
40

Topic 1: Data models and query languages
Unit 2: Logic & relational calculus
Lecture 5

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp23)
https://northeastern-datalab.github.io/cs7240/sp23/
1/24/2023

Updated 1/24/2023

https://northeastern-datalab.github.io/cs7240/sp23/

41Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Pre-class conversations

• Last class recapitulation
• Scribe suggestion: post to Piazza after but without my feedback

• today:
- logic continued (likely next time algebra and the connection)
- logic is super important for our class; thus lots of practice today J
- in particular the concept of "undecidability": intuition for why things can

quickly get complicated without giving proofs

https://northeastern-datalab.github.io/cs7240/

43Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

More practice

• "A small, happy dog is at home"

• "Every small dog that is at home is happy."

• "Jiahui owns a small, happy dog"

• "Jiahui owns every small, happy dog."

Example adopted from Barker-Plummer, Barwise, Etchemendy - Language, Proof, And Logic (book, 2nd ed), 2011. https://www.gradegrinder.net/

?
?
?
?

https://northeastern-datalab.github.io/cs7240/
https://www.gradegrinder.net/

44Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

More practice

• "A small, happy dog is at home"
- ∃x [(Small(x) ∧ Happy (x) ∧ Dog (x)) ∧ Home(x)]

• "Every small dog that is at home is happy."

• "Jiahui owns a small, happy dog"

• "Jiahui owns every small, happy dog."

?
?
?

Example adopted from Barker-Plummer, Barwise, Etchemendy - Language, Proof, And Logic (book, 2nd ed), 2011. https://www.gradegrinder.net/

associativity of conjunction: no need of
evaluation to follow blue parentheses

https://northeastern-datalab.github.io/cs7240/
https://www.gradegrinder.net/

45Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

More practice

• "A small, happy dog is at home"
- ∃x [(Small(x) ∧ Happy (x) ∧ Dog (x)) ∧ Home(x)]

• "Every small dog that is at home is happy."
- ∀x [(Small(x) ∧ Dog (x) ∧ Home(x)) → Happy (x)]

• "Jiahui owns a small, happy dog"

• "Jiahui owns every small, happy dog."
?
?

Example adopted from Barker-Plummer, Barwise, Etchemendy - Language, Proof, And Logic (book, 2nd ed), 2011. https://www.gradegrinder.net/

associativity of conjunction: no need of
evaluation to follow blue parentheses

here evaluation needs to follow blue
parentheses

https://northeastern-datalab.github.io/cs7240/
https://www.gradegrinder.net/

46Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

More practice

• "A small, happy dog is at home"
- ∃x [(Small(x) ∧ Happy (x) ∧ Dog (x)) ∧ Home(x)]

• "Every small dog that is at home is happy."
- ∀x [(Small(x) ∧ Dog (x) ∧ Home(x)) → Happy (x)]

• "Jiahui owns a small, happy dog"
- ∃x [(Small(x) ∧ Happy (x) ∧ Dog (x)) ∧ Owns('Jiahui', x)]

• "Jiahui owns every small, happy dog."

notice that we deviate
here from the usual
notation in logics of
constants like 'Jiahui'
written w/o quotation
marks ?

Example adopted from Barker-Plummer, Barwise, Etchemendy - Language, Proof, And Logic (book, 2nd ed), 2011. https://www.gradegrinder.net/

associativity of conjunction: no need of
evaluation to follow blue parentheses

here evaluation needs to follow blue
parentheses

https://northeastern-datalab.github.io/cs7240/
https://www.gradegrinder.net/

47Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

More practice

• "A small, happy dog is at home"
- ∃x [(Small(x) ∧ Happy (x) ∧ Dog (x)) ∧ Home(x)]

• "Every small dog that is at home is happy."
- ∀x [(Small(x) ∧ Dog (x) ∧ Home(x)) → Happy (x)]

• "Jiahui owns a small, happy dog"
- ∃x [(Small(x) ∧ Happy (x) ∧ Dog (x)) ∧ Owns('Jiahui', x)]

• "Jiahui owns every small, happy dog."
- ∀x [(Small(x) ∧ Happy (x) ∧ Dog (x)) → Owns('Jiahui', x)]

notice that we deviate
here from the usual
notation in logics of
constants like 'Jiahui'
written w/o quotation
marks

Example adopted from Barker-Plummer, Barwise, Etchemendy - Language, Proof, And Logic (book, 2nd ed), 2011. https://www.gradegrinder.net/

associativity of conjunction: no need of
evaluation to follow blue parentheses

here evaluation needs to follow blue
parentheses

https://northeastern-datalab.github.io/cs7240/
https://www.gradegrinder.net/

48Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Two more examples

• "There are infinitely many prime numbers"

?

Source first example: Vasco Brattka. Logic and computation (lecture notes), 2007. http://cca-net.de/vasco/lc/

https://northeastern-datalab.github.io/cs7240/
http://cca-net.de/vasco/lc/

49Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Two more examples

• "There are infinitely many prime numbers"
- ∀x ∃y [y > x ∧ Prime(y)]

Source first example: Vasco Brattka. Logic and computation (lecture notes), 2007. http://cca-net.de/vasco/lc/

https://northeastern-datalab.github.io/cs7240/
http://cca-net.de/vasco/lc/

50Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Two more examples

• "There are infinitely many prime numbers"
- ∀x ∃y [y > x ∧ Prime(y)]

• ∀x ∃y [y = sqrt(x)]

?

