Topic 2: Complexity of Query Evaluation Unit 1: Conjunctive Queries Lecture 15

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp23)
https://northeastern-datalab.github.io/cs7240/sp23/
2/28/2023

Pre-class conversations

- Last class summary
- Project ideas
- Today:
- Homomorphisms and the connections to:
- Query containment
- Query minimization
- Query evaluation
- Beyond CQs
- Next time
- Neha on the connection to CSPs (constraint satisfaction problems)

Outline: T2-1/2: Query Evaluation \& Query Equivalence

- T2-1: Conjunctive Queries (CQs)
- CQ equivalence and containment
- Graph homomorphisms
- Homomorphism beyond graphs
- CQ containment
- CQ minimization
- T2-2: Equivalence Beyond CQs
- Union of CQs, and inequalities
- Union of CQs equivalence under bag semantics
- Tree pattern queries
- Nested queries

Exercise: Find Homomorphisms

$$
\mathrm{q}_{1}:\{\mathrm{E}(\mathrm{x}, \mathrm{y}), \mathrm{E}(\mathrm{y}, \mathrm{z}), \mathrm{E}(\mathrm{z}, \mathrm{w})\}
$$

Order of subgoals in the query does not matter (thus written here as sets)
$\mathrm{a}_{2}:\{\mathrm{E}(\mathrm{x}, \mathrm{y}), \mathrm{E}(\mathrm{y}, \mathrm{z}), \mathrm{E}(\mathrm{z}, \mathrm{x})\}$
$q_{3}:\{E(x, y), E(y, x)\}$

What is the containment relation
between these queries?
$q_{4}:\{E(x, y), E(y, x), E(y, y)\}$
$q_{5}:\{E(x, x)\}$

Exercise: Find the Homomorphisms

$$
q_{1}:\{E(x, y), E(y, z), E(z, w)\}
$$

$$
x \longrightarrow y \longrightarrow z \longrightarrow w \text { Order of subgoals in the query does not }
$$ matter (thus written here as sets)

$$
\begin{gathered}
q_{3}:\{E(x, y), E(y, x)\} \\
x \longleftrightarrow y
\end{gathered}
$$

What is the containment relation between these queries?
$\mathrm{q}_{4}:\{E(x, y), E(y, x), E(y, y)\}$

$\mathrm{q}_{5}:\{(\mathrm{x}, \mathrm{x})\}$

Exercise: Find the Homomorphisms

$$
\begin{gathered}
\mathrm{a}_{4}:\{\mathrm{E}(\mathrm{x}, \mathrm{y}), \mathrm{E}(y, x), \mathrm{E}(y, y)\} \\
\times \longleftrightarrow \\
\longleftrightarrow
\end{gathered}
$$

Exercise: Find the Homomorphisms

$$
\mathrm{a}_{4}:\{\mathrm{E}(\mathrm{x}, \mathrm{y}), \mathrm{E}(\mathrm{y}, \mathrm{x}), \mathrm{E}(\mathrm{y}, \mathrm{y})\}
$$

Exercise: Find the Homomorphisms

Side-topic: Hasse diagram

The power set of a 2-element set ordered by inclusion

Power set of a 4element set ordered by inclusion \subseteq

Positive integers divisors of 12 ordered by divisibility

Query Homomorphism Practice

$$
\begin{array}{ll}
q_{1}(x, y):-R(x, u), R(v, u), R(v, y) & \operatorname{var}\left(q_{1}\right)=\{x, u, v, y\} \\
q_{2}(x, y):-R(x, u), R(v, u), R(v, w), R(t, w), R(t, y) & \operatorname{var}\left(q_{2}\right)=\{x, u, v, w, t, y\}
\end{array}
$$

Are these queries equivalent ?

Query Homomorphism Practice

$$
\operatorname{var}\left(q_{1}\right)=\{x, u, v, y\}
$$

$\operatorname{var}\left(\mathrm{q}_{2}\right)=\{\dot{\mathrm{x}}, \stackrel{\rightharpoonup}{\mathrm{u}}, \stackrel{v}{v}, \stackrel{\rightharpoonup}{\mathrm{w}}, \mathrm{t}, \mathrm{y}\}$
$q_{1} \rightarrow q_{2}$ Thus
?

Which query contains the other?

