Updated 2/15/2023

Topic 1: Data models and query languages
Unit 4: Datalog

Lecture 9

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp23)

https://northeastern-datalab.github.io/cs7240/sp23/
2/7/2023

52

https://northeastern-datalab.github.io/cs7240/sp23/

Pre-class conversations

e Last class summary
e Please ask questions directly (not in chat)
e Alloy: seems to be declarative, why RA?

e today:
— Datalog with stratified negation

e next time:
— Datalog with negation (stable models)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

DOI:10.1145/3338843

Exploiting a simple, expressive logic based
on relations to describe designs and automate
their analysis.

BY DANIEL JACKSON

Alloy:

A Language and
Tool for Exploring
Software Designs

ALLOY 15 A language and a toolkit for exploring the kinds
of structures that arise in many software designs. This
article aims to give readers a flavor of Alloy in action, and
some examples of its applications to date, thus giving a
sense of how it can be used in software design work.

Software involves structures of many sorts:
architectures, database schemas, network topologies,
ontologies, and so on. When designing a software
system, you need to be able to express the structures
essential to the design and to check that they have the
properties you expect.

You can express a structure by sketching iton a
napkin. That's a good start, but it's limited. Informal
representations give inconsistent interpretations, and
they cannot be analyzed mechanically. So people have
turned to formal notations that define structure and
behavior precisely and objectively, and that can exploit
the power of computation.

BB COMMUMICATIONS OF THE ACM | SEFTEMBER 2018 | VOL 6F | NO.§

contributed articles

)

By using formality early in develop-
ment, you can minimize the costs of
ambiguity and get feedback on your
work by running analyses. The most
popular approach to advocate this is
agile development, in which the formal
representation is code in a traditional
amming language and the analy-
conventional unit testing.

As a language for exploring designs,
however, code is imperfect. It's verbose
and often indirect, and it does not al-
low partial descriptions in which some
details are left to be resolved later. And
testing, as a way to analyze designs,
leaves much to be desired. It's notori-
ously incomplete and burdensome,
since you need to write test cases ex-
plicitly. And it's very difficult to use
code to articulate design without get-
ting mired in low-level details (such as
the choice of data representations).

An alternative, which has been ex-
plored since the 1970s, is to use a de-
sign language built not on convention-
al machine instructions but on logie.
Partiality is free because rather than
listing each step of a computation, you
write a logical constraint saying what's
true after, and that constraint can say
as little or as much as you please. To
analyze such a language, you use spe-
cialized algorithms such as model
checkers or satisfiability solvers (more
on these later). This usually requires
much less effort than testing, since you

key insights

= Using a simple logic of relations, Alloy
lets you model software designs that
involve complex, evolving structures.

= Alloy's tool uses SAT technology to
simulate designs and find subtle flaws,
and has been used in a wide variety
of applications from networking and
security to critical systems.

= A key advantage of logical modeling is that
you can construct a design incrementally,
in an agile way, representing and
analyzing only an essential subset of
the behavioral contraints.

Alloy is complementary to a class

of tools called model checkers, and
Is a valuable addition to the software
designer’s toolkit.

https://northeastern-datalab.github.io/cs7240/

Soufflé

Getting Started A

Welcome

Install Soufflé
Build Soufflé

A Simple Example
Run Soufflé
Examples

Tutorial

Source Code and Documentation

Developer Tutorial

Applications

Language v
Advanced Topics v
Publications v

Welcome
() Editme &

Soufflé is a logic programming language inspired by Datalog. It overcomes some of the limitations in classical Datalog. For
example, programmers are not restricted to finite domains, and the usage of functors (intrinsic, user-defined,
records/constructors, etc.) is permitted. Soufflé has a component model so that large logic projects can be expressed. Soufflé
was initially designed for crafting static analysis in logic at Oracle Labs. Since then, there have been many other applications
written in the Soufflé language, including applications in reverse engineering, network analysis and data analytics.

Soufflé provides the ability to rapid prototype and make deep design space explorations possible. A wide range of
applications have been implemented in the Soufflé language, e.g., static program analysis for Java DOOP (£, parallelizing
compiler framework Insieme (£, binary disassembler DDISASM (£, security analysis for cloud computing (%', and security
analysis for smart contracts Gigahorse (4, Securify (4, Secuify V2.0 (Z', VANDAL [£". More applications are listed here.

Soufflé language project is led by Prof Bernhard Scholz (£, and commenced at Oracle Labs in Brisbane (4. Soufflé was open-
sourced in March 2016. It is actively supported by universities and industrial research labs. The main contributors to this
project have been The University of Sydney (4, the University of Innsbruck (£, the University College London (', the University
of Athens (4, Oracle Labs, Brisbane (4', and many more.

One of the major challenges in logic programming is performance and scalability. Soufflé applies advanced compilation
techniques for logic programs. We use a range of techniques to achieve high-performance: Futamura Projections, staged-
compilation with a new abstract machine, partial evaluation, and parallelization with highly-parallel data-structures.

