Updated 4/6/2022

Topic 3: Efficient query evaluation Unit 2: Cyclic queries Lecture 19

Wolfgang Gatterbauer

CS7240 Principles of scalable data management (sp22)

https://northeastern-datalab.github.io/cs7240/sp22/

3/29/2022

Outline: T3-2: Cyclic conjunctive queries

- T3-1: Acyclic conjunctive queries
- T3-2: Cyclic conjunctive queries
 - 2SAT (a detour)
 - Tree decompositions
 - Decompositions of hypertrees
 - Duality in Linear programming (a quick primer)
 - AGM bound (maximal result size for full CQs)
 - Worst-case optimal joins & the triangle query
 - Worst-case optimal joins & the 4-cycle
 - Optimal joins & the 4-cycle

cycles make everything more complicated ⊗

Why cyclic queries (other than social networks)

Likes(person, drink) Frequents(person, bar) Serves(bar, drink, cost)

2. Specify or choose a Query

Supported grammar

0

104 Bars: Persons who frequent some bar that serves some drink they like.

Why cyclic queries (other than social networks)

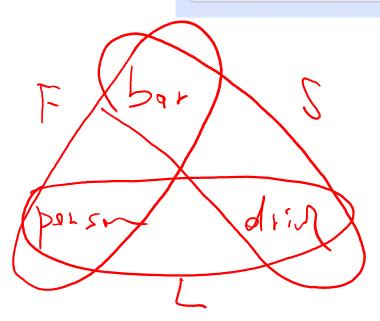
Likes(person, drink) Frequents(person, bar) Serves(bar, drink, cost)

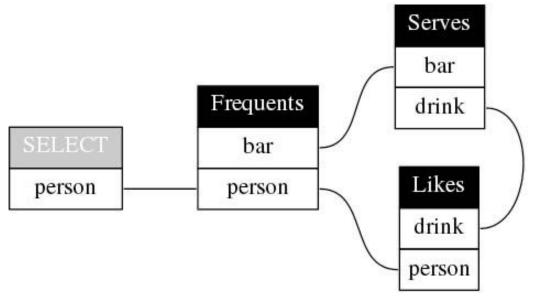
2. Specify or choose a Query

Supported grammar

104 Bars: Persons who frequent some bar that serves some drink they like.

 $\hat{\mathbf{c}}$





Source: http://demo.queryvis.com

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Why cyclic queries (other than social networks)

Likes(person, drink) Frequents(person, bar) Serves(bar, drink, cost)

2. Specify or choose a Query

Supported grammar

\$

104 Bars: Persons who frequent some bar that serves some drink they like.

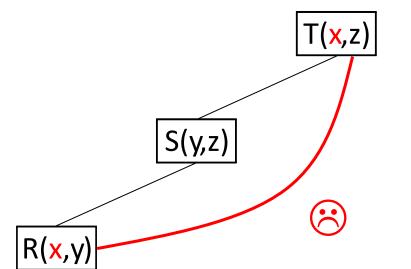
SELECT F1.person FROM Frequents F1 exists WHERE (SELECT * FROM Serves S2 WHERE S2.bar = F1.barAND exists (SELECT * Likes L3 FROM WHERE L3.person = F1.personS2.drink = L3.drink)) AND

Joins in databases: one-at-a-time

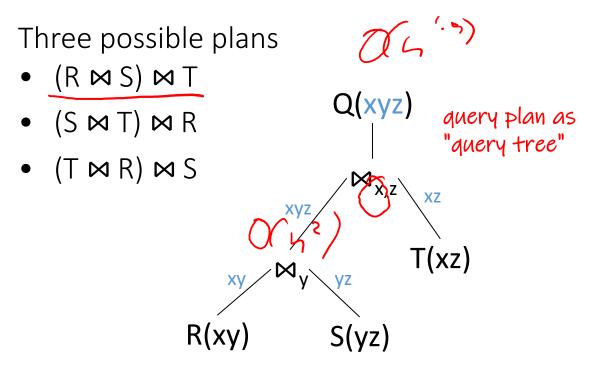
How can we efficiently process multi-way joins with cycles?

Q(x,y,z) := R(x,y), S(y,z), T(x,z).

Recall:



There is no join tree! You can't fulfill the running intersection property...