Query Homomorphism Practice

$\operatorname{var}\left(\mathrm{q}_{1}\right)=\{\mathrm{x}, \mathrm{u}, \mathrm{v}, \mathrm{y}\}$
$\operatorname{var}\left(q_{2}\right)=\{\dot{x}, \stackrel{\rightharpoonup}{u}, \stackrel{v}{v}, \stackrel{w}{w}, t, y\}$
$\mathrm{q}_{1} \rightarrow \mathrm{q}_{2}$ Thus $\mathrm{q}_{1} \subseteq \mathrm{q}_{2}!$

Query Homomorphism Practice

$$
\begin{array}{ll}
q_{1}(x, y):-R(x, u), R(v, u), R(v, y) & \operatorname{var}\left(q_{1}\right)=\{x, u, v, y\} \\
q_{2}(x, y):-R(x, u), R(v, u), R(v, w), R(t, w), R(t, y) & \operatorname{var}\left(q_{2}\right)=\{x, u, v, w, t, y\}
\end{array}
$$

Is there any homomorphism

$q_{2} \longrightarrow q_{1}$ and thus $q_{2} \supseteq q_{1}$

Query Homomorphism Practice

$$
\begin{aligned}
& \operatorname{var}\left(\mathrm{q}_{1}\right)=\{\mathrm{x}, \mathrm{u}, \mathrm{v}, \mathrm{y}\} \\
& \operatorname{var}\left(\mathrm{q}_{2}\right)=\{\mathrm{x}, \mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{t}, \mathrm{y}\}
\end{aligned}
$$

$$
\begin{aligned}
& q_{2} \longrightarrow q_{1} \\
& \text { and thus } q_{2} \supseteq q_{1}
\end{aligned}
$$

Outline: T2-1/2: Query Evaluation \& Query Equivalence

- T2-1: Conjunctive Queries (CQs)
- CQ equivalence and containment
- Graph homomorphisms
- Homomorphism beyond graphs
- CQ containment
- CQ minimization
- T2-2: Equivalence Beyond CQs
- Union of CQs, and inequalities
- Union of CQs equivalence under bag semantics
- Tree pattern queries
- Nested queries

Minimizing Conjunctive Queries

- Goal: minimize the number of joins in a query
- Definition: A conjunctive query Q is minimal if...

Minimizing Conjunctive Queries

- Goal: minimize the number of joins in a query
- Definition: A conjunctive query Q is minimal if there is no other $\hat{\mathcal{J}}$ conjunctive query Q^{\prime} such that:

$1, ~ Q \equiv Q^{\prime}$

2. Q^{\prime} has fewer atoms than Q

- The task of CQ minimization is, given a conjunctive query Q, to $\pi\left(z_{,}-\right)$ compute a minimal one that is equivalent to Q

Minimizing Conjunctive Queries (CQs) by Deletion

THEOREM: Given a CQ $\mathrm{Q}_{1}(\mathrm{x})$:- body $_{1}$ that is logically equivalent to a CQ $Q_{2}(x)$:- bod_{2} where \mid body $_{1}\left|>\left|\operatorname{bod}_{2}\right|\right.$. Then Q_{1} is equivalent to a $\mathrm{CQ}_{\mathrm{a}}(\mathrm{x})$:- body $_{3}$ s.t. body $_{1} \supseteq$ body $_{3}$

Intuitively, the above theorem states that to minimize a CQ , we simply need to remove some atoms from its body

Conjunctive query minimization algorithm

Conjunctive query minimization algorithm

Minimize $(Q(x):$ - body)
Notice: the order in which we
inspect subgoals doesn't matter

Minimization Procedure: Example

$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are constants
$Q(x):-R(x, y), R(x, ' b '), R\left('^{\prime} a^{\prime}, ' b '\right), R(u, ' c '), R(u, v), S\left('^{\prime} '^{\prime}, c^{\prime}, ' d '\right)$

Is this query minimal
?

Minimization Procedure: Example

$$
Q(x):-R(x, y), R(x, ' b '), R\left(' a a^{\prime}, ' b '\right), R(u, ' c '), R(u, v), S\left(' a '^{\prime}, ' c ', ' d '\right)
$$

Is this query minimal
?

$$
Q(x):-R(x, y), R(x, ' b '), R\left(' a '^{\prime}, ' b '\right), R(u, ' c '), R(u, v), S\left(' a '^{\prime}, ' c ', ' d '\right)
$$

$Q(x)$:-
$R(x, ' b '), R(' a ', ' b '), R(u, ' c '), R(u, v), S(' a ', ' c ', ' d ')$

$$
Q(x):-
$$

R(x,'b'), R('a','b'), R(u,'c'),

$$
\begin{aligned}
& \{v \rightarrow ' c \text { ' }\} \\
& \text { S('a','c','d') }
\end{aligned}
$$

$$
Q(x):-R(x, y), R(x, ' b '), R\left(' a '^{\prime}, ' b '\right), R(u, ' c '), R(u, v), S\left(' a '^{\prime}, ' c ', ' d '\right)
$$

$Q(x):-R(x, y), R(x, ' b '), R\left(' a a^{\prime}, ' b '\right), R(u, ' c '), R(u, v), S\left(' a '^{\prime}, ' c ', ' d '\right)$
$Q(x):-\quad R(x, ' b '), R\left(a^{\prime}, ' b^{\prime}\right), R\left(u, c^{\prime}\right), R(u, v), S\left(a^{\prime} a^{\prime}, c^{\prime} c^{\prime}, d^{\prime}\right)$

$$
\{v \longrightarrow ' c '\}
$$

$Q(x)$:-
$R(x, ' b '), R\left(a^{\prime} '^{\prime}, b^{\prime}\right), R(u, ' c ')$, S('a','c','d')

Minimal query

Actually, we went too far: Mapping $x \rightarrow ' a^{\prime}$ is not valid since x is a head variable!

Uniqueness of Minimal Queries

Natural question: does the order in which we remove atoms from the body of the conjunctive query during minimization matter?

Uniqueness of Minimal Queries

Natural question: does the order in which we remove atoms from the body of the conjunctive query during minimization matter?
 minimal conjunctive queries such that $\mathrm{Q}_{1} \equiv \mathrm{Q}$ and $\mathrm{Q}_{2} \equiv \mathrm{Q}$. Then, Q_{1} and Q_{2} are isomorphic (ie., they are the same up to variable renaming)
church - rossea

Therefore, given a conjunctive query Q, the result of Minimization(Q) is unique (up to variable renaming) and is called the core of

Query Minimization for Views

NEU employees managed by NEU emp.:

CREATE VIEW NeuMentors AS
SELECT DISTINCT/E1.name, E1.manager
FROM Employee E/, Employee E2
WHERE E1.manager $=$ E2.name
AND E1. university $=$ 'Northeastern'

name	university	manager
Alice	Northeastern	Bob
Bob	Northeastern	Cecile
Cecile	Northeastern	
\ldots	\ldots	\ldots

Employee(name, university, manager) 611

NEU emp. managed by NEU emp. managed by NEU emp::
\leftarrow This query is minimal

Query Minimization for Views

NEU employees managed by NEU emp.:
CREATE VIEW NeuMentors AS
SELECT DISTINCT E1.name,E1.manager
FROM Employee E, Employee E2
WHERE E1.manage = E2. name
AND E1.universjty = 'Northeastern'
\leftarrow This query / view is minimal

name	university	manager
Alice	Northeastern	Bob
Bob	Northeastern	Cecile
Cecile	Northeastern	
\ldots	\ldots	\ldots

NEU emp. managed by NEU EMP. managed by NEU emp.:
SELECT DISTINCT N1. name
FROM NeuMentors N1, NeuMentors N2
WHERE N1.manager = N2.name
\leftarrow This query
is minimal

View expansion (when you run a SQL query on a view)
SELECT DISTINCT E1.name
SELECT DISTINCT E1.name
FROM Employee E1, Employee E2, Employee E3, Employee E4
FROM Employee E1, Employee E2, Employee E3, Employee E4
WHERE E1.manager = E2.name AND E1.manager = E3.name AND E3.manager = E4.name
WHERE E1.manager = E2.name AND E1.manager = E3.name AND E3.manager = E4.name
AND E1.university = 'Northeastern' AND E2.university = 'Northeastern'
AND E1.university = 'Northeastern' AND E2.university = 'Northeastern'
AND E3.university = 'Northeastern' AND E4.university = 'Northeastern'
AND E3.university = 'Northeastern' AND E4.university = 'Northeastern'

Query Minimization for Views

NEU employees managed by NEU emp::
 CREATE VIEW NeuMentors AS SELECT DISTINCT E1. name, E1.manager
 FROM Employee E1, Employee E2
 WHERE E1.manager = E2. name
 AND E1.university = 'Northeastern'
 \leftarrow This query / view is minimal
 | name | university | manager |
| :--- | :--- | :--- |
| Alice | Northeastern | Bob |
| Bob | Northeastern | Cecile |
| Cecile | Northeastern | \ldots |
| \ldots | \ldots | \ldots |

NEU emp. managed by NEU emp. managed by NEU emp.:
SELECT DISTINCT N1. name
FROM NeuMentors N1, NeuMentors N2
WHERE N1.manager $=$ N2. name
\leftarrow This query is minimal

View expansion (when you run a SQL query on a view)
SELECT DISTINCT E1.name
FROM Employee E1, Employec E2, Employee E3, Employee E4
WHERE E1.mamaget - E2.mame ANJ E1.manager = E3.name AND E3.manager = E4.name
AND E1.university = 'Northeastern' AND EZ.university = 'Northeastern'
AND E3.university = 'Northeastern' AND E4.university = 'Northeastern'