Source first example: Vasco Brattka. Logic and computation (lecture notes), 2007. http://cca-net.de/vasco/lc/

https://northeastern-datalab.github.io/cs7240/
http://cca-net.de/vasco/lc/

51Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Two more examples

• "There are infinitely many prime numbers"
- ∀x ∃y [y > x ∧ Prime(y)]

• ∀x ∃y [y = sqrt(x)]
- Truth of this expression depends on domain:

• evaluates to false if x and y have the domain of the real numbers ℝ
• evaluates to true if their domain is the complex numbers ℂ

Source first example: Vasco Brattka. Logic and computation (lecture notes), 2007. http://cca-net.de/vasco/lc/

https://northeastern-datalab.github.io/cs7240/
http://cca-net.de/vasco/lc/

52Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semantics of First-Order Logic on Graphs

Semantics:
• First-order variables range over (can be " bound to") elements of

the universe of structures
• To evaluate a formula 𝜑, we need a graph 𝐺 and a binding 𝛼 that

maps the free variables of 𝜑 to nodes of 𝐺

Notation: 𝐺 ⊨𝛼 𝜑 𝑥!, … , 𝑥"

Source: Moshe Vardi. Database Queries - Logic and Complexity

E(x,y)
A(x,y)
Parent('Alice','Bob')

https://northeastern-datalab.github.io/cs7240/

55Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Relational Databases

Codd’s Two Fundamental Ideas:

• Tables are relations: a row in a table is just a tuple in a relation;
order of rows/tuples does not matter!

• Formulas are queries: they specify the What rather then the How!
That's declarative programming

Source: Moshe Vardi. Database Queries - Logic and Complexity

https://northeastern-datalab.github.io/cs7240/

56Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: Ray Dalio. "Principles", 2017. https://en.wikipedia.org/wiki/Principles_(book)

Separation of
concerns: WHAT
from HOW

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Principles_(book)

57Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

PRELIMINARY

https://northeastern-datalab.github.io/cs7240/

60Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

3 Components of FOL

1. Syntax (or language)

2. Interpretation

3. Semantics

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?
?
?

https://northeastern-datalab.github.io/cs7240/

61Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

3 Components of FOL

1. Syntax (or language)
- What are the allowed syntactic expressions?

2. Interpretation
- Mapping symbols to an actual world

3. Semantics
- When is a statement “true” under some interpretation?

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

62Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

3 Components of FOL

1. Syntax (or language)
- What are the allowed syntactic expressions?
- For DB's:

2. Interpretation
- Mapping symbols to an actual world
- For DB's:

3. Semantics
- When is a statement “true” under some interpretation?
- For DB's:

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?

?

?

https://northeastern-datalab.github.io/cs7240/

63Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

3 Components of FOL

1. Syntax (or language)
- What are the allowed syntactic expressions?
- For DB's: schema, constraints, query language

2. Interpretation
- Mapping symbols to an actual world
- For DB's : database

3. Semantics
- When is a statement “true” under some interpretation?
- For DB's : meaning of integrity constraints and query results

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

64Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

• Alphabet: symbols in use
- Variables, constants, function symbols, predicate symbols, connectives, quantifiers, punctuation symbols

• Term: expression that stands for an element or object
- Variable, constant
- Inductively f(t1,…,tn)	where ti are terms, f a function symbol

• (Well-formed) formula: parameterized statement
- Atom p(t1,…,tn) where p is a predicate symbol, ti terms (atomic formula, together with predicates t1=t2)
- Inductively, for formulas F, G, variable x:

F⋀G F⋁G ¬F F⟶G F⟷G ∀x	F ∃x	F

• A first-order language refers to the set of all formulas over an alphabet

Components of FOL: (1) Syntax = First-order language

relation b/w objects

MotherOf(MotherOf(x))

terms

vocabulary

x = 'Alice'

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

65Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Components of FOL: (2) Interpretation

• How to assign meaning to the symbols of a formal language
• An interpretation INT for an alphabet consists of:
- A non-empty set Dom, called domain

• {Alice, Bob, Charly}
- An assignment of an element in Dom to each constant symbol

• Alice (recall we often write constants with quotation marks 'Alice')
- An assignment of a function Domn⟶Dom to each n-ary function symbol

• Alice = MotherOf(Bob)
- An assignment of a function Domn⟶{true, false} (i.e., a relation) to each n-ary

predicate symbol
• Friends(Bob, Charly) = TRUE

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

66Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Components of FOL: (3) Semantics
• A variable assignment V to a formula in an interpretation INT assigns to each free variable X

a value from Dom
- Recall, a free variable is one that is not quantified

• Truth value for formula F under interpretation INT and variable assignment V:
- Atom p(t1,…,tn): q(s1,…,sn) where q is the interpretation of the predicate p and si the interpretation of ti
- F⋀G F⋁G ¬F F⟶G F⟷G: according to truth table

