
61

Topic 2: Complexity of Query Evaluation
Unit 1: Conjunctive Queries
Lecture 14

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp23)
https://northeastern-datalab.github.io/cs7240/sp23/
2/24/2023

Updated 2/24/2023

https://northeastern-datalab.github.io/cs7240/sp23/

62Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Pre-class conversations

• Last class summary
• Project ideas

• Today:
- Homomorphisms and the connections to:

• Query containment
• Query minimization
• Query evaluation

https://northeastern-datalab.github.io/cs7240/

63

Outline: T2-1/2: Query Evaluation & Query Equivalence

• T2-1: Conjunctive Queries (CQs)
– CQ equivalence and containment
– Graph homomorphisms
– Homomorphism beyond graphs
– CQ containment
– CQ minimization

• T2-2: Equivalence Beyond CQs
– Union of CQs, and inequalities
– Union of CQs equivalence under bag semantics
– Tree pattern queries
– Nested queries

64Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Injective, Surjective, and Bijective functions

Surjective
function

Bijective
function

Injective
function

Function

𝑓: 𝑋 → 𝑌

?

?

?

?
Source: https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection

65Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Injective, Surjective, and Bijective functions
maps each argument (element from its domain)
to exactly one image (element in its codomain)

𝑓: 𝑋 → 𝑌

∀𝑥 ∈ 𝑋, ∃! 𝑦 ∈ 𝑌[𝑦 = 𝑓(𝑥)]}

Surjective
function

Bijective
function

Injective
function

Function

?

?

?

Source: https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection

∃! 𝑦 ∈ 𝑌[𝑃 𝑦]
∃𝑦 ∈ 𝑌[𝑃 𝑦 ∧ ∀𝑦! ∈ 𝑌 𝑃 𝑦! ⇒ 𝑦 = 𝑦!]
∃𝑦 ∈ 𝑌[𝑃 𝑦 ∧ ¬∃𝑦! ∈ 𝑌 𝑃 𝑦! ∧ 𝑦 ≠ 𝑦!]

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection

66Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

…∧ ∀𝑥, 𝑥# ∈ 𝑋. [𝑥 ≠ 𝑥′ ⇒ 𝑓(𝑥) ≠ 𝑓(𝑥#)]
…∧ ∀𝑥, 𝑥# ∈ 𝑋. 𝑓 𝑥 = 𝑓 𝑥# ⇒ 𝑥 = 𝑥#

Injective, Surjective, and Bijective functions

("one-to-one"): each element of the codomain is
mapped to by at most one element of the domain
(i.e. distinct elements of the domain map to
distinct elements in the codomain)

maps each argument (element from its domain)
to exactly one image (element in its codomain)

𝑓: 𝑋 → 𝑌

∀𝑥 ∈ 𝑋, ∃! 𝑦 ∈ 𝑌[𝑦 = 𝑓(𝑥)]}

logical transpose
without inequality:

Surjective
function

Bijective
function

Injective
function

Function

Source: https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection

∃! 𝑦 ∈ 𝑌[𝑃 𝑦]
∃𝑦 ∈ 𝑌[𝑃 𝑦 ∧ ∀𝑦! ∈ 𝑌 𝑃 𝑦! ⇒ 𝑦 = 𝑦!]
∃𝑦 ∈ 𝑌[𝑃 𝑦 ∧ ¬∃𝑦! ∈ 𝑌 𝑃 𝑦! ∧ 𝑦 ≠ 𝑦!]

?

?

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection

67Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Injective, Surjective, and Bijective functions

("onto"): each element of the codomain is mapped
to by at least one element of the domain (i.e. the
image and the codomain of the function are equal)

("one-to-one"): each element of the codomain is
mapped to by at most one element of the domain
(i.e. distinct elements of the domain map to
distinct elements in the codomain)

maps each argument (element from its domain)
to exactly one image (element in its codomain)
∀𝑥 ∈ 𝑋, ∃! 𝑦 ∈ 𝑌[𝑦 = 𝑓(𝑥)]}

…∧ ∀𝑦 ∈ 𝑌, ∃𝑥 ∈ 𝑋[𝑦 = 𝑓 𝑥]

Surjective
function

Bijective
function

Injective
function

Function

Source: https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection

…∧ ∀𝑥, 𝑥# ∈ 𝑋. [𝑥 ≠ 𝑥′ ⇒ 𝑓(𝑥) ≠ 𝑓(𝑥#)]
…∧ ∀𝑥, 𝑥# ∈ 𝑋. 𝑓 𝑥 = 𝑓 𝑥# ⇒ 𝑥 = 𝑥#

𝑓: 𝑋 → 𝑌

logical transpose
without inequality:

∃! 𝑦 ∈ 𝑌[𝑃 𝑦]
∃𝑦 ∈ 𝑌[𝑃 𝑦 ∧ ∀𝑦! ∈ 𝑌 𝑃 𝑦! ⇒ 𝑦 = 𝑦!]
∃𝑦 ∈ 𝑌[𝑃 𝑦 ∧ ¬∃𝑦! ∈ 𝑌 𝑃 𝑦! ∧ 𝑦 ≠ 𝑦!]

