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Pre-class conversations

• Last class summary
• Project ideas

• Today: 
- Homomorphisms and the connections to:

• Query containment
• Query minimization
• Query evaluation

https://northeastern-datalab.github.io/cs7240/
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Outline: T2-1/2: Query Evaluation & Query Equivalence

• T2-1: Conjunctive Queries (CQs)
– CQ equivalence and containment
– Graph homomorphisms
– Homomorphism beyond graphs
– CQ containment
– CQ minimization

• T2-2: Equivalence Beyond CQs
– Union of CQs, and inequalities
– Union of CQs equivalence under bag semantics
– Tree pattern queries
– Nested queries
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Injective, Surjective, and Bijective functions

Surjective
function

Bijective
function

Injective
function

Function

𝑓: 𝑋 → 𝑌

?

?

?

?
Source: https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection
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Injective, Surjective, and Bijective functions
maps each argument (element from its domain) 
to exactly one image (element in its codomain)

𝑓: 𝑋 → 𝑌

∀𝑥 ∈ 𝑋, ∃! 𝑦 ∈ 𝑌[𝑦 = 𝑓(𝑥)]}

Surjective
function

Bijective
function

Injective
function

Function

?

?

?

Source: https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection

∃! 𝑦 ∈ 𝑌[𝑃 𝑦 ]
∃𝑦 ∈ 𝑌[𝑃 𝑦 ∧ ∀𝑦! ∈ 𝑌 𝑃 𝑦! ⇒ 𝑦 = 𝑦! ]
∃𝑦 ∈ 𝑌[𝑃 𝑦 ∧ ¬∃𝑦! ∈ 𝑌 𝑃 𝑦! ∧ 𝑦 ≠ 𝑦! ]

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection
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…∧ ∀𝑥, 𝑥# ∈ 𝑋. [𝑥 ≠ 𝑥′ ⇒ 𝑓(𝑥) ≠ 𝑓(𝑥#)]
…∧ ∀𝑥, 𝑥# ∈ 𝑋. 𝑓 𝑥 = 𝑓 𝑥# ⇒ 𝑥 = 𝑥#

Injective, Surjective, and Bijective functions

("one-to-one"): each element of the codomain is 
mapped to by at most one element of the domain 
(i.e. distinct elements of the domain map to 
distinct elements in the codomain)

maps each argument (element from its domain) 
to exactly one image (element in its codomain)

𝑓: 𝑋 → 𝑌

∀𝑥 ∈ 𝑋, ∃! 𝑦 ∈ 𝑌[𝑦 = 𝑓(𝑥)]}

logical transpose
without inequality:

Surjective
function

Bijective
function

Injective
function

Function

Source: https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection

∃! 𝑦 ∈ 𝑌[𝑃 𝑦 ]
∃𝑦 ∈ 𝑌[𝑃 𝑦 ∧ ∀𝑦! ∈ 𝑌 𝑃 𝑦! ⇒ 𝑦 = 𝑦! ]
∃𝑦 ∈ 𝑌[𝑃 𝑦 ∧ ¬∃𝑦! ∈ 𝑌 𝑃 𝑦! ∧ 𝑦 ≠ 𝑦! ]

?

?

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection
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Injective, Surjective, and Bijective functions

("onto"): each element of the codomain is mapped 
to by at least one element of the domain (i.e. the 
image and the codomain of the function are equal)

("one-to-one"): each element of the codomain is 
mapped to by at most one element of the domain 
(i.e. distinct elements of the domain map to 
distinct elements in the codomain)

maps each argument (element from its domain) 
to exactly one image (element in its codomain)
∀𝑥 ∈ 𝑋, ∃! 𝑦 ∈ 𝑌[𝑦 = 𝑓(𝑥)]}

…∧ ∀𝑦 ∈ 𝑌, ∃𝑥 ∈ 𝑋[𝑦 = 𝑓 𝑥 ]

Surjective
function

Bijective
function

Injective
function

Function

Source: https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection

…∧ ∀𝑥, 𝑥# ∈ 𝑋. [𝑥 ≠ 𝑥′ ⇒ 𝑓(𝑥) ≠ 𝑓(𝑥#)]
…∧ ∀𝑥, 𝑥# ∈ 𝑋. 𝑓 𝑥 = 𝑓 𝑥# ⇒ 𝑥 = 𝑥#

𝑓: 𝑋 → 𝑌

logical transpose
without inequality:

∃! 𝑦 ∈ 𝑌[𝑃 𝑦 ]
∃𝑦 ∈ 𝑌[𝑃 𝑦 ∧ ∀𝑦! ∈ 𝑌 𝑃 𝑦! ⇒ 𝑦 = 𝑦! ]
∃𝑦 ∈ 𝑌[𝑃 𝑦 ∧ ¬∃𝑦! ∈ 𝑌 𝑃 𝑦! ∧ 𝑦 ≠ 𝑦! ]

?

