
282

Topic 2: Complexity of Query Evaluation
Unit 2: Beyond Conjunctive Queries
Lecture 16

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp23)
https://northeastern-datalab.github.io/cs7240/sp23/
3/3/2023

Updated 3/3/2023

https://northeastern-datalab.github.io/cs7240/sp23/

283Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Pre-class conversations

• Last class summary
• Project ideas

• Today:
- Neha on the connection to CSPs (constraint satisfaction problems)
- Beyond CQs: including open issues

- tonight: more concrete projects
• Next week: spring break

https://northeastern-datalab.github.io/cs7240/

284

Outline: T2-1/2: Query Evaluation & Query Equivalence

• T2-1: Conjunctive Queries (CQs)
– CQ equivalence and containment
– Graph homomorphisms
– Homomorphism beyond graphs
– CQ containment
– CQ minimization

• T2-2: Equivalence Beyond CQs
– Union of CQs, and inequalities
– Union of CQs equivalence under bag semantics
– Tree pattern queries
– Nested queries

285Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree pattern queries

*

a *

a

c b

d

Q

a

a a

w

k

d d

c b

D

?

Example from: “Optimizing Tree Patterns for Querying Graph- and Tree-Structured Data” by Czerwinski, Martens, Niewerth, Parys. SIGMOD record 2017. https://doi.org/10.1145/3093754.3093759

Does the query on the left have a match on in the data on
the right (i.e. is there a homomorphism from left to right)?

Notice that "a", "b", "c" are labels (not node ids), thus like
constants in a query, or like predicates (colored edges)

"transitive
closure" edge

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3093754.3093759

286Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree pattern queries

*

a *

a

a

a a

w

k

c b

d
d d

c b

Q D

Example from: “Optimizing Tree Patterns for Querying Graph- and Tree-Structured Data” by Czerwinski, Martens, Niewerth, Parys. SIGMOD record 2017. https://doi.org/10.1145/3093754.3093759

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3093754.3093759

287Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

?

Example from: “Optimizing Tree Patterns for Querying Graph- and Tree-Structured Data” by Czerwinski, Martens, Niewerth, Parys. SIGMOD record 2017. https://doi.org/10.1145/3093754.3093759

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3093754.3093759

288Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Example from: “Optimizing Tree Patterns for Querying Graph- and Tree-Structured Data” by Czerwinski, Martens, Niewerth, Parys. SIGMOD record 2017. https://doi.org/10.1145/3093754.3093759

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3093754.3093759

289Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Example from: “Optimizing Tree Patterns for Querying Graph- and Tree-Structured Data” by Czerwinski, Martens, Niewerth, Parys. SIGMOD record 2017. https://doi.org/10.1145/3093754.3093759

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3093754.3093759

290Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Optimizing tree patterns

?How are those two tree patterns
related to each other?

Example from: “Optimizing Tree Patterns for Querying Graph- and Tree-Structured Data” by Czerwinski, Martens, Niewerth, Parys. SIGMOD record 2017. https://doi.org/10.1145/3093754.3093759

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3093754.3093759

291Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Optimizing tree patterns

minimize

Example from: “Optimizing Tree Patterns for Querying Graph- and Tree-Structured Data” by Czerwinski, Martens, Niewerth, Parys. SIGMOD record 2017. https://doi.org/10.1145/3093754.3093759

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3093754.3093759

293Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Minimality =? Nonredundancy

Example from: “Optimizing Tree Patterns for Querying Graph- and Tree-Structured Data” by Czerwinski, Martens, Niewerth, Parys. SIGMOD record 2017. https://doi.org/10.1145/3093754.3093759

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3093754.3093759

294Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Czerwinski, Martens, Niewerth, Parys [PODS 2016}

Example from: “Optimizing Tree Patterns for Querying Graph- and Tree-Structured Data” by Czerwinski, Martens, Niewerth, Parys. SIGMOD record 2017. https://doi.org/10.1145/3093754.3093759

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3093754.3093759

295Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree pattern containment

a

b b

dc

a

b

dc

⊆

?

or
⊇

Example from: “Optimizing Tree Patterns for Querying Graph- and Tree-Structured Data” by Czerwinski, Martens, Niewerth, Parys. SIGMOD record 2017. https://doi.org/10.1145/3093754.3093759

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3093754.3093759

296Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree pattern containment

a

b b

dc

a

b

dc

⊆
⟵

but ⊉!

