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Pre-class conversations

• Recapitulation of provenance semirings, including new exercise
• Projects & scribes: we are past halftime of the class
• Possible exercise: Provenance for relational division

• Today: 
- The algebra of provenance
- a quick glimpse at reverse data management

https://northeastern-datalab.github.io/cs7240/
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What do we exactly lose by not having an inverse?

• Let's take a quick detour and look at some examples to illustrate 
what we lose by having monoids instead of groups

https://northeastern-datalab.github.io/cs7240/
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Monoids vs. Groups: Examples

• Commutative group (with inverse)
- (ℝ, +, 0) ?e.g., 3 + 3-1 =

https://northeastern-datalab.github.io/cs7240/
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Monoids vs. Groups: Examples

• Commutative group (with inverse)
- (ℝ, +, 0)
- (ℝ\{0}, · , 1)

e.g., 3 + 3-1 =
e.g., 3 · 3-1 = ?

3 + (-3) = 0 recall: inverse w.r.t. (+, 0)

https://northeastern-datalab.github.io/cs7240/
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Monoids vs. Groups: Examples

• Commutative group (with inverse)
- (ℝ, +, 0)
- (ℝ\{0}, · , 1)

• Commutative monoid (w/o inverse)
- ({0,1},∧,1) ... logical conjunction
• identity element 1:    x∧1 = 1∧x=x 
• What is the inverse 0-1 s.t. 0∧0-1 = 1

3 + (-3) = 0
3 · (1/3) = 1

e.g., 3 + 3-1 =
e.g., 3 · 3-1 =

recall: inverse w.r.t. (+, 0)

?

https://northeastern-datalab.github.io/cs7240/
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Monoids vs. Groups: Examples

• Commutative group (with inverse)
- (ℝ, +, 0)
- (ℝ\{0}, · , 1)

• Commutative monoid (w/o inverse)
- ({0,1},∧,1) ... logical conjunction
• identity element 1:    x∧1 = 1∧x=x 
• What is the inverse 0-1 s.t. 0∧0-1 = 1

- (ℝ∞,min,∞)
• identity element ∞:    min[x,∞] =x
• What is the inverse 3-1 s.t. min[3,3-1] = ∞

3 + (-3) = 0
3 · (1/3) = 1

e.g., 3 + 3-1 =
e.g., 3 · 3-1 =

recall: inverse w.r.t. (+, 0)

There is no such inverse L

?

https://northeastern-datalab.github.io/cs7240/


96Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Monoids vs. Groups: Examples

• Commutative group (with inverse)
- (ℝ, +, 0)
- (ℝ\{0}, · , 1)

• Commutative monoid (w/o inverse)
- ({0,1},∧,1) ... logical conjunction
• identity element 1:    x∧1 = 1∧x=x 
• What is the inverse 0-1 s.t. 0∧0-1 = 1

- (ℝ∞,min,∞)
• identity element ∞:    min[x,∞] =x
• What is the inverse 3-1 s.t. min[3,3-1] = ∞

3 + (-3) = 0
3 · (1/3) = 1

e.g., 3 + 3-1 =
e.g., 3 · 3-1 =

recall: inverse w.r.t. (+, 0)

There is no such inverse L

There is no such inverse L

https://northeastern-datalab.github.io/cs7240/
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The power of groups (i.e. of having an inverse)

• Assume(x,y,z) s.t. x⊕y=z
- Given y and z (and knowing that z was calculated), deduce x

• (ℝ,+,0) and (x,y,z)=(1,2,3)
- x+2=3

What is x? ?

https://northeastern-datalab.github.io/cs7240/
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The power of groups (i.e. of having an inverse)

• Assume(x,y,z) s.t. x⊕y=z
- Given y and z (and knowing that z was calculated), deduce x

• (ℝ,+,0) and (x,y,z)=(1,2,3)
- x+2=3

• ({0,1},∧,1) and (x,y,z)=(1,0,0)
- x∧0=0

x=z+y-1=3+(-2)=1What is x?

What is x? ?

https://northeastern-datalab.github.io/cs7240/
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The power of groups (i.e. of having an inverse)

• Assume(x,y,z) s.t. x⊕y=z
- Given y and z (and knowing that z was calculated), deduce x

• (ℝ,+,0) and (x,y,z)=(1,2,3)
- x+2=3

• ({0,1},∧,1) and (x,y,z)=(1,0,0)
- x∧0=0

• (ℝ∞,min,∞) and (x,y,z)=(3,2,2)
- x min 2 = 2

x=z+y-1=3+(-2)=1What is x?

x could be 0 or 1What is x?

What is x? ?

https://northeastern-datalab.github.io/cs7240/
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The power of groups (i.e. of having an inverse)

• Assume(x,y,z) s.t. x⊕y=z
- Given y and z (and knowing that z was calculated), deduce x

• (ℝ,+,0) and (x,y,z)=(1,2,3)
- x+2=3

• ({0,1},∧,1) and (x,y,z)=(1,0,0)
- x∧0=0

• (ℝ∞,min,∞) and (x,y,z)=(3,2,2)
- x min 2 = 2

x=z+y-1=3+(-2)=1What is x?

x could be 0 or 1What is x?

x can be anything in [2,∞]What is x?

https://northeastern-datalab.github.io/cs7240/
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Rings and Semirings: what we get from two operators

• Groups and group-like structures consider a set and one binary 
operator (with various properties)

• Rings and ring-like structures consider a set and two operators (with 
various properties and "interactions" like the distributive law)

https://northeastern-datalab.github.io/cs7240/
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(Commutative) Semirings

• Semiring (S,⊕,⊗,0,1)
1. (S,⊕,0) is commutative monoid
2. (S,⊗,1) is (commutative) monoid
3. ⊗ distributes over ⊕: (x⊕y) ⊗ z = (x⊗ z) ⊕ (y⊗ z)
4. 0 annihilates ⊗: 0 ⊗ x = 0

thus semirings are rings 
w/o the additive inverse

Commutative semirings
e.g.: matrix multiplication 
is not commutative

https://northeastern-datalab.github.io/cs7240/
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(Commutative) Semirings

• Semiring (S,⊕,⊗,0,1)
1. (S,⊕,0) is commutative monoid
2. (S,⊗,1) is (commutative) monoid
3. ⊗ distributes over ⊕: (x⊕y) ⊗ z = (x⊗ z) ⊕ (y⊗ z)
4. 0 annihilates ⊗: 0 ⊗ x = 0

• Examples
1. 𝕋=(ℝ"∞,min,+,∞,0) Shortest-distance: min[x,y] + z = min[(x+z),(y+z)]

min-sum semiring, also called tropical semiring: sum distributes over min 
not the other way: min[x+y,z] ≠ min[x,z] + min[y,z]; e.g. min[3+4,5] = 5 ≠ 7 =min[3,5] + min[4,5]

2. ℝ=(ℝ,+, · ,0,1) Ring of real numbers
3. 𝔹=({0,1},∨,∧,0,1) Boolean (set semantics)
4. ℕ=(ℕ,+, · ,0,1) Number of paths (bag semantics)
5. 𝕍=([0,1],max, · ,0,1) Probability of best derivation (Viterbi)

thus semirings are rings 
w/o the additive inverse

Commutative semirings
e.g.: matrix multiplication 
is not commutative

https://northeastern-datalab.github.io/cs7240/
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Ring-like structures
ℚ (rational numbers)
ℤ/5ℤ (integers mod 5)
𝑓(𝑥)
𝑔(𝑥)

field of rational fcts

except 0

sometimes called 
ring w/o identity

sometimes called 
ring w identity

𝔹=(𝔹, ∨, ∧ , 0, 1): Boolean semiring
1 + 1 = 1, thus ∨ has no inverse 

(ℕ, +, ⋅ , 0, 1): Natural numbers
no inverses

Polynomials with semiring
coefficients (e.g. ℕ[x])

(rng) (rig)

2ℤ: Even integers

ℝ[x] real polynomials 
ℤ/4ℤ (integers mod 4)

𝑎 𝑏
𝑐 𝑑 |𝑎, 𝑏, 𝑐, 𝑑 are integers

non-zero 
elements 
form an

Figure credits: https://kevinbinz.com/2014/11/16/goodman-semiring-parsing/, 
https://math.stackexchange.com/questions/2361889/graphically-organizing-the-interrelationships-of-basic-algebraic-structures

https://northeastern-datalab.github.io/cs7240/
https://kevinbinz.com/2014/11/16/goodman-semiring-parsing/
https://math.stackexchange.com/questions/2361889/graphically-organizing-the-interrelationships-of-basic-algebraic-structures
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Rings and Semiring homomorphisms

• We have seen homomorphisms for structures with 1 operator:
- graphs
- conjunctive queries
- groups
- general binary structures

• Semiring homomorphisms generalize this to two operators

https://northeastern-datalab.github.io/cs7240/
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RECALL Homomorphisms on Binary Structures

• Definition (Binary algebraic structure): A binary algebraic structure 
is a set together with a binary operation on it.  This is denoted by an 
ordered pair (S,⋆) in which S is a set and ⋆ is a binary operation on S.

• Definition (homomorphism of binary structures): Let (S,⋆) and (S’,∘) 
be binary structures.  A homomorphism from (S,⋆) to (S’,∘) is a map 
h: S⟶ S’ that satisfies, for all x, y in S:

h(x ⋆ y) = h(x) ∘ h(y)

• We can denote it by h: (S,⋆) ⟶ (S’,∘).

https://northeastern-datalab.github.io/cs7240/
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Homomorphisms now for ring-like structures

• A homomorphism between two semirings is a function between 
their underlying sets that preserves the two operations of addition 
and multiplication and also their identities.

• Definition (homomorphism between semirings): Let (R,+,•) and 
(S,⋆,∘) be semirings.  A homomorphism from (R,+,•) to (S,⋆,∘) is a 
map h: S⟶ S’ that satisfies, for all x, y in S:
- h(x + y) = h(x) ⋆ h(y) addition preserving
- h(x • y) = h(x) ∘ h(y) multiplication preserving
- h(1R) = 1S multiplicative identity preserving
- h(0R) = 0S additive identify preserving

https://northeastern-datalab.github.io/cs7240/


131Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A partial provenance hierarchy

Source: Todd J. Green, "Containment of Conjunctive Queries on Annotated Relations", ICDT 2009. https://doi.org/10.1145/1514894.1514930

N[X]

B[X] Trio(X)

Why(X)

Lin(X) PosBool(X)

most informative

least informative

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/1514894.1514930
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Using homomorphisms to relate models

Example: 2x2y + xy + 5y2 + z

drop exponents  
3xy + 5y + z

drop coefficients
x2y + xy + y2  +z

collapse terms
xyz

drop both exp. and  coeff.
xy + y + z

apply absorption  
(ab + b = b)

y + z

A path downward from K1 to K2 indicates that there exists an 
onto (surjective) semiring homomorphism h : K1 → K2
Furthermore, notice that for these homomorphisms h(x)= x

Source: Todd J. Green, "Containment of Conjunctive Queries on Annotated Relations", ICDT 2009. https://doi.org/10.1145/1514894.1514930

N[X]

B[X] Trio(X)

Why(X)

Lin(X) PosBool(X)

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/1514894.1514930
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The power of Semirings is rediscovered again and again

• Semirings are not "as famous" as rings or groups in abstract algebra, 
but form the basis of efficient algorithms
- we often don't need an inverse for the semiring addition
- we calculate "forward" not backwards (we don't solve equations)

• Thus they are "rediscovered" again and again in various branches of 
computer science

https://northeastern-datalab.github.io/cs7240/
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Power of semirings is rediscovered again and again

1. Bistarelli, Montanari, Rossi. Semiring-Based Constraint Satisfaction
and Optimization. JACM 1997 (cited > 800 times, 3/2020)

"We introduce a general framework for constraint satisfaction and 
optimization where classical CSPs, fuzzy CSPs, weighted CSPs, partial 
constraint satisfaction, and others can be easily cast. The framework is 
based on a semiring structure, where the set of the semiring specifies the 
values to be associated with each tuple of values of the variable domain, 
and the two semiring operations (1 and 3) model constraint projection and 
combination respectively. Local consistency algorithms, as usually used for 
classical CSPs, can be exploited in this general framework as well..."