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection
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…∧ ∀𝑥, 𝑥# ∈ 𝑋. [𝑥 ≠ 𝑥′ ⇒ 𝑓(𝑥) ≠ 𝑓(𝑥#)]
…∧ ∀𝑥, 𝑥# ∈ 𝑋. 𝑓 𝑥 = 𝑓 𝑥# ⇒ 𝑥 = 𝑥#

logical transpose
without inequality:

Injective, Surjective, and Bijective functions

("onto"): each element of the codomain is mapped 
to by at least one element of the domain (i.e. the 
image and the codomain of the function are equal)

("invertible"): each element of the codomain is 
mapped to by exactly one element of the domain 
(both injective and surjective)

("one-to-one"): each element of the codomain is 
mapped to by at most one element of the domain 
(i.e. distinct elements of the domain map to 
distinct elements in the codomain)

maps each argument (element from its domain) 
to exactly one image (element in its codomain)

𝑓: 𝑋 → 𝑌

∀𝑥 ∈ 𝑋, ∃! 𝑦 ∈ 𝑌[𝑦 = 𝑓(𝑥)]}

…∧ ∀𝑦 ∈ 𝑌, ∃𝑥 ∈ 𝑋[𝑦 = 𝑓 𝑥 ]

…∧ ∀𝑦 ∈ 𝑌, ∃! 𝑥 ∈ 𝑋[𝑦 = 𝑓(𝑥)]}

Surjective
function

Bijective
function

Injective
function

Function

Source: https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection

∃! 𝑦 ∈ 𝑌[𝑃 𝑦 ]
∃𝑦 ∈ 𝑌[𝑃 𝑦 ∧ ∀𝑦! ∈ 𝑌 𝑃 𝑦! ⇒ 𝑦 = 𝑦! ]
∃𝑦 ∈ 𝑌[𝑃 𝑦 ∧ ¬∃𝑦! ∈ 𝑌 𝑃 𝑦! ∧ 𝑦 ≠ 𝑦! ]

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection
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Mappings: Injection, Surjection, and Bijection

?
?
?
?
?
?

https://northeastern-datalab.github.io/cs7240/
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Mappings: Injection, Surjection, and Bijection

?
?
?
?
?

not a mapping (or function)!

https://northeastern-datalab.github.io/cs7240/
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Mappings: Injection, Surjection, and Bijection

?
?
?
?

not a mapping (or function)!

injective function (or one-to-one): maps distinct elements 
of its domain to distinct elements of its codomain

https://northeastern-datalab.github.io/cs7240/
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Mappings: Injection, Surjection, and Bijection

?
?
?

not a mapping (or function)!

injective function (or one-to-one): maps distinct elements 
of its domain to distinct elements of its codomain

surjective (or onto): every element y in the codomain Y of f 
has at least one element x in the domain that maps to it

https://northeastern-datalab.github.io/cs7240/
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Mappings: Injection, Surjection, and Bijection

?
?

not a mapping (or function)!

injective function (or one-to-one): maps distinct elements 
of its domain to distinct elements of its codomain

surjective (or onto): every element y in the codomain Y of f 
has at least one element x in the domain that maps to it

injective & surjective = bijection

https://northeastern-datalab.github.io/cs7240/
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Mappings: Injection, Surjection, and Bijection

?

not a mapping (or function)!

injective function (or one-to-one): maps distinct elements 
of its domain to distinct elements of its codomain

surjective (or onto): every element y in the codomain Y of f 
has at least one element x in the domain that maps to it

injective & surjective = bijection

neighter

https://northeastern-datalab.github.io/cs7240/
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Mappings: Injection, Surjection, and Bijection

injective function (or one-to-one): maps distinct elements 
of its domain to distinct elements of its codomain

surjective (or onto): every element y in the codomain Y of f 
has at least one element x in the domain that maps to it

injective & surjective = bijection

neighter

not a mapping (or function)!

not even a mapping!

https://northeastern-datalab.github.io/cs7240/
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Bijection, Injection, and Surjection

Sources: http://mathonline.wikidot.com/injections-surjections-and-bijections, 
https://www.intechopen.com/books/protein-interactions/relating-protein-structure-and-function-through-a-bijection-and-its-implications-on-protein-structur,

https://northeastern-datalab.github.io/cs7240/
http://mathonline.wikidot.com/injections-surjections-and-bijections
https://www.intechopen.com/books/protein-interactions/relating-protein-structure-and-function-through-a-bijection-and-its-implications-on-protein-structur
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Bijection, Injection, and Surjection

