Updated 1/18/2023

Topic 1: Data models and query languages
Unit 1: SQL (continued)
Lecture 3

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp23)

https://northeastern-datalab.github.io/cs7240/sp23/
1/17/2023

131

https://northeastern-datalab.github.io/cs7240/sp23/

Pre-class conversations

e Last class summary
« New class members
e Intended extended focus on query languages

e First scribe arrived, | will comment Friday

— Secondary posting of class scribes to Piazza (optionally anonymous). | will
comment on both Canvas and Piazza

e Today:
— SQL continued

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 132

https://northeastern-datalab.github.io/cs7240/

HOME CALENDAR PROJECT

PRELIMINARY

CS 7240: Topics and approximate agenda (Spring'23)

This schedule will be updated regularly as the class progresses. Check back frequently. I will usually post lecture slides by the end of
the day following a lecture (thus the next day). I post them here on this website (or in Canvas if I think they are not yet ready to be
released in public). Please also check our DATA lab seminar for talks of interest.

Topic 1: Data Models and Query Languages Topic 3: Efficient Query Evaluation & Factorized Representations

. i E : i) cast Database de 23@N Pas
¢ Lecture 1 (Tue 1/10): Course introduction / T1-U1 SQL / PostgreSQL setup / SQL Activities opemg break (Tue /7, Bl 8/ 10: Naethwast Dutabase oy 200 8 Northeastern)
. Lecture 17 (Tue 3/14): T3-U1 Acyclic Queries
Lecture 2 (Fri 1/13): T1-U1 SQL

Lecture 18 (Fri 3/17): T3-U1 Acyclic Queries
Lecture 3 (Tue 1/17): T1-U1 SQL :

. ‘) Lecture 19 (Tue 3/21): T3-U2 Cyclic Queries
Lecture 4 (Fri 1/20): T1-U2 Logic & Relational Calculus Lecture 20 (Fri 3/24): T3-U2 Cyclic Queries
Lecture 5 (Tue 1/24): T1-U1 Logic & Relational Calculus Lecture 21 (Tue 3/28): T3-U2 Cyclic Queries
Lecture 6 (Fri 1/27): T1-U3 Relational Algebra & Codd's Theorem

Lecture 22 (Fri 3/31): T3-U2 Cyclic Queries
Lecture 7 (Tue 1/31): T1-U3 Relational Algebra & Codd's Theorem Lecture 23 (Tue 4/4): T3-U3 Factorized Representations
Lecture 8 (Fri 2/3): T1-U4 Datalog & Recursion

Lecture 24 (Fri 4/7): T3-U4 Optimization Problems & Top-k
Lecture 9 (Tue 2/7): T1-U4 Datalog & Recursion Lecture 25 (Tue 4/11): T3-U4 Optimization Problems & Top-k
Lecture 10 (Tue 2/10): T1-U4 Datalog & Recursion

Topic 4: Normalization, Information Theory & Axioms for Uncertainty

¢ Lecture: Normal Forms & Information Theory

Topic 2: Complexity of Query Evaluation & Reverse Data Management
e Lecture 11 (Tue 2/14): T2-U1 Conjunctive Queries

Lecture 12 (Fri 2/17): T2-U1 Conjunctive Queries

Lecture 13 (Tue 2/21): T2-U2 Beyond Conjunctive Queries

» Lecture: Axioms for Uncertainty

o Lecture 14 (Fri 2/24): T2-U3 Provenance Topic 5: Linear Algebra & Iterative Graph Algorithms
¢ Lecture 15 (Tue 2/28): T2-U3 Provenance * Lecture: Graphs & Pmear Algebra
e Lecture 16 (Fri 3/3): T2-U4 Reverse Data Management * Lectiie: Compitation Geaphs

Project presentations

¢ Lecture 26 (Fri 4/14): P4 Project presentations
¢ Lecture 27 (Tue 4/18): P4 Project presentations

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 133

https://northeastern-datalab.github.io/cs7240/

Outline: T1-U1:SQL

— Nested queries (Subqgueries)

A natural guestion
Q,: Find all companies that make only products with price < 25

« How can we unnest (no GROUP BY) the universal quantifier query ?

SELECT ...
FROM .. ?
WHERE ... o

Source: Dan Suciu
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 135

https://northeastern-datalab.github.io/cs7240/

Queries that must be nested

e Definition: A query Q is if:
— Whenever we add tuples to one or more of the tables...

— ... the answer to the query cannot contain fewer tuples ™
e Fact: all unnested queries are monotone
— Proof: using the "nested for loops" semantics

e Fact: Query with IS not monotone
— Add one tuple violating the condition. Then "all" returns fewer tuples

e Consequence: we cannot unnest a query with a universal quantifier

Source: Dan Suciu
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 136

https://northeastern-datalab.github.io/cs7240/

Understanding
nested queries

with Relational Diagrams
and QueryVis

The sailors database Sailor (sid, sname, rating, age)

Reserves (sid, bid, day)
Boat (bid, bname, color)

V \eseWOat

sid | sname rating | age sid _bid_| bname color
22 | Dustin | 7 45.0 22 | 101 10/ 10/98 101 | Interlake | blue
29 | Brutus | 1 33.0 22 | 102 | 10/10/98 102 | Interlake | red
31 | Lubber | 8 55.5 22 | 103 | 10/8/98 103 | Clipper green
32 | Andy 8 25.5 22 | 104 | 10/7/98 104 | Marine red
58 | Rusty 10 35.0 31 | 102 | 11/10/98
64 Horatio | 7 35.0 31 103 11/6/98 Figure 5.3 An Instance B1 of Boats
71 | Zorba 10 16.0 31 | 104 | 11/12/98
74 | Horatio | 9 35.0 64 | 101 | 9/5/98
85 | Art 3 25.5 64 | 102 | 9/8/98
95 | Bob 3 63.5 74 | 103 | 9/8/98

Figure 5.1 An Instance S3 of Sailors Figure 5.2 An Instance R2 of Reserves

Schema and several of the following queries taken from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

138

https://northeastern-datalab.github.io/cs7240/
http://pages.cs.wisc.edu/~dbbook/

N eSted q ue ry 1 Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Q: ?

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid IN sname sname bid bid
(SELECT R.sid
FROM Reserves R
WHERE R.bid IN
(SELECT B.bid
FROM Boat B
WHERE B.color = 'red'))

sid sid color = 'red'

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 139

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

Nested query 1

Q: Find the names of sailors who have reserved a red boat.

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid IN
(SELECT R.sid
FROM Reserves R
WHERE R.bid IN
(SELECT B.bid
FROM Boat B
WHERE B.color = 'red'))

SELECT

sSname

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)

Boat (bid, bname, color)

Sailor

sSname

bid bid

sid

sid

color = 'red'

{S.sname | 3S€Sailor.(AREReserves.(R.sid=S.sid /A IBEBoat.(B.bid=R.bid A B.color="red')))}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

140

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

Nested query 1

Q: Find sailors who have reserved a red boat.

SELECT DISTINCT S.sname

FROM Sailor S
WHERE EXISTS
(SELECT R.sid

FROM Reserves R

WHERE R.s1d=S.sid

AND EXISTS
(SELECT B.bid
FROM Boat B
WHERE B.bid
AND B.color

R.bid
'red'))

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

sSname sSname

bid bid

sid sid color = 'red'

This is an alternative way to write the
previous duery with BXISTS aud
correlated vested queries that
matches the Relatioval Calcnlus below.

{S.sname | 3S€Sailor.(AREReserves.(R.sid=S.sid /A IBEBoat.(B.bid=R.bid A B.color="red')))}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 141

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

Nested query 2
?

Q: m

SELECT DISTINCT S.sname
FROM Sailor S
WHERE EXISTS
(SELECT R.sid
FROM Reserves R
WHERE R.sid=S.sid
AND NOT EXISTS
(SELECT B.bid
FROM Boat B
WHERE B.bid
AND B.color

R.bid
'red'))

SELECT

sSname

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Sailor

sSname

———————————

bid

sid

sid

- o o - - —

Dashed lines represent
not exists A

-

{S.sname | 3SESailor.(3REReserves.(R.sid=S.sid A ZABEBoat.(B.bid=R.bid A B.color='red')))}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

142

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

Nested query 2 Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Q: Find sailors who have reserved a boat that is not red.

SELECT DISTINCT S.sname s |
FRon Sailor S =
WHERE EXISTS _ sname sname bid i bid :
(SELECT R.sid sid sid i color = 'red' i
FROM Reserves R S —— '
WHERE R.sid=S.sid /
AND NOT EXISTS Dashed lives represent
(SELECT B.bid not exists A
FROM Boat B
WHERE B.bid = R.bid They must have reserved at least one boat
AND B.color = 'red')) in another color. They can also have reserved

a red boat in additiow.

{S.sname | 3SESailor.(3REReserves.(R.sid=S.sid A ZABEBoat.(B.bid=R.bid A B.color='red')))}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 143

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

Nested query 3
?

