
131

Topic 1: Data models and query languages
Unit 1: SQL (continued)
Lecture 3

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp23)
https://northeastern-datalab.github.io/cs7240/sp23/
1/17/2023

Updated 1/18/2023

https://northeastern-datalab.github.io/cs7240/sp23/

132Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Pre-class conversations

• Last class summary
• New class members
• Intended extended focus on query languages
• First scribe arrived, I will comment Friday
- Secondary posting of class scribes to Piazza (optionally anonymous). I will

comment on both Canvas and Piazza

• Today:
- SQL continued

https://northeastern-datalab.github.io/cs7240/

133Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

PRELIMINARY

https://northeastern-datalab.github.io/cs7240/

134

Outline: T1-U1: SQL

• SQL
– Schema, keys, referential integrity
– Joins
– Aggregates and grouping
– Nested queries (Subqueries)
– Theta Joins
– Nulls & Outer joins
– Top-k
– [Recursion: moved to T1-U4: Datalog]

135Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A natural question

• How can we unnest (no GROUP BY) the universal quantifier query ?

?

Source: Dan Suciu

SELECT ...
FROM ...
WHERE ...

Q2: Find all companies that make only products with price < 25

https://northeastern-datalab.github.io/cs7240/

136Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Queries that must be nested

• Definition: A query Q is monotone if:
- Whenever we add tuples to one or more of the tables…
- … the answer to the query cannot contain fewer tuples

• Fact: all unnested queries are monotone
- Proof: using the "nested for loops" semantics

• Fact: Query with universal quantifier is not monotone
- Add one tuple violating the condition. Then "all" returns fewer tuples

• Consequence: we cannot unnest a query with a universal quantifier

Source: Dan Suciu

https://northeastern-datalab.github.io/cs7240/

137

Understanding
nested queries

with Relational Diagrams
and QueryVis

138Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Schema and several of the following queries taken from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

The sailors database
340

Sailor Reserves Boat

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

https://northeastern-datalab.github.io/cs7240/
http://pages.cs.wisc.edu/~dbbook/

139Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 1

Q:

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

?
SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid IN

(SELECT B.bid
FROM Boat B
WHERE B.color = 'red'))

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

140Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 1

Q: Find the names of sailors who have reserved a red boat.

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid IN

(SELECT B.bid
FROM Boat B
WHERE B.color = 'red'))

{S.sname | ∃S∈Sailor.(∃R∈Reserves.(R.sid=S.sid ⋀ ∃B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

141Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 1

Q: Find sailors who have reserved a red boat.

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

SELECT DISTINCT S.sname
FROM Sailor S
WHERE EXISTS

(SELECT R.sid
FROM Reserves R
WHERE R.sid=S.sid
AND EXISTS

(SELECT B.bid
FROM Boat B
WHERE B.bid = R.bid
AND B.color = 'red'))

This is an alternative way to write the
previous query with EXISTS and
correlated nested queries that
matches the Relational Calculus below.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

{S.sname | ∃S∈Sailor.(∃R∈Reserves.(R.sid=S.sid ⋀ ∃B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

142Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 2
340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Q: ?

Dashed lines represent
not exists ∄

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT DISTINCT S.sname
FROM Sailor S
WHERE EXISTS

(SELECT R.sid
FROM Reserves R
WHERE R.sid=S.sid
AND NOT EXISTS

(SELECT B.bid
FROM Boat B
WHERE B.bid = R.bid
AND B.color = 'red'))

{S.sname | ∃S∈Sailor.(∃R∈Reserves.(R.sid=S.sid ⋀ ∄B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

143Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 2

Q: Find sailors who have reserved a boat that is not red.

340

Dashed lines represent
not exists ∄

They must have reserved at least one boat
in another color. They can also have reserved
a red boat in addition.

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT DISTINCT S.sname
FROM Sailor S
WHERE EXISTS

(SELECT R.sid
FROM Reserves R
WHERE R.sid=S.sid
AND NOT EXISTS

(SELECT B.bid
FROM Boat B
WHERE B.bid = R.bid
AND B.color = 'red'))

{S.sname | ∃S∈Sailor.(∃R∈Reserves.(R.sid=S.sid ⋀ ∄B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

144Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 3
340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Q: ?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS

(SELECT R.sid
FROM Reserves R
WHERE R.sid=S.sid
AND EXISTS

(SELECT B.bid
FROM Boat B
WHERE B.bid = R.bid
AND B.color = 'red'))

{S.sname | ∃S∈Sailor.(∄R∈Reserves.(R.sid=S.sid ⋀ ∃B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

145Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 3
340

They can have reserved 0 or more
boats in another color, but must
not have reserved any red boat.

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Q: Find sailors who have not reserved a red boat.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS

(SELECT R.sid
FROM Reserves R
WHERE R.sid=S.sid
AND EXISTS

(SELECT B.bid
FROM Boat B
WHERE B.bid = R.bid
AND B.color = 'red'))

{S.sname | ∃S∈Sailor.(∄R∈Reserves.(R.sid=S.sid ⋀ ∃B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

146Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Quiz: Dustin?
340

Sailor Reserves Boat

Schema and several of the following queries taken from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

Q3: Find sailors who have not reserved a red boat.
Q2: Find sailors who have reserved a boat that is not red.

Should Dustin be in the output
of either of the two queries?

?

https://northeastern-datalab.github.io/cs7240/
http://pages.cs.wisc.edu/~dbbook/

147Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Quiz: Dustin?
340

Sailor Reserves Boat

Schema and several of the following queries taken from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

Q3: Find sailors who have not reserved a red boat.
Q2: Find sailors who have reserved a boat that is not red.

Should Dustin be in the output
of either of the two queries?

Yes!
No!

https://northeastern-datalab.github.io/cs7240/
http://pages.cs.wisc.edu/~dbbook/

148Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 4
340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Q: ?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS

(SELECT R.sid
FROM Reserves R
WHERE R.sid=S.sid
AND NOT EXISTS

(SELECT B.bid
FROM Boat B
WHERE B.bid = R.bid
AND B.color = 'red'))

{S.sname | ∃S∈Sailor.(∄R∈Reserves.(R.sid=S.sid ⋀ ∄B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

149Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 4

= Find sailors who have reserved only red boats
Q: Find sailors who have not reserved a boat that is not red.

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

They can have reserved 0 or more
boats in red, just no other color.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

They can have reserved 0 or more boats in red, just no other color.