Outline: T2-1/2: Query Evaluation \& Query Equivalence

- T2-1: Conjunctive Queries (CQs)
- CQ equivalence and containment
- Graph homomorphisms
- Homomorphism beyond graphs
- CQ containment
- CQ minimization
- T2-2: Equivalence Beyond CQs
- Union of CQs, and inequalities
- Union of CQs equivalence under bag semantics
- Tree pattern queries
- Nested queries

Islands of Tractability of CQ Evaluation

- Major Research Program: Identify tractable cases of the combined complexity of conjunctive query evaluation.
- Over the years, this program has been pursued by two different research communities:
- The Database Theory community
- The Constraint Satisfaction community
- Explanation: Problems in those community are closely related:

$$
\begin{gathered}
\text { Constraint Satisfaction Problem } \equiv \begin{array}{c}
\text { © Homomorphism Problem } \equiv \text { CQ evaluation } \\
\text { [Feder, Vardi 1993] } \\
\text { [Chandra, Merlin 1977] }
\end{array}
\end{gathered}
$$

[Kolaitis, Vardi 2000]

Beyond Conjunctive Queries

- What can we say about query languages of intermediate expressive power between conjunctive queries and the full relational calculus?
- Conjunctive queries form the sublanguage of relational algebra obtained by using only cartesian product, projection, and selection with equality conditions.
- The next step would be to consider relational algebra expressions that also involve union.

Beyond Conjunctive Queries

- Definition:
- A Union of Conjunctive Queries (UCQ) is a query expressible by an expression of the form $q_{1} \cup q_{2} \cup \ldots \cup q_{m}$, where each q_{i} is a conjunctive query.
- A monotone query is a query expressible by a relational algebra expression which uses only union, cartesian product, projection, and selection (with equality condition only).
- Fact:
- Monotone queries are precisely the queries expressible by relational calculus expressions using $\wedge, ~ \vee$, and \exists only (also assuming restriction to equality here).
- Every UCQ is a monotone query.
- Every monotone query is equivalent to a UCQ
- but this normal form may have exponentially many disjuncts

$$
(a+b+c)(d+e+f)(g+h+j)=\ldots \text { how big as sum of products ? }
$$

Beyond Conjunctive Queries

- Definition:
- A Union of Conjunctive Queries (UCQ) is a query expressible by an expression of the form $q_{1} \cup q_{2} \cup \ldots \cup q_{m}$, where each q_{i} is a conjunctive query.
- A monotone query is a query expressible by a relational algebra expression which uses only union, cartesian product, projection, and selection (with equality condition only).
- Fact:
- Monotone queries are precisely the queries expressible by relational calculus expressions using $\wedge, ~ \vee$, and \exists only (also assuming restriction to equality here).
- Every UCQ is a monotone query.
- Every monotone query is equivalent to a UCQ
- but this normal form may have exponentially many disjuncts

$$
(a+b+c)(d+e+f)(g+h+j)=a d g+a d h+a d j+a e g+a e h+\ldots+c f j
$$

27 products

Unions of CQs and Monotone Queries
Union of Conjunctive Queries (UCQ)
Given edge relation $E(A, B)$, find paths of length 1 or 2
RA ? (unnamed RA) DRC?

Unions of CQs and Monotone Queries

Union of Conjunctive Queries (UCQ)
Given edge relation $E(A, B)$, find paths of length 1 or 2

$$
\text { RA } \quad E \cup \pi_{\$ 1, \$ 4}\left(\sigma_{\$ 2=\$ 3}(E \times E)\right) \quad \text { (unnamed RA) }
$$

DRC?

Unions of CQs and Monotone Queries
Union of Conjunctive Queries (UCQ)
Given edge relation $E(A, B)$, find paths of length 1 or 2

$$
\begin{array}{ll}
\mathrm{RA} & E \cup \pi_{\$ 1, \$ 4}\left(\sigma_{\$ 2=\$ 3}(E \times E)\right) \\
\mathrm{DRC} & \{(x, y) \mid E(x, y) \vee \exists z[E(x, z) \wedge E(z, y)]\}
\end{array}
$$

Unions of CQs and Monotone Queries

Union of Conjunctive Queries (UCQ)
Given edge relation $E(A, B)$, find paths of length 1 or 2
RA $\quad E \cup \pi_{\$ 1, \$ 4}\left(\sigma_{\$ 2=\$ 3}(E \times E)\right)$
$\operatorname{DRC} \quad\{(x, y) \mid E(x, y) \vee \exists z[E(x, z) \wedge E(z, y)]\}$