Paper: Bistarelli, Montanari, Rossi. Semiring-Based Constraint Satisfaction and Optimization. JACM 1997. https://doi.org/10.1145/256303.256306

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/256303.256306
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Power of semirings is rediscovered again and again

2. Aji, McEliece: The generalized distributive law. IEEE Transactions 
on Information Theory 2000 (cited >950 times in 3/2020)

"... we discuss a general message passing algorithm, 
which we call the generalized distributive law (GDL). 
The GDL is a synthesis of the work of many authors 
in the information theory, digital communications, 
signal processing, statistics, and artificial intelligence 
communities. It includes as special cases ... Although 
this algorithm is guaranteed to give exact answers 
only in certain cases (the “junction tree” condition), 
... much experimental evidence, and a few 
theorems, suggesting that it often works 
approximately even when it is not supposed to.

Paper: Aji, McEliece: The generalized distributive law. IEEE Transactions on Information Theory, 2000. https://doi.org/10.1109/18.825794

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1109/18.825794
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Power of semirings is rediscovered again and again

3. Mohri: Semiring frameworks and algorithms for shortest-distance 
problems. Journal of Automata, Languages and Combinatorics. 
2002 (cited 290 times in 3/2020)

"We define general algebraic frameworks for shortest-distance problems 
based on the structure of semirings. We give a generic algorithm for finding 
single-source shortest distances in a weighted directed graph when the 
weights satisfy the conditions of our general semiring framework.
... Classical algorithms such as that of Bellman-Ford [4, 17] are specific 
instances of this generic algorithm ... The algorithm of Lawler [24] is a specific 
instance of this algorithm."

Paper: Mohri. Semiring frameworks and algorithms for shortest-distance problems. Journal of Automata, Languages and Combinatorics, 2002. https://doi.org/10.25596/jalc-2002-321

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.25596/jalc-2002-321
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Power of semirings is rediscovered again and again

4. Green, Karvounarakis, Tannen. Provenance semirings. PODS 2007. 
(PODS 2017 test-of-time award)

Paper: Green, Karvounarakis, Tannen. Provenance semirings. PODS 2007. https://doi.org/10.1145/1265530.1265535 , Figure credit: Val Tannen's EDBT 2010 keynote.

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/1265530.1265535
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Power of semirings is rediscovered again and again

5. Khamis, Ngo, Rudra. FAQ: Questions Asked Frequently. PODS 2016 
(PODS 2016 best paper award)

"We define and study the Functional Aggregate 
Query (FAQ) problem, which encompasses 
many frequently asked questions in constraint 
satisfaction, databases, matrix operations, 
probabilistic graphical models and logic. This is 
our main conceptual contribution... We then 
present a simple algorithm called InsideOut to 
solve this general problem. InsideOut is a 
variation of the traditional dynamic 
programming approach for constraint 
programming based on variable elimination."

Paper: Khamis, Ngo, Rudra. FAQ: Questions Asked Frequently. PODS 2016. https://doi.org/10.1145/2902251.2902280

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/2902251.2902280
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Power of semirings is rediscovered again and again

6. Tziavelis+. Optimal Algorithms for Ranked Enumeration of Answers to Full 
Conjunctive Queries. PVLDB 2020

Paper: Tziavelis, Ajwani, Gatterbauer, Riedewald, Yang. Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries. PVLDB 2020. https://dl.acm.org/doi/10.14778/3397230.3397250

Ranked results

Time

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/10.14778/3397230.3397250
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Power of semirings is rediscovered again and again

6. Tziavelis+. Optimal Algorithms for Ranked Enumeration of Answers to Full 
Conjunctive Queries. PVLDB 2020

Paper: Tziavelis, Ajwani, Gatterbauer, Riedewald, Yang. Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries. PVLDB 2020. https://dl.acm.org/doi/10.14778/3397230.3397250

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/10.14778/3397230.3397250
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Multiplying 2´2 matrices

8 multiplications
4 additions

Works over any semi-ring!

Strassen. Gaussian Elimination is not Optimal. Numerical Mathematics, 1969. https://doi.org/10.1007/BF02165411
https://en.wikipedia.org/wiki/Strassen_algorithm, https://en.wikipedia.org/wiki/Matrix_multiplication_algorithm

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1007/BF02165411
https://en.wikipedia.org/wiki/Strassen_algorithm
https://en.wikipedia.org/wiki/Matrix_multiplication_algorithm
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Strassen’s 2´2 algorithm

11 11 11 12 21

12 11 12 12 22

21 21 11 22 21

22 21 12 22 22

C A B A B
C A B A B
C A B A B
C A B A B

= +
= +
= +
= +

1 11 22 11 22

2 21 22 11

3 11 12 22

4 22 21 11

5 11 12 22

6 21 11 11 12

7 12 22 21 22

( )( )
( )
( )
( )

( )
( )( )
( )( )

M A A B B
M A A B
M A B B
M A B B
M A A B
M A A B B
M A A B B

-

-

= + +
= +
=

=
= +

=

= +

- +

-
11 1 4 5 7

12 3 5

21 2 4

22 1 2 3 6

C M M M M
C M M
C M M
C M M M M

= + +
=

=

-

+-

+
= +

+ 7 multiplications
18 additions/subtractionsWorks over any ring!

(requirees additive inverse, but does not assume multiplication to be commutative)

Subtraction!

Matrix multiplication exponent 𝜔

𝜔<2.4

Strassen. Gaussian Elimination is not Optimal. Numerical Mathematics, 1969. https://doi.org/10.1007/BF02165411
https://en.wikipedia.org/wiki/Strassen_algorithm, https://en.wikipedia.org/wiki/Matrix_multiplication_algorithm

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1007/BF02165411
https://en.wikipedia.org/wiki/Strassen_algorithm
https://en.wikipedia.org/wiki/Matrix_multiplication_algorithm
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https://en.wikipedia.org/wiki/Strassen_algorithm

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Strassen_algorithm
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Song, Dongarra, Moore. Experiments with Strassens' Algorithm: from sequential to parallel. PDCS 2006. https://scholar.google.com/scholar?cluster=11243079065050760755

https://northeastern-datalab.github.io/cs7240/
https://scholar.google.com/scholar?cluster=11243079065050760755
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Scott, Holtz, Schwartz. Matrix Multiplication I/O-Complexity by Path Routing, SPAA 2015. https://doi.org/10.1145/2755573.2755594

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/2755573.2755594
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Ballard, Carson, Demmel, Hoemmen, Knight, Schwartz. "Communication lower bounds and optimal algorithms for numerical linear algebra." Acta numerica 2014. https://doi.org/10.1017/S0962492914000038
Ballard, Demmel, Holtz, Schwartz. "Graph Expansion and Communication Costs of Fast Matrix Multiplication." ACM 2012. https://doi.org/10.1145/2395116.2395121

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1017/S0962492914000038
https://doi.org/10.1145/2395116.2395121
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Outline: T2-3/4: Provenance & Reverse Data Management

• T2-3: Provenance
– Data Provenance
– The Semiring Framework for Provenance
– Algebra: Monoids and Semirings
– Query-rewrite-insensitive provenance

• T2-4: Reverse Data Management
– View Deletion Problem
– Resilience & Causality

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
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1.1 Why, How and Where: An Overview 383

Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’
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t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone
BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate

Lineage	=	{t1,	t5,	t6}

Definition Witness of t:
Any subset of the database sufficient to reconstruct tuple t in the query result

Witness basis:
Leaves of the “proof tree” showing how result tuple t is generated

{{t1,	t5},	{t1,	t6}}

{t1,	t5}			{t1,	t6}			{t1,	t2,	t6,	t8}

Example taken from “Provenance in databases: why, how, and where” by Cheney, Chiticariu, Tan, 2009. https://doi.org/10.1561/1900000006

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1561/1900000006
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Minimality &
query
rewriting

1.1 Why, How and Where: An Overview 385

Instance I:
R

A B
t: 1 2
t′: 1 3
t′′: 4 2

Two equivalent queries:
Q : Ans(x,y) :− R(x,y).
Q′ : Ans(x,y) :− R(x,y),R(x,z).

Output of
Q(I), Q′(I):

A B
1 2
1 3
4 2

Fig. 1.2 Example queries, input and output.

Instance I:
R

A B
t: 1 2
t′: 1 3
t′′: 4 2

Output of
Q(I)

A B why
1 2 {{t}}
1 3 {{t′}}
4 2 {{t′′}}

Output of
Q′(I)

A B why
1 2 {{t},{t, t′}}
1 3 {{t′},{t, t′}}
4 2 {{t′′}}

Fig. 1.3 Example showing that why-provenance is sensitive to query rewriting.

t5, while the second uses the tuples t1 and t6. Observe that {t1, t5, t6} is
not a minimal witness, since the query Q1 requires witnesses to consist
of exactly one tuple from Agencies, and one tuple from ExternalTours
according to the FROM clause of Q1.

The preceding discussion suggests that the witness basis may be
tied to the structure of the query and it is therefore sensitive to how
a query is formulated. To illustrate, consider the instance I and two
equivalent queries Q and Q′ shown in Figure 1.2. For conciseness, we
use the Datalog conjunctive query notation to express Q and Q′ here
and throughout the paper as convenient. Consider the output tuple
(1,2) in the result of Q (and Q′) applied to I shown in Figure 1.3.
The witness basis of this output tuple is {{t}}, according to Q and I.
However, even though Q′ is equivalent to Q, the witness basis of the
output tuple (1,2) according to Q′ and I is {{t},{t, t′}}.

Although equivalent queries may have different witness bases,
Buneman et al. [13] showed that a subset of the witness basis, called
the minimal witness basis, is invariant under equivalent queries. The
minimal witness basis consists of all the minimal witnesses in the wit-
ness basis, where a witness is minimal if none of its proper subinstances
is also a witness in the witness basis. For example, {t} is a minimal wit-
ness for the output tuple (1,2) in Figure 1.2. However, {t, t′} is not a
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Instance I:
R

A B
t: 1 2
t′: 1 3
t′′: 4 2

Output of
Q(I)

A B how
1 2 t
1 3 t′

4 2 t′′

Output of
Q′(I)

A B how
1 2 t2 + t · t′

1 3 (t′)2 + t · t′

4 2 (t′′)2

Fig. 1.5 Example showing that how-provenance is sensitive to query rewriting.

provenance semirings. Intuitively, the provenance of the output tuple
(San Francisco, 415-1200) is represented as a polynomial, which for
this example is t21 + t1 × t3. The polynomials for each output tuple are
shown on the right of the result of Q2. The polynomial hints at the
structure of the proofs by which the output tuple is derived. In this
example, the polynomial describes that the output tuple is witnessed
in two distinct ways: once using t1 twice, and the other using t1 and t3.
As we shall show, one can derive the why-provenance of an output tuple
from its how-provenance polynomial. However, this example shows that
the converse is not always possible.

It is easy to see that how-provenance is also sensitive to query for-
mulations, since how-provenance is more general than why-provenance.
Going back to our example queries shown on the top of Figure 1.2,
Figure 1.5 illustrates that the how-provenance of the tuple (1,2) in
the output of Q(I) is t according to Q, and respectively, t2 + t × t′

according to Q′.
Green et al. [43] formalize a notion of how-provenance for relational

algebra in terms of an appropriate “provenance semiring”, and extend
their approach to handle recursive datalog. Subsequently, an interest-
ing application of how-provenance appears in the context of ORCHES-
TRA [42, 44], a collaborative data sharing system in a network of peers
interconnected through schema mappings. An extension of the semiring
model of Green et al. [43] to schema mappings is used in ORCHESTRA
to efficiently support trust-based filtering of updates, and incremental
maintenance of peers’ databases with updates in the system.

Earlier, Chiticariu and Tan proposed a notion of provenance over
schema mappings called routes [21], and used it as a basis for SPIDER,
a system for debugging schema mappings [3]. Given a schema mapping
that relates a source and a target schema, routes describe how data in

Minimal witness basis:
Minimal witnesses in the 
witness basis

https://northeastern-datalab.github.io/cs7240/
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Fixing query-
rewrite 
sensitivity for 
where 
provenance
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Instance I:
R

A B
t: 1 2
t′: 1 3
t′′: 4 2

Two equivalent queries:
Q : Ans(x,y) :− R(x,y).
Q′ : Ans(x,y) :− R(x,y),R(x,z).

Output of
Q(I), Q′(I):

A B
1 2
1 3
4 2

Fig. 1.2 Example queries, input and output.

Instance I:
R

A B
t: 1 2
t′: 1 3
t′′: 4 2

Output of
Q(I)

A B why
1 2 {{t}}
1 3 {{t′}}
4 2 {{t′′}}

Output of
Q′(I)

A B why
1 2 {{t},{t, t′}}
1 3 {{t′},{t, t′}}
4 2 {{t′′}}

Fig. 1.3 Example showing that why-provenance is sensitive to query rewriting.

t5, while the second uses the tuples t1 and t6. Observe that {t1, t5, t6} is
not a minimal witness, since the query Q1 requires witnesses to consist
of exactly one tuple from Agencies, and one tuple from ExternalTours
according to the FROM clause of Q1.

The preceding discussion suggests that the witness basis may be
tied to the structure of the query and it is therefore sensitive to how
a query is formulated. To illustrate, consider the instance I and two
equivalent queries Q and Q′ shown in Figure 1.2. For conciseness, we
use the Datalog conjunctive query notation to express Q and Q′ here
and throughout the paper as convenient. Consider the output tuple
(1,2) in the result of Q (and Q′) applied to I shown in Figure 1.3.
The witness basis of this output tuple is {{t}}, according to Q and I.
However, even though Q′ is equivalent to Q, the witness basis of the
output tuple (1,2) according to Q′ and I is {{t},{t, t′}}.

Although equivalent queries may have different witness bases,
Buneman et al. [13] showed that a subset of the witness basis, called
the minimal witness basis, is invariant under equivalent queries. The
minimal witness basis consists of all the minimal witnesses in the wit-
ness basis, where a witness is minimal if none of its proper subinstances
is also a witness in the witness basis. For example, {t} is a minimal wit-
ness for the output tuple (1,2) in Figure 1.2. However, {t, t′} is not a
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Annotated
instance Ia:
R

A B
t: 1a1 2a2

t′: 1a3 3a4

t′′: 4a5 2a6

Output of Q(Ia)
(DEFAULT
propagation):

A B

1a1 2a2

1a3 3a4

4a5 2a6

Output of Q′(Ia)
(DEFAULT
propagation):

A B

1a1,a3 2a2

1a1,a3 3a4

4a5 2a6

Output of Q(Ia), Q′(Ia)
(DEFAULT-ALL
propagation):

A B

1a1,a3 2a2,a6

1a1,a3 3a4

4a5 2a2,a6

Fig. 1.6 Example showing that where-provenance is sensitive to query rewriting.

Q and respectively, Q′ on Ia under the default propagation scheme pro-
duces the two annotated instances shown in Figure 1.6. In the output
of Q, the annotation a1 propagates from the value “1” of the source
tuple t to the output value “1” of (1, 2) in Q(Ia). This is because the
value “1” of (1, 2) in Q(Ia) is copied from the value “1” of t according
to Q. In the case of Q′, however, the value “1” of (1, 2) in Q′(Ia) is
copied from “1” of t or “1” of t′ in Ia. Hence, two annotations, a1 and
a3, appear with the value “1” of (1, 2) in Q′(Ia). This simple example
illustrates once more that where-provenance is sensitive under equiva-
lent query formulations: while Q and Q′ are equivalent, they produce
different annotated results. In fact, the query Q′′: Ans(x,y) :− R(x,y),
R(z,y) is also equivalent to Q and it propagates both a2 and a6 to the
values “2” in the output, whereas the two copies of value “1” in the
output is annotated with a1 and respectively, a3.

If a query Q propagates annotations under the default-all propaga-
tion scheme in DBNotes, then equivalent formulations of Q are guaran-
teed to produce identical annotated results. In the default-all scheme,
annotations are propagated based on where data is copied from accord-
ing to all equivalent queries of Q. Hence, this propagation scheme can be
perceived as a “better” method for propagating annotations for Q. The
result of executing Q (or Q′ or Q′′) on Ia under the default-all scheme is
shown in Figure 1.6. Observe that all annotations relevant for an out-
put value are associated under the same output value in the default-all
behavior, regardless of how the query is formulated. For this exam-
ple, both “1”s in the default-all output are associated with a1 and a3.
This is because Q′, which is an equivalent query of Q, associates both
annotations with the value “1”. Similarly, both “2”s in the default-all
output are associated with a2 and a6. This is because Q′′ associates
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Annotated
instance Ia:
R

A B
t: 1a1 2a2

t′: 1a3 3a4

t′′: 4a5 2a6

Output of Q(Ia)
(DEFAULT
propagation):

A B

1a1 2a2

1a3 3a4

4a5 2a6

Output of Q′(Ia)
(DEFAULT
propagation):

A B

1a1,a3 2a2

1a1,a3 3a4

4a5 2a6

Output of Q(Ia), Q′(Ia)
(DEFAULT-ALL
propagation):

A B

1a1,a3 2a2,a6

1a1,a3 3a4

4a5 2a2,a6

Fig. 1.6 Example showing that where-provenance is sensitive to query rewriting.

Q and respectively, Q′ on Ia under the default propagation scheme pro-
duces the two annotated instances shown in Figure 1.6. In the output
of Q, the annotation a1 propagates from the value “1” of the source
tuple t to the output value “1” of (1, 2) in Q(Ia). This is because the
value “1” of (1, 2) in Q(Ia) is copied from the value “1” of t according
to Q. In the case of Q′, however, the value “1” of (1, 2) in Q′(Ia) is
copied from “1” of t or “1” of t′ in Ia. Hence, two annotations, a1 and
a3, appear with the value “1” of (1, 2) in Q′(Ia). This simple example
illustrates once more that where-provenance is sensitive under equiva-
lent query formulations: while Q and Q′ are equivalent, they produce
different annotated results. In fact, the query Q′′: Ans(x,y) :− R(x,y),
R(z,y) is also equivalent to Q and it propagates both a2 and a6 to the
values “2” in the output, whereas the two copies of value “1” in the
output is annotated with a1 and respectively, a3.

If a query Q propagates annotations under the default-all propaga-
tion scheme in DBNotes, then equivalent formulations of Q are guaran-
teed to produce identical annotated results. In the default-all scheme,
annotations are propagated based on where data is copied from accord-
ing to all equivalent queries of Q. Hence, this propagation scheme can be
perceived as a “better” method for propagating annotations for Q. The
result of executing Q (or Q′ or Q′′) on Ia under the default-all scheme is
shown in Figure 1.6. Observe that all annotations relevant for an out-
put value are associated under the same output value in the default-all
behavior, regardless of how the query is formulated. For this exam-
ple, both “1”s in the default-all output are associated with a1 and a3.
This is because Q′, which is an equivalent query of Q, associates both
annotations with the value “1”. Similarly, both “2”s in the default-all
output are associated with a2 and a6. This is because Q′′ associates
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Overview Provenance Definitions
Why?

Why-provenance = 
witness basis (αw)

Minimal 
witness basis (αw

m)

Where-provenance = 
propagation (αp)

Default-all 
propagation (αp

d) 

Where?
Naive

Provenance
definition

QRI definition
(Query-Rewrite-

Insensitive)

Witness "SQL interpretation"

Buneman et al. [ICDT’01]

Bhagwat et al. [VLDB’04]

Buneman et al. [PODS’02]

Buneman et al. [ICDT’01]

Minimal 
propagation (αp

m)
Proposed in this paper!

Has problems if 
one interprets 
annotations on 
attribute values 

We do not discuss here whether QRI is 
desirable (see also                                   ),
but merely point out that, if aiming for 
QRI, care has to be taken about the 
ramifications of the proposed semantics.

Glavic, Miller [Tapp'11]

Independent work presented at this WS 
Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395
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Naive

Provenance
definition

QRI definition
(Query-Rewrite-

Insensitive)

Overview Provenance Definitions
Why?

Why-provenance = 
witness basis (αw)

Minimal 
witness basis (αw

m)

Where-provenance = 
propagation (αp)

Default-all 
propagation (αp

d) 

Where?
Witness "SQL interpretation"

Buneman et al. [ICDT’01]

Bhagwat et al. [VLDB’04]

Buneman et al. [PODS’02]

Buneman et al. [ICDT’01]
Glavic, Miller [Tapp'11]

Note that Minimal propagation is 
"stable", in contrast to Default-all

Minimal 
propagation (αp

m)
Has problems if 
one interprets 
annotations on 
attribute values Proposed in this paper!

Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395

https://arxiv.org/pdf/1105.4395
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Example 1: Query-Rewrite-Insensitivity (QRI)

1a

1c

2e

A B
2b

3d

2f

1
1
2

A B
2
3
2

t1
t2
t3

1
1
2

A B
2
3
2

{{t1},{t1,t3}}
{{t2}}
{{t3},{t1,t3}}

{{t1}}
{{t2}}
{{t3}}

{t1,t3}
{t2}
{t1,t3}

Q1(x,y):-R(x,y)

1
1
2

A B
2
3
2

{{t1}}
{{t2}}
{{t3}}

R

Why
Query 1Input

Why-provenance = witness basis (αw)

Minimal witness basis (αw
m)

Lineage (αl)

Q2(x,y):-R(x,y),R(_,y)

Ra
Input

Where

1a

1c

2e

A B
2b

3d

2f

Q1(x,y):-Ra (x,y)
Query 1

1a

1c

2e

A B
2b,f

3d

2b,f

1a,c

1a,c

2e

A B
2b,f

3d

2b,f

Where-provenance = propagation (αp)

Q2(x,y):-Ra(x,y),Ra (_,y)
Query 2 ≡ Query 1

Default-all propagation (αp
d)

Example adapted from Cheney, Chiticariu, Tan. Provenance in databases: why, how, and where. Foundations and trends in databases 2009. https://dl.acm.org/doi/abs/10.1561/1900000006

1a

1c

2e

A B
2b

3d

2f

Minimal propagation (αp
m)

Query 2 ≡ Query 1

Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395

https://dl.acm.org/doi/abs/10.1561/1900000006
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Real example: Why Default-all is dangerous

Default-all propagation makes her drink the milk:

LF Milk
LF Milk
SC Water

Food Content
Cesium-137b

Calciumd

Cesium-137f

Bob, March 18, 2011
Don't drink, lots of Cesium!

Fuyumi, March 19, 2011
No Cesium, save to drink!

Ra

Content
Cesium-137???

Q (y):-Ra(‘LF Milk’,y)
b

f

Hanako queries a community DB for contents of LF-milk*:
Community Database Hanako's query

Content
Cesium-137bf

Minimal propagation (αp
m)Default-all propagation (αp

d)

Bob, March 18, 2011
Don't drink, lots of Cesium!

Fuyumi, March 19, 2011
No Cesium, save to drink!

b

f

Content
Cesium-137b

Bob, March 18, 2011
Don't drink, lots of Cesium!

b

* Note the one-to-one correspondence of this example with example 1 from previous page

Calciumd

CalciumdCalciumd
"semantically irrelevant 
information": annota-
tions leak over from SC 
Water tuple to LF Milk

"all relevant and only relevant"

Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395

https://arxiv.org/pdf/1105.4395
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Definition Minimal propagation (αpm)

1a

1c

2e

A B
2b

3d

2f

t1
t2
t3

Ra

Example 1

1a

1c

2e

A B
2b,f

3d

2b,f

Q2(x,y):-Ra(x,y),Ra (_,y)

Intuition: 
Return the intersection between:
• query-specific where-provenanc (αp)
• and QRI minimal witness basis (αw

m)

{{t1}}
{{t2}}
{{t3}}

Minimal witness basis (αw
m)

1a

1c

2e

A B
2b

3d

2f

am
p (t,A,Q) :=

[

t 02dam
w (t,Q)

A02attributes of t 0 propagating to cell(t,A)

ap
�
t 0,A0�

transforms 'sets of sets' into 'sets', 
hence something like QRI lineage
d

t4
t5
t6

am
p (t4,B,Q2) =

[

t �⇥{t1},A�
ap

�
t �,A��

= ap(t1,B) = {b}

Input Query 2
Where provenance  (αp)

{t1}
{t2}
{t3}

αw
md

Minimal propagation (αp
m)

"all relevant ... and only relevant"

Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395

https://arxiv.org/pdf/1105.4395
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Example 1: Illustration of "minimal" versus "all"

am
p (t4,A,Q1)=am

p (t4,A,Q2)

ad
p(t4,A,Q1)=ad

p(t4,A,Q2)

ap(Q2)ap(Q1)

ca

am
w (t4,Q1)=am

w (t4,Q2)

aw(t4,Q2)aw(t4,Q1)

{t1, t2}{t1}

Why-provenance

Where-provenance

Where-provenance (αp)

Minimal witness basis (αw
m)

Why-provenance (αw)

Minimal propagation (αp
m)

Default-all propagation (αp
d)

Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395
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Interpretation of Annotations 1: Attribute Value*

Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395

* Interpretation of annotations on entity attribute values favored by us and underlying our model

https://arxiv.org/pdf/1105.4395
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Interpretation of Annotations 1: Attribute Value*

Annotations on values of an 
attribute (here "population") for 
a particular entity (here "Athens")

Argument: Interpreting cell annotations as relevant to the tuple (entity) 
adds something that is not trivially modeled with normalized tables.

* Interpretation of annotations on entity attribute values favored by us and underlying our model
Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395
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Interpretation of Annotations 2: Domain Value*

* Alternative interpretation suggested by Wang-Chiew Tan (example created after conversation at Sigmod 2011)

1a

1c

2e

A B
2b

3d

2f

Input Ra:
Bob, March 18, 2011
This number is a prime number.

Fuyumi, March 19, 2011
Two is not a prime number 
because it is even.

b

f

...

...

...

... Date
Dec 25
...
Dec 25

This is a holiday.b

This is a holiday too !!!f

Domain value annotations*

Input Sa:

Argument for default-all: If annotations 
are on domain values, then retrieving
all annotations are relevant.

Counter-Argument: But then these anno-
tations can be modeled in a separate 
table as normalized tables.

Alternative representation

2

2

B annotation
b: Bob, March 18, 2011
This number is a prime number.
f: Fuyumi, March 19, 2011

Two is not a prime number 
because it is even

Annotation table Sa:

Dec 25

Date annotation

This is a holiday.

Annotation table Sa:

Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395
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am
p (t4,A,Q5) =

[

t �⇥{t1,t3,t4},A�
ap

�
t �,A��

= ap(t1,A) = {a}

αw
m (~QRI lineage)

Backup: Detailed Example 2

1a

1c

2e

A B
2b

3d

2f

t1
t2
t3

Ra

1a,c

2e,g

A B
2b,e,g

2e,f,g

Q5(x,y):-Ra(x,y),Ra(y,_),Ra(x,_)

Where-provenance (αp)

{{t1,t3},{t1,t2,t3},{t1,t4},{t1,t2,t4}}
{{t3},{t3,t4}}

{t1,t3,t4}
{t3}

Minimal witness basis (αw
m)

1a,c

2e,g

A B
2b,e,f,g

2b,e,f

{{t1,t3}, {t1,t4}}
{{t3}}

Why-provenance (αw) d

t5
t6

1a

2e

A B
2b,e,g

2e,f
t4
t5

Minimal propagation (αp
m)Default-all propagation (αp

d)

Q6(x,y):-Ra(x,y),Ra(y,_),Ra(x,_) ,Sa(_,y)
αp

d(t4,B,Q5) = αp(t4,B,Q6) with

am
p (t5,B,Q5) =

[

t �⇥{t3},A�
ap

�
t �,A��

= ap(t3,B)⇤ap(t3,A) = {e, f}

2g 4ht4

Note minimal propagation is not equivalent to just 
evaluating the where-provenance for the query: 
Q7(x,y):-Ra(x,y),Ra(y,_). E.g. αp(t5,B,Q7) = {e,f,g} 

Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395

https://arxiv.org/pdf/1105.4395
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Outline: T2-3/4: Provenance & Reverse Data Management

• T2-3: Provenance
– Data Provenance
– The Semiring Framework for Provenance
– Algebra: Monoids and Semirings
– Query-rewrite-insensitive provenance

• T2-4: Reverse Data Management
– View Deletion Problem
– Resilience & Causality

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/
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The view deletion problem

D a database instance and V=Q(D) a view defined over D.
Find a set of tuples ΔD to remove from D so that a specific tuple t is 
removed from the view

Minimize the number of side-effects in the view
View side-effect problem

Hard:queries with joins and projection or union 
PTIME:the rest

Minimize the number of tuples deleted from D
Source side-effect problem

Same dichotomy

Source: Buneman, Khanna, Tan. On Propagation of Deletions and Annotations Through Views. PODS 2002. https://doi.org/10.1145/543613.543633

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/543613.543633
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Dichotomy theorems

Dichotomy theorem
classifying every member of a family of problems 
as easy or hard.