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS

(SELECT R.sid
FROM Reserves R
WHERE R.sid=S.sid
AND NOT EXISTS

(SELECT B.bid
FROM Boat B
WHERE B.bid = R.bid
AND B.color = 'red'))

{S.sname | ∃S∈Sailor.(∄R∈Reserves.(R.sid=S.sid ⋀ ∄B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

150Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS

(SELECT R.sid
FROM Reserves R
WHERE R.sid=S.sid
AND NOT EXISTS

(SELECT B.bid
FROM Boat B
WHERE B.bid = R.bid
AND B.color = 'red'))

Nested query 4 (universal)

= Find sailors who have reserved only red boats
Q: Find sailors who have not reserved a boat that is not red.

340

{S.sname | ∃S∈Sailor.(∄R∈Reserves.(R.sid=S.sid ⋀ ∄B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

They can have reserved 0 or more
boats in red, just no other color.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

They can have reserved 0 or more boats in red, just no other color.

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

{S.sname | ∃S∈Sailor.(∀R∈Reserves.(R.sid=S.sid → ∃B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

151Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 4 (another variant)

= Find sailors who have reserved only red boats
Q: Find sailors who have not reserved a boat that is not red.

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color<>'red'

They can have reserved 0 or more
boats in red, just no other color.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS

(SELECT R.sid
FROM Reserves R
WHERE R.sid=S.sid
AND EXISTS

(SELECT B.bid
FROM Boat B
WHERE B.bid = R.bid
AND B.color <> 'red'))

Equivalence with previous variant
only because of FK-PK constraint!

{S.sname | ∃S∈Sailor.(∄R∈Reserves.(R.sid=S.sid ⋀ ∃B∈Boat.(B.bid=R.bid ⋀ B.color<>'red')))}

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

152Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 5
340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Q: ?
SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
{S.sname | ∃S∈Sailor.(∄B∈Boat.(B.color='red' ⋀ ∄R∈Reserves.(B.bid=R.bid ⋀ R.sid=S.sid)))}

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS

(SELECT B.bid
FROM Boat B
WHERE B.color = 'red'
AND NOT EXISTS

(SELECT R.bid
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

153Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 5

= Find sailors who have reserved all red boats
Q: Find sailors so there is no red boat that is not reserved by the sailor.

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

I don't know of a way to write that query
with IN instead of EXISTS and without an
explicit cross product between sailors and
red boats. (More on that in a moment and
also later when we discuss this query in
relational algebra.)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

{S.sname | ∃S∈Sailor.(∄B∈Boat.(B.color='red' ⋀ ∄R∈Reserves.(B.bid=R.bid ⋀ R.sid=S.sid)))}

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS

(SELECT B.bid
FROM Boat B
WHERE B.color = 'red'
AND NOT EXISTS

(SELECT R.bid
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

154Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS

(SELECT B.bid
FROM Boat B
WHERE B.color = 'red'
AND NOT EXISTS

(SELECT R.bid
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

Nested query 5 (universal)

= Find sailors who have reserved all red boats
Q: Find sailors so there is no red boat that is not reserved by the sailor.

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

I don't know of a way to write that query
with IN instead of EXISTS and without an
explicit cross product between sailors and
red boats. (More on that in a moment and
also later when we discuss this query in
relational algebra.)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

{S.sname | ∃S∈Sailor.(∀B∈Boat.(B.color='red' → ∃R∈Reserves.(B.bid=R.bid ⋀ R.sid=S.sid))))}
{S.sname | ∃S∈Sailor.(∄B∈Boat.(B.color='red' ⋀ ∄R∈Reserves.(B.bid=R.bid ⋀ R.sid=S.sid)))}

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

155Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT
sname

Nested query 5 (w/o correlation)

= Find sailors who have reserved all red boats
Q: Find sailors so there is no red boat that is not reserved by the sailor.

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid NOT IN

(SELECT S2.sid
FROM Sailor S2, Boat B
WHERE B.color = 'red'
AND (S2.sid, B.bid) NOT IN

(SELECT R.sid, R.bid
FROM Reserves R))

Sailor

sid
sname

Sailor

sid

Boat
bid

color = 'red'

Reserves

sid
bid

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
{S.sname | ∃S∈Sailor.(∄S2∈Sailor, ∄B∈Boat.(B.color='red' ⋀ S2.sid=S.sid ⋀ ∄R∈Reserves.(B.bid=R.bid ⋀ R.sid=S.sid)))}
{S.sname | ∃S∈Sailor.(∀S2∈Sailor, ∀B∈Boat.(B.color='red' ⋀ S2.sid=S.sid → ∃R∈Reserves.(B.bid=R.bid ⋀ R.sid=S2.sid))))}

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

156Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 5 (w/o correlation)

= Find sailors who have reserved all red boats
Q: Find sailors so there is no red boat that is not reserved by the sailor.

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS

(SELECT *
FROM Sailor S2, Boat B
WHERE B.color = 'red'
AND S.sid = S2.sid
AND NOT EXISTS

(SELECT *
FROM Reserves R
WHERE B.bid = R.bid
AND S2.sid = R.sid))

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT
sname

Sailor

sid
sname

Sailor

sid

Boat
bid

color = 'red'

Reserves

sid
bid

{S.sname | ∃S∈Sailor.(∄S2∈Sailor, ∄B∈Boat.(B.color='red' ⋀ S2.sid=S.sid ⋀ ∄R∈Reserves.(B.bid=R.bid ⋀ R.sid=S.sid)))}
{S.sname | ∃S∈Sailor.(∀S2∈Sailor, ∀B∈Boat.(B.color='red' ⋀ S2.sid=S.sid → ∃R∈Reserves.(B.bid=R.bid ⋀ R.sid=S2.sid))))}

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

157Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Sailors who have not reserved a red boat Sailors who reserved only red boats Sailors who reserved all red boats

SQL

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Towards SQL patterns

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(
SELECT *
FROM Reserves R, Boat B
WHERE R.sid = S.sid
AND R.bid = B.bid
AND B.color = 'red')

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(
SELECT *
FROM Reserves R
WHERE R.sid = S.sid
AND NOT EXISTS(
SELECT *
FROM Boat B
WHERE R.bid = B.bid
AND B.color = 'red'))

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(
SELECT *
FROM Boat B
WHERE B.color = 'red'
AND NOT EXISTS(
SELECT *
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

https://northeastern-datalab.github.io/cs7240/

158Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Sailors who have not reserved a red boat Sailors who reserved only red boats Sailors who reserved all red boats