Monotone Query

Assume schema $R(A, B), S(A, B), T(B, C), V(B, C)$
Is following query monotone ? $(R \cup S) \bowtie(T \cup V)$

Unions of CQs and Monotone Queries

Union of Conjunctive Queries (UCQ)
Given edge relation $E(A, B)$, find paths of length 1 or 2
RA $\quad E \cup \pi_{\$ 1, \$ 4}\left(\sigma_{\$ 2=\$ 3}(E \times E)\right)$
$\operatorname{DRC} \quad\{(x, y) \mid E(x, y) \vee \exists z[E(x, z) \wedge E(z, y)]\}$

Monotone Query

Assume schema $R(A, B), S(A, B), T(B, C), V(B, C)$
Following query is monotone: $\quad(R \cup S) \bowtie(T \cup V)$
Equal to a $\cup C Q$?
?

Unions of CQs and Monotone Queries

Union of Conjunctive Queries (UCQ)
Given edge relation $E(A, B)$, find paths of length 1 or 2
RA $\quad E \cup \pi_{\$ 1, \$ 4}\left(\sigma_{\$ 2=\$ 3}(E \times E)\right)$
$\operatorname{DRC} \quad\{(x, y) \mid E(x, y) \vee \exists z[E(x, z) \wedge E(z, y)]\}$

Monotone Query

Assume schema $R(A, B), S(A, B), T(B, C), V(B, C)$
Following query is monotone: $(R \cup S) \bowtie(T \cup V)$
Equal to following $\cup C Q$:
$(R \bowtie T) \cup(R \bowtie V) \cup(S \bowtie T) \cup(S \bowtie V)$

The Containment Problem for Unions of CQs

```
THEOREM [Sagiv, Yannakakis 1980]
Let }\mp@subsup{q}{1}{}\cup\mp@subsup{q}{2}{}\cup\cdots\cup\mp@subsup{q}{\textrm{m}}{}\mathrm{ and }\mp@subsup{q}{1}{\prime}\cup\mp@subsup{q}{2}{\prime}\cup\cdots\cup\mp@subsup{q}{n}{\prime}\mathrm{ be two UCQs.
Then the following are equivalent:
1) }\mp@subsup{q}{1}{}\cup\mp@subsup{q}{2}{}\cup\cdots\cup\mp@subsup{q}{\textrm{m}}{}\subseteq\mp@subsup{q}{1}{\prime}\cup\mp@subsup{q}{2}{\prime}\cup\cdots\cup\mp@subsup{q}{n}{\prime
2) For every i\leqm, there is j }\leqn\mathrm{ such that }\mp@subsup{q}{i}{}\subseteq\mp@subsup{q}{j}{\prime
```

Proof:
2. $\Rightarrow 1$. This direction is obvious.

1. $\Rightarrow 2$. Since $D_{c}\left[q_{i}\right] \vDash q_{i}$, we have that $D_{c}\left[q_{i}\right] \vDash q_{1} \cup q_{2} \cup \ldots \cup q_{m}$.

Because of containment, $D_{C}\left[q_{i}\right] \vDash q^{\prime}{ }_{1} \cup q^{\prime}{ }_{2} \cup \ldots \cup q_{n}^{\prime}$.
Thus there is some $\mathrm{j} \leq \mathrm{n}$ with $D_{\mathrm{c}}\left[q_{i}\right] \vDash \mathrm{q}^{\prime}$.
Thus from the CQ homomorphism Theorem $q_{i} \subseteq q^{\prime}{ }_{j}$.

The Complexity of Database Query Languages

	Relational Calculus	CQs	UCQs
Query Evaluation: Data Complexity	In LOGSPACE (hence, in P)	In LOGSPACE (hence, in P)	In LOGSPACE (hence, in P)
Query Evaluation: Combined Compl.	PSPACE- complete	NP-complete	NP-complete
Query Equivalence \& Containment	Undecidable	NP-complete	NP-complete

Monotone Queries

- Even though monotone queries have the same expressive power as unions of conjunctive queries, the containment problem for monotone queries has higher complexity than the containment problem for unions of conjunctive queries (syntax/complexity tradeoff)
- Theorem: Sagiv and Yannakakis - 1982

The containment problem for monotone queries is $\Pi_{2}{ }^{p-}$ complete.

