duality in Linear Programming

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

Primal: Max Independence (Vertex) set

(𝑢1+ 𝑢2)𝑣1+ (𝑢1+ 𝑢3)𝑣2+ (𝑢2+ 𝑢3)𝑣3 ≤ 𝑢1+ 𝑢2 +𝑢3

≥ 1if
for each vertex

then the right side ∑: 𝑢𝑗
is an upper bound for 
the primal objective ∑; 𝑣𝑖

≥ 1 ≥ 1

Dual: Min Edge cover

min	𝑢1+ 𝑢2+ 𝑢3 , s.t.

𝑣3𝑣2

𝑣1

≤ 1≤ 1

≤ 1

𝑢2

≥ 1

𝑢1

𝑢3

≥ 1

≥ 1

max	𝑣1+ 𝑣2+ 𝑣3 , s.t.
𝑣1+ 𝑣2 ≤ 1
𝑣1 + 𝑣3 ≤ 1

𝑣2+ 𝑣3 ≤ 1

𝑢1+ 𝑢2 ≥ 1
𝑢1 + 𝑢3 ≥ 1

𝑢2+ 𝑢3 ≥ 1

https://northeastern-datalab.github.io/cs7240/
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
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Independent Sets & Edge covers in the Triangle

Fractional edge cover number (𝜌∗) 
min sum of weights 𝑢1, 𝑢2, … 𝑢ℓ ≥ 0 on edges (relations)

s.t. for all xi: ∑A:0" ∈ C# 𝑢A ≥ 1

𝛼∗ = 𝜌∗

½

≥ 1

½

½

Fractional independence number (𝛼∗)
max sum of weights 𝑣1, 𝑣2, … 𝑣𝑘 ≥ 0 on vertices (variables)
s.t. for all E(i,j): 𝑣𝑖 + 𝑣𝑗 ≤ 1

max	𝑣1+ 𝑣2+ 𝑣3 , s.t.
𝑣1+ 𝑣2 ≤ 1
𝑣1+ 𝑣3 ≤ 1
𝑣2+ 𝑣3 ≤ 1

min	𝑢1+ 𝑢2+ 𝑢3 , s.t.
𝑢1+ 𝑢2 ≥ 1
𝑢1+ 𝑢3 ≥ 1
𝑢2+ 𝑢3 ≥ 1

½½

½

≤ 1𝛼∗ =	max	∑D 𝑣𝑖

𝜌∗ =	min	∑A 𝑢𝑗

https://northeastern-datalab.github.io/cs7240/


492Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Independent Sets & Edge covers in the Triangle

Fractional matching (edge packing) number (𝜈∗) 
max sum of weights 𝑢1, 𝑢2, … 𝑢ℓ ≥ 0 on edges (relations)

s.t. for all xi: ∑A:0" ∈ E# 𝑢A ≤ 1

𝜏∗ = 𝜈∗

½

≤ 1

½

½

Fractional vertex cover number (𝜏∗)
min sum of weights 𝑣1, 𝑣2, … 𝑣𝑘 ≥ 0 on vertices (variables)
s.t. for all E(i,j): 𝑣𝑖 + 𝑣𝑗 ≥ 1

min	𝑣1+ 𝑣2+ 𝑣3 , s.t.
𝑣1+ 𝑣2 ≥ 1
𝑣1+ 𝑣3 ≥ 1
𝑣2+ 𝑣3 ≥ 1

max	𝑢1+ 𝑢2+ 𝑢3 , s.t.
𝑢1+ 𝑢2 ≤ 1
𝑢1+ 𝑢3 ≤ 1
𝑢2+ 𝑢3 ≤ 1

½½

½

≥ 1𝜏∗=	min	∑D 𝑣𝑖

𝜈∗=	max	∑A 𝑢𝑗

https://northeastern-datalab.github.io/cs7240/
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𝑣2 𝑣3