SQL

RD

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Towards SQL patterns

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(
SELECT *
FROM Reserves R, Boat B
WHERE R.sid = S.sid
AND R.bid = B.bid
AND B.color = 'red')

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(
SELECT *
FROM Reserves R
WHERE R.sid = S.sid
AND NOT EXISTS(
SELECT *
FROM Boat B
WHERE R.bid = B.bid
AND B.color = 'red'))

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(
SELECT *
FROM Boat B
WHERE B.color = 'red'
AND NOT EXISTS(
SELECT *
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

https://northeastern-datalab.github.io/cs7240/

159Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Sailors
renting
boats

not only all

Sa
ilo

rs have not reserved
a red boat

Sailors
renting
boats

reserved only
red boats

reserved all
red boats

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

https://northeastern-datalab.github.io/cs7240/

160Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Sailors
renting
boats

Students
taking
classes

not only all

Sa
ilo

rs
St

ud
en

ts

have not reserved
a red boat

Sailors
renting
boats

Students
taking
classes

reserved only
red boats

reserved all
red boats

took no art
class

took only art
classes

took all art
classes

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Student (sid, sname)
Takes (sid, cid, semester)
Course (cid, cname, department)

https://northeastern-datalab.github.io/cs7240/

161Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Sailors
renting
boats

Students
taking
classes

Actors
playing in
movies

not only all

Sa
ilo

rs
St

ud
en

ts
Ac

to
rs

have not reserved
a red boat

Sailors
renting
boats

Students
taking
classes

Actors
playing in
movies

reserved only
red boats

reserved all
red boats

took no art
class

took only art
classes

took all art
classes

did not play in a
Hitchcock movie

played only
Hitchcock movies

played in all
Hitchcock movies

Actor (aid, aname)
Plays (aid, mid, role)
Movie (mid, mname, director)

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Student (sid, sname)
Takes (sid, cid, semester)
Course (cid, cname, department)

https://northeastern-datalab.github.io/cs7240/

162Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

not only all

SELECT DISTINCT S.sname
FROM Student S
WHERE NOT EXISTS(
SELECT *
FROM Takes T
WHERE T.sid = S.sid
AND NOT EXISTS(
SELECT *
FROM Class C
WHERE T.cid = C.cid
AND C.department= 'art'))

Actor (aid, aname)
Plays (aid, mid, role)
Movie (mid, mname, director)

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Student (sid, sname)
Takes (sid, cid, semester)
Course (cid, cname, department)

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(
SELECT *
FROM Reserves R, Boat B
WHERE R.sid = S.sid
AND R.bid = B.bid
AND B.color = 'red')

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(
SELECT *
FROM Reserves R
WHERE R.sid = S.sid
AND NOT EXISTS(
SELECT *
FROM Boat B
WHERE R.bid = B.bid
AND B.color = 'red'))

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(
SELECT *
FROM Boat B
WHERE B.color = 'red'
AND NOT EXISTS(
SELECT *
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

SELECT DISTINCT S.sname
FROM Student S
WHERE NOT EXISTS(
SELECT *
FROM Takes T, Class C
WHERE T.sid = S.sid
AND T.cid = C.bid
AND C.department = art')

SELECT DISTINCT S.sname
FROM Student S
WHERE NOT EXISTS(
SELECT *
FROM Class C
WHERE C.department = 'art'
AND NOT EXISTS(
SELECT *
FROM Takes T
WHERE T.cid = C.cid
AND T.sid = S.sid))

SELECT DISTINCT A.aname
FROM Actor A
WHERE NOT EXISTS(
SELECT *
FROM Plays P
WHERE P.aid = A.sid
AND NOT EXISTS(
SELECT *
FROM Movie M
WHERE P.mid = M.mid
AND M.director= 'Hitchcock'))

SELECT DISTINCT A.aname
FROM Actor A
WHERE NOT EXISTS(
SELECT *
FROM Plays P, Movie M
WHERE P.aid = A.aid
AND P.mid = M.mid
AND M.director= 'Hitchcock')

SELECT DISTINCT A.aname
FROM Actor A
WHERE NOT EXISTS(
SELECT *
FROM Movie M
WHERE M.director= 'Hitchcock'
AND NOT EXISTS(
SELECT *
FROM Plays P
WHERE P.mid = M.mid
AND P.aid = A.aid))

Sa
ilo

rs
St

ud
en

ts
Ac

to
rs

https://northeastern-datalab.github.io/cs7240/

163Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

not only all

Sa
ilo

rs
St

ud
en

ts
Ac

to
rs

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

SELECT
sname

Student

sid
sname

Takes

sid
cid

Class
cid

department='art'

SELECT
aname

Actor

aid
aname

Plays

aid
mid

Movie
mid

director='Hitchcock'

SELECT
sname

Student

sid
sname

Takes

sid
cid

Class
cid

department='art'

SELECT
aname

Actor

aid
aname

Plays

aid
mid

Movie
mid

director='Hitchcock'

SELECT
sname

Student

sid
sname

Takes

sid
cid

Class
cid

department='art'

SELECT
aname

Actor

aid
aname

Plays

aid
mid

Movie
mid

director='Hitchcock'

Actor (aid, aname)
Plays (aid, mid, role)
Movie (mid, mname, director)

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Student (sid, sname)
Takes (sid, cid, semester)
Course (cid, cname, department)

https://northeastern-datalab.github.io/cs7240/

164Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Logical SQL Patterns

Logical patterns are the building blocks of most SQL queries.

Patterns are very hard to extract from the SQL text.

A pattern can appear across different database schemas.
Think of queries like:
• Find sailors who reserved all red boats
• Find students who took all art classes
• Find actors who played in all movies by Hitchcock

For an early formal definition of relational query patterns see: https://arxiv.org/pdf/2203.07284

https://northeastern-datalab.github.io/cs7240/
https://arxiv.org/pdf/2203.07284

165Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT L1.drinker
FROM Likes L1
WHERE not exists
(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))

AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

Likes(drinker,beer)What does this query return ?

https://northeastern-datalab.github.io/cs7240/

166Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Likes(drinker,beer)

Likes
drinker

Likes

drinker
SELECT
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer

Likes
beer

drinker

<>

SELECT L1.drinker
FROM Likes L1
WHERE not exists
(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))

AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

Relational Diagrams scoping

What does this query return ?

https://northeastern-datalab.github.io/cs7240/

167Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Likes(drinker,beer)Q: Finder drinkers with a unique beer taste

Likes
drinker

Likes

drinker
SELECT
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer

Likes
beer

drinker

<>

SELECT L1.drinker
FROM Likes L1
WHERE not exists
(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))

AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

Relational Diagrams scoping

https://northeastern-datalab.github.io/cs7240/

168Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT L1.drinker
FROM Likes L1
WHERE not exists
(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))

AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

Likes(drinker,beer)Q: Finder drinkers with a unique beer taste

Likes
drinker

Likes

drinker
SELECT
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer

Likes
beer

drinker

<>

Relational Diagrams scoping

https://northeastern-datalab.github.io/cs7240/

169Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT L1.drinker
FROM Likes L1
WHERE not exists
(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))

AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

Likes(drinker,beer)Q: Finder drinkers with a unique beer taste

Likes
drinker

Likes

drinker
SELECT
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer

Likes
beer

drinker

<>

Relational Diagrams scoping

https://northeastern-datalab.github.io/cs7240/

170Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT L1.drinker
FROM Likes L1
WHERE not exists
(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))

AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

Likes(drinker,beer)

Likes
drinker

Likes

drinker
SELECT
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer

Likes
beer

drinker

<>

Q: Finder drinkers with a unique beer taste

QueryVis scoping Relational Diagrams scoping

https://northeastern-datalab.github.io/cs7240/

171Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Likes(drinker,beer)Q: Finder drinkers with a unique beer taste

Likes
drinker

Likes

drinker
SELECT
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer

Likes
beer

drinker

<>

SELECT L1.drinker
FROM Likes L1
WHERE not exists
(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))

AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

QueryVis scoping Relational Diagrams scoping

https://northeastern-datalab.github.io/cs7240/

172Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

help

help

QueryViz
Y o u r I n p u t

Specify or choose a pre-defined schema

Employee and Department

EMP(eid,name,sal,did)
DEPT(did,dname,mgr)

Specify or choose an SQL Query

Query 8

SELECT e1.name
FROM EMP e1, EMP e2, DEPT d
WHERE e1.did = d.did
AND d.mgr = e2.eid
AND e1.sal > e2.sal

Submit

Q u e r y V i z R e s u l t

Input: Schema

Output: Visualization

Input Query

https://demo.queryvis.com

http://www.youtube.com/watch?v=kVFnQRGAQls

Danaparamita, G. [EDBT'11]
https://queryvis.com/

Source: Danaparamita, Gatterbauer: QueryViz: Helping users understand SQL queries and their patterns. EDBT 2011. https://doi.org/10.14778/3402755.3402805
See also: Gatterbauer, Dunne, Jagadish, Riedewald: Principles of Query Visualization. IEEE Debull 2023. http://sites.computer.org/debull/A22sept/p47.pdf

https://northeastern-datalab.github.io/cs7240/
https://demo.queryvis.com/
http://www.youtube.com/watch?v=kVFnQRGAQls
https://queryvis.com/
https://doi.org/10.14778/3402755.3402805
http://sites.computer.org/debull/A22sept/p47.pdf

173Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Amazon Turk user study with SQL users
Each bar below corresponds to one participant (42 bars/participants in total)

Mean Δ = -17.3 s
Median Δ = -19.7 s

71% of users
faster with QV

29% of users
faster with SQL

QV - SQL Time Differences (seconds)

QV faster SQL faster

Mean Δ = -0.08
Median Δ =0

36% of users
with less
errors using
QV

26% of users
with more
errors using
QV

38% of users
with same
errors using
QV

QV - SQL Error Rate Differences

QV fewer errors SQL fewer errors

Leventidis+ [SIGMOD'20]

Source: Leventidis, Zhang, Dunne, Gatterbauer, Jagadish, Riedewald: QueryVis: Logic-based Diagrams help Users Understand Complicated SQL Queries Faster. SIGMOD 2020. https://doi.org/10.1145/3318464.3389767

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3318464.3389767

174Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://www.khoury.northeastern.edu/the-story-of-queryvis-not-just-another-visual-programming-language/

https://queryvis.com

https://northeastern-datalab.github.io/cs7240/
https://www.khoury.northeastern.edu/the-story-of-queryvis-not-just-another-visual-programming-language/
https://queryvis.com/

190

Outline: T1-U1: SQL

• SQL
– Schema, keys, referential integrity
– Joins
– Aggregates and grouping
– Nested queries (Subqueries)
– Theta Joins
– Nulls & Outer joins
– Top-k
– [Recursion: moved to T1-U4: Datalog]

191Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Theta joins
What do these queries compute?

SELECT R.a, U.a as b
FROM R, U
WHERE R.a < U.a ?
SELECT R.a, U.a as b
FROM R, U
WHERE R.a >= U.a ?

A Theta-join allows for arbitrary comparison relationships (such as ≥).
An equijoin is a theta join using the equality operator.

305R
a
1
2

U
a
2
3
4

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

192Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Theta joins
What do these queries compute?

SELECT R.a, U.a as b
FROM R, U
WHERE R.a < U.a

305R U

SELECT R.a, U.a as b
FROM R, U
WHERE R.a >= U.a

A Theta-join allows for arbitrary comparison relationships (such as ≥).
An equijoin is a theta join using the equality operator.

a b
1 2
1 3
1 4
2 3
2 4

?

a
1
2

a
2
3
4

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

193Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Theta joins
What do these queries compute?

SELECT R.a, U.a as b
FROM R, U
WHERE R.a < U.a

305R U

SELECT R.a, U.a as b
FROM R, U
WHERE R.a >= U.a

A Theta-join allows for arbitrary comparison relationships (such as ≥).
An equijoin is a theta join using the equality operator.

a b
1 2
1 3
1 4
2 3
2 4

a b
2 2

Think about these two
queries as a partition of
the Cartesian product

a
1
2

a
2
3
4

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

195

Outline: T1-U1: SQL

• SQL
– Schema, keys, referential integrity
– Joins
– Aggregates and grouping
– Nested queries (Subqueries)
– Theta Joins
– Nulls & Outer joins
– Top-k
– [Recursion: moved to T1-U4: Datalog]

196Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

3-valued logic example

• Three logicians walk into a bar. The bartender asks:
"Do all of you want a drink?"

• The 1st logician says: "I don't know."
• The 2nd logician says: "I don't know."
• The 3rd logician says: "Yes!"