?

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection

68Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

…∧ ∀𝑥, 𝑥# ∈ 𝑋. [𝑥 ≠ 𝑥′ ⇒ 𝑓(𝑥) ≠ 𝑓(𝑥#)]
…∧ ∀𝑥, 𝑥# ∈ 𝑋. 𝑓 𝑥 = 𝑓 𝑥# ⇒ 𝑥 = 𝑥#

logical transpose
without inequality:

Injective, Surjective, and Bijective functions

("onto"): each element of the codomain is mapped
to by at least one element of the domain (i.e. the
image and the codomain of the function are equal)

("invertible"): each element of the codomain is
mapped to by exactly one element of the domain
(both injective and surjective)

("one-to-one"): each element of the codomain is
mapped to by at most one element of the domain
(i.e. distinct elements of the domain map to
distinct elements in the codomain)

maps each argument (element from its domain)
to exactly one image (element in its codomain)

𝑓: 𝑋 → 𝑌

∀𝑥 ∈ 𝑋, ∃! 𝑦 ∈ 𝑌[𝑦 = 𝑓(𝑥)]}

…∧ ∀𝑦 ∈ 𝑌, ∃𝑥 ∈ 𝑋[𝑦 = 𝑓 𝑥]

…∧ ∀𝑦 ∈ 𝑌, ∃! 𝑥 ∈ 𝑋[𝑦 = 𝑓(𝑥)]}

Surjective
function

Bijective
function

Injective
function

Function

Source: https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection

∃! 𝑦 ∈ 𝑌[𝑃 𝑦]
∃𝑦 ∈ 𝑌[𝑃 𝑦 ∧ ∀𝑦! ∈ 𝑌 𝑃 𝑦! ⇒ 𝑦 = 𝑦!]
∃𝑦 ∈ 𝑌[𝑃 𝑦 ∧ ¬∃𝑦! ∈ 𝑌 𝑃 𝑦! ∧ 𝑦 ≠ 𝑦!]

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection

70Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Mappings: Injection, Surjection, and Bijection

?
?
?
?
?
?

https://northeastern-datalab.github.io/cs7240/

71Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Mappings: Injection, Surjection, and Bijection

?
?
?
?
?

not a mapping (or function)!

https://northeastern-datalab.github.io/cs7240/

72Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Mappings: Injection, Surjection, and Bijection

?
?
?
?

not a mapping (or function)!

injective function (or one-to-one): maps distinct elements
of its domain to distinct elements of its codomain

https://northeastern-datalab.github.io/cs7240/

73Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Mappings: Injection, Surjection, and Bijection

?
?
?

not a mapping (or function)!

injective function (or one-to-one): maps distinct elements
of its domain to distinct elements of its codomain

surjective (or onto): every element y in the codomain Y of f
has at least one element x in the domain that maps to it

https://northeastern-datalab.github.io/cs7240/

74Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Mappings: Injection, Surjection, and Bijection

?
?

not a mapping (or function)!

injective function (or one-to-one): maps distinct elements
of its domain to distinct elements of its codomain

surjective (or onto): every element y in the codomain Y of f
has at least one element x in the domain that maps to it

injective & surjective = bijection

https://northeastern-datalab.github.io/cs7240/

75Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Mappings: Injection, Surjection, and Bijection

?

not a mapping (or function)!

injective function (or one-to-one): maps distinct elements
of its domain to distinct elements of its codomain

surjective (or onto): every element y in the codomain Y of f
has at least one element x in the domain that maps to it

injective & surjective = bijection

neighter

https://northeastern-datalab.github.io/cs7240/

76Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Mappings: Injection, Surjection, and Bijection

injective function (or one-to-one): maps distinct elements
of its domain to distinct elements of its codomain

surjective (or onto): every element y in the codomain Y of f
has at least one element x in the domain that maps to it

injective & surjective = bijection

neighter

not a mapping (or function)!

not even a mapping!

https://northeastern-datalab.github.io/cs7240/

77Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Bijection, Injection, and Surjection

Sources: http://mathonline.wikidot.com/injections-surjections-and-bijections,
https://www.intechopen.com/books/protein-interactions/relating-protein-structure-and-function-through-a-bijection-and-its-implications-on-protein-structur,

https://northeastern-datalab.github.io/cs7240/
http://mathonline.wikidot.com/injections-surjections-and-bijections
https://www.intechopen.com/books/protein-interactions/relating-protein-structure-and-function-through-a-bijection-and-its-implications-on-protein-structur

78Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Bijection, Injection, and Surjection

Sources: https://www.mathsisfun.com/sets/injective-surjective-bijective.html, https://twitter.com/jdhamkins/status/841318019397779456,

https://northeastern-datalab.github.io/cs7240/
https://www.mathsisfun.com/sets/injective-surjective-bijective.html
https://twitter.com/jdhamkins/status/841318019397779456

79Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

We make a detour to Graph matching

• Finding a correspondence between the nodes and the edges of two
graphs that satisfies some (more or less stringent) constraints

https://northeastern-datalab.github.io/cs7240/

80Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Homomorphism

• A graph homomorphism h from graph G(VG,EG) to H(VH,EH), is a
mapping from VG to VH such that {x,y} ∈ EG implies {h(x),h(y)} ∈ EH
- "edge-preserving": if two nodes in G are linked by an edge, then they are

mapped to two nodes in H that are also linked

1

2

3

4

a b

c

G H

?Is there a homomorphism
from G to H

https://northeastern-datalab.github.io/cs7240/

81Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Homomorphism

• A graph homomorphism h from graph G(VG,EG) to H(VH,EH), is a
mapping from VG to VH such that {x,y} ∈ EG implies {h(x),h(y)} ∈ EH
- "edge-preserving": if two nodes in G are linked by an edge, then they are

mapped to two nodes in H that are also linked

1

2

3

4

a b

c

h: {(a,1), (b,3), (c,4)}
G H

does not need to be surjective!

https://northeastern-datalab.github.io/cs7240/

82Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Homomorphism

• A graph homomorphism h from graph G(VG,EG) to H(VH,EH), is a
mapping from VG to VH such that {x,y} ∈ EG implies {h(x),h(y)} ∈ EH
- "edge-preserving": if two nodes in G are linked by an edge, then they are

mapped to two nodes in H that are also linked

1

2

3

4

a b

c

a b

c

h: {(a,1), (b,3), (c,4)}
G H G

?Is there a homomorphism
from H to Gdoes not need to be surjective!

https://northeastern-datalab.github.io/cs7240/

83Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Homomorphism

• A graph homomorphism h from graph G(VG,EG) to H(VH,EH), is a
mapping from VG to VH such that {x,y} ∈ EG implies {h(x),h(y)} ∈ EH
- "edge-preserving": if two nodes in G are linked by an edge, then they are

mapped to two nodes in H that are also linked

1

2

3

4

a b

c

a b

c

h: {(a,1), (b,3), (c,4)} h: {(1,a), (2,a), (3,b), (4,c)}
does not need to be injective!

G H G

Correspondence can be many-to-one: nothing
prevents that 2 nodes in the first graph
are mapped to the same node in the second

does not need to be surjective!

Graphs are homomorphically equivalent

https://northeastern-datalab.github.io/cs7240/

84Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Graph Isomorphism

• Graphs G(VG,EG) and H(VH,EH) are isomorphic iff there is an invertible
h from VG to VH s.t. {x,y} ∈ EG iff {h(u),h(v)} ∈ EH
- We need to find a one-to-one correspondence

1

2

3

4

a b

c

G H

?Is there an isomorphism
from G to H

https://northeastern-datalab.github.io/cs7240/

85Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Graph Isomorphism

• Graphs G(VG,EG) and H(VH,EH) are isomorphic iff there is an invertible
h from VG to VH s.t. {x,y} ∈ EG iff {h(u),h(v)} ∈ EH
- We need to find a one-to-one correspondence

1

2

3

4

a b

c

G H
They are homomorphically equivalent,
but not isomorphic!

Is there an isomorphism
from G to H?

https://northeastern-datalab.github.io/cs7240/

86Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Graph Isomorphism

• Graphs G(VG,EG) and H(VH,EH) are isomorphic iff there is an invertible
h from VG to VH s.t. {x,y} ∈ EG iff {h(u),h(v)} ∈ EH
- We need to find a one-to-one correspondence

1 2

43

5

a

b

c

d

e

G H
Is there an isomorphism
from G to H?

https://northeastern-datalab.github.io/cs7240/

87Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Graph Isomorphism

• Graphs G(VG,EG) and H(VH,EH) are isomorphic iff there is an invertible
h from VG to VH s.t. {x,y} ∈ EG iff {h(u),h(v)} ∈ EH
- We need to find a one-to-one correspondence

1 2

43

5

a

b

c

d

e

G H
Is there an isomorphism
from G to H?

h: {(1,a), (2,b), (3,d), (4,c), (5,e)}
bijection = surjective and injective mapping

Yes:

https://northeastern-datalab.github.io/cs7240/

88

Outline: T2-1/2: Query Evaluation & Query Equivalence

• T2-1: Conjunctive Queries (CQs)
– CQ equivalence and containment
– Graph homomorphisms
– Homomorphism beyond graphs
– CQ containment
– CQ minimization

• T2-2: Equivalence Beyond CQs
– Union of CQs, and inequalities
– Union of CQs equivalence under bag semantics
– Tree pattern queries
– Nested queries

89Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Graph Homomorphism beyond graphs
Definition : Let G and H be graphs. A homomorphism of G to H is a function
f: V(G) → V(H) such that

(x,y) ∈ E(G) ⇒ (f(x),f(y)) ∈ E(H).