Sources: https://www.mathsisfun.com/sets/injective-surjective-bijective.html, https://twitter.com/jdhamkins/status/841318019397779456, 

https://northeastern-datalab.github.io/cs7240/
https://www.mathsisfun.com/sets/injective-surjective-bijective.html
https://twitter.com/jdhamkins/status/841318019397779456
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We make a detour to Graph matching

• Finding a correspondence between the nodes and the edges of two 
graphs that satisfies some (more or less stringent) constraints

https://northeastern-datalab.github.io/cs7240/
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Homomorphism

• A graph homomorphism h from graph G(VG,EG) to H(VH,EH), is a 
mapping from VG to VH such that {x,y} ∈ EG implies {h(x),h(y)} ∈ EH
- "edge-preserving": if two nodes in G are linked by an edge, then they are 

mapped to two nodes in H that are also linked

1

2

3

4

a b

c

G H

?Is there a homomorphism 
from G to H

https://northeastern-datalab.github.io/cs7240/
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Homomorphism

• A graph homomorphism h from graph G(VG,EG) to H(VH,EH), is a 
mapping from VG to VH such that {x,y} ∈ EG implies {h(x),h(y)} ∈ EH
- "edge-preserving": if two nodes in G are linked by an edge, then they are 

mapped to two nodes in H that are also linked

1

2

3

4

a b

c

h: {(a,1), (b,3), (c,4)} 
G H

does not need to be surjective!

https://northeastern-datalab.github.io/cs7240/
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Homomorphism

• A graph homomorphism h from graph G(VG,EG) to H(VH,EH), is a 
mapping from VG to VH such that {x,y} ∈ EG implies {h(x),h(y)} ∈ EH
- "edge-preserving": if two nodes in G are linked by an edge, then they are 

mapped to two nodes in H that are also linked

1

2

3

4

a b

c

a b

c

h: {(a,1), (b,3), (c,4)} 
G H G

?Is there a homomorphism 
from H to Gdoes not need to be surjective!

https://northeastern-datalab.github.io/cs7240/


83Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Homomorphism

• A graph homomorphism h from graph G(VG,EG) to H(VH,EH), is a 
mapping from VG to VH such that {x,y} ∈ EG implies {h(x),h(y)} ∈ EH
- "edge-preserving": if two nodes in G are linked by an edge, then they are 

mapped to two nodes in H that are also linked

1

2

3

4

a b

c

a b

c

h: {(a,1), (b,3), (c,4)} h: {(1,a), (2,a), (3,b), (4,c)}
does not need to be injective!

G H G

Correspondence can be many-to-one: nothing 
prevents that 2 nodes in the first graph 
are mapped to the same node in the second

does not need to be surjective!

Graphs are homomorphically equivalent

https://northeastern-datalab.github.io/cs7240/
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Graph Isomorphism

• Graphs G(VG,EG) and H(VH,EH) are isomorphic iff there is an invertible
h from VG to VH s.t. {x,y} ∈ EG iff {h(u),h(v)} ∈ EH
- We need to find a one-to-one correspondence

1

2

3

4

a b

c

G H

?Is there an isomorphism 
from G to H

https://northeastern-datalab.github.io/cs7240/
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Graph Isomorphism

• Graphs G(VG,EG) and H(VH,EH) are isomorphic iff there is an invertible
h from VG to VH s.t. {x,y} ∈ EG iff {h(u),h(v)} ∈ EH
- We need to find a one-to-one correspondence

1

2

3

4

a b

c

G H
They are homomorphically equivalent,
but not isomorphic!

Is there an isomorphism 
from G to H?

https://northeastern-datalab.github.io/cs7240/
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Graph Isomorphism

• Graphs G(VG,EG) and H(VH,EH) are isomorphic iff there is an invertible
h from VG to VH s.t. {x,y} ∈ EG iff {h(u),h(v)} ∈ EH
- We need to find a one-to-one correspondence

1 2

43

5

a

b

c

d

e

G H
Is there an isomorphism 
from G to H?

https://northeastern-datalab.github.io/cs7240/
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Graph Isomorphism

• Graphs G(VG,EG) and H(VH,EH) are isomorphic iff there is an invertible
h from VG to VH s.t. {x,y} ∈ EG iff {h(u),h(v)} ∈ EH
- We need to find a one-to-one correspondence

1 2

43

5

a

b

c

d

e

G H
Is there an isomorphism 
from G to H?

h: {(1,a), (2,b), (3,d), (4,c), (5,e)} 
bijection = surjective and injective mapping

Yes:

https://northeastern-datalab.github.io/cs7240/
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Outline: T2-1/2: Query Evaluation & Query Equivalence

• T2-1: Conjunctive Queries (CQs)
– CQ equivalence and containment
– Graph homomorphisms
– Homomorphism beyond graphs
– CQ containment
– CQ minimization

• T2-2: Equivalence Beyond CQs
– Union of CQs, and inequalities
– Union of CQs equivalence under bag semantics
– Tree pattern queries
– Nested queries
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Graph Homomorphism beyond graphs
Definition : Let G and H be graphs. A homomorphism of G to H is a function 
f: V(G) → V(H) such that

(x,y) ∈ E(G) ⇒ (f(x),f(y)) ∈ E(H).

