
201

Topic 3: Efficient query evaluation
Unit 2: Cyclic queries
Lecture 19

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp22)
https://northeastern-datalab.github.io/cs7240/sp22/
3/29/2022

Updated 4/6/2022

https://northeastern-datalab.github.io/cs7240/sp22/


202

Outline: T3-2: Cyclic conjunctive queries

• T3-1: Acyclic conjunctive queries
• T3-2: Cyclic conjunctive queries

– 2SAT (a detour)
– Tree decompositions
– Decompositions of hypertrees
– Duality in Linear programming (a quick primer)
– AGM bound (maximal result size for full CQs)
– Worst-case optimal joins & the triangle query
– Worst-case optimal joins & the 4-cycle
– Optimal joins & the 4-cycle

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

cycles make everything 
more complicated L

https://northeastern-datalab.github.io/cs7240/


203Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Why cyclic queries (other than social networks)

Source: http://demo.queryvis.com

https://northeastern-datalab.github.io/cs7240/
http://demo.queryvis.com/


204Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Why cyclic queries (other than social networks)

Source: http://demo.queryvis.com

https://northeastern-datalab.github.io/cs7240/
http://demo.queryvis.com/


205Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Why cyclic queries (other than social networks)

Source: http://demo.queryvis.com

https://northeastern-datalab.github.io/cs7240/
http://demo.queryvis.com/


206Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Joins in databases: one-at-a-time
How can we efficiently process multi-way joins with cycles?

Three possible plans
• (R ⋈ S)⋈ T
• (S ⋈ T)⋈ R
• (T⋈ R)⋈ S

Can we do better for cyclic queries? J

Q(x,y,z) :- R(x,y), S(y,z), T(x,z).

R(x,y)

S(y,z)

T(x,z)

L

There is no join tree! You can't fulfill 
the running intersection property...

Recall:

xyz

Q(xyz)

xy yz

R(xy) S(yz)

⋈y

⋈x,z

T(xz)

xz

query plan as
"query tree"

L
• there is no full semijoin reducer
• intermediate result size bigger than output

https://northeastern-datalab.github.io/cs7240/


210

Outline: T3-2: Cyclic conjunctive queries

• T3-1: Acyclic conjunctive queries
• T3-2: Cyclic conjunctive queries

– 2SAT (a detour)
– Tree decompositions
– Decompositions of hypertrees
– Duality in Linear programming (a quick primer)
– AGM bound (maximal result size for full CQs)
– Worst-case optimal joins & the triangle query
– Worst-case optimal joins & the 4-cycle
– Optimal joins & the 4-cycle

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/


211Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

2SAT

• Instance: A 2-CNF formula j
• Problem: To decide if j is satisfiable

• Theorem: 2SAT is polynomial-time decidable.
- Proof: We’ll show how to solve this problem efficiently using path searches 

in graphs…

• Background: Given a graph G=(V,E) and two vertices s,tÎV, finding if 
there is a path from s to t in G is polynomial-time decidable. Use 
some search algorithm (DFS/BFS).

j = (xÚy)Ù(¬yÚz)Ù(¬xÚ¬z)Ù(zÚy)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/


212Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

2SAT: Graph Construction

• Vertex for each variable and a negation of a variable

j = (xÚy)Ù(¬yÚz)Ù(¬xÚ¬z)Ù(zÚy)

x
y 

¬x 

¬z
z 

¬y

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/


213Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

2SAT: Graph Construction

• Vertex for each variable and a negation of a variable
• Edge (¬x→y) iff there exists a clause equivalent to (xÚy)
- Recall (xÚy) same as (¬x⇒y) and (¬y⇒x), thus also (¬y→x)

j = (xÚy)Ù(¬yÚz)Ù(¬xÚ¬z)Ù(zÚy)

x
y 

¬x 

¬z
z 

¬y

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/


214Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

2SAT: Graph Construction

• Vertex for each variable and a negation of a variable
• Edge (¬x→y) iff there exists a clause equivalent to (xÚy)
- Recall (xÚy) same as (¬x⇒y) and (¬y⇒x), thus also (¬y→x)

• Claim: a 2-CNF formula j is unsatisfiable 
iff there exists a variable x, such that:
- there is a path from x to ¬x in the graph, and
- there is a path from ¬x to x in the graph

j = (xÚy)Ù(¬yÚz)Ù(¬xÚ¬z)Ù(zÚy)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

x
y 

¬x 

¬z
z 

¬y

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/


215Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

2SAT: Graph Construction

• Vertex for each variable and a negation of a variable
• Edge (¬x→y) iff there exists a clause equivalent to (xÚy)
- Recall (xÚy) same as (¬x⇒y) and (¬y⇒x), thus also (¬y→x)

• Claim: a 2-CNF formula j is unsatisfiable 
iff there exists a variable x, such that:
- there is a path from x to ¬x in the graph, and
- there is a path from ¬x to x in the graph

j = (xÚy)Ù(¬yÚz)Ù(¬xÚ¬z)Ù(zÚy)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

x
y 

¬x 

¬z
z 

¬y

not enough,
needs both directions!

