
147

Topic 1: Data models and query languages
Unit 2: Logic & relational calculus
Lecture 6

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp23)
https://northeastern-datalab.github.io/cs7240/sp23/
1/27/2023

Updated 1/27/2023

https://northeastern-datalab.github.io/cs7240/sp23/


148Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Pre-class conversations

• Last class recapitulation
- with more details and intuition

• today: 
- a bit more on logic (I maybe skimming)
- the relational algebra (RA)

https://northeastern-datalab.github.io/cs7240/


149Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Querying a Graph

A encodes the directed 
edges of a graph ("arcs")

1 2
2 1
2 3
1 4
3 4

A:

What do these queries return ?1

32

4

{ x |	∃y. A(x,y)	}

{ x |	∃y,z,u.[A(x,y)	⋀	A(y,z)	⋀	A(z,u)]}

{ (x,y)	|	∀z.[A(x,z)	→	A(y,z)]}

?

?

?
Based on an example by Dan Suciu from CSE 554, 2011. 

https://northeastern-datalab.github.io/cs7240/


150Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Querying a Graph

A encodes the directed 
edges of a graph ("arcs")

1 2
2 1
2 3
1 4
3 4

A:

What do these queries return ?1

32

4

{ x |	∃y. A(x,y)	}

{ x |	∃y,z,u.[A(x,y)	⋀	A(y,z)	⋀	A(z,u)]}

{ (x,y)	|	∀z.[A(x,z)	→	A(y,z)]}
?

?

Nodes	that	have	at	least	one	child: ?

Based on an example by Dan Suciu from CSE 554, 2011. 

https://northeastern-datalab.github.io/cs7240/


151Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Querying a Graph

A encodes the directed 
edges of a graph ("arcs")

1 2
2 1
2 3
1 4
3 4

A:

What do these queries return ?1

32

4

{ x |	∃y. A(x,y)	}

{ x |	∃y,z,u.[A(x,y)	⋀	A(y,z)	⋀	A(z,u)]}

{ (x,y)	|	∀z.[A(x,z)	→	A(y,z)]}
?

?

Nodes	that	have	at	least	one	child: {1,2,3}

Based on an example by Dan Suciu from CSE 554, 2011. 

https://northeastern-datalab.github.io/cs7240/


152Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Querying a Graph

A encodes the directed 
edges of a graph ("arcs")

1 2
2 1
2 3
1 4
3 4

A:

What do these queries return ?1

32

4

{ x |	∃y. A(x,y)	}

{ x |	∃y,z,u.[A(x,y)	⋀	A(y,z)	⋀	A(z,u)]}

{ (x,y)	|	∀z.[A(x,z)	→	A(y,z)]}

?

Nodes	that	have	at	least	one	child: {1,2,3}

Nodes	that	have	a	great-grand-child: ?

Based on an example by Dan Suciu from CSE 554, 2011. 

https://northeastern-datalab.github.io/cs7240/


153Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Querying a Graph

A encodes the directed 
edges of a graph ("arcs")

1 2
2 1
2 3
1 4
3 4

A:

What do these queries return ?1

32

4

{ x |	∃y. A(x,y)	}

{ x |	∃y,z,u.[A(x,y)	⋀	A(y,z)	⋀	A(z,u)]}

{ (x,y)	|	∀z.[A(x,z)	→	A(y,z)]}

?

Nodes	that	have	at	least	one	child: {1,2,3}

Nodes	that	have	a	great-grand-child: {1,2}
y≠u not necessary!
Contrast homomorphism 
vs. isomorphism 
("Hamiltonian Path")

Based on an example by Dan Suciu from CSE 554, 2011. 

https://northeastern-datalab.github.io/cs7240/


154Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Querying a Graph

A encodes the directed 
edges of a graph ("arcs")

1 2
2 1
2 3
1 4
3 4

A:

What do these queries return ?1

32

4

{ x |	∃y. A(x,y)	}

{ x |	∃y,z,u.[A(x,y)	⋀	A(y,z)	⋀	A(z,u)]}

{ (x,y)	|	∀z.[A(x,z)	→	A(y,z)]}

Nodes	that	have	at	least	one	child: {1,2,3}

Nodes	that	have	a	great-grand-child: {1,2}

Every	child	of	x	is	a	child	of	y.

Which of the 
following tuples 
fulfill the condition?

(1,3) (3,1)

∄z.[A(x,z) ⋀ ¬A(y,z)]

?
Based on an example by Dan Suciu from CSE 554, 2011. 

https://northeastern-datalab.github.io/cs7240/


155Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Querying a Graph

A encodes the directed 
edges of a graph ("arcs")

1 2
2 1
2 3
1 4
3 4

A:

What do these queries return ?1

32

4

{ x |	∃y. A(x,y)	}

{ x |	∃y,z,u.[A(x,y)	⋀	A(y,z)	⋀	A(z,u)]}

{ (x,y)	|	∀z.[A(x,z)	→	A(y,z)]}

Nodes	that	have	at	least	one	child: {1,2,3}

Nodes	that	have	a	great-grand-child: {1,2}

Every	child	of	x	is	a	child	of	y.

Which of the 
following tuples 
fulfill the condition?