Q: m

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS
(SELECT R.sid
FROM Reserves R
WHERE R.sid=S.sid

AND EXISTS
(SELECT B.bid
FROM Boat B
WHERE B.bid = R.bid
AND B.color = 'red'))

SELECT

sSname

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Sailor

sSname

o o - o e e o = oy

bid

sid

— o o — —

- - - -

——————————————————————

{S.sname | 3SESailor.(AREReserves.(R.sid=S.sid A IBEBoat.(B.bid=R.bid A B.color='red')))}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

144

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

Nested query 3

Q: Find sailors who have not reserved a red boat.

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS
(SELECT R.sid
FROM Reserves R
WHERE R.sid=S.sid

AND EXISTS
(SELECT B.bid
FROM Boat B
WHERE B.bid = R.bid
AND B.color = 'red'))

SELECT

sSname

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Sailor

sSname

o o - o e e o = oy

bid

sid

— o o — —

- - - -

——————————————————————

They cav have reserved D or wore
boats in another color, but must
not have reserved awy red boat.

{S.sname | 3SESailor.(AREReserves.(R.sid=S.sid A IBEBoat.(B.bid=R.bid A B.color='red')))}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

145

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

Quiz: Dustin?

sid | sname | rating | age sid

22 [Dustin | 7 45.0 22 [101 [10 /10/98
29 | Brutus | 1 33.0 22 | 102 | 10/10/98
31 | Lubber | 8 55.5 22 | 103 | 10/8/98
32 | Andy 8 25.5 22 | 104 | 10/7/98
58 | Rusty 10 35.0 31 | 102 | 11/10/98
64 | Horatio | 7 35.0 31 | 103 | 11/6/98
71 | Zorba 10 16.0 31 | 104 | 11/12/98
74 | Horatio | 9 35.0 64 | 101 | 9/5/98
85 | Art 3 25.5 64 | 102 | 9/8/98
95 | Bob 3 63.5 74 | 103 | 9/8/98

Figure 5.1 An Instance S3 of Sailors

Figure 5.2 An Instance R2 of Reserves

Q2: Find sailors who have reserved a boat that is not red.

Q3: Find sailors who have not reserved a red boat.

\eseWOat

bid

bname

color

101

Interlake

blue

102

Interlake

red

103

Clipper

green

104

Marine

red

Figure 5.3 An Instance B1 of Boats

Should Pustin be in the ontput
of either of the +wo queries?

?

Schema and several of the following queries taken from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

146

https://northeastern-datalab.github.io/cs7240/
http://pages.cs.wisc.edu/~dbbook/

Quiz: Dustin?

Sailor \Rese%s/—\?oat

sid | sname rating | age sid | bid | day _bid_| bname color
22 [Dustin | 7 45.0 22 [101 | 10/10/98 101 | Interlake | blue
29 | Brutus | 1 33.0 22 | 102 | 10/10/98 102 | Interlake | red
31 | Lubber | 8 55.5 22 | 103 | 10/8/98 103 | Clipper | green
32 | Andy 8 25.5 22 | 104 | 10/7/98 104 | Marine red
58 | Rusty | 10 35.0 31 [1027] 11/10/98

64 | Horatio | 7 35.0 31 103 11/6/98 Figure 5.3 An Instance B1 of Boats
71 | Zorba 10 16.0 31 | 104 | 11/12/98

74 | Horatio | 9 35.0 64 | 101 | 9/5/98

85 | Art 3 25.5 64 | 102 | 9/8/98

95 | Bob 3 63.5 74 | 103 | 9/8/98

Figure 5.1 An Instance S3 of Sailors

Figure 5.2 An Instance R2 of Reserves

Q2: Find sailors who have reserved a boat that is not red.

Q3: Find sailors who have not reserved a red boat.

Should Pustin be in the ontput
of either of the +wo queries?

Yes!
Nol

Schema and several of the following queries taken from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

147

https://northeastern-datalab.github.io/cs7240/
http://pages.cs.wisc.edu/~dbbook/

N eSted q ue ry 4 Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)

Boat (bid, bname, color)

Q: .

SELECT DISTINCT S.sname pmmmmmmmes SmTIIIIIIIA

FRON Sailor S o

WHERE NOT EXIS_TS shame sname E bid i bid i:
(SELECT R.sid sid : sid E color = "red' Ei
FROM Reserves R \ ‘ A

WHERE R.sid=S.sid

AND NOT EXISTS
(SELECT B.bid
FROM Boat B
WHERE B.bid
AND B.color

R.bid
'red'))

{S.sname | ISESailor.(AREReserves.(R.sid=S.sid A ZABEBoat.(B.bid=R.bid A B.color='red')))}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 148

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

Nested query 4 Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
'Boat (bid, bname, color)

They can have reserved D or wore boats v red, just vo other colo

= Find sailors who have reserved only red boats
Q: Find sailors who have not reserved a boat that is not red.

SELECT DISTINCT S.sname T TTTTTIIIIENN
FROM Sailor S Yrescocs I o |
WHERE NOT EXIS_TS sname sname E bid i bid i:
(SELECT R.sid sid : sid i color = 'red' ii
FROM Reserves R N —
WHERE R.sid=S.sid
AN? SEE-IIE- C_IIE_XéS'IIJ'Si q They can have reserved D or more
] boats n red, just vo other color.
FROM Boat B
WHERE B.bid = R.bid
AND B.color = 'red'))

{S.sname | ISESailor.(AREReserves.(R.sid=S.sid A ZABEBoat.(B.bid=R.bid A B.color='red')))}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 149

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

Nested query 4 (universal) Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
'Boat (bid, bname, color)

They can have reserved D or wore boats v red, just vo other colo

= Find sailors who have reserved only red boats
Q: Find sailors who have not reserved a boat that is not red.

SELECT DISTINCT S.sname T TTTTTIIIIENN
RO Sailor S ool oo |
WHERE NOT EXIS_TS sname sname E bid i bid i:
(SELECT R.sid sid : sid i color = 'red' ii
FROM Reserves R N —
WHERE R.sid=S.sid
AN? SII\EIE-IIE- C_IIE_XéS'IIJ'Si q They can have reserved D or more
] boats n red, just vo other color.
FROM Boat B
WHERE B.bid = R.bid
AND B.color = 'red'))

{S.sname | 3S€Sailor.(VREReserves.(R.sid=S.sid - IBEBoat.(B.bid=R.bid A B.color='red')))}

{S.sname | ISESailor.(AREReserves.(R.sid=S.sid A ZABEBoat.(B.bid=R.bid A B.color='red')))}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 150

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

Nested query 4 (another variant) Sailor (sid, sname, rating, age)

Reserves (sid, bid, day)
Boat (bid, bname, color)

= Find sailors who have reserved only red boats
Q: Find sailors who have not reserved a boat that is not red.

SELECT DISTINCT S.sname TTTTTTT I \
FROM Sailor S ¥ Reseres s
WHERE NOT EXIS_TS sname sname E bid bid :

(SELECT R.sid sid : sid color<>'red' i

FROM Reserves R
WHERE R.sid=S.sid

AN?SE)IEE2$SB bid They cav have reserved D or wore

FROM Boat B boats in red, just vo other color.

WHERE B.Dbid = R: bid . Equivalence with previous variant
AND B.color <> 'red')) only becanse of FK-PK constraint!

{S.sname | 3SESailor.(AREReserves.(R.sid=S.sid A IBEBoat.(B.bid=R.bid A B.color<>'red')))}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 151

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

N eSted q ue ry 5 Sailor (sid, sname, rating, age)

Reserves (sid, bid, day)
Boat (bid, bname, color)

?

Q: .

SELECT DISTINCT S.sname R et S \

FROM Sailor S e

WHERE NOT EXIs sname sname| h| bid bid :
(SELECT B.bid sid :i sid i color = red' i

FROM

WHERE B.color

AND NOT EXISTS
(SELECT R.bid
FROM Reserves |R
WHERE R.bid =
AND R.sid = S.sid))

{S.sname | 3S€Sailor.(ABEBoat.(B.color='red' A ZAREReserves.(B.bid=R.bid A R.sid=S.sid)))}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

152

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

Reserves (sid, bid, day) 9
Boat (bid, bname, color)

= Find sailors who have reserved all red boats
Q: Find sailors so there is no red boat that is not reserved by the sailor.

SELECT DISTINCT S.sname gFEIsIsIzsooToTomomoos \
FRON Sailor {10 = |
WHERE NOT EXIs sname sname| | bid | bid :

(SELECT B.bid sid :i sid i color = "red' i

FROM
WHERE B.color
AND NOT EXISTS

T don't know of a way to write that query

(SELECT R.bid with IN instead of BEXISTS and without av
FROM Reserves |R explicit cross product between sailors and
WHERE R.bid = red boats. (WMore on that in a moment and
AND R.sid = S.sid)) also later when we discuss this query iv

relatioval algebra.)

{S.sname | 3S€Sailor.(ABEBoat.(B.color='red' A ZAREReserves.(B.bid=R.bid A R.sid=S.sid)))}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 153

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

Nested query 5 (universal) Sailor (sid, sname, rating, age) | %tu. 5"
Reserves (sid, bid, day) 9
Boat (bid, bname, color)

= Find sailors who have reserved all red boats
Q: Find sailors so there is no red boat that is not reserved by the sailor.

