
140

Topic 1: Data models and query languages
Unit 4: Datalog
Lecture 10

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp23)
https://northeastern-datalab.github.io/cs7240/sp23/
2/10/2023

Updated 2/15/2023

https://northeastern-datalab.github.io/cs7240/sp23/

141Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Pre-class conversations

• Last class summary
• Project ideas
• Explaining the chase procedure

• today:
- Adding negation to Datalog. What can go wrong ...

https://northeastern-datalab.github.io/cs7240/

142Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Hierarchy of expressiveness

Positive RA (RA+): {σ,π,×,∪}

Union of CQs (UCQs)

Non-recursive Datalog

Non-recursive Datalog
w/ negation

RA: {σ,π,×,∪, −}

Datalog

Recursive queries

Stratified Datalog w/ negation

Answer set programming / Stable Model Semantics

ASP can express NP-complete problems
(For Turing-completeness, we would only have
to add functions, i.e. the ability to create new
values not previously found in the EDB)

Notice that Datalog and UCQs often assume an unordered domain and no built-in predicates.
For equality, we assume here an ordered domain and allow built-in predicates (>,<,≤,≥,!=).

can express all polynomial
time queries on ordered
databases relying on only
information encoded in
tables (e.g. excludes
arithmetical functions)

https://northeastern-datalab.github.io/cs7240/

144Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Negation in Datalog

• Various semantics have been proposed for supporting negation in
Datalog that still allow tractability

• We will first look at two:
- 1. Semipositive Datalog¬ (restricted): PTIME
- 2. Stratified Datalog¬ (standard): PTIME

• We will later look at a more powerful (but intractable) semantics
- Stable Models semantics (or answer set programming ASP): NP-complete

https://northeastern-datalab.github.io/cs7240/

145Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1. Semipositive Programs and Safety

A semipositive program is a program where only EDBs may be negated

Friend(x,y) :- Likes(x,y), !Parent(y,x).

- Safety: rule is safe if every variable occurs in a positive (= unnegated)
relational atom (ensures domain independence: the results of programs
are finite and depend only on the actual contents of the database)

- Semantics: same as ordinary Datalog programs

S(x) :- T(y), Arc(z,y), !Arc(x,y).

S(x) :- T(y), !T(x).

?
?

Exercise: Are following rules safe?

Likes − 𝜋#,%Parent

https://northeastern-datalab.github.io/cs7240/

146Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1. Semipositive Programs and Safety

- Safety: rule is safe if every variable occurs in a positive (= unnegated)
relational atom (ensures domain independence: the results of programs
are finite and depend only on the actual contents of the database)

- Semantics: same as ordinary Datalog programs

S(x) :- T(y), Arc(z,y), !Arc(x,y).

S(x) :- T(y), !T(x).

Exercise: Are following rules safe?

Likes − 𝜋#,%Parent

unsafe

unsafe

Friend(x,y) :- Likes(x,y), !Parent(y,x).

A semipositive program is a program where only EDBs may be negated

https://northeastern-datalab.github.io/cs7240/

148Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1. Semipositive: Negated Atoms

• We may put !, ¬, ~, or not in front of an atom to negate its meaning.
• EXAMPLE: Return all pairs of nodes (x,y) where y is two hops away

from x, but not an immediate neighbor of x.

Arc(Source,Target)

z

yx
?

https://northeastern-datalab.github.io/cs7240/

149Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1. Semipositive: Negated Atoms

• We may put !, ¬, ~, or not in front of an atom to negate its meaning.
• EXAMPLE: Return all pairs of nodes (x,y) where y is two hops away

from x, but not an immediate neighbor of x.

TwoHopsAway(x,y) :- Arc(x,z), Arc(z,y), !Arc(x,y).

Arc(Source,Target)

z

yx

Arc(x,z) Arc(z,y)

!Arc(x,y)

?SQL
501

A(S,T)

https://northeastern-datalab.github.io/cs7240/

150Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1. Semipositive: Negated Atoms

• We may put !, ¬, ~, or not in front of an atom to negate its meaning.
• EXAMPLE: Return all pairs of nodes (x,y) where y is two hops away

from x, but not an immediate neighbor of x.

Arc(Source,Target)

z

yx

Arc(x,z) Arc(z,y)

!Arc(x,y)

SELECT A1.S, A2.T
FROM A A1, A A2
WHERE A1.T = A2.S
AND NOT EXISTS

(SELECT *
FROM A A3
WHERE A3.S = A1.S
AND A3.T = A2.T)

501
A(S,T)

TwoHopsAway(x,y) :- Arc(x,z), Arc(z,y), !Arc(x,y).

https://northeastern-datalab.github.io/cs7240/

151Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Exampe: beyond Semipositive
Compute all pairs of disconnected nodes in a graph.

Arc(Source,Target)
Node(id)

?
Node is basically ADom:

Node(x) :- Arc(x,y)
Node(y) :- Arc(x,y)

https://northeastern-datalab.github.io/cs7240/

152Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Exampe: beyond Semipositive
Compute all pairs of disconnected nodes in a graph.

Arc(Source,Target)
Node(id)

Reachable(x,y) :- Arc(x,y).
Reachable(x,y) :- Arc(x,z), Reachable(z,y).

https://northeastern-datalab.github.io/cs7240/

153Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Exampe: beyond Semipositive

Stratum 1

Stratum 2

Reachable

Unreachable

• Straightforward syntactic restriction.
• When the Datalog program is stratified, we can

evaluate IDB predicates stratum-by-stratum
• Once evaluated, treat it as EDB for higher strata.

Compute all pairs of disconnected nodes in a graph.

¬

LeftBox(x) :- !LeftBox(x), Item(x).

Precedence graph
• Nodes = IDB predicates
• Arc p→q if predicate q depends on p
• Label this arc "¬" if predicate p is

negated

Arc(Source,Target)
Node(id)

Reachable(x,y) :- Arc(x,y).
Reachable(x,y) :- Arc(x,z), Reachable(z,y).
Unreachable(x,y) :- Node(x), Node(y), !Reachable(x,y).

think: "topological sort"

Non-stratified example: ?

https://northeastern-datalab.github.io/cs7240/

154Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Reachable(x,y) :- Arc(x,y).
Reachable(x,y) :- Arc(x,z), Reachable(z,y).
Unreachable(x,y) :- Node(x), Node(y), !Reachable(x,y).

Exampe: beyond Semipositive

Stratum 1

Stratum 2

Reachable

Unreachable

• Straightforward syntactic restriction.
• When the Datalog program is stratified, we can

evaluate IDB predicates stratum-by-stratum
• Once evaluated, treat it as EDB for higher strata.

Compute all pairs of disconnected nodes in a graph.

¬

LeftBox
¬

Precedence graph
• Nodes = IDB predicates
• Arc p→q if predicate q depends on p
• Label this arc "¬" if predicate p is

negated

Arc(Source,Target)
Node(id)

Non-stratified example:

think: "topological sort"

LeftBox(x) :- !LeftBox(x), Item(x).

https://northeastern-datalab.github.io/cs7240/

155Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

• DEFINITION: Let P be a Datalog program, E be the set of EDB predicates, and I
be the set of IDB predicates. A stratification of P is a partitioning of the IDB
predicates into disjoint sets I1,...,Ik such that:
- For i=1,...,k, every rule with head in Ii has possible body predicates only from E, I1,..., Ii

- For i=1,...,k, every rule with head in Ii has negated body predicates only from E, I1,..., Ii-1

• SEMANTICS:
- For i=1,...,k:

• Compute the IDBs of the stratum Ii, possibly via recursion
• Add computed IDBs to the EDBs

- Due to the definition of stratification, each Ei can be viewed as semipositive

2. Stratified Programs: Definition and Semantics

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

156Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

2. Theorems on Stratification

• THEOREM 1: A program has a stratification if and only if its dependency graph
does not contain a cycle with a "negated edge"
- Dependency graph is defined as previously,

except that edges can be labeled with negation
- Hence, we can test for stratifiability efficiently,

via graph reachability

A(x) :- B(x).
B(x) :- C(x).
C(x) :- ¬A(x).

