
158

Topic 3: Efficient query evaluation
Unit 1: Acyclic query evaluation (continued)
Lecture 19

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp22)
https://northeastern-datalab.github.io/cs7240/sp22/
3/29/2022

Updated 3/29/2022

https://northeastern-datalab.github.io/cs7240/sp22/

159Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Pre-class conversations

• Current topic: trees vs cycles
• Scribes, projects, keep on commenting on slides

• Today:
- Full Semi-join reducers
- Cycles: tree decompositions, Linear Programming Duality

https://northeastern-datalab.github.io/cs7240/

160Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: Moshe Y. Vardi. "A Logical Revolution", 2013. https://www.cs.rice.edu/~vardi/comp409/logicrevo13.pdf , https://www.youtube.com/watch?v=7pu-ZJddxJQ&t=59m20s

https://northeastern-datalab.github.io/cs7240/
https://www.cs.rice.edu/~vardi/comp409/logicrevo13.pdf
https://www.youtube.com/watch?v=7pu-ZJddxJQ&t=59m20s

161

Outline: T3-1: Acyclic conjunctive queries

• T3-1: Acyclic conjunctive queries
– The semijoin operator
– Join trees & Yannakakis algorithm
– Query hypergraphs & GYO reduction
– A detailed Yannakakis example
– Full semijoin reductions

• T3-2: Cyclic conjunctive queries

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

162Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semijoin Reducer

DEFINITION: A full semijoin reducer (semijoin program) is:
a sequence of semijoins on the join tree

s.t. there no more "dangling tuples" in the reduced relations

Q(x,y,z) = R x, y ⨝ S y, z ⨝ T z,w

Q(x,y,z) = R′ x, y ⨝ S′ y, z ⨝ T′ z, w

R′(x, y) = R y, z ⋉ ...
S′(y, z) = S y, z ⋉ ...
...

Then you can rewrite the query over the reduced relations

https://northeastern-datalab.github.io/cs7240/

163Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semijoin Reducer

A full reducer is

Q(x,y,z) = R x, y ⨝ S y, z ⨝ T z,w

?

https://northeastern-datalab.github.io/cs7240/

164Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semijoin Reducer

R(x,y)

A full reducer is

S(y,z) T(z,w)

Q(x,y,z) = R x, y ⨝ S y, z ⨝ T z,w

R(x,y)

S(y,z)

T(z,w)

1. Find a join tree

?

2. pick a rootT(z,w)

https://northeastern-datalab.github.io/cs7240/

165Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semijoin Reducer

R(x,y)

S1(y, z) = S y, z ⋉ R x, y
T1 z, y = T z, y ⋉ S1 y, z

A full reducer is

S(y,z) T(z,w)

⋉ ⋉

Q(x,y,z) = R x, y ⨝ S y, z ⨝ T z,w

R(x,y)

S(y,z)

T(z,w)

⋉
⋉3. up

1. Find a join tree

2. pick a root3. collect at root (= bottom-up)

https://northeastern-datalab.github.io/cs7240/

166Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semijoin Reducer

R(x,y)

S1(y, z) = S y, z ⋉ R x, y
T1 z, y = T z, y ⋉ S1 y, z
S2 z, y = S1 y, z ⋉ T1 z, y
R1 x, y = R x, y ⋉ S2 y, z

A full reducer is

S(y,z) T(z,w)
⋉ ⋉

⋉ ⋉

Q(x,y,z) = R x, y ⨝ S y, z ⨝ T z,w

5. The rewritten query is

R(x,y)

S(y,z)

T(z,w)

⋉
⋉

⋉
⋉

?

4. down

3. collect at root (= bottom-up)

3. up

1. Find a join tree

2. pick a root

4. distribute
to leaves
(= top-down)

https://northeastern-datalab.github.io/cs7240/

167Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semijoin Reducer

R(x,y)

S1(y, z) = S y, z ⋉ R x, y
T1 z, y = T z, y ⋉ S1 y, z
S2 z, y = S1 y, z ⋉ T1 z, y
R1 x, y = R x, y ⋉ S2 y, z

Q(x,y,z) = R1 x, y ⨝ S2 y, z ⨝ T1 z, w

A full reducer is

S(y,z) T(z,w)
⋉ ⋉

⋉ ⋉

Q(x,y,z) = R x, y ⨝ S y, z ⨝ T z,w

5. The rewritten query is

R(x,y)

S(y,z)

T(z,w)

⋉
⋉

⋉
⋉ 4. down

3. collect at root (= bottom-up)

3. up

1. Find a join tree

2. pick a root

4. distribute
to leaves
(= top-down)

Notice that with 2(k-1) messages,
every of the k tables has received
information from every other table!

https://northeastern-datalab.github.io/cs7240/

‹#›Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semijoin Reduction

⋉

The intuition of the sequence of semi-join
reductions is as follows:
• a message is sent across an edge only if

the subtree is already fully reduced
• a message that is sent across an edge

contains *all the information* from the
subtree rooted at the sender.

It follows that the reduction always needs
to start at the leaves!

https://northeastern-datalab.github.io/cs7240/

168Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What happens if one uses the wrong sequence?

https://northeastern-datalab.github.io/cs7240/

169Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semi-join reducers

?
Join tree

Q(x,y,z) :- R(x,y), S(y,z), T(x,z).

?
Query hypergraph

GYO ear removal
• remove isolated nodes (variables)
• remove consumed or empty edges (atoms)

https://northeastern-datalab.github.io/cs7240/

170Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semi-join reducers

?
Join tree R

T

x

y

z

S

GYO ear removal
• remove isolated nodes (variables)
• remove consumed or empty edges (atoms)

Q(x,y,z) :- R(x,y), S(y,z), T(x,z).

https://northeastern-datalab.github.io/cs7240/

171Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semi-join reducers

R

T

x

y

z

S

R(x,y)

S(y,z)

T(x,z)

L

GYO ear removal
• remove isolated nodes (variables)
• remove consumed or empty edges (atoms)

There is no join tree! You can't fulfill
the running intersection property...

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Q(x,y,z) :- R(x,y), S(y,z), T(x,z).

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

172Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semi-join reducers

? ?
Join tree Query hypergraph

Q(x,y,z) :- R(x,y), S(y,z), T(x,z), W(x,y,z).

GYO ear removal
• remove isolated nodes (variables)
• remove consumed or empty edges (atoms)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

173Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semi-join reducers

?
Join tree R

T

x

y

z

S

W

GYO ear removal
• remove isolated nodes (variables)
• remove consumed or empty edges (atoms)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Q(x,y,z) :- R(x,y), S(y,z), T(x,z), W(x,y,z).

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

174Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semi-join reducers

R(x,y) S(y,z)

W(x,y,z)

T(x,z)

R

T

x

y

z

S

?
Write 1) a full reducer
and then 2) the new
join expression in RA

W

Q(x,y,z) :- R(x,y), S(y,z), T(x,z), W(x,y,z).

https://northeastern-datalab.github.io/cs7240/

175Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semi-join reducers

R(x,y) S(y,z)

W(x,y,z)

T(x,z)

W1(x, y, z) =W(x, y, z) ⋉ R(x, y)
W2(x, y, z) =W1(x, y, z) ⋉ S(y, z)
W3(x, y, z) =W2 x, y, z ⋉ T x, z
R1(x, y) = R x, y ⋉W3 x, y, z
S1(y, z) = S y, z ⋉W3 x, y, z
T1(x, z) = T x, z ⋉W3 x, y, z

?
Q(x,y,z) = R1 x, y ⨝S1 y, z ⨝T1 x, z ⨝W3(x, y, z)

Q(x,y,z) :- R(x,y), S(y,z), T(x,z), W(x,y,z).

https://northeastern-datalab.github.io/cs7240/

176Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Q(x,y,z) = R1 x, y ⨝S1 y, z ⨝T1 x, z ⨝W3(x, y, z)

W1(x, y, z) =W(x, y, z) ⋉ R(x, y)
W2(x, y, z) =W1(x, y, z) ⋉ S(y, z)
W3(x, y, z) =W2 x, y, z ⋉ T x, z
R1(x, y) = R x, y ⋉W3 x, y, z
S1(y, z) = S y, z ⋉W3 x, y, z
T1(x, z) = T x, z ⋉W3 x, y, z

Semi-join reducers

R(x,y) S(y,z)

W(x,y,z)

T(x,z)
x
1
2

y
a
a

y
a
a

z
1
2

x
1
2

z
1
2

x
1
2

y
a
a

z
1
2

?

Q(x,y,z) :- R(x,y), S(y,z), T(x,z), W(x,y,z).

https://northeastern-datalab.github.io/cs7240/

177Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Q(x,y,z) = R1 x, y ⨝S1 y, z ⨝T1 x, z ⨝W3(x, y, z)

W1(x, y, z) =W(x, y, z) ⋉ R(x, y)
W2(x, y, z) =W1(x, y, z) ⋉ S(y, z)
W3(x, y, z) =W2 x, y, z ⋉ T x, z
R1(x, y) = R x, y ⋉W3 x, y, z
S1(y, z) = S y, z ⋉W3 x, y, z
T1(x, z) = T x, z ⋉W3 x, y, z

Semi-join reducers

R(x,y) S(y,z)

W(x,y,z)

T(x,z)
x
1
2

y
a
a

y
a
a

z
1
2

x
1
2

z
1
2

x
1
2

y
a
a

z
1
2

Q(x,y,z) :- R(x,y), S(y,z), T(x,z), W(x,y,z).

https://northeastern-datalab.github.io/cs7240/

178Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

W1(x, y, z) =W(x, y, z) ⋉ R(x, y)
W2(x, y, z) =W1(x, y, z) ⋉ S(y, z)
W3(x, y, z) =W2 x, y, z ⋉ T x, z
R1(x, y) = R x, y ⋉W3 x, y, z
S1(y, z) = S y, z ⋉W3 x, y, z
T1(x, z) = T x, z ⋉W3 x, y, z

Q(x,y,z) = R1 x, y ⨝S1 y, z ⨝T1 x, z ⨝W3(x, y, z)

Semi-join reducers

R(x,y) S(y,z)

W(x,y,z)

T(x,z)
x
1
2

y
a
a

y
a
a

z
1
2

x
1
2

z
1
2

x
1
2

y
a
a

z
1
2

Q(x,y,z) = R1 x, y ⨝W3(x, y, z)⨝S1 y, z ⨝T1 x, z

Q(x,y,z) :- R(x,y), S(y,z), T(x,z), W(x,y,z).

https://northeastern-datalab.github.io/cs7240/

179Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semi-join reductions can be extremely powerful

16 Wolfgang Gatterbauer, Dan Suciu

(a) G : y! x (b) G : x! y

Fig. 12 Example 39: (Example 33 continued): The presence of FDs
also changes the probabilistic dissociation preorder and thus the mini-
mal plans returned by our algorithm: either PD3 (as in Fig.11a) or PD4 .

in probabilistic relations that are not implied by FDs on the
other variables). However, as before, the correspondence to
plans (as implied by the hierarchy between all variables) is
still determined by all circles.

First consider G : y! x: Figure 12a shows that this FD
leads to the same preorder as for DR Ud from Fig. 11a.
Thus, the minimal plan is also PD3 . Next consider G : x! y:
Figure 12b shows that there are now only two equivalence
classes, both of which are safe, and one of which is mini-
mal: D0 ⌘p D1 ⌘p D2 ⌘p D4. Among those, only D4 is hier-
archical and is thus the one returned by the algorithm. ⌅

6 Multi-query Optimizations

So far, we enumerate all minimal query plans, then take the
minimum score of those plans in order to calculate the prop-
agation score r(q). In this section, we develop three opti-
mizations that can considerably reduce the necessary calcu-
lations for evaluating all minimal query plans. Notice that
these three optimizations and the previous optimizations us-
ing schema knowledge are orthogonal and can be arbitrarily
combined in the obvious way. We use the following example
to illustrate the first two optimizations:

Example 40 (Multi-query optimizations) Consider the query
q :�R(x,z),S(y,u), T (z),U(u),M(x,y,z,u). Our default is
to evaluate all 6 minimal plans returned by Algorithm 1,
then take the minimum score (shown in Fig. 13a). Fig-
ure 13b and Fig. 13c illustrate the optimized evaluations
after applying Opt. 1, or Opt. 1 and Opt. 2, respectively. ⌅

Recursive algorithm: SP (SinglePlan)

Input: Query q(z) :�R1(x1), . . . ,Rmp (xmp), . . . ,Rd
m(xm)

Output: Single query plan P

1 if mp 1 then P {p p
x onp⇥R1(x1),R2(x2), . . . ,Rd

m(xm)
⇤
} else

2 if q is disconnected then
3 Let q = q1, . . . ,qk be the query components of q
4 foreach qi do HVar(qi) HVar(q)\Var(qi)

P onp⇥
SP(q1), . . . ,SP(qk)

⇤

5 else
6 Let MinPCuts(q) = {y1, . . . ,y j}
7 foreach yi do q0i qi with HVar(q0i) HVar(q)[yi

P min
h
p p
�y1

SP(q01), . . . ,p
p
�y j

SP(q0j)
i

Algorithm 2 Optimization 1 recursively pushes the min operator
into the leaves and generates one single query plan.

6.1 Opt. 1: One single query plan

Our first optimization creates one single query plan by push-
ing the min-operator down into the leaves. It thus avoids cal-
culations when it is clear that other calculations must have
lower bounds. The idea is simple: Instead of creating one
query subplan for each min-cut y 2 MinCuts(q) in line 10
of Algorithm 1, the adapted Algorithm 2 takes the minimum
score over those min-cuts, for each tuple of the head vari-
ables in line 7. It thus creates one single query plan. Fig-
ure 13b shows this single plan for our running example.

6.2 Opt. 2: Re-using common subplans

Our second optimization calculates only once, then re-uses
common subplans shared between the minimal plans. Thus,
whereas our first optimization reduces computation by com-
bining plans at their roots, the second optimization stores
and re-uses common results in the branches by re-using
views. The adapted algorithm works as follows: It first tra-
verses the whole single query plan and remembers each
subplan by the atoms used and its head variables in a Hash-
Set. If it sees a subplan twice, it creates a new view for this
subplan, mapping the subplan to a new view definition. The
actual plan then uses these views whenever possible. The or-
der in which the views are created assures that the algorithm
also discovers and exploits nested common subexpressions.
Figure 13c shows the generated views and plans for our run-
ning example: Notice that the main plan and the view V3
both re-use views V1 and V2.

6.3 Opt. 3: Deterministic semi-join reduction

The most expensive operations in probabilistic query plans
are the group-bys for the probabilistic project operations.
These are often applied early in the plans to tuples which

Dissociation and Propagation for Approximate Lifted Inference with Standard Relational Database Management Systems 17

Fig. 13 Example 40 before and after applying optimizations 1 and 2.

are later pruned and do not contribute to the final query re-
sult. Our third optimization is to first apply a full semi-join
reduction on the input relations before starting the proba-
bilistic evaluation from these reduced input relations.

We like to draw here an important connection to [54],
which introduces the idea of “lazy plans” and shows orders
of magnitude performance improvements for safe plans by
computing confidences not after each join and projection,
but rather at the very end of the plan. We note that our semi-
join reduction serves the same purpose with similar perfor-
mance improvements and also apply for safe queries. The
advantage of semi-join reductions, however, is that we do
not require any modifications to the query engine.

7 Experiments

We are interested in the efficiency (“how fast?”) and the
quality (“how good?”) of ranking by dissociation as com-
pared to exact probabilistic inference, Monte Carlo simu-
lation (MC), and standard deterministic query evaluation
(“deterministic SQL”). Our experiments, thus, investigate
the following questions: How much can our three opti-
mizations improve dissociation? How fast is dissociation as
compared to exact probabilistic inference, MC, and deter-
ministic query evaluation? How good is the ranking from
dissociation as compared to MC and ranking by lineage
size? What are the most important parameters determining
the ranking quality for each of the three methods?

a s p n
S � �

PS � �
P � �

(a) Q(a)

a s p n
S � � •

PS � �
P � �

(b) QS(a)

a s p n
S � �

PS � �
P • � �
(c) QP(a)

Fig. 14 Parameterized Deterministic SQL query Q(a) over TPC-H.
Incidence matrices for TPC-H query Q(a) and its two minimal hierar-
chical dissociations from either dissociating table S or table P.

Ranking quality. We use mean average precision (MAP)
to evaluate the quality of a ranking by comparing it against
the ranking from exact probabilistic inference as ground
truth (GT). MAP rewards rankings that place relevant items
earlier; the best possible value is 1, and the worst possible
0. We use a variant of “Average Precision at 10” defined as
AP@10 := Â10

k=1 P@k
10 . Here, P@k is the precision at the kth

answer, i.e., the fraction of top k answers according to GT
that are also in the top k answers returned. Averaging over
several experiments yields MAP [47]. We use a variant of
the analytic method proposed in [48] to calculate AP in the
presence of ties. As baseline for no ranking, we use “ran-
dom average precision” [17], i.e. we assume all tuples have
the same score and are thus tied for the same position.

Exact probabilistic inference. Whenever possible, we
calculate GT rankings with a tool called SampleSearch [32,
33], which also serves to evaluate the cost of exact proba-
bilistic inference. We describe the method of evaluating the
lineage DNF with SampleSearch in [30].

Monte Carlo (MC). We evaluate the MC simulations for
different numbers of samples and write MC(x) for x sam-
ples. For example, AP for MC(10k) is the result of sampling
the individual tuple scores 10 000 times from their lineages
and then evaluating AP once over the sampled scores. The
MAP scores together with the standard deviations are then
the average over several repetitions.

Ranking by lineage size. To evaluate the potential of non-
probabilistic methods for ranking answers, we also rank the
answer tuples by decreasing size of their lineages; i.e. num-
ber of clauses in their DNFs. Intuitively, a larger lineage size
indicates that an answer has more “support” and should thus
be more important. Notice that, in contrast to other methods,
we ignore here the weight of support and correlations.

Setup 1. We use the TPC-H DBGEN data generator [72]
to generate a 1GB database to which we add a column P for
each table and store it in PostgreSQL 9.2 [59]. We assign to
each input tuple i a random probability pi uniformly chosen
from the interval [0, pimax], resulting in an expected average
input probability avg[pi] = pimax/2. By using databases with
avg[pi] < 0.5, we can avoid output probabilities close to 1
for queries with very large lineages. We use the following

From: Gatterbauer, Suciu. "Dissociation and propagation for approximate lifted inference with standard relational database management systems", VLDBJ 2017. https://arxiv.org/pdf/1310.6257
Reference [54]: Olteanu, Huang, Koch. "Sprout: Lazy vs. eager query plans for tuple-independent probabilistic databases", ICDE 2009. https://doi.org/10.1109/ICDE.2009.123

Dissociation and Propagation for Approximate Lifted Inference with Standard Relational Database Management Systems 19

(a) 4-chain query (b) 7-chain query (c) 2-star query (d) 5-star query

(e) $2 = %red%green% (f) $2 = %red% (g) $2 = %

10 100 1k 10k 50k
0.1

1

10

100

1k

max[Lineage size]

T
im

e
[s
ec
] Diss$+$Opt3*

Standard$SQL*

SampleSearch*

Lineage$query*

MC(1k)*

Diss*

(h) Combining (a)-(c)

Fig. 15 Timing results: (a)-(d) For increasing database sizes and constant cardinalities, our optimizations approach deterministic SQL performance.
(e)-(h) For the TPC-H query, the best evaluation for dissociation is within a factor of 6 of that for deterministic query evaluation.

(a) k-chain queries (b) k-star queries

Fig. 16 While the query complexity is exponential (number of min-
imal plans are shown on the right side), our optimizations can even
evaluate a very large number of minimal plans (here shown up to 429
for a 8-chain query and 5040 (!) for a 7-star query).

the average execution time. We fixed $2 to ’%red%green%’,
’%red%’ or ’%’ and varied $1 2 {500,1000, . . .10k}. Fig-
ure 15h combines all three previous plots and shows the
times as function of the maximum lineage size (i.e. the size
of the lineage for the tuple with the maximum lineage) of a
query. We see here again that the semi-join reduction speeds
up evaluation considerably for small lineage sizes (Fig.15e
shows speedups of up to 36). For large lineages, however,
the semi-join reduction is an unnecessary overhead, as most
tuples are participating in the join anyway (Fig. 15f shows
overhead of up to 2).

Question 2 How does dissociation compare against other
probabilistic methods and standard query evaluation?

Result 2 The best evaluation strategy for dissociation takes
only a small overhead over standard SQL evaluation and
is considerably faster than other probabilistic methods for
large lineages.

Figure 15e to Fig.15h show that SampleSearch does not
scale to larger lineages as the performance of exact proba-
bilistic inference depends on the tree-width of the Boolean
lineage formula, which generally increases with the size
of the data. In contrast, dissociation is independent of the
treewidth. For example, SampleSearch needed 780 sec for
calculating the ground truth for a query with max[lin] = 5.9k
for which dissociation took 3.0 sec, and MC(1k) took 42
sec for a query with max[lin] = 4.2k for which dissociation
took 2.4 sec. Dissociation takes only 10.5 sec for our largest
query $2 = ’%’ and $1 = 10k with max[lin] = 35k. Retrieving
the lineage for that query alone takes 5.8 sec, which implies
that any probabilistic method that evaluates the probabilities
outside of the database engine needs to issue this query to
retrieve the DNF for each answer and would thus have to
evaluate lineages of sizes around 35k in only 4.7 (= 10.5 -
5.8) sec to be faster than dissociation.14

14 The time needed for the lineage query thus serves as minimum
benchmark for any probabilistic approximation. The reported times for

Dissociation and Propagation for Approximate Lifted Inference with Standard Relational Database Management Systems 19

(a) 4-chain query (b) 7-chain query (c) 2-star query (d) 5-star query

(e) $2 = %red%green% (f) $2 = %red% (g) $2 = % (h) Combining (a)-(c)

Fig. 15 Timing results: (a)-(d) For increasing database sizes and constant cardinalities, our optimizations approach deterministic SQL performance.
(e)-(h) For the TPC-H query, the best evaluation for dissociation is within a factor of 6 of that for deterministic query evaluation.

Size of query (k)

Q
u
e
ry

ti
m
e
[s
ec

]

2 3 4 5 6 7 8

10ï1

100

101

2 3 4 5 6 7 8
1

2

5

14

42

132

429

Standard'SQL*

Opt1.3*

All'plans*
Opt1.2*

#"minimal"plans"(right"axis)1

Opt1*

(a) k-chain queries

Size of query (k)

Q
u
e
ry

ti
m
e
[s
ec

]

2 3 4 5 6 7

10ï1

100

101

2 3 4 5 6 7
2

6

24

120

720

5040

Standard'SQL*

Opt1.3*Opt1*

Opt1.2*

#"minimal"plans"(right"axis)1

(b) k-star queries

Fig. 16 While the query complexity is exponential (number of min-
imal plans are shown on the right side), our optimizations can even
evaluate a very large number of minimal plans (here shown up to 429
for a 8-chain query and 5040 (!) for a 7-star query).

the average execution time. We fixed $2 to ’%red%green%’,
’%red%’ or ’%’ and varied $1 2 {500,1000, . . .10k}. Fig-
ure 15h combines all three previous plots and shows the
times as function of the maximum lineage size (i.e. the size
of the lineage for the tuple with the maximum lineage) of a
query. We see here again that the semi-join reduction speeds
up evaluation considerably for small lineage sizes (Fig.15e
shows speedups of up to 36). For large lineages, however,
the semi-join reduction is an unnecessary overhead, as most
tuples are participating in the join anyway (Fig. 15f shows
overhead of up to 2).

Question 2 How does dissociation compare against other
probabilistic methods and standard query evaluation?

Result 2 The best evaluation strategy for dissociation takes
only a small overhead over standard SQL evaluation and
is considerably faster than other probabilistic methods for
large lineages.

Figure 15e to Fig.15h show that SampleSearch does not
scale to larger lineages as the performance of exact proba-
bilistic inference depends on the tree-width of the Boolean
lineage formula, which generally increases with the size
of the data. In contrast, dissociation is independent of the
treewidth. For example, SampleSearch needed 780 sec for
calculating the ground truth for a query with max[lin] = 5.9k
for which dissociation took 3.0 sec, and MC(1k) took 42
sec for a query with max[lin] = 4.2k for which dissociation
took 2.4 sec. Dissociation takes only 10.5 sec for our largest
query $2 = ’%’ and $1 = 10k with max[lin] = 35k. Retrieving
the lineage for that query alone takes 5.8 sec, which implies
that any probabilistic method that evaluates the probabilities
outside of the database engine needs to issue this query to
retrieve the DNF for each answer and would thus have to
evaluate lineages of sizes around 35k in only 4.7 (= 10.5 -
5.8) sec to be faster than dissociation.14

14 The time needed for the lineage query thus serves as minimum
benchmark for any probabilistic approximation. The reported times for

Fig 16 (a),(b):

Fig 15 (h):

+ opt3 Optimization is speculative
(i.e. depends on the inputs
to pay off)

https://northeastern-datalab.github.io/cs7240/
https://arxiv.org/pdf/1310.6257
https://doi.org/10.1109/ICDE.2009.123