Example from: “Optimizing Tree Patterns for Querying Graph- and Tree-Structured Data” by Czerwinski, Martens, Niewerth, Parys. SIGMOD record 2017. https://doi.org/10.1145/3093754.3093759

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3093754.3093759

297Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

q⊆p follows from argument on previous page.

Idea: a=⋆ can be matched in 3 ways in a graph
To be shown q ⊇p, then equivalent. Idea: whenever p matches, then also q.

Example from: “Optimizing Tree Patterns for Querying Graph- and Tree-Structured Data” by Czerwinski, Martens, Niewerth, Parys. SIGMOD record 2017. https://doi.org/10.1145/3093754.3093759

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3093754.3093759

298Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Possibility 1: 1 edge

Example from: “Optimizing Tree Patterns for Querying Graph- and Tree-Structured Data” by Czerwinski, Martens, Niewerth, Parys. SIGMOD record 2017. https://doi.org/10.1145/3093754.3093759

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3093754.3093759

299Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Possibility 2: 2 edges

Example from: “Optimizing Tree Patterns for Querying Graph- and Tree-Structured Data” by Czerwinski, Martens, Niewerth, Parys. SIGMOD record 2017. https://doi.org/10.1145/3093754.3093759

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3093754.3093759

300Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Possibility 2: 3+ edges

for >3 edges,
map below root

Example from: “Optimizing Tree Patterns for Querying Graph- and Tree-Structured Data” by Czerwinski, Martens, Niewerth, Parys. SIGMOD record 2017. https://doi.org/10.1145/3093754.3093759

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3093754.3093759

301

Outline: T2-1/2: Query Evaluation & Query Equivalence

• T2-1: Conjunctive Queries (CQs)
– CQ equivalence and containment
– Graph homomorphisms
– Homomorphism beyond graphs
– CQ containment
– CQ minimization

• T2-2: Equivalence Beyond CQs
– Union of CQs, and inequalities
– Union of CQs equivalence under bag semantics
– Tree pattern queries
– Nested queries

302Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Equivalence of nested queries

• Query equivalence is one of the foundational questions in database theory
(and practice?)
- touches on logics and decidability
- what modifications allow tractability

• Lots of work (and open questions) on query equivalence
- But not so much on nested queries!

• Related to QueryVis project (http://queryvis.com/) and two foundational
questions on visual formalism:
1. When can visual formalism unambiguously express logical statements?
2. When can equivalent logical statements be transformed to each other by a sequence

of visual transformations? (Query equivalence)

https://northeastern-datalab.github.io/cs7240/
http://queryvis.com/

303Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Diagrammatic reasoning systems and their expressiveness

https://northeastern-datalab.github.io/cs7240/

304Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

328 Volume 6, no. 3 (July 1996)

systems of logic diagrams make use of either closed curves or lines to
represent sets. Information about objects is taken to be information about
relations among sets of objects. Those relations are modelled by
appropriate geometric relations among the closed curves or lines of the
diagrams. So the key concept for successful systems of logic diagrams is
containment. Intuitively, members and subsets are contained in sets;
surfaces determined by closed curves are contained in other surfaces
determined by closed curves, and line segments are contained in longer line
segments. Leibniz struggled to bring out the pivotal role of containment
for reasoning, especially in his "General Inquiries About the Analysis of
Concepts and of Truth" [Parkinson 1966, 47�87]. Leibniz's goal for logic
was the unification of all kinds of inference (including those involving
categoricals, truth�functions, relationale, and singular sentences). He says
([Parkinson 1966, 66]): "If, as I hope, I can conceive all propositions as
terms, and hypotheticals as categoricals, and if I can treat all propositions
universally, this promises a wonderful ease in my symbolism and analysis
of concepts, and will be a discovery of the greatest importance." Taking
categoricals as having the general logical form: subject contains predicate,
he went on to construe conditionals (hypotheticals) as having a similar
form: antecedent contains consequent. Indeed, valid arguments can be
viewed as: premises contain conclusion. One who, like Leibniz, takes
containment to be the key logical concept, and who recognizes the obvious
way in which lines and closed curves literally contain lines and closed
curves, could not ignore Shin's call to the view that diagrams can
constitute a viable medium for logical reckoning.