Source: https://souffle-lang.github.io/docs.html

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 54

https://northeastern-datalab.github.io/cs7240/
https://souffle-lang.github.io/docs.html

Introduction to Datalog

Overview

Datalog is a (declarative) logic-based query language, allowing the user to perform recursive queries. It adopts syntax in the
style of Prolog. In its pure form, it is based on a decidable fragment of first-order logic (FOL). Here, the universe - the
collection of elements by which computation can be performed within - is finite, and functors are not permitted. Applications
of Datalog include program analysis, security, graph databases, and declarative networking.

Soufflé: The Language

Motivation

The syntax of Soufflé is inspired by implementations of Datalog, namely bddbddb (£ and muZ in Z3(Z". There is no unified
standard for the specification of Datalog syntax. Thus, each implementation of Datalog may differ. A principle goal of the
Soufflé project is speed, tailoring program execution to multi-core servers with large amounts of memory. With this in mind,
Soufflé provides software engineering features (components, for example) for large-scale logic-oriented programming. For
practical usage, Soufflé extends Datalog to make it Turing-equivalent through arithmetic functors. This results in the ability of
the programmer to write programs that may never terminate. An example of non-termination is a program where the fact
A(0). andrule A(i + 1) :- A(i). exist without additional constraints. This causes Soufflé to attempt to output an infinite
number of relations A(n) where n >= 0. This is in some way analogous to an infinite while loop in an imperative
programming language like C. However, the increased expressiveness afforded by arithmetic functors is very convenient for
programming.

Source: https://souffle-lang.github.io/tutorial
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://souffle-lang.github.io/tutorial

Grounded variables

However, note that the following example has an ungrounded variable:

.decl fib(idx:number, value:number)

Tib{1,1).

fib(2,1).

fib(idx, x + y) :- fib(idx-1, x), fib(idx-2, y), idx <= 10.
.output fib

The reason for this is that variable idx is not bound as an argument of a positive predicate in the body. In
the example, variable idx occurrs in the predicates fib(idx-1, x) and fib(idx-2, y) butas
arguments of a functor rather than as a direct argument.

wWhat can be dove ?

Source: https://souffle-lang.github.io/rules
Datalog example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

56

https://northeastern-datalab.github.io/cs7240/
https://souffle-lang.github.io/rules
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog
https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog

Grounded variables

However, note that the following example has an ungrounded variable:

.decl fib(idx:number, value:number)

fib(1,1).

fib(2,1).

fib(idx, x + y) :- fib(idx-1, x), fib(idx-2, y), idx <= 10.
.output fib

The reason for this is that variable idx is not bound as an argument of a positive predicate in the body. In
the example, variable idx occurrs in the predicates fib(idx-1, x) and fib(idx-2, y) butas
arguments of a functor rather than as a direct argument. To make variable idx bound, we can shift the
index by one and obtain a program whose variables are grounded:

.decl fib(idx:number, value:number)

fib(1,1).

fib(2,1).

fib(idx+1, x + y) :- fib(idx, x), fib(idx-1, y), idx <= 9.
.output fib

Source: https://souffle-lang.github.io/rules
Datalog example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

And the program can produce the following output,

fib
idx

B W oo NdOWUL e WNRE

57

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog
https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog
https://souffle-lang.github.io/rules

Grounded variables

ﬁbonégci
souffle —-F. -D. fibonacci.dl

finbonacci.dl

.decl fib(key:number, value:number)
.output fib

fib(1, 1).
fib(2, 1).
fib(id+2, x+y) :- fib(id, x), fib(id+1, y), id <= 13.

Source: https://souffle-lang.github.io/rules
Datalog example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 58

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog
https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog
https://souffle-lang.github.io/rules

Grounded variables

fibonacci
souffle -F. -D. fibonacci.dl fib.csv
1 1
2 1
finbonacci.dl 3 2
decl fib(key:number, value:number) g 2
.output fib 6 38
fib(1, 1). IS
) 8 21
fib(2, 1). 9 34
fib(id+2, x+y) :- fib(id, x), fib(id+1, y), id <= 13. 10 55
11 &89
12 144
13 233
14 377
Source: https://souffle-lang.github.io/rules 15 6 10

Datalog example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 59

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog
https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog
https://souffle-lang.github.io/rules

Outline: T1-4: Datalog

» Datalog
— Datalog rules
— Recursion
— Recursion in SQL [moved here from T1-U1: SQL]
— Semantics
— Datalog™ Negation, stratification
— Datalog®
— Stable model semantics (Answer set programming)
— Datalog vs. RA

— Naive and Semi-naive evaluation (incl. Incremental View
Vaintenance)

60

Local(x) :- Person(x,y,'MA').
Relative(x,x) :- Person(x,y,z).
Relative(x,y) :- Relative(x,z),Parent(z,y). f?
Relative(x,y) :- Relative(x,z),Parent(y,z). c

(
Relative(x,y) :- Relative(x,z),Spouse(z,y).
(

Invited(y) :- Relative('myself',y),Local(y).

