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Outline: T3-2: Cyclic conjunctive queries

* [3-1: Acyclic conjunctive queries
« T3-2: Cyclic conjunctive queries evcles make everything
— 2SAT (a detour) more complicated ®
— Tree decompositions
— Decompositions of hypertrees
— Duality in Linear programming (a quick primer)
— AGM bound (maximal result size for full CQs) and
Worst-case optimal joins for the triangle query
— Worst-case optimal joins & the 4-cycle
— Optimal joins & the 4-cycle
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Why cyclic queries (other than social networks)

Likes(person, drink)
Frequents (person, bar)
Serves (bar, drink, cost)

2. Specify or choose a Query Supported grammar

104 Bars: Persons who frequent some bar that serves some drink they like. H

Source: http://demo.queryvis.com
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Why cyclic queries (other than social networks)

Likes(person, drink)
Frequents (person, bar)
Serves (bar, drink, cost)

2. Specify or choose a Query Supported grammar

104 Bars: Persons who frequent some bar that serves some drink they like. [V

Serves

bar
bar
person person
drink
person

Source: http://demo.queryvis.com
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Why cyclic queries (other than social networks)

Likes(person, drink)

Frequents (person, bar)
Serves (bar, drink, cost)

2. Specify or choose a Query Supported grammar
104 Bars: Persons who frequent some bar that serves some drink they like. [T
SELECT Fl.person
FROM Frequents F1
WHERE exists
(SELECT *
FROM Serves S2
WHERE S2.bar = Fl.bar
AND exists
(SELECT *
FROM Likes L3
WHERE L3.person = Fl.person
AND S2.drink = L3.drink))
Source: http://demo.queryvis.com
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Joins in databases: one-at-a-time

How can we efficiently process multi-way joins with cycles?

Th ible pl ")
Q(x,y,z) - R(x,y), S(y,z), T(X,Z). : Eebz)cgjsbque plans déj
el mnmR S e
e (TXR)XS |
T(x,z) @ZY
Xyz
X / T(xz)

S(v2) N
® ®

R(x,y) » +there is vo full sewmijoin reducer
* intermediate result size bigger than output

There is vio Join treel You can't fulfill

the rumning intersection property.. | |
Can we do better for cyclic queries? ©
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Outline: T3-2: Cyclic conjunctive queries

* [3-1: Acyclic conjunctive queries
» 13-2: Cyclic conjunctive queries
— 2SAT (a detour)
— Tree decompositions
— Decompositions of hypertrees
— Duality in Linear programming (a quick primer)
— AGM bound (maximal result size for full CQs) and
Worst-case optimal joins for the triangle query
— Worst-case optimal joins & the 4-cycle
— Optimal joins & the 4-cycle
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2SAT P = (X\/y)/\(—|y\/Z)/\(—|X\/—IZ)/\(Z\/y)

e Instance: A 2-CNF formula ¢
e Problem: To decide if ¢ is satisfiable

« Theorem: 2SAT is polynomial-time decidable.

— Proof: We’ll show how to solve this problem efficiently using
in graphs...

e Background: Given a graph G=(V,E) and two vertices s,teV, finding if
there is a fromstotin Gis linear-time decidable. Use some
search algorithm (DFS/BFS).
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2SAT: Graph Construction g = (xvy)A(—yvz)A(=xv—z)A(zvy)

e Vertex for each variable and a negation of a variable

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 239



https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

2SAT: Graph Construction g = (xvy)A(—yvz)A(=xv—z)A(zvy)

e Vertex for each variable and a negation of a variable

e Edge (—x—v) iff there exists a clause equivalent to (x\vy)
- Recall (xvvy) same as (—x=v) and (—y=x), thus also (—y—>x)
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2SAT: Graph Construction g = (xvy)A(—yvz)A(=xv—z)A(zvy)

e Vertex for each variable and a negation of a variable

e Edge iff there exists a clause equivalent to
— Recall same as and , thus also

e Claim: a 2-CNF formula ¢ is unsatisfiable
iff there exists a variable x, such that:

— there is a path from x to —x in the graph, and
— there is a path from —x to x in the graph
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2SAT: Graph Construction g = (xvy)A(—yvz)A(=xv—z)A(zvy)

e Vertex for each variable and a negation of a variable

e Edge iff there exists a clause equivalent to
— Recall same as and , thus also

e Claim: a 2-CNF formula ¢ is unsatisfiable
iff there exists a variable x, such that:

— there is a path from x to —x in the graph, and
— there is a path from —x to x in the graph

5 O~

KOV 2 wot evough,
T~ needs both directions!
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Correctness (1) O = (XVY)A(=yVZ)A(=xv—z)A(zVvY)

e Suppose there are paths x..—x and —x..x for some variable x, but
there’s also a satisfying assighment
- If
D—> . —@

— Similarly for

recall, needs to hold in both directions!
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Correctness (2) O = (XVY)A(=yVZ)A(=xv—z)A(zVvY)

e Suppose there are no variables with such paths.

e Construct an assignment as follows:
1. pick an unassigned literal o, with no
path from o to —a, and assign it T

2. assign T to all
reachable vertices

3. assign F to their
negations

4. Repeat until all vertices are
assigned
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2SATISINP

We get the following PTIME algorithm for
— For each variable x find if there is a path from x to —x and vice-versa.
— Reject if any of these tests succeeded.
— Accept otherwise.

— . B
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Outline: T3-2: Cyclic conjunctive queries

* [3-1: Acyclic conjunctive queries
» 13-2: Cyclic conjunctive queries
— 2SAT (a detour)
— Tree decompositions
— Decompositions of hypertrees
— Duality in Linear programming (a quick primer)
— AGM bound (maximal result size for full CQs) and
Worst-case optimal joins for the triangle query
— Worst-case optimal joins & the 4-cycle
— Optimal joins & the 4-cycle
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Join Processing: two approaches

— binary joins, consider the sizes of input relations as to reduce the intermediate sizes
— commercial DBMSs: series of pairwise joins, system R (Selinger), join size estimation

— acylicity: Yannakakis, GYO algorithm, join tree

— bounded "width": query width, hypertree width (hw), generalized hw (ghw). All go back
to notion of (work by Robertson & Seymour on graph minors)

AGM: fractional hw (fhw):

— consider both statistics on
relations and query structure
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7 RS

Tree decomposition 7.

In graph theory, a tree decomposition is a mapping Dynamic programming [ edit]
of a graph into a tree that can be used to define the

' _ _ At the beginning of the 1970s, it was observed that a large class of
treewidth of the graph and speed up solving certain

combinatorial optimization problems defined on graphs could be

computational problems on the graph. efficiently solved by non-serial dynamic programming as long as the

Tree decompositions are also called junction trees, graph had a bounded dimension,[®! a parameter related to treewidth.

clique trees, or join trees. They play an important Later, several authors independently observed, at the end of the

role in problems like probabilistic inference, 1980s, 6] that many algorithmic problems that are NP-complete for

constraint satisfaction, query optimization, arbitrary graphs may be solved efficiently by dynamic programming for

[citation needed] gnd matrix decomposition. graphs of bounded treewidth, using the tree-decompositions of these
graphs.

The concept of tree decomposition was originally
introduced by Rudolf Halin (1976). Later it was
rediscovered by Neil Robertson and Paul
Seymour (1984) and has since been studied by
many other authors.[']

¢ Robertson, Neil; Seymour, Paul D. (1984), "Graph minors lll: Planar tree-width", Journal of
Combinatorial Theory, Series B, 36 (1): 49-64, doi:10.1016/0095-8956(84)90013-3 3.

Source: https://en.wikipedia.org/wiki/Tree_decomposition
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Very incomplete history of treewdith

The treewidth of a graph is an important graph complexity parameter that determines the
runtime of practical algorithms. Intuitively measures how close a graph is to being a tree.

Introduced in the context of Rediscovered in the context of

variable elimination orders by graph minors by Robertson &

Bertelé & Brioschi (1972) and Seymour (1984) and named

named "dimension" of a graph "tree-width"

| 1970 1975 1980 11985 1990 t:>
/L Diestel (2017) provides a detailed history of what happeved
Rediscovered afterwards but seems +o be unaware of Bertelé & Brioschi
by Halin (1976) (1972). Bodlaender (199A%) attributes the convection of
"dimension” with treewidth to Arvborg (1a%5) who actually

never uses the word "treewidth” vor references R&S (1954 )...

Bertele, Brioschi. Nonserial Dynamic Programming, 1972 (definition 2.7.8). https://dl.acm.org/doi/10.5555/578817 , Halin. S-functions for graphs, Journal of Geometry, 1976.
https://doi.org/10.1007%2FBF01917434 , Robertson, Seymour. Graph minors Ill: Planar tree-width, Journal of Combinatorial Theory, 1984 https://doi.org/10.1016%2F0095-
8956%2884%2990013-3 , Diestel. Graph theory, 51" ed, 2017 (section 12). https://doi.org/10.1007/978-3-662-53622-3 , Bodlaender. A partial k-arboretum of graphs with bounded treewidth
(tutorial), Theoretical Computer Science, 1998. https://doi.org/10.1016/5S0304-3975(97)00228-4 , Arnborg. Efficient algorithms for combinatorial problems on graphs with bounded
decomposability -- a survey, BIT, 1985. https://dl.acm.org/doi/abs/10.5555/3765.3773
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Definition of an attribute-connected tree

AB

BC

CD

AE

EH

EF

DEFINITION: A tree is attribute-
connected if the subtree induced

by each attribute is connected

-G

Sawme as the running intersection property
from join trees (also known as junction tree)

Also called "conerence”
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Tree decomposition

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T Y

(2) : For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 252
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Tree decomposition example 1: a tree

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T Y

(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

tree decomposition

. — . ‘ ;
Ce
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Tree decomposition example 1: a tree

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T Y

(2) : For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

‘\\\\\\\\\ l\rw
C—H (b

\ {a,b} TSN,

That's why treewidth defined as max cardinality - 1
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Tree decomposition example 2

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T Y

(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

tree decomposition

(C © ..

Example from: https://en.wikipedia.org/wiki/Tree _decomposition
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Tree decomposition example 2

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertexin T N

(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

Treewidth =2
Notice running intersection property

Example from: https://en.wikipedia.org/wiki/Tree _decomposition
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Tree decomposition example 3

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T

(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

LI
. tree decomposition
@ - [t
0'0
(&)

|
Example from: https://www.mi.fu-berlin.de/en/inf/groups/abi/teaching/lectures/lectures past/\WWS0910/V Discrete Mathematics for Bioinformatics P1/material/scripts/treedecomposition1.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Tree decomposition example 3

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T

(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

g = v&
()
o%o
(2]

Example from: https://www.mi.fu-berlin.de/en/inf/groups/abi/teaching/lectures/lectures past/\WWS0910/V Discrete Mathematics for Bioinformatics P1/material/scripts/treedecomposition1.pdf
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Tree decomposition example 4: a cycle

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T

(2) : For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

u tree decomposition
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Tree decomposition example 4: a cycle

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T

(2) : For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

® @

What about coherence?
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Tree decomposition example 4: a cycle

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T

(2) : For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one
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Tree decomposition example 4: a cycle

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T

(2) : For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

(23—(34—as
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Tree decomposition example 5: the triangle

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T

(2) : For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

tree decomposition

?
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Tree decomposition example 5: the triangle

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T

(2) : For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

LN FeF

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 264



https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 5: the triangle

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T

(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

Wore generally, a ¥, (d-clique)
has a mivimal treewidth of d-1
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Tree decomposition example 6: a longer tree

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T

(2) : For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

tree decomposition

?
920 |
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Tree decomposition example 6: a longer tree

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) : Every vertex of G is assignhed at least one vertex in T

(2) : For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The is the size of its largest set minus one
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Tree decomposition example 7

/\

/\/\

\/‘ AN
|/

C
I

A

/\

Example by: Markus Krotzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory (S52016)/en
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Tree decomposition example 7

Example by: Markus Krotzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory (S52016)/en
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Tree decomposition example 7

7 L\
M————-N
~» tree decomposition of width 3

Example by: Markus Krotzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory (S52016)/en
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Tree decomposition example 7

D/ E \G

~> tree decomposition of width 2 = treewidth of the example graph

Example by: Markus Krotzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory (S52016)/en
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Tree decomposition example 8

Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
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Tree decomposition example 8

Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
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Tree decomposition example 8

A subtree communicates with the outside world
only via the root of the subtree.

Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
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Tree Decompositions (TDs) for CSPs Netice here each vode is a variable
with dowmain of size d (e.9. 3 colors)

TD:

« If two variables are connected in the original
problem, they must appear together (along
with the constraint) in at least one supernode

« If a variable occurs in two supernodes in the TD,
it must appear in every supernode on the path

& that connects the two (coherence)
« The only constraints between the supernodes
. are that the variables take on the same values

Original C5-P3 | . across supernodes (like semi-join messages
Map-coloring of Australia  supernodes (sets of variables) from Yannakakis)

Translates into|O(W™) |where

is size of constraivts per edge
e Solving CSP on a tree with k variables and domain size m is O(km? /Vl > 5 f cons nrs p 9

e TD algorithm: find all solutions within each supernode, which is (mtw }\Nhere tw is the treewidth (= one

less than size of largest supernode). Recall treewidth of tree is I, Thus complexity 2
e Then, use the tree-structured Yannakakis algorithm, treating the supernodes as new variables...

e Finding a tree decomposition of smallest treewidth is NP-complete, but good heuristic methods exist.

Figures: Fig 6.12 and 6.13 from Russell, Norvig. "Artificial intelligence: a modern approach". 3rd ed, 2010. https://dl.acm.org/doi/book/10.5555/1671238
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Alternative definition of Tree decomposition (TD)

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assigned to each vertex (or "supernode") v € Vs.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T Y

(2) : For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

ALTERNATIVE DEFINITION:

A of graph G(N, E) is a pair (T, y) where T(V, F) is a tree, and y is a
labeling function assigning to each vertex v € V a set of vertices y(v) € N, s.t. above
conditions (2) and (3) are satisfied.
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Small decompositions allow to "compress" the search space

{A}
P(A)
() (b) (c)
Figure 1: Example belief network, its triangulated primal graph

along ordering d = A,B,C,D, E, F, and the corresponding
bucket tree decomposition.

{A,B}
P(B|A)

{A,B,C} {A,B,E}
P(C|A) P(E|A)

eB.L, L} {B,E,F}
| P(DIB.C) | | F(FIBE) |

H@0-0) @

Figure from: Otten, Dechter. Bounding Search Space Size via (Hyper)tree Decompositions. UAI 2008. https://arxiv.org/abs/1206.3284
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Explaining
Treewidth with
cops & robbers



Pursuit-evasion games

(sometimes called " ") is a family of
problems in which one group (cops) attempts to track down
members of another group (robbers) in some structured
environment, usually graphs.

e Related to games and games

e Next: A variations of "Cops and Robber" can be used to describe the
of a graph

For more details see: https://en.wikipedia.org/wiki/Pursuit%E2%80%93evasion, https://en.wikipedia.org/wiki/Pebble game,
https://en.wikipedia.org/wiki/Ehrenfeucht%E2%80%93Fra%C3%AFss%C3%A9 game, https://en.wikipedia.org/wiki/Cop number#Special classes of graphs
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Treewidth with Cops and robber

k cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:

(1) A cop flies off the graph in a helicopter and announces a new landing vertex.

(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

THEOREM [Seymour & Thomas (1993)] o o
e S

You have a winning strategy with k cops iff ® © ® ©
the tree-width of the graph is at most k-1. N’ e

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027
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Treewidth with Cops and robber

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027
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Treewidth with Cops and robber

(1) A cop flies off the graph in a helicopter and announces a new landing vertex.

O—@0—00—8& 60600

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027
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Treewidth with Cops and robber

(2) While the cop flies, the robber can move quickly along the edges and escape.

<>
c

O—0—0—0—8&—6—0

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027
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Treewidth with Cops and robber

(3) Then the cop lands.

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027
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Treewidth with Cops and robber

(1) A cop flies off the graph in a helicopter and announces a new landing vertex.

O—0—0—0—8&—6—0

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027
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Treewidth with Cops and robber

(2) While the cop flies, the robber can move quickly along the edges and escape.

—0—060—8 660

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 287

(



https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jctb.1993.1027

Treewidth with Cops and robber

(3) Then the cop lands.

Vou cam vever catch +he robber with ovly ove cop ®

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027
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Treewidth with Cops and robber

k cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:

(1) A cop flies off the graph in a helicopter and announces a new landing vertex.

(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

What is the best move with a 2nd cop
< ?

“—
® ©

-’ ]

—0—0 & 600

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027
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Treewidth with Cops and robber

k cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:

(1) A cop flies off the graph in a helicopter and announces a new landing vertex.

(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027
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Treewidth with Cops and robber

k cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:

(1) A cop flies off the graph in a helicopter and announces a new landing vertex.

(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.
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Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027
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Treewidth with Cops and robber

k cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:

(1) A cop flies off the graph in a helicopter and announces a new landing vertex.

(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.
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Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027
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Treewidth with Cops and robber

k cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:

(1) A cop flies off the graph in a helicopter and announces a new landing vertex.

(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027
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Treewidth with Cops and robber

k cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:

(1) A cop flies off the graph in a helicopter and announces a new landing vertex.

(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

b
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Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027
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Treewidth with Cops and robber

k cops and 1 robber move on vertices of a graph. The robber can move quickly along paths
that are not blocked by cops. Cops can fly via helicopters to new nodes. You control the cops
and want to catch the robber (catch = occupy the same node). A single move consists of:

(1) A cop flies off the graph in a helicopter and announces a new landing vertex.

(2) While the cop flies, the robber can move quickly along the edges and escape.
(3) Then the cop lands.

D
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Seymour, Thomas. Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B, 1993. https://doi.org/10.1006/jctb.1993.1027
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Robbers cannot hide on trees with 2 cops
Co

® ®
Tree -’ )

()

(2
3 @ © 6
D®©W Wee3e
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Robbers cannot hide on trees with 2 cops
Co

® ® «,
Tree =’ =’ Tree decomposition

() 07
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Robbers cannot hide on trees with 2 cops
<>

Tree - Tree decomposition
Start at the root and @
move in on the robber

(2 O &
ORNO G)EYEIE @Y @
10121304 SISISIS
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Robbers cannot hide on trees with 2 cops

Tree Tree decomposition

‘7.? Start at the root and

0,1
> move in on the robber

OEND &
G)EYEICY @Y @
SISISIS
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Robbers cannot hide on trees with 2 cops

Tree Tree decomposition

Start at the root and @
move in on the robber

L3y 14 &
6060 ¢ 3
SISISIS
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Robbers cannot hide on trees with 2 cops

Tree Tree decomposition

Start at the root and @
move in on the robber

0 2 @ @ B
< 6)6DEI a0 @9 @B
é 1) @) @3 @A TITITID
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Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph with treewidth =2

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree _decomposition
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Robbers cannot hide from k=3 cops on graph with treewidth=2

Tree decomposition

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree _decomposition
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Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph with treewidth =2 Tree decomposition

Pick sowme root

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree _decomposition
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Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph with treewidth =2 Tree decomposition

ou will need 2 COPS Pick some root

N

And vow move -
in on the robber [ B |

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree _decomposition
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Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph with treewidth =2 Tree decomposition
Vou will need 3 cops

And vow move -
in on +the robber [ B _

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree _decomposition
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Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph with treewidth =2 Tree decomposition
Vou will need 3 cops

And vow move -
in on +the robber [ B _

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree _decomposition
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Robbers cannot hide from k=3 cops on graph with treewidth=2

Graph with treewidth =2 Tree decomposition

Vou will need 3 cops
You cangt the robber!

And now move -
i on the robber [ B

Graph and tree decomposition from: https://en.wikipedia.org/wiki/Tree _decomposition
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Topic 3: Efficient query evaluation

Unit 2: Cyclic query evaluation
Lecture 22

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp23)

https://northeastern-datalab.github.io/cs7240/sp23/
3/31/2023

340


https://northeastern-datalab.github.io/cs7240/sp23/

Pre-class conversations

e Last class summary

e Scribes
— Can you see my comments on your scribes and project notes?

— also posting scribes on Piazza
e Project: (P3: today FRI, 3/31)
« Feedback on my slides
e Today:
— Reducing cycles to trees (tree decompositions)

— Reducing cycles in CQs to trees based on the domain or based on atoms
(treewidth, query width hypertree decompositions)

— Linear Programming Duality

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 341
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Outline: T3-2: Cyclic conjunctive queries

* [3-1: Acyclic conjunctive queries
» 13-2: Cyclic conjunctive queries
— 2SAT (a detour)
— Tree decompositions
— Decompositions of hypertrees
— Duality in Linear programming (a quick primer)
— AGM bound (maximal result size for full CQs) and
Worst-case optimal joins for the triangle query
— Worst-case optimal joins & the 4-cycle
— Optimal joins & the 4-cycle

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 342



https://northeastern-datalab.github.io/cs7240/

Acyclic Conjunctive Queries
e A for a hypergraph H=(V,E) is a labeled tree T =(N,F,A) such that:

— The nodes of T are formed by the hyperedges. In other words, A: N=E s.t. for each
hyperedge e € E of H, there exists n € N such that e = A(n)

— Foreach node u €V of H, the set{n € N | u € A(n)} induces a connected subtree of T.
(also called: )

Q :- R(XI IZ)I S( V4 )I T( IZ) )I U(ZI IW)I W( IWIu)'
T U(z,p,w)
R [x

~

Z N

U T( Z, ) W( IWIu)
W[u w}

S R(X, /Z) S( ’ )

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Acyclic Conjunctive Queries
e A for a hypergraph H=(V,E) is a labeled tree T =(N,F,A) such that:

— The nodes of T are formed by the hyperedges. In other words, A: N=E s.t. for each
hyperedge e € E of H, there exists n € N such that e = A(n)

— Foreach node u €V of H, the set{n € N | u € A(n)} induces a connected subtree of T.
(also called: running intersection property)

U(z,p,w)

(x| [y N

S R(x,y,2) S(y,p)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Acyclic Conjunctive Queries
e A for a hypergraph H=(V,E) is a labeled tree T =(N,F,A) such that:

— The nodes of T are formed by the hyperedges. In other words, A: N=E s.t. for each
hyperedge e € E of H, there exists n € N such that e = A(n)

— Foreach node u €V of H, the set{n € N | u € A(n)} induces a connected subtree of T.
(also called: running intersection property)

//\ {lelw}
X

v | N

y / tv,z,p} {p,w,u}

{x,y,z} {y,p}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

346


https://northeastern-datalab.github.io/cs7240/

Acyclic Conjunctive Queries
e A for a hypergraph H=(V,E) is a labeled tree T =(N,F,A) such that:

— The nodes of T are formed by the hyperedges. In other words, A: N=E s.t. for each
hyperedge e € E of H, there exists n € N such that e = A(n)

— Foreach node u €V of H, the set{n € N | u € A(n)} induces a connected subtree of T.
(also called: running intersection property)

P 3,5,6}
[1 2 | 3 /\
/
y y ) / {2,3,5} {4,5,6}
4 57 6
" {1,2,3} {2,5)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Cyclic Conjunctive Queries

For queries that are not acyclic, what bounds can we give
on the data complexity of query evaluation, considering
various structural properties of the query?

Hypergraph

We will see:
is still a key structural criterion

for efficiency!

c - But treewidth does not generalize the notion of
hypergraph acyclicity (because acyclic families of
7 3 hypergraphs may have unbounded treewidth ®)
- What will help is the
©.

- Reason: size of database is determined by number of
tuples n not domain size

Example adopted from: Markus Krotzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database _Theory (S52016)/en
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Issues with standard Treewidth (TW) for CQs

Treewidth based on graphs.
TW of CQ is TW of its cligue graph (i.e. replace each hyperedge with a clique)

_

a cligue is a graph where where every
vertex is convected to every other vertex

Q(XIyIZIW) . R(XIyIZIW) .

Hypergraph Clique graph
? ?

Treewidth: 7

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 349
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Issues with standard Treewidth (TW) for CQs

Treewidth based on graphs.
TW of CQ is TW of its cligue graph (i.e. replace each hyperedge with a clique)

_

a cligue is a graph where where every
vertex is convected to every other vertex

Q(XIyIZIW) . R(XIyIZIW) .

Hypergraph Clique graph
4 )
X Yy
?
Z W
g /

Treewidth: 7

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 350
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Issues with standard Treewidth (TW) for CQs

Treewidth based on graphs.
TW of CQ is TW of its (i.e. replace each hyperedge with a clique)

_

a clique is a graph where where every
vertex is convected to every other vertex

Q(XIyIZIW) . R(XIyIZIW) .

Hypergraph Clique graph
4 N

X Y >‘< Y

Z W Z \lv
\_ J

Treewidth: 7

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 351
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Issues with standard Treewidth (TW) for CQs

Treewidth based on graphs.
TW of CQ is TW of its cligue graph (i.e. replace each hyperedge with a clique)

This is actually the best tree decomposition: Nodes
of a clidque need to appear in the same supervode

Q(XIyIZIW) . R(XIyIZIW) .

Hypertree Clique graph
g A Result lexity bound O (m#)!
X y X y sulting complexity voun m*)!
‘ ‘ That's a pretty bad bound. We know
\ Z W Y Z W we can evaluate this dquery in O(n).

Treewidth: 3

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 352
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ssues with standard Treewidth (TW) for CQs

Q,(x,y,2) :- R(xy), S(y,z), T(x,z). We also know that these +wo

. dueries have different maximal
QZ(XIyIZ) o R(le)l S(ylz)l T(XIZ)I W(X,y,Z). O(/H'P(/H' 5]6@3: O(w\s) VS, O(Vl)\

But TW canvot distivguish them @

H, Clique graph

e

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 353
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Ql(X,y,Z) .- R(le)l S(y,Z), T(X,Z).

QZ(XIVIZ) .- R(le)l S(y,Z), T(XIZ)I W(X,y,Z).

Cligue graph
T Same cligue graph. Therefore:
— same TW 2.

ssues with standard Treewidth (TW) for CQs

We also know +hat these +wo
queries have different maximal
output sizes: O(u'?) vs. O(wn).

But TW canvot distivguish them @

— same complexity bound O(m?3)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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"Query decomposition” [Chekuri, Rajaraman'97]

QUERY DECOMPOSITION
Tree decomposition with coherence conditions on both:
1) variables and 2) atoms.

in a supernode

A query decomposition of Q is a tree T =([,F), with a set X (i) of subgoals and
arguments associated with each vertex i€/, such that the following conditions are
satisfied:

e For each subgoal s of Q, there is an i €7 such that s € X (7).
e For each subgoal s of Q, the set {ie/ | s€ X (i)} induces a (connected) subtree

of T.

e For each argument 4 of Q, the set

{iel |AeX(i)}U{iel | A appears in a subgoal s such that s € X(i)}

induces a (connected) subtree of 7.
The width of the query decomposition is max,c; |[X(¢)|. The query width of Q is
the minimum width over all its query decompositions.

Chekuri, Rajaraman. "Conjunctive query containment revisited", TCS 2000. https://doi.org/10.1016/50304-3975(99)00220-0 (ICDT'97 conference paper, ICDT'16 test-of-time award)
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 355



https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1016/S0304-3975(99)00220-0

Important Observation 1

"Query decomposition” as defined by

Some decomposition [Chekuri, Rajaraman'a?] is +oo strict
| about atoms veeding to be convected

R(1,2 )\ S(4,5,3) and atoms ot allowing projections
~—
T(1,4,6), U(2,5,6)

P - —This decomposition would not be possible
( R(1,2,3)YA(6,7) for ori@iﬁaln"‘qmcm decomposition”
because "3" is not convected.

B(1,7) ‘ C(2,7) But what if you project "3" away onto
R(1,2) = m,R(1,2,3)

N, -

-

Adopted from an example by Georg Gottlob
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Im portant Observation 1 Here the reuse of R(1,2,3) is harmless: we

could have added an atomR(A,2,_) here

Some decomposition without changing the dquery.
\Y Tdea: allow query atoms to be reused
R(1,2,5),5(4,5,3) @ partially (with projections) as long as

~—

the full atom appears somewhere else.

1(1,4,6), U(2,5,6)

7T12R —
¢ |(R@L2,))A6,7)
_ - This leads to "oeveralized hypertree
3(1;7) ‘ C(ZI]) decompositions” which define coherence ovly

- -
- S e P S o

based on variables, wot atoms. Wore liberal
thav "duery decomposition”, and thus cav give
tighter bounds.

Adopted from an example by Georg Gottlob
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 357
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Important Observation 2 | |
Owe can avoid NP-hardvess of findivg a

mivimal size decomposition by adding av
additional
R(1,2,3,4,5) This leads o "

S(6,2,4,7,6), T(3,5,8,11,12)

=

R(,2,3,_,_), U(7,8,9) \R@)\/({Az)

A(2,9) B(3,9) C(4,0), D(6,_,0) E(5,0)
F(4,6,13) G(4,6,14)
Adopted from an example by Georg Gottlob
358
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Important Observation 2

Owe can avoid NP-hardvess of findivg a
mivimal size decomposition by addivg an
additional syntactic "descendant condition”,

R(1,2,3,4,5) This leads to "ypertree decompositions”

S(6,2,4,7,6), T(3,5,8,11,12)

tach variable that

disappears at some

\ node, does vot reappear

R(_,2,3,_,_), U(7,8,9) ,/ |R(%,2,2,4,5),V(6,0,12)| i the subtree rooted

SN

A(2,9) B(3,9)

Adopted from an example by Georg Gottlob

= ,5

// / \ \\\ at that vode

/| c(4,0), D(6, ,0) E(5,0)

F(4,6,13) G(4,6,14)

— — — — — — — — — — — — — — — — — — — — — — —

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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HYPERTREE DECOMPOSITIONS AND TRACTABLE QUERIES *

Georg Gottlob Nicola Leone
Inst. fiir Informationssysteme Inst. fiir Informationssysteme
Technische Universitat Wien  Technische Universitat Wien
A-1040 Vienna, Austria A-1040 Vienna, Austria
gottlob@dbai.tuwien.ac.at leone@dbai.tuwien.ac.at

Abstract

Several important decision problems on conjunctive queries
(CQs) are NP-complete in general but become tractable,
and actually highly parallelizable, if restricted to acyclic
or nearly acyclic queries. Examples are the evaluation of
Boolean CQs and query containment. These problems were
shown tractable for conjunctive queries of bounded treewid*h
[9], and of bounded degree of cyclicity {24, 23]. The so for
most general concept of nearly acyclic queries was the notion
of queries of bounded query-width introduced by Chekuri
and Rajaraman [9]. While CQs of bounded query-width are
tractable, 1t remained unclear whether such queries are e’-
ficiently recognizable. Chekuri and Rajaraman [9] stated
as an open problem whether for each constant k it can be
determined in polynomial time if a query has query width
< k. We give a negative answer by proving this problem NP-
complete (specifically, for k = 4). In order to circumvent this
difficulty, we introduce the new concept of hypertree decom-
position of a query and the corresponding notion of hyper-
tree width. We prove: (a) for each k, the class of queries with
query width bounded by k is properly contained in the class
of queries whose hypertree width is bounded by k; (b) un-
like query width, constant hypertree-width is efficiently rec-

ognizable; (c) Boolean queries of constant hypertrce-width
can pbe emciently evaluated.

Francesco Scarcello
ISI-CNR
Via P. Bucci 41/C
[-87030 Rende, Italy

scarcello@si.deis.unical.it

Definition 3.1 A hypertree degomposition of a conjunctive
query () is a hypertree (7', x, X) for Q which satisfies all the
following conditions:

1. for each atom A
such that var(

toms(Q), there exists p € vertices(T')
C x(p);

2. for each varidble Y € var(Q), the set {p € vertices(T)
s.t. Y € x{p)} induces a (connected) subtree of T';

3. for egch vertex p € vertices(T), x(p) C var(A(p));

4. for each vertex p € vertices(T'), var(A(p)) N x(Tp) C
x(p)-

A hypertree decornposition (T, x, A) of @ is a complete
decomposition of @ if, for each atom A € atoms(Q), there
exists p € wvertices(T) such that var(A) C x(p) and A €
Alp)-

The width of the hypertree decomposition (T, x,A) is
MATpevertices(T)|A(P)|- The hypertree width hw(Q) of Q is
the minimum width over all its hypertree decompositions.

Source: Gottlob, Leone, Scarcello. "Hypertree decompositions and tractable queries." PODS 1999. https://doi.org/10.1145/303976.303979 (Gems of PODS 2016)
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Hypertree decomposition: full example

Hypergraph Tree decomposition

1,2,3,6
1,3,4,6,0
e

5 3,4,6,9,0

D
7 8 4,6,8,9,0

C G
. 4,5,6,7,8,0

O V4 7Y 2>

How +o check that this is 9.
a Valid tree decomposition? =

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 361
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Hypertree decomposition: full example

Clique graph of Hypergraph
(also primal or Gaifman graph)

—

4

~_

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition

1,2,3,6

1,3,4,6,0

3I4I ’ IO

4) 18I IO

TREE DECOMPOSITION

: For every edge
e of G, there is a vertex in
T that contains both ends of e

2. Coherence

4,5,6,7,8,0

What is i+s width 7P
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Hypertree decomposition: full example s g o
vl <Y

Clique graph of Hypergraph Tree decomposition o
(also primal or Gaifman graph) RIRE
2
1,2,3,6 TREE DECOMPOSITION

1. Edge coverage: For every edge
e of G, there is a vertex in
T that contains both ends of e

1,3,4,6,0

3,4,6,9,0

7 / 4,6,8,9,0 2. Coherence
45,6,7,8,0 guarantees evaluation in O(m)

where m is the domain size or O(n°)
where v is size of largest relatiow

tree width = 5
= size of largest supernode - 1
363
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Hypertree decomposition: full example

Hypergraph Tree decomposition
(width 5)
1 A
1,2,3,6 TREE DECOMPOSITION (ALTERNATIVE)
: For
1,3,4,6,0
< B every hyperedge h of H,
34690 there is a vertex in T that
D contains all its variables
7 8 4,6,8,9,0 2. Coherence
C G
0 : 5,6,7,8,0| idewntical defivition, becanse:

* hyperedge = clique n clique graph
 each cligue needs to be contained
in one supervode of the TD

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 364
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Hypertree decomposition: full example

Hypergraph Tree decomposition Generalized hypertree decomp.
(width 5) (width 2)
1 A
1,2,3,6 A{1,2}, F{2,3,6}
1,3,4,6,0 C{1,4,0}, F{2,3,6}
| @
5 3,4,6,9,0 B{4,5,6}, H{3,9,0}
D
7 8 4,6,3,9,0 C{+,4,0}, £{6,8,9}
C G
H
O 41516I71810 B{41516}I G{71810}

Why is this a valid "geweral. .
hypertree decomposition” .

Example adopted from: Markus Krotzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory (S52016)/en
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 365
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Hypertree decomposition: full example

Hypergraph Tree decomposition Generalized hypertree decomp.
(width 5) (width 2)
1 A
GENERALIZED HT DECOMP. A{1,2}, F{2,3,6}
: For
3 every hyperedge h of H, C{1,4,0}, F2,3,6}
< there is a vertex in T that
= contains all its variables 545,63, 113,90}
5 3 2. Coherence C{2,4,0}, £{6,8,9)
C G
H
O B{ | }) G{7;8;O}

Basically idewtical to tree decomposition.
Just +he width measure is different!

Example adopted from: Markus Krotzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory (S52016)/en
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 366
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Hypertree decomposition: full example

Hypergraph Tree decomposition Generalized hypertree decomp.
(width 5) (width 2)
GENERALIZED HT DECOMP. A{1,2}, F{2,3,6}
: For

every hyperedge h of H, €{1,4,0}, H2,3,6}

there is a vertex in T that
contains all its variables

2. Coherence C{1,4,0}, £{6,8,9}

B{4,5,6}, H{3,9,0}

5{4,5,6}, G{7/,8,0}

N/

Basically idewtical to tree decomposition. B and G together contain
Just the width measure is different! all variables from D

Example adopted from: Markus Krotzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory (S52016)/en
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 367
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Hypertree decomposition: full example

Hypergraph Generalized hypertree decomp.
(width 2)
1 A
GENERALIZED HT DECOMP. A{1,2}, F{2,3,6}
: For
2 3 every hyperedge h of H, C11,4,0}, F2,3,6}
< there is a vertex in T that
D5 contains all its variables 514,56}, F{3,9,0}
5 3 2. Coherence C{2,4,0}, £{6,8,9)
C G
H
= 3{4,5,6}, G{7,8,0}

Ts +his also a valid .
"nypertree decomposition” =

Example adopted from: Markus Krotzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory (S52016)/en
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 368
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Hypertree decomposition: full example

Hypergraph Generalized hypertree decomp.
(width 2)
1 A
HT DECOMP. A{1,2}, F{2,3,6}
: For
2 3 every hyperedge h of H, C{1,4,0}, F2,3,6}
< there is a vertex in T that
D5 contains all its variables 5{4,5,6}, H3,9,0}
5 3 2. Coherence C/@AO}, £{6,8,9)
C G TR
¥ 3. Descendant condition: /
0 v Variables projected away //B{ﬁvS,G}, G{7,8,0}
from a hyperedge can - ~
L . . No: "5" got projected away,
A condition to limit the search not reappear in the
£ valid 14D d o <Ubtree below but reappears below. Also
SP@C@ oT Vall @COW\PDSl lons n,‘ " ivl O'H/]@l" 0|iY‘60‘l‘iOVl

Example adopted from: Markus Krotzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory (S52016)/en
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 369
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Hypertree decomposition: full example

Hypergraph
1 HT DECOMP.
: For
2 every hyperedge h of H,
< there is a vertex in T that
> contains all its variables
7 8
3. Descendant condition:

Variables projected away
from a hyperedge can
not reappear in the
subtree below

Hypertree decomposition

{1,2}, ¢{1,4,0}, F{2,3,6}

{4,5,6}, D{5,7}, £{6,8,9},
{7,8,0}, H{3,9,0}

Example adopted from: Markus Krotzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database _Theory (S52016)/en

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Hypertree decomposition: full example

Hypergraph Hypertree decomposition

o s A{1,2}, C{1,4,0}, F{2,3,6}
B{4,5,6}, D{5,7} E{6,8,9},
4|1 B G{7,8,0}, H{3,9,0}
5
D
7 8 what should be the "width"
- © . of this HTD, i.e. what is +he
0 complexity of materializing

this last supervode r)

Example adopted from: Markus Krotzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory (S52016)/en
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 371
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Hypertree decomposition: full example

Hypergraph Hypertree decomposition

A{1,2}, C{1,4,0}, F{2,3,6}

5{4,5,6}, D{5,7}, £{6,8,9},
B(4,5,6)mG(7,8,0)5<(3,9,0) 17.8.00. 1143.9.01

Notice that 3 relations alowe "cover" all the variables.
The join cav ovly be a subset of +hose tuples.

([(B(4,5,6) x G(7,8,0)) = H(3,9,0)]«—— O(n?)
xD(5,7)) XE(6,8,9)

n... maximal size of relations

Example adopted from: Markus Krotzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory (S52016)/en
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 372
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Hypertree decomposition: full example

Hypergraph Hypertree decomposition
(width 3)

C,F:{1,2,3,4,6,0}

BxGiH B,G,H:{3,4,5,6,7,8,9,0}

With of HTD :%axivml width of any super vode.
With of supervode = mivimal number of relations
to cover all variables, Here covered by BraGraH

Results in a modified database and wmodified acyclic
auery. Thew perform Yawnakakis: O(w3)

Example adopted from: Markus Krotzsch. "Database theory: Lecture 6: Tree-like Conjunctive Queries." 2016. https://iccl.inf.tu-dresden.de/web/Database_Theory (S52016)/en
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 373
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Hypertree Decompositions: A Survey

Georg Gottlob!, Nicola Leone?, and Francesco Scarcello®

descendent condition
generalized. For instance, let us define the /\x@f generalized hypertree de-

composition by just dropping condition®l from the definition of hypertree de-
composition (Def. 11). Correspondingly, we can introduce the concept of gen-
eralized hypertree width ghw(H) of a hypergraph H. We know that all classes
of Boolean queries having bounded ghw can be answered in polynomial time.
But we currently do not know whether these classes of queries are polynomially
recognizable. This recognition problem is related to the mysterious hypergraph

Source: Gottlob, Leone, Scarcello. "Hypertree decompositions: a survey." MFCS 2001. https://dl.acm.org/doi/10.5555/645730.668191
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Hypertree width and related hypergraph invariants

Isolde Adler?, Georg Gottlob?, Martin Grohe®

European Journal of Combinatorics 28 (2007) 2167-2181

ghw(H) <hw(H) <tw(H) + 1.
‘hw(H) <3-ghw(H) + 1

Source: Adler, Gottlob, Grohe. "Hypertree width and related hypergraph invariants." European Journal of Combinatorics 2007 (EuroComp 2005). https://doi.org/10.1016/].ejc.2007.04.013
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Generalized Hypertree Decompositions:
NP-Hardness and Tractable Variants

Georg Gottlob Zoltan Miklés Thomas Schwentick
University of Oxford University of Oxford and Universitat Dortmund
Computing Laboratory Technische Universitat Wien Lehrstuhl Informatik |
georg.gottlob@ zoltan.miklos@ thomas.schwentick@
comlab.ox.ac.uk udo.edu

comlab.ox.ac.uk

ABSTRACT

The generalized hypertree width GHW (H) of a hypergraph
H is a measure of its cyclicity. Classes of conjunctive queries
or constraint satisfaction problems whose associated hyper-
graphs have bounded GHW are known to be solvable in
polynomial time. However, it has been an open problem
for several years if for a fixed constant k£ and input hyper-
graph H it can be determined in polynomial time whether
GHW (H) < k. Here, this problem is settled by proving
that even for kK = 3 the problem is already NP-hard. On

Source: Gottlob, Miklos, Schwentick. "Generalized Hypertree decompositions: NP-hardness and tractable variants.", PODS 2007. https://doi.org/10.1145/1265530.1265533
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Hypertree Decompositions and friends

&‘:\Zrkyu‘:ie;‘;gi’:;';:"l'ggﬂ NP-complete to find the optimum

towards tighter bounds
(below is better)

v

Hypertree Decomposition (HD) . |
PTIME to find th t
[Gottlob, Leone, Scarcello 1999] O Tina the optimum

towards tighter bounds
(below is better)

v

Generalized Hypertree Decomposition (GHD)

NP-complete to find the opti
[Gottlob, Leone, Scarcello 2001] complete to find the optimum

Chekuri, Rajaraman. "Conjunctive query containment revisited", TCS 2000. https://doi.org/10.1016/5S0304-3975(99)00220-0 (ICDT'97 conference paper, ICDT'16 test-of-time award)

Gottlob, Leone, Scarcello. "Hypertree decompositions and tractable queries." PODS 1999. https://doi.org/10.1145/303976.303979 (Gems of PODS 2016)
Gottlob, Leone, Scarcello. "Hypertree decompositions: a survey." MFCS 2001. https://dl.acm.org/doi/10.5555/645730.668191
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Hypertree Decomposition: an unfortunate naming

1. Generalized Hypertree Decomposition (GHD):

explores the whole search space of valid decompositions
(illustrated here with a non-convex search space )

2. Hypertree Decomposition (HD):

limits the search space in a way that makes it tractable
to find the optimal solution within that limited subspace
(illustrated here with a cS)

Better names would be:
1. Hypertree Decomposition (HD) instead of GHD
2. Restricted Hypertree Decomposition (RHD) instead of HD
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Topic 3: Efficient query evaluation

Unit 2: Cyclic query evaluation
Lecture 23

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp23)
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Pre-class conversations

e Last class summary
e Project: comments finished on about 1/3 (4)

e Scribes

e Today:
— Linear Programming Duality, min-cut-max-flow

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 396
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Outline: T3-2: Cyclic conjunctive queries

* [3-1: Acyclic conjunctive queries
» 13-2: Cyclic conjunctive queries
— 2SAT (a detour)
— Tree decompositions
— Decompositions of hypertrees
— Duality in Linear programming (a quick primer)
— AGM bound (maximal result size for full CQs) and
Worst-case optimal joins for the triangle query
— Worst-case optimal joins & the 4-cycle
— Optimal joins & the 4-cycle

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Topic Duality in Linear Programming (LP)

e Subtopics

— Connections between and in graphs
— Linear Programming (LP) and duality gaps

— LP relaxations of ILP problems (Integer Linear Programming)
— Duality b/w and

/

Duality in linear programming: Iutuitively, every Livear Program has a dual problem with the same optimal solution,
but the variables in the dual problewm correspond to constraints in the primal problem and vice versa.
But the votion of duality is more geveral:
« "Over and over again, it turns out that one can associate with a given mathematical object a related, 'dual’
object that helps one ... understand +the properties of the object one started with."
[The Princeton Compavion to Mathematics, 2009]
* "Fundamentally, duality gives two differewt points of view of looking at the same object.”
[WMichael Atiyah, 2007F]

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 401
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Let's use graphs to explain duality in LP (Linear Programming)

problems: max number of disjoint subsets
: max number of subsets that are pairwise disjoint
- max : max number of vertices not sharing edges

— max independent edge set = : maximum number of edges that don't share any
nodes (every vertex can be in max one matching)

problems: min number of subsets to cover all elements
: min number of subsets to cover the entire domain
: min number of vertices to cover all edges
— min edge cover: min number of edges to cover all vertices
« Some packing problem is the dual problems of some covering problem
— Min Vertex Cover (VC) is the dual of Max matching
— Max Independent Set (IS) is the dual of Min edge cover

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 402
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Independent set

Independent set (IS): set of vertices Q ax

@ 0 e that are not connected (white)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 403
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VC vs. Ind set ?

Independent set (IS): set of vertices Q ax

@ 0 e that are not connected (white)

Vertex cover (VC): set of vertices

e e that covers all edges

ASSUMe ou are given an independent set.
How do vou find a vertex cover?

?

404
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VC =€ Ind set

Independent set (IS): set of vertices Q
. Max
@ a 6 that are not connected (white)

Vertex cover (VC): set of vertices Q _
min

6 e that covers all edges (orange)

Set S is a VC iff the complement V¢ =V -Sisan IS

B VT
Proof: for each edge at most one vertex is in V¢,

B{ 7@ Thus at least one vertex is in Set

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Matching vs. VC?

Vertex cover (VC): set of vertices Q -
e e that covers all edges (orange)

Matching (Ind edge set): set of /

edges w/o common vertices (red)

What is a possible connection between VC and matchings

?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 406
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Matching < VC

£ Vertex cover (VC): set of vertices Q -
e e that covers all edges (orange)
Matching (Ind edge set): set of /
edges w/o common vertices (red) max

A VC needs to cover at least each edge from
any matching

That turns out +o be the dual:  Thus, any VC has at least the size of any matching
WMax Matching < WMin VC = Size of any matching < any VC

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 407
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Matching < VC =€ Ind set (summary so far)
What intuitive problem is missing

Independent set (IS): set of vertices

@ 0 e that are not connected (white)

Vertex cover (VC): set of vertices

e e that covers all edges (orange)

Matching (Ind edge set): set of
edges w/o common vertices (red)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Matching < VC =€ Ind set (summary so far)
E  What intuitive problem is missing ?

Independent set (IS): set of vertices Q
. Max
that are not connected (white)

¢ Vertex cover (VC): set of vertices Q -
that covers all edges (orange)
Edees = Set Matching (Ind edge set): set of /
e e egeGS—e :Se o edges w/o common vertices (red) max
_lcg 1 %~2 %3 %4 %5 %6 +~7 +8
S 1/0 0O 0
GEJ 210 O problems: set of subsets that cover all elements
< 3 OO0
n 4 O O
o 5 0 0 0 L
S problems: set of disjoint subsets
& 6 0O O
v / O O
>
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Matching < VC =€ Ind set vs. Edge cover

WW""E IS Edge cover: set of edges that cover |
connebrion ? all vertices (blue) o
to TS "

Independent set (IS): set of vertices Q
. Max
that are not connected (white)

Vertex cover (VC): set of vertices Q _
min

< that covers all edges (orange)
Edges = Sets Matching (Ind edge set): set of / .

edges w/o common vertices (red)

@ | ©1©€28384 85868 e
S 1|0 0O 0
GEJ 210 O problems: set of subsets that cover all elements
[ i © 8 5 ( set cover: min vertex cover, min edge cover)
1
(%]
0O O 0 .
3 2 6 o problems: set of disjoint subsets
E, 7 00 ( set packing: max ind set, max matching)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 410
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Matching < VC =€ Ind set < Edge cover

€1

€4

Edges = Sets
@ e, €, €3 €, Ee: €, €5 ey
(-
o 1|0 OO0
£ 2100
()]
33 OO0
n 4 O O
0 5 0 0 0
(@]
B 6 O O
) OO0
9 7

Edge cover: set of edges that cover _
all vertices (blue) / min

Independent set (IS): set of vertices Q
. Max
that are not connected (white)

¢ Vertex cover (VC): set of vertices Q -
that covers all edges (orange)
Matching (Ind edge set): set of /
. Max
edges w/o common vertices (red)

An edge cover needs to cover at least each
vertex from any IS

Thus, any IS is lower bound to the size of any edge cover

= Size of min edge cover > max IS
Duality: Max IS < WMiv edge cover

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 411
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4 graph problems in the incidence matrix

Choose Vertices

Choose Edges

min=4 min=4
Set Q /
o Vertex Cover Edge Cover
4
Edges = Sets - lmw'f \7dml
0 |e1883848586 €6 P
g 1|0 O O max=3 ' / \dma max=3
5 200 O /
- 3| OO
ﬂ) 4 e Set Independent Matching =
o 5 0 0O 0 Set Ind. edge set
*LE) 6 OO0
g / O O
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4 graph problems in the incidence matrix

NP-complete

Choose Vertices

PTIME

Choose Edges

min=4

O

Vertex Cover

min=4

/

Edge Cover

| < /dual
complemenft

Set
€4

Edges = Sets
o | ©1€©€3€4 856858 eg
S 1|0 0 O
£ 2|0 0
Q
— 3] 00O
()
n 4 O O Set
o 5 0 0 0
o
& 6 0O O
) 00
L 7

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

max=> Q /
Independent
Set

2\.de7 Mmax=2

Matching =
Ind. edge set
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4 graph problems in the incidence matrix

Vertices = elements

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

€4
Edges = Sets

e,€,€e;€,€6; €€, €Eq

NP-complete

Choose Vertices

PTIME

Choose Edges

O O

O O

=4 (min) p=4 (min)
Set Q /
Vertex Cover Edge Cover
1 < /dual
comple t
=3 (max)t / N\ du al/ p=> (max)
Set Independent Matching =
Set Ind. edge set
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Mathematical programming duality

e w{@c. cover (,0) . ((X)
2 || Covering number, k = d«q| Packing number, p
_'C_é‘ min # hyperedges to contain vertices max # vertices, no two in a hyperedge
= || min 1'% s.t. Mx = 1 (min) edge cover /r{avx 1% s.t. M'x < 1 (max) indepevdent Yprtex set
g /covnplcvncvﬁ—
@ || Transversal number,T || Matching number, u
£ | | min # vertices to touch hyperedges > dud| max # pairwise disjoint hyperedges
= t " t
T || min 1°x s.t. M'x = 1(min) vertex cover || max 1'x s.t. Mx = 1 (max) matching .
(ndependent eane e

7/
vertex cover Finding a maximum matching v a 3-uiform

hypergraph is NP-hard (3-dimewsional matchivg),
bt is in PTIWME for simple (2-uviform) araphs.

Figure 1.1. The dualities between the covering, packing, transversal, and matching numbers of a hypergraph.

Source: Scheinerman, Ullman. "Fractional Graph Theory: A Rational Approach to the Theory of Graphs", 1997/2008. https://www.ams.jhu.edu/ers/books/fractional-graph-theory-a-rational-
approach-to-the-theory-of-graphs/
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Background: MAX independent (vertex) set < MIN edge cover

Independent Set

« Assume graph G is connected. Thus, every vertex has at least one edge (unless just one vertex)
e Suppose Sis an independent set and £ is an edge cover.

e« Then for each vertex vES there exists at least one edge e L incident with v.

e By definition of independent set no two u,vES, have a common edge in E.

e Therefore |5|<|E]

Examples from: http://www.csie.ntnu.edu.tw/~u91029/Domination.html

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 416
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Matching < VC: what changes in bipartite graphs?
Nodes are partitioned into Left and Right

L R
1 6
2 I4

N Vertex cover (VC): set of vertices Q _
min
that covers all edges (orange)

Matching (Ind edge set): set of /
edges w/o common vertices (red) max

A VC needs to cover at least each edge from
any matching

Thus, min VC at least the size of any matching
= Size of any matching < any VC

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 417
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matching = VC ... in bipartite graphs!

L R
6
. Vertex cover (VC): set of vertices Q -
~ that covers all edges (orange)
Matching (Ind edge set): set of /
edges w/o common vertices (red) max

K&nig-Egevary theorem for bipartite graphs:
Max matching equivalent to Min VC

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 418
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All for 4 problems become easy in bipartite %%Bhs

Choose Vertices | Choose Edges

Set Q /

Cover Vertex Cover Edge Cover

| \/{al
complemenft
@ / %al /
Set Independent Matching =
Packing Set Ind. edge set
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Cuts and Flows in directed graphs G = (V, E)
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Cuts and Flows in directed graphs G = (V, E)

Each edge (u, v) has a capacity c,,, which is the max amount of flow that can pass through it.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 421
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Cuts and Flows in directed graphs G = (V, E)

Each edge (u, v) has a capacity c¢,,, = 1 which is the max amount of flow that can pass through it.

A flow is a mapping of edges to flows f: E —» R*
s.t. that flows obey their capacities f,,, < ¢,, and
conservation laws. The value |f | of a flow is the
amount moved from S to T through the network.

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow _min-cut_theorem
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Cuts and Flows in directed graphs G = (V, E)

Each edge (u, v) has a capacity ¢,,, = 1 which is the max amount of flow that can pass through it.

A flow is a mapping of edges to flows f: E —» R*
s.t. that flows obey their capacities f,,, < ¢,, and

conservation laws. The value |f | of a flow is the
amount moved from S to T through the network.

fl=3

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow _min-cut_theorem
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Cuts and Flows in directed graphs G = (V, E)

Each edge (u, v) has a capacity ¢,,, = 1 which is the max amount of flow that can pass through it.

A flow is a mapping of edges to flows f: E —» R*
s.t. that flows obey their capacities f,,, < ¢,, and

conservation laws. The value |f | of a flow is the
amount moved from S to T through the network.

=4

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow _min-cut_theorem
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Cuts and Flows in directed graphs G = (V, E)

Each edge (u, v) has a capacity ¢,,, = 1 which is the max amount of flow that can pass through it.
. L R

~
~
-~
________________________________
~
N

@ @ @ Ans-tcut C = (5,T) is a partitionof Vst.s €S

--------------------------- and t € T. The cut-set X of a cut C is the set of
edges that connect the source part of the cut to
the sink part. The capacity c(S,T) of an s-t cut is

@ the sum of the capacities of the edges in its cut-set.

Nodes to the left of the dashed live are in S, the rest in T.

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow _min-cut_theorem
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 425
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Cuts and Flows in directed graphs G = (V, E)

Each edge (u, v) has a capacity ¢,,, = 1 which is the max amount of flow that can pass through it.
. L R

Ans-tcut C = (5,T) is a partitionof Vst.s €S
and t € T. The cut-set X of a cut C is the set of
edges that connect the source part of the cut to
the sink part. The capacity c(S,T) of an s-t cut is
the sum of the capacities of the edges in its cut-set.

\ This live 1s vot v the cut-set c(5T)=5
becanse it goes from T +o Sl

Nodes to the left of the dashed live are in S, the rest in T.

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow _min-cut_theorem
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 426
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Cuts and Flows in directed graphs G = (V, E)

Each edge (u, v) has a capacity ¢,,, = 1 which is the max amount of flow that can pass through it.

