Updated 2/15/2023

Topic 1: Data models and query languages
Unit 4: Datalog

Lecture 8

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp23)

https://northeastern-datalab.github.io/cs7240/sp23/
2/3/2023

https://northeastern-datalab.github.io/cs7240/sp23/

Where We Are

e Relational query languages we have seen so far:
- SQL
— Relational Calculus
— Relational Algebra

« They can express the same class of relational queries (ignoring
extensions, such as grouping, aggregates, or sorting)
— How powerful are they? What is missing?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

Which are Relational Queries? Which are not? And Why?

e Given Friend(X,Y): Find all people X whose number of friends is a prime
number f?

« Find all people who are friends with everyone who is not a friend of Bob

?

o Partition all people into three sets P1(X),P2(X),P3(X) s.t. any two friends
are in different partitions

?

e Find all people who are direct or indirect friends with Alice (connected
in arbitrary length)

?

Source: Dan Suciu, CSE 554, 2011. u
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

Which are Relational Queries? Which are not? And Why?

Given Friend(X,Y): Find all people X whose number of friends is a prime

number NO: needs higher math; vot possible with RA
(unless we have access to a relation Prime(x)...)

 Find all people who are friends with everyone who is not a friend of Bob

?

« Partition all people into three sets P1(X),P2(X),P3(X) s.t. any two friends
are in different partitions

?

e Find all people who are direct or indirect friends with Alice (connected
in arbitrary length)

?

Source: Dan Suciu, CSE 554, 2011. u
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

Which are Relational Queries? Which are not? And Why?

Given Friend(X,Y): Find all people X whose number of friends is a prime

number NO: veeds higher math; ot possible with RA
(unless we have access +o a relation Prime(x)...)

Find all people who are friends with everyone who is not a friend of Bob
VES: {x | Yy.(=Friend(y, "Bob')=>Friend(x,y) } DI?

Partition all people into three sets P1(X),P2(X),P3(X) s.t. any two friends
are in different partitions

?

Find all people who are direct or indirect friends with Alice (connected
in arbitrary length)

?

Source: Dan Suciu, CSE 554, 2011. u
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

Which are Relational Queries? Which are not? And Why?

e Given Friend(X,Y): Find all people X whose number of friends is a prime

number NO: veeds higher math; ot possible with RA
(unless we have access +o a relation Prime(x)...)

e Find all people who are friends with everyone who is not a friend of Bob
VES: {x | Yy.(=Friend(y, "Bob')=>Friend(x,y) } DI
£ | Person(x) A Yy.[Person(y) A ~Friend(y, Bob')=>Friend(x)13
o Partition all people into three sets P1(X),P2(X),P3(X) s.t. any two friends

are in different partitions

?

e Find all people who are direct or indirect friends with Alice (connected
in arbitrary length)

?

Source: Dan Suciu, CSE 554, 2011. u
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

Which are Relational Queries? Which are not? And Why?

Given Friend(X,Y): Find all people X whose number of friends is a prime

number NO: veeds higher math; ot possible with RA
(unless we have access +o a relation Prime(x)...)

e Find all people who are friends with everyone who is not a friend of Bob
VES: {x | Yy.(=Friend(y, "Bob')=>Friend(x,y) }
£ | Person(x) A Yy.[Person(y) A ~Friend(y, Bob')=>Friend(x)13
« Partition all people into three sets P1(X),P2(X),P3(X) s.t. any two friends

are in different partitions
NO: equivalewt to 3-coloring; NP-complete

e Find all people who are direct or indirect friends with Alice (connected
in arbitrary length)

?

Source: Dan Suciu, CSE 554, 2011. u
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

Which are Relational Queries? Which are not? And Why?

Given Friend(X,Y): Find all people X whose number of friends is a prime

number NO: veeds higher math; ot possible with RA
(unless we have access +o a relation Prime(x)...)

Find all people who are friends with everyone who is not a friend of Bob
VES: {x | Yy.(=Friend(y, "Bob')=>Friend(x,y) }
£ | Person(x) A Yy.[Person(y) A ~Friend(y, Bob')=>Friend(x)13
Partition all people into three sets P1(X),P2(X),P3(X) s.t. any two friends

are in different partitions
NO: equivalewt to 3-coloring; NP-complete

Find all people who are direct or indirect friends with Alice (connected

in arbitrary length) yo. recursive duery; PTIME yet not expressible in RA
Next: Datalog: extends monotone RA with recursion

Source: Dan Suciu, CSE 554, 2011.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

Transitive closure |[edit]

Although relational algebra seems powerful enough for most practical
purposes, there are some simple and natural operators on relations that
cannot be expressed by relational algebra. One of them is the transitive
closure of a binary relation. Given a domain D, let binary relation R be a
subset of DxD. The transitive closure R* of R is the smallest subset of
DxD that contains R and satisfies the following condition:

VaVyvz ((z,y) € RY A (y,2) € R = (z,2) € RY)

It can be proved using the fact that there is no relational algebra
expression E(R) taking R as a variable argument that produces R*.l’!