We sometimes write G → H (G ↛ H) if there is a homomorphism (no
homomorphism) of G to H

Definition of a homomorphism naturally extends to:
• digraphs (directed graphs)
• edge-colored graphs
• relational systems
• constraint satisfaction problems (CSPs)

https://northeastern-datalab.github.io/cs7240/

90Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

An example

G

H

2 3

1

3 "colors" of the vertices

Based upon an example from Rick Brewster's Graph homomorphism tutorial, 2006

a

b

cd

e

https://northeastern-datalab.github.io/cs7240/

91Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

An example

G

H

2 3

1

1

1

?Can this assignment be extended to a homomorphism?
Based upon an example from Rick Brewster's Graph homomorphism tutorial, 2006

a

b

cd

e

https://northeastern-datalab.github.io/cs7240/

92Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

An example

G

H

2 3

1

Can this assignment be extended to a homomorphism? No, this assignment requires a
loop on vertex 1 (in H)

Based upon an example from Rick Brewster's Graph homomorphism tutorial, 2006

a

b

cd

e

1

1

https://northeastern-datalab.github.io/cs7240/

93Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

An example

G

H

2 3

1

Can this assignment be extended to a homomorphism??
Based upon an example from Rick Brewster's Graph homomorphism tutorial, 2006

a

b

cd

e

1

2

https://northeastern-datalab.github.io/cs7240/

94Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

An example

G

H

2 3

1

Definition: Let G and H be graphs. A homom.
of G to H is a function f: V(G) → V(H) s.t. that

(x,y) ∈ E(G) ⇒ (f(x),f(y)) ∈ E(H).

Can this assignment be extended to a homomorphism??
Based upon an example from Rick Brewster's Graph homomorphism tutorial, 2006

a

b

cd

e

1

2

https://northeastern-datalab.github.io/cs7240/

95Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

An example

G

H

2 3

12

1 3

Definition: Let G and H be graphs. A homom.
of G to H is a function f: V(G) → V(H) s.t. that

(x,y) ∈ E(G) ⇒ (f(x),f(y)) ∈ E(H).

Based upon an example from Rick Brewster's Graph homomorphism tutorial, 2006

a

b

cd

e

1

2

https://northeastern-datalab.github.io/cs7240/

96Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

An example

G

1

Basically a partitioning problem!

32

The quotient set of the partition (set of equivalence classes of the
partition) is a subgraph of H.

Partition: {{a,d}, {b,e}, {c}}

a

b

d

ce

Quotient set: {[a], [b], [c]}

Based upon an example from Rick Brewster's Graph homomorphism tutorial, 2006

H

2 3

1

https://northeastern-datalab.github.io/cs7240/

97Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Some observations
When does G → K3 hold? (K3 = 3-clique = triangle)

?

https://northeastern-datalab.github.io/cs7240/

98Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Some observations

?
When does G → Kd hold? (Kd = d-clique)

When does G → K3 hold? (K3 = 3-clique = triangle)

iff G is 3-colorable

More on 3-coloring: https://en.wikipedia.org/wiki/Graph_coloring#Computational_complexity

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Graph_coloring

99Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Some observations
When does G → K3 hold? (K3 = 3-clique = triangle)

iff G is 3-colorable

When does G → Kd hold? (Kd = d-clique)
iff G is d-colorable

Thus homomorphisms generalize colorings:
Notation: G → H is an H-coloring of G.

What is the complexity of testing for the existence of a homomorphism
(in the size of G)?

?
More on 3-coloring: https://en.wikipedia.org/wiki/Graph_coloring#Computational_complexity

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Graph_coloring

100Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Some observations
When does G → K3 hold? (K3 = 3-clique = triangle)

iff G is 3-colorable

When does G → Kd hold? (Kd = d-clique)
iff G is d-colorable

NP-complete
More on 3-coloring: https://en.wikipedia.org/wiki/Graph_coloring#Computational_complexity

Thus homomorphisms generalize colorings:
Notation: G → H is an H-coloring of G.

What is the complexity of testing for the existence of a homomorphism
(in the size of G)?