- Note: The prototypical $\Pi_{2}{ }^{\mathrm{p}}$-complete problem is $\forall \exists$ SAT, i.e., the restriction of QBF to formulas of the form

$$
\forall \mathrm{x}_{1} \ldots \forall \mathrm{x}_{\mathrm{m}} \exists \mathrm{y}_{1} \ldots \exists \mathrm{y}_{\mathrm{n}} \phi .
$$

The Complexity of Database Query Languages

	Relational Calculus	CQs	UCQs	Monotone queries
Query Evaluation: Data Complexity	In LOGSPACE (hence, in P)			
Query Evaluation: Combined Compl.	PSPACE- complete	NP-complete	NP-complete	NP-complete
Query Equivalence \& Containment	Undecidable	NP-complete	NP-complete	$\Pi_{2}{ }^{\mathrm{p}}$-complete

Conjunctive Queries with Inequalities

- Definition: Conjunctive queries with inequalities form the sublanguage of relational algebra obtained by using only cartesian product, projection, and selection with equality and inequality $(\neq,<, \leq)$ conditions.
- Example: $Q(x, y):--E(x, z), E(z, w), E(w, y), z \neq w, z<y$.
- Theorem: (Klug - 1988, van der Meyden - 1992)
- The query containment problem for conjunctive queries with inequalities is $\Pi_{2}{ }^{\mathrm{p}}$-complete.
- The query evaluation problem for conjunctive queries with inequalities in NP-complete.

The Complexity of Database Query Languages

	Relational Calculus	CQs	UCQs	Monotone queries / CQs with inequalities
Query Evaluation: Data Complexity	In LOGSPACE (hence, in P)			
Query Evaluation: Combined Compl.	PSPACE- complete	NP-complete	NP-complete	NP-complete
Query Equivalence \& Containment	Undecidable	NP-complete	NP-complete	$\Pi_{2}{ }^{\mathrm{p}}$-complete

Outline: T2-1/2: Query Evaluation \& Query Equivalence

- T2-1: Conjunctive Queries (CQs)
- CQ equivalence and containment
- Graph homomorphisms
- Homomorphism beyond graphs
- CQ containment
- CQ minimization
- T2-2: Equivalence Beyond CQs
- Union of CQs, and inequalities
- Union of CQs equivalence under bag semantics
- Tree pattern queries Following slides are literally from Phokion Kolaitis's
- Nested queries talk on "Logic and databases" at "Logical structures in Computation Boot Camp", Berkeley 2016:
https://simons.berkeley.edu/talks/logic-and-databases

Logic and Databases

Phokion G. Kolaitis
UC Santa Cruz \& IBM Research - Almaden

Lecture 4 - Part 1

Thematic Roadmap

\checkmark Logic and Database Query Languages

- Relational Algebra and Relational Calculus
- Conjunctive queries and their variants
- Datalog
\checkmark Query Evaluation, Query Containment, Query Equivalence
- Decidability and Complexity
\checkmark Other Aspects of Conjunctive Query Evaluation
- Alternative Semantics of Queries
- Bag Databases: Semantics and Conjunctive Query Containment
- Probabilistic Databases: Semantics and Dichotomy Theorems for Conjunctive Query Evaluation
- Inconsistent Databases: Semantics and Dichotomy Theorems

Alternative Semantics

- So far, we have examined logic and databases under classical semantics:
- The database relations are sets.
- Tarskian semantics are used to interpret queries definable be first-order formulas.
- Over the years, several different alternative semantics of queries have been investigated. We will discuss three such scenarios:
- The database relations can be bags (multisets).
- The databases may be probabilistic.
- The databases may be inconsistent.

Sets vs. Multisets

Relation EMPLOYEE(name, dept, salary)

- Relational Algebra Expression:

$$
\pi_{\text {salary }}\left(\sigma_{\text {dept }=\text { cs }}(\text { EMPLOYEE })\right)
$$

- SQL query:

$$
\begin{array}{ll}
\text { SELECT } & \text { salary } \\
\text { FROM } & \text { EMPLOYEE } \\
\text { WHERE } & \text { dpt = 'CS' }
\end{array}
$$

- SQL returns a bag (multiset) of numbers in which a number may appear several times, provided different faculty had the same salary.
- SQL does not eliminate duplicates, in general, because:
- Duplicates are important for aggregate queries (e.g., average)
- Duplicate elimination takes nlogn time.