Local(x) :- Person(x,y,'MA').

) Relative(x,x) :- Person(x,y,z). ?
Invited(y) :- Relative('myself',y),Local(y).

MayLike(x,y) :- Close(x,z),Likes(z,y).

3 Visit(x,y) :- MayLike(x,y). ?
Close(x,z) :- Visit(x,y),Visit(z,y).

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 61

https://northeastern-datalab.github.io/cs7240/

Dependency Graph

« The of a Datalog program is the directed graph
(V,E) where
- Vis the set of predicates (relation names)
— E contains an whenever there is a rule with T in the head and
in the body
e A Datalog program is if its dependency graph contains a

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

62

https://northeastern-datalab.github.io/cs7240/

Which of these programs is recursive?

Local(x) :- Person(x,y,'MA').
Relative(x,x) :- Person(x,y,z).
Relative(x,y) :- Relative(x,z),Parent(z,y). f?
Relative(x,y) :- Relative(x,z),Parent(y,z). c

(
Relative(x,y) :- Relative(x,z),Spouse(z,y).
(

Invited(y) :- Relative('myself',y),Local(y).

Local(x) :- Person(x,y,'MA').

) Relative(x,x) :- Person(x,y,z). ?
Invited(y) :- Relative('myself',y),Local(y).

MayLike(x,y) :- Close(x,z),Likes(z,y).

3 Visit(x,y) :- MayLike(x,y). ?
Close(x,z) :- Visit(x,y),Visit(z,y).

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

63

https://northeastern-datalab.github.io/cs7240/

Which of these programs is recursive?

Local Relative]

Local(x) :- Person(x,y,'MA').

Relative = vV, Z).
1 Relative(x,y) :- Relative(x,z),Parent(z,y). l
Relative(x,y) :- Relative(x,z),Parent(y,z). /
Ralati _ . Invited
\eatlve(x,y) .- Relative(x,z),Spouse .
Invited(y) :- Relative('myself',y),Local(y).

Local(x) :- Person(x,y,'MA').

) Relative(x,x) :- Person(x,y,z). ?
Invited(y) :- Relative('myself',y),Local(y).

MayLike(x,y) :- Close(x,z),Likes(z,y).

3 Visit(x,y) :- MayLike(x,y). ?
Close(x,z) :- Visit(x,y),Visit(z,y).

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 64

https://northeastern-datalab.github.io/cs7240/

Which of these programs is recursive?

Local(x) :- Person(x,y,'MA').
Relative(x,x) :- Person(x,y,z). Local Relative \

1 Relative(x,y) :- Relative(x,z),Parent(z,y). l
Relative(x,y) :- Relative(x,z),Parent(y,z). /
. _ . Invited
Relative(x,y) :- Relative(x,z),Spouse(z,y).
(

Invited(y) :- Relative('myself',y),Local(y).

Local(x) :- Person(x,y,' MA'). Local Relative

) Relative(x,x) :- Person(x,y,z). l /

nvited(y) :- Relative('myself',y),Local(y). Invited

MayLike(x,y) :- Close(x,z),Likes(z,y).
3 Visit(x,y) :- MayLike(x,y). ?

Close(x,z) :- Visit(x,y),Visit(z,y).

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 65

https://northeastern-datalab.github.io/cs7240/

Which of these programs is recursive?

Local(x) :- Person(x,y,'MA').
Relative(x,x) :- Person(x,y,z). Local Relative \

1 Relative(x,y) :- Relative(x,z),Parent(z,y). l
Relative(x,y) :- Relative(x,z),Parent(y,z). /
. _ . Invited
Relative(x,y) :- Relative(x,z),Spouse(z,y).
(

Invited(y) :- Relative('myself',y),Local(y).

Local(x) :- Person(x,y,' MA'). Local Relative

) Relative(x,x) :- Person(x,y,z). l /

nvited(y) :- Relative('myself',y),Local(y). Invited

MayLike(x,y) :- Close(x,z),Likes(z,y). MayLike «— Close

3 Visit(x,y) :- MayLike(x,y). l
Close(x,z) :- Visit(x,y),Visit(z,y). Visit

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

66

https://northeastern-datalab.github.io/cs7240/

Outline: T1-4: Datalog

» Datalog
— Datalog rules
— Recursion
— Recursion in SQL [moved here from T1-U1: SQL]
— Semantics
— Datalog™ Negation, stratification
— Datalog®
— Stable model semantics (Answer set programming)
— Datalog vs. RA

— Naive and Semi-naive evaluation (incl. Incremental View
Vaintenance)

67

1. A simple recursive query

non-recursive part recursive part, contaivs reference to the query's output

same as "select 1"

Intermediate /
Working Table

WITH RECURSIVE as (Step | Results
values (1) - 1.
UNION ALL . 1 5
select n+1 2 2 ' ?
from T 3 3 3. g
where n<=3) 4 4 4.
SELECT n FROM T 5

?