SELECT DISTINCT S.sname gFEIsIsIzsooToTomomoos \
FRON Sailor {10 = |
WHERE NOT EXIs sname sname| | bid | bid :

(SELECT B.bid sid :i sid i color = "red' i

FROM
WHERE B.color
AND NOT EXISTS

T don't know of a way to write that query

(SELECT R.bid with IN instead of BEXISTS and without av
FROM Reserves |R explicit cross product between sailors and
WHERE R.bid = red boats. (WMore on that in a moment and
AND R.sid = S.sid)) also later when we discuss this query iv

relatioval algebra.)

{S.sname | 3S€Sailor.(VBEBoat.(B.color='red' - IREReserves.(B.bid=R.bid A R.sid=S.sid))))}

{S.sname | 3S€Sailor.(ABEBoat.(B.color='red' A ZAREReserves.(B.bid=R.bid A R.sid=S.sid)))}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 154

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

Nested query 5 (w/o correlation)

= Find sailors who have reserved all red boats

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Q: Find sailors so there is no red boat that is not reserved by the sailor.

SELECT DISTINCT S.sname
FROM Sailor S

WHERE S.sid NOT IN SELECT

(SELECT S2.sid

sSname

o m - ——

11
Sailor Sailor

FROM Sailor S2,

WHERE B.color = 'red'

AND (S2.sid,) NOT IN
(SELECT R.sid, R.bid
FROM Reserves R))

1
sid H sid , sid
|

1
sname| i bid
e 1%
| bid

————————————————————

—-—

{S.sname | 3SESailor.(VS2€Sailor, VBEBoat.(B.color="red' A S2.sid=S.sid - IREReserves.(B.bid=R.bid A R.sid=S2.sid))))}

{S.sname | IS€Sailor.(AS2€Sailor, ZABEBoat.(B.color="red"' A S2.sid=S.sid A ZREReserves.(B.bid=R.bid A R.sid=S.sid)))}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

155

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

Nested query 5 (w/o correlation) Sailor (sid, sname, rating, age)

Reserves (sid, bid, day)
Boat (bid, bname, color)

= Find sailors who have reserved all red boats
Q: Find sailors so there is no red boat that is not reserved by the sailor.

SELECT DISTINCT S.sname i U Y
FROM Sailor IR [
WHERE NOT EXISTS SELECT sid [+ sid P—{ sid |
(SELECT .* sname sname | i | bid i
FROM Sailor S2, f / :
WHERE B.color = 'red' 1 oid :
AND S.sid = S2.sid 1 porvwmron | ;
AND NOT EXISTS I‘Il-_-_-_-_-_-_-_-_-_:’l ___________ /
(SELECT =
FROM Reserves R
WHERE = R.bid

AND S2.sid = R.sid))

{S.sname | 3SESailor.(VS2€Sailor, VBEBoat.(B.color="red' A S2.sid=S.sid - IREReserves.(B.bid=R.bid A R.sid=S2.sid))))}

{S.sname | IS€Sailor.(AS2€Sailor, ZABEBoat.(B.color="red"' A S2.sid=S.sid A ZREReserves.(B.bid=R.bid A R.sid=S.sid)))}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 156

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

Towards SQL patterns

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Sailors who have not reserved a red boat

Sailors who reserved only red boats

Sailors who reserved all red boats

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(

SELECT

FROM Reserves R, Boat B

SQL WHERE R.sid = S.sid
AND R.bid = B.bid
AND B.color = 'red')

SELECT DISTINCT S.sname

FROM Sailor S

WHERE NOT EXISTS(
SELECT x
FROM Reserves R
WHERE R.sid = S.sid
AND NOT EXISTS(

SELECT =

FROM Boat B

WHERE R.bid = B.bid
AND B.color = 'red'))

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(
SELECT
FROM Boat B
WHERE B.color = 'red'
AND NOT EXISTS(
SELECT
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

157

https://northeastern-datalab.github.io/cs7240/

Towards SQL patterns

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Sailors who have not reserved a red boat

Sailors who reserved only red boats

Sailors who reserved all red boats

SELECT DISTINCT S.sname

FROM Sailor S

WHERE NOT EXISTS(
SELECT

FROM Reserves R, Boat B

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(
SELECT x
FROM Reserves R

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(
SELECT x
FROM Boat B

SQL WHERE R.sid = S.sid WHERE R.sid = S.sid WHERE B.color = 'red'
AND R.bid = B.bid AND NOT EXISTS(AND NOT EXISTS(
AND B.color = 'red') SELECT x* SELECT x*
FROM Boat B FROM Reserves R
WHERE R.bid = B.bid WHERE R.bid = B.bid
AND B.color = 'red')) AND R.sid = S.sid))
-‘ eon HNEEES; flmeccres ll oo HNERES freserves Jll—coat I}
RD sname [—shame : bid bid : sname [—|shame :: bid : bid : sname [—{shame : bid t bid ::
sid : sid color = 'red' : sid :: sid : color = 'red' : sid : sid :\color='red' ::
\ 7 W e - 7 A 7

- e e o o o e o o o -

e e o o o e e o o

e e o o o e e o o

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

not only all
Sailors
. have not reserved reserved only reserved all
renting
a red boat red boats red boats
boats

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

159

https://northeastern-datalab.github.io/cs7240/

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Student (sid, sname)
Takes (sid, cid, semester)
Course (cid, cname, department)

not only all
Sailors
. have not reserved reserved only reserved all
renting
a red boat red boats red boats
boats
Students
, took no art took only art took all art
taking
class classes classes
classes

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

160

https://northeastern-datalab.github.io/cs7240/

Reserves (sid, bid, day)
Boat (bid, bname, color)

Sailor (sid, sname, rating, age) || Student (sid, sname)

Takes (sid, cid, semester)
Course (cid, cname, department)

Actor (aid, aname)
Plays (aid, mid, role)

Movie (mid, mname, director)

not only all
Sailors
. have not reserved reserved only reserved all
renting
a red boat red boats red boats
boats
n
Stu.de ts took no art took only art took all art
taking
class classes classes
classes
Actor . . :
lctoﬂs - did not play in a played only played in all
i]f)x\//liei ! Hitchcock movie Hitchcock movies Hitchcock movies

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

161

https://northeastern-datalab.github.io/cs7240/

Sailor (sid, sname, rating, age)

Reserves (sid, bid, day)
Boat (bid, bname, color)

Student (sid, sname)
Takes (sid, cid, semester)
Course (cid, cname, department)

Actor (aid, aname)
Plays (aid, mid, role)

Movie (mid, mname, director)

not

only

all

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(

FROM Student S
WHERE NOT EXISTS(
" SELECT *
é; FROM Takes T, Class C
D WHERE T.sid = S.sid
*5> AND T.cid = C.bid
“

AND C.department = art')

FROM Student S
WHERE NOT EXISTS(
SELECT x*
FROM Takes T
WHERE T.sid = S.sid
AND NOT EXISTS(
SELECT x*
FROM Class C
WHERE T.cid = C.cid
AND C.department= 'art'))

SELECT * SELECT * SELECT *
é? FROM Reserves R, Boat B FROM Reserves R FROM Boat B
Q§? WHERE R.sid = S.sid WHERE R.sid = S.sid WHERE B.color = 'red'
(o) AND R.bid = B.bid AND NOT EXISTS(AND NOT EXISTS(
) AND B.color = 'red') SELECT * SELECT *
FROM Boat B FROM Reserves R
WHERE R.bid = B.bid WHERE R.bid = B.bid
AND B.color = 'red')) AND R.sid = S.sid))
SELECT DISTINCT S.sname SELECT DISTINCT S.sname SELECT DISTINCT S.sname

FROM Student S
WHERE NOT EXISTS(
SELECT *
FROM Class C
WHERE C.department = ‘'art'
AND NOT EXISTS(
SELECT *
FROM Takes T
WHERE T.cid = C.cid
AND T.sid = S.sid))

SELECT DISTINCT A.aname
FROM Actor A
WHERE NOT EXISTS(

SELECT *

& FROM Plays P, Movie M
) WHERE P.aid = A.aid
O AND P.mid = M.mid

v

AND M.director= 'Hitchcock')

SELECT DISTINCT A.aname
FROM Actor A
WHERE NOT EXISTS(
SELECT %
FROM Plays P
WHERE P.aid = A.sid
AND NOT EXISTS(
SELECT %
FROM Movie M
WHERE P.mid = M.mid
AND M.director= 'Hitchcock"'))

SELECT DISTINCT A.aname
FROM Actor A
WHERE NOT EXISTS(
SELECT %
FROM Movie M
WHERE M.director= 'Hitchcock'
AND NOT EXISTS(
SELECT %
FROM Plays P
WHERE P.mid = M.m
AND P.aid = A.aid

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

162

https://northeastern-datalab.github.io/cs7240/

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Student (sid, sname)
Takes (sid, cid, semester)
Course (cid, cname, department)

Actor (aid, aname)
Plays (aid, mid, role)
Movie (mid, mname, director)

not only all
{" ------------- \I {;':::::{ ------- \I {" ------ p -_-_-_-_-_-_:I\I
I I I
§ sname [—|shame]| i bid bid : sname [—sname]| il bid : bid : sname [—|shame| | bid | bid ::
I
& sid | sid color = "red'| | sid | sid | |color = red'| | sid | sid t|color = 'red| 1}
N\ _____ / _ —————————— 2 L e e / A N oo ed
(L > {;'::::\ """""" > {" -==- '_'_'_'_'_-_'_'_'_:‘
| [SEEcT] [B s s cer i e | (o] e
§’ sname [—Isname| | cid [cid : sname [—|shame |: cid cid : sname [—sname| 1| cid —: cid |:
I I 1
<,§' sid + sid department="art'| 1 sid —:r sid |1 |department="art'| I sid fr1 sid : department="art' |1
\ ! W ! ‘e _==z==z=z=====Z
SRS S e s s s s R e S (T T T, EEZZIZZZIZZSy
Z;Q aname [—laname|, | mid [mid : aname [—laname :I mid T mid Il| aname [—janame : mid mid T
I I
N aid -:— aid | |director="Hitchcock' : aid -HI- aid : director="Hitchcock'| aid [aid |1|director="Hitchcock' ::
\ 7] | \ A
| . e - NS STy

https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

Logical SQL Patterns

are the building blocks of most SQL queries.

Patterns are very hard to extract from the SQL text.

A pattern can appear across different database schemas.
Think of queries like:

e Find sailors who reserved all red boats
e Find students who took all art classes

« Find actors who played in all movies by Hitchcock

For an early formal definition of relational query patterns see: https://arxiv.org/pdf/2203.07284
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

164

https://northeastern-datalab.github.io/cs7240/
https://arxiv.org/pdf/2203.07284

What does this query return ? Likes(drinker,beer)

SELECT Ll1.drinker
FROM Likes L1
WHERE not exists
(SELECT =
FROM Likes L2
WHERE Ll.drinker <> L2.drinker
AND not exists
(SELECT =
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT =
FROM Likes L4
WHERE L4.drinker = Ll.drinker
AND L4.beer = L3.beer))
AND not exists
(SELECT =
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT =
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

165

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

What does this query return 7 Likes(drinker,beer)

- o o o o . o = N

SELECT Ll1.drinker
FROM Likes L1
WHERE not exists
(SELECT =
FROM Likes L2
WHERE Ll.drinker <> L2.drinker
AND not exists
(SELECT =
FROM Likes L3

WHERE L3.drinker = L2.drinker
AND not exists
(SELECT =

FROM Likes L4 drinker drinker
WHERE L4.drinker = Ll.drinker
AND L4.beer = L3.beer)) ~ (
AND not exists
(SELECT =
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT =
FROM Likes L6
WHERE L6.drinker = L2.drinker Dl -
AND L6.beer= L5.beer))) JJJ

N
Relational Diagrams scoping
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 166

drinker | | beer i
beer /A//// drinker |

)
- mm e Em e Em em =,
——
- = e =,
i
=
)
w
—_———
i
=
)
w

drinker

N\
\

drinker drinker

beer beer

— Em o o o o o
— e o o o o

https://northeastern-datalab.github.io/cs7240/

Q: Finder drinkers with a uvique beer taste Likes(drinker, beer)

SELECT Ll1.drinker
FROM Likes L1
WHERE not exists
(SELECT =
FROM Likes L2
WHERE Ll.drinker <> L2.drinker
AND not exists
(SELECT =
FROM Likes L3

WHERE L3.drinker = L2.drinker
AND not exists
(SELECT =

FROM Likes L4 drinker drinker
WHERE L4.drinker = Ll.drinker
AND L4.beer = L3.beer)) ~ (
AND not exists
(SELECT =
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT =
FROM Likes L6
WHERE L6.drinker = L2.drinker Dl -
AND L6.beer= L5.beer))) JJJ

N
Relational Diagrams scoping
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 167

drinker | | beer i
beer /A//// drinker |

)
- mm e Em e Em em =,
——
- = e =,
i
=
)
w
—_———
i
=
)
w

drinker

N\
\

drinker drinker

beer beer

— Em o o o o o
— e o o o o

https://northeastern-datalab.github.io/cs7240/

Q: Finder drinkers with a uvique beer taste Likes(drinker, beer)

SELECT Ll1.drinker
FROM Likes L1
WHERE not exists
(SELECT =
FROM Likes L2
WHERE Ll.drinker <> L2.drinker
AND not exists
(SELECT =
FROM Likes L3

WHERE L3.drinker = L2.drinker

AND not exists
(SELECT = ,)
FROM Likes L4 drinker drinker
WHERE L4.drinker = Ll.drinker
AND L4.beer = L3.beer)) ~ /

AND not exists

(SELECT =

FROM Likes L5

WHERE L5. drinker = L1. drinker

AND not exists
(SELECT =
FROM Likes L6
WHERE L6.drinker = L2.drinker ST s s s -
AND L6.beer= L5.beer))) JJJ

N
Relational Diagrams scoping
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 168

beer I drinker

;
e B e e e s p e
e e e e

e Sam—a
= —
= =
=~ KO
o B:

@
\X___z
o .

o Es
o K
= R

drinker

A
\%

\

drinker

beer

beer

https://northeastern-datalab.github.io/cs7240/

Q: Finder drinkers with a uvique beer taste Likes(drinker, beer)

SELECT Ll1.drinker
FROM Likes L1
WHERE not exists

(SELECT =

FROM Likes L2 drinker beer
WHERE L1l.drinker <> L2.drinker ////// _
AND not exists beer drinker

~

(SELECT =
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT =
FROM Likes L4
WHERE L4.drinker = Ll.drinker
AND L4.beer = L3.beer)) -

AND not exists _

drinker

<>

drinker

drinker

(SELECT =

FROM Likes L5 . .
WHERE L5. drinker = L1. drinker drinker drinker
AND not exists beer beer

(SELECT =

FROM Likes L6

WHERE L6.drinker = L2.drinker

AND L6.beer= L5.beer))) JJJ
N

Relational Diagrams scoping
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 169

https://northeastern-datalab.github.io/cs7240/

Q: Finder drinkers with a unigue beer taste

=

—

=

—

SELECT Ll1.drinker
FROM Likes L1
WHERE not exists
(SELECT =
FROM Likes L2
WHERE Ll1l.drinker <>
AND not exists
(SELECT =
FROM Likes L3
WHERE L3.drinker =
AND not exists
(SELECT =
FROM Likes L4
WHERE L4.drinker
AND L4.beer = L3
AND not exists
(SELECT =
FROM Likes L5
WHERE L5. drinker
AND not exists
(SELECT =
FROM Likes L6

WHERE L6.drinker

AND L6.beer= L5.
N

QueryVis scoping

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

L2.drinker

L2.drinker

drinker

drinker

= L1l.drinker
.beer)) —

= L1. drinker

= L2.drinker
beer))) JJ

N
Relational Diagrams scoping

Likes(drinker,beer)

drinker

_—— O - -

— e . oy

drinker

beer

drinker

drinker

beer

beer

170

https://northeastern-datalab.github.io/cs7240/

Q: Finder drinkers with a unigue beer taste

~ SELECT L1l.drinker
_ FROM Likes L1
WHERE not exists
(SELECT =
FROM Likes L2
. WHERE Ll.drinker <>
AND not exists
B (SELECT x*
FROM Likes L3
- WHERE L3.drinker =
AND not exists
B (SELECT =
FROM Likes L4
WHERE L4.drinker
- AND L4.beer = L3
AND not exists
(SELECT =
FROM Likes L5
- WHERE L5. drinker
AND not exists
(SELECT =
FROM Likes L6
WHERE L6.drinker
- AND L6.beer= L5.

N
QueryVis scoping

—

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

L2.drinker

L2.drinker

drinker

drinker

= L1l.drinker
.beer)) -

= L1. drinker

= L2.drinker
beer))) JJ

N
Relational Diagrams scoping

Likes(drinker,beer)

drinker

— e . - oy

drinker

7

%4

beer

Zﬂ drinker

N\

drinker

beer

>

beer

171

https://northeastern-datalab.github.io/cs7240/

https://demo.queryvis.com QueryViz

Your Input|

Iuput: Schema

Specify or choose a pre-defined schema help
' Employee and Department 23
EMP (eid,name,sal,did)
DEPT(did,dname, mgr)
IV]PM+ QMar\»{ Specify or choose an SQL Query help
| Query 8 43

SELECT el.name

FROM EMP el, EMP e2, DEPT d
WHERE el.did = d.did

AND d.mgr = e2.eid

AND el.sal > e2.sal

. . . Submit
Output: Visualization

QueryViz Resu1t|

Danaparamita, G. [EDBT'11] g

mer .
name name = T~ eid

https://queryvis.com/ -~ p_
http://www.youtube.com/watch?v=kVFnQRGAQIs

Source: Danaparamita, Gatterbauer: QueryViz: Helping users understand SQL queries and their patterns. EDBT 2011. https://doi.org/10.14778/3402755.3402805

See also: Gatterbauer, Dunne, Jagadish, Riedewald: Principles of Query Visualization. IEEE Debull 2023. http://sites.computer.org/debull/A22sept/p47.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 172

https://northeastern-datalab.github.io/cs7240/
https://demo.queryvis.com/
http://www.youtube.com/watch?v=kVFnQRGAQls
https://queryvis.com/
https://doi.org/10.14778/3402755.3402805
http://sites.computer.org/debull/A22sept/p47.pdf

Amazon Turk user study with SQL users Leventidis+ [SIGMOD'20]

Each bar below corresponds to one participant (42 bars/participants in total)

<+«— (QV faster SQL faster =——> <+— (QV fewer errors SQL fewer errors =——»

' 36% of users
'with less
“errors using
Qv

' 38% of users
'with same

‘errors using
Qv

' 71% of users
. faster with QV

Mean A =-17.3s Mean A = -0.08

' 29% of users

' 26% of users
' faster with SQL

- with more

- errors using

Qv

'-1.0 08 -06 -04 -02 00 02 04 06 08
QV - SQL Error Rate Differences

Source: Leventidis, Zhang, Dunne, Gatterbauer, Jagadish, Riedewald: QueryVis: Logic-based Diagrams help Users Understand Complicated SQL Queries Faster. SIGMOD 2020. https://doi.org/10.1145/3318464.3389767

"-120 2100 -80 -60 -40 -20
QV - SQL Time Differences (seconds)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3318464.3389767

C l © & https://db.khoury.northeastern.edu l 120% vos v YOIN B ¢

Northeastern University

DATA Lab @ Northeastern
Scalable Management and Analysis of Big Data] /

Home People Research Opportunities Recent Publications Activities [YouTube Channel

DATA LAB @ NORTHEASTERN

The Data Lab @ Northeastern University is one of the leading research groups in data management and data
systems. Our work spans the breadth of data management, from the foundations of data integration and curation,
to large-scale and parallel data-centric computing. Recent research projects include query visualization, data
provenance, data discovery, data lake management, and scalable approaches to perform inference over uncertain

THE STORY OF QUERYVIS; NOT JUST
ANOTHER VISUAL PROGRANMMIENG

https://queryvis.com LANGUAGE

TUE 06.30.20 / YSABELLE KEMPE

https://www.khoury.northeastern.edu/the-story-of-queryvis-not-just-another-visual-programming-language/

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 174

https://northeastern-datalab.github.io/cs7240/
https://www.khoury.northeastern.edu/the-story-of-queryvis-not-just-another-visual-programming-language/
https://queryvis.com/

Outline: T1-U1: SQL
e SQL

— Schema, keys, referential integrity

— Joins

— Aggregates and grouping

— Nested queries (Subqgueries)

— Theta Joins

— Nulls & Outer joins

— Top-k

— [Recursion: moved to T1-U4: Datalog]

190

Theta joins

What do these queries compute?

N(-|o [T

SELECT R.a,U.aasb
FROM R, U ?
WHERE R.a<U.a n

SELECT R.a,U.aasb

FROM R, U j> 9,
WHERE R.a>=U.a :

A Theta-join allows for arbitrary comparison relationships (such as >).
An equijoin is a theta join using the equality operator.

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 191

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Theta joins

What do these queries compute?

N(-|o [T

SELECT R.a,U.aasb

NN
Alw|ldh|lw|(N|o

FROM R, U j>
WHERE R.a<U.a

SELECT R.a,U.aasb

FROM R, U j> ?
WHERE R.a>=U.a ¥

A Theta-join allows for arbitrary comparison relationships (such as >).
An equijoin is a theta join using the equality operator.

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 192

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Theta joins

What do these queries compute?

SELECT R.a,U.aasb
FROM R, U
WHERE R.a<U.a

SELECT R.a,U.aasb
FROM R, U
WHERE R.a>=U.a

A Theta-join allows for arbitrary comparison relationships (such as >).
An equijoin is a theta join using the equality operator.

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

NINI A2

AW |IWOIN|T

Q

O

R U
a a
1 2
2 3
4
Think about +hese +wo

queries as a partition of
the Cartesian product

193

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Outline: T1-U1: SQL
e SQL

— Schema, keys, referential integrity

— Joins

— Aggregates and grouping

— Nested gueries (Subgueries)

— Theta Joins

— Nulls & QOuter joins

— Top-k

— [Recursion: moved to T1-U4: Datalog]

195

3-valued logic example

e Three logicians walk into a bar. The bartender asks:
"Do all of you want a drink?"

e The 1st logician says: "l don't know."
e The 2nd logician says: "l don't know."

e« The 3rd logician says: "Yes!"

What is going on here ?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 196

https://northeastern-datalab.github.io/cs7240/

Nulls in SQL

« Whenever we don't have a value, we can put a NULL

« Can mean many things, e.g.:

?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 197

https://northeastern-datalab.github.io/cs7240/

Nulls in SQL

« Whenever we don't have a value, we can put a NULL

A vew class without a grade

« Can mean many things, e.g.:
y 65 €8 Student | Class | Semester |grade

Alice cs3200 | Fall 2022 B+
~ Value not applicable (yet) Bob | cs3200 | Spring 2023 | null

— Value exists but is unknown

« The schema specifies for each attribute if it can be NULL (nullable
attribute) or not ("NOT NULL")

e Lots of ongoing research on NULLs
 Next: How does SQL cope with tables that have NULLs ?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 198

https://northeastern-datalab.github.io/cs7240/

Null Values

o In SQL there are three Boolean values (" ")
— FALSE, TRUE, UNKNOWN

o If x= NULL then
are also NULL. E.g: x="Joe'
. E.g: 4*(3-x)/7

— But values (exception: count(*))
e Logical reasoning: h

= FALSE =0 __ XAND Yy =min(x,y)

- TRUE=1 x OR'y = max(x,y)

— = — NOT x = (1 —x)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 199

https://northeastern-datalab.github.io/cs7240/

Join lllustration English French
eText eid fid | fText
One 1 1 Un
Two 2 3 Trois
Three 3 4 Quatre
Four 4 5 Cing
Five 5 8] Siz
Six 6 7 Sept
8 Huit
An "inner join":
SELECT * etext |eid fid ftext
FROM English, French %?rze ; :13 ;J:LS
N |
WHERE eid = fid Four |4 2 Quatre
Same as (alternative join syntax): Five |95 O Cing
Six 5] 5] Siz

SELECT *

FROM English INNER(J_OIN French

ON eid = fid

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

—

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

shortform is " JOIN"

200

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Null also sometimes

Join Illlustration English French
eText eid fid | fText
One 1 1 Un
Two 2 3 Trois
Three 3 4 Quatre
Four 4) Cing
Five 5 6 Siz
Six 6 7 Sept
8 Huit /
) etext |eid fid ftext
How do we get a Join ? One |1 1 / Un
with the full data . Two |2 NULL | NULL
Three |3 3 Trois
Four |4 4 Quatre
Five 5 5 Cinqg
Six 6 6 Siz
ER JOIN French NULL |NULL |7 Sept
NULL | NULL |8 Huit

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Jjust shown as empty

201

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Null also sometimes

Join Illlustration English French
eText eid fid | fText
One 1 1 Un
Two 2 3 Trois
Three 3 4 Quatre
shortform of: Four 4 5 |Cing
"FULL OUTER JOIN" Five 15 6 | Siz
Six 6 7 Sept
8 | Huit /
SELECT * etext | eid fid ftext
FROM English FULL JOIN French ?”e ; :\IULL E[‘JLL
ON English.eid = French.fid e N KR 1
Four |4 4 Quatre
Five 5 5 Cing
Six 6 6 Siz
ER JOIN French NULL |NULL |7 Sept
NULL |NULL |8 Huit

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Just showw as empty

202

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Join lllustration English French
eText eid fid | fText
One 1 1 Un
Two 2 3 Trois
Three 3 4 Quatre
Four 4 5 Cing
Five S 6 |Siz
Six 6 F—Sept
8—Huit
SELECT * etext | eid fid ftext
FROM English LEFT JOIN French ?”e ; :\IULL E[‘JLL
ON English.eid = French.fid e N KR 1
Four |4 4 Quatre
Five 5 5 Cing
Six 6 6 Siz

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

203

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Join lllustration English French

eText eid fid | fText
One 1 1 Un
Two 2 3 Trois
Three 3 4 Quatre
Four 4) Cing
Five 5 6 Siz

Six 6 7 Sept

Darker area is result returned., All records returned from outer table. 8 Huit

Matching records returned
from joined table.

MNatural Join Left Outer Join
All records are returnad.