Fractional vertex cover in the triangle
# https://sagecell.sagemath.org/
# inequalities: -1+v1+v2>=0, -1+v2+v3>=0, -1+v1+v3>=0, 1-v1>=0, 1-v2>=0, 1-v3>=0
p = Polyhedron(ieqs = [[-1,1,1,0],[-1,0,1,1],[-1,1,0,1],[0,1,0,0],[0,0,1,0],[0,0,0,1]])
p.plot()

min	𝑣1+ 𝑣2+ 𝑣3 , s.t.
𝑣1+ 𝑣2 ≥ 1
𝑣1+ 𝑣3 ≥ 1
𝑣2+ 𝑣3 ≥ 1

½½

½

≥ 1

(1,1,0): 2

𝑣3

𝑣1
𝑣2

(1,0,1): 2(0,1,1): 2

(0.5,0.5,0.5): 1.5𝑣2

𝑣3

𝑣1
(0.5,0.5,0.5): 1.5

0,0,1 : 1

(1,0,0): 1

(0,1,0): 1

𝑣1

≥ 1

≥ 1

not feasible

https://northeastern-datalab.github.io/cs7240/
https://sagecell.sagemath.org/
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Fractional vertex cover in bipartite graph
# https://sagecell.sagemath.org/
# inequalities: -1+v1+v2>=0, -1+v2+v3>=0, 1-v1>=0, 1-v2>=0, 1-v3>=0
p = Polyhedron(ieqs = [[-1,1,1,0],[-1,0,1,1],[0,1,0,0],[0,0,1,0],[0,0,0,1]])
p.plot()

min	𝑣1+ 𝑣2+ 𝑣3 , s.t.
𝑣1+ 𝑣2 ≥ 1
𝑣1+ 𝑣3 ≥ 1

0

1

≥ 1

𝑣2

𝑣3

𝑣1

(0,0,1)

(0,1,0)

𝑣1

≥ 1

(1,0,0): 1
a

b

c

(0,1,1): 1

(1,0,0) : 1

(1,0,0): 1
𝑣2 𝑣3

0

https://northeastern-datalab.github.io/cs7240/
https://sagecell.sagemath.org/
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Outline: T3-2: Cyclic conjunctive queries

• T3-1: Acyclic conjunctive queries
• T3-2: Cyclic conjunctive queries

– 2SAT (a detour)
– Tree decompositions
– Decompositions of hypertrees
– Duality in Linear programming (a quick primer)
– AGM bound (maximal result size for full CQs) and

Worst-case optimal joins for the triangle query
– Worst-case optimal joins & the 4-cycle
– Optimal joins & the 4-cycle

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/
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What do we know about
bounding the size of the

answer?
(. . .and enumerating all solutions)

32
Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
https://northeastern-datalab.github.io/cs7240/
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Upper bound
Observation: If the hypergraph has edge cover number ⇢ and
every relation has size at most N, then there are at most N⇢ tuples
in the answer.

33
Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

minimal edge cover

http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
https://northeastern-datalab.github.io/cs7240/
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minimal edge cover

Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
https://northeastern-datalab.github.io/cs7240/
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Lower bound
Observation: If the hypergraph has independence number ↵, then
one can construct an instance where every relation has size N at
the answer has size N↵.

Definition of the relations:
If variable A is in the independent set, then it can take any
value in [N].
Otherwise it is forced to 1.

34

maximal independent set

Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Lower bound
Observation: If the hypergraph has independence number ↵, then
one can construct an instance where every relation has size N at
the answer has size N↵.

Definition of the relations:
If variable A is in the independent set, then it can take any
value in [N].
Otherwise it is forced to 1.

34

http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
https://northeastern-datalab.github.io/cs7240/
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Lower bound
Observation: If the hypergraph has independence number ↵, then
one can construct an instance where every relation has size N at
the answer has size N↵.

Definition of the relations:
If variable A is in the independent set, then it can take any
value in [N].
Otherwise it is forced to 1.

34

maximal independent set

Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Lower bound
Observation: If the hypergraph has independence number ↵, then
one can construct an instance where every relation has size N at
the answer has size N↵.

Definition of the relations:
If variable A is in the independent set, then it can take any
value in [N].
Otherwise it is forced to 1.