(1,3) (3,1)

∄z.[A(x,z) ⋀ ¬A(y,z)]

Based on an example by Dan Suciu from CSE 554, 2011. 
{(1,1),(2,2),(3,1),(3,3),(4,1),	(4,2),	(4,3),	(4,4)}

if domain is set 
of nodes!

https://northeastern-datalab.github.io/cs7240/


156Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Querying a Graph

A encodes the directed 
edges of a graph ("arcs")

1 2
2 1
2 3
1 4
3 4

A:

What do these queries return ?1

32

4

{ x |	∃y. A(x,y)	}

{ x |	∃y,z,u.[A(x,y)	⋀	A(y,z)	⋀	A(z,u)]}

{ (x,y)	|	∀z.[A(x,z)	→	A(y,z)]}

Nodes	that	have	at	least	one	child: {1,2,3}

Nodes	that	have	a	great-grand-child: {1,2}

Every	child	of	x	is	a	child	of	y.

Which of the 
following tuples 
fulfill the condition?

∄z.[A(x,z) ⋀ ¬A(y,z)]

Based on an example by Dan Suciu from CSE 554, 2011. 
{(1,1),(2,2),(3,1),(3,3),(4,1),	(4,2),	(4,3),	(4,4)}

if domain is set 
of nodes!

{	(x,y)	|	N(x)	⋀	N(y)	⋀	∀z.[A(x,z)	→	A(y,z)]}

https://northeastern-datalab.github.io/cs7240/


157Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The person/bar/drinks schema Likes(person, drink)
Frequents(person, bar)
Serves(bar, drink)

331

{ x |	∀y.[Frequents(x,y)	→	∃z.[Serves(y,z)	⋀ Likes(x,z)]}

What does the following query return?

Schema adapted from Jeff Ullman's drinkers/bars/beers example to avoid attributes with same first letters. https://dl.acm.org/doi/book/10.5555/42790

?

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/book/10.5555/42790


158Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The person/bar/drinks schema 331

{ x |	∀y.[Frequents(x,y)	→	∃z.[Serves(y,z)	⋀ Likes(x,z)]}

Find	drinkers	that	frequent	only bars	
that	serve	some drink	they	like.

What does the following query return?

Is this query domain independent? 

Likes(person, drink)
Frequents(person, bar)
Serves(bar, drink)

?
Schema adapted from Jeff Ullman's drinkers/bars/beers example to avoid attributes with same first letters. https://dl.acm.org/doi/book/10.5555/42790
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/book/10.5555/42790
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql


159Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The person/bar/drinks schema 331

{ x |	∀y.[Frequents(x,y)	→	∃z.[Serves(y,z)	⋀ Likes(x,z)]}

Find	drinkers	that	frequent	only bars	
that	serve	some drink	they	like.

What does the following query return?

This query is not domain independent.

Likes(person, drink)
Frequents(person, bar)
Serves(bar, drink)

?How to fix?

Schema adapted from Jeff Ullman's drinkers/bars/beers example to avoid attributes with same first letters. https://dl.acm.org/doi/book/10.5555/42790
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Its output would include all 
values from the domain that do 
not appear in the Frequents(x,_)

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/book/10.5555/42790
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql


160Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The person/bar/drinks schema 331

{ x |	∀y.[Frequents(x,y)	→	∃z.[Serves(y,z)	⋀ Likes(x,z)]}

Find	drinkers	that	frequent	only bars	
that	serve	some drink	they	like.

Likes(person, drink)
Frequents(person, bar)
Serves(bar, drink)

Frequents(x,_) ⋀ ... 
Likes(x,_) ⋀ ... ?

Schema adapted from Jeff Ullman's drinkers/bars/beers example to avoid attributes with same first letters. https://dl.acm.org/doi/book/10.5555/42790

Are those two options to 
make it safe identical

What does the following query return?

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/book/10.5555/42790
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql


161Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The person/bar/drinks schema 331

{ x |	∀y.[Frequents(x,y)	→	∃z.[Serves(y,z)	⋀ Likes(x,z)]}

Find	drinkers	that	frequent	only bars	
that	serve	some drink	they	like.

Challenge: write this query without the ∀ quantifier!
And then in SQL

Likes(person, drink)
Frequents(person, bar)
Serves(bar, drink)

?

Both safe, but not identical. Tip: Should a drinker who 
likes a drink but does not frequent any bar be returned?

Schema adapted from Jeff Ullman's drinkers/bars/beers example to avoid attributes with same first letters. https://dl.acm.org/doi/book/10.5555/42790

What does the following query return?

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Frequents(x,_) ⋀ ... 
Likes(x,_) ⋀ ... 

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/book/10.5555/42790
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql


162Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The person/bar/drinks example

Find persons that frequent some bar that serves some drink they like.

Find persons that frequent only bars that serve some drink they like.

Find persons that frequent only bars that serve only drinks they like.
(= Find persons who like all drinks that are served in all the bars they visit.)
(= Find persons for which there does not exist a bar they frequent that serves a drink they do not like.)

Find persons that frequent some bar that serves only drinks they like.

Challenge: write these in SQL.
Solutions at: https://demo.queryvis.com

331

Schema adapted from Jeff Ullman's drinkers/bars/beers example to avoid attributes with same first letters. https://dl.acm.org/doi/book/10.5555/42790

Likes(person, drink)
Frequents(person, bar)
Serves(bar, drink)

{ x |	∃w.[Likes(x,w)	⋀	∀y.[Frequents(x,y)	→	∃z.[Serves(y,z)	⋀ Likes(x,z)]]}

?

?

?
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://demo.queryvis.com/
https://dl.acm.org/doi/book/10.5555/42790
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