Relational Algebra Under Bag Semantics

Operation	Multiplicity	- R_{1}	A B
Union $R_{1} \cup R_{2}$	$\mathrm{m}_{1}+\mathrm{m}_{2}$		$\begin{array}{ll} 1 & 2 \\ 1 & 2 \\ 2 & 3 \end{array}$
Intersection $\mathrm{R}_{1} \cap \mathrm{R}_{2}$	$\min \left(\mathrm{m}_{1}, \mathrm{~m}_{2}\right)$	- R_{2}	$\frac{B C}{24}$
Product $\mathrm{R}_{1} \times \mathrm{R}_{2}$	$\mathrm{m}_{1} \times \mathrm{m}_{2}$	- $\left(\mathrm{R}_{1} \bowtie \mathrm{R}_{2}\right)$	A B C
Projection and Selection	Duplicates are not eliminated		$\begin{array}{lll} 1 & 2 & 4 \\ 1 & 2 & 5 \\ 1 & 2 & 5 \end{array}$

Conjunctive Queries Under Bag Semantics

Chaudhuri \& Vardi - 1993
Optimization of Real Conjunctive Queries

- Called for a re-examination of conjunctive-query optimization under bag semantics.
- In particular, they initiated the study of the containment problem for conjunctive queries under bag semantics.
- This problem has turned out to be much more challenging than originally perceived.

PROBLEMS

Problems worthy of attack prove their worth
by hitting back.
in: Grooks by Piet Hein (1905-1996)

Query Containment Under Set Semantics

Class of Queries	Complexity of Query Containment
Conjunctive Queries	NP-complete Chandra \& Merlin - 1977
Unions of Conjunctive Queries	NP-complete Sagiv \& Yannakakis - 1980
Conjunctive Queries with \neq, \leq, \geq	$\Pi_{2}{ }^{\mathrm{p}}$-complete Klug 1988, van der Meyden -1992
First-Order (SQL) queries	Undecidable Trakhtenbrot - 1949

Bag Semantics vs. Set Semantics

- For bags $\mathrm{R}_{1}, \mathrm{R}_{2}$: $R_{1} \subseteq_{B A G} R_{2}$ if $m\left(a, R_{1}\right) \leq m\left(a, R_{2}\right)$, for every tuple \mathbf{a}.
- $Q^{B A G}(D)$: Result of evaluating Q on (bag) database D.
- $Q_{1} \subseteq_{B A G} Q_{2}$ if for every (bag) database D, we have that

$$
\mathrm{Q}_{1}{ }^{\mathrm{BAG}}(\mathrm{D}) \subseteq_{\mathrm{BAG}} \mathrm{Q}_{2}{ }^{\mathrm{BAG}}(\mathrm{D})
$$

Fact:

- $\mathrm{Q}_{1} \subseteq_{\text {BAG }} \mathrm{Q}_{2}$ implies $\mathrm{Q}_{1} \subseteq \mathrm{Q}_{2}$.
- The converse does not always hold.

Bag Semantics vs. Set Semantics

Fact: $\mathrm{Q}_{1} \subseteq \mathrm{Q}_{2}$ does not imply that $\mathrm{Q}_{1} \subseteq_{\mathrm{BAG}} \mathrm{Q}_{2}$.

Example:

- $Q_{1}(x)$:- $P(x), T(x)$
- $Q_{2}(x)$:- $P(x)$
- $\mathrm{Q}_{1} \subseteq \mathrm{Q}_{2}$ (obvious from the definitions)
- $Q_{1} \ddagger_{\mathrm{BAG}} \mathrm{Q}_{2}$
- Consider the (bag) instance $\mathrm{D}=\{\mathrm{P}(\mathrm{a}), \mathrm{T}(\mathrm{a}), \mathrm{T}(\mathrm{a})\}$. Then:
- $Q_{1}(D)=\{a, a\}$
- $Q_{2}(D)=\{a\}$, so $Q_{1}(D) \nsubseteq Q_{2}(D)$.

Query Containment under Bag Semantics

- Chaudhuri \& Vardi - 1993 stated that: Under bag semantics, the containment problem for conjunctive queries is $\Pi_{2}{ }^{\mathrm{p}}$-hard.
- Problem:
- What is the exact complexity of the containment problem for conjunctive queries under bag semantics?
- Is this problem decidable?

Query Containment Under Bag Semantics

- 23 years have passed since the containment problem for conjunctive queries under bag semantics was raised.
- Several attacks to solve this problem have failed.
- At least two technically flawed PhD theses on this problem have been produced.
- Chaudhuri and Vardi have withdrawn the claimed $\Pi_{2}{ }^{\mathrm{p}}$-hardness of this problem; no one has provided a proof.

Query Containment Under Bag Semantics

- The containment problem for conjunctive queries under bag semantics remains open to date.
- However, progress has been made towards the containment problem under bag semantics for the two main extensions of conjunctive queries:
- Unions of conjunctive queries
- Conjunctive queries with \neq

Unions of Conjunctive Queries

Theorem (loannidis \& Ramakrishnan - 1995):
Under bag semantics, the containment problem for unions of conjunctive queries is undecidable.
Hint of Proof:
Reduction from Hilbert's $10^{\text {th }}$ Problem.