We sometimes write G → H (G ↛ H) if there is a homomorphism (no 
homomorphism) of G to H

Definition of a homomorphism naturally extends  to:
• digraphs (directed graphs)
• edge-colored graphs
• relational systems
• constraint satisfaction problems (CSPs)

https://northeastern-datalab.github.io/cs7240/


90Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

An example

G

H

2 3

1

3 "colors" of the vertices

Based upon an example from Rick Brewster's Graph homomorphism tutorial, 2006

a

b

cd

e

https://northeastern-datalab.github.io/cs7240/
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An example

G

H

2 3

1

1

1

?Can this assignment be extended to a homomorphism?
Based upon an example from Rick Brewster's Graph homomorphism tutorial, 2006

a

b

cd

e

https://northeastern-datalab.github.io/cs7240/


92Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

An example

G

H

2 3

1

Can this assignment be extended to a homomorphism? No, this assignment requires a 
loop on vertex 1 (in H)

Based upon an example from Rick Brewster's Graph homomorphism tutorial, 2006

a

b

cd

e

1

1

https://northeastern-datalab.github.io/cs7240/
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An example

G

H

2 3

1

Can this assignment be extended to a homomorphism??
Based upon an example from Rick Brewster's Graph homomorphism tutorial, 2006

a

b

cd

e

1

2

https://northeastern-datalab.github.io/cs7240/
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An example

G

H

2 3

1

Definition: Let G and H be graphs. A homom. 
of G to H is a function f: V(G) → V(H) s.t. that

(x,y) ∈ E(G) ⇒ (f(x),f(y)) ∈ E(H).

Can this assignment be extended to a homomorphism??
Based upon an example from Rick Brewster's Graph homomorphism tutorial, 2006

a

b

cd

e

1

2

https://northeastern-datalab.github.io/cs7240/
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An example

G

H

2 3

12

1 3

Definition: Let G and H be graphs. A homom. 
of G to H is a function f: V(G) → V(H) s.t. that

(x,y) ∈ E(G) ⇒ (f(x),f(y)) ∈ E(H).

Based upon an example from Rick Brewster's Graph homomorphism tutorial, 2006

a

b

cd

e

1

2

https://northeastern-datalab.github.io/cs7240/
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An example

G

1

Basically a partitioning problem!

32

The quotient set of the partition (set of equivalence classes of the 
partition) is a subgraph of H. 

Partition: {{a,d}, {b,e}, {c}}

a

b

d

ce

Quotient set: {[a], [b], [c]}

Based upon an example from Rick Brewster's Graph homomorphism tutorial, 2006

H

2 3

1

https://northeastern-datalab.github.io/cs7240/
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Some observations
When does G → K3 hold? (K3 = 3-clique = triangle)

?

https://northeastern-datalab.github.io/cs7240/
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Some observations

?
When does G → Kd hold? (Kd = d-clique)

When does G → K3 hold? (K3 = 3-clique = triangle)

iff G is 3-colorable

More on 3-coloring: https://en.wikipedia.org/wiki/Graph_coloring#Computational_complexity

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Graph_coloring
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Some observations
When does G → K3 hold? (K3 = 3-clique = triangle)

iff G is 3-colorable

When does G → Kd hold? (Kd = d-clique)
iff G is d-colorable

Thus homomorphisms generalize colorings:
Notation: G → H is an H-coloring of G.

What is the complexity of testing for the existence of a homomorphism
(in the size of G)?

?
More on 3-coloring: https://en.wikipedia.org/wiki/Graph_coloring#Computational_complexity

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Graph_coloring
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Some observations
When does G → K3 hold? (K3 = 3-clique = triangle)

iff G is 3-colorable

When does G → Kd hold? (Kd = d-clique)
iff G is d-colorable

NP-complete
More on 3-coloring: https://en.wikipedia.org/wiki/Graph_coloring#Computational_complexity

Thus homomorphisms generalize colorings:
Notation: G → H is an H-coloring of G.

What is the complexity of testing for the existence of a homomorphism
(in the size of G)?

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Graph_coloring
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The complexity of H-coloring

Theorem [Hell, Nesetril'90]: 
If H is bipartite or contains a self-loop, then H-coloring is 
polynomial time solvable; otherwise, H is NP-complete.