Recursive Query Evaluation

a temporary working table.

2. So long as the working table is not empty, repeat these steps:

table.

b. Replace the contents of the working table with the contents of the intermediate table, then empty the intermediate table.

1. Evaluate the non-recursive term. For UNION (but not UNION ALL), discard duplicate rows. Include all remaining rows in the result of the recursive query, and also place them in

a. Evaluate the recursive term, substituting the current contents of the working table for the recursive self-reference. For UNION (but not UNION ALL), discard duplicate
rows and rows that duplicate any previous result row. Include all remaining rows in the result of the recursive query, and also place them in a temporary intermediate

Example slightly adapted from: https://www.postgresql.org/docs/current/queries-with.htmI#QUERIES-WITH-RECURSIVE
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

70

https://northeastern-datalab.github.io/cs7240/
https://www.postgresql.org/docs/current/queries-with.html

1. A simple recursive query

non-recursive part recursive part, contaivs reference to the query's output
same as "select 1" Intermediate /
WITH RECURSIVE as (Step | Results |Working Table
UI\\/l?gJI?ISA\(L'IL) 4 ir:1teger e 1. {1} {1}
select n+1 j> ; :12 2| 11.2) 12}
from T : 3 3. | {1,2,3} {3}
where n<=3) 4 4 4. | {1,2,3,4}| {4}
SELECTn FROM T 5. | {1,2,3,4) 0

Recursive Query Evaluation

1. Evaluate the non-recursive term. For UNION (but not UNION ALL), discard duplicate rows. Include all remaining rows in the result of the recursive query, and also place them in
a temporary working table.

2. So long as the working table is not empty, repeat these steps:

a. Evaluate the recursive term, substituting the current contents of the working table for the recursive self-reference. For UNION (but not UNION ALL), discard duplicate
rows and rows that duplicate any previous result row. Include all remaining rows in the result of the recursive query, and also place them in a temporary intermediate

table.

b. Replace the contents of the working table with the contents of the intermediate table, then empty the intermediate table.

Example slightly adapted from: https://www.postgresql.org/docs/current/queries-with.htmI#QUERIES-WITH-RECURSIVE
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

71

https://northeastern-datalab.github.io/cs7240/
https://www.postgresql.org/docs/current/queries-with.html

2. Fibonacci numbers: 0,1,1,2,3,5,8, 13, ...

Fib
WITH RECURSIVE Fib as (nog fhe g b g
4 nteger Integer Integer
’? 1 0 0 1
- 2 1 1 1
UNION ALL : > j 2 ; j
5 4 3 5
? 6 5 5 8
7 6 8 13
8 7 13 21
SELECT * FROM Fib " : - 1
LIMIT 10; 0 5 2 -

Example slightly adapted from: https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 74

https://northeastern-datalab.github.io/cs7240/
https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/

2. Fibonacci numbers: 0,1,1,2,3,5,8, 13, ...

Fib
WITH RECURSIVE Fib as (:
select 0 as n, 4 integer
0 as "fib,", 1
1 as "fibn+1" 2
UNION ALL j> j
5
? 6
7
SELECT * FROM Fib 2
LIMIT 10; .

Example slightly adapted from: https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

g A~ W N

O 00 N o

fibn
integer

o o W N

13
21
34

ﬁbn+1
integer

1
1

W o0 » W N

21
34
55

https://northeastern-datalab.github.io/cs7240/
https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/

2. Fibonacci numbers: 0,1,1,2,3,5,8, 13, ...

Fib
WITH RECURSIVE Fib as (]

select 0 as n, 4 integer

0 as "fib,", 1

1 as "fibn+1" 2

UNION ALL j> j

select n+1, .

? 6

from Fib) :

SELECT * FROM Fib :

LIMIT 10; .

Example slightly adapted from: https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

aa A W N

O 00 N o

fibn
integer

o o W N

13
21
34

ﬁbn+1
integer

oo O w N

13
21
34
55

https://northeastern-datalab.github.io/cs7240/
https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/

2. Fibonacci numbers: 0,1,1,2,3,5,8,13, ...

Fib

WITH RECURSIVE Fib as (noa b g b g

SeleCt O as n, 4 'nteger Integer Integer
0 as "fib,", 1 ° ° 1
1 as "fib,,," : 1 1 1
UNION ALL j> : 2 ; :
select n.+1, - , ; i
iDn”, ? 6 5 5 8
7 6 8 13
from Fib) : = = rr
SELECT * FROM Fib 9 S
LIMIT 10’ 10 9 34 55

Example slightly adapted from: https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 77

https://northeastern-datalab.github.io/cs7240/
https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/

2. Fibonacci numbers: 0,1,1,2,3,5,8,13, ...

Fib
WITH RECURSIVE Fib as (]

select 0 as n, 4 integer

0 as "fib,",

1 as "fib,.1"

UNION ALL j>

select n+1,

iy,

"fib," + "fib,.1"
from Fib)

SELECT * FROM Fib
LIMIT 10;

—l

O 0 ~N o g b~ W N

—
o

Example slightly adapted from: https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

aa A W N

O 00 N o

fibn
integer

o o W N

13
21
34

ﬁbn+1
integer

oo O w N

13
21
34
55

https://northeastern-datalab.github.io/cs7240/
https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/

2. Fibonacci numbers: 0,1,1,2,3,5,8,13, ...

Fib
WITH RECURSIVE Fib(n,"fib,","fib.1") as(n g b g b g
select 0, O, 1 1‘ il i AeRe i o 1
2 1 1 1
UNION ALL j> : 2 ; :
select n+1, ; , , i
iDnss, 6 5 5 8
"fib," + "fib, 1" ; ; . -
from Fib) n = = 5
SELECT * FROM Fib : — =
LIMIT 10’ 10 9 34 5]

Example slightly adapted from: https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 79

https://northeastern-datalab.github.io/cs7240/
https://www.cybertec-postgresql.com/en/recursive-queries-postgresql/

3. Recursion on graphs A for directed edags Cares’) A(S,T) “C&P

@ 9 6 “Find all paths (transitive closure)”

23

AwNN|=|=
G IE NI ENE NNy -

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

33

https://northeastern-datalab.github.io/cs7240/

3. Recursion on graphs A for directed edags Cares’) A(S,T) “C&P

G 9 6 “Find all paths (transitive closure)”

@ @ X —2Z Y

1. Create a path for every arc

AIWININ=|=WN
w2 —

2. An arc + a path can make another path

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

34

https://northeastern-datalab.github.io/cs7240/

3 _ ReCU rSiO N OoN gra p hS A for directed edges ("arcs”) A(S,T) % — "

@ 9 6 “Find all paths (transitive closure)”

@ @ X Z Y

ST
Al1]2 For all nodes x and v: (X,y) - A(X,Y).

; :' If there is an fromxtoy, (x,y) - Ax,z), P(z,y).

>3 then thereis a from x toy.

3|4

415 For all nodes x, z, and :
If there is an from x to z, and there is a fromztoy
then thereis a from x toy.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

85

https://northeastern-datalab.github.io/cs7240/

3. Recursion on graphs

X
@ 9 6 P(x,y) - Ax,2)
g.@ 157 [teration

ST
Al1]|2
14 f?
2 |1 /
23
3|4
45

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

36

https://northeastern-datalab.github.io/cs7240/

3. Recursion on graphs

X, V).
1)——(4)—(5) P(x,y) - Alx,2), P(z,y).

@ @ 15t [+eration 214 [teration
Pl1 2

P=A from

157 rule ?

Bl NN
G| (W=

AWININ|=—~WN
g2 ~N|—

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 87

https://northeastern-datalab.github.io/cs7240/

3. Recursion on graphs

15t [+eration 2 iFeration 37 [teration
Pl1 2 P11 2
2 1 2 1
2 3 | \FP=Afrom [2 3 "
3 4 3 4 f?
4 5 4 5
1 1 -
P 2 2
1
> 431 2" ryle
1 5
3 5

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 88

https://northeastern-datalab.github.io/cs7240/

3. Recursion on graphs

15T [+eration

Pl1

2

Bl =N

G| (W=

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

2 iteration

P'
P=A from
157 rule

1 2
2 1
2 3
1 4
3 4
4 5
1 1
2 2
1 3
2 4
1 5
3 5

37 [teration

157 rule

Pl

2" ryle

DN[(W[= NN =

arj|ul|(Ul | |W (N |-

2" yule

39

https://northeastern-datalab.github.io/cs7240/

3. Recursion on graphs

In SQL ?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

90

https://northeastern-datalab.github.io/cs7240/

3. Recursion on graphs

o P(xy) - Alx,2), P(zy).

1)@
i
(5

WITH RECURSIVE P AS (

S T
Al|l1]|2 ?
11 4 UNION
2 |1
213 ?
314
415 SELECT =x
FROM P

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 91

https://northeastern-datalab.github.io/cs7240/

3. Recursion on graphs

9 6 (X/y) .~ A(XIZ) (Z/y)'
! (3)
WITH RECURSIVE P AS (
ST SELECT S, T
Al1]l2 FROM A
114 UNION
211 SELECT A.S, P.T
213 FROM A, P
31| 4 WHERE A.T = P.S)
4|5 SELECT
FROM P

