
24

Topic 3: Efficient query evaluation
Unit 1: Acyclic query evaluation
Lecture 17

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp22)
https://northeastern-datalab.github.io/cs7240/sp22/
3/22/2022

Updated 3/26/2022

https://northeastern-datalab.github.io/cs7240/sp22/

25Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

26Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

27Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Pre-class conversations

• Recapitulation of Provenance and intro to trees (acyclic queries)
• Suggestion: Scribes with 2 iterations

• Today:
- Acyclic queries, Yannakakis, Hypergraphs, GYO reduction

• Next time:
- cycles, cycles, cycles

https://northeastern-datalab.github.io/cs7240/

28Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

March 30, 3pm, Datalab seminar:
https://db.khoury.northeastern.edu/activities/

https://northeastern-datalab.github.io/cs7240/
https://db.khoury.northeastern.edu/activities/

29

Outline: T3-1: Acyclic conjunctive queries

• T3-1: Acyclic conjunctive queries
– The semijoin operator
– Join trees & Yannakakis algorithm
– Query hypergraphs & GYO reduction
– A detailed Yannakakis example
– Full semijoin reductions

• T3-2: Cyclic conjunctive queries

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

30Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

• Definition: A conjunctive query Q is (alpha) acyclic if it has a join tree.
• Let Q be a conjunctive query of the form

Q(x) : ∃y [R1(z1) ∧ R2(z2) ∧ ... ∧ Rm(zm)]
Q(x) :– R1(z1), R2(z2),..., Rm(zm)

• A join tree for Q is a tree T =(V,E) such that:
- V: The nodes of T are the atoms Ri(zi), 1 ≤ i ≤ m, of Q.
- E: For every variable w occurring in Q, the set of the nodes of T that contain w

forms a (connected) subtree of T;
• {Rj(zj) ∈ V | z occurs in Rj(zj)} induces a connected subtree in T
• in other words, if a variable w occurs in two different atoms Rj(zj) and Rk(zk) of Q, then it occurs in each

atom on the unique path of T joining Rj(zj) and Rk(zk)
• also called: running intersection property (see also junction tree algorithm and tree decompositions)

Notice that the definition of join tree does not
include the root. We do need to choose roots
later, and different choices of roots lead to
different sequences of semijoin reductions

Acyclic Conjunctive Queries

https://northeastern-datalab.github.io/cs7240/

31Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which query is acyclic?

• Path of length 3? (4 nodes, 3 edges). Return end points.

• Cycle of length 4 ? Boolean.

?

?

https://northeastern-datalab.github.io/cs7240/

32Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which query is acyclic?

• Path of length 3? (4 nodes, 3 edges). Return end points.

• Cycle of length 4? Boolean.

?

?

P4(x1,x4) :- E(x1,x2), E(x2,x3), E(x3,x4)

C4() :- E(x1,x2), E(x2,x3), E(x3,x4), E(x4,x1)

https://northeastern-datalab.github.io/cs7240/

33Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which query is acyclic?

• Path of length 3? (4 nodes, 3 edges). Return end points.

• Cycle of length 4? Boolean.

?

P4(x1,x4) :- E(x1,x2), E(x2,x3), E(x3,x4)

C4() :- E(x1,x2), E(x2,x3), E(x3,x4), E(x4,x1)

acyclic
(join tree is path)

https://northeastern-datalab.github.io/cs7240/

34Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which query is acyclic?

• Path of length 3? (4 nodes, 3 edges). Return end points.

• Cycle of length 4? Boolean.

P4(x1,x4) :- E(x1,x2), E(x2,x3), E(x3,x4)

C4() :- E(x1,x2), E(x2,x3), E(x3,x4), E(x4,x1)

acyclic
(join tree is path)

cyclic

https://northeastern-datalab.github.io/cs7240/

35Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Acyclic Conjunctive Queries

• Is the following query acyclic?
Q :- R(x,y,z), S(y,p), T(y,z,p), U(z,p,w), W(p,w,u).

Dual Hypergraph (relations as nodes) Hypergraph (variables as nodes)

? ?

https://northeastern-datalab.github.io/cs7240/

36Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Acyclic Conjunctive Queries

• Is the following query acyclic?

R S T U W
y

z

px
w

u

No linear order in dual hypergraph L
(Thus resilience is NPC!)

Q :- R(x,y,z), S(y,p), T(y,z,p), U(z,p,w), W(p,w,u).

Dual Hypergraph (relations as nodes) Hypergraph (variables as nodes)

?

https://northeastern-datalab.github.io/cs7240/

37Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Acyclic Conjunctive Queries

• Is the following query acyclic?

R S T U W
y

z

px
w

u

So does the query have a join tree?
No linear order in dual hypergraph L
(Thus resilience is NPC!)

x y

u

z

p w

R

W

S

T

U

Q :- R(x,y,z), S(y,p), T(y,z,p), U(z,p,w), W(p,w,u).

Dual Hypergraph (relations as nodes) Hypergraph (variables as nodes)

https://northeastern-datalab.github.io/cs7240/

38Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Acyclic Conjunctive Queries

• Is the following query acyclic?

x y

u

z

p w

R

W

S

T

U

Hypergraph (variables as nodes)
U(z,p,w)

T(y,z,p) U(p,w,u)

R(x,y,z) S(y,p)
Join Tree for Q

Yes the query has a join tree

Q :- R(x,y,z), S(y,p), T(y,z,p), U(z,p,w), W(p,w,u).

https://northeastern-datalab.github.io/cs7240/

39Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

[Yannakakis'81] Acyclic Conjunctive Queries

• Theorem [Yannakakis'81]:
- The Acyclic Conjunctive Query Evaluation Problem is tractable.
- There is an algorithm for query evaluation with following properties:
• If Q is a Boolean acyclic conjunctive query,

then the algorithm runs in time: O(|Q| · |D|)
• If Q is a full (i.e. no projections) acyclic conjunctive query

then the algorithm runs in time: O(|Q| · |D| + |Q(D)|)

- In terms of data complexity, this means O(|Input| + |Output|)
• i.e., it runs in input/output linear time, which is the “right” notion of tractability in

this case (you can't do better, in general)

Yannakakis, "Algorithms for acyclic database schemes", VLDB 1981. https://dl.acm.org/doi/10.5555/1286831.1286840

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/10.5555/1286831.1286840

40Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Yannakakis’ Algorithm for Boolean acyclic CQs

Basically the standard Dynamic Programming Algorithm
• Input: Boolean acyclic conjunctive query Q, database D
• Construct a join tree T of Q
• Populate the nodes of T with the matching relations of D.
• Traverse the tree T bottom up (also called "collection phase"):
- For each node compute the semi-joins of the (current) relation in the node

with the (current) relations in the children of the node
• Examine the resulting relation R at the root of T
- If R is non-empty, then output Q(D) = 1 (D satisfies Q).
- If R is empty, then output Q(D) = 0 (D does not satisfy Q).

https://northeastern-datalab.github.io/cs7240/

41Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Acyclic Conjunctive Queries

• Where are the semi-join reductions in following query:

U(z,p,w)

T(y,z,p) W(p,w,u)

R(x,y,z) S(y,p)
Rooted Join Tree for Q

?

Q :- R(x,y,z), S(y,p), T(y,z,p), U(z,p,w), W(p,w,u).

https://northeastern-datalab.github.io/cs7240/

42Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Acyclic Conjunctive Queries

• Where are the semi-join reductions in following query:

U(z,p,w)

T(y,z,p) W(p,w,u)

R(x,y,z) S(y,p)
Rooted Join Tree for Q

T(y,z,p) ⋉ R(x,y,z) =
all triples (y,z,p) in T that
"match" a pair (y,z) in R

?

? ?

π,-

Q :- R(x,y,z), S(y,p), T(y,z,p), U(z,p,w), W(p,w,u).

https://northeastern-datalab.github.io/cs7240/

43Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Acyclic Conjunctive Queries

• Where are the semi-join reductions in following query:

U(z,p,w)

T(y,z,p) W(p,w,u)

R(x,y,z) S(y,p)
Rooted Join Tree for Q

π,- π,∅

π,/ π,0

π,1,#,3

Q :- R(x,y,z), S(y,p), T(y,z,p), U(z,p,w), W(p,w,u).

T(y,z,p) ⋉ R(x,y,z) =
all triples (y,z,p) in T that
"match" a pair (y,z) in R

https://northeastern-datalab.github.io/cs7240/

44Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

More on Yannakakis’ Algorithm

• The join tree makes it possible to avoid exponential explosion (in size |Q|) of
the size of the intermediate computations.

• The algorithm can be extended to non-Boolean conjunctive queries using one
additional top-down traversal of the join tree.
- Bottom up (or "collect")
- Top down (or "distribute")

• There are efficient algorithms for detecting acyclicity & computing a join tree.
- [Tarjan, Yannakakis'84] Linear-time algorithm for detecting acyclicity and computing a

join tree.
- [Gottlob, Leone, Scarcello'01 (FOCS'98)] Detecting acyclicity is LOGCFL-complete and

thus highly parallelizable)

Tarjan, Yannakakis. "Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs", SIAM J. Comput. 1984.
https://doi.org/10.1137/0213035 / Gottlob, Leone, Scarcello. "The Complexity of Acyclic Conjunctive Queries", JACM 2001. https://doi.org/10.1145/382780.382783

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1137/0213035
https://doi.org/10.1145/382780.382783

45Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Are join trees unique?