- ∃𝑋𝐹: true iff there exists d∈Dom such that if V assigns d to X then the truth value of F is true; otherwise
false

- ∀𝑋𝐹: true iff for all d∈Dom, if V assigns d to X then the truth value of F is true; otherwise false

• If a formula has no free vars (closed formula or sentence), we can simply refer to its truth
value under INT

Person(X) ∃Y Married(X,Y)

∀X: Person(X) ⟶	Mortal(X)
Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

Formula
Sentence
Query

https://northeastern-datalab.github.io/cs7240/

67Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Operator precedence

Source: http://intrologic.stanford.edu/glossary/operator_precedence.html

https://northeastern-datalab.github.io/cs7240/
http://intrologic.stanford.edu/glossary/operator_precedence.html

70

Queries and the connection to logic

•Why logic?
• A crash course in FOL
• Relational Calculus (RC)

– Syntax and Semantics
– Domain RC (DRC) vs Tuple RC (TRC)
– Domain Independence and Safety

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

71Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Entire Story in One Slide

1. RC = FOL over DB

2. RC can express “bad queries” that depend not only on the DB, but also on
the domain from which values are taken (domain dependence)

3. We cannot test whether an RC query is “good,” but we can use a ”good”
subset of RC that captures all “good” queries (safety)

4. “Good” RC and RA can express the same queries! (equivalence = Codd's theorem)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

72Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Relational Calculus (RC)

• RC is, essentially, first-order logic (FOL) over the schema relations
- A query has the form “find all tuples (x1,...,xk) that satisfy an FOL condition”

• RC is a declarative query language
- Meaning: a query is not defined by a sequence of operations, but rather by

a condition that the result should satisfy

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

73

Queries and the connection to logic

•Why logic?
• A crash course in FOL
• Relational Calculus (RC)

– Syntax and Semantics
– Domain RC (DRC) vs Tuple RC (TRC)
– Domain Independence and Safety

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

75Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RC Query

{ (x,u)	|	Person(u,	'female',	'Canada')	⋀
∃z,y [Parent(z,y)	⋀	Parent(y,x)	⋀	

∃w [Parent(z,w)	⋀	y≠w ⋀		(u=w ⋁	Spouse(u,w))]]	}

Person(id, gender, country)
Parent(parent, child)
Spouse(person1, person2)

x

y

z

w u
ParentParent

Parent Spouse

assume symmetric relation
(a,b)∊Spouse ⇔ (b,a)∊Spouse

Which relatives does
this query find? ?

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

77Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RC Symbols

• Constant values: a, b, c, female, Canada, ...
- Values that may appear in table cells (optionally with quotation marks)

• Variables: x, y, z, ...
- Range over the values that may appear in table cells

• Relation symbols: R, S, T, Person, Parent, ...
- Each with a specified arity
- Will be fixed by the relational schema at hand
- No attribute names, only attribute positions (= unnamed perspective)!

• Unlike general FOL, no function symbols!
Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

78Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RC Formulas (atomic and non-atomic)

• Atomic formulas:
- R(t1,...,tk)
• R is a k-ary relation, Each ti is a variable or a constant
• Semantically it states that (t1,...,tk) is a tuple in R

- x op u
• x is a variable, u is a variable/constant, op is one of >, <, =, ≠
• Simply binary predicates, predefined interpretation

• Formula:
- Atomic formula
- If φ and ψ are formulas then these are formulas:

φ ⋀ ψ φ ⋁ ψ φ → ψ φ → ψ ¬φ ∃x φ ∀x φ

Person(x, 'female', 'Canada')

x=y, y≠w, z>5, z='female'

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

81Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Free Variables

• Intuitively: free variable are not bound to quantifiers
• Formally:

- A free variable of an atomic formula is a variable that occurs in the atomic formula

- A free variable of φ ⋀	ψ,φ ⋁	ψ,	φ⟶ ψ is a free variable of either φ or ψ

- A free variable of ¬φ is a free variable of φ

- A free variable of ∃x φ and ∀x φ is a free variable y of φ such that y≠x
• We write φ(x1,...,xk) to state that x1,...,xk are the free variables of formula φ

(in some order)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

82Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Back to our earlier example

Person(u,	'female',	'Canada')	⋀
∃z,y [Parent(z,y)	⋀	Parent(y,x)	⋀	

∃w [Parent(z,w)	⋀	y≠w ⋀		(u=w ⋁	Spouse(u,w))]]	

What are the free
variables? ?