What is going on here ?

https://northeastern-datalab.github.io/cs7240/

197Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nulls in SQL

• Whenever we don't have a value, we can put a NULL

• Can mean many things, e.g.:

?

https://northeastern-datalab.github.io/cs7240/

198Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nulls in SQL

• Whenever we don't have a value, we can put a NULL

• Can mean many things, e.g.:
- Value exists but is unknown
- Value not applicable (yet)

• The schema specifies for each attribute if it can be NULL (nullable
attribute) or not ("NOT NULL")

• Lots of ongoing research on NULLs
• Next: How does SQL cope with tables that have NULLs ?

Student Class Semester grade
Alice cs3200 Fall 2022 B+
Bob cs3200 Spring 2023 null

A new class without a grade

https://northeastern-datalab.github.io/cs7240/

199Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Null Values

• In SQL there are three Boolean values ("ternary logic")
- FALSE, TRUE, UNKNOWN

• If x= NULL then
- Boolean conditions are also NULL. E.g: x='Joe'
- Arithmetic operations produce NULL. E.g: 4*(3-x)/7
- But aggregates ignore NULL values (exception: count(*))

• Logical reasoning:
- FALSE = 0 x AND y = min(x,y)
- TRUE = 1 x OR y = max(x,y)
- UNKNOWN = 0.5 NOT x = (1 – x)

https://northeastern-datalab.github.io/cs7240/

200Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

etext eid fid ftext
One 1 1 Un
Three 3 3 Trois
Four 4 4 Quatre
Five 5 5 Cinq
Six 6 6 Siz

Join Illustration
fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French

SELECT *
FROM English, French
WHERE eid = fid

361

SELECT *
FROM English INNER JOIN French
ON eid = fid

Same as (alternative join syntax):

An "inner join":

shortform is " JOIN"

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

201Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT *
FROM English INNER JOIN French
ON eid = fid

etext eid fid ftext
One 1 1 Un
Two 2 NULL NULL
Three 3 3 Trois
Four 4 4 Quatre
Five 5 5 Cinq
Six 6 6 Siz
NULL NULL 7 Sept
NULL NULL 8 Huit

Join Illustration
fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French 361

Null also sometimes
just shown as empty

?How do we get a join
with the full data

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

202Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

etext eid fid ftext
One 1 1 Un
Two 2 NULL NULL
Three 3 3 Trois
Four 4 4 Quatre
Five 5 5 Cinq
Six 6 6 Siz
NULL NULL 7 Sept
NULL NULL 8 Huit

Join Illustration
fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French

SELECT *
FROM English FULL JOIN French
ON English.eid = French.fid

shortform of:
"FULL OUTER JOIN"

361

Null also sometimes
just shown as empty

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

SELECT *
FROM English INNER JOIN French
ON eid = fid

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

203Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

etext eid fid ftext
One 1 1 Un
Two 2 NULL NULL
Three 3 3 Trois
Four 4 4 Quatre
Five 5 5 Cinq
Six 6 6 Siz

Join Illustration
fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French 361

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

SELECT *
FROM English LEFT JOIN French
ON English.eid = French.fid

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

204Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

2 7,81,3,
4-6

Join Illustration
fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French

Source: Fig. 7-2, Hoffer et al., Modern Database Management, 10ed ed, 2011.

= FULL (OUTER) JOIN

= (INNER) JOIN

361

= LEFT (OUTER) JOIN

https://northeastern-datalab.github.io/cs7240/

205Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: http://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

Check this web page for illustrating examples

Detailed Illustration with Examples (follow the link)

also called
"anti-join"

https://northeastern-datalab.github.io/cs7240/
http://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

206Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Let's practice anti-joins

fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French
361

?
Results

SELECT <select_list>
FROM L
LEFT JOIN R
ON L.key = R.key
WHERE R.key IS NULL

L R

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

207Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Let's practice anti-joins

fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French
361

?

How to write in SQL?

eText eid
Two 2

Results

SELECT <select_list>
FROM L
LEFT JOIN R
ON L.key = R.key
WHERE R.key IS NULL

L R

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

208Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Let's practice anti-joins

fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French
361

SELECT eText, eid
FROM English
LEFT JOIN French
ON eid = fid
WHERE fid IS NULL

How to write in SQL? Any alternative?

?

eText eid
Two 2

Results

SELECT <select_list>
FROM L
LEFT JOIN R
ON L.key = R.key
WHERE R.key IS NULL

L R

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

209Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Let's practice anti-joins

SELECT <select_list>
FROM L
LEFT JOIN R
ON L.key = R.key
WHERE R.key IS NULL

fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French
361

SELECT eText, eid
FROM English
LEFT JOIN French
ON eid = fid
WHERE fid IS NULL

How to write in SQL?

eText eid
Two 2

Results

SELECT *
FROM English
WHERE eid NOT IN

(SELECT fid
FROM French)

Any alternative?

L R

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

210Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semi-joins: kind of the anti-anti-joins...

fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French
361

SELECT *
FROM English
WHERE eid NOT IN

(SELECT fid
FROM French)

SELECT eText, eid
FROM English
LEFT JOIN French
ON eid = fid
WHERE fid IS NULL

eText eid
One 1
Three 3
Four 4
Five 5
Six 6

Results

What do we have to
change to these queries
to get the tuples in
English that have a
partner in French?

?

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

211Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semi-joins: kind of the anti-anti-joins...

fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French
361

SELECT *
FROM English
WHERE eid IN

(SELECT fid
FROM French)

SELECT eText, eid
FROM English
LEFT JOIN French
ON eid = fid
WHERE fid IS NOT NULL

eText eid
One 1
Three 3
Four 4
Five 5
Six 6

Results

What do we have to
change to these queries
to get the tuples in
English that have a
partner in French?

?
What if fid is not a key?

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

212Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semi-joins: kind of the anti-anti-joins...

fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French
361

SELECT *
FROM English
WHERE eid IN

(SELECT fid
FROM French)

SELECT eText, eid
FROM English
LEFT JOIN French
ON eid = fid
WHERE fid IS NOT NULL

eText eid
One 1
Three 3
Four 4
Five 5
Six 6

Results

What do we have to
change to these queries
to get the tuples in
English that have a
partner in French?

What if fid is not a key?