 $\overline{\mathbf{S}}$

- there is no full semijoin reducer
- intermediate result size bigger than output

Can we do better for cyclic queries? ③

Outline: T3-2: Cyclic conjunctive queries

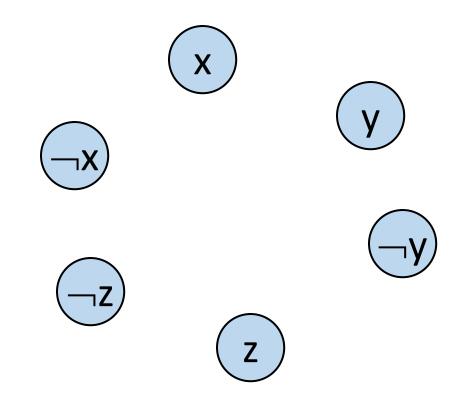
- T3-1: Acyclic conjunctive queries
- T3-2: Cyclic conjunctive queries
 - 2SAT (a detour)
 - Tree decompositions
 - Decompositions of hypertrees
 - Duality in Linear programming (a quick primer)
 - AGM bound (maximal result size for full CQs)
 - Worst-case optimal joins & the triangle query
 - Worst-case optimal joins & the 4-cycle
 - Optimal joins & the 4-cycle

2SAT

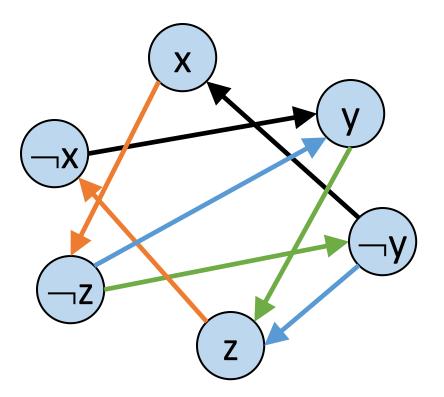
$$\varphi = (x \lor y) \land (\neg y \lor z) \land (\neg x \lor \neg z) \land (z \lor y)$$

- Instance: A 2-CNF formula $\boldsymbol{\phi}$
- Problem: To decide if $\boldsymbol{\phi}$ is satisfiable
- Theorem: 2SAT is polynomial-time decidable.
 - Proof: We'll show how to solve this problem efficiently using path searches in graphs...
- Background: Given a graph G=(V,E) and two vertices s,t∈V, finding if there is a path from s to t in G is polynomial-time decidable. Use some search algorithm (DFS/BFS).

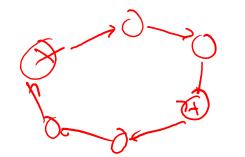
• Vertex for each variable and a negation of a variable

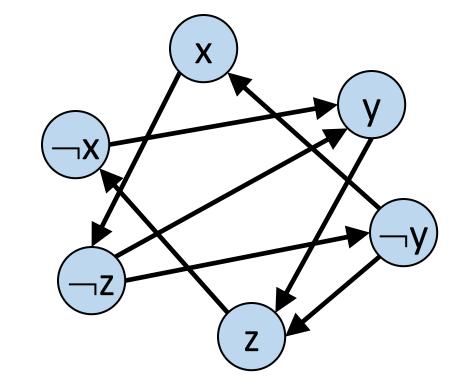


- Vertex for each variable and a negation of a variable
- Edge $(\neg x \rightarrow y)$ iff there exists a clause equivalent to $(x \lor y)$
 - Recall $(x \lor y)$ same as $(\neg x \Rightarrow y)$ and $(\neg y \Rightarrow x)$, thus also $(\neg y \rightarrow x)$

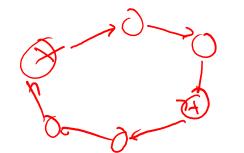


- Vertex for each variable and a negation of a variable
- Edge $(\neg x \rightarrow y)$ iff there exists a clause equivalent to $(x \lor y)$
 - Recall $(x \lor y)$ same as $(\neg x \Rightarrow y)$ and $(\neg y \Rightarrow x)$, thus also $(\neg y \rightarrow x)$
- Claim: a 2-CNF formula ϕ is unsatisfiable iff there exists a variable x, such that:
 - there is a path from x to $\neg x$ in the graph, and
 - there is a path from $\neg x$ to x in the graph





- Vertex for each variable and a negation of a variable
- Edge $(\neg x \rightarrow y)$ iff there exists a clause equivalent to $(x \lor y)$
 - Recall $(x \lor y)$ same as $(\neg x \Rightarrow y)$ and $(\neg y \Rightarrow x)$, thus also $(\neg y \rightarrow x)$
- Claim: a 2-CNF formula ϕ is unsatisfiable iff there exists a variable x, such that:
 - there is a path from x to $\neg x$ in the graph, and
 - there is a path from $\neg x$ to x in the graph

