Topic 2: Complexity of Query Evaluation Unit 1: Conjunctive Queries Lecture 14

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp23)
https://northeastern-datalab.github.io/cs7240/sp23/
2/24/2023

Pre-class conversations

- Last class summary
- Project ideas
- Today:
- Homomorphisms and the connections to:
- Query containment
- Query minimization
- Query evaluation

Outline: T2-1/2: Query Evaluation \& Query Equivalence

- T2-1: Conjunctive Queries (CQs)
- CQ equivalence and containment
- Graph homomorphisms
- Homomorphism beyond graphs
- CQ containment
- CQ minimization
- T2-2: Equivalence Beyond CQs
- Union of CQs, and inequalities
- Union of CQs equivalence under bag semantics
- Tree pattern queries
- Nested queries

Injective, Surjective, and Bijective functions $\quad f: X \rightarrow Y$
injective

Function

Injective function

Surjective function

Bijective

function

$?$

Injective, Surjective, and Bijective functions $\quad f: X \rightarrow Y$

injective

Function maps each argument (element from its domain) to exactly one image (element in its codomain) $\forall x \in X, \exists!y \in Y[y=f(x)]\}$

Injective function

Surjective

 function
Bijective

function

$$
\begin{aligned}
& \exists!y \in Y[P(y)] \\
& \exists y \in Y\left[P(y) \wedge \forall y^{\prime} \in Y\left[P\left(y^{\prime}\right) \Rightarrow y=y^{\prime}\right]\right] \\
& \exists y \in Y\left[P(y) \wedge \neg \exists y^{\prime} \in Y\left[P\left(y^{\prime}\right) \wedge y \neq y^{\prime}\right]\right]
\end{aligned}
$$

Injective, Surjective, and Bijective functions $\quad f: X \rightarrow Y$

injective

$$
\begin{aligned}
& \exists!y \in Y[P(y)] \\
& \exists y \in Y\left[P(y) \wedge \forall y^{\prime} \in Y\left[P\left(y^{\prime}\right) \Rightarrow y=y^{\prime}\right]\right] \\
& \exists y \in Y\left[P(y) \wedge \neg \exists y^{\prime} \in Y\left[P\left(y^{\prime}\right) \wedge y \neq y^{\prime}\right]\right]
\end{aligned}
$$

Source: https://en.wikipedia.org/wiki/Bijection, injection and surjection Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Function maps each argument (element from its domain) to exactly one image (element in its codomain) $\forall x \in X, \exists!y \in Y[y=f(x)]\}$

Injective function
logical transpose without inequality:

Surjective function

Bijective function
("one-to-one"): each element of the codomain is mapped to by at most one element of the domain (i.e. distinct elements of the domain map to distinct elements in the codomain)
$\ldots \wedge \forall x, x^{\prime} \in X .\left[x \neq x^{\prime} \Rightarrow f(x) \neq f\left(x^{\prime}\right)\right]$ $\ldots \wedge \forall x, x^{\prime} \in X .\left[f(x)=f\left(x^{\prime}\right) \Rightarrow x=x^{\prime}\right]$

Injective, Surjective, and Bijective functions

Function maps each argument (element from its domain) to exactly one image (element in its codomain) $\forall x \in X, \exists!y \in Y[y=f(x)]\}$ ("one-to-one"): each element of the codomain is mapped to by at most one element of the domain (i.e. distinct elements of the domain map to distinct elements in the codomain)

Injective function
logical transpose
injective

$$
\begin{aligned}
& \exists!y \in Y[P(y)] \\
& \exists y \in Y\left[P(y) \wedge \forall y^{\prime} \in Y\left[P\left(y^{\prime}\right) \Rightarrow y=y^{\prime}\right]\right] \\
& \exists y \in Y\left[P(y) \wedge \neg \exists y^{\prime} \in Y\left[P\left(y^{\prime}\right) \wedge y \neq y^{\prime}\right]\right]
\end{aligned}
$$ without inequality:

Surjective function

Source: https://en.wikipedia.org/wiki/Bijection, injection and surjection Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Injective, Surjective, and Bijective functions

Function maps each argument (element from its domain) to exactly one image (element in its codomain) $\forall x \in X, \exists!y \in Y[y=f(x)]\}$

Injective function
logical transpose without inequality:

Surjective function

Bijective
function
$\exists!y \in Y[P(y)]$
$\exists y \in Y\left[P(y) \wedge \forall y^{\prime} \in Y\left[P\left(y^{\prime}\right) \Rightarrow y=y^{\prime}\right]\right]$
$\exists y \in Y\left[P(y) \wedge \neg \exists y^{\prime} \in Y\left[P\left(y^{\prime}\right) \wedge y \neq y^{\prime}\right]\right]$
Source: https://en.wikipedia.org/wiki/Bijection, injection and surjection

Mappings: Injection, Surjection, and Bijection

Mappings: Injection, Surjection, and Bijection

not a mapping (or function)!