This is a formula!

x

y

z

w u
ParentParent

Parent Spouse

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

83Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Back to our earlier example

Notation:

φ(x,u) / CanadianAunt(u,x)

Person(u,	'female',	'Canada')	⋀
∃z,y [Parent(z,y)	⋀	Parent(y,x)	⋀	

∃w [Parent(z,w)	⋀	y≠w ⋀		(u=w ⋁	Spouse(u,w))]]	

x

y

z

w u
ParentParent

Parent Spouse

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

84Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RC query

Person(u,	'female',	'Canada')	⋀
∃z,y [Parent(z,y)	⋀	Parent(y,x)	⋀	

∃w [Parent(z,w)	⋀	y≠w ⋀		(u=w ⋁	Spouse(u,w))]]	

{ (x,u)	|

}

{	(x1,...,xk)	| φ(x1,...,xk)	}

x

y

z

w u
ParentParent

Parent Spouse φ(x,u) / CanadianAunt(u,x)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

85Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Relation Calculus Query

• An RC query is an expression of the form

{	(x1,...,xk)	|	φ(x1,...,xk)	}
where φ(x1,...,xk) is an RC formula

• An RC query is over a relational schema S if all the relation symbols
belong to S (with matching arities)

some condition on the variables
COND(x1,...,xk)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

86

Queries and the connection to logic

•Why logic?
• A crash course in FOL
• Relational Calculus (RC)

– Syntax and Semantics
– Domain RC (DRC) vs Tuple RC (TRC)
– Domain Independence and Safety

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

87Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

DRC vs. TRC

• There are two common variants of RC:
- DRC (Domain RC): attributes as sets (what we have seen so far)
- TRC (Tuple RC): tuples as sets

• DRC applies vanilla FO: terms interpreted as attribute values, relations have
arity but no attribute names (= unnamed perspective)

• TRC is more “database friendly”: terms interpreted as tuples with named
attributes

• There are easy conversions between the two formalisms

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

88Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

DRC vs. TRC

{	(x,y)	|	R(x,y)	∧	y>2	}

{	r |	∃r[r∈R ∧	r.B>2	}

Schema:	R(A,B)

{	r |	∃r∈R[r.B>2]}

{	(x)	|	∃y[R(x,y)	∧	y>2]	}

domain variables range over the domain

tuple variables range over relations

predicate

?

https://northeastern-datalab.github.io/cs7240/

89Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

DRC vs. TRC

{	(x,y)	|	R(x,y)	∧	y>2	}

{	r |	r∈R ∧	r.B>2	}

Schema:	R(A,B)

{	r |	∃r∈R[r.B>2]}

{	(x)	|	∃y[R(x,y)	∧	y>2]	}

{	q |	∃r∈R[q.A=r.A ∧	r.B>2]	}

domain variables range over the domain

tuple variables range over relations

predicate

Which are here bound and
which are free variables ?

https://northeastern-datalab.github.io/cs7240/

90Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

DRC vs. TRC

{	(x,y)	|	R(x,y)	∧	y>2	}

{	r |	r∈R ∧	r.B>2	}

Schema:	R(A,B)

{	r |	∃r∈R[r.B>2]}

{	(x)	|	∃y[R(x,y)	∧	y>2]	}

{	q |	∃r∈R[q.A=r.A ∧	r.B>2]	}

domain variables range over the domain

tuple variables range over relations

predicate

free bound

free bound

{	q |	r∈R[q.A=r.A ∧	q.B=r.B ∧	r.B>2]	}

https://northeastern-datalab.github.io/cs7240/

96Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Our Example in TRC

{ t | ∃a ∈ Person [a.gender = 'female' ⋀ a.country = 'Canada'] ⋀
∃p,q,w ∈ Parent [p.child = t.nephew ⋀ q.child = p.parent ⋀
w.parent = q.parent ⋀ w.child ≠ q.child ⋀ a.id = t.aunt ⋀

(w.child = a.id ⋁ ∃s [s∈ Spouse ⋀ s.person1 = w.child ⋀ s.person2 = a.id])]]}

Person(id, gender, country)
Parent(parent, child)
Spouse(person1, person2)

tuple variables like in SQL instead of
domain variables: {t | COND(t)}

p

q w
s

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018. However, notice I prefer and follow here the notation of
[Ramakrishnan, Gehrke' 03] and [Elmasri, Navathe'15] of using a.country = 'Canada', instead of the alternative notation a[country]='Canada' used by [Silberschatz, Korth, Sudarshan 2010]

often used short forms:
∀x∊R[φ] same as ∀x[x∊R ⇒ φ]
∃x∊R[φ] same as ∃x[x∊R ⋀ φ]

optionally "t(nephew, aunt)"

https://northeastern-datalab.github.io/cs7240/

98Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Different TRC notations
Find persons that frequent only bars that serve only drinks they like.
(Find persons who like all drinks that are served in all the bars they visit.)
(Find persons for which there does not exist a bar they frequent that serves a drink they do not like.)

{q(person) | ∃f ∊ Frequents [f.person=q.person ⋀ ¬(∃f2 ∊ Frequents [f2.person=f.person ⋀ my preferred notation
¬(∃l ∊ Likes, ∃s ∊ Serves [l.drink=s.drink ⋀ f2.bar=s.bar ⋀ f2.person=l.person])])]}

{F.person | F ∊ Frequents.(∄F2 ∊ Frequents.(F2.person=F.person ⋀ my earlier preferred notation
(∄L ∊ Likes, ∄S ∊ Serves.(L.drink=S.drink ⋀ F2.bar=S.bar ⋀ F2.person=L.person))))}

{t: Person | ∃f ∊ Frequents [t(Person)=f(Person) ⋀ ¬∃f2 ∊ Frequents [F2(person)=F(person) ⋀ [Deutsch 2019]
¬(∃l ∊ Likes ∃s ∊ Serves) [l(Drink)=s(Drink) ⋀ f2(Bar)=s(Bar) ⋀ f2(Person)=l(Person)]]]}

{f.Person | Frequents(f) AND (NOT(∃f2)(Frequents(f2) AND f2.person=f.person ⋀ [Elmasri 2015]
(NOT(∃l)(∃s)(Likes(l) AND Serves(s) AND l.drink=s.drink AND f2.bar=s.bar AND f2.person=l.person))))}

{𝜇(1) | (∃𝜌(2)) (Frequents(𝜌) ⋀ 𝜌[1]= 𝜇[1] ⋀ ¬((∃𝜆(2))(Frequents(𝜆) ⋀ 𝜆[1] = 𝜌[1] ⋀ [Ullman 1988]
¬((∃𝜈(2))(∃𝜃(2))(Likes(𝜈) ⋀ Serves(𝜃) ⋀ 𝜈(2)= 𝜃(2) ⋀ 𝜆(2)=𝜃(1) ⋀ 𝜆(1)=𝜈(1)))))}

{P| ∃F ∊ Frequents (F.person=P.person ⋀ ¬∃F2 ∊ Frequents(F2.person=F.person ⋀ [Ramakrishnan 2003]
¬(∃L ∊ Likes ∃S ∊ Serves (L.drink=S.drink ⋀ F2.bar=S.bar ⋀ F2.person=L.person))))}

331

Likes(person, drink)
Frequents(person, bar)
Serves(bar, drink)

https://northeastern-datalab.github.io/cs7240/

99

Queries and the connection to logic

•Why logic?
• A crash course in FOL
• Relational Calculus (RC)

– Syntax and Semantics
– Domain RC (DRC) vs Tuple RC (TRC)
– Domain Independence and Safety

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

100Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Intuition for what we are trying to avoid

1) What's the answer to Q1? B	=	{3,	4}

Q1:	{	(x)	|	¬B(x)	}

https://northeastern-datalab.github.io/cs7240/

101Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Intuition for what we are trying to avoid

1) What's the answer to Q1? B	=	{3,	4}

Dom	=	ℕ!!##

Q1:	{	(x)	|	¬B(x)	}

2) What now?

https://northeastern-datalab.github.io/cs7240/

102Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Intuition for what we are trying to avoid

Q2:	{	(x)	|	A(x)	⋀	¬B(x)	}

1) What's the answer to Q1? B	=	{3,	4}

A	=	{1,	2,	3}

Dom	=	ℕ!!##

Q1:	{	(x)	|	¬B(x)	}

2) What now?

3) What's the answer to Q2?

https://northeastern-datalab.github.io/cs7240/

103Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Intuition for what we are trying to avoid

Q2:	{	(x)	|	A(x)	⋀	¬B(x)	}

1) What's the answer to Q1? B	=	{3,	4}

A	=	{1,	2,	3}

Dom	=	ℕ!!##

Q1:	{	(x)	|	¬B(x)	}

2) What now?

3) What's the answer to Q2?

Dom	=	ℕ!!### 4) What now?

https://northeastern-datalab.github.io/cs7240/

104Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Intuition for what we are trying to avoid

Q2:	{	(x)	|	A(x)	⋀	¬B(x)	}

1) What's the answer to Q1? B	=	{3,	4}

A	=	{1,	2,	3}

Dom	=	ℕ!!##

a
1
2
3

A
a
3
4

B

Q1:	{	(x)	|	¬B(x)	}

2) What now?

3) What's the answer to Q2?

Dom	=	ℕ!!### 4) What now?

Q2 is "domain-independent", i.e. we don't care whether
Dom	is	ℕ!!## or ℕ!!###. We only care about the database D:

That's easy to see,
but it gets more
complicated L

https://northeastern-datalab.github.io/cs7240/

105Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Bringing in the Domain

• Let S be a schema, D a database over S, and Q an RC query over S
• Then D gives an unambiguous interpretation for the underlying FOL
- Predicates ⟶ relations; constants copied; no functions

Is this true ?

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

106Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Bringing in the Domain

• Let S be a schema, D a database over S, and Q an RC query over S
• Then D gives an unambiguous interpretation for the underlying FOL
- Predicates ⟶ relations; constants copied; no functions
- Not yet! We need to answer first: What is the domain?

• The active domain ADom (of D and Q) is the set of all the values that occur
in either D or Q

• The query Q is evaluated over D with respect to a domain Dom that contains
the active domain (Dom ⊇ ADom)

• Denote by QDom(D) the result of evaluating Q over D relative to the domain
Dom

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

107Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Domain Independence

• Let S be a schema, and let Q be an RC query over S
• We say that Q is domain independent if for every database D over S

and ...

How could we continue the definition ?

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

108Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Domain Independence

• Let S be a schema, and let Q be an RC query over S
• We say that Q is domain independent if for every database D over S

and every two domains Dom1 and Dom2 that contain the active
domain, we have:

QDom1(D)	=	QDom2(D)	=	QADom(D)	

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

109Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Bad News...

• We would like be able to tell whether a given RC query is domain
independent, and then reject “bad queries”

• Alas, this problem is undecidable!
- That is, there is no algorithm that takes as input an RC query and returns

true iff the query is domain independent

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.
First observed in "Di Paola. The Recursive Unsolvability of the Decision Problem for the Class of Definite Formulas, JACM 1969. https://doi.org/10.1145/321510.321524"

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/321510.321524

110Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Good News

Domain-independent RC has an "effective syntax", that is:
- A syntactic restriction of RC in which every query is domain

independent
- Restricted queries are said to be safe

• Safety can be tested automatically (and efficiently)
- Most importantly, for every domain independent RC query there

exists an equivalent safe RC query!

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

111Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Safety

• We don’t cover the formal definition of the safe syntax
• Details on the safe syntax can be found e.g. in [Alice'95]
• Example:

- Every variable xi	is guarded by R(x1,...,xk)	
- In ∃x	φ, the variable x should be guarded by φ
- In ψ ⋀	(x=y), the variable x is guarded iff

either x or y is guarded by ψ
- ...

[Alice'95] Abiteboul, Hull, Vianu. Foundations of Databases, 1995. Chapter 5.4 Syntactic Restrictions for Domain Independence. http://webdam.inria.fr/Alice/
An accessible overview of issues involving safety is: Topor, Safety and Domain Independence, Encyclopedia of Database Systems. https://doi.org/10.1007/978-0-387-39940-9_1255

https://northeastern-datalab.github.io/cs7240/
http://webdam.inria.fr/Alice/
https://doi.org/10.1007/978-0-387-39940-9_1255

112Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent?

{ (x)	|	¬Person(x,	'female',	'Canada')	}

{ (x,y)	|∃z	[Spouse(x,z)	⋀	y=z]	}

{ (x,y)	|∃z	[Spouse(x,z)	⋀	y≠z]	}

?

?

?

ADom = {1, 2, 3, 'female', 'Canada'}
Dom = ADom ⋃ {'elefant', 'car', 'lemon', 𝜋, ...}

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

https://northeastern-datalab.github.io/cs7240/

113Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent?

{ (x)	|	¬Person(x,	'female',	'Canada')	}

{ (x,y)	|∃z	[Spouse(x,z)	⋀	y=z]	}

{ (x,y)	|∃z	[Spouse(x,z)	⋀	y≠z]	}

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?

?

Not DI

? What are example fixes:

Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

https://northeastern-datalab.github.io/cs7240/

114Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent? Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

{ (x)	|	¬Person(x,	'female',	'Canada')	}

{ (x,y)	|∃z	[Spouse(x,z)	⋀	y=z]	}

{ (x,y)	|∃z	[Spouse(x,z)	⋀	y≠z]	}

⋀ Person(x,_,'Canada')

⋀ ∃y,z.Person(x,y,z)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?

?

Not DI

⋀ Person(x,_,_) What are example fixes:

⋀ x='Alice' or x='Beatrice'

https://northeastern-datalab.github.io/cs7240/

115Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent?

{ (x)	|	¬Person(x,	'female',	'Canada')	}

{ (x,y)	|∃z	[Spouse(x,z)	⋀	y=z]	}

{ (x,y)	|∃z	[Spouse(x,z)	⋀	y≠z]	}

same as {(x,y) | Spouse(x,y)} = Spouse(x,y)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?

Not DI

DI

⋀ Person(x,_,'Canada')

⋀ ∃y,z.Person(x,y,z)
⋀ Person(x,_,_) What are example fixes:

⋀ x='Alice' or x='Beatrice'

Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

https://northeastern-datalab.github.io/cs7240/

116Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent?

{ (x)	|	¬Person(x,	'female',	'Canada')	}

{ (x,y)	|∃z	[Spouse(x,z)	⋀	y=z]	}

{ (x,y)	|∃z	[Spouse(x,z)	⋀	y≠z]	}
D: Spouse('Alice','Bob')
ADom={'Alice','Bob'}
Dom={'Alice','Bob','Charly'}

→ {('Alice','Alice')}
→ {('Alice','Alice'), ('Alice','Charly')}Dom ⊇ ADom

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?

Not DI

DI

⋀ Person(x,_,'Canada')

⋀ ∃y,z.Person(x,y,z)
⋀ Person(x,_,_) What are example fixes:

⋀ x='Alice' or x='Beatrice'

Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

same as {(x,y) | Spouse(x,y)} = Spouse(x,y)

https://northeastern-datalab.github.io/cs7240/

117Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent?

{ (x)	|	¬Person(x,	'female',	'Canada')	}

{ (x,y)	|∃z	[Spouse(x,z)	⋀	y=z]	}

{ (x,y)	|∃z	[Spouse(x,z)	⋀	y≠z]	}

Not DI

DI

Not DI
D: Spouse('Alice','Bob')
ADom={'Alice','Bob'}
Dom={'Alice','Bob','Charly'}

→ {('Alice','Alice')}
→ {('Alice','Alice'), ('Alice','Charly')}Dom ⊇ ADom

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

⋀ Person(x,_,'Canada')

⋀ ∃y,z.Person(x,y,z)
⋀ Person(x,_,_) What are example fixes:

⋀ x='Alice' or x='Beatrice'

Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

same as {(x,y) | Spouse(x,y)} = Spouse(x,y)

https://northeastern-datalab.github.io/cs7240/

118Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent?

