
1

Topic 1: Data models and query languages
Unit 4: Datalog
Lecture 8

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp23)
https://northeastern-datalab.github.io/cs7240/sp23/
2/3/2023

Updated 2/15/2023

https://northeastern-datalab.github.io/cs7240/sp23/

2Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Where We Are

• Relational query languages we have seen so far:
- SQL
- Relational Calculus
- Relational Algebra

• They can express the same class of relational queries (ignoring
extensions, such as grouping, aggregates, or sorting)
- How powerful are they? What is missing?

https://northeastern-datalab.github.io/cs7240/

3Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which are Relational Queries? Which are not? And Why?

• Given Friend(X,Y): Find all people X whose number of friends is a prime
number

• Find all people who are friends with everyone who is not a friend of Bob

• Partition all people into three sets P1(X),P2(X),P3(X) s.t. any two friends
are in different partitions

• Find all people who are direct or indirect friends with Alice (connected
in arbitrary length)

?

?

?

?Source: Dan Suciu, CSE 554, 2011.

https://northeastern-datalab.github.io/cs7240/

4Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which are Relational Queries? Which are not? And Why?

• Given Friend(X,Y): Find all people X whose number of friends is a prime
number

• Find all people who are friends with everyone who is not a friend of Bob

• Partition all people into three sets P1(X),P2(X),P3(X) s.t. any two friends
are in different partitions

• Find all people who are direct or indirect friends with Alice (connected
in arbitrary length)

NO: needs higher math; not possible with RA
(unless we have access to a relation Prime(x)...)

?

?

?Source: Dan Suciu, CSE 554, 2011.

https://northeastern-datalab.github.io/cs7240/

5Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which are Relational Queries? Which are not? And Why?

• Given Friend(X,Y): Find all people X whose number of friends is a prime
number

• Find all people who are friends with everyone who is not a friend of Bob

• Partition all people into three sets P1(X),P2(X),P3(X) s.t. any two friends
are in different partitions

• Find all people who are direct or indirect friends with Alice (connected
in arbitrary length)

NO: needs higher math; not possible with RA
(unless we have access to a relation Prime(x)...)

YES: {x | ∀y.(¬Friend(y, 'Bob')⇒Friend(x,y) } DI?

?

?Source: Dan Suciu, CSE 554, 2011.

https://northeastern-datalab.github.io/cs7240/

6Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which are Relational Queries? Which are not? And Why?

• Given Friend(X,Y): Find all people X whose number of friends is a prime
number

• Find all people who are friends with everyone who is not a friend of Bob

• Partition all people into three sets P1(X),P2(X),P3(X) s.t. any two friends
are in different partitions

• Find all people who are direct or indirect friends with Alice (connected
in arbitrary length)

NO: needs higher math; not possible with RA
(unless we have access to a relation Prime(x)...)

YES: {x | ∀y.(¬Friend(y, 'Bob')⇒Friend(x,y) } DI?

?

?Source: Dan Suciu, CSE 554, 2011.

{x | Person(x) ⋀ ∀y.[Person(y) ⋀ ¬Friend(y,'Bob')⇒Friend(x,y)]}

https://northeastern-datalab.github.io/cs7240/

7Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which are Relational Queries? Which are not? And Why?

• Given Friend(X,Y): Find all people X whose number of friends is a prime
number

• Find all people who are friends with everyone who is not a friend of Bob

• Partition all people into three sets P1(X),P2(X),P3(X) s.t. any two friends
are in different partitions

• Find all people who are direct or indirect friends with Alice (connected
in arbitrary length)

NO: needs higher math; not possible with RA
(unless we have access to a relation Prime(x)...)

NO: equivalent to 3-coloring; NP-complete

Source: Dan Suciu, CSE 554, 2011. ?

YES: {x | ∀y.(¬Friend(y, 'Bob')⇒Friend(x,y) }
{x | Person(x) ⋀ ∀y.[Person(y) ⋀ ¬Friend(y,'Bob')⇒Friend(x,y)]}

https://northeastern-datalab.github.io/cs7240/

8Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which are Relational Queries? Which are not? And Why?