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Graph_coloring

101Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The complexity of H-coloring

Theorem [Hell, Nesetril'90]:
If H is bipartite or contains a self-loop, then H-coloring is
polynomial time solvable; otherwise, H is NP-complete.

H-coloring:
Let H be a fixed graph.
Instance: A graph G.
Question: Does G admit an H-coloring?

[Hell, Nesetril'90]: Hell, Nešetřil. On the complexity of H-coloring. Journal of Combinatorial Theory, 1990. https://doi.org/10.1016/0095-8956(90)90132-J

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1016/0095-8956(90)90132-J

103Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Repeated variable names

Which of formulas implies the other??

In sentences with multiple quantifiers, distinct variables do not need
to range over distinct objects! (cp. homomorphism vs. isomorphism)

$x.$y.	E(x,y)	 $x.	E(x,x)⟹
⟸

https://northeastern-datalab.github.io/cs7240/

104Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

$x.$y.	E(x,y)	

Repeated variable names

In sentences with multiple quantifiers, distinct variables do not need
to range over distinct objects! (cp. homomorphism vs. isomorphism)

$x.	E(x,x)

s t
1 1

E

⟸

s t
1 2

E

https://northeastern-datalab.github.io/cs7240/

105

A more abstract (general)
view on homomorphisms

106Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Homomorphisms on Binary Structures

• Definition (Binary algebraic structure): A binary algebraic structure
is a set together with a binary operation on it. This is denoted by an
ordered pair (S,⋆) in which S is a set and ⋆ is a binary operation on S.

• Definition (homomorphism of binary structures): Let (S,⋆) and (S’,∘)
be binary structures. A homomorphism from (S,⋆) to (S’,∘) is a map
h: S⟶ S’ that satisfies, for all x, y in S:

h(x ⋆ y) = h(x) ∘ h(y)

• We can denote it by h: (S,⋆) ⟶ (S’,∘).

https://northeastern-datalab.github.io/cs7240/

107Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: from addition to multiplication

• Let h(x) = ex. Is h a homomorphism b/w two binary structures?

?

https://northeastern-datalab.github.io/cs7240/

108Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: from addition to multiplication

• Let h(x) = ex. Is h a homomorphism b/w two binary structures?
- Yes, from the real numbers with addition (ℝ,+) to
- the positive real numbers with multiplication (ℝ+,⋅)
- It is even an isomorphism!

• Let g(x) = eix. Is g also a homomorphism?

h:(ℝ,+) ⟶ (ℝ+,⋅)
h(x+y) = h(x) ⋅ h(y)

?
Paragraph screenshot from p.37 in 2004 - Dummit, Foote - Abstract algebra (book, 3rd ed). https://www.wiley.com/en-us/Abstract+Algebra%2C+3rd+Edition-p-9780471433347

https://northeastern-datalab.github.io/cs7240/
https://www.wiley.com/en-us/Abstract+Algebra%2C+3rd+Edition-p-9780471433347

109Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: from addition to multiplication

• Let h(x) = ex. Is h a homomorphism b/w two binary structures?
- Yes, from the real numbers with addition (ℝ,+) to
- the positive real numbers with multiplication (ℝ+,⋅)
- It is even an isomorphism!

• Let g(x) = eix. Is g also a homomorphism?
- Yes, from the real numbers with addition (ℝ,+) to
- the unit circle in the complex plane with rotation

Paragraph screenshot from p.37 in 2004 - Dummit, Foote - Abstract algebra (book, 3rd ed). https://www.wiley.com/en-us/Abstract+Algebra%2C+3rd+Edition-p-9780471433347

h:(ℝ,+) ⟶ (ℝ+,⋅)
h(x+y) = h(x) ⋅ h(y)

https://northeastern-datalab.github.io/cs7240/
https://www.wiley.com/en-us/Abstract+Algebra%2C+3rd+Edition-p-9780471433347

110Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: from addition to multiplication

Source: Socratica. Homomorphisms, 2014: https://www.youtube.com/watch?v=cYzp5IWqCsg

https://northeastern-datalab.github.io/cs7240/
https://www.youtube.com/watch?v=cYzp5IWqCsg

111Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: from addition to multiplication

Source: 3blue1brown. Euler's formula with introductory group theory, 2017: https://www.youtube.com/watch?v=mvmuCPvRoWQ

https://northeastern-datalab.github.io/cs7240/
https://www.youtube.com/watch?v=mvmuCPvRoWQ

112Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Isomorphism

• Definition: A homomorphism of binary structures is called an
isomorphism iff the corresponding map of sets is:
- one-to-one (injective) and
- onto (surjective).

https://northeastern-datalab.github.io/cs7240/

113Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Some homomorphisms

Binary structure (S,⋆)

Group (G,⋆) like (ℝ,+)Graph (V, E(x,y))

CQs (Conjunctive Queries)
(Var ∪ Constants, Relations {Ri(x,y,z), ...})

Restriction to operations that
closed, associative, with
identify element, and inverse

Change to Binary operator
that is not closed and instead
maps to 𝔹 = {True, False}

Extension to multiple
d-ary relations

recall that ⋆ is closed

https://northeastern-datalab.github.io/cs7240/

114Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: https://www.mathphysicsbook.com/mathematics/mathematical-structures/defining-mathematical-structures-and-mappings/

https://northeastern-datalab.github.io/cs7240/
https://www.mathphysicsbook.com/mathematics/mathematical-structures/defining-mathematical-structures-and-mappings/

116

Outline: T2-1/2: Query Evaluation & Query Equivalence

• T2-1: Conjunctive Queries (CQs)
– CQ equivalence and containment
– Graph homomorphisms
– Homomorphism beyond graphs
– CQ containment
– CQ minimization

• T2-2: Equivalence Beyond CQs
– Union of CQs, and inequalities
– Union of CQs equivalence under bag semantics
– Tree pattern queries
– Nested queries

117Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query Containment

Two queries q1, q2 are equivalent, denoted q1 ≡ q2, if

Query q1 is contained in query q2 , denoted q1 ⊆ q2, if

Corollary
q1 ≡ q2 is equivalent to (q1 ⊆ q2 and q1 ⊇ q2)

If queries are Boolean, then query containment = logical implication:
q1 ⇔ q2 is equivalent to

for every database instance D, we have q1(D) = q2(D).

for every database instance D, we have q1(D) ⊆ q2(D)

?

the answer (set of tuples)
returned by one is guaranteed to
be identical to the other answer

https://northeastern-datalab.github.io/cs7240/

118Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query Containment

Two queries q1, q2 are equivalent, denoted q1 ≡ q2, if

Query q1 is contained in query q2 , denoted q1 ⊆ q2, if

Corollary
q1 ≡ q2 is equivalent to (q1 ⊆ q2 and q1 ⊇ q2)

If queries are Boolean, then query containment = logical implication:
q1 ⇔ q2 is equivalent to (q1 ⇒ q2 and q1 ⇐ q2)

for every database instance D, we have q1(D) = q2(D).

for every database instance D, we have q1(D) ⊆ q2(D)

the answer (set of tuples)
returned by one is guaranteed to
be identical to the other answer

https://northeastern-datalab.github.io/cs7240/

119Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query homomorphisms
A homomorphism h from Boolean q1 to q2 is a function

for every atom R(x1,x2,...) in q1, there is an atom R(h(x1), h(x2), ...) in q2

h: var(q1) → var(q2) ∪ const(q2) such that:

q1 :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)
q2 :- R(x,y), R(y,y), R(y,z)

v

u

w

s

q1(x)

y z

x
q2(x)

h1→2=

need to be same relation!

?

Example

https://northeastern-datalab.github.io/cs7240/

120Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query homomorphisms
A homomorphism h from Boolean q1 to q2 is a function

for every atom R(x1,x2,...) in q1, there is an atom R(h(x1), h(x2), ...) in q2

h: var(q1) → var(q2) ∪ const(q2) such that:

q1 :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)
q2 :- R(x,y), R(y,y), R(y,z)

v

u

w

s

q1(x)

y z

x
q2(x)

h1→2=

need to be same relation!

Also: h1→2’: {s,u,v,w}→{y} (recall [Hell, Nesetril'90])
But let's focus on h1→2 for the remainder J

{(s,x),(u,y),(v,y),(w,z)}

Example

https://northeastern-datalab.github.io/cs7240/

121Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query homomorphisms
A homomorphism h from Boolean q1 to q2 is a function

for every atom R(x1,x2,...) in q1, there is an atom R(h(x1), h(x2), ...) in q2

h: var(q1) → var(q2) ∪ const(q2) such that:

q1 :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)
q2 :- R(x,y), R(y,y), R(y,z)

v

u

w

s

q1(x)

y z

x
q2(x)

h1→2= {(s,x),(u,y),(v,y),(w,z)}

h2→1: ?

Example

https://northeastern-datalab.github.io/cs7240/

122Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query homomorphisms
A homomorphism h from Boolean q1 to q2 is a function

for every atom R(x1,x2,...) in q1, there is an atom R(h(x1), h(x2), ...) in q2

h: var(q1) → var(q2) ∪ const(q2) such that:

q1 :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)
q2 :- R(x,y), R(y,y), R(y,z)

v

u

w

s

q1(x)

y z

x
q2(x)

h1→2= {(s,x),(u,y),(v,y),(w,z)}

h2→1: {(x,s),(y,v),(z,w)} ?
What about:

Example

https://northeastern-datalab.github.io/cs7240/

123Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query homomorphisms
A homomorphism h from Boolean q1 to q2 is a function

for every atom R(x1,x2,...) in q1, there is an atom R(h(x1), h(x2), ...) in q2

h: var(q1) → var(q2) ∪ const(q2) such that:

q1 :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v), R(v,v)
q2 :- R(x,y), R(y,y), R(y,z)

v

u

w

s

q1(x)

y z

x
q2(x)

h1→2= {(s,x),(u,y),(v,y),(w,z)}

h2→1: {(x,s),(y,v),(z,w)}

Example

https://northeastern-datalab.github.io/cs7240/

124Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query homomorphisms and containment
A homomorphism h from Boolean q1 to q2 is a function

for every atom R(x1,x2,...) in q1, there is an atom R(h(x1), h(x2), ...) in q2

h: var(q1) → var(q2) ∪ const(q2) such that:

$x.$y.	E(x,y)	 $x.	E(x,x)
Compare to our earlier example:

q1 :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)
q2 :- R(x,y), R(y,y), R(y,z)

v

u

w

s

q1(x)

y z

x
q2(x)

h1→2= {(s,x),(u,y),(v,y),(w,z)}

Example

E(1,1)E(1,2)

?
⟹⟸

h2→1: {(x,s),(y,v),(z,w)}

https://northeastern-datalab.github.io/cs7240/

125Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query homomorphisms and containment

q1 ⇐ q2

q1 ⇏ q2

A homomorphism h from Boolean q1 to q2 is a function

for every atom R(x1,x2,...) in q1, there is an atom R(h(x1), h(x2), ...) in q2

h: var(q1) → var(q2) ∪ const(q2) such that:

$x.$y.	E(x,y)	 $x.	E(x,x)⇐
Compare to our earlier example:

We will use homomorphisms to
reason about query containment.
We try to understand the direction

q1 :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)
q2 :- R(x,y), R(y,y), R(y,z)

v

u

w

s

q1(x)

y z

x
q2(x)

h1→2= {(s,x),(u,y),(v,y),(w,z)}

Example

E(1,1)E(1,2)
True False

h2→1: {(x,s),(y,v),(z,w)}

https://northeastern-datalab.github.io/cs7240/

126Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Overview: "All homomorphisms" in one slide

G

q1 q2

h h

h

q1 ⊇ q2

"G-coloring of q1 "

q1 ⇐ q2

Query evaluation
"q1-coloring of G "

Constraint Satisfaction
Problems (CSP)

PTIME in size of GNP-C in size of G

Query containment

G ⊨ q2

https://northeastern-datalab.github.io/cs7240/

127Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Canonical database
DEFINITION Canonical database
Given a conjunctive query q, the canonical database Dc[q] is the database
instance where each atom in q becomes a fact in the instance.

Example
q2(x) :- R(x,y), R(y,y), R(y,z)

Dc[q2] = ?

https://northeastern-datalab.github.io/cs7240/

128Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Canonical database

Example
q2(x) :- R(x,y), R(y,y), R(y,z)

Just treat each variable as different constant J

{R('x','y'), R('y','y'), R('y','z')}Dc[q2] =

≡ {R(a,b), R(b,b), R(b,c)}

DEFINITION Canonical database
Given a conjunctive query q, the canonical database Dc[q] is the database
instance where each atom in q becomes a fact in the instance.

≡ {R(1,2), R(2,2), R(2,3)}

Var Const

x 1→
y 2→
z 3→

https://northeastern-datalab.github.io/cs7240/

129Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

[Chandra and Merlin 1977]

G

q1 q2
Query containment q1 ⇐ q2

Query evaluation
G ⊨ q2

THEOREM (Query Containment)
Given two Boolean CQs q1, q2, the following statements are equivalent:

We will look at 2) ⇒ 1),
and it is similar to 2) ⇒ 3)

1) q1⇐ q2

2) There is a homomorphism h1→2 from q1 to q2

3) q1(DC[q2]) is true

(q1 ⊇ q2)

Chandra, Merlin. "Optimal implementation of conjunctive queries in relational data bases." STOC 1977. https://doi.org/10.1145/800105.803397

q1 :- E(x,y) q2 :- E(x,x)

E(1,1)

h

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/800105.803397

130Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

[Chandra and Merlin 1977]

1. For q2(D) to hold, there is a valuation v s.t. v(q2) ∈ D
We show: If there is a homomorphism h1→2, then for any D: q1(D) ⇐ q2(D)

g=v ∘ h
g(x)=v(h(x))2. We will show that the composition g = v ∘ h is a valuation for q1

G

q1 q2

Query evaluation
G ⊨ q2

Query containment q1 ⇐ q2

q1 :- E(x,y) q2 :- E(x,x)

E(1,1)

Chandra, Merlin. "Optimal implementation of conjunctive queries in relational data bases." STOC 1977. https://doi.org/10.1145/800105.803397

v

h

g

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/800105.803397

131Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

[Chandra and Merlin 1977]

1. For q2(D) to hold, there is a valuation v s.t. v(q2) ∈ D

2a. By definition of h, for every R(x1,x2,...) in q1, R(h(x1),h(x2),...) in q2
2b. By definition of v, for every R(x1,x2,...) in q1, R(v(h(x1)),v(h(x2)),...) in D

We show: If there is a homomorphism h1→2, then for any D: q1(D) ⇐ q2(D)
g=v ∘ h

g(x)=v(h(x))2. We will show that the composition g = v ∘ h is a valuation for q1

G

q1 q2

Query evaluation
G ⊨ q2

Query containment q1 ⇐ q2

q1 :- E(x,y) q2 :- E(x,x)

E(1,1)

Chandra, Merlin. "Optimal implementation of conjunctive queries in relational data bases." STOC 1977. https://doi.org/10.1145/800105.803397

v

h

g

QED J

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/800105.803397

132Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

[Chandra and Merlin 1977]

y z

x

h1→2= {(s,x),(u,y),(v,y),(w,z)}

Example
q1 :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)
q2 :- R(x,y), R(y,y), R(y,z)

1. For q2(D) to hold, there is a valuation v s.t. v(q2) ∈ D

2a. By definition of h, for every R(x1,x2,...) in q1, R(h(x1),h(x2),...) in q2
2b. By definition of v, for every R(x1,x2,...) in q1, R(v(h(x1)),v(h(x2)),...) in D

We show: If there is a homomorphism h1→2, then for any D: q1(D) ⇐ q2(D)
g=v ∘ h

g(x)=v(h(x))2. We will show that the composition g = v ∘ h is a valuation for q1

q2(x)

v

u

w

s

q1(x)

https://northeastern-datalab.github.io/cs7240/

133Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

[Chandra and Merlin 1977]

y z

x

h1→2= {(s,x),(u,y),(v,y),(w,z)}

v={(x,a),(y,b),(z,c)}
Example
q1 :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)
q2 :- R(x,y), R(y,y), R(y,z)

R A B
a b
b b
b c

1. For q2(D) to hold, there is a valuation v s.t. v(q2) ∈ D

2a. By definition of h, for every R(x1,x2,...) in q1, R(h(x1),h(x2),...) in q2
2b. By definition of v, for every R(x1,x2,...) in q1, R(v(h(x1)),v(h(x2)),...) in D

We show: If there is a homomorphism h1→2, then for any D: q1(D) ⇐ q2(D)
g=v ∘ h

g(x)=v(h(x))2. We will show that the composition g = v ∘ h is a valuation for q1

q2(x)

v

u

w

s

q1(x)

https://northeastern-datalab.github.io/cs7240/

134Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

[Chandra and Merlin 1977]

y z

x

h1→2= {(s,x),(u,y),(v,y),(w,z)}

v={(x,a),(y,b),(z,c)}
Example
q1 :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)
q2 :- R(x,y), R(y,y), R(y,z)

R A B
a b
b b
b c

g= {(s,a),(u,b),(v,b),(w,c)}

1. For q2(D) to hold, there is a valuation v s.t. v(q2) ∈ D

2a. By definition of h, for every R(x1,x2,...) in q1, R(h(x1),h(x2),...) in q2
2b. By definition of v, for every R(x1,x2,...) in q1, R(v(h(x1)),v(h(x2)),...) in D

We show: If there is a homomorphism h1→2, then for any D: q1(D) ⇐ q2(D)
g=v ∘ h

g(x)=v(h(x))2. We will show that the composition g = v ∘ h is a valuation for q1

q2(x)

v

u

w

s

q1(x)

https://northeastern-datalab.github.io/cs7240/

135Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Combined complexity of CQC and CQE
Corollary:
The following problems are NP-complete (in the size of Q or Q'):

2) Given a Boolean conjunctive query Q and an instance D, does D ⊨ Q ?

(a) Membership in NP follows from the Homomophism Theorem:

1) Given two (Boolean) conjunctive queries Q and Q’, is Q ⊆ Q’ ?

Proof:

(b) NP-hardness follows from 3-Colorability:

Q ⊆ Q' if and only if there is a homomorphism h: Q' → Q

G is 3-colorable if and only if QK3 ⊆ QG.

https://northeastern-datalab.github.io/cs7240/

136Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The Complexity of Database Query Languages

Relational
Calculus

CQs

Query Eval.:
Data Complexity

In LOGSPACE
(hence, in P)

In LOGSPACE
(hence, in P)

Query Eval.:
Combined Compl.

PSPACE-
complete

NP-complete

Query Equivalence
& Containment

Undecidable NP-complete

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases