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}
Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

https://northeastern-datalab.github.io/cs7240/

119Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent?

Person('Alice',	'female',	'Canada')
Person('Beate',	'female',	'Canada')
Person('Cecile',	'female',	'Canada')

Likes('Alice',	'Beate')

ADom =

D

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}

Likes('Alice',	'Cecile')

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

Likes('Alice',	'Alice')

?

Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

https://northeastern-datalab.github.io/cs7240/

120Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent?

Person('Alice',	'female',	'Canada')
Person('Beate',	'female',	'Canada')
Person('Cecile',	'female',	'Canada')

Likes('Alice',	'Beate')

ADom =	{'Alice',	'Beate',	'Cecile',	'female',	'Canada')

D

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}

Likes('Alice',	'Cecile')

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

Likes('Alice',	'Alice')

Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

https://northeastern-datalab.github.io/cs7240/

121Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent?

Person('Alice',	'Alice',	'Alice')
Person('Beate',	'Beate',	'Beate')
Person('Cecile',	'Cecile',	'Cecile')

Likes('Alice',	'Beate')

ADom =	{'Alice',	'Beate',	'Cecile')
Dom =	{'Alice',	'Beate',	'Cecile',	'Dora')

D

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}

Likes('Alice',	'Cecile')

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?
?

Likes('Alice',	'Alice')

?

Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

https://northeastern-datalab.github.io/cs7240/

122Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent?

Person('Alice',	'Alice',	'Alice')
Person('Beate',	'Beate',	'Beate')
Person('Cecile',	'Cecile',	'Cecile')

Likes('Alice',	'Beate')

ADom =	{'Alice',	'Beate',	'Cecile')
Dom =	{'Alice',	'Beate',	'Cecile',	'Dora')

D

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}

Likes('Alice',	'Cecile')

Example fix:

Alice is in the output if Dom ⊃ ADom (e.g., Dora is in Dom)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?
?

Likes('Alice',	'Alice')

?
Not DI

Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

https://northeastern-datalab.github.io/cs7240/

123Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent?

Person('Alice',	'Alice',	'Alice')
Person('Beate',	'Beate',	'Beate')
Person('Cecile',	'Cecile',	'Cecile')

Likes('Alice',	'Beate')

ADom =	{'Alice',	'Beate',	'Cecile')
Dom =	{'Alice',	'Beate',	'Cecile',	'Dora')

D

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}

Likes('Alice',	'Cecile')

⋀ ∃u,v [Person(y,u,v)]Example fix:

Alice is in the output if Dom ⊃ ADom (e.g., Dora is in Dom)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?
?

Likes('Alice',	'Alice')

Person(y,_,_)

Not DI

Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

https://northeastern-datalab.github.io/cs7240/

124Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent?

Person('Alice',	'Alice',	'Alice')
Person('Beate',	'Beate',	'Beate')
Person('Cecile',	'Cecile',	'Cecile')

Likes('Alice',	'Beate')

ADom =	{'Alice',	'Beate',	'Cecile')
Dom =	{'Alice',	'Beate',	'Cecile',	'Dora')

D

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}

Likes('Alice',	'Cecile')

x never occurs in Likes(x,_): Beate, Cecile

... ⋀ ∃u,v [Person(y,u,v)]Example fix:

Alice is in the output if Dom ⊃ ADom (e.g., Dora is in Dom)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?

Likes('Alice',	'Alice')

Not DI

DI

Person(y,_,_)

Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

https://northeastern-datalab.github.io/cs7240/

125Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent?

Person('Alice',	'Alice',	'Alice')
Person('Beate',	'Beate',	'Beate')
Person('Cecile',	'Cecile',	'Cecile')

Likes('Alice',	'Beate')

ADom =	{'Alice',	'Beate',	'Cecile')
Dom =	{'Alice',	'Beate',	'Cecile',	'Dora')

D

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}

Not DI

DI

DI

Likes('Alice',	'Cecile')

x never occurs in Likes(x,_): Beate, Cecile

implication (absorption) if Dom ≠ ∅, which is necessary for there to be Person(x,_,_)

... ⋀ ∃u,v [Person(y,u,v)]Example fix:

Alice is in the output if Dom ⊃ ADom (e.g., Dora is in Dom)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

Likes('Alice',	'Alice')

Person(y,_,_)

Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

https://northeastern-datalab.github.io/cs7240/

126Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What is the meaning of following unsafe expressions?

{ x |	x ≥	10}

{ x |	∀y	R(x,y)}

{ x |	∃y.	R(x)} ?
?
?

https://northeastern-datalab.github.io/cs7240/

127Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What is the meaning of following unsafe expressions?

{ x |	x ≥	10}

{ x |	∀y	R(x,y)}

{ x |	∃y.	R(x)} logically equivalent to { x | R(x)} = R(x)

?
?

https://northeastern-datalab.github.io/cs7240/

128Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What is the meaning of following unsafe expressions?

{ x |	x ≥	10}

{ x |	∀y	R(x,y)}

{ x |	A(x)	⋀	x ≥	10}

{ x |	∃y.	R(x)} logically equivalent to { x | R(x)} = R(x)

What if Dom=ℕ? DI:

?

https://northeastern-datalab.github.io/cs7240/

129Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What is the meaning of following unsafe expressions?

{ x |	x ≥	10}

{ x |	∀y	R(x,y)}

{ x |	A(x)	⋀	x ≥	10}

{ x |	∀y	[A(y)	→	R(x,y)]}

{ x |	∃y.	R(x)}

D: R('a','a')
ADom={'a'}
Dom={'a','Chile'}

logically equivalent to { x | R(x)} = R(x)

What if Dom=ℕ? DI:

DI ?:

?

https://northeastern-datalab.github.io/cs7240/

131Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What is the meaning of following unsafe expressions?

{ x |	x ≥	10}

{ x |	∀y	R(x,y)}

{ x |	A(x)	⋀	x ≥	10}

{ x |	∀y	[A(y)	→	R(x,y)]}
what if relation A is empty?

{ x |	∃y.	R(x)}

What if Dom=ℕ?

logically equivalent to { x | R(x)} = R(x)

D: R('a','a')
ADom={'a'}
Dom={'a','Chile'}

{ x |	∀y	[¬A(y)	⋁ R(x,y)]}
1. always true for A=∅

DI:

DI ?:

https://northeastern-datalab.github.io/cs7240/

132Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What is the meaning of following unsafe expressions?

{ x |	x ≥	10}

{ x |	∀y	R(x,y)}

{ x |	A(x)	⋀	x ≥	10}

{ x |	∀y	[A(y)	→	R(x,y)]}
what if relation A is empty?

{ x |	∃y.	R(x)}

What if Dom=ℕ?

logically equivalent to { x | R(x)} = R(x)

Neutral	element for	∀	is	TRUE
∑:	
∏:	
⋁:
⋀:

MIN:

0	+	x	=	x

FALSE	⋁	x	=	x
TRUE	⋀	x	=	x

1	⋅	x	=	x

∀:
∃	:

{ x |	∀y	[¬A(y)	⋁ R(x,y)]}

x1 ⋀	x2 ⋀	...	⋀	TRUE
x1 ⋁	x2 ⋁	...	⋁	FALSE	

MIN(∞,	x)	=	x

1. always true for A=∅

2. alternative way
to see that

D: R('a','a')
ADom={'a'}
Dom={'a','Chile'}

DI:

not DI:

https://northeastern-datalab.github.io/cs7240/

133Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What is the meaning of following unsafe expressions?

{ x |	x ≥	10}

{ x |	∀y	R(x,y)}

{ x |	A(x)	⋀	x ≥	10}

{ x |	∀y	[A(y)	→	R(x,y)]}
what if relation A is empty?

{ x |	∃y.	R(x)}

What if Dom=ℕ?

logically equivalent to { x | R(x)} = R(x)

Neutral	element for	∀	is	TRUE

{ x |	∀y	[¬A(y)	⋁ R(x,y)]}
1. always true for A=∅

2. alternative way
to see that

D: R('a','a')
ADom={'a'}
Dom={'a','Chile'}

DI:

not DI:

∀y	[R(y)]

true if the domain for y is empty set!
∀y	[y∈Dom→R(y)]

another way to see it:

https://northeastern-datalab.github.io/cs7240/

134Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What is the meaning of following unsafe expressions?

{ x |	x ≥	10}

{ x |	∀y	R(x,y)}

{ x |	A(x)	⋀	x ≥	10}

{ x |	∀y	[A(y)	→	R(x,y)]}

{ x |	∃y.	R(x)}

What if Dom=ℕ?

logically equivalent to { x | R(x)} = R(x)

DI:

not DI:

DI: ?

https://northeastern-datalab.github.io/cs7240/

135Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What is the meaning of following unsafe expressions?

{ x |	x ≥	10}

{ x |	∀y	R(x,y)}

{ x |	A(x)	⋀	x ≥	10}

{ x |	∀y	[A(y)	→	R(x,y)]}

{ x |	∃y.	R(x)}

What if Dom=ℕ?

logically equivalent to { x | R(x)} = R(x)

DI:

not DI:

{ x |	R(x,_)	⋀	∀y	[A(y)	→	R(x,y)]}DI:

{ x |	R(x,_)	⋀	∄y	[A(y)	⋀	¬R(x,y)]}

or A(x) or ∃z[R(x,z) ⋀ ...]

We will see this last expression again next class J
In the meantime, try for yourself. How to write in TRC?

https://northeastern-datalab.github.io/cs7240/

136Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Another example on domain-independence

Source: Topor, Safety and Domain Independence, Encyclopedia of Database Systems. https://doi.org/10.1007/978-0-387-39940-9_1255

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1007/978-0-387-39940-9_1255