DISTINCT

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

213Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

etext eid fid ftext
One 1 1 Un
Two 2 NULL NULL
Three 3 3 Trois
Four 4 4 Quatre
Five 5 5 Cinq
Six 6 6 Siz
NULL NULL 7 Sept
NULL NULL 8 Huit

Another look at Outer Joins
fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French

SELECT *
FROM English FULL JOIN French
ON English.eid = French.fid

361

FULL JOIN can be
written as union of inner
join with anti-joins

?
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

214Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

etext eid fid ftext
One 1 1 Un
Two 2 NULL NULL
Three 3 3 Trois
Four 4 4 Quatre
Five 5 5 Cinq
Six 6 6 Siz
NULL NULL 7 Sept
NULL NULL 8 Huit

Another look at Outer Joins
fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French

SELECT *
FROM English FULL JOIN French
ON English.eid = French.fid

361

SELECT etext,eid, fid, ftext
FROM English INNER JOIN French
ON English.eid = French.fid
UNION ALL
SELECT etext, eid, NULL, NULL
FROM English
WHERE NOT EXISTS(

SELECT *
FROM French
WHERE eid=fid)

UNION ALL
SELECT NULL, NULL, fid, ftext
FROM French
WHERE NOT EXISTS(

SELECT *
FROM English
WHERE eid=fid)

anti-join

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

215Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Outer Joins,
Coalesce, and

non-associativity

https://northeastern-datalab.github.io/cs7240/

216Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Coalesce function 333

a
1
2

M
a
2
3

N SELECT M.a, N.a, COALESCE(M.a, N.a) as b
FROM M
FULL JOIN N
ON M.a = N.a

SELECT COALESCE(1, NULL)

SELECT COALESCE(NULL, 3)

SELECT COALESCE(1, 2)

SELECT COALESCE(NULL, NULL)

?

COALESCE: takes first non-NULL value,

Also see use of COALESCE across programming languages: https://en.wikipedia.org/wiki/Null_coalescing_operator
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Null_coalescing_operator
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

217Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Coalesce function 333

a
1
2

M
a
2
3

N SELECT M.a, N.a, COALESCE(M.a, N.a) as b
FROM M
FULL JOIN N
ON M.a = N.a

M.a N.a
Result

b

? ?

SELECT COALESCE(1, NULL)

SELECT COALESCE(NULL, 3)

SELECT COALESCE(1, 2)

1

3

1

SELECT COALESCE(NULL, NULL) NULL

COALESCE: takes first non-NULL value,
C(x,y,z)=C(x,C(y,z))=C(C(x,y),z)

Also see use of COALESCE across programming languages: https://en.wikipedia.org/wiki/Null_coalescing_operator
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Null_coalescing_operator
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

218Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Coalesce function 333

a
1
2

M
a
2
3

N SELECT M.a, N.a, COALESCE(M.a, N.a) as b
FROM M
FULL JOIN N
ON M.a = N.a

SELECT COALESCE(1, NULL)

SELECT COALESCE(NULL, 3)

SELECT COALESCE(1, 2)

COALESCE: takes first non-NULL value,

1

3

1

SELECT COALESCE(NULL, NULL) NULL

M.a N.a
Result

b
1 NULL
2 2
NULL 3

1
2
3

C(x,y,z)=C(x,C(y,z))=C(C(x,y),z)

Also see use of COALESCE across programming languages: https://en.wikipedia.org/wiki/Null_coalescing_operator
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Null_coalescing_operator
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

219Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Coalesce, Natural Outer Join, Union 333

a
1
2

M
a
2
3

N SELECT *
FROM M
NATURAL FULL JOIN N

Result
a
1
2
3

Natural full join models "coalesce"

Join vs. Union – it is actually the same:
Union is a special case of a join J
(under set semantics)

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

220Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Quick recap: Commutativity & Associativity

1 2
3 4

Multiplication Matrix multiplication

2 3
3
1

• • =3 2 4 24 • •

Multiplication is
associative J

=

?

https://northeastern-datalab.github.io/cs7240/

221Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Quick recap: Commutativity & Associativity

1 2
3 4

Multiplication Matrix multiplication

2 3
3
1

• • =3 2 4 24

• • =3 2 4 24

• •

Multiplication is
associative J

and commutative J

=

Order of operations can be exchanged:

?

https://northeastern-datalab.github.io/cs7240/

222Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Quick recap: Commutativity & Associativity

1 2
3 4

Multiplication Matrix multiplication

2 3
3
1

• • =3 2 4 24

• • =3 2 4 24

•4 2

• •

Multiplication is
associative J

and commutative J

=

Order of operands can be exchanged:

Order of operations can be exchanged:

?

https://northeastern-datalab.github.io/cs7240/

223Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Quick recap: Commutativity & Associativity

1 2
3 4

Multiplication Matrix multiplication

1 1
2 3

3
1

18
49

• • =

4 6
11 16

1 2
3 4

3
1• • =

5
13

1 2
3 4

3
1 •

#col ≠ #row

Matrix multipl.
is associative J

... but *not*
commutative L

3 2 4 24

• • =3 2 4 24

•4 2

• •

Multiplication is
associative J

and commutative J

=

It turns out this is mainly a problem of syntax, not semantics. Einstein notation (and similar more recent
extensions like "EINSUM") solves that. See e.g. Laue et al. A Simple and Efficient Tensor Calculus. AAAI
2020. https://arxiv.org/abs/2010.03313 . Alternatively, think about the relational join operator as a
commutative notation for sparse matrix multiplication

Order of operands can be exchanged:

Order of operations can be exchanged:

1 1
2 3

18
49

https://northeastern-datalab.github.io/cs7240/
https://arxiv.org/abs/2010.03313

224Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The power of associativity

1 2
3 4

1 1
2 3

3
1

18
49

1 2
3 4

3
1• • =

• • =

Which option would you choose to evaluate this matrix multiplication

1 1
2 3

18
49

Option 1:

Option 2:

?

https://northeastern-datalab.github.io/cs7240/

225Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The power of associativity

1 2
3 4

1 1
2 3

3
1

18
49

4 6
11 16

1 2
3 4

3
1• • =

5
13

• • =

1 1
2 3

18
49

Option 1:

Option 2:

All variants give the same result. But some are faster.
Intuition: we like to have small intermediate result sizes!

https://northeastern-datalab.github.io/cs7240/

226Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Matrix chain multiplication

See also https://en.wikipedia.org/wiki/Catalan_number , https://en.wikipedia.org/wiki/Matrix_chain_multiplication , https://en.wikipedia.org/wiki/Matrix_multiplication#Associativity
Source figure: https://bruceoutdoors.wordpress.com/2015/11/24/matrix-chain-multiplication-with-c-code-part-3-extracting-the-sequence/

Given n matrices, what is the optimal sequence to multiply them?

This is an example
optimal factorization.
What is its cost? ?

?

