Topic 1: Data models and query languages Unit 3: Relational Algebra (RA) Lecture 7

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp23)
https://northeastern-datalab.github.io/cs7240/sp23/
1/31/2023

Pre-class conversations

- Last class summary
- Please keep on pointing out any errors on the slides
- It is time to start to hand in your first scribes (some ideas today)
- Project discussions (in 2 weeks: Fri 2/17: project ideas)
- today:
- Algebra: independence and Codd's theorem
- next time:
- Recursion (Datalog)

Algebra and the connection to logic and queries

- Algebra
- Relational Algebra
- Operators
- Independence
- Power of algebra: optimizations
- Equivalence RA and safe RC (Codd's theorem)
- RA \rightarrow RC
$-R C \rightarrow R A$

Q: Find the ID and name of those employees who earn more than the employee whose ID is 123?

Q: Find the ID and name of those employees who earn more than the employee whose ID is 123?

$$
\begin{aligned}
& \pi_{\text {e.id,e.name }}\left(\sigma_{\text {e.salary }>\text { o.salary }}\left(\rho_{\mathrm{e}}(\mathrm{employee}) \times \sigma_{\mathrm{id}=123}\left(\rho_{\mathrm{o}}(\text { employee })\right)\right)\right) \\
& \pi_{\text {id, name }}\left(\sigma_{\text {salary }>\mathrm{s}}\left(\mathrm{employee} \times\left(\rho_{\text {salary } \rightarrow \mathrm{s}}\left(\pi_{\text {salary }}\left(\sigma_{\mathrm{id}=123}(\mathrm{employee})\right)\right)\right)\right)\right. \\
& \pi_{\$ 1, \$ 2}\left(\sigma_{\$ 4=123 \wedge \$ 3>\$ 6}(\text { employee } \times \text { employee })\right)
\end{aligned}
$$

Relational Algebra (RA) operators

- Five basic operators:

1. Selection: σ ("sigma")
2. Projection: Π
3. Cartesian Product: \times
4. Union: U
5. Difference:-

- Auxiliary (or special) operator

6. Renaming: ρ ("rho")

- Derived (or implied) operators

Derived relational operators:

- can be expressed in basic RA; thus not needed

But enhancing the basic operator set with derived operators is a good idea:

- Queries become easier to write/understand/maintain
- Easier for DBMS to apply specialized optimizations (recall the conceptual evaluation strategy)

7. Joins \bowtie (natural, theta join, equi-join, [semi-join: moved to T3-U1])
8. Intersection / complement
9. Division

7a. Natural Join (ゅ)
Product(pname, price, category, cid)
Company(cid, cname, stockprice, country)

SELECT pname, price, category, P.cid, cname, stockprice, country FROM Product P, Company C WHERE P.cid= C.cid

SQL (alternative syntax)

- Natural join in basic RA:
- Meaning: $R \bowtie S=\pi_{A \cup B}\left(\sigma_{R . C=S . C}(R \times S)\right)$
- Meaning: $\mathrm{R} \bowtie \mathrm{S}=\pi_{\mathrm{A} \cup \mathrm{B}}\left(\sigma_{\mathrm{C}=\mathrm{D}}\left(\rho_{C \rightarrow D}(\mathrm{R}) \times \mathrm{S}\right)\right)$
- The rename $\rho_{C \rightarrow D}$ renames the shared attributes in one of the relations
- The selection $\sigma_{C=D}$ checks equality of the shared attributes
- The projection $\pi_{\mathrm{A} \cup \mathrm{B}}$ eliminates the duplicate common attributes
- Notation: $\mathrm{R} \bowtie \mathrm{S}$
- Joins R and S on equality of all shared attributes
- Only makes sense in named perspective!
- If R has attribute set A, and S has attribute set B, and they share attributes $A \cap B=C$, can also be written as $R \bowtie_{C} S$
- Natural join in basic RA:
- Meaning: $R \bowtie S=\pi_{A \cup B}\left(\sigma_{R . C=S . C}(R \times S)\right)$
- Meaning: $\mathrm{R} \bowtie \mathrm{S}=\pi_{\mathrm{A} \cup \mathrm{B}}\left(\sigma_{\mathrm{C}=\mathrm{D}}\left(\rho_{C \rightarrow D}(\mathrm{R}) \times \mathrm{S}\right)\right)$
- The rename $\rho_{C \rightarrow D}$ renames the shared attributes in one of the relations
- The selection $\sigma_{C=D}$ checks equality of the shared attributes
- The projection $\pi_{\mathrm{A} \cup \mathrm{B}}$ eliminates the duplicate common attributes

SQL
SELECT pname, price, category, P.cid, cname, stockprice, country FROM Product P, Company C WHERE P.cid= C.cid

SQL (alternative syntax)

SELECT *

FROM Product
NATURAL JOIN Company
$R A:$
$\sqrt{\square}$

- Notation: $\mathrm{R} \bowtie \mathrm{S}$
- Joins R and S on equality of all shared attributes
- Only makes sense in named perspective!
- If R has attribute set A, and S has attribute set B, and they share attributes $A \cap B=C$, can also be written as $R \bowtie_{C} S$
- Natural join in basic RA:
- Meaning: $R \bowtie S=\pi_{A \cup B}\left(\sigma_{R . C=S . C}(R \times S)\right)$
- Meaning: $\mathrm{R} \bowtie \mathrm{S}=\pi_{\mathrm{A} \cup \mathrm{B}}\left(\sigma_{\mathrm{C}=\mathrm{D}}\left(\rho_{C \rightarrow D}(\mathrm{R}) \times \mathrm{S}\right)\right)$
- The rename $\rho_{C \rightarrow D}$ renames the shared attributes in one of the relations
- The selection $\sigma_{C=D}$ checks equality of the shared attributes
- The projection $\pi_{\mathrm{A} \cup \mathrm{B}}$ eliminates the duplicate common attributes

SQL
SELECT pname, price, category, P.cid, cname, stockprice, country FROM Product P, Company C WHERE P.cid= C.cid

SQL (alternative syntax)

SELECT *

FROM Product
NATURAL JOIN Company

RA:

Product \bowtie Company

Figure 15: Joining tuples

We only want to pair those tuples that match in some way.
More formally the semantics of the natural join are defined as follows:

$$
\begin{equation*}
R \bowtie S=\{r \cup s \mid r \in R \wedge s \in S \wedge F u n(r \cup s)\} \tag{1}
\end{equation*}
$$

where $\operatorname{Fun}(t)$ is a predicate that is true for a relation t (in the mathematical sense) iff t is a function. It is usually required that R and S must have at least one common attribute, but if this constraint is omitted, and R and S have no common attributes, then the natural join becomes exactly the Cartesian product.

7a. Natural Join (৯): An example

R
\mathbf{R}
\mathbf{A}
\mathbf{B}
3

S
\mathbf{B}
2
:---
4
9

$$
\rho_{B \rightarrow E}(\mathrm{R}) \times \mathrm{S}
$$

7a. Natural Join (ゅ): An example

\mathbf{R}	
\mathbf{A}	\mathbf{B}
1	2
3	4

S
\mathbf{B}
\mathbf{B}
2

$R \bowtie S$

$$
\rho_{B \rightarrow E}(\mathrm{R}) \times \mathrm{S}
$$

A	E	B	C	D
1	2	2	5	6
1	2	4	7	8
1	2	9	10	11
3	4	2	5	6
3	4	4	7	8
3	4	9	10	11

7a. Natural Join (円): An example

\mathbf{R}
\mathbf{A}
\mathbf{A}
1

S

B	C	D
2	5	6
4	7	8
9	10	11

$R \bowtie S$

A	B	C	D
1	2	5	6
3	4	7	8

$R \bowtie S=$
in basic RA

7a. Natural Join (ゅ): An example

R

A	B
1	2
3	4

S

B	\mathbf{C}	\mathbf{D}
2	5	6
4	7	8
9	10	11

$R \bowtie S$

A	B	C	D
1	2	5	6
3	4	7	8

$R \bowtie S=$
$\Pi_{A R . B C D}\left(\sigma_{R . B=S . B}(R \times S)\right)=$
$\Pi_{A B C D}\left(\sigma_{B=E}\left(\rho_{B \rightarrow E}(\mathrm{R}) \times \mathrm{S}\right)\right)$

7a. Natural Join (凶): practice

- Given schemas $R(A, B, C, D), S(A, C, E)$, what is the schema of $R \bowtie S$?

7a. Natural Join (ळ): practice

- Given schemas $R(\underbrace{A, B, C, D)}, S(\mathbb{A}, C, E)$, what is the schema of $R \bowtie S$?
Answer(A, B, C, D,E)
- Given $R(A, B, C), S(D, E)$, what is $R \bowtie S$?

7a. Natural Join (®): practice

- Given schemas $R(A, B, C, D), S(A, C, E)$, what is the schema of $R \bowtie S$?
Answer(A, B, C, D,E)
- Given $R(A, B, C), S(D, E)$, what is $R \bowtie S$?

no condition in the selection that could be violated:

- Given $R(A, B), S(A, B)$, what is $R \bowtie S$?

7a. Natural Join (凶): practice

- Given schemes $R(A, B, C, D), S(A, C, E)$, what is the schema of $R \bowtie S$?

Answer (A, B, C, D, E)

- Given $R(A, B, C), S(D, E)$, what is $R \bowtie S$?

$$
R \times S
$$

- Given $R(A, B), S(\mathbb{A}, B)$, what is $R \bowtie S$?

$$
R \cap S
$$

Ta. Natural Join (凶): practice

- Given schemes $R(A, B, C, D), S(A, C, E)$, what is the schema of $R \bowtie S$?

Answer (A, B, C, D, E)

- Given $R(A, B, C), S(D, E)$, what is $R \bowtie S$?

$$
R \times S
$$

- Given $R(A, B), S(A, B)$, what is $R \bowtie S$?
$R \cap S$

7b. Theta Join $\left(\bowtie_{\theta}\right)$

- A join that involves a predicate

$$
R_{1} \bowtie_{\theta} R_{2}=\sigma_{\theta}\left(R_{1} \times R_{2}\right)
$$

- θ ("theta") can be any condition
- No projection: \#attributes in output = sum \#attributes in input Note that natural join is
- Example: band-joins for approx. matchings across tables

```
AnonPatient (age, zip, disease)
Voters (name, age, zip)
```

Assume relatively fresh data (within 1 year)

7b. Theta Join $\left(\bowtie_{\theta}\right)$

- A join that involves a predicate

$$
R_{1} \bowtie_{\theta} R_{2}=\sigma_{\theta}\left(R_{1} \times R_{2}\right)
$$

- θ ("theta") can be any condition
- No projection: \#attributes in output = sum \#attributes in input Note +hat natural join is a theta join + a selection
- Example: band-joins for approx. matchings across tables

```
AnonPatient (age, zip, disease)
Voters (name, age, zip)
Assume relatively fresh
data (within 1 year)
```

$A \bowtie_{P . z i p=V . z i p} \wedge(P$. .age $>=\mathrm{V}$.age $-1 \wedge \mathrm{P}$.age $<=\mathrm{V}$.age $+1 \mathrm{~V}$

Student(sid,name,gpa) People(ssn,name,address)

SQL:

SELECT *
 FROM
 Students, People WHERE θ

$R A:$

7b. Theta Join $\left(\bowtie_{\theta}\right)$

- A join that involves a predicate

$$
R_{1} \bowtie_{\theta} R_{2}=\sigma_{\theta}\left(R_{1} \times R_{2}\right)
$$

- θ ("theta") can be any condition
- No projection: \#attributes in output = sum \#attributes in input Note +hat natural join is
- Example: band-joins for approx. matchings across tables

```
AnonPatient (age, zip, disease) Assume relatively fresh
Voters (name, age, zip) data (within 1 year)
```

$\mathrm{A} \bowtie_{\mathrm{P} . \text { zip }=\mathrm{V} . \text { zip }} \wedge$ P.age $>=\mathrm{V}$.age $-1 \wedge$ P.age $<=\mathrm{V}$.age +1 V

Student(sid,name,gpa)

SQL:

SELECT *
 FROM
 Students, People
 WHERE θ

RA:

Students \bowtie_{θ} People

7c. Equi-join $\left(\bowtie_{A=B}\right)$

- A theta join where q is an equality

$$
R_{1} \bowtie_{\mathrm{A}=\mathrm{B}} R_{2}=\sigma_{\mathrm{A}=\mathrm{B}}\left(R_{1} \times R_{2}\right)
$$

- Example over Gizmo DB:
- Product $\bowtie_{\text {manufacturer=cname }}$ Company
- Most common join in practice!

Student(sid,sname,gpa) People(ssn,pname,address)

SQL:

SELECT *
 FROM

Students S, People P
WHERE sname $=$ pname

$R A:$

7c. Equi-join $\left(\bowtie_{A=B}\right)$

- A theta join where q is an equality

$$
R_{1} \bowtie_{\mathrm{A}=\mathrm{B}} R_{2}=\sigma_{\mathrm{A}=\mathrm{B}}\left(R_{1} \times R_{2}\right)
$$

- Example over Gizmo DB:
- Product $\bowtie_{\text {manufacturer=cname }}$ Company
- Most common join in practice!

Student(sid,sname,gpa) People(ssn,pname,address)

SQL:

SELECT *
 FROM
 Students S, People P
 WHERE sname = pname

RA:
$\mathrm{S} \bowtie_{\text {sname }}$ =pname P

7d. Semi-join $(\ltimes) \quad[m o v e d ~ t o ~ T 3-U 1] ~] ~$

- $\mathrm{R} \ltimes \mathrm{S}$: Return tuples from R for which there is a matching tuple in S that is equal on their common attribute names.

Semijoins as Message Passing

- Semijoins can reduce network use for equijoins in distributed databases

Effective if 1) the size of join attribute B (or nun is smaller than A and C, and 2) few tuples from R

Join Summary

- Theta-join: $R \bowtie_{\theta} S=\sigma_{\theta}(R \times S)$
- Join of R and S with a join condition θ
- Cross-product followed by selection θ
- No projection
- Equijoin: $R \bowtie_{\theta} S=\sigma_{\theta}(R \times S)$
- Join condition θ consists only of equalities
- No projection
- Natural join: $R \bowtie S=\pi_{A}\left(\sigma_{\theta}(R \times S)\right)$
- Equality on all fields with same name in R and in S
- Projection π_{A} drops all redundant attributes

Example: Converting SFW Query to RA
Student(sid,name,gpa)
People(ssn,name,address)
SELECT DISTINCT gpa, address
FROM Student S, People P
WHERE S.name = P.name
AND gpa > 3.5

How do we represent this query in RA?

Example: Converting SFW Query to RA

Student(sid,name,gpa)
People(ssn,name,address)
SELECT DISTINCT gpa, address
FROM Student S, People P
WHERE S.name = P.name
AND gpa > 3.5

How do we represent this query in RA?

$$
\left.\begin{array}{l}
\Pi_{\text {gpa,address }}\left(\sigma_{\text {gpa }>3.5}(S \bowtie P)\right) \\
\Pi_{\text {gpa,address }}\left(\sigma_{\text {gpa }>3.5} \wedge \text { s.name }=\right.\text { P.name } \\
\\
\left.\Pi_{\text {gpa,address }}(S \times P)\right) \\
\text { gpa }>3.5 \wedge \text { name }=\text { name2 } 2
\end{array}\left(S \times \rho_{\text {name } \rightarrow \text { name } 2} P\right)\right) .
$$

Some Examples

Find names of suppliers of parts with size greater than 10

Find names of suppliers of red parts or parts with size greater than 10

Some Examples

Find names of suppliers of parts with size greater than 10
$\Pi_{\text {sname }}\left(\sigma_{\text {psize>10 }}(\right.$ Supplier \bowtie Supply \bowtie Part) $)$
$\Pi_{\text {sname }}\left(\right.$ Supplier \bowtie Supply $\bowtie\left(\sigma_{\text {psize } 10}\right.$ (Part))
Find names of suppliers of red parts or parts with size greater than 10

Some Examples

Supplier(sno,sname,scity,sstate) Part(pno,pname,psize,pcolor) Supply(sno,pno,qty,price)

Find names of suppliers of parts with size greater than 10
$\Pi_{\text {sname }}\left(\sigma_{\text {psize>10 }}(\right.$ Supplier \bowtie Supply \bowtie Part) $)$
$\pi_{\text {sname }}\left(\right.$ Supplier \bowtie Supply $\bowtie\left(\sigma_{\text {psize } 10}(\right.$ Part $\left.)\right) \xrightarrow{\substack{\text { Representation } \\ \text { of RA as tree? }}}$
Find names of suppliers of red parts or parts with size greater than 10

$$
\begin{aligned}
& \Pi_{\text {sname }}\left(\text { Supplier } \bowtie \text { Supply } \bowtie\left(\sigma_{\text {psize } 10}(\text { Part }) \cup \sigma_{\text {pcolor='red' }}(\text { Part })\right)\right) \\
& \Pi_{\text {sname }}\left(\text { Supplier } \bowtie \text { Supply } \bowtie\left(\sigma_{\text {psize> } 10} \text { Vpcolor='redr' }^{\prime}(\text { Part })\right)\right)
\end{aligned}
$$

Some Examples

> Supplier(sno,sname,scity,sstate) Part(pno,pname,psize,pcolor) Supply(sno,pno,qty,price)

Usually unary or binary. Think of:

- abstract syntax trees Answer
- binary expression trees
- parse trees
- data flow graph
$\Pi_{\text {sname }}\left(\sigma_{\text {psize>10 }}(\right.$ Supplier $\bowtie($ Supply \bowtie Part) $)$
$\pi_{\text {sname }}$ (Supplier \bowtie Supply $\bowtie\left(\sigma_{\text {psize>10 }}(\right.$ Part $\left.)\right) \xrightarrow[\text { of RA as tree? }]{\text { Representation }}$
Supplier
Find names of suppliers of parts with size greater than 10

Query (Evaluation / Execution) Tree, Data flow graph

A query tree is a tree data structure that corresponds to a relational algebra expression. It represents the input relations of the query as leaf nodes of the tree, and represents the relational algebra operations as internal nodes. An execution of the query tree consists of executing an internal node operation whenever its operands (represented by its child nodes) are available, and then replacing that internal node by the relation that results from executing the operation. The execution terminates when the root node is executed and produces the result relation for the query.
intermediate results

(1) $\sigma_{\text {P.Plocation }}=$ 'Stafford'

PROJECT
root = result
$\pi_{\text {P.Pnumber,P.Dnum,E.Lname,E.Address,E.Bdate }}$
(3)
${ }^{\bowtie}$ D.Mgr_ssn=E.Ssn

Relational Algebra (RA) operators

- Five basic operators:

1. Selection: σ ("sigma")
2. Projection: Π
3. Cartesian Product:
4. Union: U
5. Difference: -

- Auxiliary (or special) operator

6. Renaming: $\rho(" r h o ")$

- Derived (or implied) operators

7. Joins \bowtie (natural, theta join, equi-join, [semi-join: moved to T3-U1])
8. Intersection / complement
9. Division
10. What about Intersection \cap ?

- As derived operator using union and minus
?

R

S

8. What about Intersection \cap ?

- As derived operator using union and minus
? (R-S)

8. What about Intersection \cap ?

- As derived operator using union and minus
? (RUS) - (R-S) - (S-R)

8. What about Intersection \cap ?

- As derived operator using union and minus

$$
\begin{array}{r}
(R \cup S)-((R-S) \cup(S-R)) \\
\{1,2,3\}=2 \\
\{3,4,5\}=3
\end{array}
$$

8. What about Intersection \cap ?

- As derived operator using union and minus

$$
\begin{array}{|l|}
R \cap S=((R \cup S)-(R-S))-(S-R) \\
R \cap S=(R \cup S)-((R-S) \cup(S-R))
\end{array}
$$

- Derived operator using minus only!
?

8. What about Intersection \cap ?

- As derived operator using union and minus

$$
\begin{array}{|l|}
R \cap S=((R \cup S)-(R-S))-(S-R) \\
R \cap S=(R \cup S)-((R-S) \cup(S-R))
\end{array}
$$

- Derived operator using minus only!

$R \cap S=\quad S \quad-(S-R)$
- Derived using join
?

8. What about Intersection \cap ?

- As derived operator using union and minus

$$
\begin{aligned}
& R \cap S=((R \cup S)-(R-S))-(S-R) \\
& R \cap S=(R \cup S)-((R-S) \cup(S-R))
\end{aligned}
$$

- Derived operator using minus only!
$R \cap S=\quad S \quad-(S-R)$
- Derived using join
$R \cap S=R \bowtie S$

Legal input: schemas need to be union compatible (same schema). E.g. not:
$R(A, B, C)$ $S(A, B)$

If R and S have the same schema, then $R \bowtie S$ and $R \ltimes S$ equal to $R \cap S$

Relational Algebra (RA) operators

- Five basic operators:

1. Selection: σ ("sigma")
2. Projection: Π
3. Cartesian Product:
4. Union: U
5. Difference:-

- Auxiliary (or special) operator

6. Renaming: $\rho(" r h o ")$

- Derived (or implied) operators

7. Joins \bowtie (natural, theta join, equi-join, [semi-join: moved to T3-U1])
8. Intersection / complement
9. Division
10. Division $(R \div S)$

- Consider two relations $\mathrm{R}(\mathrm{X}, \mathrm{Y})$ and $\mathrm{S}(\mathrm{Y})$
- Then $R \div S$ is ...
X, Y are sets of attributes Legal input: at+(R) $\supset a+t(S)$

What could be a meaningful definition of division
compare to Integer division: $7 / 2=3$

3 is the biggest integer that multiplied with 2 is smaller or equal to 7
9. Division $(R \div S)$

- Consider two relations $\mathrm{R}(\mathrm{X}, \mathrm{Y})$ and $\mathrm{S}(\mathrm{Y})$
- Then $R \div S$ is ...
- ... the largest relation $T(X)$ s.t. $S \times T \subseteq R$
x, y are sets of attributes Legal input: at+(R) $\supset \operatorname{att}(S)$

$$
\text { (safety: } T \subseteq \pi_{x} R \text {) }
$$

9. Division $(R \div S)$

- Consider two relations $R(X, Y)$ and $S(Y)$
x, y are sets of attributes Legal input: at+ $(R) \supset a+t(S)$
- Then $R \div S$ is ... (safety: $T \subseteq \pi_{x} R$)
- ... the relation $T(X)$ that contains the X's that occur with all Y's in S, or
- ... $\{t(X) \mid \forall s(Y) \in S .[\exists r(X, Y) \in R]\} \quad(+$ safety)
R Dividend

\mathbf{X}	\mathbf{Y}
Alice	1
Alice	2
Bob	1
Bob	2
Bob	3

S Divisor

\mathbf{Y}
1
2
3

9. Division $(R \div S)$

- Consider two relations $R(X, Y)$ and $S(Y)$
x, y are sets of attributes Legal input: at+ $(R) \supset a+t(S)$
- Then $R \div S$ is ...
(safety: $T \subseteq \pi_{x} R$)
- ... the relation $T(X)$ that contains the X's that occur with all Y's in S, or
- ... $\{t(X) \mid \forall s(Y) \in S .[\exists r(X, Y) \in R]\} \quad(+$ safety)
R Dividend

\mathbf{X}	\mathbf{Y}
Alice	1
Alice	2
Bob	1
Bob	2
Bob	3

S Divisor	T
\mathbf{Y}	
$\mathbf{1}$	\mathbf{X} \mathbf{B}

Questions

Studies			\div	Course	=
sid	student	course		course	
1	Alice	AI		ML	
1	Alice	DB	\div		$=$
2	Bob	DB			
2	Bob	ML		course	
3	Charly	AI		AI	
3	Charly	DB		DB	
3	Charly	ML		ML	

Questions

Studies			\div	Course	recall set semantics		
sid	student	course		course	$=$	sid	student
1	Alice	AI		ML		2	Bob
1	Alice	DB	\div			3	Charly
2	Bob	DB			$=$		
2	Bob	ML		course		sid	student
3	Charly	Al		AI		3	Charly
3	Charly	DB		DB			
3	Charly	ML		ML			

Assume R,S have disjoint attribute sets (possibly by renaming)

$$
\begin{aligned}
& (R x S) \div S=? \\
& (R x S) \div R=?
\end{aligned}
$$

Questions

Studies

sid	student	course	\div	course	$=$	sid	student
1	Alice	Al		ML		2	Bob
1	Alice	DB				3	Charly

2	Bob	DB
2	Bob	ML
3	Charly	Al
3	Charly	DB
3	Charly	ML

$$
\div \begin{array}{|c|c|}
\hline \text { course } \\
\hline \mathrm{Al} \\
\hline
\end{array} \begin{array}{|c|c|}
\hline \text { sid } & \text { student } \\
\hline 3 & \text { Charly } \\
\hline
\end{array}
$$

Q: If R has 1000 tuples
and S has 100 tuples, how many tuples can be in $R \div S$?

Q: If R has 1000 tuples
$(R x S) \div R=S$
and S has 1001 tuples, how many tuples can be in $R \div S$?

$$
(R x S) \div S=R
$$

Questions

Studies s Course recall set semantics for RA

1000

2	Bob	ML
3	Charly	Al
3	Charly	DB
3	Charly	ML

Q: If has 1000 tuples
Assume R,S have disjoint attribute sets (possibly by renaming)

$$
(R x S) \div S=R
$$

and S has 100 tuples, how
many tuples can be in $R \div S$?

$$
(R x S) \div R=S
$$

Q: If R has 1000 tuples and S has 1001 tuples, how many tuples can be in $R \div S$?

Questions

Studies		
sid	student	course
1	Alice	Al
1	Alice	DB
2	Bob	DB
2	Bob	ML
3	Charly	Al
3	Charly	DB
3	Charly	ML

CourseType

course	type
Al	elective
DB	core
ML	core

Who took all core courses in RA with relational division?
?

Questions

Studies		
sid	student	course
1	Alice	AI
1	Alice	DB
2	Bob	DB
2	Bob	ML
3	Charly	Al
3	Charly	DB
3	Charly	ML

CourseType

course	type
Al	elective
DB	core
ML	core

Who took all core courses in RA with relational division?
Studies $\div \pi_{\text {course }}\left(\sigma_{\text {type }}{ }^{\prime}\right.$ core' ${ }^{\prime}$ CourseType $)$

How to write $R \div S$ in Primitive RA? $(x,-, \pi)$

$R(X, Y) \div S(Y)$

How to write $\mathrm{R} \div \mathrm{S}$ in Primitive RA? $(\times,-, \pi)$

$R(X, Y) \div S(Y)$

How to write $R \div S$ in Primitive RA? $(x,-, \pi)$

$R(X, Y) \div S(Y)$

X s in R where for some Y in $S,(X, Y)$ is not in R

How to write $R \div S$ in Primitive RA? $(\times,-, \pi)$

$$
\begin{aligned}
& R(X, Y) \div S(Y) \\
& \pi_{X} \mathbf{R}-\boldsymbol{\pi}_{X}\binom{\left.\boldsymbol{\pi}_{X} \mathbf{R} \times \mathbf{S}\right)-\mathbf{R}}{(X, Y) \text { s.t. } X \text { in } R, Y \text { in } S, \text { but }(X, Y) \text { not in } R}
\end{aligned}
$$

> Xs in R where for some Y in $S,(X, Y)$ is not in R
> $R \div S$

What if $S=\varnothing$?
$R(X, Y) \div S(Y)$

	\div
X	Y
a	0
a	1
a	2

What if $S=\emptyset$?

$R(X, Y) \div S(Y)$

$$
\pi_{X} R-\pi_{X}\left(\left(\pi_{X} R \times S\right)-R\right)
$$

R		$\mathrm{S}=\mathrm{Q}$	
X	Y	Y	X
a	0		a
a	1		b

Recall: $\{+(X) \mid \forall s(Y) \in S .[\exists r(x, y) \in R]\}(+$ safety)

Now you see why we needed the safety condition " $T \subseteq \pi_{x} R$ " when defining " $R \div S$ as the largest relation $T(X)$ s.t. $S \times T \subseteq R$ "
$R \div S$ in Primitive RA vs. RC

$$
\begin{aligned}
& \mathrm{R}(\mathrm{X}, \mathrm{Y}) \div \mathrm{S}(\mathrm{Y}) \\
& I n n R A:^{I_{\mathrm{X}} R}-\pi_{\mathrm{X}}\left(\left(\pi_{\mathrm{X}} \mathrm{R} \times \mathrm{S}\right)-\mathrm{R}\right) \\
& \text { In DR C: }^{?} ?
\end{aligned}
$$

$R \div S$ in Primitive RA vs. RC
X is "guarded": safe and thus domain independent

$$
\begin{aligned}
& R(X, Y) \div S(Y) \\
& \begin{array}{l}
\text { In RA: } \\
\pi_{X} R
\end{array} \pi_{\mathrm{X}}\left(\left(\pi_{\mathrm{X}} \mathrm{R} \times \mathrm{S}\right)-\mathrm{R}\right) \\
& \text { In DRC: } \\
& \{\mathrm{X} \mid \exists \mathrm{Z} \cdot[\mathrm{R}(\mathrm{X}, \mathrm{Z})] \wedge \quad ? \quad \text { \} }
\end{aligned}
$$

$R \div S$ in Primitive RA vs. RC

$$
\begin{aligned}
& R(X, Y) \div S(Y)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { In RA: } \\
\pi_{X} R-\pi_{X}\left(\left(\pi_{X} R \times S\right)-R\right)
\end{array} \\
& \text { In } D R C \text { : what if } S(Y)=\varnothing \text { ? } \\
& \text { ? } \\
& \{\mathrm{X} \mid \exists \mathrm{Z} \cdot[\mathrm{R}(\mathrm{X}, \mathrm{Z})] \wedge \forall \mathrm{Y} \cdot[\mathrm{~S}(\mathrm{Y}) \rightarrow \mathrm{R}(\mathrm{X}, \mathrm{Y})]\}
\end{aligned}
$$

$R \div S$ in Primitive RA vs. RC

$$
\begin{aligned}
& R(X, Y) \div S(Y) \\
& I n R A_{i} \\
& \pi_{X} R-\pi_{X}\left(\left(\pi_{X} R \times S\right)-R\right)
\end{aligned}
$$

In DRC:

$$
\{\mathrm{X} \mid \exists \mathrm{Z} \cdot[\mathrm{R}(\mathrm{X}, \mathrm{Z})] \wedge \forall \mathrm{Y} \cdot[\mathrm{~S}(\mathrm{Y}) \rightarrow \mathrm{R}(\mathrm{X}, \mathrm{Y})]\}
$$

? without universal quantification
$R \div S$ in Primitive RA vs. RC

$$
R(X, Y) \div S(Y)
$$

$\operatorname{InRA:}$
$\pi_{X} R-\pi_{X}\left(\left(\pi_{X} R \times S\right)-R\right)$
In DRC:
$\{\mathrm{X} \mid \exists \mathrm{Z} .[\mathrm{R}(\mathrm{X}, \mathrm{Z})] \wedge \forall \mathrm{X} .[\mathrm{S}(\mathrm{Y}) \rightarrow \mathrm{R}(\mathrm{X}, \mathrm{Y})]\}$ $\{\mathrm{X} \mid \exists \mathrm{Z} .[\mathrm{R}(\mathrm{X}, \mathrm{Z})] \wedge \nexists \mathrm{Y} \cdot[\mathrm{S}(\mathrm{Y}) \wedge \neg \mathrm{R}(\mathrm{X}, \mathrm{Y})]\}$
In TRC:
$R \div S$ in Primitive RA vs. RC

$$
\begin{aligned}
& R(X, Y) \div S(Y)
\end{aligned}
$$

In DRC:

$$
\begin{aligned}
& \{\mathrm{X} \mid \exists \mathrm{Z} .[\mathrm{R}(\mathrm{X}, \mathrm{Z})] \wedge \forall \mathrm{Y} .[\mathrm{S}(\mathrm{Y}) \rightarrow \mathrm{R}(\mathrm{X}, \mathrm{Y})]\} \\
& \{\mathrm{X} \mid \exists \mathrm{Z} .[\mathrm{R}(\mathrm{X}, \mathrm{Z})] \wedge \nexists \mathrm{Y} .[\mathrm{S}(\mathrm{Y}) \wedge \neg \mathrm{R}(\mathrm{X}, \mathrm{Y})]\} \\
& \{r . A \mid \exists r \in R .[\nexists s \in S . \|
\end{aligned}
$$

$R \div S$ in Primitive RA vs. RC

$$
\begin{aligned}
& R(X, Y) \div S(Y)
\end{aligned}
$$

In DRC:

$$
\begin{aligned}
& \{\mathrm{X} \mid \exists \mathrm{Z} .[\mathrm{R}(\mathrm{X}, \mathrm{Z})] \wedge \forall \mathrm{Y} .[\mathrm{S}(\mathrm{Y}) \rightarrow \mathrm{R}(\mathrm{X}, \mathrm{Y})]\} \\
& \{\mathrm{X} \mid \exists \mathrm{Z} \cdot[\mathrm{R}(\mathrm{X}, \mathrm{Z})] \wedge \nexists \mathrm{Y} .[\mathrm{S}(\mathrm{Y}) \wedge \mid \neg \mathrm{R}(\mathrm{X}, \mathrm{Y})]\} \quad \text { ? in } \mathrm{SQL} \\
& \left\{\mathrm{r} . \mathrm{A} \mid \exists \mathrm{r} \in \mathrm{R} .\left[\nexists \mathrm{s} \in \mathrm{~S} .\left[\nexists \mathrm{r}_{2} \in \mathrm{R} .\left[\mathrm{r}_{2} . \mathrm{Y}=\mathrm{s} . \mathrm{Y} \wedge \mathrm{r}_{2} \cdot \mathrm{X}=\mathrm{r} . \mathrm{X}\right]\right]\right]\right\}
\end{aligned}
$$

$R \div S$ in Primitive RA vs. RC

In SQL
 SELECT DISTINCT R.A

FROM R
WHERE not exists (SELECT *
FROM S
WHERE not exists (
SELECT *
FROM R AS R2 WHERE R2.B=S.B AND R2.A=R.A))

In TRC:
$\left\{r . A \mid \exists r \in R .\left[\nexists s \in S .\left[\nexists r_{2} \in \mathrm{R} .\left[r_{2} \cdot \mathrm{~B}=\mathrm{s} . \mathrm{B} \wedge \mathrm{r}_{2} \cdot \mathrm{~A}=\mathrm{r} \cdot \mathrm{A}\right]\right]\right]\right\}$

Parentheses Convention

- We have defined 3 unary operators and 3 binary operators
- It is acceptable to omit the parentheses from $o(R)$ when o is unary
- Then, unary operators take precedence over binary ones
- Example:

$$
\begin{gathered}
\left(\sigma_{\text {course='DB' }}(\text { Course })\right) \times\left(\rho_{\text {cid } \rightarrow \text { cid1 } 1}(\text { Studies })\right) \\
\text { becomes } \\
\sigma_{\text {course='DB' }} \text { Course } \times \rho_{\text {cid } \rightarrow \text { cid } 1} \text { Studies }
\end{gathered}
$$

Algebra and the connection to logic and queries

- Algebra
- Relational Algebra
- Operators
- Independence
- Power of algebra: optimizations
- Equivalence RA and safe RC (Codd's theorem)
- RA \rightarrow RC
$-R C \rightarrow R A$

5 Primitive Operators

1. Projection (π)
2. Selection (σ)
3. Union (U)
4. Set Difference (-)
5. Cross Product (\times)

Is this a well chosen set of primitives?

5 Primitive Operators

1. Projection (π)
2. Selection (σ)
3. Union (U)
4. Set Difference (-)
5. Cross Product (\times)

independent

not independent
$y=(x+z) \cdot \frac{2}{3}$ $2+3 y+3 x=0$
$\frac{2}{3}-1 \frac{2}{j}$

Is this a well chosen set of primitives?
could we drop an operator "without losing anything"?

Independence among Primitives

- Let \circ be an RA operator, and let A be a set of RA operators
- We say that \circ is independent of A if o cannot be expressed in A; that is, no expression in A is equivalent to \circ

Theorem: Each of the five primitives is independent of the other four

$$
\{\pi, \sigma, \times, \cup,-\}
$$

Proof:

- Separate argument for each of the 5 (For each operator, we need to discover a property that is possessed by that operator, but not by any RA expression that involves only the other 4 operations)
- Arguments follow a common pattern (union as example next slides)

Recipe for Proving Independence of an operator

1. Fix a schema S and an instance D over S
2. Find some property P over relations
3. Prove: for every expression φ that does not use 0 , the relation $\varphi(D)$ satisfies P
```
Such proofs are typically by induction on the size of the
expression, since operators compose
```

4. Find an expression ψ such that ψ uses \circ and $\psi(D)$ violates P

Concrete Example: Proving Independence of Union \cup

1. Fix a schema S and an instance D over S
$S: R(A), S(A) \quad D:\{R(0), S(1)\}$

R	S
\mathbf{A}	\mathbf{A}
0	1

2. Find some property P over relations
\#tuples < 2
3. Prove: for every expression φ that does not use \circ, the relation $\varphi(D)$ satisfies P Induction base: R and S have \#tuples<2
Induction step: If $\varphi_{1}(\mathrm{D})$ and $\varphi_{2}(\mathrm{D})$ have \#tuples <2, then so do:

$$
\sigma_{c}\left(\varphi_{1}(D)\right), \quad \pi_{A}\left(\varphi_{1}(D)\right), \quad \varphi_{1}(D) \times \varphi_{2}(D), \quad \varphi_{1}(D)-\varphi_{2}(D), \quad \rho_{A \rightarrow B}\left(\varphi_{1}(D)\right)
$$

4. Find an expression ψ such that ψ uses \circ and $\psi(\mathrm{D})$ violates P $\psi=R U S$

Algebra and the connection to logic and queries

- Algebra
- Relational Algebra
- Operators
- Independence
- Power of algebra: optimizations
- Equivalence RA and safe RC (Codd's theorem)
- RA \rightarrow RC
- RC \rightarrow RA

Commutativity and distributivity of RA operators

- The basic commutators:
- Push projection through selection, join, union

$$
\begin{aligned}
& \pi_{\mathbf{A}}(R \cup S)=\pi_{\mathbf{A}}(R) \cup \pi_{A}(S) \\
& \sigma_{\theta}(R \cup S)=\sigma_{\theta}(R) \cup \sigma_{\theta}(S) \\
& (R \cup S) \times T=(R \times T) \cup(S \times T)
\end{aligned}
$$

- Note that this is not an exhaustive set of operations

What about sorting and joins?
This simple set of tools allows us to greatly improve the execution time of queries by optimizing RA plans!

We next illustrate with an SFW (Select-From-Where) query

An example: SQL to RA to Optimized RA

$$
R(A, B) S(B, C) T(C, D)
$$

SELECT R.A,T.D
FROM R,S,T
WHERE R.B = S.B
and S.C = T.C
and R.A < 10;
in RA
?

An example: SQL to RA to Optimized RA

Heuristic: have selection and projection earlier to have fewer (or smaller) "intermediate" tuples

```
R(A,B) S(B,C) T(C,D)
SELECT R.A,T.D
FROM R,S,T
WHERE R.B = S.B
    and S.C = T.C
    and R.A < 10;
        inRA \square
    \pi
```


$R(A, B)$
$S(B, C)$
3. Root node
= query results

```
2. Other nodes
are operators T(C,D)
1. Leaves are
base relations
Query tree / expression tree / computation tree / data flow graph
```


An example: SQL to RA to Optimized RA

Heuristic: have selection and projection earlier to have fewer (or smaller) "intermediate" tuples

Pushing down may be suboptimal if selection condition is very expensive (e.g. running some image processing algorithm). Projection could be unnecessary effort (but more rarely).

An example: SQL to RA to Optimized RA

Heuristic: have selection and projection earlier to have fewer (or smaller) "intermediate" tuples

An example: SQL to RA to Optimized RA

Heuristic: have selection and projection earlier to have fewer (or smaller) "intermediate" tuples

An example: SQL to RA to Optimized RA

Variable Elimination!

Algebra and the connection to logic and queries

- Algebra
- Relational Algebra
- Operators
- Independence
- Power of algebra: optimizations
- Equivalence RA and safe RC (Codd's theorem)
- RA \rightarrow RC
- $R C \rightarrow R A$
"Clear" variables*
Formula with clear variables : each quantifier "has its own variables" \& each variable has only free or only bound occurrences

$$
\forall x . \exists y . R(x, y, z) \wedge \neg \exists x . S(y, x)
$$

$?$
which variables are free or bound?

"Clear" variables*

Formula with clear variables : each quantifier "has its own variables" \& each variable has only free or only bound occurrences

notice operator precedence: \exists before \wedge $\forall x . \exists y \cdot[R(x, y, z)] \wedge \neg \exists x .[S(y, x)]$

Not "clear": Two x's and y's are different variables.
? how to make it "clear"

"Clear" variables*

Formula with clear variables : each quantifier "has its own variables" \& each variable has only free or only bound occurrences

notice operator precedence: \exists before \wedge $\forall x . \exists y \cdot[R(x, y, z)] \wedge \neg \exists x .[S(y, x)]$

Not "clear": Two x's and y's are different variables.

$$
\forall x . \exists y . R(x, y, z) \wedge \neg \exists u . S(v, u)
$$

now "clear"
$\{(\mathrm{z}, \mathrm{v}) \mid \forall \mathrm{x} . \exists \mathrm{y} . \mathrm{R}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \wedge \neg \exists \mathrm{u} . \mathrm{S}(\mathrm{v}, \mathrm{u})\}$
Now a query. But how to make it domain-independent

"Clear" variables*

Formula with clear variables : each quantifier "has its own variables" \& each variable has only free or only bound occurrences

notice operator precedence: \exists before \wedge $\forall x . \exists y \cdot[R(x, y, z)] \wedge \neg \exists x .[S(y, x)]$

Not "clear": Two x's and y's are different variables.
$\forall x . \exists y . R(x, y, z) \wedge \neg \exists u . S(v, u)$
now "clear"

$$
\begin{aligned}
& R(1, z) \wedge \\
& S(,, V) \wedge \\
& \{(\mathrm{z}, \mathrm{v})|\forall \mathrm{x} . \exists \mathrm{\exists} . \mathrm{R}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \wedge \wedge| \neg \exists \mathrm{u} . \mathrm{S}(\mathrm{v}, \mathrm{u})\} \\
& \forall x \cdot[R(x, \ldots,-) \rightarrow R(x, \ldots z)]
\end{aligned}
$$

Now a query. But how
to make it domain-independent

"Clear" variables*

Formula with clear variables : each quantifier "has its own variables" \& each variable has only free or only bound occurrences

notice operator precedence: \exists before \wedge $\forall x . \exists y \cdot[R(x, y, z)] \wedge \neg \exists x .[S(y, x)]$

Not "clear": Two x's and y's are different variables.

$$
\forall x . \exists y . R(x, y, z) \wedge \neg \exists u . S(v, u)
$$

now "clear"

$$
\begin{aligned}
& \exists \mathrm{s}, \mathrm{f} \cdot \mathrm{R}(\mathrm{~s}, \mathrm{t}, \mathrm{z}) \wedge \quad \exists \mathrm{p} \cdot \mathrm{~S}(\mathrm{p}, \mathrm{v}) \wedge \\
& \{(\mathrm{z}, \mathrm{v})|\forall \mathrm{x} \cdot \exists \mathrm{y} \cdot \mathrm{R}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \wedge| \neg \exists \mathrm{u} \cdot \mathrm{~S}(\mathrm{v}, \mathrm{u})\} \\
& \forall \mathrm{x} \cdot[\exists \mathrm{w}, \mathrm{t} \cdot \mathrm{R}(\mathrm{x}, \mathrm{w}, \mathrm{t}) \rightarrow \exists \mathrm{y} \cdot \mathrm{R}(\mathrm{x}, \mathrm{y}, \mathrm{z})]
\end{aligned}
$$

Repeated variable names

In sentences with multiple quantifiers, distinct variables do not need to range over distinct objects! (cp. homomorphism vs. isomorphism)

Which of the following formulas imply each other?
$\forall \mathrm{x} . \forall \mathrm{y} . \mathrm{E}(\mathrm{x}, \mathrm{y})$
$\forall \mathrm{x} . \mathrm{E}(\mathrm{x}, \mathrm{x})$
$\exists \mathrm{x} . \exists \mathrm{y} . \mathrm{E}(\mathrm{x}, \mathrm{y})$
$\exists \mathrm{x} . \mathrm{E}(\mathrm{x}, \mathrm{x})$

Repeated variable names

In sentences with multiple quantifiers, distinct variables do not need to range over distinct objects! (cp. homomorphism vs. isomorphism)

Repeated variable names

In sentences with multiple quantifiers, distinct variables do not need to range over distinct objects! (cp. homomorphism vs. isomorphism)

Assume DOM = \varnothing :

Example $\mathrm{RC} \rightarrow \mathrm{RA}$

Person(id, name, country) Spouse(id1, id2)

In DRC:
$\{\mathrm{x} \mid \exists \mathrm{z}, \mathrm{w} \cdot \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y} \cdot[\neg \operatorname{Spouse}(\mathrm{x}, \mathrm{y})]\}$

In DRC:
$\{x \mid \exists \mathrm{z}, \mathrm{w} . \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y} \cdot[\neg \operatorname{Spouse}(\mathrm{x}, \mathrm{y})]\}$
$\{x \mid \exists \mathrm{z}, \mathrm{w} . \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \neg \exists \mathrm{y} .[\operatorname{Spouse}(\mathrm{x}, \mathrm{y})]\}$

$\pi_{\text {id }}$ Person $-\pi_{\text {id } 1}$ Spouse
π_{id} Person $-\rho_{\mathrm{id} 1 \rightarrow \mathrm{id}}\left(\pi_{\mathrm{id} 1}\right.$ Spouse)
Recall: named vs ordered perspective

Example RA \rightarrow RC
$R(X, Y) \div S(Y)$
In RA:

$$
\pi_{X} R-\pi_{X}\left(\left(\pi_{X} R \times S\right)-R\right)
$$

In DRC:

$$
\begin{aligned}
& \{\mathrm{X} \mid \exists \mathrm{Z} \cdot[\mathrm{R}(\mathrm{X}, \mathrm{Z})] \wedge \forall \mathrm{Y} \cdot[\mathrm{~S}(\mathrm{Y}) \rightarrow \mathrm{R}(\mathrm{X}, \mathrm{Y})]\} \\
& \{\mathrm{X} \mid \exists \mathrm{Z} \cdot[\mathrm{R}(\mathrm{X}, \mathrm{Z})] \wedge \neg \exists \mathrm{Y} \cdot[\mathrm{~S}(\mathrm{Y}) \wedge \neg \mathrm{R}(\mathrm{X}, \mathrm{Y})]\}
\end{aligned}
$$

Equivalence Between RA and Domain-Independent RC

CODD's THEOREM:
 RA and domain-independent RC have the same expressive power.

More formally, on every schema \mathbf{S} :

1. For every RA expression E, there is a domain-independent RC query Q s.t. $\mathrm{Q} \equiv \mathrm{E}$
2. For every domain-independent $R C$ query Q, there is an RA expression E s.t. $\mathrm{Q} \equiv \mathrm{E}$

The proof has two directions:

```
RA }->\mathrm{ RC:
    by induction on the size
    of the RA expression
RC}->RA
    more involved
```


Algebra and the connection to logic and queries

- Algebra
- Relational Algebra
- Operators
- Independence
- Power of algebra: optimizations
- Equivalence RA and safe RC (Codd's theorem)
- RA \rightarrow RC
$-R C \rightarrow R A$

RA \rightarrow DRC: Intuition

- Construction by induction
- Key technical detail: need to maintain a mapping b/w attribute names and variables

$$
\begin{array}{r}
Q(1) \leftarrow R(1,2), S(1,3) \\
y=2 \quad \begin{array}{r}
y=3
\end{array}
\end{array}
$$

RA expression	DRC formula ϕ Here, ϕ_{i} is the formula constructed for expression E_{i}
R (n columns)	$R\left(X_{1}, \ldots, X_{n}\right)$

$\mathrm{E}_{1} \cup \mathrm{E}_{2}$
$\mathrm{E}_{1}-\mathrm{E}_{2}$
$\pi_{A_{1}, \ldots, A_{k}}\left(\mathrm{E}_{1}\right)$
$\sigma_{\mathrm{c}}\left(\mathrm{E}_{1}\right)$

RA \rightarrow DRC: Intuition

- Construction by induction
- Key technical detail: need to maintain a mapping b/w attribute names and variables

RA \rightarrow DRC: Intuition

- Construction by induction
- Key technical detail: need to maintain a mapping b/w attribute names and variables

RA expression \mid DRC formula ϕ Here, $\boldsymbol{\phi}_{\mathrm{i}}$ is the formula constructed for expression E_{i}

$\mathrm{R}(\mathrm{n}$ columns)	$\mathrm{R}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)$
$\mathrm{E}_{1} \times \mathrm{E}_{2}$	$\phi_{1} \wedge \phi_{2}$ disjoint variables (rename)
$\mathrm{E}_{1} \cup \mathrm{E}_{2}$	$\phi_{1} \vee \phi_{2}$ use identical variables (rename)
$\mathrm{E}_{1}-\mathrm{E}_{2}$	$\phi_{1} \wedge \neg \phi_{2}$ use identical variables (rename)
$\pi_{A_{1}, \ldots, A_{k}}\left(\mathrm{E}_{1}\right)$	$\exists \mathrm{X}_{1} \ldots \exists \mathrm{X}_{m} . \phi_{1}$ where $\mathrm{X}_{1}, \ldots, \mathrm{X}_{m}$ are the variables not among
$\sigma_{\mathrm{c}}\left(\mathrm{E}_{1}\right)$	$\phi_{1} \wedge \mathrm{c} \quad$ correspondence more natural with
project-away operator: $\pi_{-A_{1}, \ldots, A_{m}}\left(\mathrm{E}_{1}\right)$	

RA \rightarrow DRC: Example $R \div S$
$R(A, B) \quad S(B)$

RA	DRC	Mapping
R		
$\pi_{A}(R)$		
S		
$\pi_{A}(R) \times S$		
$\left(\pi_{A}(R) \times S\right)-R$		
$\pi_{A}\left(\left(\pi_{A}(R) \times S\right)-R\right)$		
$\pi_{A}(R)-$		

RA \rightarrow DRC: Example $R \div S$
$R(A, B) \quad S(B)$

RA	DRC	Mapping
R	$R(x, y)$	x:R.A, $y: R . B$
$\pi_{A}(R)$	$\exists y . R(x, y)$	x:R.A
S	$S(z)$	z:S.B
$\pi_{A}(R) \times S$		
$\left(\pi_{A}(R) \times S\right)-R$		
$\pi_{A}\left(\left(\pi_{A}(R) \times S\right)-R\right)$		
$\pi_{A}(R)-$		

RA \rightarrow DRC: Example $R \div S$
$R(A, B) \quad S(B)$

$R A$	DRC	Mapping
R	$R(x, y)$	$x: R \cdot A, y: R \cdot B$
$\pi_{A}(R)$	$\exists y \cdot R(x, y)$	$x: R \cdot A$
S	$S(z)$	$z: S . B$
$\pi_{A}(R) \times S$	$\exists y \cdot\left[R(x, y) \wedge \wedge S(z) \begin{array}{l}z \text { needs to be } \\ \text { different from } 4\end{array}\right.$	$x: R \cdot A, z: S . B$
$\left(\pi_{A}(R) \times S\right)-R$	$(\exists y \cdot R(x, y) \wedge S(z)) \wedge \neg R(x, z)$	$x: R \cdot A, z: S . B$
$\pi_{A}\left(\left(\pi_{A}(R) \times S\right)-R\right)$	$\exists z[(\exists y \cdot R(x, y) \wedge S(z)) \wedge \neg R(x, z)]$	$x: R \cdot A$
$\pi_{A}(R)-$		
$\pi_{A}\left(\left(\pi_{A}(R) \times S\right)-R\right)$	$\exists y \cdot R(x, y) \wedge \quad x^{\prime} s$ need to be same variable $\neg \exists z[(\exists y \cdot R(x, y) \wedge S(z)) \wedge \neg R(x, z)]$	$x: R \cdot A$

This is the DRC expression we got by translating from RA:

$$
\{\mathrm{x} \mid \exists \mathrm{y}[\mathrm{R}(\mathrm{x}, \mathrm{y})] \wedge \neg \exists \mathrm{z}[\exists \mathrm{y}[\mathrm{R}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{S}(\mathrm{z})] \wedge \neg \mathrm{R}(\mathrm{x}, \mathrm{z})]\}
$$

This is the DRC expression for relational division that we saw earlier.

$$
\{\mathrm{x} \mid \exists \mathrm{y}[\mathrm{R}(\mathrm{x}, \mathrm{y})] \wedge \neg \exists \mathrm{z}[\quad \mathrm{~S}(\mathrm{z}) \wedge \neg \mathrm{R}(\mathrm{x}, \mathrm{z})]\}
$$

Claim: there is no logically equivalent RA expression that uses the table R only twice. For details see: https://arxiv.org/pdf/2203.07284