34

http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
https://northeastern-datalab.github.io/cs7240/
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Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
https://northeastern-datalab.github.io/cs7240/
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Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
https://northeastern-datalab.github.io/cs7240/
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1  1
1  2
1  3
2  1

A  B
R

1  1
2  1
3  1
1  2

B  C
S

1  1
2  1
3  1
1  2

C  A
T

2  2
2  3
3  1
3  2

2  2
3  2
1  3
2  3

2  2
3  2
1  3
2  3

3  3 3  3 3  3

Q∆ (A,B,C) = R(A,B) ⋈ S(B,C) ⋈ T(C,A)

R

S

T

1 2 3
A

1
2

3B 1
2

3

C

A B 
1
2
3

1
2
3

C
1
2
3

A 
1
2
3

R S T

Q(x,y,z) :- R(x,y), S(y,z), T(z,x).

A tight example for AGM bound O(n1.5) for triangle Q∆

𝑛 = 9 number of tuples per relation (= DB size for self-joins)
Q(x,y,z) :- R(x,y), R(y,z), R(z,x).𝑚 = 𝑛 = 3 domain size

|𝑂𝑈𝑇| = 𝑛5.? = 27 output tuples

Notice every tuple is part 
of 3 join results, e.g. 
shown here for R(1,1)

https://northeastern-datalab.github.io/cs7240/
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0  1
0  2
...

0 m

A  B
R

1  0
2  0
...

m 0

B  C
S

0  1
0  2
...

0 m

C  A
T

1  0
2  0
...

m 0

0 1
0  2
...

0 m

1  0
2  0
...

m 0
r  r r  r r  r

Q∆ (A,B,C) = R(A,B) ⋈ S(B,C) ⋈ T(C,A)

Q(x,y,z) :- R(x,y), S(y,z), T(z,x).

When binary joins give O(n2) intermediate sizes for Q∆

𝑛 = 2𝑚 + 1 tuples per relation
𝑚+ 2 domain size
|𝑂𝑈𝑇| = 1 output tuple

|R⋈BS| = |R⋈AT| = |S⋈BT| = m2 = Θ(n2)

A B 
0
1
2

0
1
2

C
0
1
2

A 
0
1
2

R S T

...
m

...
m

...
m

...
m

r r r r

R

⋈

S
B T

⋈AC

R

⋈

T
A S

⋈BC

S

⋈

T
B R

⋈AC

In whatever sequence we join 
the three tables, the size of the 
first join will always be Θ(n2)

https://northeastern-datalab.github.io/cs7240/
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0  1
0  2
...

0 m

A  B
R

1  0
2  0
...

m 0

B  C
S

0  1
0  2
...

0 m

C  A
T

1  0
2  0
...

m 0

0 1
0  2
...

0 m

1  0
2  0
...

m 0
r  r r  r r  r

Q∆ (A,B,C) = R(A,B) ⋈ S(B,C) ⋈ T(C,A)

Q(x,y,z) :- R(x,y), S(y,z), T(z,x).

Solution: partition the data

A B 
0
1
2

0
1
2

C
0
1
2

A 
0
1
2

R S T

...
m

...
m

...
m

...
m

r r r r

𝑛 = 2𝑚 + 1 tuples per relation
𝑚+ 2 domain size
|𝑂𝑈𝑇| = 1 output tuple

RH
A

⋈

S
B T

⋈AC

RL
A

⋈

T
A S

⋈BC

R=RH
A ∪ RL

A

RH
A = {(a,b) ∈ R : |𝜎A=aR| > n0.5}

∪
RL

A = {(a,b) ∈ R : |𝜎A=aR| ≤ n0.5}

Trick: partition by outdegree, 
and use two plans in parallel!

https://northeastern-datalab.github.io/cs7240/
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0  1
0  2
...

0 m

A  B
R

1  0
2  0
...

m 0

A B
R

0  1
0  2
...

0 m

A B
R

1  0
2  0
...

m 0

0 1
0  2
...

0 m

1  0
2  0
...

m 0
r  r r  r r  r

Q(x,y,z) :- R(x,y), R(y,z), R(z,x).

Solution: partition the data 602

m=2000: 

m=4000: 

tQ1=2409 msec 

tQ1=8912 msec

tQ2=7 msec

tQ2=14 msec
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

m+2 = domain size
(2m+1) database size
1 = output size

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
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Q(x,y,z) :- R(x,y), R(y,z), R(z,x).