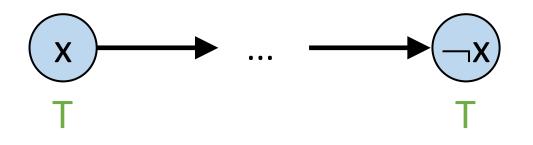


not enough, needs both directions! X

Correctness (1)

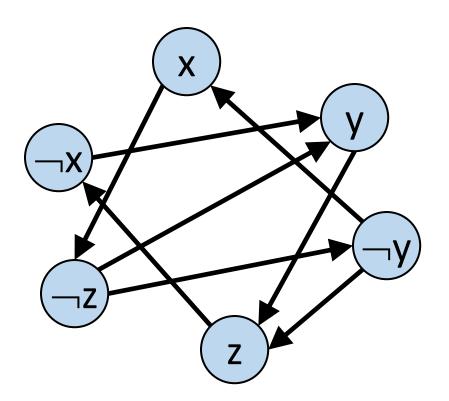
$$\varphi = (x \lor y) \land (\neg y \lor z) \land (\neg x \lor \neg z) \land (z \lor y)$$

- Suppose there are paths x..¬x and ¬x..x for some variable x, but there's also a satisfying assignment ρ.
 - If $\rho(x)=T$:



– Similarly for $\rho(x)=F...$

recall, needs to hold in both directions!



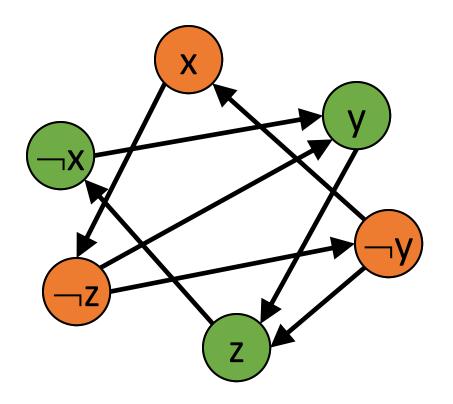
Correctness (2)

$$\varphi = (x \lor y) \land (\neg y \lor z) \land (\neg x \lor \neg z) \land (z \lor y)$$

- Suppose there are no variables with such paths.
- Construct an assignment as follows:

1. pick an unassigned literal α , with no path from α to $\neg \alpha$, and assign it T

- 2. assign T to all reachable vertices
- 3. assign F to their negations
- 4. Repeat until all vertices are assigned



2SAT is in P

We get the following PTIME algorithm for 2SAT:

- For each variable x find if there is a path from x to $\neg x$ and vice-versa.
- Reject if any of these tests succeeded.
- Accept otherwise.

\Rightarrow 2SAT \in P.

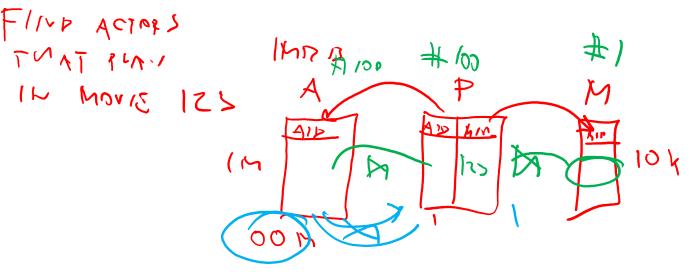
Outline: T3-2: Cyclic conjunctive queries

- T3-1: Acyclic conjunctive queries
- T3-2: Cyclic conjunctive queries
 - 2SAT (a detour)
 - Tree decompositions
 - Decompositions of hypertrees
 - Duality in Linear programming (a quick primer)
 - AGM bound (maximal result size for full CQs)
 - Worst-case optimal joins & the triangle query
 - Worst-case optimal joins & the 4-cycle
 - Optimal joins & the 4-cycle