Hilbert's $10^{\text {th }}$ Problem

- Hilbert's $10^{\text {th }}$ Problem - 1900 ($10^{\text {th }}$ in Hilbert's list of 23 problems)

Find an algorithm for the following problem:
Given a polynomial $P\left(x_{1}, \ldots, x_{n}\right)$ with integer coefficients, does it have an all-integer solution?

- Y. Matiyasevich - 1971
(building on M. Davis, H. Putnam, and J. Robinson)
- Hilbert's $10^{\text {th }}$ Problem is undecidable, hence no such algorithm exists.

Hilbert's $10^{\text {th }}$ Problem

- Fact: The following variant of Hilbert's $10^{\text {th }}$ Problem is undecidable:
- Given two polynomials $p_{1}\left(x_{1}, \ldots x_{n}\right)$ and $p_{2}\left(x_{1}, \ldots x_{n}\right)$ with positive integer coefficients and no constant terms, is it true that $p_{1} \leq p_{2}$? In other words, is it true that $p_{1}\left(a_{1}, \ldots, a_{n}\right) \leq$ $p_{2}\left(a_{1}, \ldots a_{n}\right)$, for all positive integers a_{1}, \ldots, a_{n} ?
- Thus, there is no algorithm for deciding questions like:
- Is $3 x_{1}{ }^{4} x_{2} x_{3}+2 x_{2} x_{3} \leq x_{1} 6+5 x_{2} x_{3}$?

Unions of Conjunctive Queries

Theorem (loannidis \& Ramakrishnan - 1995):
Under bag semantics, the containment problem for unions of conjunctive queries is undecidable.

Hint of Proof:

- Reduction from the previous variant of Hilbert's $10^{\text {th }}$ Problem:
- Use joins of unary relations to encode monomials (products of variables).
- Use unions to encode sums of monomials.

Unions of Conjunctive Queries

Example: Consider the polynomial $3 x_{1}{ }^{4} x_{2} x_{3}+2 x_{2} x_{3}$

- The monomial $x_{1}{ }^{4} x_{2} x_{3}$ is encoded by the conjunctive query

$$
P_{1}(w), P_{1}(w), P_{1}(w), P_{1}(w), P_{2}(w), P_{3}(w) .
$$

- The monomial $x_{2} x_{3}$ is encoded by the conjunctive query $\mathrm{P}_{2}(\mathrm{w}), \mathrm{P}_{3}(\mathrm{w})$.
- The polynomial $3 x_{1}{ }^{4} x_{2} x_{3}+2 x_{2} x_{3}$ is encoded by the union having:
- three copies of $P_{1}(w), P_{1}(w), P_{1}(w), P_{1}(w), P_{2}(w), P_{3}(w)$ and
- two copies of $\mathrm{P}_{2}(\mathrm{w}), \mathrm{P}_{3}(\mathrm{w})$.

Complexity of Query Containment

Class of Queries	Complexity - Set Semantics	Complexity - Bag Semantics
Conjunctive queries	NP -complete CM -1977	
Unions of conj. queries	NP -complete SY-1980	Undecidable IR - 1995
Conj. queries with \neq, \leq, \geq	Π_{2}^{p}-complete $\mathrm{vdM}-1992$	
First-order (SQL) queries	Undecidable Trakhtenbrot -1949	Undecidable

Conjunctive Queries with \neq

Theorem (Jayram, K ..., Vee - 2006):
Under bag semantics, the containment problem for conjunctive queries with \neq is undecidable.

In fact, this problem is undecidable even if

- the queries use only a single relation of arity 2 ;
- the number of inequalities in the queries is at most some fixed (albeit huge) constant.

Complexity of Query Containment

Class of Queries	Complexity - Set Semantics	Complexity - Bag Semantics
Conjunctive queries	NP-complete CM - 1977	Open
Unions of conj. queries	NP-complete SY - 1980	Undecidable IR - 1995
Conj. queries with \neq, \leq, \geq	$\Pi_{2}{ }^{\mathrm{P}}$-complete vdM -1992	Undecidable JKV - 2006
First-order (SQL) queries	Undecidable Trakhtenbrot -1949	Undecidable

Subsequent Developments

- Some progress has been made towards identifying special classes of conjunctive queries for which the containment problem under bag semantics is decidable.
- Afrati, Damigos, Gergatsoulis - 2010
- Projection-free conjunctive queries.
- Kopparty and Rossman - 2011
- A large class of boolean conjunctive queries on graphs.