• Given Friend(X,Y): Find all people X whose number of friends is a prime
number

• Find all people who are friends with everyone who is not a friend of Bob

• Partition all people into three sets P1(X),P2(X),P3(X) s.t. any two friends
are in different partitions

• Find all people who are direct or indirect friends with Alice (connected
in arbitrary length)

NO: needs higher math; not possible with RA
(unless we have access to a relation Prime(x)...)

NO: equivalent to 3-coloring; NP-complete

NO: recursive query; PTIME yet not expressible in RA
Next: Datalog: extends monotone RA with recursion

Source: Dan Suciu, CSE 554, 2011.

YES: {x | ∀y.(¬Friend(y, 'Bob')⇒Friend(x,y) }
{x | Person(x) ⋀ ∀y.[Person(y) ⋀ ¬Friend(y,'Bob')⇒Friend(x,y)]}

https://northeastern-datalab.github.io/cs7240/

9Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: https://en.wikipedia.org/wiki/Relational_algebra#Transitive_closure
Appendix from: Aho, Ullman. "Universality of data retrieval languages". POPL 1979. https://doi.org/10.1145%2F567752.567763

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Relational_algebra
https://doi.org/10.1145%2F567752.567763

11Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Datalog

• Database query language designed in the 80’s
• Simple, concise, elegant
- "Clean" restriction of Prolog with DB access
- Expressive & declarative:

• Set-of-rules semantics
• Independence of execution order
• Invariance under logical equivalence

• Few open source implementations, mostly academic
implementations

• Recently a hot topic, beyond databases:
- network protocols, static program analysis, DB+ML

Path(x,y) :- Arc(x,y).
Path(x,z) :- Arc(x,y), Path(y,z).
InCycle(x) :- Path(x,x).

Based on slides by Dan Suciu

https://northeastern-datalab.github.io/cs7240/

13Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Manager(eid) :- Manages(_, eid)

DirectReports(eid, 0) :-
Employee(eid), not Manager(eid)

DirectReports(eid, level+1) :-
DirectReports(mid, level), Manages(mid, eid)

Recursion with SQL server vs. Datalog

SQL Query vs. Datalog: which
would you rather write?

SQL Datalog

Query on the left from Bieker, Lee. Mastering SQL server 2008. Example on the right by Dan Suciu

Possible scribe: to fix that
example J

https://northeastern-datalab.github.io/cs7240/

16Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
https://cs.stackexchange.com/questions/14694/smallest-set-of-features-that-would-make-relational-algebra-turing-complete

CTE = Common Table Expession = WITH clause

https://northeastern-datalab.github.io/cs7240/
https://cs.stackexchange.com/questions/14694/smallest-set-of-features-that-would-make-relational-algebra-turing-complete

17Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
https://www.quora.com/Why-is-relational-algebra-not-Turing-complete , https://wiki.postgresql.org/wiki/Cyclic_Tag_System , https://en.wikipedia.org/wiki/Tag_system#Cyclic_tag_systems

https://northeastern-datalab.github.io/cs7240/
https://www.quora.com/Why-is-relational-algebra-not-Turing-complete
https://wiki.postgresql.org/wiki/Cyclic_Tag_System
https://en.wikipedia.org/wiki/Tag_system

18Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
https://www.quora.com/Why-is-relational-algebra-not-Turing-complete , https://wiki.postgresql.org/wiki/Cyclic_Tag_System , https://en.wikipedia.org/wiki/Tag_system#Cyclic_tag_systems

https://northeastern-datalab.github.io/cs7240/
https://www.quora.com/Why-is-relational-algebra-not-Turing-complete
https://wiki.postgresql.org/wiki/Cyclic_Tag_System
https://en.wikipedia.org/wiki/Tag_system

19Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query Language Design

Query language design is still a popular topic, especially for
graphs. See e.g. https://www.tigergraph.com/gsql/