SQL however officially supports such fixpoint queries since 1999, and it
had vendor-specific extensions in this direction well before that.

Appendix

In this appendix, we prove that the transitive closure of
a relation cannot be couched as an expression of relation-
al algebra.? It is interesting to note that both Bancilhon
[B] andParedaens{P] in essence characterize relational alge-
bra as equivalent to the set of mappings obeying principle 2
with respect to an empty set of predicates. However,
transitive closure obeys this principle. There is no con-
tradiction. In [B,P] it is shown that for every relation r
there is a relational algebra expression E such that
E(R)=R™, the transitive closure of R. What we show is
that for no relational algebra expression £ is E(R)=R"*
for all r.

Theorem 6. For an arbitrary binary relation R, there is
no expression E(R) in relational algebra equivalent to
R*, the transitive closure of R.

Suppose we have an expression £(R) that is the transi-
tive closure of R. Let £, = {a;. aa, . . ., a;} be a set of /
arbitrary symbols. Let R; be the finite relation
la\ay, aras, . . ., ai1a;}. R, represents the graph

We shall show that, for any relational expression E, there
is some value of / for which E(R)) is not R;,*. In particu-

Appendix from: Aho, Ullman. "Universality of data retrieval languages". POPL 1979. https://doi.org/10.1145%2F567752.567763

Source: https://en.wikipedia.org/wiki/Relational algebra#Transitive closure

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Relational_algebra
https://doi.org/10.1145%2F567752.567763

Datalog

« Database query language designed in the 80’s

e Simple, concise, elegant (xy) = Arc(xy).

— "Clean" restriction of Prolog with DB access (x,z) - Arc(x,y), Path(y,z).
(x) :- (X,X).

— Expressive & declarative:

* Set-of-rules semantics
* Independence of execution order
* |nvariance under logical equivalence

« Few open source implementations, mostly academic dl dlvsystem
implementations

V OF UNIVERSITY OF CALABRIA

e Recently a hot topic, beyond databases: Log;tBlox

— network protocols, static program analysis, DB+ML ‘s Relational AT

Based on slides by Dan Suciu
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 11

https://northeastern-datalab.github.io/cs7240/

Recursion with SQL server vs. Datalog

SQL

LISTING 4.7 Using Common Table Expressions for Recursive Operations

USE AdventureWorks;
WITH DirectReports (ManagerID, EmployeelD, EmployeeName, Title)
AS
(
-- Anchor member definition
SELECT e.ManagerID, e.EmployeelID, c.FirstName + ' ' + c.LastName, e.Title
FROM HumanResources.Employee AS e
INNER JOIN Person.Contact as ¢
ON e.ContactID = c.ContactID
WHERE ManagerID IS NULL

UNION ALL
-- Recursive member definition
SELECT e.ManagerID, e.EmployeelD,c.FirstName + ' ' + c.LastName ,e.Title

FROM HumanResources.Employee AS e
INNER JOIN DirectReports AS d
ON e.ManagerID = d.EmployeelD
INNER JOIN Person.Contact as c
ON e.ContactID = c.ContactID

)
-- Statement that executes the CTE
SELECT EmployeelID, EmployeeName, Title, ManagerID
FROM DirectReports
GO

Query on the left from Bieker, Lee. Mastering SQL server 2008. Example on the right by Dan Suciu

Datalog

Manager(eid) :- Manages(_, eid)

DirectReports(eid, 0) :-
Employee(eid), not Manager(eid)

DirectReports(eid, level+1) :-
DirectReports(mid, level), Manages(mid, eid)

SQL Query vs. Patalog: which
would you rather write?

Possible scribe: to fix that
example ©

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

13

https://northeastern-datalab.github.io/cs7240/

Smallest set of features that would make relational algebra Turing complete

Asked 8 years, 4 months ago Active 5 years, 5 months ago Viewed 296 times

You need just two things: new values and recursion/while.

il New values means the ability to execute some external function that returns values that were
not already to be found in the database. Obviously most implementations (including SQL)

have that CTE = Common Table Expession = WITH clause

V Recursion/while means the ability to e a loop or iterative computation that may not
terminate. The CTE RECURSIVE feature of SQL is one such.

SQL with CTE RECURSIVE is Turing Complete (without stored procedures).

See the Alice book http://webdam.inria.fr/Alice/ for a detailed treatment.

Share Cite Improve this answer Follow answered Sep 12016 at 5:47

david.pfx
D2 176 o4

https://cs.stackexchange.com/questions/14694/smallest-set-of-features-that-would-make-relational-algebra-turing-complete
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

16

https://northeastern-datalab.github.io/cs7240/
https://cs.stackexchange.com/questions/14694/smallest-set-of-features-that-would-make-relational-algebra-turing-complete

9 Jan Hidders, Database researcher

Answered 2 years ago - Author has 615 answers and 840K answer views

Why is SQL not Turing complete?

Some variants of SQL, including some of the ISO standards, are actually Turing
complete.

The most obvious example is SQL:1999 with the SQL/PSM extension, which adds
stored procedures and therefore recursive functions and programming
constructs that were intended to turn SQL into a programming language.

A less obvious example is SQL:2003 without stored procedures. It can be shown
to be Turing complete using a clever combination of recursive queries (using
Common Table Expressions) and Windowing, the first introduced in SQL:1999
and the latter since SQL:2003. See: http://assets.en.oreilly.com/1/event
[27/High%20Performance%20SQL%20with%20PostgreSQL%20Presentation.pd
fd).

Nevertheless, it is true that the core of SQL was deliberately designed to be not
Turing complete. The main reasons for this are:

1. By restricting the query language the programmer is encouraged to
separate the computational task into a part that can be efficiently
computed and optimised by the DBMS (namely the part that can be
formulated in SQL) and a part that the programmer probably can better
implement by themselves.

2. By restricting the query language to computations that always terminate
and can be computed in polynomial time and logarithmic space, we can
reduce the risk of burdening the database server with a workload that it
cannot deal with.

1.4K views - View upvotes

Cyclic Tag System

)))] o Fun Snippets
This SQL query (requires PostgreSQL 8.4) forms a cyclic tag system (wikipedia (7}, which is sufficient to demonstrate that
SQL is Turing-complete. It is written entirely in SQL:2003-conformant SQL. Cyclic Tag System
Thanks to Andrew (RhodiumToad) Gierth, who came up with the concept and wrote the code. Works with PostgreSQL
The productions are encoded in the table "p" as follows: 8.4
Written in
"iter" is the production number; saL
“rnum" is the index of the bit;
tag" is the bit value. Depends on
Nothing

This example uses the productions:
110 91 @eee

The initial state is encoded in the non-recursive union arm, in this case just 1"

The modir.iter, n) subexpression encodes the number of productions, which can be greater than the size of table "p", because empty productions are
not included in the table.

Parameters:

the content of "p"
the content of the non-recursive branch
the 3 in mod(r.iter, 3)

"p" encodes the production rules; the non-recursive branch is the initial state, and the 3 is the number of rules
The result at each level is a bitstring encoded as 1 bit per row, with rnum as the index of the bit number.

At each iteration, bit 0 is removed, the remaining bits shifted up one, and if and only if bit 0 was a 1, the content of the current production rule is
appended at the end of the string.

WITH RECURSIVE
pliter,rnum,tag) AS (
VALUES (e,@,1),(e,1,1),(0,2,0),
(1,0,0),(1,1,1),
, (2,0,0),(2,1,0),(2,2,0),(2,3,0)
r{iter,rnum,tag) AS (
VALUES (@,8,1)
UNION ALL
SELECT r.iter+1,
CASE
WHEN r.rnum=8 THEN p.rnum + max(r.rnum) OVER ()
ELSE r.rnum-1
END,
CASE
WHEN r.rnum=8 THEN p.tag
ELSE r.tag
END

FROM

v
LEFT JOIN p

ON (r.rnum=8 and r.tag=1 and p.iter=mod(r.iter, 3))
WHERE

r.roum=@
OR p.iter IS NOT NULL

)

SELECT iter, rnum, tag
FROM r

ORDER BY iter, rnum;

https://www.quora.com/Why-is-relational-algebra-not-Turing-complete , https://wiki.postgresql.org/wiki/Cyclic Tag System, https://en.wikipedia.org/wiki/Tag system#Cyclic tag systems

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://www.quora.com/Why-is-relational-algebra-not-Turing-complete
https://wiki.postgresql.org/wiki/Cyclic_Tag_System
https://en.wikipedia.org/wiki/Tag_system

Cyclic tag systems |edit]

A cyclic tag system is a modification of the original tag system. The alphabet consists of only two symbols, 0 and 1,
and the production rules comprise a list of productions considered sequentially, cycling back to the beginning of the
list after considering the "last" production on the list. For each production, the leftmost symbol of the word is
examined—if the symbol is 1, the current production is appended to the right end of the word; if the symbol is 0, no
characters are appended to the word; in either case, the leftmost symbol is then deleted. The system halts if and
when the word becomes empty.

Example [edit]

Cyclic Tag System
Productions: (010, 000, 1111)

Computation
Initial Word: 11001
Production Word

010 11001
000 1001010
1111 001010000
010 01010000
000 1010000
1111 010000000
010 10000000

Cyclic tag systems were created by Matthew Cook and were used in Cook's demonstration that the Rule 110
cellular automaton is universal. A key part of the demonstration was that cyclic tag systems can emulate a Turing-
complete class of tag systems.

Cyclic Tag System

This SQL query (requires PostgreSQL 8.4) forms a cyclic tag system (wikipedia (), which is sufficient to demonstrate that

SQL is Turing-complete. It is written entirely in SQL:2003-conformant SQL.

Thanks to Andrew (RhodiumToad) Gierth, who came up with the concept and wrote the code.

The productions are encoded in the table "p" as follows:

"iter" is the production number;
"rnum" is the index of the bit;
"tag" is the bit value.

This example uses the productions:

110 91 oeee

The initial state is encoded in the non-recursive union arm, in this case just 1"

Fun Snippets
Cyclic Tag System
Works with PostgreSQL
8.4

Written in
saL

Depends on

Nothing

The modir.iter, n) subexpression encodes the number of productions, which can be greater than the size of table "p", because empty productions are

not included in the table.

Parameters:

the content of "p"
the content of the non-recursive branch
the 3 in mod(r.iter, 3)

"p" encodes the production rules; the non-recursive branch is the initial state, and the 3 is the number of rules

The result at each level is a bitstring encoded as 1 bit per row, with rnum as the index of the bit number.

At each iteration, bit 0 is removed, the remaining bits shifted up one, and if and only if bit 0 was a 1, the content of the current production rule is

appended at the end of the string.

WITH RECURSIVE
pliter,rnum,tag) AS (
VALUES (0,8,1),(0,1,1),(8,2,0),
(1,0,0),(1,1,1),

, (2,0,0),(2,1,0),(2,2,0),(2,3,0)
r{iter,rnum,tag) AS (
VALUES (@,8,1)

UNION ALL
SELECT r.iter+1,
CASE

WHEN r.rnum=@ THEN p.rnum + max(r.rnum) OVER ()

ELSE r.rnum-1
END,
CASE
WHEN r.rnum=8 THEN p.tag
ELSE r.tag
END
FROM

v
LEFT JOIN p

ON (r.rnum=8 and r.tag=1 and p.iter=mod(r.iter, 3))
WHERE

r. rnum=@
OR p.iter IS NOT NULL

)

SELECT iter, rnum, tag
FROM r

ORDER BY iter, rnum;

https://www.quora.com/Why-is-relational-algebra-not-Turing-complete , https://wiki.postgresql.org/wiki/Cyclic Tag System, https://en.wikipedia.org/wiki/Tag system#Cyclic tag systems

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://www.quora.com/Why-is-relational-algebra-not-Turing-complete
https://wiki.postgresql.org/wiki/Cyclic_Tag_System
https://en.wikipedia.org/wiki/Tag_system

Query Language Design

Query language design is still a popular topic, especially for
graphs. See e.g. https://www.tigergraph.com/gsql/

And the slides
https://courses.cs.washington.edu/courses/csed516/20au/le

ctures/lecture05-advanced-guery-evaluation.pdf
from “DATA516/CSED516: Scalable Data Systems and
Algorithms!” Dan Suciu

https://courses.cs.washington.edu/courses/csed516/20au/

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

19

https://northeastern-datalab.github.io/cs7240/
https://www.tigergraph.com/gsql/
https://courses.cs.washington.edu/courses/csed516/20au/lectures/lecture05-advanced-query-evaluation.pdf
https://courses.cs.washington.edu/courses/csed516/20au/lectures/lecture05-advanced-query-evaluation.pdf
https://courses.cs.washington.edu/courses/csed516/20au/

Outline: T1-4: Datalog

 Datalog
— Datalog rules
— Recursion
— Recursion in SQL [moved here from T1-U1: SQL]
— Semantics
— Datalog™ Negation, stratification
— Datalog®
— Stable model semantics (Answer set programming)
— Datalog vs. RA

— Naive and Semi-naive evaluation (incl. Incremental View
Vaintenance)

20

Datalgg: Facts and RUleS Schema | Actor(id, fname, Iname)
Plays(aid, mid)

Movie(id, name, year)

Facts: tuples in the database Rules: queries
(votice position matters: umamed perspective)
Actor(344759,"Douglas", "Fowley"). (y) :- Movie(x,y,z), z=1940.
Plays(344759, 7909). ?
Plays(344759, 29000). f
Movie(7909, "A Night in Armour", 1910). (£1) - Actor(u,f1), Plays(u.x),
Movie(29000, "Arizona", 1940). Vovie(x,y,z), z<1940.
Movie(29445, "Ave Maria", 1940).

?

(f,1) :- Actor(z,f,1), Plays(z,x1), Movie(x1,y1,1910),
Plays(z,x2), Movie(x2,y2,1940).

Examples by Dan Suciu
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 21

https://northeastern-datalab.github.io/cs7240/

Datalgg: Facts and RUleS Schema | Actor(id, fname, Iname)
Plays(aid, mid)

Movie(id, name, year)

Facts: tuples in the database Rules: queries
(votice position matters: ummamed perspective)
Actor(344759,"Douglas", "Fowley"). (y) :- Movie(x,y,z), z=1940.

Plays(344759, 7909).
Plays(344759, 29000).
Movie(7909, "A Night in Armour", 1910). (£1) == Actor(u,fl), Plays(u,x),
Movie(29000, "Arizona", 1940). Movie(x,y,z), z<1940.
Movie(29445, "Ave Maria", 1940). ?

(f,1) :- Actor(z,f,1), Plays(z,x1), Movie(x1,y1,1910),
Plays(z,x2), Movie(x2,y2,1940).

Find movies from 1440

Examples by Dan Suciu
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 22

https://northeastern-datalab.github.io/cs7240/

Datalog: Facts and RUleS Schema | Actor(id, fname, Iname)
Plays(aid, mid)

Movie(id, name, year)

Facts: tuples in the database Rules: queries
(votice position matters: ummamed perspective)
Actor(344759,"Douglas", "Fowley"). (y) :- Movie(x,y,z), z=1940.

Plays(344759, 7909).
Plays(344759, 29000).
Movie(7909, "A Night in Armour", 1910). (£1) == Actor(u,fl), Plays(u,x),
Movie(29000, "Arizona", 1940). Movie(x,y,z), z<1940.
Movie(29445, "Ave Maria", 1940).

Find movies from 1440

Find actors who plaved in a wmovie before 1440

(f,1) :- Actor(z,f,1), Plays(z,x1), Movie(x1,y1,1910),
Plays(z,x2), Movie(x2,y2,1940).

Examples by Dan Suciu
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 23

https://northeastern-datalab.github.io/cs7240/

Datalog: Facts and Rules

Facts: tuples in the database

Schema | Actor(id, fname, Iname)
Plays(aid, mid)
Movie(id, name, year)

Rules: queries
(votice position matters: ummamed perspective)

Actor(344759,"Douglas", "Fowley").
Plays(344759, 7909).
Plays(344759, 29000).

Movie(29000, "Arizona", 1940).
Movie(29445, "Ave Maria", 1940).

(y) :- Movie(x,y,z), z=1940.

Find movies from 1440

Movie(7909, "A Night in Armour", 1910).

(f,1) :- Actor(u,f,l), Plays(u,x),
Viovie(x,y,z), z<1940.

Find actors who plaved in a wmovie before 1440

(f,1) :- Actor(z,f,1), Plays(z,x1), Movie(x1,y1,1910),

Plays(z,x2), Movie(x2,y2,1940).

Find actors who plavyed in a movie from 1910 and from 1940

Examples by Dan Suciu

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 24

https://northeastern-datalab.github.io/cs7240/

Datalog: Facts and Rules

Facts: tuples in the database

Schema | Actor(id, fname, Iname)
Plays(aid, mid)
Movie(id, name, year)

Rules: queries
(votice position matters: ummamed perspective)

Actor(344759,"Douglas", "Fowley").
Plays(344759, 7909).
Plays(344759, 29000).

Movie(29000, "Arizona", 1940).
Movie(29445, "Ave Maria", 1940).

(y) :- Movie(x,y,z), z=1940.

Find movies from 1440

Movie(7909, "A Night in Armour", 1910).

(f,1) :- Actor(u,f,l), Plays(u,x),
Viovie(x,y,z), z<1940.

Find actors who plaved in a wmovie before 1440

(f,1) :- Actor(z,f,1), Plays(z,x1), Movie(x1,y1,1910),

Plays(z,x2), Movie(x2,y2,1940).

Find actors who plaved in a movie from 1a10 ayd from 1940

Examples by Dan Suciu

OR

?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 25

https://northeastern-datalab.github.io/cs7240/

Datalgg: Facts and RUleS Schema | Actor(id, fname, Iname)
Plays(aid, mid)

Movie(id, name, year)

Facts: tuples in the database Rules: queries
(votice position matters: ummamed perspective)
Actor(344759,"Douglas", "Fowley"). (y) :- Movie(x,y,z), z=1940.

Plays(344759, 7909).
Plays(344759, 29000).
Movie(7909, "A Night in Armour", 1910). (£1) == Actor(u,fl), Plays(u,x),
Movie(29000, "Arizona", 1940). Movie(x,y,z), z<1940.
Movie(29445, "Ave Maria", 1940).

Find movies from 1440

Find actors who plaved in a wmovie before 1440

(f,1) :- Actor(z,f1), Plays(z,x1), Movie(x1,y1,1910).
(f,1) :- Actor(z,f1), Plays(z,x2), Movie(x2,y2,1940).

Find actors who plaved in a movie from 1a10 ayd from 1940
Extensional Database (EDB) predicates: Actor, Plays, Movie OR
Database (IDB) predicates: Q1, Q2, Q3, Q4
Examples by Dan Suciu

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 26

https://northeastern-datalab.github.io/cs7240/

[

Example with Souffle €

command line w/ input/ontput directories
souffle -F. -D. movie.dl

movie.dl l

_ ae—

@ctor(id:numben fname:symbol, Iname:symbol)
.decl Plays(aid:number, mid:number)

.decl Movie(id:number, name:symbol, year:number)
Actor(344759,"Douglas", "Fowley").

Plays(344759, 7909).

Plays(344759, 29000).

Movie(7909, "A Night in Armour”, 1910).
Movie(29000, "Arizona", 1940).

Movie(29445, "Ave Maria", 1940).

.decl Q2(fname:symbol, [Iname:symbol)
Q2(f 1) :- Actor(u,f), Plays(u,x), I\/Iovie(>@z), 2<1940.

Schema | Actor(id, fname, Iname)
Plays(aid, mid)
Movie(id, name, year)

tab-separated ontput,
filename: ".csv"

Q2.csv

ontput .

.output Q2

For more help on Souffle, see: https://souffle-lang.github.io/simple

Datalog example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Douglas Fowley

27

https://northeastern-datalab.github.io/cs7240/
https://souffle-lang.github.io/simple
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog
https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog

Syntax of rules

* evaluates to true whew relation &, contains

the tuple described by aros, | | |
e Actor(344759, " Donalas”,"Fowley") is true arithmetic predicate
Ri(args): relational predicate with arguments (= atowm) /

\

Q2(f,!) :- Actor(u,f,!), Casts(u,x), Movie(x,y,z), z<1940.

W_/ - ~)
head body
(or conseduent) (or antecedent)
single DB subgoal conjumction of subgpoals

{t,!}: head variables

{u,x,y,z}: existential variables

Alternative notation: Q(args) <- R1(args) AND R2(args) / or variables begin with a capital, predicates with lower-case (problem: can't have "Boston")
Source: Dan Suciu, CSE 554, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

29

https://northeastern-datalab.github.io/cs7240/

Logical interpretation of a single rule

Q(v) :- Movie(x,y,z), z<1940.

Meaning of a Datalog rule is a logical statement:

?

Based upon class material from Dan Suciu for CSE 554, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Actor(id, fname, Iname)
Plays(aid, mid)
Movie(id, name, year)

34

https://northeastern-datalab.github.io/cs7240/

Logical interpretation of a single rule

Q(v) :- Movie(x,y,z), z<1940.

Meaning of a Datalog rule is a logical statement:

Actor(id, fname, Iname)
Plays(aid, mid)
Movie(id, name, year)

For all x,y,z: if (X,y,z) € Movies and z<1940 then y is in Q (i.e. is part of the answer)

|(Movie(x,y,2) A 2<1940) = Q(v)]

logically equivalent to

?

Based upon class material from Dan Suciu for CSE 554, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

Logical interpretation of a single rule

Q(v) :- Movie(x,y,z), z<1940.

Meaning of a Datalog rule is a logical statement:

Actor(id, fname, Iname)
Plays(aid, mid)
Movie(id, name, year)

For all x,y,z: if (X,y,z) € Movies and z<1940 then y is in Q (i.e. is part of the answer)

|(Movie(x,y,2) A 2<1940) = Q(v)]

logically equivalent to
3%,z [Movie(x,y,2) A z<1940] = Q(v)]

compare with RC

?

Based upon class material from Dan Suciu for CSE 554, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Thus, now-head variables are
called "

https://northeastern-datalab.github.io/cs7240/

Logical interpretation of a single rule

Actor(id, fname, Iname)
Plays(aid, mid)

Q(Y) .- I\/Iovie(x,y,z), 7<1940. Movie(id, name, year)

Meaning of a Datalog rule is a logical statement:
For all x,y,z: if (X,y,z) € Movies and z<1940 then y is in Q (i.e. is part of the answer)

Vx,v,z [(Movie(x,y,2) A 2z<1940) = Q(v)]

logicall ivalent t
Oglcally equiva en. 0 Thus, von-head variables are
vy [3x%,z [Movie(x,y,z) A z<1940] @D

called "existential variables"
compare with RC \ we want +he smallest set Q
{(v) | 3%,z [Movie(x,y,2z) A z<1940] } with this property (why?)

Based upon class material from Dan Suciu for CSE 554, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 37

https://northeastern-datalab.github.io/cs7240/

Syntactic Constraints

Q(X) . Rl(xllyl)l'--;Rm(xmlym)' X, €EXV, &y
(bold = vector notation)

The rule stands for the following logical formula:

Recall +th lest
Q0 = IRy A ARaCioyd] | 220G U

Two restrictions:
1. Safety: every head variable should occur in the body at least once

R(x,2).:- S(x,y), Ryx). | | AY) ?
S — -

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 38

https://northeastern-datalab.github.io/cs7240/

Syntactic Constraints

Q(X) . Rl(xlly1)1°-';Rm(xmlym)' X, €EXV, &y
(bold = vector notation)

The rule stands for the following logical formula:
Vx| Q) & Y[Ry ¢,y DA+ ARy (%Y) ||

Two restrictions:

1. Safety: every head variable should occur in the body at least once

\ /
R(X,M), forbidden rule: 2 ot in body
/ \

2. The head predicate must be an |DB (Intensional) predicate
(Body can include both EDBs and IDBs)

Arc(x,y) :- Arc(x,z),Arc(z,y). ?

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 39

https://northeastern-datalab.github.io/cs7240/

Syntactic Constraints

Q(X) . Rl(xlly1)1°-';Rm(xmlym)' X, €EXV, &y
(bold = vector notation)

The rule stands for the following logical formula:
Vx| Q) & Y[Ry ¢,y DA+ ARy (%Y) ||

Two restrictions:

1. Safety: every head variable should occur in the body at least once

\ /
R(X,M). forbidden rule: 2 vot in body
/ \

2. The head predicate must be an |DB (Intensional) predicate
(Body can include both EDBs and IDBs)

= e
Arc(x,y) - ZLArc(z,y). Assuming Arc is EDB
/ \

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 40

https://northeastern-datalab.github.io/cs7240/

Outline: T1-4: Datalog

» Datalog
— Datalog rules
— Recursion
— Recursion in SQL [moved here from T1-U1: SQL]
— Semantics
— Datalog™ Negation, stratification
— Datalog®
— Stable model semantics (Answer set programming)
— Datalog vs. RA

— Naive and Semi-naive evaluation (incl. Incremental View
Vaintenance)

41

Recursion

WHAT IS IT? .
h Pecursion occurs when

/ a thing is defined
ﬁ %3 in terms of itself
(self-repetition).

Recursion and lteration both repeatedly execute a set of instructions.
* Recursion (self-similarity) is when a statement in a function calls itself repeatedly.
* |teration (repetition) is when a loop repeatedly executes until the controlling

condition becomes false.

RECLRSION

A datalog program consists of several rules:
 Usually there is one distinguished predicate that’s the output

* Interestingly, rules may be recursivel

Figure Source: Fake XKCD: http://xkcdsw.com/1105
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

42

https://northeastern-datalab.github.io/cs7240/
http://xkcdsw.com/1105

Example

(14—

23

EDB | P(X,y) - A(X,Y). recursion due to
IDB | P(x,y) :- A(x,2), P(z,y). | head in rule body

what does this duery compute?

?

WIERINIDN| =
NN SN

4 5

Based upon an example by Dan Suciu from CSE 554, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 44

https://northeastern-datalab.github.io/cs7240/

Exam ple EDB | P(X,y) - A(X,Y). recursion due to

(%,¥) :- A(x,z), P(z,y). | head in rule body
M
Calenlates all paths (travsitive closure)

For all nodes x and v:
If there is an arc from x toy,

then thereis a from x toy.
Al 2 For all nodes x, z, and :
; é If there is an arc from x to z, and there is a fromztoy
1 2 then thereis a from x toy.
3 4

4 5

Based upon an example by Dan Suciu from CSE 554, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 45

https://northeastern-datalab.github.io/cs7240/

Example

Tuitially: P is empty
157 [teration

2)—3 p

EDB | P(X,y) - A(X,Y). recursion due to
IDB | P(x,y) :- A(x,2), P(z,y). | head in rule body

?

Wik NN -
NN ISV N

4 5

Based upon an example by Dan Suciu from CSE 554, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 46

https://northeastern-datalab.github.io/cs7240/

Example

EDB | P(X,y) - A(X,Y). recursion due to
IDB | P(x,y) :- A(x,2), P(z,y). | head in rule body
I Twvitially: P is empty
15t [+eration 244 iteration
@ 9 Pl1 2 P
s3]\ P p
2 3 F=A1 from
1 4 15* rule ?
3 4
4 5
A

2" rule generates
nothing (because
P is empty)

Wik NN -
NN ISV N

4 5

Based upon an example by Dan Suciu from CSE 554, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 47

https://northeastern-datalab.github.io/cs7240/

Example

WL ININ| -

NN ISV N

4

5

Based upon an example by Dan Suciu from CSE 554, 2018.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

’—\><

X,z), P(z,y).

15T [+eration

Pl1 2

157 rule

Bl NN
U (W[

2" rule generates
nothing (because
P is empty)

P=A from

Tuitially: P is empty

recursion due +o
head in rule body

2 iteration

O
—

[\

SIS 1IN [9F] I] N 1S, | NG NN [V N

\‘wr—x[\:r—xt\:r—x Bl o]

157 rule

2" ryle

New facts rom 2" rule

48

https://northeastern-datalab.github.io/cs7240/

Example

EDB | P(X,y) - A(X,Y). recursion due to
- A(x,2), P(z,y). | head in rule body

—

recall set semantics!

Twitially: P is empty (No new facts)

15t [+eration 2 iteration 37 [teration = 47 [+eration
g ; i g ; i P ; i >75* + 2 rule

2 3 | \7=Afrom 23 , 2 3

3 4 3 4 3 4| e
4 5 4 5 4 5
A1 2 1 1 1 1
2 1 2 rule generates i g) i g

2 3 nothing (because | 2" rule 2nd pyle
1 4 P is empty) 1 5 1 5
3 4 3 5 3 5
4 5 / / 2 S5

nd
Based upon an example by Dan Suciu from CSE 554, 2018. N@W fﬂ&fs 7£/”()W) 2 //'M/é

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 49

https://northeastern-datalab.github.io/cs7240/

Example with Souffle €

(4)——(5

2

3

[

souffle -F. -D. graphl.dl
graphl.dl
decl A(x:number, y:number)
A(1,2).
A(2,1).
A(2,3).
A(1,4).
A(3,4).
A(4,5).
.decl P(x:number, y:number)

(X, y) == AlX, y).

) :_A))) .

X y) = Alx 2), Pz, y) tab-separated,

output P output filename:

For more help on Souffle, see: https://souffle-lang.github.io/simple
Datalog example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

LSV

1 1
1 2
1 3
1 4
1 5
2 1
2 2
2 3
2 4
2 5
3 4
3 5
4 5

https://northeastern-datalab.github.io/cs7240/
https://souffle-lang.github.io/simple
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog
https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog

Example with Souffle €

command line w/ input/ontput directories

i 9 6 souffle —F. -D. graph2.dl

@ 9 4% file output

1 1
1 2
1 3
1 4
graph2.dl 1 5
A.facts mput .decl A(x:number, y:num 2 1
. \ .decl P(x:number, y: 2 2
2 1 _input A 2 3
2 3 .output P 2 4
1 4] tab-separated, 2
3 4| input filename: % y) = AKX Y). g g
4 > "facts' "oyl Al 2) Pz Y) tab-separated, |,

output filename:

"osv'

For more help on Souffle, see: https://souffle-lang.github.io/simple
Datalog example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 51

https://northeastern-datalab.github.io/cs7240/
https://souffle-lang.github.io/simple
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog
https://github.com/northeastern-datalab/cs3200-activities/tree/master/souffle
https://github.com/northeastern-datalab/cs3200-activities/tree/master/datalog