H-coloring:
Let H be a fixed graph.
Instance: A graph G.
Question: Does G admit an H-coloring?

[Hell, Nesetril'90]:  Hell, Nešetřil. On the complexity of H-coloring. Journal of Combinatorial Theory, 1990. https://doi.org/10.1016/0095-8956(90)90132-J

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1016/0095-8956(90)90132-J
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Repeated variable names

Which of formulas implies the other??

In sentences with multiple quantifiers, distinct variables do not need 
to range over distinct objects! (cp. homomorphism vs. isomorphism)

$x.$y.	E(x,y)	 $x.	E(x,x)⟹
⟸

https://northeastern-datalab.github.io/cs7240/
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$x.$y.	E(x,y)	

Repeated variable names

In sentences with multiple quantifiers, distinct variables do not need 
to range over distinct objects! (cp. homomorphism vs. isomorphism)

$x.	E(x,x)

s t
1 1

E

⟸

s t
1 2

E

https://northeastern-datalab.github.io/cs7240/


105

A more abstract (general)
view on homomorphisms
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Homomorphisms on Binary Structures

• Definition (Binary algebraic structure): A binary algebraic structure 
is a set together with a binary operation on it.  This is denoted by an 
ordered pair (S,⋆) in which S is a set and ⋆ is a binary operation on S.

• Definition (homomorphism of binary structures): Let (S,⋆) and (S’,∘) 
be binary structures.  A homomorphism from (S,⋆) to (S’,∘) is a map 
h: S⟶ S’ that satisfies, for all x, y in S:

h(x ⋆ y) = h(x) ∘ h(y)

• We can denote it by h: (S,⋆) ⟶ (S’,∘).

https://northeastern-datalab.github.io/cs7240/
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Example: from addition to multiplication

• Let h(x) = ex. Is h a homomorphism b/w two binary structures? 

?

https://northeastern-datalab.github.io/cs7240/
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Example: from addition to multiplication

• Let h(x) = ex. Is h a homomorphism b/w two binary structures? 
- Yes, from the real numbers with addition (ℝ,+) to 
- the positive real numbers with multiplication (ℝ+,⋅)
- It is even an isomorphism!

• Let g(x) = eix.  Is g also a homomorphism? 

h:(ℝ,+) ⟶ (ℝ+,⋅)
h(x+y) = h(x) ⋅ h(y)

?
Paragraph screenshot from p.37 in 2004 - Dummit, Foote - Abstract algebra (book, 3rd ed). https://www.wiley.com/en-us/Abstract+Algebra%2C+3rd+Edition-p-9780471433347

https://northeastern-datalab.github.io/cs7240/
https://www.wiley.com/en-us/Abstract+Algebra%2C+3rd+Edition-p-9780471433347
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Example: from addition to multiplication

• Let h(x) = ex. Is h a homomorphism b/w two binary structures? 
- Yes, from the real numbers with addition (ℝ,+) to 
- the positive real numbers with multiplication (ℝ+,⋅)
- It is even an isomorphism!

• Let g(x) = eix.  Is g also a homomorphism? 
- Yes, from the real numbers with addition (ℝ,+) to 
- the unit circle in the complex plane with rotation 

Paragraph screenshot from p.37 in 2004 - Dummit, Foote - Abstract algebra (book, 3rd ed). https://www.wiley.com/en-us/Abstract+Algebra%2C+3rd+Edition-p-9780471433347

h:(ℝ,+) ⟶ (ℝ+,⋅)
h(x+y) = h(x) ⋅ h(y)

https://northeastern-datalab.github.io/cs7240/
https://www.wiley.com/en-us/Abstract+Algebra%2C+3rd+Edition-p-9780471433347
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Example: from addition to multiplication

Source: Socratica. Homomorphisms, 2014: https://www.youtube.com/watch?v=cYzp5IWqCsg

https://northeastern-datalab.github.io/cs7240/
https://www.youtube.com/watch?v=cYzp5IWqCsg
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Example: from addition to multiplication

Source: 3blue1brown. Euler's formula with introductory group theory, 2017: https://www.youtube.com/watch?v=mvmuCPvRoWQ

https://northeastern-datalab.github.io/cs7240/
https://www.youtube.com/watch?v=mvmuCPvRoWQ
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Isomorphism

• Definition: A homomorphism of binary structures is called an 
isomorphism iff the corresponding map of sets is:
- one-to-one (injective) and 
- onto (surjective).

https://northeastern-datalab.github.io/cs7240/
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Some homomorphisms

Binary structure (S,⋆)

Group (G,⋆) like (ℝ,+)Graph (V, E(x,y))

CQs (Conjunctive Queries)
(Var ∪ Constants, Relations {Ri(x,y,z), ...})

Restriction to operations that 
closed, associative, with 
identify element, and inverse