And the slides
https://courses.cs.washington.edu/courses/csed516/20au/le
ctures/lecture05-advanced-query-evaluation.pdf
from “DATA516/CSED516: Scalable Data Systems and
Algorithms!” Dan Suciu
https://courses.cs.washington.edu/courses/csed516/20au/

https://northeastern-datalab.github.io/cs7240/
https://www.tigergraph.com/gsql/
https://courses.cs.washington.edu/courses/csed516/20au/lectures/lecture05-advanced-query-evaluation.pdf
https://courses.cs.washington.edu/courses/csed516/20au/lectures/lecture05-advanced-query-evaluation.pdf
https://courses.cs.washington.edu/courses/csed516/20au/

20

Outline: T1-4: Datalog

• Datalog
– Datalog rules
– Recursion
– Recursion in SQL [moved here from T1-U1: SQL]
– Semantics
– Datalog¬: Negation, stratification
– Datalog±
– Stable model semantics (Answer set programming)
– Datalog vs. RA
– Naive and Semi-naive evaluation (incl. Incremental View

Maintenance)

21Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Datalog: Facts and Rules Actor(id, fname, lname)
Plays(aid, mid)
Movie(id, name, year)

Rules: queriesFacts: tuples in the database

Q1(y) :- Movie(x,y,z), z=1940.

Q2(f,l) :- Actor(u,f,l), Plays(u,x),
Movie(x,y,z), z<1940.

Q3(f,l) :- Actor(z,f,l), Plays(z,x1), Movie(x1,y1,1910),
Plays(z,x2), Movie(x2,y2,1940).

Schema

?

?

?

(notice position matters: unnamed perspective)

Examples by Dan Suciu

Actor(344759,"Douglas", "Fowley").
Plays(344759, 7909).
Plays(344759, 29000).
Movie(7909, "A Night in Armour", 1910).
Movie(29000, "Arizona", 1940).
Movie(29445, "Ave Maria", 1940).

https://northeastern-datalab.github.io/cs7240/

22Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Datalog: Facts and Rules

Rules: queriesFacts: tuples in the database

Find movies from 1940

?

?

(notice position matters: unnamed perspective)

Examples by Dan Suciu

Q3(f,l) :- Actor(z,f,l), Plays(z,x1), Movie(x1,y1,1910),
Plays(z,x2), Movie(x2,y2,1940).

Q2(f,l) :- Actor(u,f,l), Plays(u,x),
Movie(x,y,z), z<1940.

Q1(y) :- Movie(x,y,z), z=1940.Actor(344759,"Douglas", "Fowley").
Plays(344759, 7909).
Plays(344759, 29000).
Movie(7909, "A Night in Armour", 1910).
Movie(29000, "Arizona", 1940).
Movie(29445, "Ave Maria", 1940).

Actor(id, fname, lname)
Plays(aid, mid)
Movie(id, name, year)

Schema

https://northeastern-datalab.github.io/cs7240/

23Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Datalog: Facts and Rules

Rules: queriesFacts: tuples in the database

Find movies from 1940

Find actors who played in a movie before 1940

?

(notice position matters: unnamed perspective)

Examples by Dan Suciu

Q2(f,l) :- Actor(u,f,l), Plays(u,x),
Movie(x,y,z), z<1940.

Q1(y) :- Movie(x,y,z), z=1940.

Q3(f,l) :- Actor(z,f,l), Plays(z,x1), Movie(x1,y1,1910),
Plays(z,x2), Movie(x2,y2,1940).

Actor(344759,"Douglas", "Fowley").
Plays(344759, 7909).
Plays(344759, 29000).
Movie(7909, "A Night in Armour", 1910).
Movie(29000, "Arizona", 1940).
Movie(29445, "Ave Maria", 1940).

Actor(id, fname, lname)
Plays(aid, mid)
Movie(id, name, year)

Schema

https://northeastern-datalab.github.io/cs7240/

24Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Datalog: Facts and Rules

Rules: queriesFacts: tuples in the database

Find movies from 1940

Find actors who played in a movie before 1940

Find actors who played in a movie from 1910 and from 1940

(notice position matters: unnamed perspective)

Examples by Dan Suciu

Q2(f,l) :- Actor(u,f,l), Plays(u,x),
Movie(x,y,z), z<1940.

Q1(y) :- Movie(x,y,z), z=1940.

Q3(f,l) :- Actor(z,f,l), Plays(z,x1), Movie(x1,y1,1910),
Plays(z,x2), Movie(x2,y2,1940).

Actor(344759,"Douglas", "Fowley").
Plays(344759, 7909).
Plays(344759, 29000).
Movie(7909, "A Night in Armour", 1910).
Movie(29000, "Arizona", 1940).
Movie(29445, "Ave Maria", 1940).

Actor(id, fname, lname)
Plays(aid, mid)
Movie(id, name, year)

Schema

https://northeastern-datalab.github.io/cs7240/

25Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Datalog: Facts and Rules

Rules: queriesFacts: tuples in the database

Find movies from 1940

Find actors who played in a movie before 1940

Find actors who played in a movie from 1910 and from 1940

(notice position matters: unnamed perspective)

Examples by Dan Suciu ?

Q2(f,l) :- Actor(u,f,l), Plays(u,x),
Movie(x,y,z), z<1940.

Q1(y) :- Movie(x,y,z), z=1940.

Q3(f,l) :- Actor(z,f,l), Plays(z,x1), Movie(x1,y1,1910),
Plays(z,x2), Movie(x2,y2,1940).

Actor(344759,"Douglas", "Fowley").
Plays(344759, 7909).
Plays(344759, 29000).
Movie(7909, "A Night in Armour", 1910).
Movie(29000, "Arizona", 1940).
Movie(29445, "Ave Maria", 1940).

Actor(id, fname, lname)
Plays(aid, mid)
Movie(id, name, year)

Schema

https://northeastern-datalab.github.io/cs7240/

26Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Q2(f,l) :- Actor(u,f,l), Plays(u,x),
Movie(x,y,z), z<1940.

Q4(f,l) :- Actor(z,f,l), Plays(z,x1), Movie(x1,y1,1910).
Q4(f,l) :- Actor(z,f,l), Plays(z,x2), Movie(x2,y2,1940).

Datalog: Facts and Rules

Extensional Database (EDB) predicates: Actor, Plays, Movie
Intensional Database (IDB) predicates: Q1, Q2, Q3, Q4

Rules: queriesFacts: tuples in the database

Actor(344759,"Douglas", "Fowley").
Plays(344759, 7909).
Plays(344759, 29000).
Movie(7909, "A Night in Armour", 1910).
Movie(29000, "Arizona", 1940).
Movie(29445, "Ave Maria", 1940).

Q1(y) :- Movie(x,y,z), z=1940.

Find movies from 1940

Find actors who played in a movie before 1940

Find actors who played in a movie from 1910 and from 1940

(notice position matters: unnamed perspective)

Examples by Dan Suciu

Actor(id, fname, lname)
Plays(aid, mid)
Movie(id, name, year)

Schema

https://northeastern-datalab.github.io/cs7240/

27Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example with Souffle

souffle -F. -D. movie.dl

.decl Actor(id:number, fname:symbol, lname:symbol)

.decl Plays(aid:number, mid:number)

.decl Movie(id:number, name:symbol, year:number)
Actor(344759,"Douglas", "Fowley").
Plays(344759, 7909).
Plays(344759, 29000).
Movie(7909, "A Night in Armour", 1910).
Movie(29000, "Arizona", 1940).
Movie(29445, "Ave Maria", 1940).

.decl Q2(fname:symbol, lname:symbol)
Q2(f,l) :- Actor(u,f,l), Plays(u,x), Movie(x,_,z), z<1940.
.output Q2

movie.dl

Douglas Fowley
Q2.csv

tab-separated output,
filename: ".csv"

For more help on Souffle, see: https://souffle-lang.github.io/simple
Datalog example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle

output

command line w/ input/output directories movie

Actor(id, fname, lname)
Plays(aid, mid)
Movie(id, name, year)

Schema

https://northeastern-datalab.github.io/cs7240/
https://souffle-lang.github.io/simple
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog
https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog

29Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

bodyhead

{f,l}: head variables

Syntax of rules

Q2(f,l) :- Actor(u,f,l), Casts(u,x), Movie(x,y,z), z<1940.

{u,x,y,z}: existential variables

arithmetic predicate

• evaluates to true when relation Ri contains
the tuple described by argsi

• e.g. Actor(344759,"Douglas","Fowley") is true
Ri(argsi): relational predicate with arguments (= atom)

(or consequent)
single IDB subgoal

(or antecedent)
conjunction of subgoals

Alternative notation: Q(args) <- R1(args) AND R2(args) / or variables begin with a capital, predicates with lower-case (problem: can't have "Boston")
Source: Dan Suciu, CSE 554, 2018.

https://northeastern-datalab.github.io/cs7240/

34Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Logical interpretation of a single rule Actor(id, fname, lname)
Plays(aid, mid)
Movie(id, name, year)

Meaning of a Datalog rule is a logical statement:

?

Based upon class material from Dan Suciu for CSE 554, 2018.

Q(y) :- Movie(x,y,z), z<1940.

https://northeastern-datalab.github.io/cs7240/

35Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Logical interpretation of a single rule Actor(id, fname, lname)
Plays(aid, mid)
Movie(id, name, year)

Meaning of a Datalog rule is a logical statement:
For all x,y,z: if (x,y,z) ∈Movies and z<1940 then y is in Q (i.e. is part of the answer)
∀x,y,z [(Movie(x,y,z)	⋀	z<1940)	⇒	Q(y)]	

logically equivalent to

?

Based upon class material from Dan Suciu for CSE 554, 2018.

Q(y) :- Movie(x,y,z), z<1940.

https://northeastern-datalab.github.io/cs7240/

36Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Logical interpretation of a single rule Actor(id, fname, lname)
Plays(aid, mid)
Movie(id, name, year)

Meaning of a Datalog rule is a logical statement:
For all x,y,z: if (x,y,z) ∈Movies and z<1940 then y is in Q (i.e. is part of the answer)
∀x,y,z [(Movie(x,y,z)	⋀	z<1940)	⇒	Q(y)]	

∀y	[∃x,z [Movie(x,y,z)	⋀	z<1940]	⇒	Q(y)]
logically equivalent to

Thus, non-head variables are
called "existential variables"

compare with RC

?
Based upon class material from Dan Suciu for CSE 554, 2018.

Q(y) :- Movie(x,y,z), z<1940.

https://northeastern-datalab.github.io/cs7240/

37Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Logical interpretation of a single rule Actor(id, fname, lname)
Plays(aid, mid)
Movie(id, name, year)

Meaning of a Datalog rule is a logical statement:

{(y)	|	∃x,z [Movie(x,y,z)	⋀	z<1940]	}

For all x,y,z: if (x,y,z) ∈Movies and z<1940 then y is in Q (i.e. is part of the answer)
∀x,y,z [(Movie(x,y,z)	⋀	z<1940)	⇒	Q(y)]	

∀y	[∃x,z [Movie(x,y,z)	⋀	z<1940]	⇒	Q(y)]

compare with RC

logically equivalent to

We want the smallest set Q
with this property (why?)

Thus, non-head variables are
called "existential variables"

Based upon class material from Dan Suciu for CSE 554, 2018.

Q(y) :- Movie(x,y,z), z<1940.

https://northeastern-datalab.github.io/cs7240/

38Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Syntactic Constraints

∀x Q(x) ⇐ ∃y R1(x1,y1)⋀⋅⋅⋅⋀Rm(xm,ym)

𝐱i ⊆ 𝐱, 𝐲i ⊆ 𝐲

The rule stands for the following logical formula:

Two restrictions:
1. Safety: every head variable should occur in the body at least once

(bold = vector notation)

?

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

Recall we want the smallest
set Q with this property

Q(x) :- R1(x1,y1),...,Rm(xm,ym).

