
34

Topic 1: Data models and query languages
Unit 1: SQL (continued)
Lecture 2

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp23)
https://northeastern-datalab.github.io/cs7240/sp23/
1/13/2023

Updated 1/14/2023

https://northeastern-datalab.github.io/cs7240/sp23/

35Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Pre-class conversations

• Last class summary
• Class procedures based on past suggestions:
- Secondary posting of class scribes to Piazza (optionally anonymous). I will

comment on both Canvas and Piazza
- Already installed Postgres?
- The possible downsides of homeworks with self-determined deadlines: you

are in charge
- Interactivity in class

• Today:
- SQL continued

https://northeastern-datalab.github.io/cs7240/

36Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: https://spectrum.ieee.org/top-programming-languages-2022

https://northeastern-datalab.github.io/cs7240/
https://spectrum.ieee.org/top-programming-languages-2022

37Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Fun question: What is the most popular PL?

?

https://northeastern-datalab.github.io/cs7240/

38Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Fun question: What is the most popular PL?

Source: https://www.microsoft.com/en-us/research/blog/lambda-the-ultimatae-excel-worksheet-function/

Possibly interesting class
scribe: Why is Excel
Turing-complete?

https://northeastern-datalab.github.io/cs7240/
https://www.microsoft.com/en-us/research/blog/lambda-the-ultimatae-excel-worksheet-function/

40

Revisiting our question
from first class

41Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Question: How to deal with cut-offs when binning?

• These are the true points that you
would get if you could run the
experiments long enough.
- Notice the loglog scale

Size (log)

Time (log)

100k

10k

1k

100

10

1

1 10 100 1k 10k 100k

https://northeastern-datalab.github.io/cs7240/

42Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Question: How to deal with cut-offs when binning?

• These are the true points that you
would get if you could run the
experiments long enough.
- Notice the loglog scale

• However, we can't and thus in
practice cut-off the experiments after
some time.

• Question: There is an overall trend,
yet some variation for each
experiment. We would still like to
capture the trend with some smart
aggregations. What can we do?

Time
cut-off

Size (log)

Time (log)

100k

10k

1k

100

10

1

1 10 100 1k 10k 100k
?

https://northeastern-datalab.github.io/cs7240/

43Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Question: How to deal with cut-offs when binning

• Here is what the aggregate would
look like like if we could get all points
and then aggregated for each size

Time
cut-off

Size (log)

Time (log)

https://northeastern-datalab.github.io/cs7240/

44Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Question: How to deal with cut-offs when binning

• Here is what happens if we throw
away all those points that take longer
than the cut-off, and only average
over the "seen points"

Time
cut-off

What would you do

We will discuss next class
?

Size (log)

Time (log)

https://northeastern-datalab.github.io/cs7240/

48Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

How to deal with cut-offs when binning: Option 1

• Option 1: Here is what happens if we
cut the points off and still use the
points, and then average

Time
cut-off

?

Size (log)

Time (log)

https://northeastern-datalab.github.io/cs7240/

49Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

How to deal with cut-offs when binning: Option 1

• Option 1: Here is what happens if we
cut the points off and still use the
points, and then average

Time
cut-off

Size (log)

Time (log)

https://northeastern-datalab.github.io/cs7240/

50Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

How to deal with cut-offs when binning: Option 2

• Option 1: Here is what happens if we
cut the points off and still use the
points, and then average

• Option 2: Here is what we can do if
we *only* use those sizes for which
all experiments finish in time

Time
cut-off

?

Size (log)

Time (log)

https://northeastern-datalab.github.io/cs7240/

51Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

How to deal with cut-offs when binning: Option 2

• Option 1: Here is what happens if we
cut the points off and still use the
points, and then average

• Option 2: Here is what we can do if
we *only* use those sizes for which
all experiments finish in time

Time
cut-off

Size (log)

Time (log)

https://northeastern-datalab.github.io/cs7240/

52Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

How to deal with cut-offs when binning: Option 3

• Option 1: Here is what happens if we
cut the points off and still use the
points, and then average

• Option 2: Here is what we can do if
we *only* use those sizes for which
all experiments finish in time

• Option 3: Here is what happens if we
take the median over all seen and
cut-off points

Time
cut-off

?

Size (log)

Time (log)

https://northeastern-datalab.github.io/cs7240/

53Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

How to deal with cut-offs when binning: Option 3

• Option 1: Here is what happens if we
cut the points off and still use the
points, and then average

• Option 2: Here is what we can do if
we *only* use those sizes for which
all experiments finish in time

• Option 3: Here is what happens if we
take the median over all seen and
cut-off points

Time
cut-off

Size (log)

Time (log)

https://northeastern-datalab.github.io/cs7240/

54Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

How to deal with cut-offs when binning: Suggestion

• Suggestion: Here is what happens if
we take the median over all seen and
cut-off points, as long as there are
<50% cut-off points

Time
cut-off

Notice the informal "semantics" of
median: If more points are "above
you" then you are pulled by their
number, not by their distance (in
contrast to average where
distance is kind of a weight)

Size (log)

Time (log)

https://northeastern-datalab.github.io/cs7240/

56Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Some type of error guaran-
tees (smaller is better)

101 102 103 104

Lineage Size

10°3

10°2

10°1

100

101

102

103

T
im

e
(s

ec
)

MB: relative epsilon-approximation

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Example: Experiments figures from

notice the log log scale!

MB	(prior):	model-based
10	random	bounds

Source: Van der Heuvel, Ivanov, Gatterbauer, Geerts, Theobald. Anytime approximation in probabilistic databases via scaled dissociations. SIGMOD 2019. https://doi.org/10.1145/3299869.3319900

Van der Heuvel+ [SIGMOD'19]

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3299869.3319900

57Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

101 102 103 104

Lineage Size

10°3

10°2

10°1

100

101

102

103

T
im

e
(s

ec
)

MB: relative epsilon-approximation

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Example: Experiments figures from
MB	(prior):	model-based
10	random	bounds

Source: Van der Heuvel, Ivanov, Gatterbauer, Geerts, Theobald. Anytime approximation in probabilistic databases via scaled dissociations. SIGMOD 2019. https://doi.org/10.1145/3299869.3319900

Van der Heuvel+ [SIGMOD'19]

Some type of error guaran-
tees (smaller is better)

notice the log log scale!

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3299869.3319900

58Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

101 102 103 104

Lineage Size

10°3

10°2

10°1

100

101

102

103

T
im

e
(s

ec
)

MB: relative epsilon-approximation

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Example: Experiments figures from
MB	(prior):	model-based
10	random	bounds

Median	time	to	
reach	a	certain	
error	guarantee	
for	fixed	lin.	size

Source: Van der Heuvel, Ivanov, Gatterbauer, Geerts, Theobald. Anytime approximation in probabilistic databases via scaled dissociations. SIGMOD 2019. https://doi.org/10.1145/3299869.3319900

Van der Heuvel+ [SIGMOD'19]

Some type of error guaran-
tees (smaller is better)

notice the log log scale!

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3299869.3319900

59Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

101 102 103 104

Lineage Size

10°3

10°2

10°1

100

101

102

103

T
im

e
(s

ec
)

MB: relative epsilon-approximation

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Example: Experiments figures from

Median	time	to	
reach	a	certain	
error	guarantee	
for	fixed	lin.	size

MB	(prior):	model-based
10	random	bounds

Source: Van der Heuvel, Ivanov, Gatterbauer, Geerts, Theobald. Anytime approximation in probabilistic databases via scaled dissociations. SIGMOD 2019. https://doi.org/10.1145/3299869.3319900

Van der Heuvel+ [SIGMOD'19]

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3299869.3319900

60Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

101 102 103 104

Lineage Size

10°3

10°2

10°1

100

101

102

103

T
im

e
(s

ec
)

PGD: relative epsilon-approximation

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Example: Experiments figures from

PGD (our):	projected	
gradient	descent

Source: Van der Heuvel, Ivanov, Gatterbauer, Geerts, Theobald. Anytime approximation in probabilistic databases via scaled dissociations. SIGMOD 2019. https://doi.org/10.1145/3299869.3319900

Van der Heuvel+ [SIGMOD'19]

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3299869.3319900

61Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

101 102 103 104

Lineage Size

10°3

10°2

10°1

100

101

102

103

T
im

e
(s

ec
)

399x faster

MB and PGD: relative epsilon-approximation

MB 0.0
MB 0.2
MB 0.4
PGD 0.0
PGD 0.2
PGD 0.4

Example: Experiments figures from

PGD (our):	projected	
gradient	descent

MB	(prior):	model-based
10	random	bounds

Take-away
• considerable	
speed-ups	
possible	J

median	>100	sec	(timed	out)

>	1000	x	faster

100	msec

Source: Van der Heuvel, Ivanov, Gatterbauer, Geerts, Theobald. Anytime approximation in probabilistic databases via scaled dissociations. SIGMOD 2019. https://doi.org/10.1145/3299869.3319900

Van der Heuvel+ [SIGMOD'19]

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3299869.3319900

62Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: Matt Welsh, CAMC 2023. https://cacm.acm.org/magazines/2023/1/267976-the-end-of-programming/fulltext, https://doi.org/10.1145/3570220

Why do I think we should
care about experimental
setups, even in theory!

https://northeastern-datalab.github.io/cs7240/
https://cacm.acm.org/magazines/2023/1/267976-the-end-of-programming/fulltext
https://doi.org/10.1145/3570220

63

Outline: T1-U1: SQL

• SQL
– Schema, keys, referential integrity
– Joins
– Aggregates and grouping
– Nested queries (Subqueries)
– Theta Joins
– Nulls & Outer joins
– Top-k
– [Recursion: moved to T1-U4: Datalog]

64Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Joins

Product Company

Q: Find all products under $200 manufactured in Japan;
return their names and prices!

302

?
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

65Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Joins

Product Company

SELECT pName, price
FROM Product, Company
WHERE manufacturer=cName

and country='Japan'
and price <= 200

Q: Find all products under $200 manufactured in Japan;
return their names and prices!

Join b/w Product
and Company

PName Price

SingleTouch $149.99

302

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

66Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Joins

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

302

CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Product Company

SELECT *
FROM Product, Company
WHERE manufacturer=cName ?

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

67Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Joins

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

CName StockPrice Country

GizmoWorks 25 USA

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

302

SELECT *
FROM Product, Company
WHERE manufacturer=cName

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

68Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Meaning (Semantics) of conjunctive SQL Queries

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..
for xn in Rn do

if Conditions
then Answer = Answer È {(a1,…,ak)}

return Answer

SELECT a1, a2, …, ak
FROM R1 as x1, R2 as x2, …, Rn as xn
WHERE Conditions

Conceptual evaluation strategy (nested for loops):

https://northeastern-datalab.github.io/cs7240/

69Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Meaning (Semantics) of conjunctive SQL Queries

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..
for xn in Rn do

if Conditions
then Answer = Answer È {(a1,…,ak)}

return Answer

att1 att2 ... attk
...

...

...

...

R1
att1 att2 ... attk
...

...

...

...

R2
att1 att2 ... attk
...

...

...

...

R3

Conceptual evaluation strategy (nested for loops):

https://northeastern-datalab.github.io/cs7240/

70Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Meaning (Semantics) of conjunctive SQL Queries

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..
for xn in Rn do

if Conditions
then Answer = Answer È {(a1,…,ak)}

return Answer

R1 R2 R3
att1 att2 ... attk
...

...

...

...

att1 att2 ... attk
...

...

...

...

att1 att2 ... attk
...

...

...

...

Notice that those queries are "monotone":
whenever we add tuples to the input,
the output can never decrease:
if 𝑅! ⊆ 𝑅!" , 𝑅# ⊆ 𝑅#" , 𝑅$ ⊆ 𝑅$"
then 𝑄 𝑅!, 𝑅#, 𝑅$ ⊆ 𝑄 𝑅!" , 𝑅#" , 𝑅$"

https://northeastern-datalab.github.io/cs7240/

73Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Conceptual Evaluation Strategy

• Semantics of an SQL query defined in terms of the following conceptual
evaluation strategy:
- FROM: Compute the cross-product of relation-list.
- WHERE: Discard resulting tuples if they fail qualifications ("select" the rest)
- SELECT: Delete attributes that are not in target-list.
- If DISTINCT is specified, eliminate duplicate rows.

• This strategy is probably the least efficient way to compute a query! An
optimizer will find (algebraically equivalent but) more efficient strategies to
compute the same answers.

• We say “semantics” not “execution order”. Why?

?

https://northeastern-datalab.github.io/cs7240/

74Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Conceptual Evaluation Strategy

• Semantics of an SQL query defined in terms of the following conceptual
evaluation strategy:
- FROM: Compute the cross-product of relation-list.
- WHERE: Discard resulting tuples if they fail qualifications ("select" the rest)
- SELECT: Delete attributes that are not in target-list.
- If DISTINCT is specified, eliminate duplicate rows.

• This strategy is probably the least efficient way to compute a query! An
optimizer will find (algebraically equivalent but) more efficient strategies to
compute the same answers.

• We say “semantics” not “execution order”. Why?
- The preceding slides show what a join means (semantics = meaning): "the logic"
- Not actually how the DBMS actually executes it (separation of concerns): algebra

https://northeastern-datalab.github.io/cs7240/

75Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Table Alias (Tuple Variables)

Person (pName, address, works_for)
University (uName, address)

312

SELECT DISTINCT pName, address
FROM Person, University
WHERE works_for = uName ?What will this

query return

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

76Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Table Alias (Tuple Variables)

SELECT DISTINCT pName, address
FROM Person, University
WHERE works_for = uName

SELECT DISTINCT pName, University.address
FROM Person, University
WHERE Person.works_for = University.uName

SELECT DISTINCT X.pName, Y.address
FROM Person as X, University Y
WHERE X.works_for = Y.uName

which address?
Error!

Notice that the use of "as" is not necessary, it is optional !!

Person (pName, address, works_for)
University (uName, address)

312

https://northeastern-datalab.github.io/cs7240/

77Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Using the Formal Semantics

SELECT R.a
FROM R, S, T
WHERE R.a=S.a

or R.a=T.a

What do these queries compute?

SELECT R.a
FROM R, S
WHERE R.a=S.a

T
a

2

305

R
a

1

2

S
a

1

R(a), S(a), T(a)

?

?
Example originally proposed in Garcia-Molina, Ullman, Widom. Database Systems. 2001. Ch. 6.2.4 Interpreting Multirelation Queries. http://infolab.stanford.edu/~ullman/dscb.html
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
http://infolab.stanford.edu/~ullman/dscb.html
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

78Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Using the Formal Semantics

SELECT R.a
FROM R, S, T
WHERE R.a=S.a

or R.a=T.a

What do these queries compute?

SELECT R.a
FROM R, S
WHERE R.a=S.a

Returns R Ç S
(intersection)

T

a

1

305

R S

R(a), S(a), T(a)

?
Example originally proposed in Garcia-Molina, Ullman, Widom. Database Systems. 2001. Ch. 6.2.4 Interpreting Multirelation Queries. http://infolab.stanford.edu/~ullman/dscb.html
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

a

2

a

1

2

a

1

https://northeastern-datalab.github.io/cs7240/
http://infolab.stanford.edu/~ullman/dscb.html
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

79Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Using the Formal Semantics

SELECT R.a
FROM R, S, T
WHERE R.a=S.a

or R.a=T.a

Returns R Ç (S È T)
if S ≠ ∅ and T ≠ ∅

What do these queries compute?

SELECT R.a
FROM R, S
WHERE R.a=S.a

Returns R Ç S
(intersection)

T

a

1

2

305

R S

R(a), S(a), T(a)

Example originally proposed in Garcia-Molina, Ullman, Widom. Database Systems. 2001. Ch. 6.2.4 Interpreting Multirelation Queries. http://infolab.stanford.edu/~ullman/dscb.html
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

a

2

a

1

2

a

1

a

1

https://northeastern-datalab.github.io/cs7240/
http://infolab.stanford.edu/~ullman/dscb.html
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

80Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

a

1

2

a

1

a

2

a

1

2

a

1

Using the Formal Semantics

Returns R Ç (S È T)
if S ≠ ∅ and T ≠ ∅

What do these queries compute?

SELECT R.a
FROM R, S
WHERE R.a=S.a

Returns R Ç S
(intersection)

T2

305

R S

R(a), S(a), T2(a)

?

?

Next, we are
removing the
input tuple "(2)"

SELECT R.a
FROM R, S, T2 as T
WHERE R.a=S.a

or R.a=T.a

Example originally proposed in Garcia-Molina, Ullman, Widom. Database Systems. 2001. Ch. 6.2.4 Interpreting Multirelation Queries. http://infolab.stanford.edu/~ullman/dscb.html
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Our colorful hands
represent "team
exercises" If we are
online, please make a
screenshot!

https://northeastern-datalab.github.io/cs7240/
http://infolab.stanford.edu/~ullman/dscb.html
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

81Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

a

1

2

Using the Formal Semantics

Returns R Ç (S È T)
if S ≠ ∅ and T ≠ ∅

What do these queries compute?

SELECT R.a
FROM R, S
WHERE R.a=S.a

Returns R Ç S
(intersection)

305R(a), S(a), T2(a)

?

Next, we are
removing the
input tuple "(2)"

SELECT R.a
FROM R, S, T2 as T
WHERE R.a=S.a

or R.a=T.a

Example originally proposed in Garcia-Molina, Ullman, Widom. Database Systems. 2001. Ch. 6.2.4 Interpreting Multirelation Queries. http://infolab.stanford.edu/~ullman/dscb.html
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

a

2

a

1

2

a

1

T2R S

a

1

https://northeastern-datalab.github.io/cs7240/
http://infolab.stanford.edu/~ullman/dscb.html
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

82Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Using the Formal Semantics

What do these queries compute?

SELECT R.a
FROM R, S
WHERE R.a=S.a

Returns R Ç S
(intersection)

305R(a), S(a), T2(a)

Next, we are
removing the
input tuple "(2)"

Returns ∅
if S = ∅ or T = ∅

Can seem counterintuitive! But remember conceptual evaluation strategy:
Nested loops. If one table is empty -> no looping

a
SELECT R.a
FROM R, S, T2 as T
WHERE R.a=S.a

or R.a=T.a

Example originally proposed in Garcia-Molina, Ullman, Widom. Database Systems. 2001. Ch. 6.2.4 Interpreting Multirelation Queries. http://infolab.stanford.edu/~ullman/dscb.html
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

a

2

a

1

2

a

1

T2R S

a

1

https://northeastern-datalab.github.io/cs7240/
http://infolab.stanford.edu/~ullman/dscb.html
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

83Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Illustration with Python

The comparison gets never evaluated

306

"Premature optimization
is the root of all evil."
Donald Knuth (1974)

"When you are diagnosing
problems, don’t think about
how you will solve them—just
diagnose them. Blurring the
steps leads to suboptimal
outcomes because it
interferes with uncovering
the true problems."
Ray Dalio (Principles, 2017)

Python file

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

84Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Quiz

SELECT DISTINCT cName
FROM
WHERE

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

302Our colorful hands represent "team exercises"
If we are online, please make a screenshot!

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

85Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT DISTINCT cName
FROM Product as P, Company
WHERE country = 'USA'

and P.price < 20
and P.price > 25
and P.manufacturer = cName

Quiz: Answer 1

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

What about this query?

302

?

Our colorful hands represent "team exercises"
If we are online, please make a screenshot!