Change to Binary operator 
that is not closed and instead 
maps to 𝔹 = {True, False}

Extension to multiple 
d-ary relations

recall that ⋆ is closed

https://northeastern-datalab.github.io/cs7240/
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Source: https://www.mathphysicsbook.com/mathematics/mathematical-structures/defining-mathematical-structures-and-mappings/

https://northeastern-datalab.github.io/cs7240/
https://www.mathphysicsbook.com/mathematics/mathematical-structures/defining-mathematical-structures-and-mappings/
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Outline: T2-1/2: Query Evaluation & Query Equivalence

• T2-1: Conjunctive Queries (CQs)
– CQ equivalence and containment
– Graph homomorphisms
– Homomorphism beyond graphs
– CQ containment
– CQ minimization

• T2-2: Equivalence Beyond CQs
– Union of CQs, and inequalities
– Union of CQs equivalence under bag semantics
– Tree pattern queries
– Nested queries
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Query Containment

Two queries q1, q2 are equivalent, denoted q1 ≡ q2, if 

Query q1 is contained in query q2 , denoted q1 ⊆ q2, if 

Corollary
q1 ≡ q2 is equivalent to (q1 ⊆ q2 and q1 ⊇ q2)

If queries are Boolean, then query containment = logical implication:
q1 ⇔ q2 is equivalent to

for every database instance D, we have q1(D) = q2(D).

for every database instance D, we have q1(D) ⊆ q2(D)

?

the answer (set of tuples) 
returned by one is guaranteed to 
be identical to the other answer

https://northeastern-datalab.github.io/cs7240/
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Query Containment

Two queries q1, q2 are equivalent, denoted q1 ≡ q2, if 

Query q1 is contained in query q2 , denoted q1 ⊆ q2, if 

Corollary
q1 ≡ q2 is equivalent to (q1 ⊆ q2 and q1 ⊇ q2)

If queries are Boolean, then query containment = logical implication:
q1 ⇔ q2 is equivalent to (q1 ⇒ q2 and q1 ⇐ q2)

for every database instance D, we have q1(D) = q2(D).

for every database instance D, we have q1(D) ⊆ q2(D)

the answer (set of tuples) 
returned by one is guaranteed to 
be identical to the other answer

https://northeastern-datalab.github.io/cs7240/
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Query homomorphisms
A homomorphism h from Boolean q1 to q2 is a function 

for every atom R(x1,x2,...) in q1, there is an atom R(h(x1), h(x2), ...) in q2

h: var(q1) → var(q2) ∪ const(q2) such that:

q1 :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)
q2 :- R(x,y), R(y,y), R(y,z)

v

u

w

s

q1(x)

y z

x
q2(x)

h1→2=

need to be same relation!

?

Example

https://northeastern-datalab.github.io/cs7240/
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Query homomorphisms
A homomorphism h from Boolean q1 to q2 is a function 

for every atom R(x1,x2,...) in q1, there is an atom R(h(x1), h(x2), ...) in q2

h: var(q1) → var(q2) ∪ const(q2) such that:

q1 :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)
q2 :- R(x,y), R(y,y), R(y,z)

v

u

w

s

q1(x)

y z

x
q2(x)

h1→2=

need to be same relation!

Also: h1→2’: {s,u,v,w}→{y} (recall [Hell, Nesetril'90])
But let's focus on h1→2 for the remainder J

{(s,x),(u,y),(v,y),(w,z)} 

Example

https://northeastern-datalab.github.io/cs7240/
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Query homomorphisms
A homomorphism h from Boolean q1 to q2 is a function 

for every atom R(x1,x2,...) in q1, there is an atom R(h(x1), h(x2), ...) in q2

h: var(q1) → var(q2) ∪ const(q2) such that:

q1 :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)
q2 :- R(x,y), R(y,y), R(y,z)

v

u

w

s

q1(x)

y z

x
q2(x)

h1→2= {(s,x),(u,y),(v,y),(w,z)} 

h2→1: ?

Example

https://northeastern-datalab.github.io/cs7240/
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Query homomorphisms
A homomorphism h from Boolean q1 to q2 is a function 

for every atom R(x1,x2,...) in q1, there is an atom R(h(x1), h(x2), ...) in q2

h: var(q1) → var(q2) ∪ const(q2) such that:

q1 :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)
q2 :- R(x,y), R(y,y), R(y,z)

v

u

w

s

q1(x)

y z

x
q2(x)

h1→2= {(s,x),(u,y),(v,y),(w,z)} 

h2→1: {(x,s),(y,v),(z,w)} ?
What about:

Example

https://northeastern-datalab.github.io/cs7240/
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Query homomorphisms
A homomorphism h from Boolean q1 to q2 is a function 

for every atom R(x1,x2,...) in q1, there is an atom R(h(x1), h(x2), ...) in q2

h: var(q1) → var(q2) ∪ const(q2) such that:

q1 :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v), R(v,v)
q2 :- R(x,y), R(y,y), R(y,z)

v

u

w

s

q1(x)

y z

x
q2(x)

h1→2= {(s,x),(u,y),(v,y),(w,z)} 

h2→1: {(x,s),(y,v),(z,w)} 

Example

https://northeastern-datalab.github.io/cs7240/
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Query homomorphisms and containment
A homomorphism h from Boolean q1 to q2 is a function 

for every atom R(x1,x2,...) in q1, there is an atom R(h(x1), h(x2), ...) in q2

h: var(q1) → var(q2) ∪ const(q2) such that:

$x.$y.	E(x,y)	 $x.	E(x,x)
Compare to our earlier example:

q1 :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)
q2 :- R(x,y), R(y,y), R(y,z)

v

u

w

s

q1(x)

y z

x
q2(x)

h1→2= {(s,x),(u,y),(v,y),(w,z)} 

Example

E(1,1)E(1,2)

?
⟹⟸

h2→1: {(x,s),(y,v),(z,w)} 

https://northeastern-datalab.github.io/cs7240/
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Query homomorphisms and containment

q1 ⇐ q2

q1 ⇏ q2

A homomorphism h from Boolean q1 to q2 is a function 

for every atom R(x1,x2,...) in q1, there is an atom R(h(x1), h(x2), ...) in q2

h: var(q1) → var(q2) ∪ const(q2) such that:

$x.$y.	E(x,y)	 $x.	E(x,x)⇐
Compare to our earlier example:

We will use homomorphisms to 
reason about query containment. 
We try to understand the direction

q1 :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)
q2 :- R(x,y), R(y,y), R(y,z)

v

u

w

s

q1(x)

y z

x
q2(x)

h1→2= {(s,x),(u,y),(v,y),(w,z)} 

Example

E(1,1)E(1,2)
True False

h2→1: {(x,s),(y,v),(z,w)} 

https://northeastern-datalab.github.io/cs7240/


126Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Overview: "All homomorphisms" in one slide

G

q1 q2

h h

h

q1 ⊇ q2

"G-coloring of q1 "

q1 ⇐ q2

Query evaluation
"q1-coloring of G "

Constraint Satisfaction 
Problems (CSP)

PTIME in size of GNP-C in size of G

Query containment

G ⊨ q2

https://northeastern-datalab.github.io/cs7240/


127Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Canonical database
DEFINITION Canonical database
Given a conjunctive query q, the canonical database Dc[q] is the database 
instance where each atom in q becomes a fact in the instance.

Example
q2(x) :- R(x,y), R(y,y), R(y,z)

Dc[q2] = ?

https://northeastern-datalab.github.io/cs7240/
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Canonical database

Example
q2(x) :- R(x,y), R(y,y), R(y,z)

Just treat each variable as different constant J

{R('x','y'), R('y','y'), R('y','z')}Dc[q2] =

≡ {R(a,b), R(b,b), R(b,c)}

DEFINITION Canonical database
Given a conjunctive query q, the canonical database Dc[q] is the database 
instance where each atom in q becomes a fact in the instance.

≡ {R(1,2), R(2,2), R(2,3)}

Var Const

x 1→
y 2→
z 3→

https://northeastern-datalab.github.io/cs7240/
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[Chandra and Merlin 1977]

G

q1 q2
Query containment q1 ⇐ q2

Query evaluation
G ⊨ q2

THEOREM (Query Containment)
Given two Boolean CQs q1, q2, the following statements are equivalent:

We will look at 2) ⇒ 1),
and it is similar to 2) ⇒ 3) 

1) q1⇐ q2

2) There is a homomorphism h1→2 from q1 to q2

3) q1(DC[q2]) is true

(q1 ⊇ q2)

Chandra, Merlin. "Optimal implementation of conjunctive queries in relational data bases." STOC 1977. https://doi.org/10.1145/800105.803397

q1 :- E(x,y) q2 :- E(x,x)

E(1,1)

h

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/800105.803397
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[Chandra and Merlin 1977]

1. For q2(D) to hold, there is a valuation v s.t. v(q2) ∈ D
We show: If there is a homomorphism h1→2, then for any D: q1(D) ⇐ q2(D)

g=v ∘ h
g(x)=v(h(x))2. We will show that the composition g = v ∘ h is a valuation for q1

G

q1 q2

Query evaluation
G ⊨ q2

Query containment q1 ⇐ q2

q1 :- E(x,y) q2 :- E(x,x)

E(1,1)

Chandra, Merlin. "Optimal implementation of conjunctive queries in relational data bases." STOC 1977. https://doi.org/10.1145/800105.803397

v

h

g

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/800105.803397
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[Chandra and Merlin 1977]

1. For q2(D) to hold, there is a valuation v s.t. v(q2) ∈ D

2a. By definition of h, for every R(x1,x2,...) in q1, R(h(x1),h(x2),...) in q2
2b. By definition of v, for every R(x1,x2,...) in q1, R(v(h(x1)),v(h(x2)),...) in D

We show: If there is a homomorphism h1→2, then for any D: q1(D) ⇐ q2(D)
g=v ∘ h

g(x)=v(h(x))2. We will show that the composition g = v ∘ h is a valuation for q1

G

q1 q2

Query evaluation
G ⊨ q2

Query containment q1 ⇐ q2

q1 :- E(x,y) q2 :- E(x,x)

E(1,1)

Chandra, Merlin. "Optimal implementation of conjunctive queries in relational data bases." STOC 1977. https://doi.org/10.1145/800105.803397

v

h

g

QED J

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/800105.803397
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[Chandra and Merlin 1977]

y z

x

h1→2= {(s,x),(u,y),(v,y),(w,z)} 

Example
q1 :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)
q2 :- R(x,y), R(y,y), R(y,z)

1. For q2(D) to hold, there is a valuation v s.t. v(q2) ∈ D

2a. By definition of h, for every R(x1,x2,...) in q1, R(h(x1),h(x2),...) in q2
2b. By definition of v, for every R(x1,x2,...) in q1, R(v(h(x1)),v(h(x2)),...) in D

We show: If there is a homomorphism h1→2, then for any D: q1(D) ⇐ q2(D)
g=v ∘ h

g(x)=v(h(x))2. We will show that the composition g = v ∘ h is a valuation for q1

q2(x)

v

u

w

s

q1(x)

https://northeastern-datalab.github.io/cs7240/
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[Chandra and Merlin 1977]

y z

x

h1→2= {(s,x),(u,y),(v,y),(w,z)} 

v={(x,a),(y,b),(z,c)} 
Example
q1 :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)
q2 :- R(x,y), R(y,y), R(y,z)

R A B
a b
b b
b c

1. For q2(D) to hold, there is a valuation v s.t. v(q2) ∈ D

2a. By definition of h, for every R(x1,x2,...) in q1, R(h(x1),h(x2),...) in q2
2b. By definition of v, for every R(x1,x2,...) in q1, R(v(h(x1)),v(h(x2)),...) in D

We show: If there is a homomorphism h1→2, then for any D: q1(D) ⇐ q2(D)
g=v ∘ h

g(x)=v(h(x))2. We will show that the composition g = v ∘ h is a valuation for q1

q2(x)

v

u

w

s

q1(x)

https://northeastern-datalab.github.io/cs7240/
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[Chandra and Merlin 1977]

y z

x

h1→2= {(s,x),(u,y),(v,y),(w,z)} 

v={(x,a),(y,b),(z,c)} 
Example
q1 :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)
q2 :- R(x,y), R(y,y), R(y,z)

R A B
a b
b b
b c

g= {(s,a),(u,b),(v,b),(w,c)} 

1. For q2(D) to hold, there is a valuation v s.t. v(q2) ∈ D

2a. By definition of h, for every R(x1,x2,...) in q1, R(h(x1),h(x2),...) in q2
2b. By definition of v, for every R(x1,x2,...) in q1, R(v(h(x1)),v(h(x2)),...) in D

We show: If there is a homomorphism h1→2, then for any D: q1(D) ⇐ q2(D)
g=v ∘ h

g(x)=v(h(x))2. We will show that the composition g = v ∘ h is a valuation for q1

q2(x)

v

u

w

s

q1(x)

https://northeastern-datalab.github.io/cs7240/
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Combined complexity of CQC and CQE
Corollary:
The following problems are NP-complete (in the size of Q or Q'):

2) Given a Boolean conjunctive query Q and an instance D, does D ⊨ Q ?

(a) Membership in NP follows from the Homomophism Theorem:

1) Given two (Boolean) conjunctive queries Q and Q’, is Q ⊆ Q’ ?

Proof:

(b) NP-hardness follows from 3-Colorability: 

Q ⊆ Q' if and only if there is a homomorphism h: Q' → Q

G is 3-colorable if and only if QK3 ⊆ QG.

https://northeastern-datalab.github.io/cs7240/
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The Complexity of Database Query Languages

Relational 
Calculus

CQs

Query Eval.: 
Data Complexity

In LOGSPACE
(hence, in P)

In LOGSPACE
(hence, in P)

Query Eval.: 
Combined Compl.

PSPACE-
complete

NP-complete

Query Equivalence 
& Containment

Undecidable NP-complete

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases

