Updated 2/15/2023

Topic 1: Data models and query languages
Unit 4: Datalog

Lecture 10

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp23)

https://northeastern-datalab.github.io/cs7240/sp23/
2/10/2023

140

https://northeastern-datalab.github.io/cs7240/sp23/

Pre-class conversations

e Last class summary
e Project ideas
e Explaining the chase procedure

e today:
— Adding negation to Datalog. What can go wrong ...

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 141

https://northeastern-datalab.github.io/cs7240/

H ie I'd rChy Of eXp F'ess ive Ness ASP can express NP-complete problevms

(For Turing-completeness, we would only have
to add functions, i.e. the ability to create new
values ot previously found v the EDB)

Answer set programming / Stable Model Semantics

cawn express all polyvowial
time dueries on ordered
databases relying on only
mformation encoded v
tables (e.9. excludes

RA: {o,1,%X,U, -} Positive RA (RAY): {o,t,X,U} . . arithmetical functions)
SR Recursive queries

Stratified Datalog w/ negation

Non-recursive Datalog Union of CQs (UCQs)
w/ negation

Datalog
Non-recursive Datalog

Notice that Datalog and UCQSs often assume an unordered domain and vo built-in predicates.

For equality, we assume here av ordered domain and allow built-in predicates (>,<,<,2,1=).
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 142

https://northeastern-datalab.github.io/cs7240/

Negation in Datalog

e Various semantics have been proposed for supporting negation in
Datalog that still allow tractability

« We will first look at two:
(restricted): PTIME

(standard): PTIME

« We will later look at a more powerful (but intractable) semantics

(or answer set programming ASP): NP-complete

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 144

https://northeastern-datalab.github.io/cs7240/

1. Semipositive Programs and Safety ~ — | o

(x,y) :- Likes(x,y), Parent(y,x). Likes — 1T, Parent

A program is a program where only EDBs may be negated

— Semantics: same as ordinary Datalog programs

— Safety: rule is safe if every variable occurs in a positive (= unnegated)
relational atom (ensures domain independence: the results of programs
are finite and depend only on the actual contents of the database)

Exercise: Are following rules safe?

(x) :- T(y), Arc(z,y), 'Arc(x,y). ?
(x) :- T(y), IT(x). ?

145

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

1. Semipositive Programs and Safety

(x,y) :- Likes(x,y), Parent(y,x). Likes — 1T, Parent

A program is a program where only EDBs may be negated

— Semantics: same as ordinary Datalog programs

— Safety: rule is safe if every variable occurs in a positive (= unnegated)
relational atom (ensures domain independence: the results of programs
are finite and depend only on the actual contents of the database)

Exercise: Are following rules safe?
[316

(x) :- T(y), Arc(z,y), !Arc(xv,y). unsafe

(x) == T(y), 'T(x). uwisafe

146

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

1. Semipositive: Negated Atoms Arc(Source, Target)

« We may put !, -, ~, or not in front of an atom to negate its meaning.

« EXAMPLE: Return all pairs of nodes (x,y) where y is two hops away
from x, but not an immediate neighbor of x.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 148

https://northeastern-datalab.github.io/cs7240/

1. Semipositive: Negated Atoms Arc(Source, Target)

« We may put !, -, ~, or not in front of an atom to negate its meaning.

« EXAMPLE: Return all pairs of nodes (x,y) where y is two hops away
from x, but not an immediate neighbor of x.

(le) . (X,Z), (Zly)l l (le)°

oL ?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 149

https://northeastern-datalab.github.io/cs7240/

1. Semipositive: Negated Atoms Arc(Source, Target)

« We may put !, -, ~, or not in front of an atom to negate its meaning.

« EXAMPLE: Return all pairs of nodes (x,y) where y is two hops away
from x, but not an immediate neighbor of x.

(le) . (XIZ)I (Z,Y), l (le)°

SELECT Al.S, A2.T
FROM A Al, A A2
WHERE Al.T = A2.5
AND NOT EXISTS
(SELECT x*
FROM A A3
WHERE A3.S = Al.S
AND A3.T = A2.T)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 150

https://northeastern-datalab.github.io/cs7240/

Exampe: beyond Semipositive arcSourceTarget) U
oaell

Compute all pairs of disconnected nodes in a graph. Node is basically ADowm:

Node(x) - Arc(x\)
? Node(y) - Arc(xy)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 151

https://northeastern-datalab.github.io/cs7240/

Exam PE: b eyon d Semi POS itive Arc(Source, Target)

Node(id)
Compute all pairs of disconnected nodes in a graph.
Reachable(x,y) :- Arc(x,y).
Reachable(x,y) :- Arc(x,z), Reachable(z,y).
-

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 152

https://northeastern-datalab.github.io/cs7240/

Examp63 beyond SemipOSitive Arc(Source, Target) t y

Node(id)

Compute all pairs of disconnected nodes in a graph.

B &= A IEpg: Stratum 1 J
_____________________ e S e |
. | v
(x,y) - Node(x), Node(y), ! (Y)- | Stratum 2
* Straightforward syntactic restriction.
 When the Datalog program is stratified, we can | * Nodes = predicates
evaluate IDB predicates stratum-by-stratum Arc p—q if predicate g depends on p

* Once evaluated, treat it as EDB for higher strata. | * Label this arc "-" if predicate p is
negated think: "topologjical sor+"

Non-stratified example: (x) :- ! (x), ltem(x). ?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 153

https://northeastern-datalab.github.io/cs7240/

Examp63 beyond SemipOSitive Arc(Source, Target) t y

Node(id)

Compute all pairs of disconnected nodes in a graph.

B &= A IEpg: Stratum 1 J
_____________________ e S e |
. | v
(x,y) - Node(x), Node(y), ! (Y)- | Stratum 2
* Straightforward syntactic restriction.
 When the Datalog program is stratified, we can | * Nodes = predicates
evaluate IDB predicates stratum-by-stratum Arc p—q if predicate g depends on p

* Once evaluated, treat it as EDB for higher strata. | * Label this arc "-" if predicate p is
negated think: "topologjical sor+"

Non-stratified example: (x) :- | (x), Item(x). B

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 154

https://northeastern-datalab.github.io/cs7240/

2. Stratified Programs: Definition and Semantics

« DEFINITION: Let P be a Datalog program, E be the set of EDB predicates, and
be the set of predicates. A of Pisa of the

predicates into disjoint sets such that:
- Fori=1,...,k, every rule with head in | has possible body predicates only from E,

- Fori=1,...,k, every rule with head in |. has negated body predicates only from E, D

e SEMANTICS:

- Fori=1,...k:
 Compute the IDBs of the stratum |, possibly via recursion
 Add computed IDBs to the EDBs

— Due to the definition of stratification, each E; can be viewed as semipositive

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 155

https://northeastern-datalab.github.io/cs7240/

2. Theorems on Stratification

« THEOREM 1: A program has a stratification if and only if its dependency graph
does not contain a cycle with a "negated edge”

— Dependency graph is defined as previously, A(x) - B(x).
except that edges can be labeled with negation

Can i+ be

B(x) :- C(x). i
— Hence, we can test for stratifiability efficiently, ()) stratified o

via graph reachability C(x) - =A(x).

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 156

https://northeastern-datalab.github.io/cs7240/

2. Theorems on Stratification

« THEOREM 1: A program has a stratification if and only if its dependency graph
does not contain a cycle with a "negated edge”

— Dependency graph is defined as previously, A(x) - B(x). A e—— B
except that edges can be labeled with negation B(x) - C(x) \ T
— Hence, we can test for stratifiability efficiently, ' ')
via graph reachability C(x) - =A(x). ¢

e THEOREM 2: Non-recursive Datalog with negation can always be stratified via
the topological order

e THEOREM 3: Non-recursive Datalog with negation has the same expressive
power as the algebra {o_, i, X, U, —}
— Extendable to RA if we add the comparison predicates <, >, 1=, <=, >=

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 157

https://northeastern-datalab.github.io/cs7240/

2. Stratification practice

Q: Find all descendants of Alice,
who are not descendants of Bob

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Parent(P,C)

158

https://northeastern-datalab.github.io/cs7240/

2. Stratification practice Parent(P,C)

Q: Find all descendants of Alice,
who are not descendants of Bob

first compute for each
persov their descendants

then use negation

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 159

https://northeastern-datalab.github.io/cs7240/

2. Stratification practice Parent(P,C)

Q: Find all descendants of Alice,
who are not descendants of Bob

D(x,y) :- Parent(x,y). first compute for each
D(x,z) :- Parent(y,z), D(x,y). person their descendants

then use negation

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 160

https://northeastern-datalab.github.io/cs7240/

2. Stratification practice Parent(P,C)

Q: Find all descendants of Alice,
who are not descendants of Bob

D(x,y) :- Parent(x,y). first compute for each J
D(x,z) :- Parent(y,z), D(x,y). person their descendants
O(x) :- D(*Alice’,x), =D('Bob’,x). then use negation Q

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 161

https://northeastern-datalab.github.io/cs7240/

2. Stratification practice Parent(P,C)

Q: Find all descendants of Alice,
who are not descendants of Bob

DA(y) :- Parent('Alice',y).
DA(y) :- Parent(x,y), DA(x).

D(x,y) :- Parent(x,y). DB(y) :- Parent('Bob',y).
.. [BboziiRarently,z) Bl I IDEyIEsRarenty oyl DB}
QO(x) :- D('Alice’,x), =-D('Bob’,x). O(x) :- DA(x), =DB(x).

Dj DlAj D,B_<—|
e N AT

Q Q

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 162

https://northeastern-datalab.github.io/cs7240/

Outline: T1-4: Datalog

» Datalog
— Datalog rules
— Recursion
— Recursion in SQL [moved here from T1-U1: SQL]
— Semantics
— Datalog™ Negation, stratification
— Datalog®
— Stable model semantics (Answer set programming)
— Datalog vs. RA

— Naive and Semi-naive evaluation (incl. Incremental View
Vaintenance)

171

Datalog®*: background

Datalog query language
(stratified negation)

* Much is possible with Datalog

Based on a presentation by Andrea Cali
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 172

https://northeastern-datalab.github.io/cs7240/

Datalog*: background

Datalog query language
(stratified negation)

Ontologies,
Description Logics (DL-Lite)
Semantic web

* Much is possible with Datalog
* Much is not (observed e.g. by [Patel-Schneider, Horrocks 2006])

Patel-Schneider, Horrocks. Position paper: A comparison of two modelling paradigms in the Semantic Web. WWW (Semantic Web track). 2006. https://dl.acm.org/doi/10.1145/1135777.1135784

Based on a presentation by Andrea Cali
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 173

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/10.1145/1135777.1135784

Datalog®*: goal

Datalog query language
(stratified negation)

Ontologies,
Description Logics (DL-Lite)
Semantic web

Relational integrity
constraints

Datalog™

* Much is possible with Datalog
 Much is not (observed e.g. by Patel-Schneider, Horrocks 2006)

is a framework that extends Datalog with:

- value invention (3-variables in the head): (Tuple-Generating Dependencies)
- equality predicate in the head: (Equality Generating Dependencies)
- constant L in the head: (disjointness)

Patel-Schneider, Horrocks. Position paper: A comparison of two modelling paradigms in the Semantic Web. WWW (Semantic Web track). 2006. https://dl.acm.org/doi/10.1145/1135777.1135784
Cali, Gottlob, Lukasiewicz, Marnette, Pieris. Datalog+/-: A Family of Logical Knowledge Representation and Query Languages for New Applications. LICS 2010. https://doi.org/10.1109/LICS.2010.27

Based on a presentation by Andrea Cali
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 174

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1109/LICS.2010.27
https://dl.acm.org/doi/10.1145/1135777.1135784

Datalog and expressiveness for ontological reasoning

Assertion type

Datalog rule

Inclusion

emp(X) — person(X)

(Inverse) role inclusion

reportsTo(X, Y) - manages(Y, X)

Reflexive expansion

boss(X) — manages(X, X)

Transitivity

manages(X, Y), manages(Y, Z) - manages(X, Z)

Concept product

seniorEmp(X), emp(Y) — higher(X, Y)

Participation

?

Disjointness

?

Functionality

?

Ontology assertion

Datalog* rule

Participation

boss(X) — Y reports(Y, X)

Disjointness

customer(X), boss(X) —

Functionality

reports(X, Y1), reports (X, Y2) - Y1 =Y2

Based on a presentation by Andrea Cali
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

175

https://northeastern-datalab.github.io/cs7240/

Datalog*vs. DL

The above example corre-
sponds to the following set of DL axioms, expressed in an
extension of £LHZ by nonmonotonic negation:

FiveStar(X) — Hotel(X), FiveStar C Hotel,
FiveStar(X),notPool(X,Y) — 3Z Beach(X, Z), FiveStar MnotdPool C dBeach,
FiveStar(X),notBeach(X,Y) — 3Z Pool(X, Z), FiveStar MnotdBeach T 3Pooal,
Beach(X,Y) — 3Z SwimOpp(X, Z), dBeach C JSwimOpp,
Pool(X,Y) — 3Z SwimOpp(X, Z), JdPool C JSwimOpp,

Source: Gottlob, Lukasiewicz, Pieris. Datalog+/-: Questions and Answers. AAAI 2014. https://www.aaai.org/ocs/index.php/KR/KR14/paper/viewPaper/7965
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 176

https://northeastern-datalab.github.io/cs7240/
https://www.aaai.org/ocs/index.php/KR/KR14/paper/viewPaper/7965

Interesting Observations

e Exploiting schema knowledge in query answering is
e Languages and algorithms exist that allow for

e Applicationsin are possible
— Industrial applications in data integration, Semantic Web, ontological
reasoning

— Companies and Products: RelationalAl, Deepreason.ai, Oracle Semantic
Technologies, IBM I0DT, OntoDLV (Vienna)

Based on a presentation by Andrea Cali
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 177

https://northeastern-datalab.github.io/cs7240/

Outline: T1-4: Datalog

— Stable model semantics (Answer set programming)

Negation in Souffle vs. Negation in ASP

Negation in Rules

A rules of the form
CanRenovate(person, building) :- Owner(person, building), !Heritage(building).

expresses the rule that an owner can renovate a building with the condition that the building is

not classified as heritage. Thus the literal “Heritage(building)” is negated (via “!") in the body of \IES: 5+abl6 W\Od@[Semavl+i 05 ﬂs

the rule. Not all negations are semantically permissible. For example,

S used by ASP can deal with +his
B0 - AR circular defivition

= 1 A(x).

is a circular definition. One cannot determine if anything belongs to the relation “A” without
determining if it belongs to relation “B”. But to determine if it is a “B” one needs to determine if
the item belongs to “A”. Such circular definitions are forbidden. Technically, rules involving
negation must be stratifiable.

Negated literals do not bind variables. For example, N O: b(A“’ Sa'Fe‘w 00V|di+i OVIS a r@

Alx,y) = R(x), :sw/ <till ¥he same as for souffle

is not valid as the set of values that “y” can take is not clear. This can be rewritten as,

A(x,y) :— R(x), Scope(y), !S(y).

", 99

where the relation “Scope” defines the set of values that “y” can take.

Source: https://souffle-lang.github.io/rules
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

179

https://northeastern-datalab.github.io/cs7240/
https://souffle-lang.github.io/rules

Answer Set Programming (ASP)

Programming paradigm that can model Al problems (e.g, planning, combinatorics)

e Basicidea
- Allow and encode problem () as logic program rules
— Solutions are of the program

Semantics based on Possible Worlds and Stable Models
— Given an answer set program P, there can be
— Each model M: assignment of true/false value to propositions to make all formulas true ()

— Captures default reasoning, non-monotonic reasoning, constrained optimization, exceptions, weak
exceptions, preferences, etc., in a natural way

Finding stable models of answer set programs is not easy
— Current systems CLASP, , Smodels, etc., extremely sophisticated

— Work by the program, suitably transforming it to a propositional theory whose models are
stable models of the original program (contrast with " " later)

— These models are found using a SAT solver

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 180

https://northeastern-datalab.github.io/cs7240/

Rules with Negation

» Closed world assumption (CWA) as used in standard Datalog:

— If a fact does not logically follow from a set of Datalog clauses, then we conclude that
the negation of this fact is true.

« Problem: CWA can lead to inconsistencies when negation is allowed in rule

bodies. Intuition: we can have multiple models ("Herbrand models")
Example 1:
boring(chess) :- boring(chess). :> ?

wWhat are all the possible *minimal* models:

o Herbrond wiiverse . (set of all constants) =f{chess}
 Herbrand base B, (set of grounded atoms) = {boring(chess)3
(all subsets of Bs) = £ €3, thoring(chess)s 3
L nterpretation that makes each ground instance of each rule true

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 181

https://northeastern-datalab.github.io/cs7240/

Rules with Negation

» Closed world assumption (CWA) as used in standard Datalog:

— If a fact does not logically follow from a set of Datalog clauses, then we conclude that

the negation of this fact is true.

e Problem: CWA can lead to inconsistencies when negation is allowed in rule
bodies. Intuition: we can have multiple minimal models ("Herbrand models")

Example 1:

boring(chess) :- boring(chess).

—

wWhat are all the possible *minimal* models:

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

M, = {}

W, = {boring(chess)? is a model,
but vot minimal

182

https://northeastern-datalab.github.io/cs7240/

Rules with Negation

» Closed world assumption (CWA) as used in standard Datalog:

— If a fact does not logically follow from a set of Datalog clauses, then we conclude that
the negation of this fact is true.

e Problem: CWA can lead to inconsistencies when negation is allowed in rule
bodies. Intuition: we can have multiple minimal models ("Herbrand models")

Example 1:
boring(chess) :- boring(chess). :> M, ={}

What are all the possible *mivimal* models: W, = {boring(chess)3 is a model,
but not wminimal

Example 2.
boring(chess) :- —interesting(chess). :> o ?"55}5‘”[6 Wterpretations:
wWhat are all the possible *minimal* models:) (v(c)3, £i(c)3,

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ éb (o)’l (0)} } 183

https://northeastern-datalab.github.io/cs7240/

Rules with Negation

» Closed world assumption (CWA) as used in standard Datalog:

— If a fact does not logically follow from a set of Datalog clauses, then we conclude that
the negation of this fact is true.

e Problem: CWA can lead to inconsistencies when negation is allowed in rule
bodies. Intuition: we can have multiple minimal models ("Herbrand models")

Example 1:
boring(chess) :- boring(chess). :> M, ={}

What are all the possible *mivimal* models: W, = {boring(chess)3 is a model,
but not wminimal

Example 2.
boring(chess) :- —interesting(chess). :> M, = {boring(chess)}

What are all +he possible *minimal* models; | M2 = linteresting(chess)}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 184

https://northeastern-datalab.github.io/cs7240/

Semantics: Informally

e Informally, a of a ground program P is a set of
ground atoms such that

1. Every rule is satisfied:
i.e., foranyruleinP

.- al, ves) am, ﬁb]_, Y “bn.

if each atom a; is satisfied (2,'s are in [VI) and no atom b, is satisfied
(i.e. isin M), then hisin

2. Every h € M can be derived from arulebya”
(informal for: we are looking for , or there is some

" ")

Recall that alternatives to "-" are "not" and "!". Writing out "not" explicitly is more common in ASP.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 185

https://northeastern-datalab.github.io/cs7240/

Semantics: "non-circular” more formally

ldea: Guess a model VI (= a set of atoms). Then verify M is the exact set of atoms
that "can be derived" under standard minimal model semantics on PV on a
modified positive program P"' (called "the ") derived from P as follows:

1. Create all possible groundings of the rules of program P

2. Delete all grounded rules that contradict

h:-a, a5 =bq, ..., =b,. if some b, €

3. In remaining grounded rules, delete all negative literals

h . al, Y am, _'bl, ceey _'bn. |f NO bi €

is a of P iff Ml is the least model of

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 186

https://northeastern-datalab.github.io/cs7240/

Semantics: "non-circular” more concisely

The reduct of P w.r.t M is:

pPM = { h:-ay ... a,.

h:-ay ..., a, -by ..., =b,. | €grounding of P Ano b, € IV }

M is a stable model of P iff M is the least model of PV

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 187

https://northeastern-datalab.github.io/cs7240/