Mappings: Injection, Surjection, and Bijection

not a mapping (or function)!
injective function (or one-to-one): maps distinct elements of its domain to distinct elements of its codomain

Mappings: Injection, Surjection, and Bijection

not a mapping (or function)!

injective function (or one-to-one): maps distinct elements of its domain to distinct elements of its codomain
surjective (or onto): every element y in the codomain Y of f has at least one element x in the domain that maps to it

Mappings: Injection, Surjection, and Bijection

not a mapping (or function)!

injective function (or one-to-one): maps distinct elements of its domain to distinct elements of its codomain
surjective (or onto): every element y in the codomain Y of f has at least one element x in the domain that maps to it
injective \& surjective = bijection

Mappings: Injection, Surjection, and Bijection

not a mapping (or function)!

injective function (or one-to-one): maps distinct elements of its domain to distinct elements of its codomain
surjective (or onto): every element y in the codomain Y of f has at least one element x in the domain that maps to it
injective \& surjective = bijection
neighter

Mappings: Injection, Surjection, and Bijection

not a mapping (or function)!

injective function (or one-to-one): maps distinct elements of its domain to distinct elements of its codomain
surjective (or onto): every element y in the codomain Y of f has at least one element x in the domain that maps to it
injective \& surjective = bijection
neighter
not even a mapping!

Bijection, Injection, and Surjection

Neither Injective or Surjective
Two elements in set A maps to the
same element in set B (not injective), and one element in set B is not in the image or range of the function that maps set A to B (not surjective).

Sources: http://mathonline.wikidot.com/injections-surjections-and-bijections,
https://www.intechopen.com/books/protein-interactions/relating-protein-structure-and-function-through-a-bijection-and-its-implications-on-protein-structur Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Bijection, Injection, and Surjection

NOT a Function
A has many B

General Function

Injective (not surjective)

Surjective (not injective) (injective, surjective) Every B has some A A to B, perfectly

A function not injective not surjective

An injective function not surjective

A surjective function not injective

A bijective function injective + surjective

Not a function

We make a detour to Graph matching

- Finding a correspondence between the nodes and the edges of two graphs that satisfies some (more or less stringent) constraints

Homomorphism

- A graph homomorphism h from graph $G\left(V_{G}, E_{G}\right)$ to $H\left(V_{H}, E_{H}\right)$, is a mapping from V_{G} to V_{H} such that $\{x, y\} \in E_{G}$ implies $\{h(x), h(y)\} \in E_{H}$
- "edge-preserving": if two nodes in G are linked by an edge, then they are mapped to two nodes in H that are also linked

G

H

$$
\begin{aligned}
& \text { Is there a homomorphism } \\
& \text { from } G \text { to H }
\end{aligned}
$$

Homomorphism

- A graph homomorphism h from graph $G\left(V_{G}, E_{G}\right)$ to $H\left(V_{H}, E_{H}\right)$, is a mapping from V_{G} to V_{H} such that $\{x, y\} \in E_{G}$ implies $\{h(x), h(y)\} \in E_{H}$
- "edge-preserving": if two nodes in G are linked by an edge, then they are mapped to two nodes in H that are also linked

Homomorphism

- A graph homomorphism h from graph $G\left(V_{G}, E_{G}\right)$ to $H\left(V_{H}, E_{H}\right)$, is a mapping from V_{G} to V_{H} such that $\{x, y\} \in E_{G}$ implies $\{h(x), h(y)\} \in E_{H}$
- "edge-preserving": if two nodes in G are linked by an edge, then they are mapped to two nodes in H that are also linked

G

G

$$
\begin{gathered}
h:\{(\mathrm{a}, 1),(\mathrm{b}, 3),(\mathrm{c}, 4)\} \\
\text { does not need to be surjective! }
\end{gathered}
$$

Homomorphism

- A graph homomorphism h from graph $G\left(V_{G}, E_{G}\right)$ to $H\left(V_{H}, E_{H}\right)$, is a mapping from V_{G} to V_{H} such that $\{x, y\} \in E_{G}$ implies $\{h(x), h(y)\} \in E_{H}$
- "edge-preserving": if two nodes in G are linked by an edge, then they are mapped to two nodes in H that are also linked

Graphs are homomorphically equivalent

G

H
G

$$
h:\{(1, a),(2, a),(3, b),(4, c)\}
$$

does not need to be injective!