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/


216Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correctness (1)

• Suppose there are paths x..¬x and ¬x..x for some variable x, but 
there’s also a satisfying assignment r. 
- If r(x)=T:

- Similarly for r(x)=F...

j = (xÚy)Ù(¬yÚz)Ù(¬xÚ¬z)Ù(zÚy)

x
y 

¬x 

¬z
z 

¬y

x ¬x ...

T T

recall, needs to hold in both directions!

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/


217Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correctness (2)

• Suppose there are no variables with such paths.
• Construct an assignment as follows:

j = (xÚy)Ù(¬yÚz)Ù(¬xÚ¬z)Ù(zÚy)

x
y 

¬x 

¬z
z 

¬y

1. pick an unassigned literal a, with no 
path from a to ¬a, and assign it T

2. assign T to all 
reachable vertices

3. assign F to their 
negations

4. Repeat until all vertices are 
assigned

x
y 

¬x 

¬z
z 

¬y

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/


218Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

2SAT is in P

We get the following PTIME algorithm for 2SAT:
- For each variable x find if there is a path from x to ¬x and vice-versa.
- Reject if any of these tests succeeded.
- Accept otherwise.

Þ 2SATÎP. n

https://northeastern-datalab.github.io/cs7240/


219

Outline: T3-2: Cyclic conjunctive queries

• T3-1: Acyclic conjunctive queries
• T3-2: Cyclic conjunctive queries

– 2SAT (a detour)
– Tree decompositions
– Decompositions of hypertrees
– Duality in Linear programming (a quick primer)
– AGM bound (maximal result size for full CQs)
– Worst-case optimal joins & the triangle query
– Worst-case optimal joins & the 4-cycle
– Optimal joins & the 4-cycle

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/


220Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Join Processing: two approaches

1. Cardinality-based
- binary joins, consider the sizes of input relations as to reduce the intermediate sizes
- commercial DBMSs: series of pairwise joins, system R (Selinger), join size estimation

2. Structural approaches (next)
- acylicity: Yannakakis, GYO algorithm, join tree
- bounded "width": query width, hypertree width (hw), generalized hw (ghw). All go back 

to notion of treewidth (work by Robertson & Seymour on graph minors)

AGM: fractional hw (fhw): 
- consider both statistics on 

relations and query structure

https://northeastern-datalab.github.io/cs7240/


221Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Definition of an attribute-connected tree

AB

EFCD

BC AE

EF

FG

DEFINITION: A tree is attribute-
connected if the subtree induced 
by each attribute is connected 

Same as the running intersection property
from join trees

Also called "coherence"

https://northeastern-datalab.github.io/cs7240/


222Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition
A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset 
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/


223Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 1: a tree

a b c ?
tree decomposition

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset 
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/


224Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 1: a tree

a b c 1 2

{a,b} {b,c}

That's why treewidth defined as max cardinality - 1

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset 
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/


225Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 2

?
tree decomposition

Example from: https://en.wikipedia.org/wiki/Tree_decomposition

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset 
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Tree_decomposition


226Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 2

Treewidth = 2
Notice running intersection property

Example from: https://en.wikipedia.org/wiki/Tree_decomposition

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset 
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Tree_decomposition


227Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 3

?
tree decomposition

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset 
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

Example from: https://www.mi.fu-berlin.de/en/inf/groups/abi/teaching/lectures/lectures_past/WS0910/V____Discrete_Mathematics_for_Bioinformatics__P1/material/scripts/treedecomposition1.pdf

https://northeastern-datalab.github.io/cs7240/
https://www.mi.fu-berlin.de/en/inf/groups/abi/teaching/lectures/lectures_past/WS0910/V____Discrete_Mathematics_for_Bioinformatics__P1/material/scripts/treedecomposition1.pdf


228Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 3

Example from: https://www.mi.fu-berlin.de/en/inf/groups/abi/teaching/lectures/lectures_past/WS0910/V____Discrete_Mathematics_for_Bioinformatics__P1/material/scripts/treedecomposition1.pdf

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset 
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/
https://www.mi.fu-berlin.de/en/inf/groups/abi/teaching/lectures/lectures_past/WS0910/V____Discrete_Mathematics_for_Bioinformatics__P1/material/scripts/treedecomposition1.pdf


229Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 4: a cycle

?
tree decomposition

1

4 3

5 2

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset 
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/


230Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 4: a cycle

1

4 3

5 2 12 23 34 45 15

What about coherence?

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset 
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/


231Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 4: a cycle

1

4 3

5 2 12 123 134 145 15

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset 
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/


232Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Tree decomposition example 4: a cycle

1

4 3

5 2 123 134 145

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset 
Nv ⊆ N assigned to each vertex (or "supernode") v ∊ V s.t.:
(1) Node coverage: Every vertex of G is assigned at least one vertex in T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"
The width of a tree decomposition is the size of its largest set minus one

https://northeastern-datalab.github.io/cs7240/