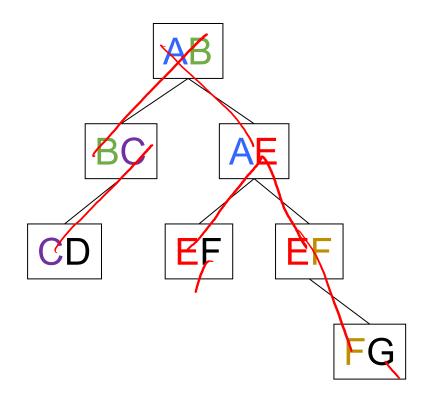
Join Processing: two approaches

1. Cardinality-based

- binary joins, consider the sizes of input relations as to reduce the intermediate sizes
- commercial DBMSs: series of pairwise joins, system R (Selinger), join size estimation
- 2. Structural approaches (next)
 - acylicity: Yannakakis, GYO algorithm, join tree
 - bounded "width": query width, hypertree width (hw), generalized hw (ghw). All go back to notion of treewidth (work by Robertson & Seymour on graph minors)
- AGM: fractional hw (fhw):
 - consider both statistics on relations and query structure



Definition of an <u>attribute-connected</u> tree



DEFINITION: A tree is attributeconnected if the subtree induced by each attribute is connected

Same as the running intersection property from join trees

Also called "coherence"

Tree decomposition

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset

 $N_v \subseteq N$ assigned to each vertex (or "supernode") $v \in V$ s.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T

(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e

(3) Coherence: The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

Tree decomposition example 1: a tree

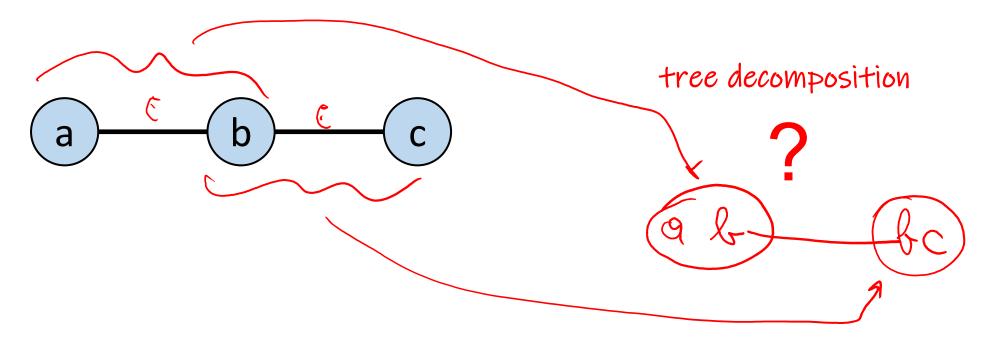
A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset $N_v \subseteq N$ assigned to each vertex (or "supernode") $v \in V$ s.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T

(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e

(3) Coherence: The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one



Tree decomposition example 1: a tree

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset

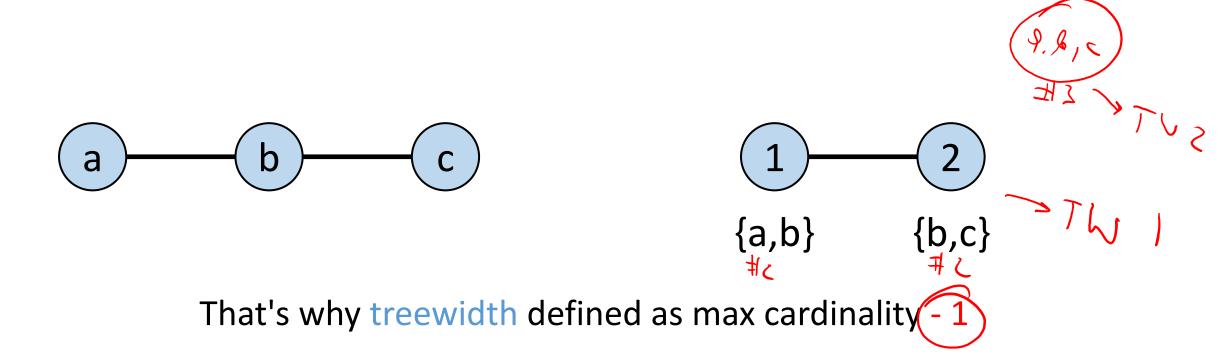
 $N_v \subseteq N$ assigned to each vertex (or "supernode") $v \in V$ s.t.:

(1) Node coverage: Every vertex of G is assigned at least one vertex in T

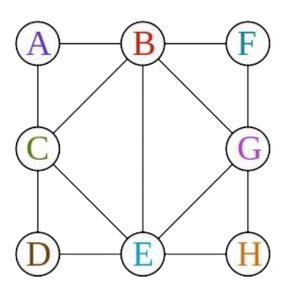
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e

(3) Coherence: The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one



- A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
- $N_v \subseteq N$ assigned to each vertex (or "supernode") $v \in V$ s.t.:
- (1) Node coverage: Every vertex of G is assigned at least one vertex in T
- (2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
- (3) Coherence: The tree is "attribute-connected"
- The width of a tree decomposition is the size of its largest set minus one



A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset

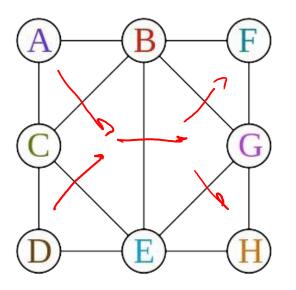
 $N_v \subseteq N$ assigned to each vertex (or "supernode") $v \in V$ s.t.:

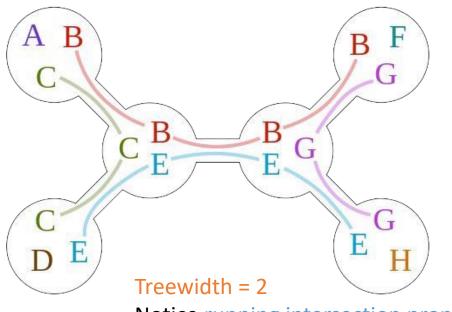
(1) Node coverage: Every vertex of G is assigned at least one vertex in T

(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e

(3) Coherence: The tree is "attribute-connected"

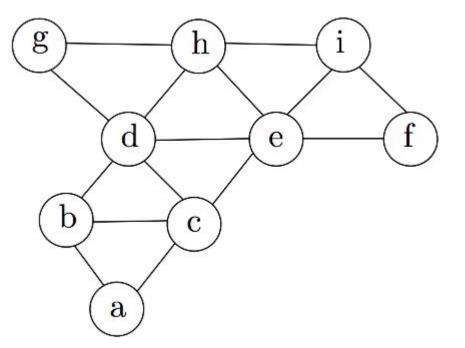
The width of a tree decomposition is the size of its largest set minus one





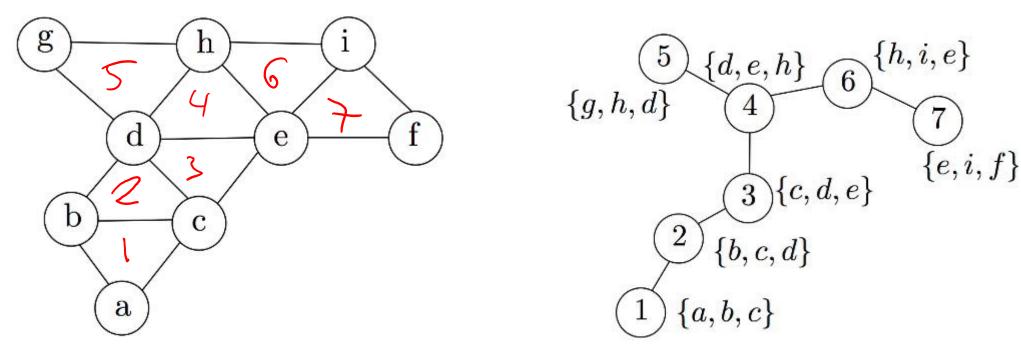
Notice running intersection property

- A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
- $N_v \subseteq N$ assigned to each vertex (or "supernode") $v \in V$ s.t.:
- (1) Node coverage: Every vertex of G is assigned at least one vertex in T
- (2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
- (3) Coherence: The tree is "attribute-connected"
- The width of a tree decomposition is the size of its largest set minus one



Example from: https://www.mi.fu-berlin.de/en/inf/groups/abi/teaching/lectures/lectures past/WS0910/V Discrete Mathematics for Bioinformatics P1/material/scripts/treedecomposition1.pd Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

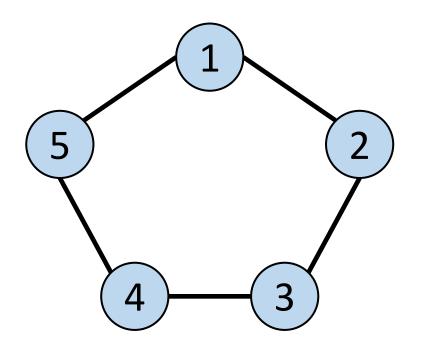
- A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
- $N_v \subseteq N$ assigned to each vertex (or "supernode") $v \in V$ s.t.:
- (1) Node coverage: Every vertex of G is assigned at least one vertex in T
- (2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
- (3) Coherence: The tree is "attribute-connected"
- The width of a tree decomposition is the size of its largest set minus one



