Updated 2/24/2023

Topic 2: Complexity of Query Evaluation Unit 1: Conjunctive Queries Lecture 14

Wolfgang Gatterbauer

CS7240 Principles of scalable data management (sp23)

https://northeastern-datalab.github.io/cs7240/sp23/

2/24/2023

Pre-class conversations

- Last class summary
- Project ideas
- Today:
 - Homomorphisms and the connections to:
 - Query containment
 - Query minimization
 - Query evaluation

Outline: T2-1/2: Query Evaluation & Query Equivalence

- T2-1: Conjunctive Queries (CQs)
 - CQ equivalence and containment
 - Graph homomorphisms
 - Homomorphism beyond graphs
 - CQ containment
 - CQ minimization
- T2-2: Equivalence Beyond CQs
 - Union of CQs, and inequalities
 - Union of CQs equivalence under bag semantics
 - Tree pattern queries
 - Nested queries

Source: https://en.wikipedia.org/wiki/Bijection, injection and surjection

Source: <u>https://en.wikipedia.org/wiki/Bijection, injection and surjection</u>

66

$\exists ! y \in Y[P(y)]$ $\exists y \in Y[P(y) \land \forall y' \in Y[P(y') \Rightarrow y = y']]$ $\exists y \in Y[P(y) \land \neg \exists y' \in Y[P(y') \land y \neq y']]$

Functionmaps each argument (element from its domain)
to exactly one image (element in its codomain)
 $\forall x \in X, \exists ! y \in Y[y = f(x)]$ }

("one-to-one"): each element of the codomain is mapped to by <u>at most one</u> element of the domain (i.e. distinct elements of the domain map to distinct elements in the codomain)

logical transpose without inequality: ... $\land \forall x, x' \in X$. $[x \neq x' \Rightarrow f(x) \neq f(x')]$ $(x \neq x' \Rightarrow f(x) \neq f(x')]$

Surjective function

Injective

function

("onto"): each element of the codomain is mapped to by <u>at least one</u> element of the domain (i.e. the image and the codomain of the function are equal) $\dots \land \forall y \in Y, \exists x \in X[y = f(x)]$

Bijective function

Source: https://en.wikipedia.org/wiki/Bijection, injection and surjection

$\exists ! y \in Y[P(y)]$ $\exists y \in Y[P(y) \land \forall y' \in Y[P(y') \Rightarrow y = y']]$ $\exists y \in Y[P(y) \land \neg \exists y' \in Y[P(y') \land y \neq y']]$ Source: https://en.wikipedia.org/wiki/Bijection, injection and surjection

Functionmaps each argument (element from its domain)
to exactly one image (element in its codomain)
 $\forall x \in X, \exists ! y \in Y[y = f(x)]$ }Injective("one-to-one"): each element of the codomain is

mapped to by <u>at most one</u> element of the domain (i.e. distinct elements of the domain map to distinct elements in the codomain)

logical transpose without inequality: $\dots \land \forall x, x' \in X$. $[x \neq x' \Rightarrow f(x) \neq f(x')]$ $(x \neq x' \Rightarrow f(x) \neq f(x')]$

Surjective function

function

Bijective function ("onto"): each element of the codomain is mapped to by <u>at least one</u> element of the domain (i.e. the image and the codomain of the function are equal) $\dots \land \forall y \in Y, \exists x \notin X[y = f(x)]$

("invertible"): each element of the codomain is mapped to by <u>exactly one</u> element of the domain (both injective and surjective)

 $\dots \land \forall y \in Y, \exists ! x \in X[y = f(x)]\}$

not a mapping (or function)!

≻

not a mapping (or function)!

injective function (or one-to-one): maps distinct elements of its domain to <u>distinct elements of its codomain</u>

≻€ ►

not a mapping (or function)!

injective function (or one-to-one): maps distinct elements of its domain to <u>distinct elements of its codomain</u>

surjective (or onto): every element y in the codomain Y of f has at least one element x in the domain that maps to it

not a mapping (or function)!

injective function (or one-to-one): maps distinct elements of its domain to <u>distinct elements of its codomain</u>

surjective (or onto): every element y in the codomain Y of f has at least one element x in the domain that maps to it

injective & surjective = bijection

not a mapping (or function)!

injective function (or one-to-one): maps distinct elements of its domain to <u>distinct elements of its codomain</u>

surjective (or onto): every element y in the codomain Y of f has at least one element x in the domain that maps to it

injective & surjective = bijection

neighter

not a mapping (or function)!

injective function (or one-to-one): maps distinct elements of its domain to <u>distinct elements of its codomain</u>

surjective (or onto): every element y in the codomain Y of f has at least one element x in the domain that maps to it

injective & surjective = bijection

neighter

not even a mapping!

Bijection, Injection, and Surjection

Sources: http://mathonline.wikidot.com/injections-surjections-and-bijections,

https://www.intechopen.com/books/protein-interactions/relating-protein-structure-and-function-through-a-bijection-and-its-implications-on-protein-structur,

Bijection, Injection, and Surjection

not surjective

We make a detour to Graph matching

• Finding a correspondence between the nodes and the edges of two graphs that satisfies some (more or less stringent) constraints

- A graph homomorphism *h* from graph $G(V_G, E_G)$ to $H(V_H, E_H)$, is a mapping from V_G to V_H such that $\{x, y\} \in E_G$ implies $\{h(x), h(y)\} \in E_H$
 - "edge-preserving": if two nodes in G are linked by an edge, then they are mapped to two nodes in H that are also linked

- A graph homomorphism *h* from graph $G(V_G, E_G)$ to $H(V_H, E_H)$, is a mapping from V_G to V_H such that $\{x, y\} \in E_G$ implies $\{h(x), h(y)\} \in E_H$
 - "edge-preserving": if two nodes in G are linked by an edge, then they are mapped to two nodes in H that are also linked

- A graph homomorphism *h* from graph $G(V_G, E_G)$ to $H(V_H, E_H)$, is a mapping from V_G to V_H such that $\{x, y\} \in E_G$ implies $\{h(x), h(y)\} \in E_H$
 - "edge-preserving": if two nodes in G are linked by an edge, then they are mapped to two nodes in H that are also linked

- A graph homomorphism h from graph $G(V_G, E_G)$ to $H(V_H, E_H)$, is a mapping from V_G to V_H such that $\{x, y\} \in E_G$ implies $\{h(x), h(y)\} \in E_H$
 - "edge-preserving": if two nodes in G are linked by an edge, then they are mapped to two nodes in H that are also linked

- Graphs $G(V_G, E_G)$ and $H(V_H, E_H)$ are isomorphic iff there is an invertible h from V_G to V_H s.t. $\{x, y\} \in E_G$ iff $\{h(u), h(v)\} \in E_H$
 - We need to find a one-to-one correspondence

- Graphs $G(V_G, E_G)$ and $H(V_H, E_H)$ are isomorphic iff there is an invertible h from V_G to V_H s.t. $\{x, y\} \in E_G$ iff $\{h(u), h(v)\} \in E_H$
 - We need to find a one-to-one correspondence

- Graphs $G(V_G, E_G)$ and $H(V_H, E_H)$ are isomorphic iff there is an invertible h from V_G to V_H s.t. $\{x, y\} \in E_G$ iff $\{h(u), h(v)\} \in E_H$
 - We need to find a one-to-one correspondence

Is there an isomorphism from G to H?

- Graphs $G(V_G, E_G)$ and $H(V_H, E_H)$ are isomorphic iff there is an invertible h from V_G to V_H s.t. $\{x, y\} \in E_G$ iff $\{h(u), h(v)\} \in E_H$
 - We need to find a one-to-one correspondence

Outline: T2-1/2: Query Evaluation & Query Equivalence

- T2-1: Conjunctive Queries (CQs)
 - CQ equivalence and containment
 - Graph homomorphisms
 - Homomorphism beyond graphs
 - CQ containment
 - CQ minimization
- T2-2: Equivalence Beyond CQs
 - Union of CQs, and inequalities
 - Union of CQs equivalence under bag semantics
 - Tree pattern queries
 - Nested queries

Graph Homomorphism beyond graphs

Definition : Let G and H be graphs. A homomorphism of G to H is a function $f: V(G) \rightarrow V(H)$ such that

 \mathcal{G}

 $(x,y)\in E(G)\Rightarrow (f(x),f(y))\in E(H).$

We sometimes write $G \rightarrow H$ (G \rightarrow H) if there is a homomorphism (no homomorphism) of G to H

Definition of a homomorphism naturally extends to:

- digraphs (directed graphs)
- edge-colored graphs
- relational systems
- constraint satisfaction problems (CSPs)

Based upon an example from Rick Brewster's Graph homomorphism tutorial, 2006 Wolfgang Gatterbauer. Principles of scalable data management: <u>https://northeastern-datalab.github.io/cs7240/</u>

Can this assignment be extended to a homomorphism?

Based upon an example from Rick Brewster's Graph homomorphism tutorial, 2006 Wolfgang Gatterbauer. Principles of scalable data management: <u>https://northeastern-datalab.github.io/cs7240/</u> No, this assignment requires a loop on vertex 1 (in H)

Based upon an example from Rick Brewster's Graph homomorphism tutorial, 2006 Wolfgang Gatterbauer. Principles of scalable data management: <u>https://northeastern-datalab.github.io/cs7240/</u>

Definition: Let G and H be graphs. A homom. of G to H is a function f: $V(G) \rightarrow V(H)$ s.t. that

 $(x,y) \in E(G) \Rightarrow (f(x),f(y)) \in E(H).$

Based upon an example from Rick Brewster's Graph homomorphism tutorial, 2006 Wolfgang Gatterbauer. Principles of scalable data management: <u>https://northeastern-datalab.github.io/cs7240/</u>

Definition: Let G and H be graphs. A homom. of G to H is a function f: $V(G) \rightarrow V(H)$ s.t. that

Basically a partitioning problem!

The quotient set of the partition (set of equivalence classes of the partition) is a subgraph of H.

Some observations

When does $G \rightarrow K_3$ hold? ($K_3 = 3$ -clique = triangle)
Some observations When does $G \rightarrow K_3$ hold? ($K_3 = 3$ -clique = triangle) iff G is 3-colorable

When does $G \rightarrow K_d$ hold? ($K_d = d$ -clique)

What is the complexity of testing for the existence of a homomorphism (in the size of G)? More on 3-coloring: https://en.wikipedia.org/wiki/Graph_coloring#Computational_complexity Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Thus homomorphisms generalize colorings: Notation: $G \rightarrow H$ is an H-coloring of G.

When does $G \rightarrow K_d$ hold? ($K_d = d$ -clique) iff G is d-colorable

When does $G \rightarrow K_3$ hold? ($K_3 = 3$ -clique = triangle) iff G is 3-colorable

Some observations

What is the complexity of testing for the existence of a homomorphism (in the size of G)? NP-complete More on 3-coloring: https://en.wikipedia.org/wiki/Graph_coloring#Computational_complexity Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Thus homomorphisms generalize colorings: Notation: $G \rightarrow H$ is an H-coloring of G.

When does $G \rightarrow K_d$ hold? ($K_d = d$ -clique) iff G is d-colorable

iff G is 3-colorable

Some observations When does $G \rightarrow K_3$ hold? ($K_3 = 3$ -clique = triangle)

The complexity of H-coloring

H-coloring:

Let H be a fixed graph.

Instance: A graph G.

Question: Does G admit an H-coloring?

Repeated variable names

In sentences with multiple quantifiers, <u>distinct variables do not need</u> to range over distinct objects! (cp. homomorphism vs. isomorphism)

Repeated variable names

In sentences with multiple quantifiers, <u>distinct variables do not need</u> <u>to range over distinct objects</u>! (cp. homomorphism vs. isomorphism)

A more abstract (general) view on homomorphisms

Homomorphisms on Binary Structures

- Definition (Binary algebraic structure): A binary algebraic structure is a set together with a binary operation on it. This is denoted by an ordered pair (*S*,*) in which *S* is a set and * is a binary operation on *S*.
- Definition (homomorphism of binary structures): Let (S,*) and (S',∘) be binary structures. A homomorphism from (S,*) to (S',∘) is a map h: S → S' that satisfies, for all x, y in S:

 $h(x \star y) = h(x) \circ h(y)$

• We can denote it by $h: (S, \star) \longrightarrow (S', \circ)$.

• Let $h(x) = e^x$. Is h a homomorphism b/w two binary structures?

- Let $h(x) = e^x$. Is h a homomorphism b/w two binary structures?
 - Yes, from the real numbers with addition (\mathbb{R} ,+) to $h(x+y) = h(x) \cdot h(y)$
 - the positive real numbers with multiplication (\mathbb{R}^+, \cdot) $h: (\mathbb{R}, +) \to (\mathbb{R}^+, \cdot)$
 - It is even an isomorphism!

The exponential map $\exp : \mathbb{R} \to \mathbb{R}^+$ defined by $\exp(x) = e^x$, where *e* is the base of the natural logarithm, is an isomorphism from $(\mathbb{R}, +)$ to (\mathbb{R}^+, \times) . Exp is a bijection since it has an inverse function (namely \log_e) and exp preserves the group operations since $e^{x+y} = e^x e^y$. In this example both the elements and the operations are different yet the two groups are isomorphic, that is, as groups they have identical structures.

• Let $g(x) = e^{ix}$. Is g also a homomorphism?

7

Paragraph screenshot from p.37 in 2004 - Dummit, Foote - Abstract algebra (book, 3rd ed). <u>https://www.wiley.com/en-us/Abstract+Algebra%2C+3rd+Edition-p-9780471433347</u> Wolfgang Gatterbauer. Principles of scalable data management: <u>https://northeastern-datalab.github.io/cs7240/</u>

- Let $h(x) = e^x$. Is h a homomorphism b/w two binary structures?
 - Yes, from the real numbers with addition (\mathbb{R} ,+) to $h(x+y) = h(x) \cdot h(y)$
 - the positive real numbers with multiplication (\mathbb{R}^+, \cdot) $h:(\mathbb{R}, +) \to (\mathbb{R}^+, \cdot)$
 - It is even an isomorphism!

The exponential map exp : $\mathbb{R} \to \mathbb{R}^+$ defined by $\exp(x) = e^x$, where *e* is the base of the natural logarithm, is an isomorphism from $(\mathbb{R}, +)$ to (\mathbb{R}^+, \times) . Exp is a bijection since it has an inverse function (namely \log_e) and exp preserves the group operations since $e^{x+y} = e^x e^y$. In this example both the elements and the operations are different yet the two groups are isomorphic, that is, as groups they have identical structures.

- Let $g(x) = e^{ix}$. Is g also a homomorphism?
 - Yes, from the real numbers with addition (\mathbb{R} ,+) to
 - the unit circle in the complex plane with rotation

$$\begin{array}{ll} G = \mathbb{R} \quad \text{under} + & f: G \to H \\ H = \{ z \in \mathbb{C} : |z| = 1 \} & z \mapsto e^{ix} \\ = \text{Group under} \times & \text{Show } f(x + y) = f(x) \times f(y) \\ e^{i(x+y)} = e^{ix} \times e^{iy} \\ e^{ix+iy} = e^{ix} \times e^{iy} \\ e^{ix+iy} = e^{ix} \times e^{iy} \\ e^{ix} \times e^{iy} = e^{ix} \times e^{iy} \\ f(0) = f(2\pi) = 1, \quad f(2\pi\pi) = 1 \\ f \text{ is not } 1-1 \end{array}$$

Source: 3blue1brown. Euler's formula with introductory group theory, 2017: <u>https://www.youtube.com/watch?v=mvmuCPvRoWQ</u> Wolfgang Gatterbauer. Principles of scalable data management: <u>https://northeastern-datalab.github.io/cs7240/</u>

Isomorphism

- **Definition**: A homomorphism of binary structures is called an isomorphism iff the corresponding map of sets is:
 - one-to-one (injective) and
 - onto (surjective).

Some homomorphisms

- Homomorphism: preserves the structure (e.g. a homomorphism φ on \mathbb{Z}_2 satisfies $\varphi(g + h) = \varphi(g) + \varphi(h)$)
- Epimorphism: a homomorphism that is surjective (AKA onto)
- Monomorphism: a homomorphism that is injective (AKA one-to-one, 1-1, or univalent)
- **Isomorphism**: a homomorphism that is **bijective** (AKA 1-1 and onto); isomorphic objects are equivalent, but perhaps defined in different ways
- Endomorphism: a homomorphism from an object to itself
- Automorphism: a bijective endomorphism (an isomorphism from an object onto itself, essentially just a re-labeling of elements)

Source: <u>https://www.mathphysicsbook.com/mathematics/mathematical-structures/defining-mathematical-structures-and-mappings/</u> Wolfgang Gatterbauer. Principles of scalable data management: <u>https://northeastern-datalab.github.io/cs7240/</u>

Outline: T2-1/2: Query Evaluation & Query Equivalence

- T2-1: Conjunctive Queries (CQs)
 - CQ equivalence and containment
 - Graph homomorphisms
 - Homomorphism beyond graphs
 - CQ containment
 - CQ minimization
- T2-2: Equivalence Beyond CQs
 - Union of CQs, and inequalities
 - Union of CQs equivalence under bag semantics
 - Tree pattern queries
 - Nested queries

Query Containment

Two queries q_1 , q_2 are equivalent, denoted $q_1 \equiv q_2$, if for every database instance D, we have $q_1(D) = q_2(D)$. the answer (set of tuples) - returned by one is guaranteed to be identical to the other answer

Query q_1 is contained in query q_2 , denoted $q_1 \subseteq q_2$, if for every database instance D, we have $q_1(D) \subseteq q_2(D)$

Corollary

$$q_1 \equiv q_2$$
 is equivalent to $(q_1 \subseteq q_2 \text{ and } q_1 \supseteq q_2)$

If queries are Boolean, then query containment = logical implication: $q_1 \Leftrightarrow q_2$ is equivalent to

Query Containment

Two queries q_1 , q_2 are equivalent, denoted $q_1 \equiv q_2$, if for every database instance D, we have $q_1(D) = q_2(D)$. the answer (set of tuples) - returned by one is guaranteed to be identical to the other answer

Query q_1 is contained in query q_2 , denoted $q_1 \subseteq q_2$, if for every database instance D, we have $q_1(D) \subseteq q_2(D)$

Corollary

$$q_1 \equiv q_2$$
 is equivalent to $(q_1 \subseteq q_2 \text{ and } q_1 \supseteq q_2)$

If queries are Boolean, then query containment = logical implication: $q_1 \Leftrightarrow q_2$ is equivalent to $(q_1 \Rightarrow q_2 \text{ and } q_1 \leftarrow q_2)$

A homomorphism *h* from Boolean q_1 to q_2 is a function *h*: var $(q_1) \rightarrow$ var $(q_2) \cup$ const (q_2) such that:

for every atom $R(x_1, x_2, ...)$ in q_1 , there is an atom $R(h(x_1), h(x_2), ...)$ in q_2

need to be same relation!

<u>Example</u>

 $q_1 := R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)$ $q_2 := R(x,y), R(y,y), R(y,z)$

Wolfgang Gatterbauer. Principles of scalable data management: <u>https://northeastern-datalab.github.io/cs7240/</u>

120

A homomorphism *h* from Boolean q_1 to q_2 is a function *h*: var $(q_1) \rightarrow$ var (q_2) U const (q_2) such that:

for every atom $R(x_1, x_2, ...)$ in q_1 , there is an atom $R(h(x_1), h(x_2), ...)$ in q_2

need to be same relation!

Example

 $q_1 := R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)$ $q_2 := R(x,y), R(y,y), R(y,z)$

A homomorphism *h* from Boolean q_1 to q_2 is a function *h*: var $(q_1) \rightarrow$ var (q_2) U const (q_2) such that: for every atom $R(x_1, x_2, ...)$ in q_1 , there is an atom $R(h(x_1), h(x_2), ...)$ in q_2

Example

 $q_1 := R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)$ $q_2 := R(x,y), R(y,y), R(y,z)$

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A homomorphism *h* from Boolean q_1 to q_2 is a function *h*: var $(q_1) \rightarrow$ var $(q_2) \cup$ const (q_2) such that: for every atom $R(x_1, x_2, ...)$ in q_1 , there is an atom $R(h(x_1), h(x_2), ...)$ in q_2

Example

$q_1 := R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)$ $q_2 := R(x,y), R(y,y), R(y,z)$

A homomorphism *h* from Boolean q_1 to q_2 is a function *h*: var $(q_1) \rightarrow$ var (q_2) U const (q_2) such that: for every atom $R(x_1, x_2, ...)$ in q_1 , there is an atom $R(h(x_1), h(x_2), ...)$ in q_2

Example

$q_1 := R(s,u), R(u,w), R(s,v), R(v,w), R(u,v), R(v,v)$ $q_2 := R(x,y), R(y,y), R(y,z)$

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query homomorphisms and containment

A homomorphism h from Boolean q_1 to q_2 is a function h: $var(q_1) \rightarrow var(q_2) \cup const(q_2)$ such that:

for every atom $R(x_1, x_2, ...)$ in q_1 , there is an atom $R(h(x_1), h(x_2), ...)$ in q_2

$$\mathcal{E}(1,2)$$
Compare to our earlier example: $\mathcal{E}(1,1)$ $\exists x. \exists y. E(x,y) \gtrless \exists x. E(x,x)$ $\underline{\mathsf{Example}}$ $q_1 := R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)$ $q_2 := R(x,y), R(y,y), R(y,z)$

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example

Query homomorphisms and containment

A homomorphism *h* from Boolean q_1 to q_2 is a function $h: var(q_1) \rightarrow var(q_2) \cup const(q_2)$ such that:

for every atom $R(x_1, x_2, ...)$ in q_1 , there is an atom $R(h(x_1), h(x_2), ...)$ in q_2

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Overview: "All homomorphisms" in one slide

Canonical database

DEFINITION Canonical database

Given a conjunctive query q, the canonical database $D_c[q]$ is the database instance where each atom in q becomes a fact in the instance.

Example $q_2(x) := R(x,y), R(y,y), R(y,z)$ $D_c[q_2] = ?$

Canonical database

DEFINITION Canonical database

Given a conjunctive query q, the canonical database $D_c[q]$ is the database instance where each atom in q becomes a fact in the instance.

$\begin{array}{ll} \underline{\mathsf{Example}} \\ q_2(x) := R(x,y), R(y,y), R(y,z) \\ D_c[q_2] = \{R('x','y'), R('y','y'), R('y','z')\} \\ & \equiv \{R(\mathsf{a},\mathsf{b}), R(\mathsf{b},\mathsf{b}), R(\mathsf{b},\mathsf{c})\} \\ & \equiv \{R(\mathsf{a},\mathsf{b}), R(\mathsf{b},\mathsf{b}), R(\mathsf{b},\mathsf{c})\} \\ & \equiv \{R(\mathsf{1},\mathsf{2}), R(\mathsf{2},\mathsf{2}), R(\mathsf{2},\mathsf{3})\} \\ \end{array}$

Just treat each variable as different constant ©

THEOREM (Query Containment)

Given two Boolean CQs q_1 , q_2 , the following statements are equivalent:

1) $q_1 \leftarrow q_2$ $(q_1 \supseteq q_2)$

2) There is a homomorphism $h_{1 \rightarrow 2}$ from q_1 to q_2

3) $q_1(D_c[q_2])$ is true

We will look at 2) \Rightarrow 1), and it is similar to 2) \Rightarrow 3) $G \stackrel{\exists \exists f(1,1)}{\bigcirc} Query evaluation$ $G \vDash q_2$ $q_1 := \exists f(x,y) \quad q_1 \stackrel{h}{\longrightarrow} q_2 \quad q_2 := \exists f(x,x)$ $Query \text{ containment } q_1 \Leftarrow q_2$

Chandra, Merlin. "Optimal implementation of conjunctive queries in relational data bases." STOC 1977. <u>https://doi.org/10.1145/800105.803397</u> Wolfgang Gatterbauer. Principles of scalable data management: <u>https://northeastern-datalab.github.io/cs7240/</u>

We show: If there is a homomorphism $h_{1 \rightarrow 2}$, then for any D: $q_1(D) \leftarrow q_2(D)$

1. For $q_2(D)$ to hold, there is a valuation v s.t. $v(q_2) \in D$

2. We will show that the composition $g = v \circ h$ is a valuation for q_1

 $g = v \circ h$ g(x) = v(h(x))

Chandra, Merlin. "Optimal implementation of conjunctive queries in relational data bases." STOC 1977. <u>https://doi.org/10.1145/800105.803397</u> Wolfgang Gatterbauer. Principles of scalable data management: <u>https://northeastern-datalab.github.io/cs7240/</u>

- We show: If there is a homomorphism $h_{1 \rightarrow 2}$, then for any D: $q_1(D) \leftarrow q_2(D)$
- 1. For $q_2(D)$ to hold, there is a valuation v s.t. $v(q_2) \in D$
- 2. We will show that the composition $g = v \circ h$ is a valuation for q_1
 - 2a. By definition of h, for every $R(x_1, x_2, ...)$ in q_1 , $R(h(x_1), h(x_2), ...)$ in q_2
 - 2b. By definition of v, for every $R(x_1, x_2, ...)$ in q_1 , $R(v(h(x_1)), v(h(x_2)), ...)$ in D

QED 🙂

 $q = v \circ h$

q(x) = v(h(x))

Chandra, Merlin. "Optimal implementation of conjunctive queries in relational data bases." STOC 1977. <u>https://doi.org/10.1145/800105.803397</u> Wolfgang Gatterbauer. Principles of scalable data management: <u>https://northeastern-datalab.github.io/cs7240/</u>

- We show: If there is a homomorphism $h_{1 \rightarrow 2}$, then for any D: $q_1(D) \leftarrow q_2(D)$
- 1. For $q_2(D)$ to hold, there is a valuation v s.t. $v(q_2) \in D$
- 2. We will show that the composition $g = v \circ h$ is a valuation for q_1
 - 2a. By definition of h, for every $R(x_1, x_2, ...)$ in q_1 , $R(h(x_1), h(x_2), ...)$ in q_2
 - 2b. By definition of v, for every $R(x_1, x_2, ...)$ in q_1 , $R(v(h(x_1)), v(h(x_2)), ...)$ in D

 $q = v \circ h$

q(x) = v(h(x))

Example

 $q_1 := R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)$ $q_2 := R(x,y), R(y,y), R(y,z)$

- We show: If there is a homomorphism $h_{1 \rightarrow 2}$, then for any D: $q_1(D) \leftarrow q_2(D)$
- 1. For $q_2(D)$ to hold, there is a valuation v s.t. $v(q_2) \in D$
- 2. We will show that the composition $g = v \circ h$ is a valuation for q_1
 - 2a. By definition of h, for every $R(x_1, x_2, ...)$ in q_1 , $R(h(x_1), h(x_2), ...)$ in q_2
 - 2b. By definition of v, for every $R(x_1, x_2, ...)$ in q_1 , $R(v(h(x_1)), v(h(x_2)), ...)$ in D

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

X

 $q = v \circ h$

q(x) = v(h(x))

A B

 $v = \{(x,a), (y,b), (z,c)\}$

 $q_2(x)$

- We show: If there is a homomorphism $h_{1 \rightarrow 2}$, then for any D: $q_1(D) \leftarrow q_2(D)$
- 1. For $q_2(D)$ to hold, there is a valuation v s.t. $v(q_2) \in D$
- 2. We will show that the composition $g = v \circ h$ is a valuation for q_1
 - 2a. By definition of h, for every $R(x_1, x_2, ...)$ in q_1 , $R(h(x_1), h(x_2), ...)$ in q_2
 - 2b. By definition of v, for every $R(x_1, x_2, ...)$ in q_1 , $R(v(h(x_1)), v(h(x_2)), ...)$ in D

Example

 $q_1 := R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)$ $q_2 := R(x,y), R(y,y), R(y,z)$

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

 $q = v \circ h$

g(x) = v(h(x))

A B

 $v = \{(x,a), (y,b), (z,c)\}$

 $q_2(x)$

Combined complexity of CQC and CQE

Corollary:

The following problems are NP-complete (in the size of Q or Q'):

- 1) Given two (Boolean) conjunctive queries Q and Q', is $Q \subseteq Q'$?
- 2) Given a Boolean conjunctive query Q and an instance D, does $D \models Q$?

Proof:

(a) Membership in NP follows from the Homomophism Theorem: $Q \subseteq Q'$ if and only if there is a homomorphism h: $Q' \rightarrow Q$

(b) NP-hardness follows from 3-Colorability: G is 3-colorable if and only if $Q^{K_3} \subseteq Q^{G_1}$
The Complexity of Database Query Languages

	Relational	CQs
	Calculus	
Query Eval.:	In LOGSPACE	In LOGSPACE
Data Complexity	(hence, in P)	(hence, in P)
Query Eval.:	PSPACE-	NP-complete
Combined Compl.	complete	
Query Equivalence	Undecidable	NP-complete
& Containment		

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. <u>https://simons.berkeley.edu/talks/logic-and-databases</u> Wolfgang Gatterbauer. Principles of scalable data management: <u>https://northeastern-datalab.github.io/cs7240/</u>