Updated 4/22/2021

Topic 3: Efficient query evaluation

Unit 4: Optimization, Top-k, Ranked Enumeration
Lecture 26

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp21)

https://northeastern-datalab.github.io/cs7240/sp21/
4/22/2021

117

https://northeastern-datalab.github.io/cs7240/sp21/

Wolfgang Gatterbauer.

Topic 3: Efficient Query Evaluation & Factorized Representations

SKIPPED Topic 4: Normalization, Information Theory & Axioms for Uncertainty

CONTINUED Lecture 16 (Fri 3/11): T3-U1 Acyclic Queries
Spring break

Lecture 17 (Tue 3/22): T3-U1 Acyclic Queries

Lecture 18 (Fri 3/25): T3-U1 Acyclic Queries

Lecture 19 (Tue 3/29): T3-U1 Acyclic Queries / T3-U2 Cyclic Queries
Lecture 20 (Fri 4/1): T3-U2 Cyclic Queries

Lecture 21 (Tue 4/5): T3-U2 Cyclic Queries

Lecture 22 (Fri 4/8): T3-U2 Cyclic Queries

Lecture 23 (Tue 4/12): T3-U3 Factorized Representations
Lecture 24 (Fri 4/15): T3-U4 Optimization Problems & Top-k
Lecture 25 (Tue 4/19): T3-U4 Optimization Problems & Top-k

Pointers to relevant concepts & supplementary material:

o Unit 1. Acyclic Queries: query hypergraph, Yannakakis algorithm, GYO reduction, dynamic programming,
algebraic semirings, [Alice] Ch6.4, [Koutris'19] L4, enumeration, ranked enumeration:[Tziavelis+'20]

o Unit 2. Cyclic Queries: tree & hypertree decomposition, query widths, fractional hypertree width, AGM
bound, worst-case optimal join algorithms, optimal algorithms, submodular width and multiple

decompositions: [AGM'13], [NPRR'18], [KNR'17], [KNS'17]

o Unit 3. Factorized Representations: normalization, factorized databases [Olteanu, Schleich'16]

o Unit 4. Optimization Problems & Top-k: shortest paths, dynamic programming (DP), Yannakakis, semirings,
rankings, top-k: [Roughgarden'10], [Ilyas+08], [Rahul, Tao'19], ranked enumeration [Tziavelis+'19]

Lecture: Normal Forms & Information Theory
Lecture: Axioms for Uncertainty

Pointers to relevant concepts & supplementary material:

o Unit 1. Normal Forms & Information Theory: normal forms & their information-theoretic justification

[Complete'18] Ch3, [Lee'87], [Arenas, Libkin'05]

o Unit 2. Axioms for Uncertainty: Uncertainty & Inconsistency, Maximum entropy principle [Cox'46],

[Shannon'48], [Van Horn'03]

Topic 5: Linear Algebra & Iterative Graph Algorithms

Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Lecture 26 (Fri 4/22): Graphs & Linear Algebra
Lecture 27 (Tue 4/26): Graphs & Linear Algebra
Lecture 28 (Fri 4/29): Computation Graphs

Pointers to relevant concepts & supplementary material:

o Unit 1. Graphs & Linear Algebra: graphs, linear algebra (LA), semirings, iterative algorithms, rankings on
graphs, associative arrays: [Lay+ 21], [Kepner, Gilbert'11], [Kepner, Jananthan'18], [Klein'13], Random walks &
PageRank axioms: [Newman'10], [Gleich'15], [AT'10], label propagation & back-propagation, semi-supervised
learning [BDL'06], factorized graph representations: [KLG'20], belief propagation (BP): [Murphy'12],

[GGKF'15]

© Unit 2. Computation Graphs: circuits, knowledge compilation [DM'02], [JS'13]

118

https://northeastern-datalab.github.io/cs7240/

Outline: T3-4: Optimization, Top-k, Ranked Enumeration

* Dynamic Programming (DP)
— Shortest path algorithms

— DP & shortest path enumeration
— Non-serial DP (NSDP) and Tree Decompositions for SAT

— Yannakakis and NSDP
Algebraic Structures (Semirings)

* Top-K
« Ranked Enumeration

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 120

https://northeastern-datalab.github.io/cs7240/

Why algebra? Think abstraction and generalization

e Abstraction:

e Generalization:

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 123

https://northeastern-datalab.github.io/cs7240/

Why algebra? Think abstraction and generalization

» Abstraction: an emphasis on the
idea and properties rather than the
particulars (hiding irrelevant details)

— main goal in "Abstract algebra”

e.g. groups in group theory —_—

e Generalization:

For instance, consider the following three objects:

1. The set of functions A, B, C defined on the set {1,2,3} by
A(l) =1, AQ)=2, A(3) =3,
B(1)=2, B(2)=3, B3 =1,
ChH=3C2)=1, C(3) =2,

2. The set of complex numbersa = 1,b = e

_ 1 0 0 -1 —1 —l
3. The set of matrices a = = P =
0 1 -1 ~1 -1 0

Consider these notations: AB means A(B(x)), ab is ordinary multiplication of complex numbers, and
aff means ordinary matrix multiplication. Verify the following "multiplication” tables:

2af3 ¢ — gi4nl3,

A B C a b ¢ | a f vy
A|lA B C ala b c ala B vy
B|B C A b|b ¢ a BlP v «
C|C A B clc a b yly a p

Notice that these tables are identical. Then let us by abstraction define an abstract object which is
the set of three elements {e, g, g'1 } paired with a binary operator - such that set acts on itself in
the following manner with respect to the operator:

e
e g
g

In Group Theory an object with such structure is called the cyclic group of order three. Then the
examples above are representations of this abstract object. It is an abstract object because while
we have now given it a definition, notice that it is itself a stand-in for a variety of objects that have
the properties that it demonstrates. You might even consider the abstract object to be more of a set

Example on the right from: https://matheducators.stackexchange.com/questions/10949/what-is-abstraction-and-generalization/10957

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

¢

https://northeastern-datalab.github.io/cs7240/
https://matheducators.stackexchange.com/questions/10949/what-is-abstraction-and-generalization/10957

Why algebra? Think abstraction and generalization

: an emphasis on the
idea and properties rather than the
particulars (hiding irrelevant details)

— main goal in "Abstract algebra”

e.g. groups in group theory —_—
: a broadening of

application to several objects with

similar functions.

— e.g. Algorithms: finding the shortest
path not just in one graph but any
graph

For instance, consider the following three objects:

1. The set of functions A, B, C defined on the set {1,2,3} by
A(l) =1, AQ)=2, A(3) =3,
B(1)=2, B(2)=3, B3 =1,
ChH=3C2)=1, C(3) =2,

2. The set of complex numbers a = 1, b = €273, ¢ = /473,

_ 1 0 0 -1 —1 —l
3. The set of matrices a = = P =
0 1 -1 ~1 -1 0

Consider these notations: AB means A(B(x)), ab is ordinary multiplication of complex numbers, and
aff means ordinary matrix multiplication. Verify the following "multiplication” tables:

A B C a b ¢ ER
A|lA B C ala b c ala p vy
B|B C A b|b ¢ a BlF v «
C|C A B clc a b yly a p

Notice that these tables are identical. Then let us by abstraction define an abstract object which is
the set of three elements {e, g, g'1 } paired with a binary operator - such that set acts on itself in
the following manner with respect to the operator:

e
e g
g

In Group Theory an object with such structure is called the cyclic group of order three. Then the
examples above are representations of this abstract object. It is an abstract object because while

we have now given it a definition, notice that it is itself a stand-in for a variety of objects that have
the properties that it demonstrates. You might even consider the abstract object to be more of a set

Example on the right from: https://matheducators.stackexchange.com/questions/10949/what-is-abstraction-and-generalization/10957

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

¢

https://northeastern-datalab.github.io/cs7240/
https://matheducators.stackexchange.com/questions/10949/what-is-abstraction-and-generalization/10957

Let's start with groups! Why groups?

e Groups are one of the most important structures studied in abstract
algebra

« What is so special about groups?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 124

https://northeastern-datalab.github.io/cs7240/

Groups have the minimum properties needed to solve equations
(Z,+, 0): Integers under addition

Screenshot from: Socratica: Abstract Algebra: Motivation for the definition of a group, https://www.youtube.com/watch?v=yHqg yzYZV6U
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 125

https://northeastern-datalab.github.io/cs7240/
https://www.youtube.com/watch?v=yHq_yzYZV6U

Why something weaker than groups?

e For some important computational problems like Dynamic
Programming, we don't need to "solve equations”.

— Thus we don't need an inverse ("we don't need to go back")

e Let's look at weaker structures

Preface
6raphs,Dioids During the last two or three centuries, most of the developments in science (in par-
and Semirings ticular in Physics and Applied Mathematics) have been founded on the use of classical
algebraic structures, namely groups, rings and fields. However many situations can
be found for which those usual algebraic structures do not necessarily provide the
most appropriate tools for modeling and problem solving.

Screenshot from: Gondran, Minoux. "Graphs, Dioids and Semirings: New Models and Algorithms", 2008. https://www.springer.com/gp/book/9780387754499
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 126

https://northeastern-datalab.github.io/cs7240/
https://www.springer.com/gp/book/9780387754499

Group-like structures

Magma
Binary Operation

Set S Closure

Semigroup

+ 1. | Closed binary operation @:
If x,yeS then (x@y)eS

Magma (S, D)

Figure credits: https://www.euclideanspace.com/maths/discrete/groups/monoid/index.htm,
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 127

https://northeastern-datalab.github.io/cs7240/
https://www.euclideanspace.com/maths/discrete/groups/monoid/index.htm

Group-like structures

Magma
Binary Operation

Set S Closure

Semigroup

+ 1. | Closed binary operation @:
If x,yeS then (x@y)eS

Magma (S, D)

+ 2.| Associativity:

xD(yDz) = (xDy)Dz
Semi-group (S,D)

Figure credits: https://www.euclideanspace.com/maths/discrete/groups/monoid/index.htm,
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 128

https://northeastern-datalab.github.io/cs7240/
https://www.euclideanspace.com/maths/discrete/groups/monoid/index.htm

Magma

Group-like structures

Set S Closure
Semigroup
+ 1. | Closed binary operation @:
If x,yeS then (x@y)eS
Magma (S, D)

+ 2.1 Associativity:
xD(yDz) = (xDy)Dz

Semi-group (S,D)

+ 3. | Identity element:
JeeS. VxeS. [e@x = xPe =x]

Monoid (S,D,e)

Figure credits: https://www.euclideanspace.com/maths/discrete/groups/monoid/index.htm,
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 129

https://northeastern-datalab.github.io/cs7240/
https://www.euclideanspace.com/maths/discrete/groups/monoid/index.htm

Magma

Group-like structures

Set S Closure

Semigroup
+ 1. | Closed binary operation @:
If x,yeS then (x@y)eS

Magma (S,D)
+ 2.1 Associativity:

xD(yDz) = (xDy)Dz
Semi-group (S,D)

JeeS. VxeS. [e@x = xPe =x]
Monoid (S,D,e)

Inverse:
VxeS. AxteS. [x1Px =xPx' =e]

Group (S,ED,e)

+ 3.‘ ldentity element:

Figure credits: https://www.euclideanspace.com/maths/discrete/groups/monoid/index.htm,
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 130

https://northeastern-datalab.github.io/cs7240/
https://www.euclideanspace.com/maths/discrete/groups/monoid/index.htm

Group-like structures

Set S

+ 1. | Closed binary operation @:
If x,yeS then (x@y)eS

Magma (S, D)
+ 2.1 Associativity:
xD(yDz) = (xDy)Dz
Semi-group (S,D)

+ 3. | Identity element:
JeeS. VxeS. [e@x = xPe =x]

What are intuitive examples for:
* 4 group f?

* Wowoids (that are not groups)

?

* semi-groups (that are vot mowoids)?

?

Monoid (S,D,e)

.| Inverse:
VxeS. AxteS. [x1Px =xPx' =e]

+ 5. Commutativity: x@y = yDx

» Commutative Monoid (S,D,e)

Group (S,ED,e)
+ 5.

= Abelian Group (S,D,e)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

Group-like structures

Set S

+ 1. | Closed binary operation @:
If x,yeS then (x@y)eS

Magma (S, D)
+ 2.1 Associativity:
xD(yDz) = (xDy)Dz
Semi-group (S,D)

+ 3. | Identity element:
JeeS. VxeS. [e@x = xPe =x]

What are intuitive examples for:
* A group

- (Z,+, 0): Integers under addition
* Wowoids (that are not groups)

?

* semi-groups (that are vot mowoids)?

?

Monoid (S,D,e)

.| Inverse:
VxeS. AxteS. [x1Px =xPx' =e]

+ 5. Commutativity: x@y = yDx

» Commutative Monoid (S,D,e)

Group (S,ED,e)
+ 5.

= Abelian Group (S,D,e)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

Group-like structures

Set S

+ 1. | Closed binary operation @:
If x,yeS then (x@y)eS

Magma (S, D)

+ 2.1 Associativity:
xD(yDz) = (xDy)Dz

Semi-group (S,D)

+ 3. | Identity element:
JeeS. VxeS. [e@x = xPe =x]

Monoid (S,D,e)

What are ivtuitive examples for:
* agroup
- (Z,+, 0): Integers under addition
* Wowoids (that are not groups)
- (N,+, 0): Natural numbers {0, 1, ...}
- (IR,min,e=): minimum has no inverse
- (P(X),U,D): union has no inverse w.r.t. @
- String concatenation with null string €

- Square matrices under matrix multiplication
* semi-groups (that are vot mowoids)?

?

Inverse:

VxeS. AxteS. [x1Px =xPx' =e]

» Commutative Monoid (S,D,e)
+ 5. Commutativity: x@y = yDx

Group (S,ED,e)
+ 5.

= Abelian Group (S,D,e)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

133

https://northeastern-datalab.github.io/cs7240/

Group-like structures

Set S

+ 1. | Closed binary operation @:
If x,yeS then (x@y)eS

Magma (S, D)
+ 2.1 Associativity:
xD(yDz) = (xDy)Dz
Semi-group (S,D)

+ 3. | Identity element:
JeeS. VxeS. [e@x = xPe =x]

What are ivtuitive examples for:
* A group
- (Z,+, 0): Integers under addition

* Wowoids (that are not groups)

- (N,+, 0): Natural numbers {0, 1, ...}

- (IR,min,e=): minimum has no inverse

- (P(X),U,D): union has no inverse w.r.t. @

- String concatenation with null string €

- Square matrices under matrix multiplication
* semi-groups (that are vot mowoids)?

- Even numbers under multiplication

- (N, +): Positive integers {1, 2, ...}

- String concatenation without null string

Monoid (S,D,e)

Inverse:
VxeS. AxteS. [x1Px =xPx' =e]

» Commutative Monoid (S,D,e)
+ 5. Commutativity: x@y = yDx

Group (S,ED,e)
+ 5.

= Abelian Group (S,D,e)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

What do we exactly lose by not having an inverse?

e Let's take a quick detour and look at some examples to illustrate
what we lose by having monoids instead of groups

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 136

https://northeastern-datalab.github.io/cs7240/

Monoids vs. Groups: Examples

« Commutative group (with inverse)
- (R, +, 0) eg,3+31= 7

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 137

https://northeastern-datalab.github.io/cs7240/

Monoids vs. Groups: Examples

« Commutative group (with inverse)
- (R, +, 0) e.g.,3+31=3+(-3)=0 recall; inverse w.rt. (+,0)
- (R\{0},-,1) eg,3-3t= 7

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 138

https://northeastern-datalab.github.io/cs7240/

Monoids vs. Groups: Examples

« Commutative group (with inverse)
- (R, +, 0) e.g.,3+31=3+(-3)=0 recall: nverse w.rt. (+,0)
- (R\{0},-,1) eg.,3:-31=3:(1/3)=1

« Commutative monoid (w/o inverse)

- ({0,1},A,1) ... logical conjunction
* identity element 1: xA1 = 1Ax=x

* Whatis theinverse 0! s.t. O 1 P,

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 139

https://northeastern-datalab.github.io/cs7240/

Monoids vs. Groups: Examples

« Commutative group (with inverse)
- (R, +, 0) e.g.,3+31=3+(-3)=0 recall: nverse w.rt. (+,0)
- (R\{0},-,1) eg.,3:-31=3:(1/3)=1

« Commutative monoid (w/o inverse)

- ({0,1},A,1) ... logical conjunction
* identity element 1: xA1 = 1Ax=x
e Whatistheinverse 01s.t.0NO1=1 There is vo such inverse ®

- (R*,min,o=)
* identity element eo: min[x,o°] =x
* Whatis the inverse 31s.t. min[3,3 =0)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 140

https://northeastern-datalab.github.io/cs7240/

Monoids vs. Groups: Examples

« Commutative group (with inverse)
- (R, +, 0) e.g.,3+31=3+(-3)=0 recall: nverse w.rt. (+,0)
- (R\{0},-,1) eg.,3:-31=3:(1/3)=1

« Commutative monoid (w/o inverse)

- ({0,1},A,1) ... logical conjunction
* identity element 1: xA1 = 1Ax=x
e Whatistheinverse 01s.t.0NO1=1 There is vo such inverse ®

= (R*,min,e°)
* identity element eo: min[x,o°] =x
* Whatisthe inverse 31s.t. min[3,31] = o= There is vo such inverse @

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 141

https://northeastern-datalab.github.io/cs7240/

The power of groups (i.e. of having an inverse)

o Assume(x,y,z) s.t. xpy=z
- Given y and z (and knowing that z was calculated), deduce x
« (R,+,0)and (x,y,z)=(1,2,3)
- X+2=3
wWhat is x7 P

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 142

https://northeastern-datalab.github.io/cs7240/

The power of groups (i.e. of having an inverse)

o Assume(x,y,z) s.t. xpy=z
- Given y and z (and knowing that z was calculated), deduce x
« (R,+,0)and (x,y,z)=(1,2,3)
- X+2=3
What is X7 x=z+y1=3+(-2)=1
e ({0,1},A,1) and (x,y,2)=(1,0,0)
- XxA0=0
wWhatisx? P

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 143

https://northeastern-datalab.github.io/cs7240/

The power of groups (i.e. of having an inverse)

o Assume(x,y,z) s.t. xpy=z
- Giveny and z (and knowing that z was calculated), deduce x
« (R,+,0)and (x,y,z)=(1,2,3)
— X+2=3
What is X7 x=z+y1=3+(-2)=1
e ({0,1},A,1) and (x,y,2)=(1,0,0)
— xA0=0
What is x7 x could be O or 1
e (R>,min,*=) and (x,y,z)=(3,2,2)
- Xmin2=2
wWhatisx? P

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 144

https://northeastern-datalab.github.io/cs7240/

The power of groups (i.e. of having an inverse)

Assume(x,y,z) s.t. xPy=z
- Giveny and z (and knowing that z was calculated), deduce x
« (R,+,0)and (x,y,z)=(1,2,3)
— X+2=3
What is X7 x=z+y1=3+(-2)=1
e ({0,1},A,1) and (x,y,2)=(1,0,0)
— xA0=0
What is x7 x could be O or 1
e (R>,min,*=) and (x,y,z)=(3,2,2)
- Xmin2=2
What is X7 x can be anything in [2,9°]

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 145

https://northeastern-datalab.github.io/cs7240/

Totally ordered commutative monoids
= monoids "with order"

e Turns out, for problem solving like Dynamic programming we don't
need an inverse

e But we need some "order"

— This leads to the key structure we need for any-k or ranked enumeration:
a "totally ordered commutative monoid" (next)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

150

https://northeastern-datalab.github.io/cs7240/

Group-like structures

Set S

+ 1. | Closed binary operation @:
If x,yeS then (x@y)eS

Magma (S,D) Totally Ordered Commutative Monoid (S,®,e,<)
+ Z.l Associativity:
xD(yDz) = (xDy)Dz + 6. f <total order that is translation-invariant
Semi-group (S,D) VX,y,z € S: x<y = x@Dz < yDz

JeeS. VxeS. [e@x = xPe =x]

Monoid (S,D,e) » Commutative Monoid (S,P,e)
+ 5. Commutativity: x@y = yDx

+ 3.lldentity element:

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 151

https://northeastern-datalab.github.io/cs7240/

Totally ordered commutative monoid

» Totally ordered commutative monoid (S,D,e,<)

6. <total order thatis translation-invariant (sometimes called "compatible"
with @, or monotonic), i.e.

X
- VXV, ZES:xy=>xPz<yPz M/\z/\@

— equivalent to "optimal substructure" in DP L/\;/

when the solution to an optimization problem cav be
constructed from optimal solutions +o its subproblems. XY D z

e Let's generalize

- min [(xDz), (yB2)]= 7

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 152

https://northeastern-datalab.github.io/cs7240/

Totally ordered commutative monoid

» Totally ordered commutative monoid (S,D,e,<)

6. <total order thatis translation-invariant (sometimes called "compatible"
with @, or monotonic), i.e.

X
- VXV, ZES:xy=>xPz<yPz M/\z/\@

— equivalent to "optimal substructure" in DP L/\;/

when the solution to an optimization problem cav be
constructed from optimal solutions +o its subproblems. XY D VA
I]
e Let's generalize

- min [(xDz), (yDz)] = min[x,y] D z
- (x@z) min (yPz) = (x miny) @ z (+ distributes over min)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 154

https://northeastern-datalab.github.io/cs7240/

Totally ordered commutative monoid

» Totally ordered commutative monoid (S,D,e,<)

6. <total order thatis translation-invariant (sometimes called "compatible"
with @, or monotonic), i.e.

X
- VXV, ZES:xy=>xPz<yPz M/\z/\@

— equivalent to "optimal substructure" in DP L/\;/

when the solution to an optimization problem cav be
constructed from optimal solutions +o its subproblems. XY D VA
I]
e Let's generalize

- min [(xDz), (yDz)] = min[x,y] D z
- (x@z) min (yPz) = (x miny) @ z (+ distributes over min)
- (x-z) + (y-2)=(x + vy) -z (multipl. distributes over add.)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 155

https://northeastern-datalab.github.io/cs7240/

Rings and Semirings: what we get from two operators

e Groups and group-like structures consider a set and one binary
operator (with various properties)

e Rings and ring-like structures consider a set and two operators (with
various properties and "interactions" like the distributive law)

e Notice (!) that "totally ordered commutative monoids" are actually
a special case of semirings

— the second operator is just selective! This implies an order.

— now we are back to where we were during the provenance discussion ©

https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

Semirings

semirings are rings
- Semiring (5,0,&,0,1) / w/o the additive iwverse
1. (S,8,0) is commutative monoid

2. (5,8,1) is monoid - e.9. matrix multiplication
3. ® distributes over ®: (x®y) Q2= (xQ2) ® (YR z) ot commutative
4. 0 annihilates ®:0 & x=0

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 162

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

Semirings

semirings are rings
0,1) w/o the additive inverse
A ~ 6) (?OUP)

(S,6D,
1. (S,8,0) is commutative monoid
2. (5,®.1) Is mpnoid - 6.4 matrix vanJr.iplicaﬁovn
3. @ distributes over @: (xPy) @ z=(xQ z) P (VX 2) 's vot OOW\W\M‘i’ﬂl‘l’EI\/@
4. 0 annihilates ®: 0 x=0 X
o Examples TROP/CAC AbDIT 1oty AVLTipcicaTION =
1. T=(Ry; ,min,+,,0) Shortest-distance: mvi/n[x,y] +z = min[(x+z),(y+z)] D +
min-sum semiring, also called tropical semiring: sum distributes over min 4
not the other way: min[x+y,z] # min[x,z] + min[y,z]; e.g. min[3+4,5] =5 # 7 =min[3,5] + min[4,5]
2. R=(R,+ -,0,1) Ring of real numbers
3. B=({0,1},v,A,0,1) Boolean (set semantics)
4. N=(N,+, -,0,1) Number of paths (bag semantics)

5. V=([0,1],max, -,0,1) Probability of best derivation (Viterbi)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 163

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

Ring-like structures

Inverse Element

Inverse Element

Field Ring Commutative Ring
Closure Closure Gl
dl
Associativity Associativity Associativity
Identity Element Abelian Group (+) Identity Element Abglian Group (+) Identity Element Abelian Group (+)

Inverse Element

Inverse Element <¢—

—except O

Inverse Element

sometimes ¢
ring w identi

Commutativity Commutativity \%mutativity

Closure NoV-2.ero Closure Closure

Associativity GIGVV\CVH‘S Associativity Assaciativity
form an e

Identity Element Abelian Group Identity Element Onot Identity Element

il gt

o
Inverse Element

ty

Commutativity Commutativity Commutativity
Left Distributivity Left Distributivity Left Distributivity

Distributivity Distributivity Distributivity
Right Distributivity Right Distributivity Right Distributivity

Pseudo-Ring (rm@)

Semi-Ring (r[@)

Commutative Semi-Ring

Closure v\
Associativity
Identity Element

Abelian Group (+)

Inverse Element

Closure

Associativity

Y

Identity Element

Commutative Monoid
(+)

Inverse ent

Closure

Associativity

Identity Element /

Commutative Monoid
(+)

Inverse Element

| —

somettines ca

Commutativity Commutativity Commutativity ha

Closure Closure Closure

Associativity Associativity \“ ociativity

Identity Element SembCrotp Identity Element CM gk Identity Elemer Commutativa Manoid

~

I~

le
Inverse Element] a N Inverse Element Inverse Element
ring wlo idevit
Commutativity Commutativity Commutativity
Left Distributivity Left Distributivity Left Distributivity
Distributivity Distributivity Distributivity
Right Distributivity Right Distributivity Right Distributivity

Figure credits: https://kevinbinz.com/2014/11/16/goodman-semiring-parsing/,
https://math.stackexchange.com/questions/2361889/graphically-organizing-the-interrelationships-of-basic-algebraic-structures

fx)
gx)

R[X] real polynowmials
ZI4Z (vteaers wod 4)

Q (rational vumbers)
Z[5Z (inteaers mod 5)

field of rational fets

This graphic describes the interrelationships
between various Group-like algebraic
structures. Structures are connected by
arrows that flow downward and in the direction
of more axioms and increasing specificity. The
arrows themselves are labeled with the
axiom(s) that need to be added to the
upstream structure in order to produce the
downstream structure. This is done in a way
that respects symmetry so that the axioms are
always necessary AND sufficient for producing
the downstream structure. In the language of
symbolic logic, if structure S is downwardly
connected to structure T thru axiom A, then
Sand A<=>T

Graphically, this also means that if it's possible
to travel from one structure to another by
consistently following the arrows, or
consistently going agarinst the arrows, then the
higher structure contains the lower structure

as a special case, and everyi f the
lower is also an ij e of the higher.

Negatives
(+ is group)

B=(B, V, A, O, 1): Boolean semiring
1+1=1,thusV hasno inverse

(N, +, -, 0, 1): Natural numbers

no inverses

Polynomials with semiring
coefficients (e.g. N[x])

2Z: tvew itegers

* "Reciprocal” means multiplicative inverse. Defined on all non-zero elements.

Reciprocals*

(- is Abeli

an group)

™ z Z |a, b, c, d are integers

+ commutes
(+ is Abelian)

+, * closed,
- distributes over +

+ associative, zero exists (+ is monoid),
- associative (- is semigroup),
Ox=x0=0

Ringoid

"Crooked
Semirng" (crg)

One exists (- is monoid)

"Crooked"
Semiring (crig)

(- is m

One exists

onoid)

Semiring
(rig)

D

Negatives
(+ is Abelian group)

Removing Axioms
(more general)

Adding Axioms
(more specific)

+ commutes

Semirng
(rg)

Negatives

(+ is Abelian group)

One exists
(- is monoid)

(- commutes)

Commutative
Ring

- is idempotent
(xx =x)

Boolean
Ring

Zero Product
Property

Zero Product
Property

- commutes

Integral
Domain

Reciprocals*
(- is Abelian group)

Reciprocals*
(- is group)
Reciprocals*
(- is group)
Division
Ring
- commutes

(- is Abelian group)

Finite set

@ Finite set

Finite
Field

Also, saying " is a group" means " is a group on the non-zero elements".

Wolfgang Gatterbauer. Principles of scalable data management: https:

northeastern-datalab.

ithub.io/cs7240

164

https://northeastern-datalab.github.io/cs7240/
https://kevinbinz.com/2014/11/16/goodman-semiring-parsing/
https://math.stackexchange.com/questions/2361889/graphically-organizing-the-interrelationships-of-basic-algebraic-structures
https://northeastern-datalab.github.io/cs7240/

Three properties of binary operators

@ is selective: ‘
x@y=xory VxyeS ? Can ou think of one example?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ ¢

https://northeastern-datalab.github.io/cs7240/

Three properties of binary operators

@ is selective: e.g. min(2,3) =2
x@y=xory VxyeS

Element w of magma (S,D) is idempotent: ?
W @ W =W ™

¢

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

Three properties of binary operators

@ is selective: e.g. min(2,3) =2
x@y=xory VxyeS

Element w of magma (S,D) is idempotent: e.g. 0 for addition

wdw=w Example for idempotent unary operation: abs()
(abs(—Z) = 2, abs(abs(-2))=2)

@ is idempotent:

X P x=x VxeS ?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ ¢

https://northeastern-datalab.github.io/cs7240/

Three properties of binary operators

@ is selective: e.g. min(2,3) =2
x@y=xory VxyeS

Element w of magma (S,D) is idempotent: e.g. 0 for addition

wdw=w Example for idempotent unary operation: abs()
(abs(—Z) = 2, abs(abs(-2))=2)

@ is idempotent: e.g. min(x,x) = X

XD x=x VxeS selective = idempotent: Example for idempotent but ot selective:

?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ ¢

https://northeastern-datalab.github.io/cs7240/

Three properties of binary operators

@ is selective: e.g. min(2,3) =2
x@y=xory VxyeS

Element w of magma (S,D) is idempotent: e.g. 0 for addition

wdw=w Example for idempotent unary operation: abs()
(abs(—Z) = 2, abs(abs(-2))=2)

@ is idempotent: e.g. min(x,x) = X

XD x=x VxeS selective = idempotent: Bxample for idempotent but ot selective:

e.g. xPy=(x+y)/2 Vx,yeR (5 J) =
{' l 2} U {2 . 3) e.g. set union U, say for a power set{(fP(X),U,(Z)?

w absorbing for :
X@P w=w VxeS ?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ ¢

https://northeastern-datalab.github.io/cs7240/

Three properties of binary operators

@ is selective: e.g. min(2,3) =2
x@y=xory VxyeS

Element w of magma (S,D) is idempotent: e.g. 0 for addition

wdw=w (Example for idempotent unary operation: abs())
abs(-2) = 2, abs(abs(-2))=2

@ is idempotent: e.g. min(x,x) = X

XD x=x VxeS selective = idempotent: Example for idempotent but ot selective:

e.g. x Dy =(x+y)/2 Vx,yeR
e.g. set union U, say for a power set (P(X),U,D)

w absorbing for : e.g. multiplication with 0: x - 0=0
XD w=w VxeS e.g. conjunction with O (False): x A0 =0
w absorbivg = w idempotent: Example for idempotent w that is not absorbing

?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ ¢

https://northeastern-datalab.github.io/cs7240/

Three properties of binary operators

D is ,
x@y=xory VxyeS

e.g. min(2,3) =2

Element w of magma (S,@) is
wPhw=w

@ is idempotent:
X P x=x VxeS

selective = idempotent:

e.g. O for addition

Example for idempotent unary operation: abs()
(abs(—Z) = 2, abs(abs(-2))=2)
e.g. min(x,x) = x
Example for idempotent but ot selective:
e.g. xPy=(x+y)/2 Vx,yeR
e.g. set union U, say for a power set (P(X),U,D)

W for @:
X@P w=w VxeS

w absorbing = w idempotent:

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

e.g. multiplication with0: x-0=0

e.g. conjunction with O (False): x A0 =0

Example for idempotent w that is not absorbing:

e.g. 2 is idempotent for min but not absorbing:
min: min(2,2) = 2, min(-10,2) # 2

e.g. for the set union U for power set (P(X),U,D)

only the whole domain X is absorbing
>

https://northeastern-datalab.github.io/cs7240/

. : Also Z,: residue whew dividing by 2.
Semir ngs th at are notri ng> ’}'Miwk of binary arithmetic: 1+1 = @

IB:(IBIV)/\)OI 1) Z/ZZ:({O)]-}/-F)‘)OI 1)
v 0o 1 AlO 1 +]0 1 0 1
0|0 1 0/0 O 0|0 1 0 0
111 1 110 1 111 0 2=0(mod2) 110 1

Which is here a ring and which is only a sewiring ?
[]

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 178

https://northeastern-datalab.github.io/cs7240/

Semirings that are not rings

B=(B, V, A, 0, 1): Boolean semiring

VI 0 1 AN O 1
00 1 00 O
111 1 110 1

monoid (1 has no additive inverse)

XxXV1=1=Xcouldbe D or1
XVA1=0= No X exists!

The Boolean semiring is the simplest
example of a semiring that is not a ring|
(Notice i+ is commutative)

Also Z,: residue when dividing by 2.

}'Miwk of binary arithwmetic: 1+1 =10
Z/27 =({0,1}, +, -, 0, 1): Fielgl\of Integers mod 2
special rings "with division"

+ 0 1 0 1
0/0 1 00
111 0 2=0(mod?2) 110 1
group (1 has an additive inverse)
X+1=1=>%=0
Xx+1=0=x=
Tutuitively:
+ WMovioid
+ - Grounp
+ X Sewirivg
+-X Ring

+-X = Field

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ ¢

https://northeastern-datalab.github.io/cs7240/

Semirings that are not rings

B=(B, vV, A, O, 1): Boolean semiring

VI 0 1 AN O 1
00 1 00 O
111 1 110 1

monoid (1 has no additive inverse)

XxXV1=1=Xcouldbe D or1
XVA1=0= No X exists!

Visselective:xVy=xory VXVES
= Visalso idempotent: xV x=x Vxe€S

xV1=1 1 is absorbing

Also Z,: residue when dividing by 2.
’}'Miwk of binary arithwmetic: 1+1 =10
Z/27 =({0,1}, +, -, 0, 1): Fielgl\of Integers mod 2
special rings "with division"
-1 0

1
0
1

— O O

1
1 0
0 0

2 =0 (mod 2) 1
group (1 has an additive inverse)

X+1=1>=>X%=0
X+1=0=x=

1+1=0 not selective
not idempotent

no absorbing element

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ ¢

https://northeastern-datalab.github.io/cs7240/

Totally ordered commutative monoids = special type of
semirings called dioids

e Totally ordered commutative monoids can actually be seen as
special cases of semirings
— the second operator is just selective! This implies a total order.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 181

https://northeastern-datalab.github.io/cs7240/

Two equivalent algebraic perspectives of DP

Monoid perspective Semiring perspective

- Totally ordered commutative monoid (S,&),e,<) - Selective commutative dioid (S,,&),eq,eg)

— < total order that is translation-invariant, i.e. — semiring, thus @ distributes over @
VXY,ZESIXSy =X Qz2sy Q) z — semiring, thus @ is commutative

— implies the distributivity law (& distributes over min): — commutative semiring, thus & is also commutative
(x ® z) min (y ® z) = (x miny) & z

— additionally, @ is selective:
— equivalent to "optimal substructure” in DP x@y=xory VxyeS

X — selectivity & commutativity implies:
/\2/\@ total order<onS
L/\V

Xy @ z

(R”,+,0): totally ordered comm. monoid (RS, min,+,00,0): tropical semiring

(RL",min,e=): selective monoid

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 182

https://northeastern-datalab.github.io/cs7240/

Selective dioids

SEMI-RINGS

DIOIDS
(cf. figure 3)
§6-10

OTHER
SEMI-RINGS

RINGS

FIELDS

Fig. 2 Classification of pre-semirings, semirings and dioids

Table 2 Pre-semirings, semirings and dioids and their basic properties

Properties of Properties of Relation <|Additional properties and
(E, ®) (E, ®) comments
Commutative Monoid, Right and lcf{ distributivity

Semiring monoid, neutral |neutral of ® with respect to
element ¢ element e @, ¢ absorbing for ®

; Commutative Monoid, neutral

Ring
group element e

Dioid Canonically . Monoid, neutral Gieilex
ordered monoid |element e

Screenshots from: Gondran, Minoux. "Graphs, Dioids and Semirings: New Models and Algorithms", 2008. https://www.springer.com/gp/book/9780387754499
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

183

https://northeastern-datalab.github.io/cs7240/
https://www.springer.com/gp/book/9780387754499

Selective dioids

Definition 6.4.2. (selective dioid)
We call selective dioid a dioid in which the addition @ is commutative and
selective.

Proposition 3.4.7. If @ is selective and commutative (a @ b = a or b) then < is a
total order relation.

Proof. Selectivity implies idempotency, therefore < is an order relation.
Furthermore, a @ b = a or b implies for every a, b € E:

either a<b
or b<a

which proves that < is a total order. O

The fundamental difference between a ring and a dioid lies in property (iii).
In a ring, addition induces a group structure, whereas in a dioid, it induces a
canonically ordered monoid structure. From Theorem 1 (Sect. 3.4) this implies a
disjunction between the class of rings and the class of dioids.

Screenshots from: Gondran, Minoux. "Graphs, Dioids and Semirings: New Models and Algorithms", 2008. https://www.springer.com/gp/book/9780387754499
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 184

https://northeastern-datalab.github.io/cs7240/
https://www.springer.com/gp/book/9780387754499

Selective dioids

MONOIDS

OTHER
MONOIDS
§1.1

CANONICALLY
ORDERED
MONOIDS

IDEMPOTENT
MONOIDS
= SEMI-LATTICE

OTHER CANONICALLY
ORDERED
MONOIDS
§1.3

HEMI-GROUPS
§14

NON SELECTIVE
IDEMPOTENT
MONOIDS
§1.5

SELECTIVE

MONOIDS
§16

Fig. 1 Typology of monoids

Table 1 Basic terminology concerning monoids

Selective Monoids

Monoid Set E endowed with an associative internal law &

Cancellative monoid | Monoid in which & is cancellative every element is cancellative

Group There exists a neutral element € and every element of E has an inverse
for @

Canonically ordered | The canonical preorder relation < (defined as a < b < Jc such that

monoid b = a @ c) is an order relation

Idempotent monoid | @ is idempotent (Va € Ea @ a = a)

Selective monoid @ is selective (Vae E,be E: a®b=aorb)

Hemi-group Every element is cancellative (property of hemi-group) and the
canonical preorder relation is an order relation

(R, Min) (Z, Min) Associative +o00 Total order
Commutative
Selective

(]E, Max) (%, Max) Associative —00 Total order
Commutative
Selective
(R4, Max) (N, Max) Associative 0 Total order
Commutative
Selective

(]fh, Min) (N, Min) Associative +oc0 Total order
Commutative
Selective
(R™, Min-lexico) Associative (H+o0)" Total order
Commutative
Selective

4.3. Generalized Dijkstra Algorithm (“Greedy Algorithm”)
in Some Selective Dioids

We are going to show now that one can obtain an algorithm generally more efficient
than those described in the previous paragraphs by restricting to a special class of
dioids.

We will thus assume, throughout this section, that (E, @, ®) is a selective dioid
in which e (the neutral element of ®) is the largest element (in the sense of the order
relation of the dioid), in other words: Va € E:e @ a =\8The order relation being
compatible with multiplication, we therefore have, in such a dioid:

VacEbzcobaSec@asbzc®a (20)

Screenshots from: Gondran, Minoux. "Graphs, Dioids and Semirings: New Models and Algorithms", 2008. https://www.springer.com/gp/book/9780387754499
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://www.springer.com/gp/book/9780387754499

Selectivity of @ is all we need to add to a semiring

3.3. Canonical Preorder in a Commutative Monoid

Given a commutative monoid (E, @) with neutral element ¢, it is always possible,
thanks to the internal law @, to define a reflexive and fransitive binary relation,
denoted <, as:

a<b<&3dceE suchthat b=a®ec.

The reflexivity (Va € E: a < a) follows from the existence of a neutral element
€ (a = a @ ¢) and the transitivity is immediate because:

a<b&dc:b=adhc
b<d<&3dcd:d=bac

hence: d = a @ ¢ & ¢/, which implies a < d.
Since the antisymmetry of < is not automatically satisfied, we can see that < is
only a preorder relation. We call it the canonical preorder relation of (E, @).

Definition 3.4.1. A commutative monoid (E, @) is said to be canonically ordered
when the canonical preorder relation < of (E, @) is an order relation, that is to say
also satisfies the property of antisymmetry: a<bandb <a=-a =b.

Proposition 3.4.5. If ® is commutative and idempotent, then the canonical preorder
relation < is an order relation.

Proof.

a<b=3dcb=adc
b<a=3c:a=ba

hence we deduce:a=a®cPdc’
and

b=adc=adchdPc=adchc =a

which proves antisymmetry. O

Proposition 3.4.7. If & is selective and commutative (a @b =aorb) then <isa
total order relation.

Proof. Selectivity implies idempotency, therefore < is an order relation.
Furthermore, a @ b = a or b implies for every a,b € E:

either a<b
or b<a

which proves that < is a total order. 0O

Screenshots from: Gondran, Minoux. "Graphs, Dioids and Semirings: New Models and Algorithms", 2008. https://www.springer.com/gp/book/9780387754499

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

186

https://northeastern-datalab.github.io/cs7240/
https://www.springer.com/gp/book/9780387754499

Rings instead of Semi-rings: the power of a
multiplicative inverse for Matrix Multiplication

e Strassen's algorithm only works with rings

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 195

https://northeastern-datalab.github.io/cs7240/

Multiplying 2x2 matrices

(@ &)- () i)

21 022 A21

S
|

AllBll B AIZBQI

(120 = A11B12 + A12B5 multiplications
_ L 4 additions

C121 — AQlBll A22B21

022 — A21B12 iR AQZBQQ

B 2
Works over any sewi-ring! a O/H >

Strassen. Gaussian Elimination is not Optimal. Numerical Mathematics, 1969. https://doi.org/10.1007/BF02165411
https://en.wikipedia.org/wiki/Strassen algorithm, https://en.wikipedia.org/wiki/Matrix_multiplication algorithm

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 196

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1007/BF02165411
https://en.wikipedia.org/wiki/Strassen_algorithm
https://en.wikipedia.org/wiki/Matrix_multiplication_algorithm
https://northeastern-datalab.github.io/cs7240/

Strassen’s 2x2 al g0 rithm WMatrix muttiplication exponent w

C,=4,B,+4,B8, M, =(4,+4,)(B, +B,,)
C,=4,8,+A4,8, M, =(4, +4,,)B,, w<2.4
C21 = Ale 11 + A22 B 21 M 3 — Al 1 (3168 22) s |
Cy, =48, + 4,8, M, =4, (32@311

M. =(A,+A4,)B, Subtraction!

C11:M1+M4_M5+M7 M6:(A21_A11)(311+Blz)

Cpo = M5+ M, M; = (4, = 4,)(B,, + By,) O (I,’(’O)
C,,=M,+M,

Cpy = M{ M, + M, + M, 7 multiplications

Works over any ring 1% additions/sulrtractions
(requirees additive inverse, but does not assume multiplication o be commutative)

Strassen. Gaussian Elimination is not Optimal. Numerical Mathematics, 1969. https://doi.org/10.1007/BF02165411
https://en.wikipedia.org/wiki/Strassen_algorithm, https://en.wikipedia.org/wiki/Matrix_multiplication algorithm
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 197

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1007/BF02165411
https://en.wikipedia.org/wiki/Strassen_algorithm
https://en.wikipedia.org/wiki/Matrix_multiplication_algorithm
https://northeastern-datalab.github.io/cs7240/

M1 M2 M3 M4 M5 M6 M7

Cﬁ ﬁ ///Z?/Lj/ /W Vo, W /W %ﬁ
el e T g S a0

Hittpe/fen Gvikipediaorg/iki/Strassena lgoritht management - https://northeastern _datalab github.io/cs7240/ 198

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Strassen_algorithm

Table 1. Strassen’s Algorithm

Phase 1 77 = A1+ A2e Ts = B11 + Bao
Ty = Agy + Azs T7 = B12 — Bao
T3 = A11 + A1 T3 = By — By
Ty = Ag1 — A1n Ty = B11 + Bro
Ts = A1 — Az Tio = B21 + B2

Phase2 Q1 =11 x Tg Qs =13 X Bos
Q2=T>x B11 Qs=T4yxTy
Qs =A11 xT7 Q7 =T5xTy
Q4 = A2z x T3y

Phase3 T; = Q1+ Qa4 T3 = @3+ Q1
To=Qs—Qr Ty=Q2— Qs

Phase4 Ci1=T1—1T5 Ciz = Q3 + Qs Figure 4. Task graph of Strassen’s Algorithm.
Co1=Q2+Qs Co=T3-T}4

V00eaSerEa Dertganer, Rrowiplebafesialahts dath fermeesidxgohttips://rortheasteen:datalabsgitheblitfrs7 sdiblar.google.com/scholar?cluster=11243079065050760755 199

https://northeastern-datalab.github.io/cs7240/
https://scholar.google.com/scholar?cluster=11243079065050760755

10/14/24: Nikos: your encoding

Figure 1: The base graph G; of Strassen’s algorithm 'FOV‘ lV\@.OI(AﬂlH'.l@S, bov You SOW\@MOW
for multiplying two 2 x 2 matrices A and B. Here show It too v such a @l"ﬁPl’]
b="1. . .

"without recursion"? Or does the
sart factor prevent it7?

D04 SgaSie atitd thaSewRiritzc st ik ¢al i detarm AD sGempeleki hitps §7 o Rihetd ste kgt 4)s bheitiugoiogles 22/ cholar?cluster=114055559966 16102029

200

https://northeastern-datalab.github.io/cs7240/
https://scholar.google.com/scholar?cluster=11405555996616102029

Dec,C
11 12 21 22

(c) (d)

Figure 4.1. The computation graph of Strassen’s algorithm (see
Algorithm 4.1): (a) Dec; C, (b) Hy, (c) Decig,, C, (d) Higp.

2014 - Ballard, Carson, Demmel, Hoemmen, Knight, Schwartz - Communication lower bounds and optimal algorithms for numerical linear algebra.
https://scholar.google.com/scholar?cluster=5579566613906327435

2013 - Ballard, Demmel, Holtz, Schwartz - Graph Expansion and Communication Costs of Fast Matrix Multiplication.
hittpszAfsehiolargoagle:cBmysthotar? cluster=184:15048850 27052 MA3s://northeastern-datalab.github.io/cs7240/

201

https://northeastern-datalab.github.io/cs7240/
https://scholar.google.com/scholar?cluster=5579566613906327435
https://scholar.google.com/scholar?cluster=18415048850270527405

The power of Semirings is rediscovered again and again

e Semirings are not "as famous" as rings or groups in abstract algebra,
but form the basis of efficient algorithms

— we often don't need an inverse for the semiring addition

— we calculate "forward" not backwards (we don't solve equations)

e« Thus they are "rediscovered" again and again in various branches of
computer science

https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

Power of semirings are rediscovered again and again

1. Bistarelli, Montanari, Rossi.
and Optimization. JACM 1997 (cited > 800 times, 3/2020)

"We introduce a general framework for constraint satisfaction and
optimization where classical CSPs, fuzzy CSPs, weighted CSPs, partial
constraint satisfaction, and others can be easily cast. The framework is
based on a , Where the set of the semiring specifies the
values to be associated with each tuple of values of the variable domain,
and the two semiring operations (1 and 3) model constraint projection and
combination respectively. , as usually used for
classical CSPs, can be exploited in this general framework as well..."

Paper: Bistarelli, Montanari, Rossi. Semiring-Based Constraint Satisfaction and Optimization. JACM 1997. https://doi.org/10.1145/256303.256306
Wolfgang Gatterbauer. Principles of scalable data management. https://northeastern-datalab.github.io/cs7240/ 203

https://doi.org/10.1145/256303.256306
https://northeastern-datalab.github.io/cs7240/

Power of semirings are rediscovered again and again

2. Aji, McEliece: The

. IEEE Transactions

on Information Theory 2000 (cited >950 times in 3/2020)

TABLE 1
SOME COMMUTATIVE SEMIRINGS. HERE A
DENOTES AN ARBITRARY COMMUTATIVE RING, 5 IS AN ARBITRARY FINITE
SET, AND A DENOTES AN ARBITRARY DISTRIBUTIVE LATTICE

K “(+4,0)" “(-,1)" short name
1. A (+,0) {::1)
2. Alz] (+,0) (-, 1)
3. Alz,y,...] (+,0) (-, 1)
4, [0, oc) (+,0) (1) sum-product
B. (0, oo (min, oo) (w1) min-product
6. [0, o) (max, 0) (-,1) max-product
7. (-o0,00| (min,ec) (+,0) min-sum
B. [-o0,00} (max,—oc) (+,0) max-sum
9, {0,1} (OR, 0} (AND, 1) Boolean
10, 25 (U, 0) (n,S)
11. A (v,0) {n1)
12. A (A1) (v,0)

"... we discuss a general message passing algorithm,
which we call the generalized distributive law (GDL).
The GDL is a synthesis of the work of many authors
in the information theory, digital communications,
signal processing, statistics, and artificial intelligence
communities. It includes as special cases ... Although
this algorithm is guaranteed to give exact answers
only in certain cases (the “ ” condition),
... much experimental evidence, and a few
theorems, suggesting that it often works
approximately even when it is not supposed to.

Paper: Aji, McEliece: The generalized distributive law. IEEE Transactions on Information Theory, 2000. https://doi.org/10.1109/18.825794
Wolfgang Gatterbauer. Principles of scalable data management. https://northeastern-datalab.github.io/cs7240/ 204

https://doi.org/10.1109/18.825794
https://northeastern-datalab.github.io/cs7240/

Power of semirings are rediscovered again and again

3. Mobhri: and algorithms for shortest-distance
problems. Journal of Automata, Languages and Combinatorics.
2002 (cited 290 times in 3/2020)

"We define general algebraic frameworks for shortest-distance problems

based on the structure of semirings. We give a generic algorithm for finding
single-source shortest distances in a weighted directed graph when the
weights satisfy the conditions of our general semiring framework.

... Classical algorithms such as that of Bellman-Ford [4, 17] are specific
instances of this generic algorithm ... The [24] is a specific

instance of this algorithm."
the system (K, ®,®) is a semiring

Paper: Mohri. Semiring frameworks and algorithms for shortest-distance problems. Journal of Automata, Languages and Combinatorics, 2002. https://doi.org/10.25596/jalc-2002-321
Wolfgang Gatterbauer. Principles of scalable data management. https://northeastern-datalab.github.io/cs7240/

205

https://doi.org/10.25596/jalc-2002-321
https://northeastern-datalab.github.io/cs7240/

Power of semirings are rediscovered again and again

4. Green, Karvounarakis, Tannen. Provenance semirings. PODS 2007.
(PODS 2017 test-of-time award)

Conclusions and Further Work

General and versatile framework.
Dare |l callit “semiring-annotated databases”?
Many apparent applications.

We clarified the hazy picture of multiple models for database
provenance.

Essential component of the data sharing system Orchestra.

» Dealing with negation (progress: [Geerts&Poggi 08, GI&T ICDT 09])
» Dealing with aggregates (progress: [T ProvWorkshop 08])
* Dealing with order (speculations...)

Paper: Green, Karvounarakis, Tannen. Provenance semirings. PODS 2007. https://doi.org/10.1145/1265530.1265535 , Figure credit: Val Tannen's EDBT 2010 keynote.
Wolfgang Gatterbauer. Principles of scalable data management. https://northeastern-datalab.github.io/cs7240/ 207

https://doi.org/10.1145/1265530.1265535
https://northeastern-datalab.github.io/cs7240/

Power of semirings are rediscovered again and again

5. Khamis, Ngo, Rudra. FAQ: Questions Asked Frequently. PODS 2016

(PODS 2016 best paper award)

"We define and study the Functional Aggrgga£
Query (FAQ) problem, which encompasses
many frequently asked questions in constraint
satisfaction, databases, matrix operations,
probabilistic graphical models and logic. This is
our main conceptual contribution... We then
present a simple algorithm called InsideOut to
solve this general problem. InsideQOut is a
variation of the traditional

for constraint
programming based on variable elimination.”

Problem

FAQ formulation

Frosvdous Algo.

Our Algo.

R

QCQ

#CQ

Juoing

Marginal

MAP

M

DFT

2_' (f+1) [n} fra
ea“rll g 'EB#w H s (xs)
[e ol |

sEE
where (B € Jmax, x)

St @0 T] wsixe)
HeE

whicre @HE C {max, x)

E IINEE « o o TTHEN H 1,';3{::5}
- iy

':"'l.....u;_rj i SCE

Paper: Khamis, Ngo, Rudra. FAQ: Questions Asked Frequently. PODS 2016. https://doi.org/10.1145/2902251.2902280

Wolfgang Gatterbauer. Principles of scalable data management. https://northeastern-datalab.github.io/cs7240/

.........

Mo non-trivial alzo

QNP |l [24]

DNV Iy} [34]

6 (Nﬂ-rr.uf-,q‘_- +lle |) [46]

ON"™C o]} [54]
OU | sl o
DT hound 24]

O(N log,) [27

QN 4 o))
fﬁ[_p\rh:lw[;ﬂ | |1‘j|1-'

f_')[_.\.-f-'»qwf.;#l i |H,,| §

O (Wt)
U= | o))

ON=E! | o))
D honned

OUN log, W)

208

https://doi.org/10.1145/2902251.2902280
https://northeastern-datalab.github.io/cs7240/

Power of semirings are rediscovered again and again

6. Tziavelis+. Optimal Algorithms for Ranked Enumeration of Answers to Full

Conjunctive Queries. PVLDB 2020
ABSTRACT e

-
o
h
X
"o
Wi

We study ranked enumeration of join-query results accord-
ing to very general orders defined by selective dioids. Our
main contribution is a framework for ranked enumeration
over a class of dynamic programming problems that gener- _
alizes seemingly different problems that had been studied i

in isolation. To this end, we extend classic algorithms that :7 ;

o
@

#Results
o o
s o

tind the k-shortest paths in a weighted graph. For full con- : : = =
junctive queries, including cyclic ones, our approach is op- Time (sec)
timal in terms of the time to return the top result and the

delay between results. These optimality properties are de-
A Ranked results

Generality. Our approach supports any selective dioid,
including less obvious cases such as lexicographic ordering
where two output tuples are first compared on their B; com-
ponent, and if equal then on their B2 component, and so on.

-

Time

k-shortest paths. The literature is rich in algorithms
for finding the k-shortest paths in general graphs [10, 17, 34,
35, 53, 56, 57, 59, 65, 68, 67, 93]. Many of the subtleties of
the variants arise from issues caused by cyclic graphs whose
structure is more general than the acyclic multi-stage graphs
in our DP problems. Hoffman and Pavley [53] introduces the
concept of “deviations” as a sufficient condition for finding
the k™ shortest path. Building on that idea, Dreyfus [34]
proposes an algorithm that can be seen as a modification
to the procedure of Bellman and Kalaba [17]. The Recur-
sive Enumeration Algorithm (REA) [57] uses the same set
of equations as Dreyfus, but applies them in a top-down re-
cursive manner. Our ANYK-REC builds upon REA. To the
best of our knowledge, prior work has ignored the fact that
this algorithm reuses computation in a way that can asymp-
totically outperform sorting in some cases. In another line
of research, Lawler [65] generalizes an earlier algorithm of
Murty [70] and applies it to k-shortest paths. Aside from k-
shortest paths, the Lawler procedure has been widely used
for a variety of problems in the database community [40].
Along with the Hoffman-Pavley deviations, they are one of
the main ingredients of our ANYK-PART approach. Epp-
stein’s algorithm [35, 56] achieves the best known asymp-
totical complexity, albeit with a complicated construction
whose practical performance is unknown. His “basic” ver-
sion of the algorithm has the same complexity as EAGER,
while our TAKE2 algorithm matches the complexity of the
“advanced” version for our problem setting where output
tuples are materialized explicitly.

Paper: Tziavelis, Ajwani, Gatterbauer, Riedewald, Yang. Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries. PVLDB 2020. https://dl.acm.org/doi/10.14778/3397230.3397250

09

Wolfgang Gatterbauer. Principles of scalable data management. https://northeastern-datalab.github.io/cs7240/

https://dl.acm.org/doi/10.14778/3397230.3397250
https://northeastern-datalab.github.io/cs7240/

Power of semirings are rediscovered again and again

6.

Tziavelis+. Optimal Algorithms for Ranked Enumeration of Answers to Full

Conjunctive Queries. PVLDB 2020

2.2 Ranked Enumeration Problem

We want to order the results of a full CQ based on the
weights of their corresponding witnesses. For maximal gen-
erality, we define ordering based on selective dioids [41],
which are semirings with an ordering property:

DEFINITION 3 (SEMIRING). A monoid s a S-tuple
(W, ®,0) where W is a non-empty set, @ : W x W — W
is an associative operation, and 0 is the identity element,
ie, Ve € W : 2@ 0 =00z = z. In a commutative
monoid, @ s also commutative. A semiring s a 5-tuple
(W,®,®,0,1), where (W,®,0) is a commutative monoid,
(W, ®,1) is a monoid, ® distributes over &, i.e., Vx,y,z €
W:(z@y)®z=(z®2)® (y® 2), and 0 is absorbing for
®, te,VaeEW :a®0=0® a =0.

DEFINITION 4 (SELECTIVE DIOID). A selective dioid is a
semiring for which @ is selective, i.e., it always returns one
of the inputs: Ve,y e W :(zdy=z)V(z Dy =1y).

Note that & being selective induces a total order on W
by setting z < y iff x ® y = x. We define result weight as
an aggregate of input-tuple weights using ®:

Ranked enumeration. Both [26] and [90] provide any-
k algorithms for graph queries instead of the more general
CQs; they describe the ideas behind LAZY and ALL respec-
tively. [60] gives an any-k algorithm for acyclic queries with
polynomial delay. Similar algorithms have appeared for the
equivalent Constraint Satisfaction Problem (CSP) [44, 50].
These algorithms fit into our family ANYK-PART, yet do not
exploit common structure between sub-problems hence have
weaker asymptotic guarantees for delay than any of the any-
k algorithms discussed here. After we introduced the general
idea of ranked enumeration over cyclic CQs based on mul-
tiple tree decompositions [91], an unpublished paper [33] on
arXiv proposed an algorithm for it. Without realizing it,
the authors reinvented the REA algorithm [57], which cor-
responds to RECURSIVE, for that specific context. We are
the first to guarantee optimal time-to-first result and optimal
delay for both acyclic and cyclic queries. For instance, we re-
turn the top-ranked result of a 4-cycle in O@(n'-%), while [33]
requires @(n”). Furthermore, our work (1) addresses the
more general problem of ranked enumeration for DP over a
union of trees, (2) unifies several approaches that have ap-
peared in the past, from graph-pattern search to k-shortest
path, and shows that neither dominates all others, (3) pro-
vides a theoretical and experimental evaluation of trade-offs
including algorithms that perform best for small k, and (4)
is the first to prove that it is possible to achieve a time-to-
last that asymptotically improves over batch processing by
exploiting the stage-wise structure of the DP problem.

Paper: Tziavelis, Ajwani, Gatterbauer, Riedewald, Yang. Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries. PVLDB 2020. https://dl.acm.org/doi/10.14778/3397230.3397250

Wolfgang Gatterbauer. Principles of scalable data management. https://northeastern-datalab.github.io/cs7240/

10

https://dl.acm.org/doi/10.14778/3397230.3397250
https://northeastern-datalab.github.io/cs7240/

Outline: T3-4: Optimization, Top-k, Ranked Enumeration

* Top-k
— SIGMOD 2020 tutorial

211

Top-k with ranking functions

What if a query has many answers but the user is only interested in

?

- "most important”: we assume we have access to some ranking function
that imposes a total order on the output tuples

Naive approach: return all results, rank them, keep the top-k
Goal: avoid first producing all answers (and then ranking them)

Please see our detailed tutorial wit
nttps://northeastern-datalab.githu

n slides and a recorded video:
n.io/topk-join-tutorial/,

nttps://www.youtube.com/watch?

ist=PL_72ERGKF6DR7kvGNwwW]|

WIlbpScKtGjt9R&v=KpUQayBuaQl

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

212

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/topk-join-tutorial/
https://www.youtube.com/watch?list=PL_72ERGKF6DR7kvGNwwjWlbpScKtGjt9R&v=KpUQayBuaQI

Outline: T3-4: Optimization, Top-k, Ranked Enumeration

« Ranked Enumeration
— Enumeration

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 282

https://northeastern-datalab.github.io/cs7240/

The enu meratiOﬂ fra mewo rk r = nP worst-case result size (AGM bound)

p”* = fractional edge cover
Standard Yannakakis framework for acyclic join processing

+ # results

S - | S W

W join processing ‘

0
(r) E—
0(n) 0(r)
O(r) ti'me
. O(|IN| + |OUT
Enumeration framework (IIN] + |OUTY)

+ # results

> preprocessing - enumerate with T i
O(n W 0(1) dela
W (n) (Ddelay |

0(n) O(n) O(r)

»

o) 0 time
O(IIND) O(/IN] + [OUT])

Soft-0 notation is hiding logarithmic factors: O(n) = O(n - polylogn) = 0(n -logn). See e.g. https://en.wikipedia.org/wiki/Big_O notation#Extensions to the Bachmann%E2%80%93Landau_notations
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 283

"Delay notation" {preprocessing|delay): e.g. (n*|n°) or (nlogn |1)

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Big_O_notation

@}G\Q\ P\Q(‘/>, S(\/@/ T(i/\x (/fl/»,b\>

R R 3T
R S I (/ N R

(&
) 0 R
.{ f};/) \34) /3‘) ‘S

{
2

0 @ O

S

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 284

https://northeastern-datalab.github.io/cs7240/

Modified Yannakakis for answer enumeration

e Table-at a time:

— After the semi-join reduction, Yannakakis visits each table once top-down,
and at each stage increases the size of the answer set

e Tuple-at a time:
— We will instead modify the algorithm and jump between answer tuples

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ >

https://northeastern-datalab.github.io/cs7240/

Yannakakis Algorithm example: 2" pass REPEAT SLIDE

Q(y,z,p,w,xu) - R(y,z), S(p,w), T(x,y,2), U(z), W(y,z,u). | R(v2)

Y|z
. . bl Cl
X (remove dangling tuples) in by | ¢y
1. Bottom-up semi-join propagation from leaves BTt
to root in some reverse topological order Q= -y,i/ N/& =-0
2. Top-down semi-join propagation from S(p,w) T(x,y,2)
root to leaves in some topological order P W X1y |2
e1|f1 ai | b1 |cs
e, | T ai | b1 |c
) es | fe f—TB—€T
Notice that at the ewd of the second alb e,
pass, all tables are reduced; wo table N DS
contains a e davgli les.
ovitains any more davngling tuples 2=y 7= x
In other words, *every* +able vow U£Z) W(g,z,ulz
"knows" whether +he Boolean version . byl &l ds
of the query is +rue. C2 by | co | ds
—e— bi|c2 | d2
b6

¢

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

Yannakakis Algorithm example: 3™ pass REPEAT SLIDE

Q(y,z,p,w,x,u) - R(y,z), S(p,w), T(xy,2), U(z), Wly,zu). | R Join results
byt
Semi-join phase X (remove dangling tuples) in O(|input|) by |
1. Bottom-up semi-join propagation from leaves BTt ?
to root in some reverse topological order @ = +p,W V,Z = +X -
2. Top-down semi-join propagation from S(p,w) T(x,V,2)
root to leaves in some topological order P W X1 Y | ¢
. e1 f1 ai b1 C1
(compute results) in el | f a1 | by | G
3. Compute the results in a 2" top-down e | fo e Bs€r
(or 2" bottom-up) traversal: bl E* pel
— This step can actually be combined with the earlier
top-down traversal; thus two total passes (first from z=+0Q y,Z=+uU
leaves, then from root) are actually enough © U(z) W(y,z,u)
z Y|z |u
. . .o .o C1 b1 C1 d1
Notice how with every join, the join C2 by |cy | ds
result can wever decrease in sizel —— bi|cy|da
2N c P

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ ¢

https://northeastern-datalab.github.io/cs7240/

Yannakakis Algorithm example: 3™ pass

Q(y,z,p,w,x,u) :- R(y,z), S(p,w), T(x,y,z), U(z), W(y,z,u).

Yz
1| C
Semi-join phase X (remove dangling tuples) in O(|input|) by | b;
1. Bottom-up semi-join propagation from leaves Bt bs
to root in some reverse topological order Q= +p;V N/\ = +X
2. Top-down semi-join propagation from S(p,w) T(X,V,z)
root to leaves in some topological order P W X1 Y | ¢
. e1 f1 ai b1 C1
(compute results) in el | f, a1 | b1 | 6
3. Compute the results in a 2" top-down eq | fs s TBrTer
(or 2" bottom-up) traversal: 'fﬁ'_E'l_'f"'
= This step can actually be combined with the earlier S
top-down traversal; thus two total passes (first from Z= ";V ,Z=+U
leaves, then from root) are actually enough © U(z) Wi(y,z,u)
z vi|iz |u
. . C1 b1 C1 d1
Notice how with every join, the join Co bi|cy | ds
result can wever decrease in sizel —6s— El C2 gz

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

REPEAT SLIDE

Join results

C1
C2

¢

https://northeastern-datalab.github.io/cs7240/

Yannakakis Algorithm example: 3™ pass REPEAT SLIDE

Q(y,z,p,w,x,u) - R(y,z), S(p,w), T(xy,2), U(z), Wly,zu). | R Join results
.« e bl C1 Y 7
Semi-join phase X (remove dangling tuples) in O(|input|) by | o e e |7
1 1 1 1
1. Bottom-up semi-join propagation from leaves BTt bi|ci|e1]|f:
to root in some reverse topological order = ,Z = +X by |c1| €| fe
p.g NI‘ bi|c,| e1|Ts
2. Top-down semi-join propagation from T(x,y,2) bilca| e1] 2
root to leaves in some topological order P W X1Y |2 bi|ca| ea|fs
. e1 f1 ai b1 C1
(compute results) in el | f a1 | by | G
3. Compute the results in a 2" top-down e | fo e Bs€r
(or 2" bottom-up) traversal: bl E* pel
— This step can actually be combined with the earlier
top-down traversal; thus two total passes (first from Z= ";V ,Z = +U
leaves, then from root) are actually enough © U(z) W(y,z,u)
z Y|z |u
. . .o .o C1 b1 C1 d1
Notice how with every join, the join C2 by |cy | ds
result can wever decrease in sizel —— bi|c2 | da
2N - P

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ ¢

https://northeastern-datalab.github.io/cs7240/

Yannakakis Algorithm example: 3™ pass REPEAT SLIDE

Q(y,z,p,w,x,u) - R(y,z), S(p,w), T(xy,2), U(z), Wly,zu). | R Join results
. . o by cr p | w
Semi-join phase X (remove dangling tuples) in O(|input|) by | o e e lf. 2

1 1 1 1 1
1. Bottom-up semi-join propagation from leaves BTt bi|ci|ei|f|a
to root in some reverse topological order @ = +p,w = by |c1| €| fe | a
. bi|cy|e1|T1]as
2. Top-down semi-join propagation from S(p,w) bi|cy| e1|f2]| a1
root to leaves in some topological order P W X1Y |2 bi|co| es|fe|as
. e1 f1 ai b1 C1
(compute results) in el | f a1 | by | G
3. Compute the results in a 2" top-down e | fo e Bs€r
(or 2" bottom-up) traversal: bl E* pel
— This step can actually be combined with the earlier
top-down traversal; thus two total passes (first from Z= ";V ,Z = +U
leaves, then from root) are actually enough © U(z) W(y,z,u)
z yiz|u
. . .o .o C1 b1 C1 d1
Notice how with every join, the join C2 by |cy | ds
result can wever decrease in sizel —— bi|cy|da
2N - P

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ ¢

https://northeastern-datalab.github.io/cs7240/

Yannakakis Algorithm example: 3™ pass REPEAT SLIDE

Q(y,z,p,w,x,u) - R(y,z), S(p,w), T(xy,2), U(z), Wly,zu). | R Join results
- . . byl er W[X
Semi-join phase X (remove dangling tuples) in O(|input|) by | Cy g c z 15
1 1 1 1 1
1. Bottom-up semi-join propagation from leaves BTt bi|ci|er|fr|a
to root in some reverse topological order @ =+p,w ,Z = +X by | 1| €a|f6 | a1
... P .g p/ NI‘ bi|ca|ei|T1|as
2. Top-down semi-join propagation from S(p,w) T(x,y,2) bi|cy| e1]|f| a1
root to leaves in some topological order P W X1Y |2 bi|ca| es|fs|a
. e1 f1 ai b1 C1
(compute results) in e, | f a | by | G
3. Compute the results in a 2" top-down e | fo CERRERR
(or 2" bottom-up) traversal: ST

— This step can actually be combined with the earlier
top-down traversal; thus two total passes (first from = \X,Z =+u
leaves, then from root) are actually enough ©

W(y,z,u)

z vy iz |u

. . .o .o C1 b1 C1 d1
Notice how with every join, the join C2 by |cy | ds
result cavn nwever decrease v sizel —6— bi|c2|d2
| ~ A~

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ ¢

https://northeastern-datalab.github.io/cs7240/

Yannakakis Algorithm example: summary

Q(y,z,p,w,x,u) :- R(y,z), S(p,w), T(x,y,2), U(z), W(y,z,u). | R(v2)

Join results

Y|z
. . . 1] C1 |z [P W] X |
Semi-join phase X (remove dangling tuples) in O(|input|) b1 CZ " P B I e
1 1 1 1 1 1
1. Bottom-up semi-join propagation from leaves bi|ci|ei|f2|ar|ds
to root in some reverse topological order D=+p V,Z = +X by|ciea|fs|ar]|ds
p.g /\ by|c,| ex] fi|ai|dy
2. Top-down semi-join propagation from S(p,w) T(x, y,z) bi|cy| ei|f|ar| di
root to leaves in some topological order P W X1y bi|cy| ea|fe|ar|\d
(compute results) in e s av| b\ bilG e far]
¢ pu u e1| s ai| bi|c bi|cy| ei| fr|ar|dy
3. Compute the results in a 2" top-down €| fe CERRLERRS by | co| €a]fs | a1 | ds
(or 2" bottom-up) traversal: bl E DS
— This step can actually be combined with the earlier
top-down traversal; thus two total passes (first from Z= ';V =
leaves, then from root) are actually enough © U(z) W(y,z,u)
z y Z [u
_) o o C1 bi|ci|dy
Notice how with every join, the join C2 by |cy | ds
result can never decrease in sizel —6— bi|c2|d;
|28 ~ A
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ ¢

https://northeastern-datalab.github.io/cs7240/

Modified Yannakakis Algorithm example: enumeration

Q(y,z,p,w,x,u) - R(y,z), S(p,w), T(xy,2), U(z), Wly,zu). | R Join results
bi|ci
Semi-join phase X (remove dangling tuples) in O(|input|) bi ci g z SRLAES
1 1
1. Bottom-up semi-join propagation from leaves BTt
to root in some reverse topological order @ =+p,wW V,Z = +X
2. Top-down semi-join propagation from S(p,w) T(x,Yy,2)
root to leaves in some topological order P W X1V |2
. e1|f1 ai| b1 |1
(compute answers with) el f a, | by | c,
3. Compute one result after the other in lexicographic eq | fo s TBrTer
order of the variables (added with the tables ordered 'fﬁ' h; * 'f"'
in some topological order): (y,z)+(p,w)+(x)+(u) L ’?
z=+0Q y,z=+u "
we start with some tuple in the root Uiz) }N‘VZ'Z'“J
and extend i+ with consistent tuples C1 bi|ci|ds
Co b1 Co d1
—_— b1 Co dz
b6

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ ¢

https://northeastern-datalab.github.io/cs7240/

Modified Yannakakis Algorithm example: enumeration

Q(y,z,p,w,x,u) - R(y,z), S(p,w), T(xy,2), U(z), Wly,zu). | R Join results
bi|ci
Semi-join phase X (remove dangling tuples) in O(|input|) bi ci g z Zl :‘All ;1 ;1
1 1
1. Bottom-up semi-join propagation from leaves BTt
to root in some reverse topological order @ =+p,wW V,Z = +X
2. Top-down semi-join propagation from S(p,w) T(x,Yy,2)
root to leaves in some topological order P W X1V |2
: e1|f1 ai| b1 |1
(compute answers with) el f a, | by | C,
3. Compute one result after the other in lexicographic eq | fo s TBrTer
order of the variables (added with the tables ordered 'fﬁ' h; * 'f"'
in some topological order): (y,z)+(p,w)+(x)+(u) L
z=+0 V,Z = +U
we start with some tuple in the root Uiz) }N‘VZ'Z'“J
and extend i+ with consistent tuples C1 bi|ci|ds
Co b1 Co d1
—_— b1 Co dz
b6

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ ¢

https://northeastern-datalab.github.io/cs7240/

Modified Yannakakis Algorithm example: enumeration

Q(y,z,p,w,x,u) - R(y,z), S(p,w), T(xy,2), U(z), Wly,zu). | R Join results
bi|ci
Semi-join phase X (remove dangling tuples) in O(|input|) bi ci g z Zl :‘All ;1 ;1
1 1
1. Bottom-up semi-join propagation from leaves BTt bi|ci|e|fa]ar|ds
to root in some reverse topological order @ =+p,wW V,Z = +X
2. Top-down semi-join propagation from S(p,w) T(x,Yy,2)
root to leaves in some topological order P W X1V |2
: e1|f1 ai| b1 |1
(compute answers with) el f a, | by | C,
3. Compute one result after the other in lexicographic eq | fo s TBrTer
order of the variables (added with the tables ordered 'fﬁ' h; * 'f"'
in some topological order): (y,z)+(p,w)+(x)+(u) L
z=+0 V,Z = +U
we start with some tuple in the root Uiz) }N‘VZ'Z'“J
and extend i+ with consistent tuples C1 bi|ci|ds
Co b1 Co d1
—_— b1 Co dz
b6

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ ¢

https://northeastern-datalab.github.io/cs7240/

Modified Yannakakis Algorithm example: enumeration

Q(y,z,p,w,x,u) - R(y,z), S(p,w), T(xy,2), U(z), Wly,zu). | R Join results
C
Semi-join phase X (remove dangling tuples) in O(|input|) bi ci g z Zl :‘All ;1 ;1
1 1
1. Bottom-up semi-join propagation from leaves BTt bi|ci|e|fa]ar|ds
to root in some reverse topological order @ =+p,w Y,z = +X by | c1 | ea|fe | a1 d
2. Top-down semi-join propagation from S(p,w) T(x,Yy,2)
root to leaves in some topological order P W X1V |2
. ey | fi ai| b1 |1
(compute answers with) el f a, | by | C,
3. Compute one result after the other in lexicographic eq | fo s TBrTer
order of the variables (added with the tables ordered 'fﬁ' h; * 'f"'
in some topological order): (y,z)+(p,w)+(x)+(u) L
z=+0 V,Z = +U
we start with some tuple in the root Uiz) }N‘VZ'Z'“J
and extend i+ with consistent tuples C1 bi|ci|ds
Co b1 Co d1
—_— b1 Co dz
b6

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ ¢

https://northeastern-datalab.github.io/cs7240/

Modified Yannakakis Algorithm example: enumeration

Q(y,z,p,w,xu) - R(y,z), S(p,w), T(x,y,2), U(z), W(y,z,u). | R(v2)

Join results

Yz
. . 0 0 . 0 1 Cl W X u
Semi-join phase X (remove dangling tuples) in O(|input|) by | C; g z Zl f la: | ds
1 1
1. Bottom-up semi-join propagation from leaves BTt bi|ci|e|fa]ar|ds
to root in some reverse topological order @ =+p,w Y,z = +X by | c1 | €qlfe | a1 d
bi|cy| er|fi]|ar]|dy
2. Top-down semi-join propagation from S(p,w) T(x,Yy,2)
root to leaves in some topological order P W X1V |2
. e1|fq ai| b1 |
(compute answers with) el f a, | by | ¢,
3. Compute one result after the other in lexicographic eq | fo s TBrTer
order of the variables (added with the tables ordered 'fﬁ' h; * 'f"'
in some topological order): (y,z)+(p,w)+(x)+(u) L
z=+0 y,Z = +u
. : U
we start with some tuple in the root iz) x\,N(»;’Z u&
and extend i+ with consistent tuples C1 bi|ci|ds
Co b1 Co d1
—_— b1 Co dz
b6
H

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

Modified Yannakakis Algorithm example: enumeration

Q(y,z,p,w,x,u) :- R(y,z), S(p,w), T(x,y,2), U(z), W(y,z,u). | R(v2)

Join results

Y|z
. . : . 1| C1 4 w| X |u
Semi-join phase X (remove dangling tuples) in O(|input|) by | o g 5 Zl f a1 d,
1 1
1. Bottom-up semi-join propagation from leaves BTt bi|ci|e|fa]ar|ds
to root in some reverse topological order @ = +p,W V,Z = +X by |c1| €a|fe|ar)ds
. bi|cy| e1|fr|ar|ds
2. Top-down semi-join propagation from S(p,w) T(x,v,2) bi|cy| er|f,|a1]ds
root to leaves in some topological order P W X1 Y | ¢
. ey | f1 ai| b1 |
(compute answers with) el f ai | by | &
3. Compute one result after the other in lexicographic €4 fs s TBrTer
order of the variables (added with the tables ordered bl E* pel
in some topological order): (y,z)+(p,w)+(x)+(u) ’
Z=+Q V,Z = +U
: : U(z W
We start with some tuple in the root i) y (»;’Z u&
avd extend i+ with consistent tuples C by | cq | dy
C> bi1|cy|d;
—_— b1 Co dz
b€t
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ ¢

https://northeastern-datalab.github.io/cs7240/

Modified Yannakakis Algorithm example: enumeration

Q(y,z,p,w,x,u) :- R(y,z), S(p,w), T(x,y,2), U(z), W(y,z,u). | R(v2)

Join results

Y|z
. . : . 1| C1 4 w| X |u
Semi-join phase X (remove dangling tuples) in O(|input|) by | o g 5 Zl f a1 d,
1 1
1. Bottom-up semi-join propagation from leaves BTt bi|ci|e|fa]ar|ds
to root in some reverse topological order @ = +p,W V,Z = +X by |c1| €a|fe|ar)ds
. bi|cy| e1|fr|ar|ds
2. Top-down semi-join propagation from S(p,w) T(x,v,2) bi|cy| er|f,|a1]ds
root to leaves in some topological order P W X1Y |2 bi|co| es|fs|ar|ds
. ey | f1 ai| b1 |
(compute answers with) el f ai | by | &
3. Compute one result after the other in lexicographic €4 fs s TBrTer
order of the variables (added with the tables ordered bl E* pel
in some topological order): (y,z)+(p,w)+(x)+(u) ’
Z=+Q V,Z = +U
: : U(z W
We start with some tuple in the root i) y (»;’Z u&
avd extend i+ with consistent tuples C by | cq | dy
C> bi1|cy|d;
—_— b1 Co dz
b€t
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ ¢

https://northeastern-datalab.github.io/cs7240/

Modified Yannakakis Algorithm example: enumeration

Q(y,z,p,w,x,u) :- R(y,z), S(p,w), T(x,y,2), U(z), W(y,z,u). | R(v2)

Semi-join phase X (remove dangling tuples) in O(|input|)
1. Bottom-up semi-join propagation from leaves
to root in some reverse topological order

2. Top-down semi-join propagation from
root to leaves in some topological order

(compute answers with)

3. Compute one result after the other in lexicographic
order of the variables (added with the tables ordered
in some topological order): (y,z)+(p,w)+(x)+(u)

We start with some tuple in the root
avd extend i+ with consistent tuples

Join results

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Y|z
1| C1 Yyilz |p|W|X]|U
bl C2 b1 Ci1| © f1 di d1
-br_eF b1 Ci1| €1 fz a1 d1
(Z)=+p’W Y,Z = +X bi|c1]| es fe | a1 | d1
b1 C | €1 f1 a1 d1
S(p,w) T(x,Y,2) bi|cy| ei|fr|ar]|ds
P W XY |7 bi|cy|es|fs|ar]|ds
e1 | f1 ai| b1 | bi|cy| ei| fi|ar]|d;
e1|f a1 | b1 |c
eq | fe f—TB—€T
—Sa——hs—1Cu—
-~ L‘\ Vol
z=+0Q y,Z = +u
U(z) W(y,z,u)
z vyl iz |u
C1 b1 Cq1 d1
Co b1 Co d1
—_— b1 Co dz
.
>

https://northeastern-datalab.github.io/cs7240/

Modified Yannakakis Algorithm example: enumeration

Q(y,z,p,w,x,u) :- R(y,z), S(p,w), T(x,y,z), U(z), W(y,z,u).
Semi-join phase X (remove dangling tuples) in O(|input|)
1. Bottom-up semi-join propagation from leaves
to root in some reverse topological order @ =+p,w
2. Top-down semi-join propagation from S(p,w)
root to leaves in some topological order p_fﬂ
. €| T
(compute answers with) el f
3. Compute one result after the other in lexicographic eq | fe

order of the variables (added with the tables ordered
in some topological order): (y,z)+(p,w)+(x)+(u)

We start with some tuple in the root
avd extend i+ with consistent tuples

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

R(y,z .
y(y) Join results
1| C1 Yyilz |p|W|X]|U
by | c2 bif{ci|er|fi]ar|ds
BTt bi|ci| e1|fr|a1]|d:
V,Z = +X bi|ci| €| fe|ar]|dr
bi|cy| er|fi]|ar]|ds
T(lelz) bl C2 €1 f2 di1 dl
XY |Z bi|cy| €| fe|ar]|dr
a1 | by | cq bi|cy| er|fi]|a1]|d
a1 | b1 | bi|ca|e|f|a1]d
o [P
o337
~Sa——4——Cu—
-~ L'\ Vol
z=+0 y,Zz=+u
U(z) W(y,z,u)
z vi]z|u
C1 b1 Cq1 d1
Co b1 Co d1
—_— b1 Co dz
b6
¢: 9

https://northeastern-datalab.github.io/cs7240/

Modified Yannakakis Algorithm example: enumeration

Q(y,z,p,w,x,u) :- R(y,z), S(p,w), T(x,y,z), U(z), W(y,z,u).
Semi-join phase X (remove dangling tuples) in O(|input|)
1. Bottom-up semi-join propagation from leaves
to root in some reverse topological order @ =+p,w
2. Top-down semi-join propagation from S(p,w)
root to leaves in some topological order p_fﬂ
. €| T
(compute answers with) el f
3. Compute one result after the other in lexicographic eq | fe

order of the variables (added with the tables ordered
in some topological order): (y,z)+(p,w)+(x)+(u)

We start with some tuple in the root
avd extend i+ with consistent tuples

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

R(y,z .
y(y 2 Join results
1| C1 Yyilz |p|W|X]|U
bl C2 b1 Ci1| © fl di1 dl
BTt bi|ci| e1|fr|a1]|d:
V,Z = +X bi|ci| €| fe|ar]|dr
bi|cy| er|fi]|ar]|ds
T(lelz) bl C2 €1 f2 di1 dl
XY |Z bi|cy| €| fe|ar]|dr
a1 | by | cq bi|cy| er|fi]|a1]|d
a1 | b1 | bi|ca|e|f|a1]d
e bi|ca| es|fs|ar|da
~Sa——4——Cu—
-~ L'\ Vol
z=+0Q Y,z =+u
U(z) W(y,z,u)
y4 Yy Z u
C1 b1 Cq1 d1
Co b1 Co d1
—_— b1 Co dz
.
¢: 9

https://northeastern-datalab.github.io/cs7240/

Enumeration for general (acyclic) full queries

 Preprocessing:

— can be done in time needed to answer the Boolean query O(|IN |BocleanWidth)

e Enumeration:

— then with constant delay enumerate all solutions, thus O(|OUT|)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ >

https://northeastern-datalab.github.io/cs7240/

The enumeration framework: examples
4-path query

+ # results

0(?)

212y D

00 00) tme

4-cycle query

+ # results

P1CD Y] S— :

ey P

00) 00 tme

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 287

https://northeastern-datalab.github.io/cs7240/

The enumeration framework: examples

4-path query

fhtw(Q) = 1 fractional hypertree width
p*“(Q) = 3 fractional edge cover

(n|1)

4-cycle query

Yy P

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

0(n3)

0(?)

A

b # results

o) 0¥ tme

\ # results

[

00) 00 tme

288

https://northeastern-datalab.github.io/cs7240/

The enumeration framework: examples

4-path query

fhtw(Q) = 1 fractional hypertree width
p*(Q) = 3 fractional edge cover 0(n3)

(n|1)

4-cycle query
fhtw(Q) = 2 fractional hypertree width
p*(Q) = 2 fractional edge cover 0(n?)
subw(Q) = 1.5 submodular width

(nS]1)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A

b # results

o) 0¥ tme

\ # results

O(n™®) 0D time

289

https://northeastern-datalab.github.io/cs7240/

Width measures in query decomposition methods
Boolean CQ Full CQs
ghw fhw subw p”
A\ | 2 1% 1% 1%
4 2 2 1% 2
@ 2 2 1% 2%
@ 2 2 1% 3
@ |2 2 2 2
2 oo 1 1 1 2
3 oo 1 1 1 2
3 Coooo | 1 1 1 3
L coo> | 1 1 1 [(8+1)/2 |

ghw generalized hypertree width: Gottlob, Leone, Scarcello. "Hypertree Decompositions and Tractable Queries", JCSS 2002 (from PODS'99). https://doi.org/10.1006/jcss.2001.1809
fhw fractional hypertree width: Grohe, Marx. "Constraint solving via fractional edge covers", TALG 2014 (from SODA'06). https://doi.org/10.1145/2636918
subw submodular width: Marx. "Tractable hypergraph properties for constraint satisfaction and conjunctive queries", JACM 2013 (from STOC'10). https://doi.org/10.1145/2535926

p fractional edge cover: Atserias, Grohe, Marx. "Size bounds and query plans for relational joins", SICOMP 2013 (from FOCS'08). https://doi.org/10.1137/110859440
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 290

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1006/jcss.2001.1809
https://doi.org/10.1145/2636918
https://doi.org/10.1145/2535926
https://doi.org/10.1137/110859440

Outline: T3-4: Optimization, Top-k, Ranked Enumeration

— Ranked Enumeration

331

Assume there is a preferred order on the answers

R(A,B) S(B,C) T(C,D)

SELECT *
FROM R natural join S
natural join T

~ T(ED)
/ 0\

R(A,B) S(B,C)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 332

https://northeastern-datalab.github.io/cs7240/

Assume there is a preferred order on the answers

R(A,B,W) S(B,C,wW) T(C,D,W)
SELECT * @ ran
FROM R natural join S
natural join T
Order by R.W+S.W+T.W
>~ T(C,DW)

R(A,BW) S(B,C,W)

cost or weight associated with each +uple

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 333

https://northeastern-datalab.github.io/cs7240/

Assume there is a preferred order on the answers

R(A,B,W) S(B,C,wW) T(C,D,W)
SELECT * @ ran
FROM R natural join S
natural join T
Order by R.W+S.W+T.W
Limit 10
>~ T(C,DW)

R(A,BW) S(B,C,W)

cost or weight associated with each +uple

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 334

https://northeastern-datalab.github.io/cs7240/

Top-k is evaluated inefficiently by modern DBMS's

joiv
A | B |w B | C |w
1 10 1 0 1 11
2 0| 2 0 2 | 2
3 10| 3 O] 3|3
0 O | v | o | e
-- Query 1
n 0 n 0 n T
SELECT A, R.B, S.C,
R.W + S.W as weight
FROM R, S
WHERE R.B=S.B
ORDER BY weight ASC
LIMIT 1;
n=1000: to= 0.9 sec
n=5000: To1=19.6 sec

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 335

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Top-k is evaluated inefficiently by modern DBMS's

joiv Maximal intermediate

o S result size is O(n) ©

~

-

A | B |w B |C |w ~Dynamic programming
1 0] 1 0 1 1
2 0] 2 0 2 2
3 0] 3 0] 3 3
0] O | .. | o | i
-- Query 1
n O | n 0 n | n | s
SELECT A, R.B, S.C,
R.W + S.W as weight
FROM R, S
WHERE R.B=S.B
ORDER BY weight ASC
LIMIT 1;
nw=1000: Tor= 0.9 sec
n=5000: t=19.6 sec

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT R.A, X.B, S.C, X.W as weight

FROM R, S,
(SELECT T1.B, W1, W2, W1+W2 W
FROM
(SELECT B, MIN(W) W1
FROM R

GROUP BY B) T1,
(SELECT B, MIN(W) W2
FROM S
GROUP BY B) T2
WHERE T1.B = T2.B
ORDER BY W ASC
LIMIT 1) X

WHERE X.B = R.B

AND X.W1 = R.W
AND X.B = S.B
AND X.W2 = S.W
LIMIT 1;

Tao=2 msec

tq2=0 msec

336

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

Any-k: Faster and more versatile than Top-k

R(A,B,W) S(B,C,wW) T(C,D,W)
SELECT * @ ran
FROM R natural join S
natural join T
Order by R.W+S.W+T.W
Limit 10
> T(C,DW)

R(A,BW) S(B,C,W)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 337

https://northeastern-datalab.github.io/cs7240/

Any-k: Faster and more versatile than Top-k

R(A,B,W) S(B,C,wW) T(C,D,W)
SELECT * @ ran
FROM R natural join S
natural join T
Order by R.W+S.W+T.W
>~ T(c,DwW)
Goal:
« Return the first result as fast as vou can. / \
» Thew the vext. R(A,B,W) S(B,C,W)

 Thewn the vext, ...
e Until the end.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 338

https://northeastern-datalab.github.io/cs7240/

Any-k (or "Ranked Enumeration"): Problem Definition

“ ”+ Anytime algorithms + Top-k for Join Queries
2
2
Most important results first - All results eventually returned
T

(ranking function on output No need to set k in advance

tuples, e.g. sum of weights) .,

/) ,

:> @ i time;

RAM Cost Model:

. = Time-to-First = TT(1)

— Tirmeta. th
. = Interval k - (k+1) [= Time-to-k*
. = Time-to-Last = TT(|out]) |

Source: Nikos Tziavelis. https://ntzia.github.io/
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 339

https://northeastern-datalab.github.io/cs7240/
https://ntzia.github.io/

Experiments: TT(k) for Any-k variants vs. batch and PSQL

1e7 4-Path Query, n=104%, all results

1.0 $2.5 7- ?8.2 1345168
Batch
0.8 (No Sort)
2 0.6+)
7 PSQL
&
:H: 0.4_)

0.2 D
0.0 - .7 &
T 5 10 15

0.05 Time(sec)

Source: https://northeastern-datalab.github.io/anyk/
Tziavelis, Ajwani, Gatterbauer, Riedewald, Yang. "Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries." PVLDB 2020. https://doi.org/10.14778/3397230.339725(
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 340

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/anyk/
https://doi.org/10.14778/3397230.3397250

Any-k: Faster and more versatile than Top-k

Path Query TTF, |OUT|=10"

1 & 7.7 | Path duery with
107 % qaery
: 51 Batch | constant size output
] ' & and ucreasing duery size
100- il Bat.ch; -
- (No Sort)
§ Anyk-Part
‘?g 6= 1363x|
=
2, |
2X

Query Size !

Source: https://northeastern-datalab.github.io/anyk/

Tziavelis, Ajwani, Gatterbauer, Riedewald, Yang. "Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries." PVLDB 2020. https://doi.org/10.14778/3397230.339725
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 341

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/anyk/
https://doi.org/10.14778/3397230.3397250

TTL (Time-To-Last)
faster than sorting:
How is that possible?

A famous problem: X+Y

X Y Given: X and Y sorted
Problem: enumerate X + Y sorted
@§ ©)
ol .
N
n \
B
12
DN
m

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 343

https://northeastern-datalab.github.io/cs7240/

A famous problem: X+Y

X Y Output Given: X and Y sorted
Problem: enumerate X + Y sorted
© ©® ©®
@ Q Naive: (n - m) - log(n - m)
O © ®
.
® ®
12 ®
®
@, &
m Qv
S i n-m
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastgrrr:)dataIab.github.io/cs7240/ 344

https://northeastern-datalab.github.io/cs7240/

A famous problem: X+Y

X Y Output Given: X and Y sorted
n pointers Problem: enumerate X + Y sorted
: (@ @)
PO 9 j@r Q Naive: (n - m) - log(n - m)
o ®
n Better:(n - m) - log(n)
® |dea: keep one PO of size n
= /
@ |
Y,
m _V
n-m

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 345

https://northeastern-datalab.github.io/cs7240/

A famous problem: X+Y

X Y Output Given: X and Y sorted
n pointers Problem: enumerate X + Y sorted
: (O} @)
PQ @'% Naive: (n - m) - log(n - m)
10 @:{ (9)
n Better:(n - m) - log(n)
® |dea: keep one PO of size n
®)
Y,
m v
n-m

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 346

https://northeastern-datalab.github.io/cs7240/

A famous problem: X+Y

X Y Output Given: X and Y sorted
n pointers Problem: enumerate X + Y sorted
0 (D). A€ ©®
PO 9 j@r Q Naive: (n - m) - log(n - m)
10 @:{ (9) (9)
n Better:(n - m) - log(n)
® |dea: keep one PO of size n
®)
Y,
m v
n-m

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 347

https://northeastern-datalab.github.io/cs7240/

A famous problem: X+Y

X Y Output Given: X and Y sorted
n pointers Problem: enumerate X + Y sorted
10 oy
PQ 11 Naive: (n - m) - log(n - m)
10

Better:(n - m) - log(n)
|dea: keep one PO of size n

= g@@@)
3 @@@@@@2@%
® © @ @)

N
n-m

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 348

https://northeastern-datalab.github.io/cs7240/

A famous problem: X+Y

X Y Output Given: X and Y sorted

n pointers Problem: enumerate X 4+ Y sorted

11

PQ 11

10

N

Naive: (n -m) - log(n - m)

M GICKS)
/

Better:(n - m) - log(n)
|dea: keep one PO of size n

3 C@@@@@@/@<
® 6 ©®)

N
n-m

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 349

https://northeastern-datalab.github.io/cs7240/

A famous problem: X+Y

X Y Output Given: X and Y sorted
n pointers Problem: enumerate X + Y sorted
11 @\ 6) ©®
PO 1@ 9 Naive: (n - m) - log(n - m)
B Ox © ®
10
n Better:(n - m) - log(n)
® ® |dea: keep one PO of sizen
12
Y,
m _V
n-m

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 350

https://northeastern-datalab.github.io/cs7240/

A famous problem: X+Y

X Y Output Given: X and Y sorted
n pointers Problem: enumerate X + Y sorted
11 @\ 6) ®
PO 1@ 9 Naive: (n - m) - log(n - m)
12 @: (9) (9)
n © Better:(n - m) - log(n)
® ® |dea: keep one PO of sizen
12 ®
Y,
m _V
n-m

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 351

https://northeastern-datalab.github.io/cs7240/

A famous problem: X+Y

X Y Output Given: X and Y sorted
n pointers Problem: enumerate X + Y sorted
NG ®
PQ 1 @ Naive: (n - m) - log(n - m)
12 @: (9) (9)
n Better:(n - m) - log(n)
® |dea: keep one PO of size n
®) ®
®
Y,
m v
n-m

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 352

https://northeastern-datalab.github.io/cs7240/

A famous problem: X+Y

X Y Output Given: X and Y sorted
n pointers Problem: enumerate X + Y sorted
NG ®
PO @ Naive: (n - m) - log(n - m)
=G © ©
n Better:(n - m) - log(n)
® |dea: keep one PO of size n
®) ®
®
Y, @
m Qv
(n-m) - log(n) n-m

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 353

https://northeastern-datalab.github.io/cs7240/

Now assume X+Y+Z. That's our TTL ©

X Y’ Y YA
n pointers n pointers

@) B ©

(DH @ Oh)

O & 9 !

n n n
@ n®-log(n) —_
®)
@),
m = n?

(n-m)-log(n) =n’ - log(n)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

TTL: (n° +44°) - log(n)

354

https://northeastern-datalab.github.io/cs7240/

Now assume X+Y+Z. That's our TTL © But bad TTF ®

S Y Y Z But can we get TTF v
n pointers n pointers n logn 7
® B 6
(D @ ©r ®) Ves: think Depth-first
s 9 @ | wstead of Breath-first!
n n n
& n?-log(n)— 3
TTL: (n” + -log(n
o (n° +447) - log(n)
Y.
m = n*

(n-m)-log(n) =n’ - log(n)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ ¢

https://northeastern-datalab.github.io/cs7240/

Now assume X+Y+Z: Depth-first for best TTF

Output X Y’ Y Z
PQ n pointers PQ n pointers

—1

10
4

®| -

9

©,
i

10

<\

: @O0
: OO

4

4

—Nn

N
m 2

V¥
n-m

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 405

https://northeastern-datalab.github.io/cs7240/

Now assume X+Y+Z: Depth-first for best TTF

Output X Y’ Y Z
PQ n pointers PQ n pointers

@ ¢ (O 7
9 9
| (10

10

==l

<\

: @O0
Welolo

4

4

—Nn

NG
m 2

_ V¥
n-m

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

406

https://northeastern-datalab.github.io/cs7240/

Now assume X+Y+Z: Depth-first for best TTF

Output X Y’ Y Z
PQ n pointers PQ n pointers
®) (@) A9 - @) ©
o |@f @ e 4@
Ol O/8 @ ®),
| n n n
\— V¥
v m = n?
n-m

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ ¢

https://northeastern-datalab.github.io/cs7240/

Now assume X+Y+Z: Depth-first for best TTF

Output X Y’ Y Z
PQ n pointers PQ n pointers
B B 0 “B__A£
11 (4 Ag 9 1(6) @
Ol O/ 10 ()] ®),
n n n

4

4

—Nn

NG
m 2

_ V¥
n-m

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 407

https://northeastern-datalab.github.io/cs7240/

Now assume X+Y+Z: Depth-first for best TTF

Output X Y’ Y Z
PQ n pointers PQ n pointers
B “BL. A =B 6
11 |(4 ™ (7) 11 |(6) — (5)
Ol O @ 0N &)
n W n n
NS /
v m = n?
n-m

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

408

https://northeastern-datalab.github.io/cs7240/

Now assume X+Y+Z: Depth-first for best TTF

Output X Y’ Y Z
PQ n pointers PQ n pointers
@) (@) @) (@) e
11 (4 ™~ (7) 11 |(6) / (5)
(9) 12 @,\()<% 10 @/y (),
n 49 n n
®
\— V¥

v m = n?

n-m

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

409

https://northeastern-datalab.github.io/cs7240/

Now assume X+Y+Z: Depth-first for best TTF

Output X Y’ Y Z
PQ n pointers PQ n pointers
®) (@) @ (@
11 (4 N (7) 11 |(6) /
(9) 12 @: (9) 10 @/v J
n n n
(19
&
&
'V
v m = n?
n-m

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 410

https://northeastern-datalab.github.io/cs7240/

Now assume X+Y+Z: Depth-first for best TTF

Output X Y’ Y Z
PQ n pointers PQ n pointers
© »@ @ ®
1 () 11 |(6) =(5)
O & Q. O
n n n
@)
@)
®
| NS Z

v m = n?

n-m

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

411

https://northeastern-datalab.github.io/cs7240/

X+Y+Z: Depth-first for best TTF, but sorting by stages ©

Output X Y’ Y 7 Notice: PQs per stages,
PQ n pointers PQ n pointers W* Ol’lj@l”ﬁ@rr\/]—{?;ﬁ
ves best of worlds:
@ 12 @\ @ @ @ 9
13 |(DH 11 |(6) =(5)
(9) 12 & O Q). &) TTL: n° - log(n)
n n n TTF:n - log(n)
&)
&)
&)
@ \— V¥
v m = n?
n-m

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 412

https://northeastern-datalab.github.io/cs7240/

Asymptotic difference in TTL

£ sets/relations

\
(\

X + Y + Z +

TTL: (n? -I%‘l +&/2 + - +/rr2/-lyf{ log(n) = n? - log(n)

Sorting n* - log(nf) =n?- £ log(n)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 389

https://northeastern-datalab.github.io/cs7240/

Recursive Enumeration Algorithm (REA)

To the best of our knowledge, the algorithm from the previous pages was first
descried by [Jiménez, Marzal'99] in the context of shortest path enumeration.
It was called Recursive Enumeration Algorithm (REA).

To the best of our knowledge, the fact that this algorithm reuses computation
in a way that can asymptotically outperform sorting for Time-To-Last in some
cases was first analyzed and also verified experimentally in [Tziavelis+'20].

Jiménez, Marzal. "Computing the K shortest paths: a new algorithm and an experimental comparison." WAE, 1999. https://doi.org/10.1007/3-540-48318-7 4

Tziavelis, Ajwani, Gatterbauer, Riedewald, Yang. "Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries." PVLDB 2020. https://doi.org/10.14778/3397230.3397250
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1007/3-540-48318-7_4
https://doi.org/10.14778/3397230.3397250

Overview of Results for full equi-joins

In expectation.

Can be derandomized with

good pivot selections.

Recall:

£ = query size

n = data size

r = output size

TT(k) = Time-to-kt"

Algorithm |TTF Delay (k) TT(k) TTL for |out| = Q(¢n)|TTL for |out| = ©(n*)
RECURSIVE|O(4n) ¢logn On + kllogn) O(rflogn) O(n*(logn + £))
QUICK O(n) O(logk + £+ n) OUn + k(logk + £) O(r(logr + ¢)) O(n® - Llogn)

TAKE2 O(n) O(logk + ¢) OUn + k(logk + £) O(r(logr + ¢)) O(n® - Llogn)

LAZY O(4n) O(logk + £ + logn)| O(n + k(logk + £) O(r(logr + £)) O(n® - Llogn)

ALL O(4n) O(log k + £n) O(n + k(logk + £n) O(r(logr + £)) O(n* - Llogn)

EAGER O(nlogn) O(logk + £) O(nlogn + k(logk + £)|O(r(logr + £)) O(n® - Llogn)

BATCH OUn + r(logr + £))[O(£) O(r(logr + ¢)) O(r(logr + £)) O(n* - Llogn)

« Anyk-Part variants have lower complexity over all instances

e But there are cases where the Recursive approach wins for TTL

(*) assuming constant-time lookup with hashing
Tziavelis, Ajwani , Gatterbauer, Riedewald, Yang. "Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries." PVLDB 2020. https://doi.org/10.14778/3397230.3397250

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

355

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.14778/3397230.3397250

Summary of results

[WWW'18] : Anytime Top-k tree pattern retrieval in labeled graphs
[PVLDB'20] : Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries
[PVLDB'21] : Beyond Equi-joins: Ranking, Enumeration and Factorization

[PODS'21] : Tractable Orders for Direct Access to Ranked Answers of Conjunctive Queries
(selected among best of conference)

[SIGMOD'20 tutorials] : 1.5h tutorial "Optimal Join Algorithms meet Top-k"
https://northeastern-datalab.github.io/topk-join-tutorial/

[ICDE'22 tutorials] : 3h tutorial "Toward Responsive DBMS: Optimal Join Algorithms,
Enumeration, Factorization, Ranking, and Dynamic Programming"

https://northeastern-datalab.github.io/anyk/ (papers, slides, videos, and code)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 356

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/topk-join-tutorial/
https://northeastern-datalab.github.io/anyk/