R(x,z) :- S(x,y), R(y,x).

https://northeastern-datalab.github.io/cs7240/

39Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

R(x,z) :- S(x,y), R(y,x).

Arc(x,y) :- Arc(x,z),Arc(z,y).

Syntactic Constraints

∀x Q(x) ⇐ ∃y R1(x1,y1)⋀⋅⋅⋅⋀Rm(xm,ym)

𝐱i ⊆ 𝐱, 𝐲i ⊆ 𝐲

The rule stands for the following logical formula:

Two restrictions:
1. Safety: every head variable should occur in the body at least once

2. The head predicate must be an IDB (Intensional) predicate
(Body can include both EDBs and IDBs)

forbidden rule: z not in body

(bold = vector notation)

?
Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

Q(x) :- R1(x1,y1),...,Rm(xm,ym).

https://northeastern-datalab.github.io/cs7240/

40Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Arc(x,y) :- Arc(x,z),Arc(z,y).

R(x,z) :- S(x,y), R(y,x).

Q(x) :- R1(x1,y1),...,Rm(xm,ym).

Syntactic Constraints

∀x Q(x) ⇐ ∃y R1(x1,y1)⋀⋅⋅⋅⋀Rm(xm,ym)

𝐱i ⊆ 𝐱, 𝐲i ⊆ 𝐲

The rule stands for the following logical formula:

Two restrictions:
1. Safety: every head variable should occur in the body at least once

2. The head predicate must be an IDB (Intensional) predicate
(Body can include both EDBs and IDBs)

assuming Arc is EDB

forbidden rule: z not in body

(bold = vector notation)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

41

Outline: T1-4: Datalog

• Datalog
– Datalog rules
– Recursion
– Recursion in SQL [moved here from T1-U1: SQL]
– Semantics
– Datalog¬: Negation, stratification
– Datalog±
– Stable model semantics (Answer set programming)
– Datalog vs. RA
– Naive and Semi-naive evaluation (incl. Incremental View

Maintenance)

42Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Recursion

Recursion occurs when
a thing is defined
in terms of itself
(self-repetition).

Figure Source: Fake XKCD: http://xkcdsw.com/1105

Recursion and Iteration both repeatedly execute a set of instructions.
• Recursion (self-similarity) is when a statement in a function calls itself repeatedly.
• Iteration (repetition) is when a loop repeatedly executes until the controlling

condition becomes false.

A datalog program consists of several rules:
• Usually there is one distinguished predicate that’s the output
• Interestingly, rules may be recursive!

https://northeastern-datalab.github.io/cs7240/
http://xkcdsw.com/1105

44Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

?
1 2
2 1
2 3
1 4
3 4
4 5

A

Example

5

3

4

2

1

What does this query compute?

EDB
IDB

A(S,T)
recursion due to
head in rule body

P(x,y) :- A(x,y).
P(x,y) :- A(x,z), P(z,y).

Based upon an example by Dan Suciu from CSE 554, 2018.

https://northeastern-datalab.github.io/cs7240/

45Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

P(x,y) :- A(x,y).
P(x,y) :- A(x,z), P(z,y).

recursion due to
head in rule body

1 2
2 1
2 3
1 4
3 4
4 5

Example

5

3

4

2

1

EDB
IDB

For all nodes x and y:
If there is an arc from x to y,
then there is a path from x to y.

For all nodes x, z, and y:
If there is an arc from x to z, and there is a path from z to y
then there is a path from x to y.

Calculates all paths (transitive closure)

A(S,T)

Based upon an example by Dan Suciu from CSE 554, 2018.

A

https://northeastern-datalab.github.io/cs7240/

46Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

1 2
2 1
2 3
1 4
3 4
4 5

Example

5

3

4

2

1
Initially: P is empty

EDB
IDB

A(S,T)

Based upon an example by Dan Suciu from CSE 554, 2018.