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

86Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Quiz: Answer 1

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

SELECT DISTINCT cName
FROM Product as P, Company
WHERE country = 'USA'

and P.price < 20
and P.price > 25
and P.manufacturer = cName

Wrong! Gives empty
result: There is no
product with price
<20 and >25

302

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

87Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT DISTINCT cName
FROM Product as P, Company
WHERE country = 'USA'

and (P.price < 20
or P.price > 25)
and P.manufacturer = cName

Quiz: Answer 2

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

302

What about this query?

?
SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

88Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Quiz: Answer 2

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

SELECT DISTINCT cName
FROM Product as P, Company
WHERE country = 'USA'

and (P.price < 20
or P.price > 25)
and P.manufacturer = cName

Returns companies
with single product
w/price (<20 or >25)

P.price<20 or
P.price>25

C

P

302

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

89Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Quiz: Answer 1

P.price < 20 and / or
P.price > 25

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

C

P

302

country='USA'

?
What do we actually want?

https://northeastern-datalab.github.io/cs7240/

90Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Quiz: Answer 1 vs. what we actually want

P.price < 20 and / or
P.price > 25

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

C

P P.price < 20

C

P1

P2 P.price > 25

302

country='USA' country='USA'

https://northeastern-datalab.github.io/cs7240/

91Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Quiz: correct answer: we need "self-joins"!

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

302

SELECT DISTINCT cName
FROM Product as P1, Product as P2, Company
WHERE country = 'USA'

and P1.price < 20
and P2.price > 25
and P1.manufacturer = cName
and P2.manufacturer = cName

P.price < 20

C

P1

P2 P.price > 25

country='USA'

https://northeastern-datalab.github.io/cs7240/

92Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

CName StockPrice Country
GizmoWorks 25 USA
Canon 65 Japan
Hitachi 15 Japan

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

Quiz response: we need "self-joins"! 302

SELECT DISTINCT cName
FROM Product as P1, Product as P2, Company
WHERE country = 'USA'

and P1.price < 20
and P2.price > 25
and P1.manufacturer = cName
and P2.manufacturer = cName

P1

Company

P2

https://northeastern-datalab.github.io/cs7240/

93Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

CName StockPrice Country
GizmoWorks 25 USA
Canon 65 Japan
Hitachi 15 Japan

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

Quiz response: we need "self-joins"! 302

SELECT DISTINCT cName
FROM Product as P1, Product as P2, Company
WHERE country = 'USA'

and P1.price < 20
and P2.price > 25
and P1.manufacturer = cName
and P2.manufacturer = cName

CName
GizmoWorks

P1

Company

P2

https://northeastern-datalab.github.io/cs7240/

94

Outline: T1-U1: SQL

• SQL
– Schema, keys, referential integrity
– Joins
– Aggregates and grouping
– Nested queries (Subqueries)
– Theta Joins
– Nulls & Outer joins
– Top-k
– [Recursion: moved to T1-U4: Datalog]

95Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Grouping and Aggregation

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

Q: For each product, find Total Quantities (TQ = sum of quantities) purchased,
for all products with price >1.

Purchase
308

?

https://northeastern-datalab.github.io/cs7240/

96Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Grouping and Aggregation

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

Purchase
308

Q: For each product, find Total Quantities (TQ = sum of quantities) purchased,
for all products with price >1.

Product TQ
Bagel ?
Banana ?

https://northeastern-datalab.github.io/cs7240/

97Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Grouping and Aggregation

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

Purchase
308

Q: For each product, find Total Quantities (TQ = sum of quantities) purchased,
for all products with price >1.

Product TQ
Bagel 40
Banana 20

https://northeastern-datalab.github.io/cs7240/

98Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Product TQ
Bagel 40
Banana 20

From ® Where ® Group By ® Select

SELECT product, sum(quantity) as TQ
FROM Purchase
WHERE price > 1
GROUP BY product

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

1
2
3

4

Select contains
• grouped attributes
• and aggregates

Purchase
308

https://northeastern-datalab.github.io/cs7240/

99Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Groupings illustrated with colored shapes

SELECT color,
avg(numc) anc

FROM Shapes
GROUP BY color

group by color

SELECT numc
FROM Shapes
GROUP BY numc

? ?

group by numc (# of corners)

https://northeastern-datalab.github.io/cs7240/

100Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Groupings illustrated with colored shapes

SELECT color,
avg(numc) anc

FROM Shapes
GROUP BY color

group by color

SELECT numc
FROM Shapes
GROUP BY numc

??

group by numc (# of corners)
color numc
blue 3
blue 4
blue 5
orange 4
orange 5
orange 6

https://northeastern-datalab.github.io/cs7240/

101Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Groupings illustrated with colored shapes

SELECT color,
avg(numc) anc

FROM Shapes
GROUP BY color

group by color

color anc
blue 4
orange 5

SELECT numc
FROM Shapes
GROUP BY numc

?

group by numc (# of corners)
color numc
blue 3
blue 4
blue 5
orange 4
orange 5
orange 6

https://northeastern-datalab.github.io/cs7240/

102Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Groupings illustrated with colored shapes

SELECT color,
avg(numc) anc

FROM Shapes
GROUP BY color

group by color

color anc
blue 4
orange 5

SELECT numc
FROM Shapes
GROUP BY numc

numc
3
4
5
6

group by numc (# of corners)
color numc
blue 3
blue 4
blue 5
orange 4
orange 5
orange 6

Without group by?

https://northeastern-datalab.github.io/cs7240/

103Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Groupings illustrated with colored shapes

SELECT DISTINCT numc
FROM Shapes

Same as:

color numc
blue 3
blue 4
blue 5
orange 4
orange 5
orange 6

SELECT color,
avg(numc) anc

FROM Shapes
GROUP BY color

group by color group by numc (# of corners)

color anc
blue 4
orange 5

SELECT numc
FROM Shapes
GROUP BY numc

numc
3
4
5
6

Without group by!

https://northeastern-datalab.github.io/cs7240/

105

Outline: T1-U1: SQL

• SQL
– Schema, keys, referential integrity
– Joins
– Aggregates and grouping
– Nested queries (Subqueries)
– Theta Joins
– Nulls & Outer joins
– Top-k
– [Recursion: moved to T1-U4: Datalog]

106Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Subqueries = Nested queries

• We can nest queries because SQL is compositional:
- Input & Output are represented as relations (multisets)
- Subqueries also return relations; thus the output of one query can thus be

used as the input to another (nesting)
• This is extremely powerful (think in terms of input/output)
• A complication: subqueries can be correlated (not just in-/output)

We focus mainly on nestings in the
WHERE clause, which are the
most expressive type of nesting.

SELECT ...
FROM ...
WHERE ...
HAVING ...

(SELECT ...
FROM ...
WHERE ...)

Outer block Inner block

https://northeastern-datalab.github.io/cs7240/

108Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Subqueries in
SELECT clause
FROM clause
WHERE clause
HAVING clause

(also called "derived tables")

https://northeastern-datalab.github.io/cs7240/

109Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Product TQ
Bagel 40
Banana 70

Subqueries in FROM clause = Derived tables

SELECT product, SUM(quantity) as TQ
FROM Purchase
GROUP BY product

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

Purchase
308

Q1: For each product, find total
quantities (sum of quantities) purchased.

MTQ
70

Q2: Find the maximal total quantities
purchased across all products.

?

https://northeastern-datalab.github.io/cs7240/

110Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Subqueries in FROM clause = Derived tables

SELECT product, SUM(quantity) as TQ
FROM Purchase
GROUP BY product

Purchase
308

Q1: For each product, find total
quantities (sum of quantities) purchased.

Q2: Find the maximal total quantities
purchased across all products.

?

X
Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

MTQ
70

Product TQ
Bagel 40
Banana 70

https://northeastern-datalab.github.io/cs7240/

111Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Subqueries in FROM clause = Derived tables

SELECT product, SUM(quantity) as TQ
FROM Purchase
GROUP BY product

308

Q1: For each product, find total
quantities (sum of quantities) purchased.

Q2: Find the maximal total quantities
purchased across all products.

SELECT MAX(TQ) as MTQ
FROM X

Purchase X
Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

MTQ
70

Product TQ
Bagel 40
Banana 70

https://northeastern-datalab.github.io/cs7240/

112Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT MAX(TQ) as MTQ
FROM (SELECT product, SUM(quantity) as TQ

FROM Purchase
GROUP BY product) X

Subqueries in FROM clause = Derived tables

SELECT product, SUM(quantity) as TQ
FROM Purchase
GROUP BY product

Purchase
308

Q1: For each product, find total
quantities (sum of quantities) purchased.

Q2: Find the maximal total quantities
purchased across all products.

SELECT MAX(TQ) as MTQ
FROM X

Purchase
Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

MTQ
70

https://northeastern-datalab.github.io/cs7240/

113Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Common Table Expressions (CTE): WITH clause
Purchase

308

SELECT MAX(TQ) as MTQ
FROM (SELECT product, SUM(quantity) as TQ

FROM Purchase
GROUP BY product) X

Purchase
Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

MTQ
70

CTE (Common
Table Expression)

Query using CTE

WITH X as
(SELECT product, SUM(quantity) as TQ
FROM Purchase
GROUP BY product)

SELECT MAX(TQ) as MTQ
FROM X

The WITH clause defines a temporary
relation that is available only to the
query in which it occurs. Sometimes
easier to read. Very useful for queries
that need to access the same
intermediate result multiple times

https://northeastern-datalab.github.io/cs7240/

114Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Subqueries in
SELECT clause
FROM clause
WHERE clause
HAVING clause

(including IN, ANY, ALL)

https://northeastern-datalab.github.io/cs7240/

115Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Subqueries in WHERE clause
What do these queries return?

SELECT a
FROM R
WHERE a IN

(SELECT a FROM W)
?

305R
a
1
2

SELECT a
FROM R
WHERE a < ANY

(SELECT a FROM W)

SELECT a
FROM R
WHERE a < ALL

(SELECT a FROM W)

W
a b
2 0
3 0
4 0

?

?

https://northeastern-datalab.github.io/cs7240/

116Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Subqueries in WHERE clause

Since 2 is in the set (bag)
(2, 3, 4)

a
2

R 305

?

?

a
1
2

a b
2 0
3 0
4 0

W

What do these queries return?

SELECT a
FROM R
WHERE a IN

(SELECT a FROM W)

SELECT a
FROM R
WHERE a < ANY

(SELECT a FROM W)

SELECT a
FROM R
WHERE a < ALL

(SELECT a FROM W)

https://northeastern-datalab.github.io/cs7240/

117Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Subqueries in WHERE clause

Since 2 is in the set (bag)
(2, 3, 4)

R

a
1
2

Since 1 and 2 are <
than at least one
("any") of 2, 3 or 4

305

?

a
1
2

a b
2 0
3 0
4 0

W

a
2

What do these queries return?

SELECT a
FROM R
WHERE a IN

(SELECT a FROM W)

SELECT a
FROM R
WHERE a < ANY

(SELECT a FROM W)

SELECT a
FROM R
WHERE a < ALL

(SELECT a FROM W)

https://northeastern-datalab.github.io/cs7240/

118Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

a
1
2

a b
2 0
3 0
4 0

Subqueries in WHERE clause

Since 2 is in the set (bag)
(2, 3, 4)

R

a
1

Since 1 and 2 are <
than at least one
("any") of 2, 3 or 4

Since 1 is < than
each ("all") of 2, 3,
and 4

305W

a
1
2

a
2

What do these queries return?

SELECT a
FROM R
WHERE a IN

(SELECT a FROM W)

SELECT a
FROM R
WHERE a < ANY

(SELECT a FROM W)

SELECT a
FROM R
WHERE a < ALL

(SELECT a FROM W)

SQLlite does not support "ANY" or "ALL" L

https://northeastern-datalab.github.io/cs7240/

119Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correlated subqueries

• In all previous cases, the nested subquery in the inner select block
could be entirely evaluated before processing the outer select block.
- Recall the "compositional" nature of relational queries
- This is no longer the case for correlated nested queries.

• Whenever a condition in the WHERE clause of a nested query
references some column of a table declared in the outer query, the
two queries are said to be correlated.
- The nested query is then evaluated once for each tuple (or combination of

tuples) in the outer query (that's the conceptual evaluation strategy)

https://northeastern-datalab.github.io/cs7240/

120Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correlated subquery (existential $)

Using IN: Set / Bag membership

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price < 25)

316

Q1: Find all companies that make some product(s) with price < 25

PName Price Category cid

Gizmo $19.99 Gadgets 1

Powergizmo $29.99 Gadgets 1

SingleTouch $14.99 Photography 2

MultiTouch $203.99 Household 3

Product Company
cid CName StockPrice Country

1 GizmoWorks 25 USA

2 Canon 65 Japan

3 Hitachi 15 Japan

slightly
different
product
database!

Is this a correlated
nested query ?

https://northeastern-datalab.github.io/cs7240/

121Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Using IN: Set / Bag membership

Correlated subquery (existential $)

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price < 25)

316

Q1: Find all companies that make some product(s) with price < 25

PName Price Category cid

Gizmo $19.99 Gadgets 1

Powergizmo $29.99 Gadgets 1

SingleTouch $14.99 Photography 2

MultiTouch $203.99 Household 3

Product Company
cid CName StockPrice Country

1 GizmoWorks 25 USA

2 Canon 65 Japan

3 Hitachi 15 Japan

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (1, 2)

slightly
different
product
database!

Not a correlated nested query!

Inner query does not reference
outer query! You could first
evaluate the inner query by itself.

https://northeastern-datalab.github.io/cs7240/

122Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Using EXISTS: TRUE if the subquery's result is NOT empty

Correlated subquery (existential $)

SELECT DISTINCT C.cname
FROM Company C
WHERE EXISTS (SELECT *

FROM Product P
WHERE P.cid = C.cid
and P.price < 25)

316

PName Price Category cid

Gizmo $19.99 Gadgets 1

Powergizmo $29.99 Gadgets 1

SingleTouch $14.99 Photography 2

MultiTouch $203.99 Household 3

Product Company
cid CName StockPrice Country

1 GizmoWorks 25 USA

2 Canon 65 Japan

3 Hitachi 15 Japan

Q1: Find all companies that make some product(s) with price < 25

Is this a correlated
nested query ?

https://northeastern-datalab.github.io/cs7240/

123Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correlated subquery (existential $)

SELECT DISTINCT C.cname
FROM Company C
WHERE EXISTS (SELECT *

FROM Product P
WHERE P.cid = C.cid
and P.price < 25)

316

PName Price Category cid

Gizmo $19.99 Gadgets 1

Powergizmo $29.99 Gadgets 1

SingleTouch $14.99 Photography 2

MultiTouch $203.99 Household 3

Product Company
cid CName StockPrice Country

1 GizmoWorks 25 USA

2 Canon 65 Japan

3 Hitachi 15 Japan

Q1: Find all companies that make some product(s) with price < 25

This is a correlated nested query!
Notice the additional join condition
referencing a relation from the
outer query.

Recall our conceptual evaluation
strategy!

Using EXISTS: TRUE if the subquery's result is NOT empty

https://northeastern-datalab.github.io/cs7240/

124Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correlated subquery (existential $)

SELECT DISTINCT C.cname
FROM Company C
WHERE 25 > ANY (SELECT price

FROM Product P
WHERE P.cid = C.cid)

316

PName Price Category cid

Gizmo $19.99 Gadgets 1

Powergizmo $29.99 Gadgets 1

SingleTouch $14.99 Photography 2

MultiTouch $203.99 Household 3

Product Company
cid CName StockPrice Country

1 GizmoWorks 25 USA

2 Canon 65 Japan

3 Hitachi 15 Japan

Q1: Find all companies that make some product(s) with price < 25

But do we really need
to write this query as
nested query ?

Using ANY (also SOME): again set / bag comparison

SQLlite does not support "ANY" L

https://northeastern-datalab.github.io/cs7240/

125Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correlated subquery (existential $)

SELECT DISTINCT C.cname
FROM Company C, Product P
WHERE C.cid = P.cid
and P.price < 25

We did not need to write nested queries;
we can "unnest" it!

Existential quantifiers are easy J

316

PName Price Category cid

Gizmo $19.99 Gadgets 1

Powergizmo $29.99 Gadgets 1

SingleTouch $14.99 Photography 2

MultiTouch $203.99 Household 3

Product Company
cid CName StockPrice Country

1 GizmoWorks 25 USA

2 Canon 65 Japan

3 Hitachi 15 Japan

Q1: Find all companies that make some product(s) with price < 25

https://northeastern-datalab.github.io/cs7240/

126Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correlated subquery (universal ") 316

PName Price Category cid

Gizmo $19.99 Gadgets 1

Powergizmo $29.99 Gadgets 1

SingleTouch $14.99 Photography 2

MultiTouch $203.99 Household 3

Product Company
cid CName StockPrice Country

1 GizmoWorks 25 USA

2 Canon 65 Japan

3 Hitachi 15 Japan

Q2: Find all companies that make only products with price < 25
≡ Q2: Find all companies for which all products have price < 25

Universal quantifiers are more complicated ! L
(Think about the companies that should not be returned)

≡ Q2: Find all companies that do not have any product with price >= 25

Q1: Find all companies that make some product(s) with price < 25

All three formulations are equivalent: a company with no product will be returned!

https://northeastern-datalab.github.io/cs7240/

127Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correlated subquery (universal " = not exists ∄) 316

Step 2: Q2: Find all companies that make no products with price ≥ 25

First think about the
companies that should
not be returned!

Step 1: Q2': Find the other companies that make some product(s) with price ≥ 25

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid NOT IN (SELECT P.cid

FROM Product P
WHERE P.price >= 25)

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price >= 25)

Q2: Find all companies that make only products with price < 25

https://northeastern-datalab.github.io/cs7240/

128Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correlated subquery (universal " = not exists ∄) 316

SELECT DISTINCT C.cname
FROM Company C
WHERE NOT EXISTS (SELECT *

FROM Product P
WHERE C.cid = P.cid
and P.price >= 25)

SELECT DISTINCT C.cname
FROM Company C
WHERE EXISTS (SELECT *

FROM Product P
WHERE C.cid = P.cid
and P.price >= 25)

Step 2: Q2: Find all companies that make no products with price ≥ 25

Step 1: Q2': Find the other companies that make some product(s) with price ≥ 25
Q2: Find all companies that make only products with price < 25

First think about the
companies that should
not be returned!

https://northeastern-datalab.github.io/cs7240/

129Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correlated subquery (universal " = not exists ∄) 316

SELECT DISTINCT C.cname
FROM Company C
WHERE 25 > ALL (SELECT P.price

FROM Product P
WHERE C.cid = P.cid)

SELECT DISTINCT C.cname
FROM Company C
WHERE 25 <= ANY (SELECT P.price

FROM Product P
WHERE C.cid = P.cid)

Step 2: Q2: Find all companies that make no products with price ≥ 25

Step 1: Q2': Find the other companies that make some product(s) with price ≥ 25
Q2: Find all companies that make only products with price < 25

First think about the
companies that should
not be returned!

https://northeastern-datalab.github.io/cs7240/

130Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A natural question

• How can we unnest (no GROUP BY) the universal quantifier query ?

?

Source: Dan Suciu

SELECT ...
FROM ...
WHERE ...

Q2: Find all companies that make only products with price < 25

https://northeastern-datalab.github.io/cs7240/