Solution: partition the data 603

m=100: 

m=200: 

tQ1=0.60 sec 

tQ1=5.8 sec

tQ2=0.94 sec

tQ2=10.3 sec
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

1  1
1  2
1  3
2  1

A  B
R

1  1
2  1
3  1
1  2

A B
R

1  1
2  1
3  1
1  2

A  B
R

2  2
2  3
3  1
3  2

2  2
3  2
1  3
2  3

2  2
3  2
1  3
2  3

3  3 3  3 3  3

m=domain size
m2 database size
m3 output size

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
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Source: Alon, Yuster, Zwick. "Finding and counting given length cycles", Algorithmica, 1997. https://doi.org/10.1007/BF02523189

= "heavy": ∆ = E1/2 for triangle

k=2 for triangle

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1007/BF02523189
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Examples

Min edge 
cover (𝛼) :

Max independ. 
(vertex) set (𝜌):

? ? ?

? ? ?

?

?

https://northeastern-datalab.github.io/cs7240/
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Examples

Min edge 
cover (𝛼) :

Max independ. 
(vertex) set (𝜌): ? ? ? ?

2 2 32

https://northeastern-datalab.github.io/cs7240/
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Examples

Min edge 
cover (𝛼) :

2 2 3

1 2 3

2

2

Max independ. 
(vertex) set (𝜌):

https://northeastern-datalab.github.io/cs7240/
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Pointers to some related work
• "AGM bound": Atserias, Grohe, Marx. Size bounds and query plans for relational joins. SIAM J. Comput. 2013. 

https://doi.org/10.1137/110859440 (also FOCS 2008)
• "Worst-Case Optimal (WCO) joins": Ngo, Porat, Re, Rudra. Worst-case optimal join algorithms. JACM 2018. 

https://doi.org/10.1145/3180143 (also PODS 2012)
• "FAQ paper": Khamis, Ngo, Rudra. FAQ: Questions Asked Frequently. PODS 2016.

https://doi.org/10.1145/2902251.2902280 (see also SIGMOD record 2017).
• Khamis, Ngo, Suciu. What do Shannon-type inequalities, submodular width, and disjunctive Datalog have to do with one 

another? PODS 2017. https://doi.org/10.1145/3034786.3056105
• Robertson, Seymour. Graph minors. II. Algorithmic aspects of tree-width. Journal of Algorithms. 1986. 

https://doi.org/10.1016/0196-6774(86)90023-4
• Chekuri, Rajaraman. Conjunctive query containment revisited. Elsevier Theoretical Computer Science 2000. 

https://doi.org/10.1016/S0304-3975(99)00220-0
• Gottlob, Leone, Scarcello. Hypertree Decompositions and Tractable Queries. JCSS 2002.

https://doi.org/10.1006/jcss.2001.1809
• Grohe, Marx. Constraint Solving via Fractional Edge Covers. ACM Trans. Algorithms 2014.

https://doi.org/10.1145/2636918
• Marx. Tractable Hypergraph Properties for Constraint Satisfaction and Conjunctive Queries. JACM 2014. 

https://doi.org/10.1145/2535926
• Alon, Yuster, Zwick. Finding and counting given length cycles. Algorithmica 1997.

https://doi.org/10.1007/BF02523189

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1137/110859440
https://doi.org/10.1145/3180143
https://doi.org/10.1145/2902251.2902280
https://doi.org/10.1145/3034786.3056105
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1016/S0304-3975(99)00220-0
https://doi.org/10.1006/jcss.2001.1809
https://doi.org/10.1145/2636918
https://doi.org/10.1145/2535926
https://doi.org/10.1007/BF02523189
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Outline: T3-2: Cyclic conjunctive queries

• T3-1: Acyclic conjunctive queries
• T3-2: Cyclic conjunctive queries

– 2SAT (a detour)
– Tree decompositions
– Decompositions of hypertrees
– Duality in Linear programming (a quick primer)
– AGM bound (maximal result size for full CQs) and

Worst-case optimal joins for the triangle query
– Worst-case optimal joins & the 4-cycle
– Optimal joins & the 4-cycle

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

not covered this year!

https://northeastern-datalab.github.io/cs7240/