Still, not all relations can be viewed as membership or inclusion. Shin
has been careful throughout her book to restrict herself to monadic
systems. Relations per se (polyadic predicates) are not considered. And
while it may be true that the formation of a system (such as Venn��) that
is provably both sound and complete would help mitigate the prejudice
among logicians against diagrams, it will not eliminate that prejudice.
What is still required is a system of logic diagrams that can, like the first�
order predicate calculus with identity, handle categoricals, truth�functions,
relationale, and singulars. (For an attempt to do this using linear diagrams
see Englebretsen 1992], for a nonlinear system see [Rybak & Rybak 1976;
1984; 1984a].)

I have, as well, a less important reservation about this book. In
establishing her claim that Venn�� offers more perspicuous representations
of set relations, conjunctive information, tautologies and contradictions
when compared with the language LO, Shin relies on the fact that
diagrams, while sharing some features with linguistic representations, also
share important features with pictures. Indeed, these latter features, as we
have seen, account for our ability to make perceptive inferences. But, of
course, the concept of perceptive inference rests on the concept of
perception. In her discussion of perception she shows that disjunctive

Diagrammatic reasoning systems and their expressiveness

MODERN LOGIC 327

perceptual inferences. We could think of a photograp as a representation
that requires virtually no conventions for inferring information. Suppose I
view a photograph of Clinton standing to the left of his wife. I need heed
no particular conventions in making the (perceptual) inferences that she is
to the right of him and that he is taller than her. On the other hand, having
been told that Clinton is standing to the left of his wife, I can make no
such perceptual inferences (all I perceive are a few sounds). The inferences I
can make are those governed by linguistic and logical conventions (e.g.,
that Clinton is not to the right of his wife). Pictures, photographs, etc.,
tend to have a fairly high degree of resemblance to their objects. Diagrams
have a smaller degree of resemblance to their objects. Consequently, their
use tends to require more conventions. Linguistic systems enjoy no degree
of resemblance to their objects; they depend very heavily upon conventions
for their use. In comparing diagrammatic and linguistic systems of
representation, Shin tries to show that the former can, with the aid of no or
few conventions, provide the foundations for perceptual inferences similar
to those made given immediate perceptions of reality. In this sense,
diagrammatic representation is more natural than linguistic representation.
Thus, relations among objects (especially geometric ones) are more
naturally represented by diagrams, which, by trading on our geometric
intuitions, use the spacial arrangements of symbols to map those of
objects. Conjunctive information is more naturally represented by diagrams
than by linguistic formulae. For example, a single Venn diagram can
convey the information that all S are M and that all M are P, while two
separate formulae are required. As well, the perceptual inferences made in
such cases are more immediate and direct than the logical inferences
depending on formal conventions. Thus, for example, a single diagram can
represent the information that x is to the left of y, which, in turn, is to the
left of z- The inference, based on perception, that x is to the left of z is
natural and immediate. A first-order language can conjoin the two formulae
into a single conjunctive formula, but the inference will require familiarity
with the syntactic and semantic conventions governing the conjunctive
device. Finally, diagrammatic systems can represent tautologies and
contradictions more perspicuously than can linguistic systems. Since
contradictions convey conflicting pieces of information, the capacity of
diagrammatic systems to represent conjunctions of information more
naturally than linguistic systems do gives diagrammatic systems a greater
degree of naturalness. Consider the Venn diagram of 'there is no A and
something is an A'. This is simply diagrammed by both shading and *-
inscribing the A region. Tautologies can only be represented linguistically
by an appropriate string of symbols, but since they convey, in effect, no
information, diagrams can represent them simply by not depicting any fact
at all.