Graph Isomorphism

- Graphs $G\left(V_{G}, E_{G}\right)$ and $H\left(V_{H}, E_{H}\right)$ are isomorphic iff there is an invertible h from V_{G} to V_{H} s.t. $\{x, y\} \in E_{G}$ iff $\{h(u), h(v)\} \in E_{H}$
- We need to find a one-to-one correspondence

G

H

Is there an isomorphism from G to H

Graph Isomorphism

- Graphs $G\left(V_{G}, E_{G}\right)$ and $H\left(V_{H}, E_{H}\right)$ are isomorphic iff there is an invertible h from V_{G} to V_{H} s.t. $\{x, y\} \in E_{G}$ iff $\{h(u), h(v)\} \in E_{H}$
- We need to find a one-to-one correspondence

G

H

Is there an isomorphism
from G to H ?

They are homomorphically equivalent, but not isomorphic!

Graph Isomorphism

- Graphs $G\left(V_{G}, E_{G}\right)$ and $H\left(V_{H}, E_{H}\right)$ are isomorphic iff there is an invertible h from V_{G} to V_{H} s.t. $\{x, y\} \in E_{G}$ iff $\{h(u), h(v)\} \in E_{H}$
- We need to find a one-to-one correspondence

G

H

> Is there an isomorphism from G to H ?

Graph Isomorphism

- Graphs $G\left(V_{G}, E_{G}\right)$ and $H\left(V_{H}, E_{H}\right)$ are isomorphic iff there is an invertible h from V_{G} to V_{H} s.t. $\{x, y\} \in E_{G}$ iff $\{h(u), h(v)\} \in E_{H}$
- We need to find a one-to-one correspondence

G
(5)

(e)

H

Is there an isomorphism Yes:	$h:\{(1, a),(2, b),(3, d),(4, c),(5, e)\}$
from G to H ?	
bijection = surjective and injective mapping	

Outline: T2-1/2: Query Evaluation \& Query Equivalence

- T2-1: Conjunctive Queries (CQs)
- CQ equivalence and containment
- Graph homomorphisms
- Homomorphism beyond graphs
- CQ containment
- CQ minimization
- T2-2: Equivalence Beyond CQs
- Union of CQs, and inequalities
- Union of CQs equivalence under bag semantics
- Tree pattern queries
- Nested queries

Graph Homomorphism beyond graphs

Definition : Let G and H be graphs. A homomorphism of G to H is a function $f: V(G) \rightarrow V(H)$ such that

$$
(x, y) \in E(G) \Rightarrow(f(x), f(y)) \in E(H) .
$$

We sometimes write $G \rightarrow H(G \nrightarrow H)$ if there is a homomorphism (no homomorphism) of G to H

Definition of a homomorphism naturally extends to:

- digraphs (directed graphs)
- edge-colored graphs

- relational systems
- constraint satisfaction problems (CSPs)

An example

3 "colors" of the vertices

An example

An example

can this assignment be extended to a homomorphism?

An example

An example

Definition: Let G and H be graphs. A homom. of G to H is a function $f: V(G) \rightarrow V(H)$ s.t. that

An example

Definition: Let G and H be graphs. A homom. of G to H is a function $f: V(G) \rightarrow V(H)$ s.t. that

An example

Basically a partitioning problem!
The quotient set of the partition (set of equivalence classes of the partition) is a subgraph of H.

Some observations

When does $G \rightarrow K_{3}$ hold? $\left(K_{3}=3\right.$-clique $=$ triangle $)$

Some observations

When does $G \rightarrow K_{3}$ hold? ($K_{3}=3$-clique $=$ triangle $)$ iff G is 3 -colorable

When does $G \rightarrow K_{d}$ hold? ($K_{d}=d$-clique)

Some observations

When does $G \rightarrow K_{3}$ hold? $\left(K_{3}=3\right.$-clique = triangle $)$ iff G is 3 -colorable

When does $G \rightarrow K_{d}$ hold? $\left(K_{d}=d\right.$-clique $)$ iff G is d -colorable

Thus homomorphisms generalize colorings:
Notation: $\mathrm{G} \rightarrow \mathrm{H}$ is an H -coloring of G .
What is the complexity of testing for the existence of a homomorphism (in the size of G)?

Some observations

When does $G \rightarrow K_{3}$ hold? $\left(K_{3}=3\right.$-clique = triangle $)$ iff G is 3 -colorable

When does $G \rightarrow K_{d}$ hold? $\left(K_{d}=d\right.$-clique $)$ iff G is d -colorable

Thus homomorphisms generalize colorings:
Notation: $\mathrm{G} \rightarrow \mathrm{H}$ is an H -coloring of G .
What is the complexity of testing for the existence of a homomorphism (in the size of G)?

NP-complete

The complexity of H-coloring

H-coloring:
Let H be a fixed graph. Instance: A graph G.

