Updated 1/27/2023

Topic 1: Data models and query languages
Unit 2: Logic & relational calculus
Lecture 6

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp23)

https://northeastern-datalab.github.io/cs7240/sp23/
1/27/2023

147

https://northeastern-datalab.github.io/cs7240/sp23/

Pre-class conversations

e Last class recapitulation

— with more details and intuition
e today:

— a bit more on logic (I maybe skimming)
— the relational algebra (RA)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 148

https://northeastern-datalab.github.io/cs7240/

Example: Querying a Graph

What do these queries return ?

(1)—4)
g.@ {313y AGy) }

?

Ar |1 2 {X | Ay, z,u.[ACxy) AA(y,z) A A(Z,u)]}
2 1
23 ?
1 4
3 4 L oY) | V2 A(x2) = A(y)]}
A encodes the directed f?
edges of a graph ("arcs") :

Based on an example by Dan Suciu from CSE 554, 2011.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 149

https://northeastern-datalab.github.io/cs7240/

Example: Querying a Graph

9 What do these queries return ?

(1)
g.@ {313y AGy) }

Nodes that have at least one child: ?

Ar|1 2 {X | Ay, z,u.[ACxy) AA(y,z) A A(Z,u)]}
2 1
2 3 ?
1 4
34 LGy | VZ[A(2) > A1}
A encodes the directed f?
edges of a graph ("arcs") .

Based on an example by Dan Suciu from CSE 554, 2011.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 150

https://northeastern-datalab.github.io/cs7240/

Example: Querying a Graph

9 What do these queries return ?

(1)
g.@ {313y AGy) }

Nodes that have at least one child: {1,2,3}

Ar|1 2 {X | Ay, z,u.[ACxy) AA(y,z) A A(Z,u)]}
2 1
2 3 ?
1 4
34 LGy | VZ[A(2) > A1}
A encodes the directed f?
edges of a graph ("arcs") .

Based on an example by Dan Suciu from CSE 554, 2011.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 151

https://northeastern-datalab.github.io/cs7240/

Example: Querying a Graph

9 What do these queries return ?

(1)
g.@ {313y AGy) }

Nodes that have at least one child: {1,2,3}

A[1 2 {4] 3y2w[AGY) AAG2) AAGZW]}
; é Nodes that have a great-grand-child: ?
1 4
3 4 LGy | V2 [AG2) > A}
A encodes the directed f?
edges of a graph ("arcs") .

Based on an example by Dan Suciu from CSE 554, 2011.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 152

https://northeastern-datalab.github.io/cs7240/

Example: Querying a Graph

9 What do these queries return ?

(1)
g.@ {313y AGy) }

Nodes that have at least one child: {1,2,3}

Ar|1 2 {X | Ay,z,u.[ACy) A A(y,z) A A(Z,u)]}
2 1 Nodes that have a great-grand-child: {1,2}
2 3 YFu not necessaryl
1 4 Contrast Nomomorphism
31 { Coy) | VZIA(0Z) > A1} v isomorphism
("Hawmiltovian Path")
A encodes the directed f?
edges of a graph ("arcs") :

Based on an example by Dan Suciu from CSE 554, 2011.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 153

https://northeastern-datalab.github.io/cs7240/

Example: Querying a Graph

9 What do these queries return ?

(1)
g.@ {313y AGy) }

Nodes that have at least one child: {1,2,3}

{X | Ay, z,u.[ACy) A A(y,z) A A(Z,u)]}
Nodes that have a great-grand-child: {1,2}

Az [Ax2) N\ -Ay2)]

3 4 Lo V2D > AGOL} EETEE, o

A encodes the directed Every child of x is a child of y. fulfill +he condition? ™
edoes of a graph ("arcs") (1,3) (3,1)

=N
DN

Based on an example by Dan Suciu from CSE 554, 2011.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 154

https://northeastern-datalab.github.io/cs7240/

Example: Querying a Graph

9 What do these queries return ?

(1)
g.@ {313y AGy) }

Nodes that have at least one child: {1,2,3}

{X | Ay, z,u.[ACy) A A(y,z) A A(z,u)]}
Nodes that have a great-grand-child: {1,2}

Az [Ax2) N\ -Ay2)]

5 4 Lex) V2 [ACD) ~AGAlE F

A evicodes the directed Every child of x is a child of y. fulfill +he condition?

edaes of a graph ("arcs") bggi @ £ domain is set
. o {(L1D),(2,2),31),3,3),(41), (4.2), (4.3), (44)} of wodes!