?

Q :- R(x,y), S(y,z), A(y).

https://northeastern-datalab.github.io/cs7240/

46Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Are join trees unique?

R(x,y) S(y,z)

A(y)

R(x,y) S(y,z)

A(y)

R(x,y) S(y,z)

A(y)

In addition, we have 3 choices as roots
for each of the 3 different join trees.
Leads to 9 different rooted join trees!

Q :- R(x,y), S(y,z), A(y).

https://northeastern-datalab.github.io/cs7240/

56

Outline: T3-1: Acyclic conjunctive queries

• T3-1: Acyclic conjunctive queries
– The semijoin operator
– Join trees & Yannakakis algorithm
– Query hypergraphs & GYO reduction
– A detailed Yannakakis example
– Full semijoin reductions

• T3-2: Cyclic conjunctive queries

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

57Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query Hypergraph (vs. Dual Hypergraph vs. Incidence Matrix)

Query hypergraph

Query dual hypergraph

q : �A(x)S1(x, v)S2(v, y)B(y, u)S3(y, z)D(z, w)C(z)
Incidence matrix

?

?

?

https://northeastern-datalab.github.io/cs7240/

58Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query Hypergraph (vs. Dual Hypergraph vs. Incidence Matrix)

x yv

u

z

w

A

B

CS1 S2 S3

D

Query hypergraph

Query dual hypergraph

q : �A(x)S1(x, v)S2(v, y)B(y, u)S3(y, z)D(z, w)C(z)
Incidence matrix

determines (alpha) acyclicity of CQs (next in class)

?

?

https://northeastern-datalab.github.io/cs7240/

59Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query Hypergraph (vs. Dual Hypergraph vs. Incidence Matrix)

x yv

u

z

w

A

B

CS1 S2 S3

D

x yv

u

z

w

A B CS1 S2 S3 D

Query hypergraph

Query dual hypergraph

q : �A(x)S1(x, v)S2(v, y)B(y, u)S3(y, z)D(z, w)C(z)
Incidence matrix

determines (alpha) acyclicity of CQs (next in class)

determines complexity of resilience [Meliou+'10]

Meliou, Gatterbauer, Moore, Suciu. "The complexity of causality and responsibility for query answers and non-answers", PVLDB 2010. https://doi.org/10.14778/1880172.1880176 /
Gatterbauer, Suciu. "Dissociation and propagation for approximate lifted inference with standard relational database management systems", VLDBJ 2017. https://doi.org/10.1007/s00778-016-0434-5

?

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.14778/1880172.1880176
https://doi.org/10.1007/s00778-016-0434-5

60Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query Hypergraph (vs. Dual Hypergraph vs. Incidence Matrix)

x yv

u

z

w

A

B

CS1 S2 S3

D

x yv

u

z

w

A B CS1 S2 S3 D

Query hypergraph

Query dual hypergraph

q : �A(x)S1(x, v)S2(v, y)B(y, u)S3(y, z)D(z, w)C(z)

x v y u z w
A
S1
S2
B
S3
D
C

Incidence matrix
determines (alpha) acyclicity of CQs (next in class)

determines complexity of resilience [Meliou+'10]

determines minimal query plans [G+'17]
(intuitively, plans with early projections)

Meliou, Gatterbauer, Moore, Suciu. "The complexity of causality and responsibility for query answers and non-answers", PVLDB 2010. https://doi.org/10.14778/1880172.1880176 /
Gatterbauer, Suciu. "Dissociation and propagation for approximate lifted inference with standard relational database management systems", VLDBJ 2017. https://doi.org/10.1007/s00778-016-0434-5

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.14778/1880172.1880176
https://doi.org/10.1007/s00778-016-0434-5

61Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

GYO reduction (Graham-Yu-Ozsoyoglu) on the hypergraph

• An ear is a hyperedge H whose variables (=nodes) form two groups:
1. isolated variables that appear exclusively in H, and
2. join variables (i.e. they occur in at least one other edge). For those join

variables there exists a hyperedge called a witness that contains them all
• GYO algorithm (Ear removal)
- Remove ears greedily from the hypergraph

• Important: any sequence of reductions that removes all hyperedges
implies a join tree:
- Just draw an edge between an ear and any witness (notice that if an ear

has only isolated nodes, any remaining hyperedge is a witness)
This algorithm is named in honor of Marc H. Graham and the team Clement Yu and Meral Ozsoyoglu, who independently came to essentially this algorithm in [YO79] and [Gra79]:
[Gra79] Graham. "On the universal relation." Technical Report, University of Toronto, 1979 / [YO79] Yu, Ozsoyoglu. "An algorithm for tree-query membership of a distributed query." COMPSAC,
1979. https://doi.org/10.1109/CMPSAC.1979.762509

corresponds to a projection

corresponds to a join

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1109/CMPSAC.1979.762509

63Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Proof GYO reduction = acyclic query

• Proof (GYO ⇒ acyclic): if GYO leads to an empty hypergraph, then
the resulting graph forms a valid join tree
- notice that by construction, for any variable, those edges containing the

variable will form an induced subtree

• Proof (acyclic ⇒ GYO): if there is a valid join tree, then removing leaf
nodes in any order corresponds to a sequence of GYO reductions:
- All non-exclusive variables from a leaf must be shared with the parent.

Thus the parent forms a witness that consumes the leaf (notice that by
construction, this also works if the leaf node shares no variables)

https://northeastern-datalab.github.io/cs7240/

64Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

GYO reduction: Example 1

• GYO Ear removal
- remove ears (= edges) greedily from hypergraph
• 1. remove isolated nodes (also called singleton variables)
• 2. remove consumed or empty edges (atoms)

? ?

Query hypergraphJoin tree

Q :- R(y,u,w), S(z,p,w), T(x,u,p), U(u,p,w).

https://northeastern-datalab.github.io/cs7240/

65Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

GYO reduction: Example 1

• GYO Ear removal
- remove ears (= edges) greedily from hypergraph
• 1. remove isolated nodes (also called singleton variables)
• 2. remove consumed or empty edges (atoms) x

y

u

z

p

w
R S

T

U

?

Join tree

Q :- R(y,u,w), S(z,p,w), T(x,u,p), U(u,p,w).

https://northeastern-datalab.github.io/cs7240/

66Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

GYO reduction: Example 1

• GYO Ear removal
- remove ears (= edges) greedily from hypergraph
• 1. remove isolated nodes (also called singleton variables)
• 2. remove consumed or empty edges (atoms) x

y

u

z

p

w
R S

T

U

?Join tree

R(y,u,w) S(z,p,w) T(x,u,p)

U(u,p,w)

Q :- R(y,u,w), S(z,p,w), T(x,u,p), U(u,p,w).

https://northeastern-datalab.github.io/cs7240/

67Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

GYO reduction: Example 1

• GYO Ear removal
- remove ears (= edges) greedily from hypergraph
• 1. remove isolated nodes (also called singleton variables)
• 2. remove consumed or empty edges (atoms) x

y

u

z

p

w
R S

T

U

R(y,u,w)

Join tree

S(z,p,w) T(x,u,p)

U(u,p,w)

Q :- R(y,u,w), S(z,p,w), T(x,u,p), U(u,p,w).

https://northeastern-datalab.github.io/cs7240/

68Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

GYO reduction: Example 1

• GYO Ear removal
- remove ears (= edges) greedily from hypergraph
• 1. remove isolated nodes (also called singleton variables)
• 2. remove consumed or empty edges (atoms) x

u

z

p

w
S

T

U

S(z,p,w)

Join tree

R(y,u,w) T(x,u,p)

U(u,p,w)

Q :- R(y,u,w), S(z,p,w), T(x,u,p), U(u,p,w).

https://northeastern-datalab.github.io/cs7240/

69Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

GYO reduction: Example 1

• GYO Ear removal
- remove ears (= edges) greedily from hypergraph
• 1. remove isolated nodes (also called singleton variables)
• 2. remove consumed or empty edges (atoms) x

u p

w

T

U

R(y,u,w) S(z,p,w) T(x,u,p)

U(u,p,w)

Join tree

Q :- R(y,u,w), S(z,p,w), T(x,u,p), U(u,p,w).

https://northeastern-datalab.github.io/cs7240/

70Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

GYO reduction: Example 1

• GYO Ear removal
- remove ears (= edges) greedily from hypergraph
• 1. remove isolated nodes (also called singleton variables)
• 2. remove consumed or empty edges (atoms)

u p

w U

R(y,u,w) S(z,p,w) T(x,u,p)

U(u,p,w)

Join tree

the last one is the root

Q :- R(y,u,w), S(z,p,w), T(x,u,p), U(u,p,w).

https://northeastern-datalab.github.io/cs7240/

71Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

GYO reduction: Example 2

• GYO Ear removal
- remove ears (= edges)
• remove isolated nodes (variables)
• remove consumed or empty edges (atoms)

? ?
Join tree Query hypergraph

Q :- R(x,y,z), S(y,p), T(y,z,p), U(z,u,p), W(u,p,w).

https://northeastern-datalab.github.io/cs7240/