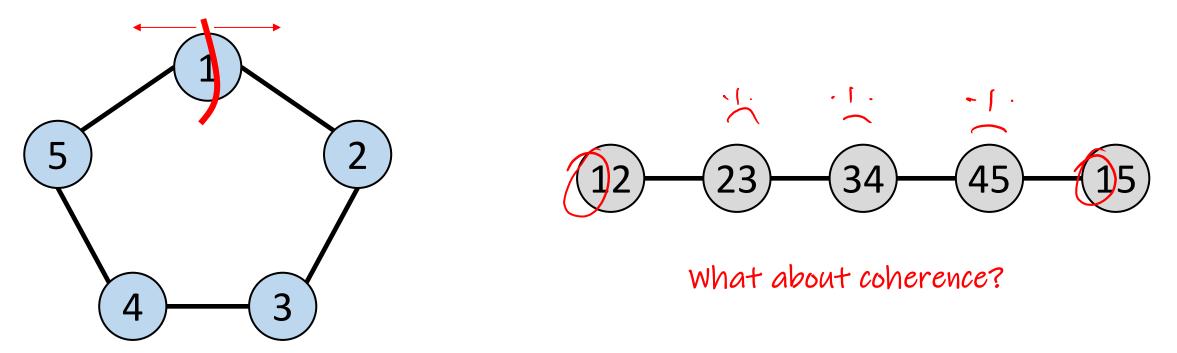
Example from: https://www.mi.fu-berlin.de/en/inf/groups/abi/teaching/lectures/lectures_past/WS0910/V Discrete Mathematics for Bioinformatics P1/material/scripts/treedecomposition1.pdf

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

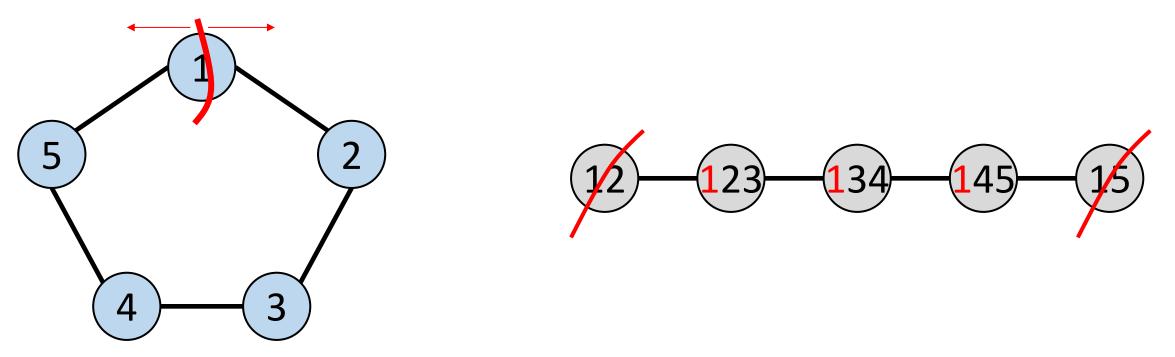
- A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset $N_v \subseteq N$ assigned to each vertex (or "supernode") $v \in V$ s.t.:
- (1) Node coverage: Every vertex of G is assigned at least one vertex in T
- (2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
- (3) Coherence: The tree is "attribute-connected"
- The width of a tree decomposition is the size of its largest set minus one



- A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset $N_v \subseteq N$ assigned to each vertex (or "supernode") $v \in V$ s.t.:
- (1) Node coverage: Every vertex of G is assigned at least one vertex in T
- (2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
- (3) Coherence: The tree is "attribute-connected"
- The width of a tree decomposition is the size of its largest set minus one



- A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset $N_v \subseteq N$ assigned to each vertex (or "supernode") $v \in V$ s.t.:
- (1) Node coverage: Every vertex of G is assigned at least one vertex in T
- (2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
- (3) Coherence: The tree is "attribute-connected"
- The width of a tree decomposition is the size of its largest set minus one



- A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset $N_v \subseteq N$ assigned to each vertex (or "supernode") $v \in V$ s.t.:
- (1) Node coverage: Every vertex of G is assigned at least one vertex in T
- (2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
- (3) Coherence: The tree is "attribute-connected"
- The width of a tree decomposition is the size of its largest set minus one