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Catalan_number
https://en.wikipedia.org/wiki/Matrix_chain_multiplication
https://en.wikipedia.org/wiki/Matrix_multiplication
https://bruceoutdoors.wordpress.com/2015/11/24/matrix-chain-multiplication-with-c-code-part-3-extracting-the-sequence/

227Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Matrix chain multiplication
Given n matrices, what is the optimal sequence to multiply them?

MinCost: (30*35*5 + (35*15*5)) + 30*5*25 + (5*10*20) + 5*20*25)

Via Dynamic programming: O(n3)

Nave method: all possible way to place closed parentheses: "Catalan numbers"

Best known: O(n log n)

This is an example
optimal factorization.
What is its cost? ?

?

See also https://en.wikipedia.org/wiki/Catalan_number , https://en.wikipedia.org/wiki/Matrix_chain_multiplication , https://en.wikipedia.org/wiki/Matrix_multiplication#Associativity
Source figure: https://bruceoutdoors.wordpress.com/2015/11/24/matrix-chain-multiplication-with-c-code-part-3-extracting-the-sequence/

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Catalan_number
https://en.wikipedia.org/wiki/Matrix_chain_multiplication
https://en.wikipedia.org/wiki/Matrix_multiplication
https://bruceoutdoors.wordpress.com/2015/11/24/matrix-chain-multiplication-with-c-code-part-3-extracting-the-sequence/

228Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Commutativity & Associativity
Outer joins

A B
1 2

R

SELECT A, B, C
FROM (R
NATURAL FULL JOIN S)
NATURAL FULL JOIN T

B C
2 3

S
A C
4 5

T

SELECT A, B, C
FROM R
NATURAL FULL JOIN (S
NATURAL FULL JOIN T)

Result Result

333

? ?
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

229Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Commutativity & Associativity
Outer joins

A B
1 2

R

SELECT A, B, C
FROM (R
NATURAL FULL JOIN S)
NATURAL FULL JOIN T

B C
2 3

S
A C
4 5

T

SELECT A, B, C
FROM R
NATURAL FULL JOIN (S
NATURAL FULL JOIN T)

Result Result

333

? ?
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

230Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Commutativity & Associativity
Outer joins

A B
1 2

R

SELECT A, B, C
FROM (R
NATURAL FULL JOIN S)
NATURAL FULL JOIN T

B C
2 3

S
A C
4 5

T

SELECT A, B, C
FROM R
NATURAL FULL JOIN (S
NATURAL FULL JOIN T)

A B C
1 2 3
4 NULL 5

Result Result

333

?
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

231Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Commutativity & Associativity
Outer joins

A B
1 2

R

SELECT A, B, C
FROM (R
NATURAL FULL JOIN S)
NATURAL FULL JOIN T

B C
2 3

S
A C
4 5

T

SELECT A, B, C
FROM R
NATURAL FULL JOIN (S
NATURAL FULL JOIN T)

A B C
1 2 3
4 NULL 5

Result Result

333

?
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

232Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Commutativity & Associativity
Outer joins

A B
1 2

R

SELECT A, B, C
FROM (R
NATURAL FULL JOIN S)
NATURAL FULL JOIN T

B C
2 3

S
A C
4 5

T

SELECT A, B, C
FROM R
NATURAL FULL JOIN (S
NATURAL FULL JOIN T)

A B C
1 2 3
4 NULL 5

Result
A B C
1 2 NULL
NULL 2 3
4 NULL 5

Result

333

Thus outer joins are not associative! (but they are commutative)
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

233Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Commutativity & Associativity
Outer joins

A B
1 2

R

SELECT R.a RA, T.a TA, coalesce(R.a, T.a) a,
R.b RB, S.b SB, coalesce(R.b, S.b) b,
S.c SC, T.c TC, coalesce(S.c, T.c) c

FROM (R
FULL JOIN S on R.B=S.B)
FULL JOIN T on S.C=T.C AND R.A = T.A

B C
2 3

S
A C
4 5

T

SELECT R.a RA, T.a TA, coalesce(R.a, T.a) a,
R.b RB, S.b SB, coalesce(R.b, S.b) b,
S.c SC, T.c TC, coalesce(S.c, T.c) c

FROM R
FULL JOIN (S
FULL JOIN T on S.C=T.C) on R.B=S.B AND R.A = T.A

333

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

234Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Data Sources on Tourist Information

Country Climate
Canada diverse
Bahamas tropical
UK temperate

Climates
Country City Hotel Stars
Canada Toronto Plaza 4
Canada London Ramada 3
Bahamas Nassau Hilton

Accommodations
Country City Site
Canada London Air show
Canada Mount Logan
UK London Buckingham
UK London Hyde Park

Sites

335

SELECT *
FROM (Accommodations
NATURAL FULL JOIN Climates)
NATURAL FULL JOIN Sites

Result

Example from: Cohen, Fadida, Kanza, Kimelfeld, Sagiv. "Full Disjunctions: Polynomial-Delay Iterators in Action", VLDB 2006. http://vldb.org/conf/2006/p739-cohen.pdf

?
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
http://vldb.org/conf/2006/p739-cohen.pdf
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

235Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Data Sources on Tourist Information

Country Climate
Canada diverse
Bahamas tropical
UK temperate

Climates
Country City Hotel Stars
Canada Toronto Plaza 4
Canada London Ramada 3
Bahamas Nassau Hilton

Accommodations
Country City Site
Canada London Air show
Canada Mount Logan
UK London Buckingham
UK London Hyde Park

Sites

335

SELECT *
FROM (Accommodations
NATURAL FULL JOIN Climates)
NATURAL FULL JOIN Sites

Country City Climate Hotel Stars Site
Canada Toronto diverse Plaza 4
Canada London diverse Ramada 3 Air Show
Canada Mount Logan
UK London Buckingham
UK London Hyde Park
UK temperate
Bahamas Nassau Tropical Hilton

Result

Example from: Cohen, Fadida, Kanza, Kimelfeld, Sagiv. "Full Disjunctions: Polynomial-Delay Iterators in Action", VLDB 2006. http://vldb.org/conf/2006/p739-cohen.pdf
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
http://vldb.org/conf/2006/p739-cohen.pdf
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

236Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Data Sources on Tourist Information

Country Climate
Canada diverse
Bahamas tropical
UK temperate

Climates
Country City Hotel Stars
Canada Toronto Plaza 4
Canada London Ramada 3
Bahamas Nassau Hilton

Accommodations
Country City Site
Canada London Air show
Canada Mount Logan
UK London Buckingham
UK London Hyde Park

Sites

335

SELECT *
FROM (Accommodations
NATURAL FULL JOIN Climates)
NATURAL FULL JOIN Sites

Country City Climate Hotel Stars Site
Canada Toronto diverse Plaza 4
Canada London diverse Ramada 3 Air Show
Canada Mount Logan
UK London Buckingham
UK London Hyde Park
UK temperate
Bahamas Nassau Tropical Hilton

Result

Example from: Cohen, Fadida, Kanza, Kimelfeld, Sagiv. "Full Disjunctions: Polynomial-Delay Iterators in Action", VLDB 2006. http://vldb.org/conf/2006/p739-cohen.pdf
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
http://vldb.org/conf/2006/p739-cohen.pdf
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

237Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Data Sources on Tourist Information

Country Climate
Canada diverse
Bahamas tropical
UK temperate

Climates
Country City Hotel Stars
Canada Toronto Plaza 4
Canada London Ramada 3
Bahamas Nassau Hilton

Accommodations
Country City Site
Canada London Air show
Canada Mount Logan
UK London Buckingham
UK London Hyde Park

Sites

335

SELECT *
FROM (Accommodations
NATURAL FULL JOIN Climates)
NATURAL FULL JOIN Sites

Country City Climate Hotel Stars Site
Canada Toronto diverse Plaza 4
Canada London diverse Ramada 3 Air Show
Canada Mount Logan
UK London Buckingham
UK London Hyde Park
UK temperate
Bahamas Nassau Tropical Hilton

Result

Example from: Cohen, Fadida, Kanza, Kimelfeld, Sagiv. "Full Disjunctions: Polynomial-Delay Iterators in Action", VLDB 2006. http://vldb.org/conf/2006/p739-cohen.pdf
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
http://vldb.org/conf/2006/p739-cohen.pdf
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

238Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Data Sources on Tourist Information

Country Climate
Canada diverse
Bahamas tropical
UK temperate

Climates
Country City Hotel Stars
Canada Toronto Plaza 4
Canada London Ramada 3
Bahamas Nassau Hilton

Accommodations
Country City Site
Canada London Air show
Canada Mount Logan
UK London Buckingham
UK London Hyde Park

Sites

335

SELECT *
FROM Accommodations
NATURAL FULL JOIN (Climates
NATURAL FULL JOIN Sites)

Country City Climate Hotel Stars Site
Canada Toronto Plaza 4
Canada London diverse Ramada 3 Air Show
Canada diverse Mount Logan
UK London temperate Buckingham
UK London temperate Hyde Park
Bahamas Tropical
Bahamas Nassau Hilton

Result

Example from: Cohen, Fadida, Kanza, Kimelfeld, Sagiv. "Full Disjunctions: Polynomial-Delay Iterators in Action", VLDB 2006. http://vldb.org/conf/2006/p739-cohen.pdf
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
http://vldb.org/conf/2006/p739-cohen.pdf
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

239Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Data Sources on Tourist Information

Country Climate
Canada diverse
Bahamas tropical
UK temperate

Climates
Country City Hotel Stars
Canada Toronto Plaza 4
Canada London Ramada 3
Bahamas Nassau Hilton

Accommodations
Country City Site
Canada London Air show
Canada Mount Logan
UK London Buckingham
UK London Hyde Park

Sites

335

SELECT *
FROM Accommodations
NATURAL FULL JOIN (Climates
NATURAL FULL JOIN Sites)

Country City Climate Hotel Stars Site
Canada Toronto Plaza 4
Canada London diverse Ramada 3 Air Show
Canada diverse Mount Logan
UK London temperate Buckingham
UK London temperate Hyde Park
Bahamas Tropical
Bahamas Nassau Hilton

Result

Example from: Cohen, Fadida, Kanza, Kimelfeld, Sagiv. "Full Disjunctions: Polynomial-Delay Iterators in Action", VLDB 2006. http://vldb.org/conf/2006/p739-cohen.pdf
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
http://vldb.org/conf/2006/p739-cohen.pdf
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

240Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Full disjunction

Country Climate
Canada diverse
Bahamas tropical
UK temperate

Climates
Country City Hotel Stars
Canada Toronto Plaza 4
Canada London Ramada 3
Bahamas Nassau Hilton

Accommodations
Country City Site
Canada London Air show
Canada Mount Logan
UK London Buckingham
UK London Hyde Park

Sites

335

SELECT *
FROM FULL DISJUNCTION(Climates,
(Accommodations, Sites) Country City Climate Hotel Stars Site

Canada Toronto diverse Plaza 4
Canada London diverse Ramada 3 Air Show
Canada diverse Mount Logan
UK London temperate Buckingham
UK London temperate Hyde Park
Bahamas Nassau tropical Hilton

Result

FD: variation of the join operator that
maximally combines join consistent tuples
from connected relations, while preserving
all information in the relations.

Not available in SQL! We may discuss later
in class in more detail (or skip this year)
Example from: Cohen, Fadida, Kanza, Kimelfeld, Sagiv. "Full Disjunctions: Polynomial-Delay Iterators in Action", VLDB 2006. http://vldb.org/conf/2006/p739-cohen.pdf
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
http://vldb.org/conf/2006/p739-cohen.pdf
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

241Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Full disjunction: definition

Country Climate
Canada diverse
Bahamas tropical
UK temperate

Climates
Country City Hotel Stars
Canada Toronto Plaza 4
Canada London Ramada 3
Bahamas Nassau Hilton

Accommodations
Country City Site
Canada London Air show
Canada Mount Logan
UK London Buckingham
UK London Hyde Park

Sites

335

Country City Climate Hotel Stars Site
Canada Toronto diverse Plaza 4
Canada London diverse Ramada 3 Air Show
Canada diverse Mount Logan
UK London temperate Buckingham
UK London temperate Hyde Park
Bahamas Nassau tropical Hilton

Result

Example from: Cohen, Fadida, Kanza, Kimelfeld, Sagiv. "Full Disjunctions: Polynomial-Delay Iterators in Action", VLDB 2006. http://vldb.org/conf/2006/p739-cohen.pdf

• Two tuples (max one from each relation) are
join consistent if they agree on common
attributes, e.g. t1/t2, t3/t4. A set of tuples is
join consistent if every pair is join consistent.

• Set of tuples (max one from each relation) is
connected if the schema is connected, thus
share attributes

• A tuple is in the Full disjunction if it is the
inner join from tuples that are connected, join
consistent, and there is no superset with both
conditions (related to "subsumption").

t1

t3

t2

t4

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
http://vldb.org/conf/2006/p739-cohen.pdf
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