= (INNER) JOIN - n = LEFT (OUTER) JOIN

UnionJoin = FULL (OUTER) JOIN

Source: Fig. 7-2, Hoffer et al., Modern Database Management, 10ed ed, 2011.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

204

https://northeastern-datalab.github.io/cs7240/

Detailed Illustration with Examples (follow the link)

SQL JOINS C’

SELECT <select list> SELECT <seloct list=
FROM TableA A FROM TableA A
LEFT JOIN TablcB B BIGHT JOI™N Tableh B
OM A Key = BoBey O™ A key = B Eey
also called
n « &
anti-join" \
J SELECT =select_lise>
FROM Tablch A
INMER JOIN Tabich B
ON AKey = B.Key
SELECT <sclect list> SELECT <select lisi=
FHOM TableA & FROM TableA A

LEFT JOMMN Tabhlch B
O™ AKey = B.Kcy
WHERE B.Key IS MULL

RIGHT Je¥M TablclE B
O AKey = B.Key
WHERE A.Key 15 NULL

SELECT <sclect_list>
FROM TableA A
FULL QUTER JOIN TableB

SELECT <scleey linr=
FROM TahleA A

FULL OUTER JOIN Tablch B ON AKey = B.Key
ON AKey = B.Key WHERE A.Key 18 NULL
2 CL. Moffutt, 2008 OR BRey I3 NULL

Check this web page for illustrating examples

Source: http://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

205

https://northeastern-datalab.github.io/cs7240/
http://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

Let's practice anti-joins

SELECT <select _list>
FROM L

LEFT JOIN R

ON L.key = R.key
WHERE R.key IS NULL

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Results

English French
eText eid fid | fText
One 1 1 Un
Two 2 3 Trois
Three 3 4 Quatre
Four 4 5 Cing
Five 5 6 Siz
Six 6 7 Sept

8 Huit

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

9

206

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Let's practice anti-joins

SELECT <select _list>
FROM L

LEFT JOIN R

ON L.key = R.key
WHERE R.key IS NULL

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Results
eText eid
Two 2

English French
eText eid fid | fText
One 1 1 Un
Two 2 3 Trois
Three 3 4 Quatre
Four 4 5 Cing
Five 5 6 Siz
Six 6 7 Sept

8 Huit

How +o write in SQL7

?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

207

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Let's practice anti-joins

English French Results
eText eid fid | fText eText eid
One 1 1 Un Two 2
Two 2 3 Trois
Three 3 4 Quatre
Four 4 5 Cing

SELECT <select_ list> gwe 2 g 22

FROM L - T Tho

LEFT JOIN R

ON L.key = R.key
WHERE R.key IS NULL

How +o write in SQL7

SELECT eText, eid

FROM English

LEFT JOIN French f?
ON eid = fid "
WHERE fid IS NULL

Awy altervative?

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 208

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Let's practice anti-joins

English French Results
eText eid fid | fText eText eid
One 1 1 Un Two 2
Two 2 3 Trois
Three 3 4 Quatre
Four 4 5 Cing

SELECT <select_list> Five 5 6 |Siz

FROM L Six 6 ; ﬁiﬁt

LEFT JOIN R

ON L.key = R.key How to write in SQL? Awny alternative?

WHERE R.key IS NULL SELECT eText, eid

FROM English

LEFT JOIN French
ON eid = fid
WHERE fid IS NULL

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT *

FROM English
WHERE eid NOT IN
(SELECT fid

FROM French)

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Semi-joins: kind of the anti-anti-joins...

what do we have to
change +o these queries
to get the tuples in
English that have a
partver n French?

?

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

English French Results
eText | eid fid |fText ::i> eText | eid
One 1 1 Un One 1
Two 2 3 Trois Three 3
Three 3 4 Quatre Four 4
Four 4 5 Cing Five)
Five 5 6 Siz Six 6
Six 6 7 Sept

8 Huit
SELECT eText, eid SELECT x

FROM English

LEFT JOIN French

ON eid = fid

WHERE fid IS NULL

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

FROM English
WHERE eid NOT IN
(SELECT fid

FROM French)

210

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Semi-joins: kind of the anti-anti-joins...

what do we have to
change +o these queries
to get the tuples in
English that have a
partver n French?

What if fid is vot a key?

?

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Results

eText

One

Three

Four

Five

Six

English French
eText eid fid | fText
One 1 1 Un
Two 2 3 Trois
Three 3 4 Quatre
Four 4 5 Cing
Five 5 6 Siz
Six 6 7 Sept

8 Huit

SELECT eText, eid

FROM English

LEFT JOIN French

ON eid = fid

SELECT x

FROM English
WHERE eid IN

WHERE fid IS NOT NULL

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

(SELECT fid
FROM French)

211

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Semi-joins: kind of the anti-anti-joins...

what do we have to
change +o these queries
to get the tuples in
English that have a
partver n French?

What if fid is vot a key?

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Results

eText

One

Three

Four

Five

Six

English French
eText eid fid | fText
One 1 1 Un
Two 2 3 Trois
Three 3 4 Quatre
Four 4 5 Cing
Five 5 6 Siz
Six 6 7 Sept

8 Huit
DISTINCT

SELECT[eText, eid

FROM English

LEFT JOIN French

ON eid = fid

SELECT x

FROM English
WHERE eid IN

WHERE fid IS NOT NULL

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

(SELECT fid
FROM French)

212

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Another look at Outer Joins

SELECT
FROM English FULL JOIN French
ON English.eid = French.fid

FULL JOIN can be
written as union of ivmer
join with anti-joins

?

English French
eText eid fid | fText
One 1 1 Un
Two 2 3 Trois
Three 3 4 Quatre
Four 4 5 Cing
Five 5 6 Siz
Six 6 7 Sept

8 Huit
etext | eid fid ftext
One 1 1 Un
Two 2 NULL | NULL
Three |3 3 Trois
Four |4 4 Quatre
Five 5 5 Cing
Six 6 6 Siz
NULL |NULL |7 Sept
NULL |NULL |8 Huit

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

213

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

WHERE eid=fid)

Another ook at Outer Joins English French
eText eid fid | fText
SELECT x | One 1 1 Un
FROM English FULL JOIN French TWo 5 3 | Trois
ON English.eid = French.fid Three |3 4 | Quatre
SELECT etext,eid, fid, ftext :zl‘?/“er g g (S:i';'q
FROM English INNER JOIN French _
ON English.eid = French.fid Six 6 7| Sept
UNION ALL 8 Huit
SELECT etext, eid, NULL, NULL
FROM English e _ _
WHERE NOT EXISTS(ﬂVH'l'jOlVl etext eid fid ftext
SELECT x* / One 1 1 Un
FROM French Two 2 NULL | NULL
WHERE eid=fid) Three |3 3 Trois
UNION ALL _ Four |4 4 Quatre
?EI&ECT ﬁg;héhNULL' fid, ftext Fi_ve 5 5 C.inq
WHERE NOT EXISTS(SIX 6 6 Siz
FROM English NULL |NULL |8 Huit

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

214

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Outer Joins,
Coalesce, and
NON-Associativity

https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

Coalesce function

MmN SELECT M.a, N.a, COALESCE(M.a, N.a) as b
? : FROM M
! : FULL JOIN N

ON M.a = N.a

COALESCE: takes first non-NULL value,

SELECT COALESCE(1, NULL) >

SELECT COALESCE(NULL, 3) >

?

SELECT COALESCE(1, 2) >

SELECT COALESCE(NULL, NULL) >

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
Also see use of COALESCE across programming languages: https://en.wikipedia.org/wiki/Null coalescing operator
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 216

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Null_coalescing_operator
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Coalesce function

MmN SELECT M.a, N.a, COALESCE(M.a, N.a) as b
? : FROM M
! : FULL JOIN N

ON M.a = N.a

COALESCE: takes first non-NULL value,
C(xM.2)=C(x,C(y2))=C(C(x\),2)

Result
e s - SELECT COALESCE(1, NULL) > 1

E SELECT COALESCE(NULL, 3) > 3

? ? SELECT COALESCE(1, 2) :> 1

SELECT COALESCE(NULL, NULL) >NULL

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Also see use of COALESCE across programming languages: https://en.wikipedia.org/wiki/Null coalescing operator
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 217

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Null_coalescing_operator
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Coalesce function

M~ N SELECT M.a, N.a, COALESCE(M.a, N.a) as b
? : FROM M
. : FULL JOIN N
ON M.a = N.a
COALESCE: takes first now-NULL value,
. C(xM.2)=C(x,C(y2))=C(C(x\),2)
esult
U e SELECT COALESCE(1, NULL) ::j> 1
1 NULL |1 SELECT COALESCE(NULL, 3) ::j> 3
> | 2 2 2
NULL |3 3 SELECT COALESCE(1, 2) ::j> 1

SELECT COALESCE(NULL, NULL) >NULL

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Also see use of COALESCE across programming languages: https://en.wikipedia.org/wiki/Null coalescing operator
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 218

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Null_coalescing_operator
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Coalesce, Natural Outer Join, Union

MmN SELECT *
? Z FROM M
. 3 NATURAL FULL JOIN N
Result o))
2 Natural full join models "coalesce
1
j> 2 Join vs. Union — it is actually the same:
3 Union is a special case of a join ©

(under set semantics)

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 219

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Quick recap: Commutativity & Associativity

Multiplication Matrix multiplication
3 ¢ 2 e 4 =24 o 1121 o Bl =
2|3 3(4 1
? Multiplication is
- associative ©

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 220

https://northeastern-datalab.github.io/cs7240/

Quick recap: Commutativity & Associativity

Multiplication Matrix multiplication
3 e2e4=24 o 1121, BBl _
213 34 1

Order of operations can be exchanged:

Multiplication is
associative ©

3 o

2 4]: 24

? and commutative ©

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 221

https://northeastern-datalab.github.io/cs7240/

Quick recap: Commutativity & Associativity

Multiplication Matrix multiplication
3 e2e4=24 o 1121, BBl _
213 34 1

Order of operations can be exchanged:

_ Multiplication is ’?
3 6|2 ¢ 4] = 24 associative © -
Order of }«des can be exchanged:

\

4 e

and commutative ©

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 222

https://northeastern-datalab.github.io/cs7240/

Quick recap: Commutativity & Associativity

Multiplication Matrix multiplication
3 e2e4=24 11, 2y, 3} _ 18
2|3 3|4 1 49
ord | ve exchanged: o
rder of operations can be exchanged: 11116
Multiplication is 111 112 3 18 Matrix multipl.
o L = . =
3 2 4] 24 associative © >3] °* {3 4l * N1 49 is associative ©
5
Order of‘c ekands can be exchavged: L
4 \2 and commutative © 3| o [1]2 ... but *not*
1 314 commutative ®

#col # #Hrow /

It turus out this is maivly a problem of syntax, not semautics. Einstein notation (avd similar more recent
extensions like "ETINSUM") solves that. See e.g. Lane et al. A Simple and Efficient Tensor Caleulus. AANT
2020. httpsi/[arxiv.ora/abs[2010.03313 . Alternatively, think about the relational join operator as a
commutative votation for sparse matrix multiplication

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 223

https://northeastern-datalab.github.io/cs7240/
https://arxiv.org/abs/2010.03313

The power of associativity

Option 1: { .

Option 2: L1l o A2, |3 18
49

Which option would you choose to evaluate this matrix multiplication ?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 224

https://northeastern-datalab.github.io/cs7240/

The power of associativity

2], [l [B] _ [i8
Option 1: 11573 3[4 1] = [a9
4] 6
1116
Option 2: 1)1 o 21 o B = 18
2[3 3[4 1 49
5
13

All variants give the same result. But some are faster.
Tutuition: we like to have swmall intermediate result sizes!

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 225

https://northeastern-datalab.github.io/cs7240/

Matrix chain multiplication

Given v wmatrices, what is the optimal sequence to multiply them? ?

s BN ~
- 15 ¥ o~ =
35 5 10 20 £5 This is an example
30 A, ‘ . | 35 (R . 15‘ Alll-||s [-10 A _Eﬂ optimal factorization. ?
! ﬁ . . | |
wWhat is its cost?
. "“ o S i < y

See also https://en.wikipedia.org/wiki/Catalan _number , https://en.wikipedia.org/wiki/Matrix_chain_multiplication , https://en.wikipedia.org/wiki/Matrix_multiplication#Associativity
Source figure: https://bruceoutdoors.wordpress.com/2015/11/24/matrix-chain-multiplication-with-c-code-part-3-extracting-the-sequence/
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 226

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Catalan_number
https://en.wikipedia.org/wiki/Matrix_chain_multiplication
https://en.wikipedia.org/wiki/Matrix_multiplication
https://bruceoutdoors.wordpress.com/2015/11/24/matrix-chain-multiplication-with-c-code-part-3-extracting-the-sequence/

Matrix chain multiplication

Given v wmatrices, what is the optimal sequence to multiply them? ?

- By i ~
" 15 ks - ~
35 5 10 20 £5 This is an example
ol A, ‘ . | 35 N | 15 s PR . of A _m optimal factorization. P
5 ﬁ . . | |
What is its cost?
. = s A T 3 y

WMinCost: (30*35% + (35M5%5)) + 30*5*25 + (5™M0D*20) + 5%20%25)

Nave method: all possible way to place closed parewtheses: "Catalan numbers”

Ch, is the number of different ways n + 1 factors can be completely

Via Dynamic programming: O (v?) parenthesized (or the number of ways of associating n applications of a binary
operator, as in the matrix chain multiplication problem). For n = 3, for example,
we have the following five different parenthesizations of four factors:

Best known: O(v log v)
((@b)e)d (a(bc))d (ab)(cd) a((bc)d) a(b(cd))

See also https://en.wikipedia.org/wiki/Catalan _number , https://en.wikipedia.org/wiki/Matrix_chain_multiplication , https://en.wikipedia.org/wiki/Matrix_multiplication#Associativity

Source figure: https://bruceoutdoors.wordpress.com/2015/11/24/matrix-chain-multiplication-with-c-code-part-3-extracting-the-sequence/
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 227

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Catalan_number
https://en.wikipedia.org/wiki/Matrix_chain_multiplication
https://en.wikipedia.org/wiki/Matrix_multiplication
https://bruceoutdoors.wordpress.com/2015/11/24/matrix-chain-multiplication-with-c-code-part-3-extracting-the-sequence/

Commutativity & Associativitys

A

OuterjOinS 1 |2 2 113 4 |5
SELECT A, B, C SELECT A, B, C
FROM (R FROM R
NATURAL FULL JOIN S) NATURAL FULL JOIN (S
NATURAL FULL JOIN T NATURAL FULL JOIN T)

Result Result
= Y = 2

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
228

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Commutativity & Associativitys

A
OuterjOinS 1 |2 2 113 4 |5
(SRR N

SELECT A, B,/ SELECT A, B, C
FROM (R FROM R
NATURAL FULL JOIN S) NATURAL FULL JOIN (S
NATURAL FULL JOIN T NATURAL FULL JOIN T)

Result Result
= Y = 72

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
229

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Commutativity & Associativitys

A
OuterjOinS 1 |2 2 113 4 |5
(FIL) »

SELECT A, B,/ SELECT A, B, C
FROM (R FROM R
NATURAL FULL JOIN S) NATURAL FULL JOIN (S
NATURAL FULL JOIN T NATURAL FULL JOIN T)

Result Result

A B C
—, 0

4 NULL |5 o

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
230

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Commutativity & Associativitys

A/
Outer joins 1
(FIL) »
SELECT A, B,/E/////» SELECT A, B, C
FROM (R FROM R
NATURAL FULL JOIN S) NATURAL FULL JOINAS
NATURAL FULL JOIN T NATURAL FULL JOIN T)
Result Result
A B C
—, 0
4 NULL |5 o
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
231

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Commutativity & Associativityr _—s ~ 1

AlBT B |c A |C

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Outer joins 1|2 2 |3 4 |5 AR <
),L 2 3 (
BNy
SELECT A, B, C SELECT A, B, C
FROM (R FROM R
NATURAL FULL JOIN S) NATURAL FULL JOIN/(’{
NATURAL FULL JOIN T NATURAL FULL JOIN T)
Result Result
A B C A B C
j> 1 2 3 j> 1 2 NULL
4 NULL |5 NULL |2 3
4 NULL |5
Thus outer joins are vot associativel (but +hey are commutative)
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql 539

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Commutativity & Associativitys _—s ~ 1
A'lBT TBlCc| |AlC
Outer joins 1 19 5
SELECT R.a RA, T.a TA, coalesce(R.a, T.a) a,
R.b RB, S.b SB, coalesce(R.b, S.b) b,
S.c SC, T.c TC, coalesce(S.c, T.c) c
FROM (R

FULL JOIN S on R.
FULL JOIN T on S.

w
AN
&)

B=S.B)
C=T.C

AND R.A = T.A

SELECT R.a RA, T.a TA, coalesce(R.a, T.a) a,
R.b RB, S.b SB, coalesce(R.b, S.b) b,
S.c SC, T.c TC, coalesce(S.c, T.c) c
FROM R
FULL JOIN (S
FULL JOIN T on S.C=T.C) on R.B=S.B AND R.A = T.A

Data Output Explain essages Notification

Data Output Explain Messages Notifications

A irramtegeﬂ T:mgeﬂ] tegeﬂ " egeﬁ isnt;egeﬁ 1b egeﬂ |S egeﬂ ;[r?tegeﬂ ‘3 A ir:tegeﬁ :r?tegeﬁ ?megep ir:tegeﬁ isnt;egep :::ltegeF isnctegeﬁ :rc:tegep ;tegeF
1 1 [null] 2 2 3 [null] 1 [null] [null] [null] [null] 2 2 2 [null] 3
2 [null] 4 [null] [null] [null] 5 2 [null] 4 4 [null] [null] [null] [null] 5 5

3 1 [null] 1 2 [null] 2 [null] [null] [null]

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 233

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Example: Data Sources on Tourist Information

Cﬁngues’/”_~_‘\“‘\\6panpnunﬁﬁE;E::::”/—’—:=h‘<::§EE§‘\\\

Cou<ntry Climate C&ﬁry City -~ Hotel Stars COl\J‘ntry CW Site
Canada |diverse Canada | Toronto | Plaza 4 Canada | London | Air show
Bahamas | tropical Canada |London | Ramada |3 Canada Mount Logan
UK temperate Bahamas | Nassau | Hilton UK London | Buckingham

UK London | Hyde Park
SELECT Result

FROM (Accommodations
NATURAL FULL JOIN Climates)
NATURAL FULL JOIN Sites

= ?