A

1st iteration
P

?

recursion due to
head in rule body

P(x,y) :- A(x,y).
P(x,y) :- A(x,z), P(z,y).

https://northeastern-datalab.github.io/cs7240/

47Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

5

1 2
2 1
2 3
1 4
3 4
4 5

3

4

Example

1st iteration
2

1

1 2
2 1
2 3
1 4
3 4
4 5

2nd rule generates
nothing (because
P is empty)

P=A from
1st rule

Initially: P is empty

EDB
IDB

P

?

2nd iteration

A(S,T)

Based upon an example by Dan Suciu from CSE 554, 2018.

A

P

recursion due to
head in rule body

P(x,y) :- A(x,y).
P(x,y) :- A(x,z), P(z,y).

https://northeastern-datalab.github.io/cs7240/

48Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

5

1 2
2 1
2 3
1 4
3 4
4 5

3

4

Example

1st iteration 2nd iteration
2

1

1 1
2 2
1 3
2 4
1 5
3 5

1 2
2 1
2 3
1 4
3 4
4 5

1 2
2 1
2 3
1 4
3 4
4 5

1st rule

2nd rule

EDB
IDB

2nd rule generates
nothing (because
P is empty)

P=A from
1st rule

Initially: P is empty

P P

A(S,T)

New facts from 2nd rule
Based upon an example by Dan Suciu from CSE 554, 2018.

A

recursion due to
head in rule body

P(x,y) :- A(x,y).
P(x,y) :- A(x,z), P(z,y).

https://northeastern-datalab.github.io/cs7240/

49Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

5

1 2
2 1
2 3
1 4
3 4
4 5

3

4

Example

2 5

1st iteration 2nd iteration 3rd iteration = 4th iteration
2

1

1 1
2 2
1 3
2 4
1 5
3 5

1 2
2 1
2 3
1 4
3 4
4 5

New facts from 2nd rule

1 2
2 1
2 3
1 4
3 4
4 5

1 2
2 1
2 3
1 4
3 4
4 5
1 1
2 2
1 3
2 4
1 5
3 5

1st + 2nd rule

1st rule

2nd rule

(No new facts)

1st rule

2nd rule

A

recall set semantics!

2nd rule generates
nothing (because
P is empty)

P=A from
1st rule

Initially: P is empty

P P P

A(S,T)

Based upon an example by Dan Suciu from CSE 554, 2018.

EDB
IDB

recursion due to
head in rule body

P(x,y) :- A(x,y).
P(x,y) :- A(x,z), P(z,y).

https://northeastern-datalab.github.io/cs7240/

50Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

5

3

4

Example with Souffle

2

1
graph1

A(S,T)

souffle -F. -D. graph1.dl

.decl A(x:number, y:number)
A(1,2).
A(2,1).
A(2,3).
A(1,4).
A(3,4).
A(4,5).

.decl P(x:number, y:number)
P(x, y) :- A(x, y).
P(x, y) :- A(x, z), P(z, y).

.output P

graph1.dl 1 1
1 2
1 3
1 4
1 5
2 1
2 2
2 3
2 4
2 5
3 4
3 5
4 5

P.csv

tab-separated,
output filename:
".csv"

For more help on Souffle, see: https://souffle-lang.github.io/simple
Datalog example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle

output

https://northeastern-datalab.github.io/cs7240/
https://souffle-lang.github.io/simple
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog
https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog

51Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

5

3

4

Example with Souffle

2

1

A(S,T)

souffle -F. -D. graph2.dl

.decl A(x:number, y:number)

.decl P(x:number, y:number)

.input A

.output P

P(x, y) :- A(x, y).
P(x, y) :- A(x, z), P(z, y).

1 2
2 1
2 3
1 4
3 4
4 5

graph2.dl
A.facts

P.csvcommand line w/ input/output directories

tab-separated,
input filename:
".facts" tab-separated,

output filename:
".csv"

For more help on Souffle, see: https://souffle-lang.github.io/simple
Datalog example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle

input

outputdatalog file
1 1
1 2
1 3
1 4
1 5
2 1
2 2
2 3
2 4
2 5
3 4
3 5
4 5

graph2

https://northeastern-datalab.github.io/cs7240/
https://souffle-lang.github.io/simple
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog
https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog