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?Can it be
stratified

https://northeastern-datalab.github.io/cs7240/

157Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

2. Theorems on Stratification

• THEOREM 1: A program has a stratification if and only if its dependency graph
does not contain a cycle with a "negated edge"
- Dependency graph is defined as previously,

except that edges can be labeled with negation
- Hence, we can test for stratifiability efficiently,

via graph reachability

• THEOREM 2: Non-recursive Datalog with negation can always be stratified via
the topological order

• THEOREM 3: Non-recursive Datalog with negation has the same expressive
power as the algebra {σ=,	π,	×,	∪,	−}
- Extendable to RA if we add the comparison predicates <, >, !=, <=, >=

A B

C

¬

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

A(x) :- B(x).
B(x) :- C(x).
C(x) :- ¬A(x).

https://northeastern-datalab.github.io/cs7240/

158Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

2. Stratification practice

Q: Find all descendants of Alice,
who are not descendants of Bob

?

Parent(P,C)

https://northeastern-datalab.github.io/cs7240/

159Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

2. Stratification practice

Q: Find all descendants of Alice,
who are not descendants of Bob

?

first compute for each
person their descendants

then use negation

Parent(P,C)

https://northeastern-datalab.github.io/cs7240/

160Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

D(x,y) :- Parent(x,y).
D(x,z) :- Parent(y,z), D(x,y).

2. Stratification practice

Q: Find all descendants of Alice,
who are not descendants of Bob

?

first compute for each
person their descendants

then use negation

D

Parent(P,C)

https://northeastern-datalab.github.io/cs7240/

161Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

2. Stratification practice

D(x,y) :- Parent(x,y).
D(x,z) :- Parent(y,z), D(x,y).
Q(x) :- D('Alice',x), ¬D('Bob',x).

Q: Find all descendants of Alice,
who are not descendants of Bob

first compute for each
person their descendants

then use negation

D

Q

¬

Parent(P,C)

https://northeastern-datalab.github.io/cs7240/

162Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

DA(y) :- Parent('Alice',y).
DA(y) :- Parent(x,y), DA(x).
DB(y) :- Parent('Bob',y).
DB(y) :- Parent(x,y), DB(x).
Q(x) :- DA(x), ¬DB(x).

2. Stratification practice

D(x,y) :- Parent(x,y).
D(x,z) :- Parent(y,z), D(x,y).
Q(x) :- D('Alice',x), ¬D('Bob',x).

Q: Find all descendants of Alice,
who are not descendants of Bob

DB

Q
¬

DAD

Q

¬

Parent(P,C)

https://northeastern-datalab.github.io/cs7240/

171

Outline: T1-4: Datalog

• Datalog
– Datalog rules
– Recursion
– Recursion in SQL [moved here from T1-U1: SQL]
– Semantics
– Datalog¬: Negation, stratification
– Datalog±
– Stable model semantics (Answer set programming)
– Datalog vs. RA
– Naive and Semi-naive evaluation (incl. Incremental View

Maintenance)

172Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Datalog±: background

Datalog query language
(stratified negation)

• Much is possible with Datalog

Based on a presentation by Andrea Cali

https://northeastern-datalab.github.io/cs7240/

173Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Datalog±: background

Ontologies,
Description Logics (DL−Lite)

Semantic web

Datalog query language
(stratified negation)

• Much is possible with Datalog
• Much is not (observed e.g. by [Patel-Schneider, Horrocks 2006])

Based on a presentation by Andrea Cali

Patel-Schneider, Horrocks. Position paper: A comparison of two modelling paradigms in the Semantic Web. WWW (Semantic Web track). 2006. https://dl.acm.org/doi/10.1145/1135777.1135784

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/10.1145/1135777.1135784

174Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Datalog±: goal

Ontologies,
Description Logics (DL−Lite)

Semantic web

Relational integrity
constraints

Datalog query language
(stratified negation)

• Much is possible with Datalog

Cali, Gottlob, Lukasiewicz, Marnette, Pieris. Datalog+/-: A Family of Logical Knowledge Representation and Query Languages for New Applications. LICS 2010. https://doi.org/10.1109/LICS.2010.27

• Datalog± is a framework that extends Datalog with:
- value invention (∃-variables in the head): TGDs (Tuple-Generating Dependencies)
- equality predicate in the head: EGDs (Equality Generating Dependencies)
- constant ⊥ in the head: negative constraints (disjointness)

• Much is not (observed e.g. by Patel-Schneider, Horrocks 2006)

Datalog±

Based on a presentation by Andrea Cali

Patel-Schneider, Horrocks. Position paper: A comparison of two modelling paradigms in the Semantic Web. WWW (Semantic Web track). 2006. https://dl.acm.org/doi/10.1145/1135777.1135784

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1109/LICS.2010.27
https://dl.acm.org/doi/10.1145/1135777.1135784

175Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Datalog and expressiveness for ontological reasoning
Assertion type Datalog rule
Inclusion emp(X)	→	person(X)
(Inverse) role inclusion reportsTo(X	,	Y)	→	manages(Y	,	X)
Reflexive expansion boss(X)	→	manages(X	,	X)
Transitivity manages(X	,	Y),	manages(Y ,	Z)	→	manages(X,	Z)
Concept product seniorEmp(X),	emp(Y)	→	higher(X,	Y)
Participation ?
Disjointness ?
Functionality ?

Ontology assertion Datalog± rule
Participation boss(X)	→	∃Y reports(Y	,	X)
Disjointness customer(X),	boss(X)	→	⊥
Functionality reports(X	,	Y1),	reports	(X	,	Y2)	→	Y1 =	Y2

Based on a presentation by Andrea Cali

https://northeastern-datalab.github.io/cs7240/

176Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Datalog± vs. DL
• Much is possible with Datalog

Source: Gottlob, Lukasiewicz, Pieris. Datalog+/-: Questions and Answers. AAAI 2014. https://www.aaai.org/ocs/index.php/KR/KR14/paper/viewPaper/7965

https://northeastern-datalab.github.io/cs7240/
https://www.aaai.org/ocs/index.php/KR/KR14/paper/viewPaper/7965

177Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Interesting Observations

• Exploiting schema knowledge in query answering is not trivial
• Languages and algorithms exist that allow for tractable query

answering
• Applications in real-world scenarios are possible
- Industrial applications in data integration, Semantic Web, ontological

reasoning
- Companies and Products: RelationalAI, Deepreason.ai, Oracle Semantic

Technologies, IBM IODT, OntoDLV (Vienna)

Based on a presentation by Andrea Cali

https://northeastern-datalab.github.io/cs7240/

178

Outline: T1-4: Datalog

• Datalog
– Datalog rules
– Recursion
– Recursion in SQL [moved here from T1-U1: SQL]
– Semantics
– Datalog¬: Negation, stratification
– Datalog±
– Stable model semantics (Answer set programming)
– Datalog vs. RA
– Naive and Semi-naive evaluation (incl. Incremental View

Maintenance)

179Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Negation in Souffle vs. Negation in ASP

Source: https://souffle-lang.github.io/rules

YES: stable model semantics as
used by ASP can deal with this
circular definition

NO: but safety conditions are
still the same as for souffle

https://northeastern-datalab.github.io/cs7240/
https://souffle-lang.github.io/rules

180Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Answer Set Programming (ASP)
• Programming paradigm that can model AI problems (e.g, planning, combinatorics)
• Basic idea

- Allow non-stratified negation and encode problem (specification & "instance") as logic program rules
- Solutions are stable models of the program

• Semantics based on Possible Worlds and Stable Models
- Given an answer set program P, there can be multiple solutions (stable models, answer sets)
- Each model M: assignment of true/false value to propositions to make all formulas true (combinatorial)
- Captures default reasoning, non-monotonic reasoning, constrained optimization, exceptions, weak

exceptions, preferences, etc., in a natural way

• Finding stable models of answer set programs is not easy
- Current systems CLASP, DLV, Smodels, etc., extremely sophisticated
- Work by first grounding the program, suitably transforming it to a propositional theory whose models are

stable models of the original program (contrast with "lifted inference" later)
- These models are found using a SAT solver

https://northeastern-datalab.github.io/cs7240/

181Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Rules with Negation

• Closed world assumption (CWA) as used in standard Datalog:
- If a fact does not logically follow from a set of Datalog clauses, then we conclude that

the negation of this fact is true.

• Problem: CWA can lead to inconsistencies when negation is allowed in rule
bodies. Intuition: we can have multiple minimal models ("Herbrand models")

?
What are all the possible *minimal* models:

Example 1:

boring(chess) :- boring(chess).

• Herbrand universe UP (set of all constants) ={chess}
• Herbrand base BP (set of grounded atoms) = {boring(chess)}
• Interpretations (all subsets of BP) = { {}, {boring(chess)} }
• Model: interpretation that makes each ground instance of each rule true

https://northeastern-datalab.github.io/cs7240/

182Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Rules with Negation

• Closed world assumption (CWA) as used in standard Datalog:
- If a fact does not logically follow from a set of Datalog clauses, then we conclude that

the negation of this fact is true.

• Problem: CWA can lead to inconsistencies when negation is allowed in rule
bodies. Intuition: we can have multiple minimal models ("Herbrand models")

boring(chess) :- boring(chess).
What are all the possible *minimal* models:

Example 1:

M1 = {}
M2 = {boring(chess)} is a model,
but not minimal

https://northeastern-datalab.github.io/cs7240/

183Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Rules with Negation

• Closed world assumption (CWA) as used in standard Datalog:
- If a fact does not logically follow from a set of Datalog clauses, then we conclude that

the negation of this fact is true.

• Problem: CWA can lead to inconsistencies when negation is allowed in rule
bodies. Intuition: we can have multiple minimal models ("Herbrand models")

boring(chess) :- ¬interesting(chess). ?What are all the possible *minimal* models:

boring(chess) :- boring(chess).
What are all the possible *minimal* models:

Example 1:

M1 = {}
M2 = {boring(chess)} is a model,
but not minimalExample 2:

Possible interpretations:
{ {},
{b(c)}, {i(c)},
{b(c),i(c)} }

https://northeastern-datalab.github.io/cs7240/

184Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Rules with Negation

• Closed world assumption (CWA) as used in standard Datalog:
- If a fact does not logically follow from a set of Datalog clauses, then we conclude that

the negation of this fact is true.

• Problem: CWA can lead to inconsistencies when negation is allowed in rule
bodies. Intuition: we can have multiple minimal models ("Herbrand models")

What are all the possible *minimal* models:

What are all the possible *minimal* models:

Example 1:

M1 = {}
M2 = {boring(chess)} is a model,
but not minimalExample 2:
M1 = {boring(chess)}
M2 = {interesting(chess)}

boring(chess) :- ¬interesting(chess).

boring(chess) :- boring(chess).

https://northeastern-datalab.github.io/cs7240/

185Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semantics: Informally

• Informally, a stable model M of a ground program P is a set of
ground atoms such that
1. Every rule is satisfied:

i.e., for any rule in P

if each atom ai is satisfied (ai's are in M) and no atom bi is satisfied
(i.e. no bi is in M), then h is in M.

2. Every h Î M can be derived from a rule by a "non-circular reasoning"
(informal for: we are looking for minimal models, or there is some
"derivation provenance")

h :- a1, ..., am, ¬b1, ..., ¬bn.

Recall that alternatives to "¬" are "not" and "!". Writing out "not" explicitly is more common in ASP.

https://northeastern-datalab.github.io/cs7240/

186Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semantics: "non-circular" more formally
Idea: Guess a model M (= a set of atoms). Then verify M is the exact set of atoms
that "can be derived" under standard minimal model semantics on PM on a
modified positive program PM (called "the reduct") derived from P as follows:

M is a stable model of P iff M is the least model of PM

1. Create all possible groundings of the rules of program P

2. Delete all grounded rules that contradict M

h :- a1, ..., am, ¬b1, ..., ¬bn. if some bi ∊ M

3. In remaining grounded rules, delete all negative literals

h :- a1, ..., am, ¬b1, ..., ¬bn. if no bi ∊ M

https://northeastern-datalab.github.io/cs7240/

187Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semantics: "non-circular" more concisely

The reduct of P w.r.t M is:

h :- a1, ..., am.PM = {
∧ no bi ∊ Mh :- a1, ..., am, ¬b1, ..., ¬bn.

|
∊ grounding of P }

M is a stable model of P iff M is the least model of PM

https://northeastern-datalab.github.io/cs7240/