Question: Does G admit an H-coloring?

Theorem [Hell, Nesetril'90]:
If H is bipartite or contains a self-loop, then H -coloring is polynomial time solvable; otherwise, H is NP-complete.

Repeated variable names

In sentences with multiple quantifiers, distinct variables do not need to range over distinct objects! (cp. homomorphism vs. isomorphism)

?
Which of formulas implies the other?

Repeated variable names

In sentences with multiple quantifiers, distinct variables do not need to range over distinct objects! (cp. homomorphism vs. isomorphism)

E	
	t
	2

E
\mathbf{y}
\mathbf{s}
\mathbf{t}
1

A more abstract (general) view on homomorphisms

Homomorphisms on Binary Structures

- Definition (Binary algebraic structure): A binary algebraic structure is a set together with a binary operation on it. This is denoted by an ordered pair (S, \star) in which S is a set and \star is a binary operation on S.
- Definition (homomorphism of binary structures): Let (S, \star) and $\left(S^{\prime}, \circ\right)$ be binary structures. A homomorphism from (S, \star) to $\left(S^{\prime}, \circ\right)$ is a map $h: S \longrightarrow S^{\prime}$ that satisfies, for all x, y in S :

$$
h(x \star y)=h(x) \circ h(y)
$$

- We can denote it by $h:(S, \star) \longrightarrow\left(S^{\prime}, \circ\right)$.

Example: from addition to multiplication

- Let $h(x)=\mathrm{e}^{x}$. Is h a homomorphism b/w two binary structures?
?

Example: from addition to multiplication

- Let $h(x)=\mathrm{e}^{x}$. Is h a homomorphism b / w two binary structures?
- Yes, from the real numbers with addition $(\mathbb{R},+)$ to $h(x+y)=h(x) \cdot h(y)$
- the positive real numbers with multiplication $\left(\mathbb{R}^{+}, \cdot\right) \quad h:(\mathbb{R},+) \rightarrow\left(\mathbb{R}^{+}, \cdot\right)$
- It is even an isomorphism!

The exponential map $\exp : \mathbb{R} \rightarrow \mathbb{R}^{+}$defined by $\exp (x)=e^{x}$, where e is the base of the natural logarithm, is an isomorphism from $(\mathbb{R},+)$ to $\left(\mathbb{R}^{+}, x\right)$. Exp is a bijection since it has an inverse function (namely $\log _{e}$) and exp preserves the group operations since $e^{x+y}=e^{x}, e^{y}$. In this example both the elements and the operations are different yet the two groups are isomorphic, that is, as groups they have identical structures.

- Let $g(x)=\mathrm{e}^{i x}$. Is g also a homomorphism?

Example: from addition to multiplication

- Let $h(x)=\mathrm{e}^{x}$. Is h a homomorphism b / w two binary structures?
- Yes, from the real numbers with addition $(\mathbb{R},+)$ to
$h(x+y)=h(x) \cdot h(y)$
- the positive real numbers with multiplication $\left(\mathbb{R}^{+}, \cdot\right) \quad h:(\mathbb{R},+) \longrightarrow\left(\mathbb{R}^{+}, \cdot\right)$
- It is even an isomorphism!

The exponential map $\exp : \mathbb{R} \rightarrow \mathbb{R}^{+}$defined by $\exp (x)=e^{x}$, where e is the base of the natural logarithm, is an isomorphism from $(\mathbb{R},+)$ to $\left(\mathbb{R}^{+}, x\right)$. Exp is a bijection since it has an inverse function (namely $\log _{e}$) and exp preserves the group operations since $e^{x+y}=e^{x} e^{y}$. In this example both the elements and the operations are different yet the two groups are isomorphic, that is, as groups they have identical structures.

- Let $g(x)=\mathrm{e}^{i x}$. Is g also a homomorphism?
- Yes, from the real numbers with addition ($\mathbb{R},+$) to
- the unit circle in the complex plane with rotation

Example: from addition to multiplication

$$
\begin{aligned}
G & =\mathbb{R} \text { under }+ \\
H & =\{z \in \mathbb{C}:|z|=1\} \\
& =\text { Group under } \times
\end{aligned}
$$

Hint:

Every $z \in \mathbb{C}$ with $|z|=1$ can be written as $z=e^{i \theta}$.
$f: G \rightarrow H$
$x \mapsto e^{i x}$
Show $f(x+y)=f(x) \times f(y)$

$$
\begin{aligned}
e^{i(x+y)} & =e^{i x} \times e^{i y} \\
e^{i x+i y} & =e^{i x} \times e^{i y}
\end{aligned}
$$

$$
e^{i x} \times e^{i y}=e^{i x} \times e^{i y}
$$

$$
f(0)=f(2 \pi)=1, \quad f(2 \pi n)=1
$$

f is not 1-1

Example: from addition to multiplication

Isomorphism

- Definition: A homomorphism of binary structures is called an isomorphism iff the corresponding map of sets is:
- one-to-one (injective) and
- onto (surjective).

Some homomorphisms

- Homomorphism: preserves the structure (e.g. a homomorphism φ on \mathbb{Z}_{2} satisfies $\left.\varphi(g+h)=\varphi(g)+\varphi(h)\right)$
- Epimorphism: a homomorphism that is surjective (AKA onto)
- Monomorphism: a homomorphism that is injective (AKA one-to-one, 1-1, or univalent)
- Isomorphism: a homomorphism that is bijective (AKA 1-1 and onto); isomorphic objects are equivalent, but perhaps defined in different ways
- Endomorphism: a homomorphism from an object to itself
- Automorphism: a bijective endomorphism (an isomorphism from an object onto itself, essentially just a re-labeling of elements)

Epimorphism: surjective, AKA onto

Monomorphism: injective, AKA 1-1

Isomorphism: bijective, 1-1 and onto

Endomorphism: from a structure to itself

Automorphism: bijective endomorphism

Outline: T2-1/2: Query Evaluation \& Query Equivalence

- T2-1: Conjunctive Queries (CQs)
- CQ equivalence and containment
- Graph homomorphisms
- Homomorphism beyond graphs
- CQ containment
- CQ minimization
- T2-2: Equivalence Beyond CQs
- Union of CQs, and inequalities
- Union of CQs equivalence under bag semantics
- Tree pattern queries
- Nested queries

Query Containment

Two queries q_{1}, q_{2} are equivalent, denoted $q_{1} \equiv q_{2}$, if for every database instance D, we have $q_{1}(D)=q_{2}(D)$.
the answer (set of tuples)
returned by one is guaranteed to be identical to the other answer

Query q_{1} is contained in query q_{2}, denoted $q_{1} \subseteq q_{2}$, if for every database instance D, we have $q_{1}(D) \subseteq q_{2}$ (D)

Corollary

$q_{1} \equiv q_{2}$ is equivalent to ($q_{1} \subseteq q_{2}$ and $q_{1} \supseteq q_{2}$)

If queries are Boolean, then query containment = logical implication:
$q_{1} \Leftrightarrow q_{2}$ is equivalent to

Query Containment

Two queries q_{1}, q_{2} are equivalent, denoted $q_{1} \equiv q_{2}$, if for every database instance D, we have $q_{1}(D)=q_{2}(D)$.
the answer (set of tuples)
returned by one is guaranteed to be identical to the other answer

Query q_{1} is contained in query q_{2}, denoted $q_{1} \subseteq q_{2}$, if for every database instance D, we have $q_{1}(D) \subseteq q_{2}$ (D)

Corollary

$q_{1} \equiv q_{2}$ is equivalent to ($q_{1} \subseteq q_{2}$ and $q_{1} \supseteq q_{2}$)

If queries are Boolean, then query containment $=$ logical implication: $q_{1} \Leftrightarrow q_{2}$ is equivalent to ($q_{1} \Rightarrow q_{2}$ and $q_{1} \Leftarrow q_{2}$)

Query homomorphisms

A homomorphism h from Boolean q_{1} to q_{2} is a function $h: \operatorname{var}\left(q_{1}\right) \rightarrow \operatorname{var}\left(q_{2}\right) \cup$ const $\left(q_{2}\right)$ such that:
for every atom $\underbrace{R\left(x_{1}, x_{2}, \ldots\right)}$ in q_{1}, there is an atom $R\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots\right)$ in q_{2}
need to be same relation!

Example

$q_{1}:-R(s, u), R(u, w), R(s, v), R(v, w), R(u, v)$
q_{2} :- $R(x, y), R(y, y), R(y, z)$

$$
h_{1 \rightarrow 2}=\text { ? }
$$

Query homomorphisms

A homomorphism h from Boolean q_{1} to q_{2} is a function $h: \operatorname{var}\left(q_{1}\right) \rightarrow \operatorname{var}\left(q_{2}\right) \cup$ const $\left(q_{2}\right)$ such that:
for every atom $\underbrace{R\left(x_{1}, x_{2}, \ldots\right)}$ in q_{1}, there is an atom $R\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots\right)$ in q_{2}
need to be same relation!

Example

$q_{1}:-R(s, u), R(u, w), R(s, v), R(v, w), R(u, v)$
q_{2} :- $R(x, y), R(y, y), R(y, z)$

$$
h_{1 \rightarrow 2}=\{(s, x),(u, y),(v, y),(w, z)\}
$$

Also: $h_{1 \rightarrow 2^{\prime}}:\{s, u, v, w\} \rightarrow\{4\}$ (recall [Hell, Nesetril'90]) But let's focus on $h_{1 \rightarrow 2}$ for the remainder ():

Query homomorphisms

A homomorphism h from Boolean q_{1} to q_{2} is a function $h: \operatorname{var}\left(q_{1}\right) \rightarrow \operatorname{var}\left(q_{2}\right) \cup$ const $\left(q_{2}\right)$ such that:
for every atom $R\left(x_{1}, x_{2}, \ldots\right)$ in q_{1}, there is an atom $R\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots\right)$ in q_{2}

Example

$q_{1}:-R(s, u), R(u, w), R(s, v), R(v, w), R(u, v)$
q_{2} :- $R(x, y), R(y, y), R(y, z)$

$$
h_{1 \rightarrow 2}=\{(s, x),(u, y),(v, y),(w, z)\}
$$

$$
h_{2 \rightarrow 1}: \text { ? }
$$

Query homomorphisms

A homomorphism h from Boolean q_{1} to q_{2} is a function $h: \operatorname{var}\left(q_{1}\right) \rightarrow \operatorname{var}\left(q_{2}\right) \cup$ const $\left(q_{2}\right)$ such that: for every atom $R\left(x_{1}, x_{2}, \ldots\right)$ in q_{1}, there is an atom $R\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots\right)$ in q_{2}

Example

$q_{1}:-R(s, u), R(u, w), R(s, v), R(v, w), R(u, v)$
q_{2} :- $R(x, y), R(y, y), R(y, z)$

$$
h_{1 \rightarrow 2}=\{(s, x),(u, y),(v, y),(w, z)\}
$$

What about:

$$
h_{2 \rightarrow 1}:\{(x, s),(y, v),(z, w)\} \text { ? } \quad q_{2}(x)
$$

Query homomorphisms

A homomorphism h from Boolean q_{1} to q_{2} is a function $h: \operatorname{var}\left(q_{1}\right) \rightarrow \operatorname{var}\left(q_{2}\right) \cup$ const $\left(q_{2}\right)$ such that: for every atom $R\left(x_{1}, x_{2}, \ldots\right)$ in q_{1}, there is an atom $R\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots\right)$ in q_{2}

Example

$$
\begin{aligned}
& q_{1}:-R(s, u), R(u, w), R(s, v), R(v, w), R(u, v), R(v, v) \\
& q_{2}:-R(x, y), R(y, y), R(y, z)
\end{aligned}
$$

$$
h_{1 \rightarrow 2}=\{(s, x),(u, y),(v, y),(w, z)\}
$$

$$
h_{2 \rightarrow 1}:\{(x, s),(x,(z, w)\}
$$

Query homomorphisms and containment
A homomorphism h from Boolean q_{1} to q_{2} is a function
$h: \operatorname{var}\left(q_{1}\right) \rightarrow \operatorname{var}\left(q_{2}\right) \cup$ const $\left(q_{2}\right)$ such that:
for every atom $R\left(x_{1}, x_{2}, \ldots\right)$ in q_{1}, there is an atom $R\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots\right)$ in q_{2}
$E(1,2)$ Compare to our earlier example: $\quad E(1,1)$

$$
\exists \mathrm{x} \cdot \exists \mathrm{y} \cdot \mathrm{E}(\mathrm{x}, \mathrm{y}) \underset{\mathrm{x}}{ } \underset{\mathrm{x} . \mathrm{E}(\mathrm{x}, \mathrm{x})}{\Longleftrightarrow}
$$

Example
$q_{1}:-R(s, u), R(u, w), R(s, v), R(v, w), R(u, v)$
$q_{2}:-R(x, y), R(y, y), R(y, z)$

Query homomorphisms and containment
A homomorphism h from Boolean q_{1} to q_{2} is a function
$h: \operatorname{var}\left(q_{1}\right) \rightarrow \operatorname{var}\left(q_{2}\right) \cup$ const $\left(q_{2}\right)$ such that:
for every atom $R\left(x_{1}, x_{2}, \ldots\right)$ in q_{1}, there is an atom $R\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots\right)$ in q_{2}
$E(1,2)$ Compare to our earlier example:
$E(1,1)$
True $\exists \mathrm{x} . \exists \mathrm{y} . \mathrm{E}(\mathrm{x}, \mathrm{y}) \Leftarrow \exists \mathrm{x} . \mathrm{E}(\mathrm{x}, \mathrm{x})$
False
Example

$$
\begin{aligned}
& q_{1}:-R(s, u), R(u, w), R(s, v), R(v, w), R(u, v) \\
& q_{2}:-R(x, y), R(y, y), R(y, z)
\end{aligned}
$$

We will use homomorphisms to reason about query containment.

$$
\begin{aligned}
& h_{1 \rightarrow 2}=\{(s, x),(u, y),(v, y),(w, z)\} \\
& h_{2 \rightarrow 1}:\{(x, s),(z, w)\}
\end{aligned}
$$

$$
q_{1} \Leftarrow q_{2}
$$

$$
q_{1} \nRightarrow q_{2}
$$

Overview: "All homomorphisms" in one slide

Canonical database

Definition Canonical database

Given a conjunctive query q, the canonical database $D_{c}[q]$ is the database instance where each atom in q becomes a fact in the instance.

Example

$q_{2}(x):-R(x, y), R(y, y), R(y, z)$
$D_{c}\left[a_{2}\right]=$?

Canonical database

DEFINITION Canonical database

Given a conjunctive query q, the canonical database $D_{c}[\boldsymbol{q}]$ is the database instance where each atom in q becomes a fact in the instance.

Example

$$
\begin{aligned}
q_{2}(x) & :-R(x, y), R(y, y), R(y, z) \\
D_{c}\left[q_{2}\right] & =\left\{R\left(\text { 'x' }^{\prime}, y^{\prime}\right), R\left({ }^{\prime} y^{\prime}, ' y '\right), R\left(' y^{\prime}, z^{\prime}\right)\right\} \\
& \equiv\{R(\mathrm{a}, \mathrm{~b}), R(\mathrm{~b}, \mathrm{~b}), R(\mathrm{~b}, \mathrm{c})\} \\
& \equiv\{R(1,2), R(2,2), R(2,3)\}
\end{aligned}
$$

Just treat each variable as different constant ();

[Chandra and Merlin 1977]

Theorem (Query Containment)

Given two Boolean CQs q_{1}, q_{2}, the following statements are equivalent:

1) $q_{1} \Leftarrow q_{2} \quad\left(q_{1} \supseteq q_{2}\right)$
2) There is a homomorphism $h_{1 \rightarrow 2}$ from q_{1} to q_{2}
3) $q_{1}\left(D_{C}\left[q_{2}\right]\right)$ is true

We will look at 2) $\Rightarrow 1$), and it is similar to 2) $\Rightarrow 3$)

```
\(E(1,1)\)
```

```
\(E(1,1)\)
```


Query evaluation

```
\(G \vDash q_{2}\)
```

$$
q_{1}:-E(x, y) q_{1} \longrightarrow h \longrightarrow q_{2} \quad q_{2}:-E(x, x)
$$

$$
\text { Query containment } q_{1} \Leftarrow q_{2}
$$

[Chandra and Merlin 1977]
We show: If there is a homomorphism $h_{1 \rightarrow 2}$, then for any $\mathrm{D}: q_{1}(\mathrm{D}) \Leftarrow q_{2}(\mathrm{D})$

1. For $q_{2}(\mathrm{D})$ to hold, there is a valuation v s.t. $v\left(q_{2}\right) \in \mathrm{D}$
2. We will show that the composition $g=v \circ h$ is a valuation for $q_{1} \quad g(x)=v(h(x))$

Chandra, Merlin. "Optimal implementation of conjunctive queries in relational data bases." STOC 1977. https://doi.org/10.1145/800105.803397

[Chandra and Merlin 1977]

We show: If there is a homomorphism $h_{1 \rightarrow 2}$, then for any $\mathrm{D}: q_{1}(\mathrm{D}) \Leftarrow q_{2}(\mathrm{D})$

1. For $q_{2}(\mathrm{D})$ to hold, there is a valuation v s.t. $v\left(q_{2}\right) \in \mathrm{D}$
2. We will show that the composition $g=v \circ h$ is a valuation for $q_{1} \quad g(x)=v(h(x))$ 2a. By definition of h, for every $R\left(x_{1}, x_{2}, \ldots\right)$ in $q_{1}, R\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots\right)$ in q_{2} 2b. By definition of v, for every $R\left(x_{1}, x_{2}, \ldots\right)$ in $q_{1}, R\left(v\left(h\left(x_{1}\right)\right), v\left(h\left(x_{2}\right)\right), \ldots\right)$ in D

[Chandra and Merlin 1977]

We show: If there is a homomorphism $h_{1 \rightarrow 2}$, then for any $\mathrm{D}: q_{1}(\mathrm{D}) \Leftarrow q_{2}(\mathrm{D})$

1. For $q_{2}(\mathrm{D})$ to hold, there is a valuation v s.t. $v\left(q_{2}\right) \in \mathrm{D}$
2. We will show that the composition $g=v \circ h$ is a valuation for $q_{1} \quad g(x)=v(h(x))$ 2a. By definition of h, for every $R\left(x_{1}, x_{2}, \ldots\right)$ in $q_{1}, R\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots\right)$ in q_{2}
2b. By definition of v, for every $R\left(x_{1}, x_{2}, \ldots\right)$ in $q_{1}, R\left(v\left(h\left(x_{1}\right)\right), v\left(h\left(x_{2}\right)\right), \ldots\right)$ in D

Example

$q_{1}:-R(s, u), R(u, w), R(s, v), R(v, w), R(u, v)$
q_{2} :- $R(x, y), R(y, y), R(y, z)$

$$
h_{1 \rightarrow 2}=\{(s, x),(u, y),(v, y),(w, z)\}
$$

$$
q_{2}(x)
$$

[Chandra and Merlin 1977]

We show: If there is a homomorphism $h_{1 \rightarrow 2}$, then for any $\mathrm{D}: q_{1}(\mathrm{D}) \Leftarrow q_{2}(\mathrm{D})$

1. For $q_{2}(\mathrm{D})$ to hold, there is a valuation v s.t. $v\left(q_{2}\right) \in \mathrm{D}$
2. We will show that the composition $g=v \circ h$ is a valuation for $q_{1} \quad g(x)=v(h(x))$ 2a. By definition of h, for every $R\left(x_{1}, x_{2}, \ldots\right)$ in $q_{1}, R\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots\right)$ in q_{2}
2b. By definition of v, for every $R\left(x_{1}, x_{2}, \ldots\right)$ in $q_{1}, R\left(v\left(h\left(x_{1}\right)\right), v\left(h\left(x_{2}\right)\right), \ldots\right)$ in D

Example

$q_{1}:-R(s, u), R(u, w), R(s, v), R(v, w), R(u, v)$
$q_{2}:-R(x, y), R(y, y), R(y, z)$

$$
v=\{(x, a),(y, b),(z, c)\}
$$

$$
h_{1 \rightarrow 2}=\{(s, x),(u, y),(v, y),(w, z)\}
$$

$$
q_{2}(x)
$$

[Chandra and Merlin 1977]

We show: If there is a homomorphism $h_{1 \rightarrow 2}$, then for any $\mathrm{D}: q_{1}(\mathrm{D}) \Leftarrow q_{2}(\mathrm{D})$

1. For $q_{2}(\mathrm{D})$ to hold, there is a valuation v s.t. $v\left(q_{2}\right) \in \mathrm{D}$
2. We will show that the composition $g=v \circ h$ is a valuation for $q_{1} \quad g(x)=v(h(x))$ 2a. By definition of h, for every $R\left(x_{1}, x_{2}, \ldots\right)$ in $q_{1}, R\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots\right)$ in q_{2}
2b. By definition of v, for every $R\left(x_{1}, x_{2}, \ldots\right)$ in $q_{1}, R\left(v\left(h\left(x_{1}\right)\right), v\left(h\left(x_{2}\right)\right), \ldots\right)$ in D

Example

$q_{1}:-R(s, u), R(u, w), R(s, v), R(v, w), R(u, v)$
q_{2} :- $R(x, y), R(y, y), R(y, z)$

$$
v=\{(x, a),(y, b),(z, c)\}
$$

A	B
a	b
b	b
b	c

$$
\begin{aligned}
& h_{1 \rightarrow 2}=\{(s, x),(u, y),(v, y),(w, z)\} \\
& g=\{(s, a),(u, b),(v, b),(w, \mathrm{c})\}
\end{aligned}
$$

Combined complexity of CQC and CQE

Corollary:

The following problems are NP-complete (in the size of Q or Q^{\prime}):

1) Given two (Boolean) conjunctive queries Q and Q^{\prime}, is $Q \subseteq Q^{\prime}$?
2) Given a Boolean conjunctive query Q and an instance D, does $D \vDash Q$?

Proof:
(a) Membership in NP follows from the Homomophism Theorem:
$\mathrm{Q} \subseteq \mathrm{Q}^{\prime}$ if and only if there is a homomorphism $\mathrm{h}: \mathrm{Q}^{\prime} \rightarrow \mathrm{Q}$
(b) NP-hardness follows from 3-Colorability:

G is 3 -colorable if and only if $\mathrm{Q}^{K_{3}} \subseteq \mathrm{Q}^{\mathrm{G}}$.

The Complexity of Database Query Languages

	Relational Calculus	CQs
Query Eval.: Data Complexity	In LOGSPACE (hence, in P)	In LOGSPACE (hence, in P)
Query Eval.: Combined Compl.	PSPACE- complete	NP-complete
Query Equivalence \& Containment	Undecidable	NP-complete