Needless to say, there are limits on systems of diagrams. Virtually all

MODERN LOGIC 329

information is not representable in any system. In doing so she relies on
Barwise and Perry's [1983] distinction between the "primary secondary
senses of 'show'." Since I take their distinction to be flawed, I take her
exploitation of it to be unproductive. Briefly, my complaint with the
distinction turns on Barwise and Perry's demonstration of the distinction
with the following example. In the sentence 'I saw that the tree was
whipping around, so I saw that the wind was blowing', the first token of
'saw' is supposed to be used in its primary (perceptual) sense; the second
token is used in its secondary sense. The secondary sense seems to be
something like what is known by virtue of perceptual inference from what
is perceived (i.e., seen in the primary sense). Now the object expression for
the first token of 'saw' is prepositional, 'that the tree was whipping
around'. This is an expression for the sort of things Barwise and Perry call
"situations" (they have often been called 'states', 'states of affairs',
'circumstances', etc.). One who admits that we can perceive trees, clouds,
cats, and cupboards, but not situations or states, will shy away from this
version of how to distinguish senses of perception and will question theses
depending upon it. (I, of course, do not make the stronger (false) claim that
there is no way to draw distinctions among different senses of perception.)

Finally, one, even less important, complaint. Throughout the book
Shin shifts back and forth between T and 'we'. Either one will do. But
just one.

I will conclude by offering general praise for a work that really does
deserve praise. Even more, it deserves to be read by those mathematicians
and logicians who adhere to the general prejudice against diagrams. Shin
has gone much farther than anyone in showing how a diagrammatic system
can hold its own as a medium for reasoning. For the most part, this book
is clear and convincing. And, though I have omitted most of the technical
aspects of her work, I should say that Shin's mastery and manipulation of
her technical tools is always thorough and lucid. All in all, this is a very
impressive, valuable piece of work.

Bibl iography

J. BARWISE and J. PERRY. 1983. Situations and attitudes, Cambridge,
Mass., MIT Press.

G. ENGLEBRETSEN. 1992. Linear diagrams for syllogisms (with
relational), Notre Dame Journal of Formal Logic 33, 37-69.

M. GARDNER. 1982. Logic machines and diagrams, Chicago, University
of Chicago Press, 2nd ed.; Brighton, Harvester Press, Ltd.,1983.

G. H. R. PARKINSON. 1966. (editor). Leibniz: Logical papers, Oxford,
Clarendon Press.

328 Volume 6, no. 3 (July 1996)

systems of logic diagrams make use of either closed curves or lines to
represent sets. Information about objects is taken to be information about
relations among sets of objects. Those relations are modelled by
appropriate geometric relations among the closed curves or lines of the
diagrams. So the key concept for successful systems of logic diagrams is
containment. Intuitively, members and subsets are contained in sets;
surfaces determined by closed curves are contained in other surfaces
determined by closed curves, and line segments are contained in longer line
segments. Leibniz struggled to bring out the pivotal role of containment
for reasoning, especially in his "General Inquiries About the Analysis of
Concepts and of Truth" [Parkinson 1966, 47�87]. Leibniz's goal for logic
was the unification of all kinds of inference (including those involving
categoricals, truth�functions, relationale, and singular sentences). He says
([Parkinson 1966, 66]): "If, as I hope, I can conceive all propositions as
terms, and hypotheticals as categoricals, and if I can treat all propositions
universally, this promises a wonderful ease in my symbolism and analysis
of concepts, and will be a discovery of the greatest importance." Taking
categoricals as having the general logical form: subject contains predicate,
he went on to construe conditionals (hypotheticals) as having a similar
form: antecedent contains consequent. Indeed, valid arguments can be
viewed as: premises contain conclusion. One who, like Leibniz, takes
containment to be the key logical concept, and who recognizes the obvious
way in which lines and closed curves literally contain lines and closed
curves, could not ignore Shin's call to the view that diagrams can
constitute a viable medium for logical reckoning.

Still, not all relations can be viewed as membership or inclusion. Shin
has been careful throughout her book to restrict herself to monadic
systems. Relations per se (polyadic predicates) are not considered. And
while it may be true that the formation of a system (such as Venn��) that
is provably both sound and complete would help mitigate the prejudice
among logicians against diagrams, it will not eliminate that prejudice.
What is still required is a system of logic diagrams that can, like the first�
order predicate calculus with identity, handle categoricals, truth�functions,
relationale, and singulars. (For an attempt to do this using linear diagrams
see Englebretsen 1992], for a nonlinear system see [Rybak & Rybak 1976;
1984; 1984a].)

I have, as well, a less important reservation about this book. In
establishing her claim that Venn�� offers more perspicuous representations
of set relations, conjunctive information, tautologies and contradictions
when compared with the language LO, Shin relies on the fact that
diagrams, while sharing some features with linguistic representations, also
share important features with pictures. Indeed, these latter features, as we
have seen, account for our ability to make perceptive inferences. But, of
course, the concept of perceptive inference rests on the concept of
perception. In her discussion of perception she shows that disjunctive

The logical status of diagrams, Sun-Joo Shin, Cambridge university press 1994. https://doi.org/10.1017/CBO9780511574696
Sun-Joo Shin at Yale: https://philosophy.yale.edu/people/sun-joo-shin

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1017/CBO9780511574696
https://philosophy.yale.edu/people/sun-joo-shin

305Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

QueryVis

• Motivation: Can we create an automatic diagramming system that:
- unambiguously visualizes the logical intent of a relational query (thus no two different

queries lead to an “identical” visualization; with “identical” to be formalized correctly)
- for some important subset of nested queries (later extensions from SQL)
- with visual diagrams that allow us to reason about logical SQL design patterns

• Related:
- Lot’s of interest on conjunctive queries equivalence. Now: For what fragment of nested

queries is equivalence decidable (under set semantics)?

• Suggestion:
- nested queries, with inequalities, without any disjunctions
- Strict superset of conjunctive queries

https://northeastern-datalab.github.io/cs7240/

306Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Logical SQL Patterns

Logical patterns are the building blocks of most SQL queries.

Patterns are very hard to extract from the SQL text.

A pattern can appear across different database schemas.

Think of queries like:
• Find sailors who reserved all red boats
• Find students who took all art classes
• Find actors who played in all movies by Hitchcock

https://northeastern-datalab.github.io/cs7240/

307Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT L1.drinker
FROM Likes L1
WHERE not exists
(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))

AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

Likes(drinker,beer)What does this query return ?

https://northeastern-datalab.github.io/cs7240/

308Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT L1.drinker
FROM Likes L1
WHERE not exists
(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))

AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

Likes(drinker,beer)

Likes
drinker

Likes

drinker
SELECT
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer

Likes
beer

drinker

<>

What does this query return

QueryVis scoping

https://northeastern-datalab.github.io/cs7240/

309Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT L1.drinker
FROM Likes L1
WHERE not exists
(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))

AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

Likes(drinker,beer)

Likes
drinker

Likes

drinker
SELECT
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer

Likes
beer

drinker

<>

Q: Finder drinkers with a unique beer taste

QueryVis scoping

https://northeastern-datalab.github.io/cs7240/

310Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Likes(drinker,beer)Q: Finder drinkers with a unique beer taste

Likes
drinker

Likes

drinker
SELECT
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer

Likes
beer

drinker

<>

SELECT L1.drinker
FROM Likes L1
WHERE not exists
(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))

AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

QueryVis scoping

https://northeastern-datalab.github.io/cs7240/

311Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Likes(drinker,beer)Q: Finder drinkers with a unique beer taste

Likes
drinker

Likes

drinker
SELECT
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer

Likes
beer

drinker

<>

SELECT L1.drinker
FROM Likes L1
WHERE not exists
(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))

AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

QueryVis scoping Relational Diagrams scoping (https://relationaldiagrams.com)

https://northeastern-datalab.github.io/cs7240/
https://relationaldiagrams.com/

312Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT L1.drinker
FROM Likes L1
WHERE not exists
(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))

AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

Likes(drinker,beer)Q: Finder drinkers with a unique beer taste

Likes
drinker

Likes

drinker
SELECT
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer

Likes
beer

drinker

<>

QueryVis scoping Relational Diagrams scoping (https://relationaldiagrams.com)

https://northeastern-datalab.github.io/cs7240/
https://relationaldiagrams.com/

313Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT L1.drinker
FROM Likes L1
WHERE not exists
(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))

AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

Likes(drinker,beer)Q: Finder drinkers with a unique beer taste

Likes
drinker

Likes

drinker
SELECT
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer

Likes
beer

drinker

<>

QueryVis scoping Relational Diagrams scoping (https://relationaldiagrams.com)

https://northeastern-datalab.github.io/cs7240/
https://relationaldiagrams.com/

314Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

help

help

QueryViz
Y o u r I n p u t

Specify or choose a pre-defined schema

Employee and Department

EMP(eid,name,sal,did)
DEPT(did,dname,mgr)

Specify or choose an SQL Query

Query 8

SELECT e1.name
FROM EMP e1, EMP e2, DEPT d
WHERE e1.did = d.did
AND d.mgr = e2.eid
AND e1.sal > e2.sal

Submit

Q u e r y V i z R e s u l t

Input: Schema

Output: Visualization

Input Query

https://demo.queryvis.com

http://www.youtube.com/watch?v=kVFnQRGAQls

Danaparamita, G. [EDBT'11]
https://queryvis.com/

Source: Danaparamita, Gatterbauer: QueryViz: Helping users understand SQL queries and their patterns. EDBT 2011. https://doi.org/10.14778/3402755.3402805

https://northeastern-datalab.github.io/cs7240/
https://demo.queryvis.com/
http://www.youtube.com/watch?v=kVFnQRGAQls
https://queryvis.com/
https://doi.org/10.14778/3402755.3402805

315Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Amazon Turk user study with SQL users
Each bar below corresponds to one participant (42 bars/participants in total)

Mean Δ = -17.3 s
Median Δ = -19.7 s

71% of users
faster with QV

29% of users
faster with SQL

QV - SQL Time Differences (seconds)

QV faster SQL faster

Mean Δ = -0.08
Median Δ =0

36% of users
with less
errors using
QV

26% of users
with more
errors using
QV

38% of users
with same
errors using
QV

QV - SQL Error Rate Differences

QV fewer errors SQL fewer errors

Leventidis+ [SIGMOD'20]

Source: Leventidis, Zhang, Dunne, Gatterbauer, Jagadish, Riedewald: QueryVis: Logic-based Diagrams help Users Understand Complicated SQL Queries Faster. SIGMOD 2020. https://doi.org/10.1145/3318464.3389767

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3318464.3389767

316Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://www.khoury.northeastern.edu/the-story-of-queryvis-not-just-another-visual-programming-language/

https://queryvis.com

https://northeastern-datalab.github.io/cs7240/
https://www.khoury.northeastern.edu/the-story-of-queryvis-not-just-another-visual-programming-language/
https://queryvis.com/

319Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

“Return any drinker, s.t. there does not exist any other drinker, s.t. there does
not exist any beer liked by that other drinker that is not also liked by the
returned drinker and there does not exist any beer liked by the returned
drinker that is not also liked by the same other drinker.”

Let x be a drinker, and S(x) be the set of liked beers by drinker x.
Find any drinker x, s.t. there does not exist another drinker x ʹ , x for which:
S(x ʹ) ⊆ S(x) and S(x ʹ) ⊇ S(x)

2019/10/21Unique set query: "Find drinkers that like a unique set of beers."

https://northeastern-datalab.github.io/cs7240/

320Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

T: {L1}
P: {}

Selection Attributes: {d}

Nesting Depth

3

T: {L2}
P: {(L1.d, <>, L2.d)}

Q: ∄

T: {L3}
P: {(L3.d, =, L1.d)}

Q: ∄

T: {L5}
P: {(L5.d, =, L2.d)}

Q: ∄

T: {L4}
P: {(L4.d, =, L2.d),

(L4.b, =, L3.b)}
Q: ∄

T: {L6}
P: {(L6.d, =, L1.d),

(L6.b, =, L5.b)}
Q: ∄

2

1

0

{ L1.d | ∃L1 ∈ Likes ∧
∄L2 ∈ Likes [L2.d <> L1.d ∧
∄L3 ∈ Likes [L3.d = L1. d ∧
∄L4 ∈ Likes [L4.d = L2.d ∧ L4.b = L3.b]] ∧

∄L5 ∈ Likes [L5.d = L2.d ∧
∄L6 ∈ Likes [L6.d = L1.d ∧ L6.b = L5.b]]]}

Likes
drinker
beer

Likes
d
b

Notice how the logic tree portrays the nesting
hierarchy shown in the FOL (TRC)
representation of the SQL query.

Each node in the LT represents the root of a
scope in the FOL representation. The predicates
in each node are the predicates in the root of the
scope of a given node (thus the predicates
which do not use any additionally quantified
variables).

Unique set query: "Find drinkers that like a unique set of beers."

https://northeastern-datalab.github.io/cs7240/

321Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

local (all C are
local)

connecting (one
C is local, another
one is foreign

type

selection p. join p.

scope C O C

C O CC O V

Our simple rule: every predicate needs to
have at least one local table identifier.

Allowed:
local op value (local selection pred.)
local op local (local join pred.)
local op ancestor (connecting join pred.)

Not allowed:
ancestor op value (foreign selection pred.)
ancestor op ancestor (foreign join pred.)

foreign (all C are
foreign)

Atomic predicate classification

https://northeastern-datalab.github.io/cs7240/

322Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Focus: one single nesting level

• We first restrict ourselves to
- equi-joins (no inequalities like T.A < T.B)
- paths (no siblings = every node can have only one nested child)
- one single nesting level
- Boolean queries
- no foreign predicates
- only binary relations (thus can be represented as graphs)
- only one single relation R
- (and as before only conjunctions)

• Given two such queries, what is a generalization of the
homomorphism procedure that works for that fragment?

https://northeastern-datalab.github.io/cs7240/

323Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Simplifying notation

SELECT TRUE
FROM R R1, R R2, R R3
WHERE R1.B = R2.A
AND R2.B = R3.A
NOT EXISTS

(SELECT *
FROM R R4, R R5, R R6
WHERE R4.B = R5.A
AND R5.B = R6.A
AND R4.A = R1.A
AND R6.A = R2.B)

Schema: R(A,B)

What will become handy, is a short convenient notation for queries

q0 :- R(x,y), R(y,z), R(z,w)

q1(s,t):- R(s,u), R(u,v), R(v,t), s=x, t=y

y z

x

q0

y

v t

su

¬q1

s=x, t=y

∃ R1, R2, R3 ∈ R
(R1.B=R2.A ∧ R2.B=R3.A ∧
∄ R4, R5, R6 ∈ R

(R4.B=R5.A ∧ R5.B=R6.A ∧
R4.A=R1.A ∧ R6.A = R2.B)

)

q :- R(x,y), R(y,z), R(z,w), ¬q1(x,z)

https://northeastern-datalab.github.io/cs7240/

325Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Simplifying notation

SELECT TRUE
FROM R R1, R R2, R R3
WHERE R1.B = R2.A
AND R2.B = R3.A
NOT EXISTS

(SELECT *
FROM R R4, R R5, R R6
WHERE R4.B = R5.A
AND R5.B = R6.A
AND R4.A = R1.A
AND R6.A = R2.B)

Schema: R(A,B)

What will become handy, is a short convenient notation for queries

q0 :- R(x,y), R(y,z), R(z,w)

¬q1 :- R(x,u), R(u,v), R(v,y)

v y

xu

¬q1

y z

x

q0

y

∃ R1, R2, R3 ∈ R
(R1.B=R2.A ∧ R2.B=R3.A ∧
∄ R4, R5, R6 ∈ R

(R4.B=R5.A ∧ R5.B=R6.A ∧
R4.A=R1.A ∧ R6.A = R2.B)

)

https://northeastern-datalab.github.io/cs7240/

326Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Simplifying notation Schema: R(A,B)

What will become handy, is a short convenient notation for queries

y z

xy

v

u

SELECT TRUE
FROM R R1, R R2, R R3
WHERE R1.B = R2.A
AND R2.B = R3.A
NOT EXISTS

(SELECT *
FROM R R4, R R5, R R6
WHERE R4.B = R5.A
AND R5.B = R6.A
AND R4.A = R1.A
AND R6.A = R2.B)

q0 :- R(x,y), R(y,z), R(z,w)

¬q1 :- R(x,u), R(u,v), R(v,y)

Cartesian product: R'(x,y,z,w)=
R(x,y), R(y,z), R(z,w)?
can be expressed in guarded
fragment of FOL (with negation)?
But single join already not guarded

See Barany, Cate, Segoufin,
”Guarded negatation ”, JACM 2015

guardedness

∃ R1, R2, R3 ∈ R
(R1.B=R2.A ∧ R2.B=R3.A ∧
∄ R4, R5, R6 ∈ R

(R4.B=R5.A ∧ R5.B=R6.A ∧
R4.A=R1.A ∧ R6.A = R2.B)

)

https://northeastern-datalab.github.io/cs7240/

327Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Exercise Schema: R(A,B)

y z

xy

v

u

d f

ac

e

b

Query q

Database D

Does the query below evaluate to
true on above database?

https://northeastern-datalab.github.io/cs7240/

328Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Exercise

e d

ab

-

-

d f

ac

e

b

Query q

Database D

Schema: R(A,B)

https://northeastern-datalab.github.io/cs7240/

329Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Question

• Find two such nested queries (somehow leveraging the example
below) that are equivalent (based on some simple reasoning)

• What is then the *structured* procedure to prove equivalence?

Example
q1(x) :- R(x,y), R(y,y), R(y,z)
q2(s) :- R(s,u), R(u,w), R(s,v), R(u,w), R(u,v)

y z

x
q1(x)

v

u

w

s

q2(x)

h2→1: {(s,x),(u,y),(v,y),(w,z)}

h1→2: {(x,s),(y,v),(z,w)}

, R(v,v)

q1 ⊆ q2

q1 ⊈ q2

https://northeastern-datalab.github.io/cs7240/

333Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Undecidability L

• Unfortunately, the following problem is already undecidable
- Consider the class of nested queries with maximal nesting level 2, no

disjunctions, our safety restrictions from earlier, set semantics, arbitrary
number of siblings

- Deciding whether any given query is finitely satisfiable is undecidable.
• This follows non-trivially from from following Arxiv paper:
- “Undecidability of satisfiability in the algebra of finite binary relations

with union, composition, and difference” by Tony Tan, Jan Van den
Bussche, Xiaowang Zhang, Corr 1406.0349.
https://arxiv.org/abs/1406.0349

https://northeastern-datalab.github.io/cs7240/
https://arxiv.org/abs/1406.0349

334Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT

A

B

R
A

B

R
A

B

R
A

B

aaa − ((aa − b)a ∪ ba) = aaa − (aa − b)a − ba X − (Y ∪ Z) = X − Y − Z

R
A

B

R
A

B

R
A

B

S
A

B

S
A

B

R
A

B

= aaa − (aa − b)a − ba
= aef − (ae − b)f − bf
= aef − aef ∪ bf − bf

See “Undecidability of satisfiability in the algebra of finite binary relations with union, composition, and difference” by Tan, Van den Bussche, Zhang. https://arxiv.org/abs/1406.0349

https://northeastern-datalab.github.io/cs7240/
https://arxiv.org/abs/1406.0349

335Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT

A

B

R
A

B

R
A

B

R
A

B

a(aa ∩ a) − (aa − a)a

R
A

B

R
A

B

R
A

B

R
A

B

R
A

B

See “Undecidability of satisfiability in the algebra of finite binary relations with union, composition, and difference” by Tan, Van den Bussche, Zhang. https://arxiv.org/abs/1406.0349

https://northeastern-datalab.github.io/cs7240/
https://arxiv.org/abs/1406.0349

336Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Open question

https://northeastern-datalab.github.io/cs7240/