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 155

=N N | =
B ITWIFk DN

https://northeastern-datalab.github.io/cs7240/

Example: Querying a Graph

c 9 What do these queries return ?
I {x | 3y A(xy) }
@ 6 Nodes that have at least one child: {1,2,3}
A1 2 {X | Ay,z,w.JACLY) A A(y,z) A A(z,u)]}
; é Nodes that have a great-grand-child: {1,2}
1 4 Az [A(x2) A\ -A(4z)] |
Which of the
3 4 Lo V2D > AGAL} FTEE

A encodes the directed Every child of x is a child of y. fulfill the condition?
edges of a graph ("arcs”) {xy) INX) AN(y) AVz[A(x,z) = A(y2)]} # downain is sot
. o {(L1D),(2,2),3,1),3,3),(41), (4.2), (4.3), (44)} of wodes!

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 156

https://northeastern-datalab.github.io/cs7240/

The person/bar/drinks schema Likes(person, drink)

Frequents(person, bar)
Serves(bar, drink)

What does the following query return?

{ | Vv.[Frequents(x,y) — 3z.[Serves(y,z) A Likes(,z)]}

Schema adapted from Jeff Ullman's drinkers/bars/beers example to avoid attributes with same first letters. https://dl.acm.org/doi/book/10.5555/42790
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 157

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/book/10.5555/42790

The person/bar/drinks schema Likes(person, drink)

Frequents(person, bar)
Serves(bar, drink)

What does the following query return?

{ | Vv.[Frequents(x,y) — 3z.[Serves(y,z) A Likes(,z)]}

Find drinkers that frequent only bars
that serve some drink they like.

Ts this query dowmain independent? 7

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
Schema adapted from Jeff Ullman's drinkers/bars/beers example to avoid attributes with same first letters. https://dl.acm.org/doi/book/10.5555/42790

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 158

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/book/10.5555/42790
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

The person/bar/drinks schema Likes(person, drink)

Frequents(person, bar)
Serves(bar, drink)

What does the following query return?

{X | Vv.[Frequents(x,y) — 3z.[Serves(y,z) A Likes(x,z)]}

Find drinkers that frequent only bars
that serve some drink they like.

T+s output wounld vclude all
This duery is not domain independent. values from the domain that do
How +o fix? f? not appear in the Freduents(x,_)

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
Schema adapted from Jeff Ullman's drinkers/bars/beers example to avoid attributes with same first letters. https://dl.acm.org/doi/book/10.5555/42790

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

159

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/book/10.5555/42790
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

The person/bar/drinks schema Likes(person, drink)

Frequents(person, bar)
Serves(bar, drink)

What does the following query return?
Frequents(x,_) A .. Are those two options +o f?

Likes(x,) A .. make i+ safe idewtical
{ |‘Vy.[Frequents(,v) = 3z.[Serves(y,z) A\ Likes(,z)]}

Find drinkers that frequent only bars
that serve some drink they like.

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
Schema adapted from Jeff Ullman's drinkers/bars/beers example to avoid attributes with same first letters. https://dl.acm.org/doi/book/10.5555/42790

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 160

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/book/10.5555/42790
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

The person/bar/drinks schema Likes(person, drink)

Frequents(person, bar)
Serves(bar, drink)

What does the following query return?
Frequents(x,_) A .. Both safe, but vot identical. Tip: Should a drinker who

Likes(x,_) A .. likes a drink but does ot fredquent any bar be returned?
{X |‘Vy.[Frequents(X,y) — 3z.|Serves(y,z) A\ Likes(x,z)]}

Find drinkers that frequent only bars
that serve some drink they like.

Challenge: write this query without the V dquantitier! 9.
And thew v SQL !

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
Schema adapted from Jeff Ullman's drinkers/bars/beers example to avoid attributes with same first letters. https://dl.acm.org/doi/book/10.5555/42790
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 161

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/book/10.5555/42790
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

The person/bar/drinks example Likes(person, drink)

. . Frequents(person, bar)
Challewge: write these in SQL. Serves(bar, drink)

Solutions at: https://demo.queryvis.com

Find persons that frequent some bar that serves some drink they like.

?

Find persons that frequent only bars that serve some drink they like.
{ x | Iw.[Likes(x,w) A Vy.[Frequents(x,y) — 3z[Serves(y,z) A Likes(x,2)]]}

Find persons that frequent some bar that serves only drinks they like.

?

Find persons that frequent only bars that serve only drinks they like.
(= Find persons who like all drinks that are served in all the bars they visit.)
(= Find persons for which there does not exist a bar they frequent that serves a drink they do not like.)

?

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
Schema adapted from Jeff Ullman's drinkers/bars/beers example to avoid attributes with same first letters. https://dl.acm.org/doi/book/10.5555/42790

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 162

https://northeastern-datalab.github.io/cs7240/
https://demo.queryvis.com/
https://dl.acm.org/doi/book/10.5555/42790
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