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

92

https://northeastern-datalab.github.io/cs7240/

3. Recursion on graphs Tl = Al A(S,T)
9 6 (X/y) .~ A(XIZ)I (Z/y)'
I Strictly speaking, this process is iteration, not recursiown:
& E WITH RECURSIVE P AS (and Tteration both
S T SELECT S, T repeatedly execute a set of
Al1]2 FROM A mstructions.
11 4 UNION (self-similarity) is
2 11 SELECT A.S, P.T when a statement in a
2|3 FROM A, P function calls i+self
3|4 WHERE A.T = P.S) repeatedly.
4195 SELECT o Tteration (reptition) is when

FROM P a loop repeatedly executes

wntil the controlling condition
becomes false.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 93

https://northeastern-datalab.github.io/cs7240/

Challenge

e Write a query that finds the shortest path to each node from a
starting node

e Create an interesting minimum database instance
« Show interesting variations

o https://www.postgresgl.org/docs/14/queries-with.html

?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 100

https://northeastern-datalab.github.io/cs7240/
https://www.postgresql.org/docs/14/queries-with.html

Outline: T1-4: Datalog

» Datalog
— Datalog rules
— Recursion
— Recursion in SQL [moved here from T1-U1: SQL]
— Semantics
— Datalog™ Negation, stratification
— Datalog®
— Stable model semantics (Answer set programming)
— Datalog vs. RA

— Naive and Semi-naive evaluation (incl. Incremental View
Vaintenance)

101

Semantics of Datalog Programs

e Let S be aschema, D a database over S, and P be a Datalog program
over S (i.e., all EDBs predicates belong to S)

« The result of evaluating P over D is a database | over the |IDB schema
of P

« We give 2 definitions:
1. Fixpoint semantics operative (think procedural)

2. model-theoretic declarative

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 102

https://northeastern-datalab.github.io/cs7240/

1. Fixpoint semantics via the chase (operative definition)

Pseudo-code of a chase procedure:

Chase(P,D)
[;== empty ("PUTI" is here just a set of tuples)

repeat {
if(DUI satisfies all the rules of P), then return |
Find a rule head(x) :- body(x,y) and constants a,b
s.t. that DUI contains body(a,b) but not head(a)
[:=1U{head(a)}
}

Notice since rules are monotone, | is also monotonically increasing

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 104

https://northeastern-datalab.github.io/cs7240/

Nondeterminism

« Note: the chase is underspecified (i.e., not fully defined)

— There can be many ways of choosing the next violation to handle
— And each choice can lead to new violations, and so on

e We can view the choice of a new violation as

(defined for term reduction): a - b
If term a can be reduced to both b and c, then there
must be a further term d (possibly equal to either b or c) s '
to which both b and ¢ can be reduced. :
In computer science, confluence is a property of rewriting systems, describing which c Y_ e ’v d

terms in such a system can be rewritten in more than one way, to yield the same result.

Also see: https://en.wikipedia.org/wiki/Church%E2%80%93Rosser theorem , https://en.wikipedia.org/wiki/Confluence (abstract rewriting)
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 105

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Church%E2%80%93Rosser_theorem
https://en.wikipedia.org/wiki/Confluence_(abstract_rewriting)

Example

Path(x,y) :- Arc(x,y).
Path(x,y) :- Arc(x,z), Path(z,y).
ﬁ.e S Reachable(y) :- Path('1',y).
Arc Path Reachable
1 2
2 1
2 3
1 4
3 4
4 5

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 106

https://northeastern-datalab.github.io/cs7240/

Example

mm) Path(x,y) - Arc(x,y).
Path(x,y) :- Arc(x,z), Path(z,y).

ﬁ.e 6 Reachable(y) :- Path('1',y).

23

Arc Path Reachable

—l

B = N DN =
DWWk

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 107

https://northeastern-datalab.github.io/cs7240/

Example

mm) Path(x,y) - Arc(x,y).
Path(x,y) :- Arc(x,z), Path(z,y).
ﬁ.e S Reachable(y) :- Path('1',y).
Arc Path Reachable

1 2 1 2
m) |2 1 —> |2 1

2 3

1 4

3 4

4 5

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 108

https://northeastern-datalab.github.io/cs7240/

Example

mm) Path(x,y) - Arc(x,y).
6 Path(x,y) :- Arc(x,z), Path(z,y).

ﬁ.e Reachable(y) :- Path('1',y).
2)—(3

Arc Path Reachable

B = N DN =
DWWk

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 109

https://northeastern-datalab.github.io/cs7240/

Example

Path(x,y) :- Arc(x,y).
5 mm) Path(x,y) :- Arc(x,z), Path(z,y).

ﬁ.ﬁ Reachable(y) :- Path('1',y).
2)—(3

Arc Path Reachable
) (1 2 1 2
2 1) (2 1
2 3 2 3
1 4 —> |1 1
3 4
4 5

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 110

https://northeastern-datalab.github.io/cs7240/

Example

Path(x,y) :- Arc(x,y).
Path(x,y) :- Arc(x,z), Path(z,y).

ﬁ.ﬁ 6 mm) Reachable(y) :- Path('1',y).

23

Arc Path Reachable
1 2) [1 2 —> [2
2 1 2 1
2 3 2 3
1 4
3 4
4 5

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 111

https://northeastern-datalab.github.io/cs7240/

2. Minimal model semantics (model-theoretic definition)

« We say that IDB | is a model of Datalog program P (w.r.t. EDB D) if
DUI satisfies all the rules of P

vvar|Head(IDB) <Body(EDB, IDB)]

« We say that |isa minimal modelif | does not properly contain any
other model

e Theorem: there exists one minimal model

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 112

https://northeastern-datalab.github.io/cs7240/

llustration with our example Path(x,y) :- Arc(x,y).
Path(x,y) :- Arc(x,z), Path(z,y).

N

1. Fixpoint semantics

2. Minimal model semantics: smallest Path s.t.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 113

https://northeastern-datalab.github.io/cs7240/

llustration with our example Path{x,y) - Arc(x,y).
Path(x,y) :- Arc(x,z), Path(z,y).

N

1. Fixpoint semantics

Path(0:=@, t:=0 HW
Repeat { W /
inc(t) "immediate consequence operator”

Path®(x,y):= Arc(xy) U I, (Arc(x,z) dPathtD(zy))
until Path®t) = path(t1)}

2. Minimal model semantics: smallest relation Path s.t.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 114

https://northeastern-datalab.github.io/cs7240/

llustration with our example Path{x,y) - Arc(x,y).
Path(x,y) :- Arc(x,z), Path(z,y).

N

1. Fixpoint semantics

Path0) .= @, t:=0
Repeat {
inc(t) "immediate consequence operator”
Path®(x,y):= Arc(xy) U Il (Arc(x,z) xPathtD(zy))
until Pathlt) = path(t1)}

2. Minimal model semantics: smallest relation Path s.t.

vxy [Arc(xy) = Path(xy)] A
Vx,y,z |[Arc(x,z) \ Path(zy) = Path(xy)]

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 115

https://northeastern-datalab.github.io/cs7240/

Datalog Semantics & equivalence b/w the definitions

(nondeterministic)
1. The fixpoint semantics tells us how to compute a Datalog query

2. The minimal model semantics is more declarative: only says what we get

THEOREM: For all Datalog programs P and DBs D
there is a unique minimal model,
and every chase returns this model

Proof sketch:

1. IfI; and I, are models, so are I;NI,
2. Every chase returns a model (fivite)

3. Pick a chase and prove by induction: If I' is a model,
then every intermediate I is contained in I’ (movotonicity)

The minimal model is the result, denoted P(D)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

116

https://northeastern-datalab.github.io/cs7240/

Lemma 8.8 Model intersection property. Let P be a positive program, and
M and My be two models for P. Then, M1 N Ms is also a model for P.

Definition 8.9 Minimal model and least model. A model M for a program
P is said to be a minimal model for P if there exists no other model M' of
P where M" ¢ M. A model M for a program P is said to be its least model
if M' O M for every model M' of P.

Then, as a result of the last lemma we have the following:
Theorem 8.10 Fvery positive program has a least model.

Proof. Since Bp is a model, P has models, and therefore minimal models.
Thus, either P has several minimal models, or it has a unique minimal model,
the least model of P. By contradiction, say that My and M are two distinct
minimal models, then M; N My, C M; is also a model. This contradicts the
assumption that My is a minimal model. Therefore, there cannot be two
distinct minimal models for P. O

Definition 8.11 Let P be a positive program. The least model of P, denoted
Mp, defines the meaning of P.

Source: Zaniolo et al. Advanced Database systems. 1997. Section 8.9. https://dl.acm.org/doi/book/10.5555/260822
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 117

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/book/10.5555/260822

{a,b}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 120

https://northeastern-datalab.github.io/cs7240/

Semantics Summary

-theoretic

— Most " ": Based on the immediate consequence operator for a
Datalog program.

-theoretic

— Most " ": Based on model-theoretic semantics of first order logic.
View rules as logical constraints.

127

Semantics Summary

-theoretic

— Most " ": Based on the immediate consequence operator for a
Datalog program.

— Least fixpoint is reached after finitely many iterations of the

— Basis for practical, evaluation strategy.

-theoretic

— Most " ": Based on model-theoretic semantics of first order logic.
View rules as logical constraints.

— Given input DB D and Datalog program P, find the smallest possible DB
instance D' that extends D and satisfies all constraints in P.

128

Expressiveness of Non-recursive Datalog

THEOREM: Non-recursive Datalog with built-i T
predicates (<,>,<,2,!=) has the same expressiv

power as the positive algebra {o,1,X,U}

If we restrict selection to o_ (i.e. selection with a single equality), this
fragment is also called at times UCQs (Union of Conjunctive Queries)
or USPJ (Union-Select-Project-Join) queries.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 130

https://northeastern-datalab.github.io/cs7240/

Monotonicity

e Can Datalog express ?

— Answer: !

e Proof: Datalog is monotone, difference is not

— Thatis, if D and D" are such that every relation of D is contained in the
corresponding relation of D' (D<€ D"), then P(D) € P (D)

DED' = PD)cP((D)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 132

https://northeastern-datalab.github.io/cs7240/

Outline: T1-4: Datalog

» Datalog
— Datalog rules
— Recursion
— Recursion in SQL [moved here from T1-U1: SQL]
— Semantics
— Datalog™ Negation, stratification
— Datalog®
— Stable model semantics (Answer set programming)
— Datalog vs. RA

— Naive and Semi-naive evaluation (incl. Incremental View
Vaintenance)

133

What should be the Semantics?

Likes (1,2). Parent (2,1).
Likes (1,3).

Friend(x,y) :- Likes(x,y),~Parent(y,x).

Alternative notations to “~ Parent(y,x)” are “! Parent(y,x)” or “~Parent(y,x)” or “NOT Parent(y,x)”
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 134

https://northeastern-datalab.github.io/cs7240/

What should be the Semantics?

Likes (1,2). Parent (2,1).
Likes (1,3).

Friend(x,y) :- Likes(x,y),~Parent(y,x).

Friend(1,3)

Box(x) :- ltem(x), -Box(x). item('ball") . ?

Alternative notations to “~ Parent(y,x)” are “! Parent(y,x)” or “~Parent(y,x)” or “NOT Parent(y,x)”
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 135

https://northeastern-datalab.github.io/cs7240/

What should be the Semantics?

Friend(x,y) :- Likes(x,y),~Parent(y,x).

Box(x) :- ltem(x), -Box(x).

LeftBox(x) :- Iltem(x), =RightBox(x).
RightBox(x) :- =LeftBox(x).

Alternative notations to “~ Parent(y,x)” are “! Parent(y,x)” or “~Parent(y,x)” or “NOT Parent(y,x)”

Likes (1,2). Parent (2,1).
Likes(1,3). — ————— Friend(1,3)

v

item('ball') Box('ball') P77

?

v

ltem('ball’)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 136

https://northeastern-datalab.github.io/cs7240/

What should be the Semantics?

Friend(x,y) :- Likes(x,y),~Parent(y,x).

Box(x) :- ltem(x), -Box(x).

LeftBox(x) :- Iltem(x), =RightBox(x).
RightBox(x) :- =LeftBox(x).

LeftBox(x) :- ltem(x), =RightBox(x).
RightBox(x) :- Item(x), —LeftBox(x).

Alternative notations to “~ Parent(y,x)” are “! Parent(y,x)” or “~Parent(y,x)” or “NOT Parent(y,x)”

Likes (1,2). Parent (2,1).
Likes(1,3). — ————— Friend(1,3)

v

item('ball') Box('ball') P77

v

item('ball') LeftBox('ball') 7?7

unsafel

ltem('ball') ?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 137

https://northeastern-datalab.github.io/cs7240/

What should be the Semantics?

Friend(x,y) :- Likes(x,y),~Parent(y,x).

Box(x) :- ltem(x), -Box(x).

LeftBox(x) :- Iltem(x), =RightBox(x).
RightBox(x) :- =LeftBox(x).

LeftBox(x) :- ltem(x), =RightBox(x).
RightBox(x) :- Item(x), —LeftBox(x).

Likes (1,2). Parent (2,1).
Likes(1,3). — ————— Friend(1,3)

v

item('ball') Box('ball') P77

v

item('ball') LeftBox('ball') 7?7

unsafel

LeftBox('ball’)
ltem('ball') /

= Adding vegation to Datalog is ot straightforward

Alternative notations to “~ Parent(y,x)” are “! Parent(y,x)” or “~Parent(y,x)” or “NOT Parent(y,x)”

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 138

https://northeastern-datalab.github.io/cs7240/

What should be the Semantics?

Likes (1,2). Parent (2,1).

Friend(x,y) :- Likes(x,y),~Parent(y,x). likes (1,3). ———————— Friend(1,3)

Box(x) :- Iltem(x), =Box(x). 'tem('ball')

\V
w

no "stable" model

LeftBox(x) :- Item(x), =RightBox(x). tem('ball’) M

RightBox(x) :- =LeftBox(x).

unsafel
LeftBox(x) :- Item(x), =RightBox(x). tem(ball) - LeftBox('ball’)
RightBox(x) :- Item(x), -LeftBox(x). T RightBox('ball')

Later discussed "stable model" semantics
(intended models = answer sets)

Alternative notations to “~ Parent(y,x)” are “! Parent(y,x)” or “~Parent(y,x)” or “NOT Parent(y,x)”
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 139

https://northeastern-datalab.github.io/cs7240/