Ans-tcut C = (5,T) is a partitionof Vst.s €S
and t € T. The cut-set X of a cut C is the set of
edges that connect the source part of the cut to
the sink part. The capacity c(S,T) of an s-t cut is
the sum of the capacities of the edges in its cut-set.

c(S,T)=4

Nodes to the left of the dashed live are in S, the rest in T.

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow _min-cut_theorem
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 427
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Cuts and Flows in directed graphs G = (V, E)

Each edge (u, v) has a capacity ¢,,, = 1 which is the max amount of flow that can pass through it.

A flow is a mapping of edges to flows f: E - R*
s.t. that flows obey their capacities f,,;, < ¢, and

conservation laws. The value |f| of a flow is the
amount moved from S to T through the network.

=4

Ans-tcut C = (5,T) is a partitionof Vst.s €S
and t € T. The cut-set X of a cut C is the set of
edges that connect the source part of the cut to
the sink part. The capacity c(S,T) of an s-t cut is
the sum of the capacities of the edges in its cut-set.

c(S,T)=4

IMAX-FLOW MIN-CUT THEOREM.
The maximum value of an s-t flow is equal to the minimum capacity over all s-t cuts.

Definitions adapted from: https://en.wikipedia.org/wiki/Max-flow _min-cut_theorem
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 428
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Proof K&nig-Egevary: outline
Notice the now infinite capacities in the wmiddle:
1 L oo R 1

Proof outline:
Consider the flow graph to the left with capacities
chosen to avoid a cut between L and R. We will show:
1. every integral flow & some matching
2. every (finite capacity) cut © some VC
3. Then we know that max matching = min VC,

from the max-flow min-cut theorem
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Proof KOnig-Egevary 1: matching = flow

1. A matching of size x corresponds to an
integral flow of same value.

1

3
@

@ @
O

l

#VC

I

5
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Proof KOnig-Egevary 1: matching = flow

1. A matching of size x corresponds to an
integral flow of same value.

9
s
©

2
5
0
5
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Proof KOnig-Egevary 1: matching = flow

1. A matching of size x corresponds to an
integral flow of same value.

2
5
0
5

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 432



https://northeastern-datalab.github.io/cs7240/

Proof K&nig-Egevary 2: VC = cut

(B

2. Any VC of size x defines a cut of same capacity.

Let C betheVC,C(L) =CnNnL,C(R)=CnNR.
Then define: S := {s} U (L — C(L)) U C(R)
T:={t} U(R-C(R)) U C(L)

Q
©@ ® © @ O
@ @ @ @ @=
O

#VC

i

5

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 433



https://northeastern-datalab.github.io/cs7240/

Proof K&nig-Egevary 2: VC = cut

/e N “ Let C bethe VC,C(L) =CNL,C(R)=CNR.
] Then define: S :={s} U (L — C(L)) U C(R)
----------------------------------- T={}U(R-CR) U CWL)

\ This live is not v the cut-set #C=c(S,T)=5

becanse it goes from T +o Sl

Nodes +o the left of the dashed
live are n S, the rest in T
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Proof K&nig-Egevary 2: VC = cut

/e N “ Let C bethe VC,C(L) =CNL,C(R)=CNR.
] Then define: S :={s} U (L — C(L)) U C(R)
----------------------------------- T={}U(R-CR) U CWL)

\ This live is not v the cut-set #C=c(S,T)=5

becanse it goes from T +o Sl

Nodes +o the left of the dashed
live are n S, the rest in T
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Proof K&nig-Egevary 2: VC = cut

1, L o R 1
| e @ 2. Any VC of size x defines a cut of same capacity.
e . Let C be the VC, C(L) = C N L, C(R) = CNR.
@ Then define: S := {s} U (L — C(L)) U C(R)
,,,,,,, g T:={t} U(R-C(R)) U C(L)

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-

#NC=c(S,T)=4

Nodes +o the left of the dashed
live are n S, the rest in T
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Proof K&nig-Egevary 2: VC = cut

2. Any VC of size x defines a cut of same capacity.

)
e \ Let C be the VC, C(L) = C N L, C(R) = CNR.

Then define: S:={s} U (L—C(L)) U C(R)

T:={t} U(R-C(R)) U C(L)

s’
’
-,
-,
-,
-
f’
-

-
-
-
-
-
-

#NC=c(S,T)=4

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 437



https://northeastern-datalab.github.io/cs7240/

Proof KOnig-Egevary 3: max-flow = min-cut
= max matching = min VC

3. Since max flow = min cut, therefore also
max matching = min VC

#matching = |f| = 4
#C=c(S,T)=4

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 438



https://northeastern-datalab.github.io/cs7240/

LP (Linear Programming)
and duality gops

https://northeastern-datalab.github.io/cs7240/
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Dual Optimization Problem
(6.9, max independent set) (e.9., min edge cover)
A maximization problem M and a minimization problem N,

defined on the same instances (such as graphs, constraints) s.t.:

1. for every candidate solution M to M and every candidate solution N to N,
the value of M is less than or equal to the value of N

2. obtaining candidate solutions M and N that have the same value proves
that M and N are optimal solutions for that instance.
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A quick primer on Duality in Linear Programming

Xt
max 1x; + 6x, C1
C1 X1 S 20 30 \j\ ¢2
Co Xz S 30 T
C3 x1 + xz S 4‘0 c.
X1,Xy = 0 J
20 T X

Assume T give vou the solution (xq,x,) = (10,30) with objective value = 190,
How could youn prove it is indeed +he wmaximum feasible value? 0,

[ |
Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.Isi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
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A quick primer on Duality in Linear Programming
non-negative multipliers!

Xt
max 1x; + 6x, / .
c1 x; <20 X1 30 s
Cy x, < 30 X 1
C3 X1 +x, <40 X 0 f ‘.
X1,Xy = 0 J ‘
1x + 1x, < 50 20 e

Assume T give vou the solution (xq,x,) = (10,30) with objective value = 190,
How could you prove i+ is indeed the maximum feasible value?

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.Isi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
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A quick primer on Duality in Linear Programming
non-negative multipliers!

Xt
max 1x; + 6x, / .
c1 x; <20 X1 30 s
Cy x, < 30 X 2
C3 X1 +x, <40 X 0 f ‘.
X1,Xy = 0 J ‘
1x; + 2x, < 80 20 e

Assume T give vou the solution (xq,x,) = (10,30) with objective value = 190,
How could you prove i+ is indeed the maximum feasible value?

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.Isi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
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A quick primer on Duality in Linear Programming
non-negative multipliers!

Xt
max 1x; + 6x, / .
Cy: x1 < 20 X 1 B \025
Cy: x, < 30 X 6
c3: X1 +x, <40 X 0 f ‘.
X1,Xy = 0 J ‘
1x; + 6x, < 200 20 X

upper bound +o the objective function!

Assume T give vou the solution (xq,x,) = (10,30) with objective value = 190,
How could you prove i+ is indeed the maximum feasible value?

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.Isi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
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A quick primer on Duality in Linear Programming
non-negative multipliers!

Xt
max 1x; + 6x, / c:
. X, <20 X 0.5 i e o
Cy: x, < 30 X 5.5
c3: X1 +x, <40 X 0.5 f .
X1,Xy = 0 J ‘
1x; + 6x, < 195 20 X

upper bound +o the objective function!

Assume T give vou the solution (xq,x,) = (10,30) with objective value = 190,
How could you prove i+ is indeed the maximum feasible value?

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.Isi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
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A quick primer on Duality in Linear Programming
non-negative multipliers!

x5!
max 1lx, + 6x2 / "
e <20 |[x0 S S N -
, <30 c certificate of s
“2: - . optimality ¢
C3: x1+x2_40 X1 .
xl, xz 2 O J

1x, + 6x, S 20 T

minimum upper bound to the objective function!

Assume T give vou the solution (xq,x,) = (10,30) with objective value = 190,
How could you prove i+ is indeed the maximum feasible value?

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.Isi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
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A quick primer on Duality in Linear Programming
non-negative multipliers!

X1
max 1x, + 6x, / ¢
. | R N ¢
Cq: X1 < 20 X V1 30 \\2_
Co. XZ S 30 X yz
C3. X1 ‘I‘XZ S4O XY3 T C3
X1,Xy = 0 J
20 Ty
Dk, +E)x, < 20y, + 30y, + 40y, 1
/2' / 2 find a convex combination of the constraints
Y1itY3s Y2tY3 to get the mivimum upper bound to +he objective function!

Assume T give vou the solution (xq,x,) = (10,30) with objective value = 190,
How could you prove i+ is indeed the maximum feasible value?

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.Isi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
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A quick primer on Duality in Linear Programming

max 1x; + 6x, min 20y, + 30y, + 40y,
xg <20 Xy y1+y; =1
> > X, < 30 X Y, Vo +y3 =6
X1 X =40 Xy3 V1, Y2, Y3 2 0
1, Xy =0

(V1+y3)x1 + (Y2+y3)x, < 20y, + 30y, + 405

Primal solution (x,,x,) = (10,30) Pual solution (v4, v,,v3) = (0,5,1)

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.Isi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
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A quick primer on Duality in Linear Programming

max 1x; + 6x, min 20y, + 30y, + 40y,
X1 =20 XYy yiryz=1 Xx
2 2 X, =30 XYy, V2t Y3 =6 XX
xptx, =40 Xy Vi, ¥2,Y3 2 0
1, X2 =0 < < <

(V1+y3)x1 + (Y2ty3)x, < 20y, + 30y, + 40y X1Y1 + X2y, + (X1+x2)y3 = 1x; + 6x5
1x, + 6%, < 20-0 +30-5+ 401 10y, + 30y, + (10+30)y5 = 1-10 + 6-30
1-10 + 6:30 < 190 10-y;, + 30y, + 40 -y = 190

Primal solution (x,,x,) = (10,30) Pual solution (v4, v,,v3) = (0,5,1)

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.Isi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
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LP in Canonical Form and Matrix-vector notation

max 1x; + 6x, min 20y, + 30y, + 40y,
x1 < 20 yi+ty; =1
x, < 30 Vo +y3 =6
X1 +x; = 40 V1,Y2,¥3 20
X1,Xy = 0

Cavovical form:

max ¢Tr objective vector min bTy
constrant Ax<b constraint vector ATy > ¢
matrix
x=0 y=0

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.Isi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
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A quick primer on Duality in Linear Programming

n | 20
max (6) X min (30) y

40

T IO

x =0

IV
O/‘\
v

IV

max cTx min bTy
Ax<b ATy > ¢
x=0 y=0

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.Isi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
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A quick primer on Duality in Linear Programming

Figure 7.10 A generic primal LP in matrix-vector form, and its dual.

Primal LP: Dual LP:
max ¢! x min y’b
Ax<b yIA>cl
x 20 y >0
Primal LP: Dual LP:
max C1r1 + -+ Chn min b1y + -+ + bmyYm
a1 L1 + -+ @iy, <b; foriel aijy1 + -+ mijym > c¢; forjeN
11+ +ainxn, =05b; forie F ajy1 + -+ GmjYm = Cj fOI‘j Q N
x; >0 forjeN y; >0 foriel

Primal Dual
Primal feasible opt opt Dual feasible

| |
This duality gap is zero

= Objective
value

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.Isi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Updated 4/7/2023

Topic 3: Efficient query evaluation

Unit 2: Cyclic query evaluation
Lecture 24

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp23)

https://northeastern-datalab.github.io/cs7240/sp23/
4/7/2023
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Pre-class conversations

e Last class summary
e Project: comments on comments (think rapid prototyping
nttps://en.wikipedia.org/wiki/Rapid application _development)
« Please prepare written comments for the class feedback phase
Today:
— End of efficient query evaluation for cycles

— Pointers to recorded tutorial on optimization problems & top-k

e Next time:

— last class by me, on graphs
— then you present

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 469
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Suggestion for final report: iterate on my comments

Wolfgang: why do you need to join the two tables, and not just filter the second one on the IDs
directly? There is no information in the user table that you need (as you would in say: posts from
usernames < "Alice") This is a very simple example and incidentally the foreign key is the
one used for filtering the first table as well. We want to generalize the problem a bit such that the
list of users may have been derived based on a column other than the User ID, and we need the
user IDs to filter the posts. In such a case, we would need a join to execute a single query:

) i ] ) i i i : Wolfgang Gatterbauer ]
- Mthough .j:lll.the queries in Figure 2 and their equivalent SQI-J queries sl,l’own m-Fl.gl}re 3 vary Thus to make this example self-
significantly in implementation, they all produce the same result in “allPosts”. Thus, it is important contained (and not redundant) my
to evaluate the performance of these queries in terms of execution time, and heap utilization in suggestion to select on user names,
. . . . . ] like only those whose names starts
order to identify the best implementation for a particular use case. To evaluate the queries, we with letters A, B, or C
construct a test database, execute the queries against this database, and measure their performance. —
relational join, respectively, are more interesting cases. The have almost identical evaluation times,
with the where clause being marginally faster. Wolfgang: did you run this experiment many times
and took the median and showed 90% confidence interval? Without that it is all within margin of
error : We ran the experiment 100 times for each query and considered the average of those
100 runs. We can switch to using the median and perform some statistical significance test instead. Wolfgang Gatterbauer i

These queries scale the best overall, being on par with the best case of the N+1 query on the lower | :

. . . . : strongly suggest to use the median
end, and performing marginally better than the naive transformation on the higher end. We also and then the 90% confidence interval.
observe that the N+1 query performs better than than naive transformation for N less than 20 on filhwistoreachicpalnGyouisantitie

. . times in increasing order, report the
this particular database. AVG of 5th and 6th as the lower
: i 13 : : g 3 bound, the AVG of 50th and 51st as
. Figure 5 shows the comparison of heap utilization for different rf:formulatlons of query against Memedian and Gl Pmrdiins
different number of records requested from the database. The X-axis shows the number of records the upper bound (of 90% confidence)
requested from 1001(1% of the database) to 100100 (100% of the database), and the Y-axis shows

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 470
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Outline: T3-2: Cyclic conjunctive queries

* [3-1: Acyclic conjunctive queries
» 13-2: Cyclic conjunctive queries
— 2SAT (a detour)
— Tree decompositions
— Decompositions of hypertrees
— Duality in Linear programming (a quick primer)
— AGM bound (maximal result size for full CQs) and
Worst-case optimal joins for the triangle query
— Worst-case optimal joins & the 4-cycle
— Optimal joins & the 4-cycle

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Topic Duality in Linear Programming (LP)

e Subtopics

— Connections between and in graphs
— Linear Programming (LP) and duality gaps

— LP relaxations of ILP problems (Integer Linear Programming)
— Duality b/w and

/

Duality in linear programming: Iutuitively, every Livear Program has a dual problem with the same optimal solution,

but the variables in the dual problewm correspond to constraints in the primal problem and vice versa.

But the votion of duality is more geveral:

« "Over and over again, it turns out that one can associate with a given mathematical object a related, 'dual’
object that helps one to understavd +he properties of the object one started with." [The Princeton Companion to
WMathewmatics, 2009]

* "Fundamentally, duality gives two different points of view of looking at +he same object.[WMichael Atiyah 2007]

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 474
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LP relaxations of
ILP problems

(Integer Linear Programming)



Example: Minimal (Fractional) Vertex Cover in k-clique

CannvyE
——— VRY

Objective: min X, ,cyw, st. w,+ w, > 1 for each edge D\ 7

and w, € {0,1} for each node for integral solution (ILP)

or 0 <w,<1foreachnode for fractional solution (LP)
a fractional & convex relaxation

Minimal Integral Vertex Cover: Minimal Fractional Vertex Cover:
? ? ? ?

? 7 e ) ? ? p: )

? ? ? ?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 476
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Example: Minimal (Fractional) Vertex Cover in k-clique

CannvyE
——— VRY

Objective: min X, ,cyw, st. w,+ w, > 1 for each edge D\ 7

and w, € {0,1} for each node for integral solution (ILP)

or 0 <w,<1foreachnode for fractional solution (LP)

Minimal Integral Vertex Cover: Minimal Fractional Vertex Cover:
1 1 ? ?
1 ILP: 5 = k-1 ? (TS
for k-clique
1 1 ? ?
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Example: Minimal (Fractional) Vertex Cover in k-clique

CannvyE
——— VRY

Objective: min X, ,cyw, st. w,+ w, > 1 for each edge D\ 7

and w, € {0,1} for each node for integral solution (ILP)

or 0 <w,<1foreachnode for fractional solution (LP)

Minimal Integral Vertex Cover: Minimal Fractional Vertex Cover:
1 1 0.5 0.5
1 ILP: 5 = k-1 0-5 05 Lp:3=k/2
for k-clique
1 1 0.5 0.5
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Example: Minimal (Fractional) Vertex Cover in even k-cycle

SSLUAZ N
———— YRY

Objective: min X, ,cyw, st. w,+ w, > 1 for each edge D\ 7

and w, € {0,1} for each node for integral solution (ILP)

or 0 <w,<1foreachnode for fractional solution (LP)

Minimal Integral Vertex Cover: Minimal Fractional Vertex Cover:
? ? ? ?

? 7 e ) ? ? p: )

? ? ? ?
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Example: Minimal (Fractional) Vertex Cover in even k-cycle

CannvyE
——— VRY

Objective: min X, ,cyw, st. w,+ w, > 1 for each edge D\ 7

and w, € {0,1} for each node for integral solution (ILP)

or 0 <w,<1foreachnode for fractional solution (LP)

Minimal Integral Vertex Cover: Minimal Fractional Vertex Cover:
1 ? ?
1 ILP: 3 = k/2 ? (TS
for even cycle
1 of length k ? ?
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Example: Minimal (Fractional) Vertex Cover in even k-cycle

CannvyE
——— VRY

Objective: min X, ,cyw, st. w,+ w, > 1 for each edge D\ 7

and w, € {0,1} for each node for integral solution (ILP)

or 0 <w,<1foreachnode for fractional solution (LP)

Minimal Integral Vertex Cover: Minimal Fractional Vertex Cover:
1 0.5 0.5
1 ILP: 3 = k/2 0-5 05 Lp:3=k/2
for even cycle
1 of length k 0.5 0.5
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Example: Minimal (Fractional) Vertex Cover in odd k-cycle

CannvyE
——— VRY

Objective: min X, ,cyw, st. w,+ w, > 1 for each edge D\ 7

and w, € {0,1} for each node for integral solution (ILP)

or 0 <w,<1foreachnode for fractional solution (LP)

Minimal Integral Vertex Cover: Minimal Fractional Vertex Cover:

? ?

L P | | p: )

? ? ? ?
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Example: Minimal (Fractional) Vertex Cover in odd k-cycle

CannvyE
——— VRY

Objective: min X, ,cyw, st. w,+ w, > 1 for each edge D\ 7

and w, € {0,1} for each node for integral solution (ILP)

or 0 <w,<1foreachnode for fractional solution (LP)

Minimal Integral Vertex Cover: Minimal Fractional Vertex Cover:

1 0.5

0.5 0.5
ILP: 3 = (k+1)/2 LP: 2.5 =k/2

for odd cycle
1 1 of length k 0.5 0.5
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https://northeastern-datalab.github.io/cs7240/

ILP and its LP relaxation

A max y ILP (Twteger program or
RTINS Tuteger Linear program)

2x + 3y < 12

LP-relaxation obtained from an
ILP by relaxing the integrality

constraints for variables x and y
3x + 2y < 12

Notice the search space gets

X evlarged and becomes convex.
Contrast with GHD vs HD: there
the search space got restricted...
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Duality b/w
independent vertex sets
and edge covers



A quick primer on Duality in Linear Programming

Primal: Max Independence (Vertex) set

max v, + v, + v3, S.t.

V1
v+ v, <1
<
=1 =1 (2} +v3<1
v T Py v, +v3<1

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.Isi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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A quick primer on Duality in Linear Programming

Primal: Max Independence (Vertex) set

non-negative multiplier per edoe

v, max v, + v, + v3, S.t. /
vy + v, <1 Uq
< <
=1 =1 V1 +V3S 1 Uu,
v, @ Py v, +v3<1 Us

(v +u)vy + (U Fu)vy + (U + Uy < Uy + Uy s
if =1 =1 =1 then the right side ¥ ; u;
for each vertex is an upper bound for
the primal objective ;; v,

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.Isi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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A quick primer on Duality in Linear Programming

Primal: Max Independence (Vertex) set What is this dual problewm ?
v, max v, + v, + v;, s.t. min v, + u, + us, S.t.
vy + v, <1 Uy + U, > 1
%) <1 1%} UZ+U3S1 u2+U,321

(v +u)vy + (U Fu)vy + (U + Uy < Uy + Uy s
if =1 =1 =1 then the right side ¥ ; u;
for each vertex is an upper bound for
the primal objective ;; v,

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.Isi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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A quick primer on Duality in Linear Programming

Primal: Max Independence (Vertex) set Dual: Min Edge cover
v, max v, + v, + v;, s.t. min v, + u, + us, S.t. > 1
vy + v, <1 Uy + U, > 1
u u
=1 =1 v, +v,<1 Uy +u, > 1 / ’
%) <1 1%} v2+v3S1 uZ+U321 >1 U >1

(v +u)vy + (U Fu)vy + (U + Uy < Uy + Uy s
if =1 =1 =1 then the right side ¥ ; u;
for each vertex is an upper bound for
the primal objective ;; v,

Example taken from: Dasgupta, Papadimitriou, Vazirani. Algorithms. 2006. http://algorithmics.Isi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
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Independent Sets & Edge covers in the Triangle

Fractional independence number (a™)

max sum of weights v, v,, ... v;,, = 0 on vertices (variables) max v, + v, + V3, s.t.
s.t. for all vty <1 y vi+v,<1
, e v+ ;<1
a* =max ),; v,
v, +v3<1
a* = p* v, @ Q
Fractional edge cover number (p™)
min sum of weights 1., 1, ... 1, = 0 on min v, + u, + U5, S.t
st.forall xi: Xjy ep, 21 0O +u, =
p* =min ); tu; 21
@ ® + > 1
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Independent Sets & Edge covers in the Triangle

Fractional vertex cover number (77)

min sum of weights v, v,, ... v;,, = 0 on vertices (variables) min v, + v, + V3, s.t.
s.t. for all vitv =21 y vit+uv, =21
x . e vty =1
"= min );; v,
v, +v3=>1
T =v" v @ Q@
Fractional matching (edge packing) number (v™)
max sum of weights 1/, 1, ... 11, = 0 on max 1. + 1, + 1, S.t
st.forallx;: Xjy, er,ty <1 0O +u, <
v*= max Zj tus =1
@ ® + <1
<1
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Fractional vertex cover in the triangle

# https://sagecell.sagemath.org/

# inequalities: -1+v1+v2>=0, -1+v2+v3>=0, -1+v1+v3>=0, 1-v1>=0, 1-v2>=0, 1-v3>=0
IE|c3;II:)EC)(I;/hedron(ieqs =1[[-1,1,1,0],[-1,0,1,1],[-1,1,0,1],[0O,1,0,0],[0,0,1,0],[0,0,0,1]]) min v, + v, + 5, sit.
V1 vit+v,>1
not feasible v+ V3 = 1

= 1 = 1 v, +v3=>1

(0.5,0.5,0.5): 1.5

493
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Fractional vertex cover in bipartite graph

# https://sagecell.sagemath.org/
# inequalities: -1+v1+v2>=0, -1+v2+v3>=0, 1-v1>=0, 1-v2>=0, 1-v3>=0
p = POIYhEdron(ieqS = [[-1111110]1[-1101111]1[OI1IOIO]I[OIOI]‘IO]I[OIOIOI]']])

min v; + v, + V3, s.t.

p.plot() v
1 v1 + vZ 2 1
1
v;+v3=>1
> 1 > 1
0 0
(%)
2.00
=0.91
(0,1,1): 17
(1,0,0): 1
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Outline: T3-2: Cyclic conjunctive queries

* [3-1: Acyclic conjunctive queries
» 13-2: Cyclic conjunctive queries
— 2SAT (a detour)
— Tree decompositions
— Decompositions of hypertrees
— Duality in Linear programming (a quick primer)
— AGM bound (maximal result size for full CQs) and
Worst-case optimal joins for the triangle query
— Worst-case optimal joins & the 4-cycle
— Optimal joins & the 4-cycle

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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What do we know about
bounding the size of the
answer

(...and enumerating all solutions)

Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 499
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Upper bound

minimal @d@@ cover

Observation: If the hypergraph has|edge cover number pland
every relation has size at most N, then there are at most N? tuples
in the answer.

Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 500
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Upper bound

minimal Gd@@ cover

Observation: If the hypergraph has|edge cover number p|and
every relation has size at most /N, then there are at most N? tuples
in the answer.

Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 501
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Lower bound N
maximal independent set

Observation: If the hypergraph has|independence number o/ then
one can construct an instance where every relation has size N at\d]
the answer has size N“.

Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 502
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Lower bound N
maximal independent set

Observation: If the hypergraph has|independence number o/ then
one can construct an instance where every relation has size N at\d]
the answer has size N“.

n

Definition of the relations: R n
@ If variable A is in the independent set, then it can take any
value in [NV].
@ Otherwise it is forced to 1.

Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 503
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Which is tight: the upper bound or the lower bound?

Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
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Fractional values

@ «: independence number

@ o™: fractional independence number
(max. weight of vertices s.t. each edge contains weight < 1)

@ p*: fractional edge cover number
(min. weight of edges s.t. each vertex receives weight > 1)

@ p: edge cover number

LP duality!
S 60 (|

> . d

c oy LF— LY
1
2

N | =

=1 Nt =32 R T =2

Example by: Marx. "Graphs, hypergraphs, and the complexity of conjunctive database queries", ICDT 2017. http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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A tight example for AGM bound O(n*~) for triangle Q,

Q, (A,B,C) = R(A,B) ™ S(B,C) 4 T(C,A)
Q(X,y,Z) . R(X,Y), S(y,Z), T(Z,X).

Notice every tuple is part
of 3 join results, €.,
showw here for R(1,1) B

n = 9 number of tuples per relation (= DB size for self-joins)
m = +/n = 3 domain size Q(x,y,z) - R(x,y), R(y,z), R(z,x).
|OUT| = n'> = 27 output tuples
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When binary joins give O(n?) intermediate sizes for Q,
Q, (A,B,C) = R(A,B) 1 S(B,C) > T(C,A)

Q(lelz) . R(XIY)I S(ylz)l T(ZIX)'
R S T R S T In whatever sequence we Join

the three tables, the size of the

0 1 1 0%0 1 % % % first join will always be 0(n?2)

02 20 02

10 01 10

20%0 2_20 r r r r NAC NBC NAC

\ \ N
Mg T DMy S Mg R

rr rr rr / / /
R S R T S T

N = O >
N = O m
N = O O
N =~ O >

3
3
3
3

n = 2m + 1 tuples per relation
m + 2 domain size |RagS| = |R,T| = |SXRT| = m2 = O(n?)
|OUT| = 1 output tuple
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Solution: partition the data
Q, (A,B,C) =R(A,B) > 5(B,C) @ T(C,A) Trick: partition by outdegree,
Q(X’ylz) = R(X,Y), S(y’z)’ T(Z,X). ﬂVld nse two PlaV\S 17 P&ll"all@l!
R S T R s T R=R, A U R,
Ry ={(a,b) €R: [0aR| >N}

RA={(a,b) ER:|g,,R| £n>}

N S R = >~
N -~ O
N =~ O 0O

PN = O >

.
/

0-S !
o h X X
ASEVA
RS RAT

n = 2m + 1 tuples per relation
m + 2 domain size
|OUT| = 1 output tuple

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Solution: partition the data

Q(X,y,Z) . R(X,Y), R(y,Z), R(Z,X).

R R R
AB AB AB
0 1 10 01
02 20 0 2
Om mO Om
10 01 10
2 0 02— 20
mO 0O m m O
rr rr rr

m+2. = domain size

(2m+1) database size

1 = output size M=2.000:
m=4000:

select count(x)

into recordl

from R R1, R R2, R R3
where R1.B=R2.A

and R2.B=R3.A

and R3.B=R1.A;

+Q1=240q msec
+Q1=6q/‘ 2 msec

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

With Cutoff as

(select sqrt(count(x)) as C from R),
DomainH as

(select R.A from R

group by R.A

having count(x) > (Select C from Cutoff)),
RH as

(SELECT R.A, R.B

FROM R, DomainH

WHERE R.A=DomainH.A),
RL as

(select * from R

Except
select * from RH)
select count(x) 1into record2
from
(select T.A, T.B, T.C
from (select RH.A, RH.B, R2.B as C
from RH, R R2
where RH.B = R2.A) T, R R3
where T.A = R3.B and T.C = R3.A

union
select T.A, T.B, T.C
from (select RL.A, RL.B, R3.A as C

from RL, R R3
where RL.A = R3.B) T, R R2
where T.B = R2.A and T.C = R2.B) X;

Tqo=7 msec
+Q2=14 msec
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Solution: partition the data

Q(X,y,Z) . R(X,Y), R(y,Z), R(Z,X).

W W W NDNDN-_2A A=
W W W NDNDN= ==

m=domain size
mZ database size

2 :
Wm> output slze m=100:

Wm=200:

select count(x)

into recordl

from R R1, R R2, R R3
where R1.B=R2.A

and R2.B=R3.A

and R3.B=R1.A;

t1=0.0 sec
+Q1=6\6 séel

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
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With Cutoff as

(select sqrt(count(x)) as C from R),
DomainH as

(select R.A from R

group by R.A

having count(x) > (Select C from Cutoff)),
RH as

(SELECT R.A, R.B

FROM R, DomainH

WHERE R.A=DomainH.A),
RL as

(select * from R

Except
select * from RH)
select count(x) 1into record2
from
(select T.A, T.B, T.C
from (select RH.A, RH.B, R2.B as C
from RH, R R2
where RH.B = R2.A) T, R R3
where T.A = R3.B and T.C = R3.A

union
select T.A, T.B, T.C
from (select RL.A, RL.B, R3.A as C

from RL, R R3
where RL.A = R3.B) T, R R2
where T.B = R2.A and T.C = R2.B) X;

tq2=0.94 sec
+Q2=1 0\3 560
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Algorithmica (1997) 17: 209-223 . .
= Algorithmica

© 1997 Springer-Verlag New York Inc.

Finding and Counting Given Length Cycles'
N. Alon,2 R. Yuster,? and U. Zwick?

Abstract. We present an assortment of methods for finding and counting simple cycles of a given length
in directed and undirected graphs. Most of the bounds obtained depend solely on the number of edges in the
graph in question, and not on the number of vertices. The bounds obtained improve upon various previously
known results.

k=2 for triangle

THEOREM 3.4. Deciding whetherd directed or undirected graph G = (V, E) contains
simple cycles of length exactly 2k — | and of length exactly 2k, and finding such cycles
if it does, can be done in O(E*~"*) time.

PROOF. We describe an O (E%~!/%)-time algorithm for finding a Cy; in adi
G = (V, E). The details of all the other cases are similar. Let A = A vertex
in G whose degree is at least A is said to be of high degree. The grap = (V,E)
contains at most 2E/A = O(E'~!/*) high-degre€ vertices. We check, using Monien’s

rected graph

= "neavy": A = EV2 for triangle

Source: Alon, Yuster, Zwick. "Finding and counting given length cycles", Algorithmica, 1997. https://doi.org/10.1007/BF02523189
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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E |
xamples e

Min edge

cover (a) : ? ? ? ?

Max independ. f? f? f? f?

(vertex) set (p): o o . .
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Examples

VANDED B
@&@ i:i i_i

Max independ. ? ? ? ?

(vertex) set (p):

O O (O _O

O
O
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Examples

VAN SN

Min edge O O_O O O
cover (a) :

2 2 2
Max independ. P
(vertex) set (p):

1 P 2
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Pointers to some related work

« "AGM bound": Atserias, Grohe, Marx. Size bounds and query plans for relational joins. SIAM J. Comput. 2013.
https://doi.org/10.1137/110859440 (also FOCS 2008)

« "Worst-Case Optimal (WCO) joins": Ngo, Porat, Re, Rudra. Worst-case optimal join algorithms. JACM 2018.
https://doi.org/10.1145/3180143 (also PODS 2012)

« "FAQ paper": Khamis, Ngo, Rudra. FAQ: Questions Asked Frequently. PODS 2016.
https://doi.org/10.1145/2902251.2902280 (see also SIGMOD record 2017).

« Khamis, Ngo, Suciu. What do Shannon-type inequalities, submodular width, and disjunctive Datalog have to do with one
another? PODS 2017. https://doi.org/10.1145/3034786.3056105

« Robertson, Seymour. Graph minors. Il. Algorithmic aspects of tree-width. Journal of Algorithms. 1986.
https://doi.org/10.1016/0196-6774(86)90023-4

« Chekuri, Rajaraman. Conjunctive query containment revisited. Elsevier Theoretical Computer Science 2000.
https://doi.org/10.1016/50304-3975(99)00220-0

« Gottlob, Leone, Scarcello. Hypertree Decompositions and Tractable Queries. JCSS 2002.
https://doi.org/10.1006/jcss.2001.1809

« Grohe, Marx. Constraint Solving via Fractional Edge Covers. ACM Trans. Algorithms 2014.
https://doi.org/10.1145/2636918

« Marx. Tractable Hypergraph Properties for Constraint Satisfaction and Conjunctive Queries. JACM 2014,
https://doi.org/10.1145/2535926

« Alon, Yuster, Zwick. Finding and counting given length cycles. Algorithmica 1997.
https://doi.org/10.1007/BF02523189
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Outline: T3-2: Cyclic conjunctive queries

— Worst-case optimal joins & the 4-cycle

— Optimal joins & the 4-cycle } not covered this year!
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