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Example from: Cohen, Fadida, Kanza, Kimelfeld, Sagiv. "Full Disjunctions: Polynomial-Delay Iterators in Action", VLDB 2006. http://vldb.org/conf/2006/p739-cohen.pdf

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

234

https://northeastern-datalab.github.io/cs7240/
http://vldb.org/conf/2006/p739-cohen.pdf
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Example: Data Sources on Tourist Information

Cﬁngues’/’~_~_~\“‘\\apanpnunEﬁE;E;:::”/—’—:=h‘=::§EE§‘\\\

Cou<ntry Climate
Canada |diverse
Bahamas | tropical
UK temperate
SELECT x

FROM (Accommodations
NATURAL FULL JOIN Climates)

NATURAL FULL JOIN Sites

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

CMry City -~ Hotel Stars COl\J‘ntry CW Site
Canada | Toronto | Plaza 4 Canada | London | Air show
Canada |London | Ramada |3 Canada Mount Logan
Bahamas | Nassau | Hilton UK London | Buckingham
UK London | Hyde Park
Result
Country |City Climate Hotel Stars |[Site
Canada |Toronto [diverse Plaza 4
Canada |London [diverse Ramada (3 Air Show
Canada Mount Logan
UK London Buckingham
:> UK London Hyde Park
UK temperate
Bahamas [Nassau |Tropical Hilton
Example from: Cohen, Fadida, Kanza, Kimelfeld, Sagiv. "Full Disjunctions: Polynomial-Delay Iterators in Action", VLDB 2006. http://vldb.org/conf/2006/p739-cohen.pdf 735

https://northeastern-datalab.github.io/cs7240/
http://vldb.org/conf/2006/p739-cohen.pdf
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Example: Data Sources on Tourist Information

Cﬁngues’/”_~_‘\“‘\\6panpnunﬁﬁE;@::::””’—:=h‘=::§EE§‘\\\

Cou(ntrv Climate
Canada |diverse
Bahamas | tropical
UK temperate
SELECT =

FROM (Accommodations
NATURAL FULL JOIN Climates)

NATURAL FULL JOIN Sites

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

C&dﬁrv City - Hotel Stars COl\J‘ntry CW Site
[Canada Toronto | Plaza 4] _| Canada | London | Air show
e
Canada |London | Ramada |3 __Ca@_ Logan
Bahamas | Nassau | Hilton UK London | Buckingham
UK London | Hyde Park
Result
Countrv___|Citv Climate Hotel Stars__[Site
[Canada |Toronto [diverse Plaza]
Canada |London [diverse Ramada |3 Air Show
Canada Mount Logan
UK London Buckingham
:> UK London Hyde Park
UK temperate
Bahamas [Nassau |Tropical Hilton
Example from: Cohen, Fadida, Kanza, Kimelfeld, Sagiv. "Full Disjunctions: Polynomial-Delay Iterators in Action", VLDB 2006. http://vldb.org/conf/2006/p739-cohen.pdf 536

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
http://vldb.org/conf/2006/p739-cohen.pdf
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Example: Data Sources on Tourist Information

Cﬁngues’/”_~_‘\“‘\\6panpnunﬁﬁE;E::::”/—’—:=h‘<::§EE§‘\\\

Cou<ntry

Climate

Canada

diverse

Bahamas

tropical

SELECT

FROM (Accommodations
NATURAL FULL JOIN Climates)

*

NATURAL FULL JOIN Sites

C&ﬁry City -~ Hotel Stars COl\J‘ntry CW Site
Canada | Toronto | Plaza 4 Canada | London | Air show
Canada |London | Ramada |3 Canada Mount Logan
Bahamas | Nassau | Hilton UK London | Buckingham
UK London | Hyde Park
Result
Country |City Climate Hotel Stars |[Site
Canada |Toronto |diverse Plaza 4
Canada |London |diverse Ramada |3 Air Show
Canada Mount Logan
UK ______London Buckingham
:> [UK London Hyde Park
UK temperate
Bahamas [Nassau |Tropical Hilton

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Example from: Cohen, Fadida, Kanza, Kimelfeld, Sagiv. "Full Disjunctions: Polynomial-Delay Iterators in Action", VLDB 2006. http://vldb.org/conf/2006/p739-cohen.pdf

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

237

https://northeastern-datalab.github.io/cs7240/
http://vldb.org/conf/2006/p739-cohen.pdf
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Example: Data Sources on Tourist Information

Cﬁngues’/”_~_‘\“‘\\6panpnunﬁﬁE;E::::”/—’—:=h‘<::§EE§‘\\\

Cou<ntry Climate | C&ﬁrv City “ | Hotel Stars COl\J‘ntry CW Site
Can fZerse [Canada Toronto | Plaza 4] Canada | London | Air show
o —
Bahamas | tropical Canada |London | Ramada |3 Canada_ Logan
UK temperate Bahamas | Nassau | Hilton UK London | Buckingham
UK London | Hyde Park
SELECT | Result
FROM Accommodations t - — — -
NATURAL FULL JOIN (Climates [?“”d” f‘v dimaic Pl"e 45135—5'9]
NATURAL FULL JOIN Sites) anada | Toronto aza
Canada London |diverse Ramada |3 Air Show
Canada diverse Mount Logan
UK London (temperate Buckingham
> UK London (temperate Hyde Park
Bahamas Tropical
Bahamas |Nassau Hilton

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
Example from: Cohen, Fadida, Kanza, Kimelfeld, Sagiv. "Full Disjunctions: Polynomial-Delay Iterators in Action", VLDB 2006. http://vldb.org/conf/2006/p739-cohen.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 238

https://northeastern-datalab.github.io/cs7240/
http://vldb.org/conf/2006/p739-cohen.pdf
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Example: Data Sources on Tourist Information

Cﬁngues’/”_~_‘\“‘\\6panpnunﬁﬁE;E::::”/—’—:=h‘<::§EE§‘\\\

Cou<ntry Climate
Canada diverse
Bahamas | tropical
UK temperate
SELECT

FROM Accommodations

NATURAL FULL JOIN (Climates

NATURAL FULL JOIN Sites)

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

C&ﬁry City -~ Hotel Stars COl\J‘ntry CW Site
Canada | Toronto | Plaza 4 Canada | London | Air show
Canada |London | Ramada |3 Canada Mount Logan
Bahamas | Nassau | Hilton UK London | Buckingham
UK London | Hyde Park
Result
Country |City Climate Hotel Stars |[Site
Canada |Toronto Plaza 4
Canada |London [diverse Ramada (3 Air Show
| Canada diverse Mount Logan
[UK London |temperate Buckingham]
:> UK Condon [temperate Hyde Park
Bahamas Tropical
Bahamas |Nassau Hilton
Example from: Cohen, Fadida, Kanza, Kimelfeld, Sagiv. "Full Disjunctions: Polynomial-Delay Iterators in Action”, VLDB 2006. http://vidb.org/conf/2006/p739-cohen.pdf 539

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
http://vldb.org/conf/2006/p739-cohen.pdf
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Full disjunction

CIim}tes/_\Qccom

Cou(ntrv Climate C&dﬁrv City “| Hotel Stars COl\J‘ntry CW Site
Canada |diverse [Canada | Toronto | Plaza 4] Canada | London | Air show
Bahamas | tropical Canada |London | Ramada |3 Canada Mount Logan
UK temperate Bahamas | Nassau | Hilton UK London | Buckingham
UK London | Hyde Park
SELECT = | Result
FROM FULL DISJUNCTION(Climates,
(Accommodatiofns, Sites) Sounty Ul Clmate . SotelSlas . Site
Canada |Toronto |diverse Plaza 4]
FD: variation of +he J oiv operator that Canada |London |diverse Ramada |3 Air Show
maximally combives join consistent tuples Canada diverse MountLogan |
from cownected relations, while preserving UK London |temperate Buckingham]
all information in the relatiovs. :> UK Condon |temperate Hyde Park
Not available in SQLI We may discuss later Bahamas |Nassau |tropical Hilton

i class in more detail (or skip +his year)

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
Example from: Cohen, Fadida, Kanza, Kimelfeld, Sagiv. "Full Disjunctions: Polynomial-Delay Iterators in Action", VLDB 2006. http://vldb.org/conf/2006/p739-cohen.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 240

https://northeastern-datalab.github.io/cs7240/
http://vldb.org/conf/2006/p739-cohen.pdf
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Full disjunction: definition

CIim}tes/_\Qccom

Cou(ntrv Climate |+, + C&lﬁrv City - Hotel Stars COl\J‘ntry Cﬁ‘ Site
Canada |diverse Z[Canada Toronto | Plaza 4] Canada | London | Air show
Bahamas | tropical Canada |London | Ramada |3 Canada Mount Logan
UK temperate ||, | Bahamas | Nassau | Hilton 4] UK London | Buckingham
UK London | Hyde Park

« Two tuples (max one from each relation) are
loin consistent if they agree ov common Result

‘aﬁrlbufcs,) +./+5, +3/.+4-. A set of fupl@s IS S Gi Climate _ |Hotel Stars _|Site

join consistent if every pair is join consistent. [)]
* Set of tuples (max ove from each relation) is Canada | Toronto |diverse Plaza 4

conmected if the schema is connected, +hus Canada |London |diverse |Ramada |3 Air Show

share attributes Canada diverse Mount Logan
. A +oq>}c_ is in the Full disjunction if it is +V1q | [UK London |temperate Buckingham]

ivver join from tuples that are convected, join OR o t t MdePak

consistent, and there is no superset with both A~ 3 ondon emPera © _ yrersr

conditions (related +o "subsumption”). , >\ Bahamas |Nassau |fropical | Hilton

—\——
SURSUMT (DN —

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
Example from: Cohen, Fadida, Kanza, Kimelfeld, Sagiv. "Full Disjunctions: Polynomial-Delay Iterators in Action", VLDB 2006. http://vldb.org/conf/2006/p739-cohen.pdf
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 241

https://northeastern-datalab.github.io/cs7240/
http://vldb.org/conf/2006/p739-cohen.pdf
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