In database context
Given a certain problem and a query. Solving this 
problem for a query is either easy or hard.

Hard Easy

https://northeastern-datalab.github.io/cs7240/
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2
Every problem is either in P or NP-complete.

Theorem [Ladner, 1973]
If P ≠ NP, then there is a language L ϵ NP \ P that is
not NP-complete.

P=N
P

P
P

NP-complete NP-complete

NP-intermediate

Why are such theorems surprising?

NP NP

Dichotomy theorems

Source: Daniel Marx. Every graph is easy or hard: dichotomy theorems for graph problems, 2015.

https://northeastern-datalab.github.io/cs7240/
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Dichotomy theorems
• Dichotomy theorems give goods research programs: easy to formulate, but can be hard to 

complete.
• The search for dichotomy theorems may uncover algorithmic results that no one has 

thought of.
• Proving dichotomy theorems requires attacking the problem both from the algorithmic and 

the complexity side. Requires good command of both algorithmic and hardness proof 
techniques.

• Possible outcomes:
- Everything is hard, except some trivial cases. 
- Everything is hard, except the famous known nontrivial positive cases.
- Some unexpected easy cases are found.

Source: Daniel Marx. Every graph is easy or hard: dichotomy theorems for graph problems, 2015.

https://northeastern-datalab.github.io/cs7240/
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Example dichotomy theorems in DB theory

• Probabilistic databases
- Self-join (SJ) free: [Dalvi, Suciu, VLDB 2004]
- SJ: [Dalvi, Suciu, JACM 2012]

• Resilience
- SJ-free: [Freire+, VLDB 2015]
- SJ: open (some progress in [Freire+, PODS 2020])

• View-side effect problem
- SJ free with FDs [Kimelfeld, PODS 2012]

• Consistent query answering
- SJ-free: [Koutris, Wijsen, PODS 2015]

Source: Dalvi, Suciu. "Efficient query evaluation on probabilistic databases", VLDB 2004. https://dl.acm.org/doi/abs/10.5555/1316689.1316764 , Dalvi, Suciu. "The dichotomy of probabilistic inference for unions of conjunctive queries", JACM 2012. 
https://doi.org/10.1145/2395116.2395119 , Freire, Gatterbauer, Immerman, Meliou, The complexity of resilience and responsibility for self-join-free conjunctive queries. PVLDB 2015. https://doi.org/10.14778/2850583.2850592 , Freire, Gatterbauer, Immerman, Meliou. New Results for 
the Complexity of Resilience for Binary Conjunctive Queries with Self-Joins. PODS 2020. https://doi.org/10.1145/3375395.3387647 , Kimelfeld. "A dichotomy in the complexity of deletion propagation with functional dependencies". PODS 2012. https://doi.org/10.1145/2213556.2213584
,Koutris, Wijsen, "The Data Complexity of Consistent Query Answering for Self-Join-Free Conjunctive Queries Under Primary Key Constraints", PODS 2015, https://doi.org/10.1145/2745754.2745769

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/abs/10.5555/1316689.1316764
https://doi.org/10.1145/2395116.2395119
https://doi.org/10.14778/2850583.2850592
https://doi.org/10.1145/3375395.3387647
https://doi.org/10.1145/2213556.2213584
https://doi.org/10.1145/2745754.2745769
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Reverse Data Management

https://northeastern-datalab.github.io/cs7240/
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Dichotomy theorems: Example: Resilience
Definition
Given a database and a query, what is the minimum set of 
tuples we must delete in order to change the query result?

X Y
1
1
2

3
4
5

Y Z W
3 5 7
3 6 7
4 5 7

Z W
5 7

Example
Consider Boolean query q:− R(x,y), S(y,z,w), T(z,w).

R S T

r1
r2
r3

s1
s2
s3

t1

Tuples {r1,s1,t1} and {r2,s3,t1} join. Therefore q is true.

Γmin  = {t1}.
Delete set Γ= {r2, s1}. Γ is a contingency set.  

Source: Freire, Gatterbauer, Immerman, Meliou, The complexity of resilience and responsibility for self-join-free conjunctive queries. PVLDB 2015. https://doi.org/10.14778/2850583.2850592

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.14778/2850583.2850592
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Reserach question
How difficult is it to find a minimal contingency set?

Dichotomy theorems: Example: Resilience

q△:−R (x,y), S(y,z), T (z ,x )

x y

z

R

T S

x y

T S
z

A

R

qrats:−A(x), R (x,y), S(y,z), T (z,x )

rats queryTriangle query

Lemma
RES(qD ) is NP-complete. But RES(qrats ) is in P!

Source: Freire, Gatterbauer, Immerman, Meliou, The complexity of resilience and responsibility for self-join-free conjunctive queries. PVLDB 2015. https://doi.org/10.14778/2850583.2850592

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.14778/2850583.2850592
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1 3
1 4
2 3

3 5 7
3 6 7
4 5 7

R S T
D

q

Fig_SourceSideEffect Fig_ViewSideEffect

7 9 1 9
2 9

1 3
1 4
2 3

3 5 7
3 6 7
4 5 7

R S T
D

q
7 9 1 9

2 9

|Δ|=0

|G|=1

|G|=2

https://northeastern-datalab.github.io/cs7240/
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3
4

3 5 7
3 6 7
4 5 7

R' S T'
D

|G|=1

q
7

Fig_Resilience Fig_Responsibility

true

3
4

3 5 7
3 6 7
4 5 7

R' S T'
D

|G|=2

q
7 true

https://northeastern-datalab.github.io/cs7240/
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2 appearances of R (“2-patterns” for this paper) 190611

Source: Freire, Gatterbauer, Immerman, Meliou. New Results for the Complexity of Resilience for Binary Conjunctive Queries with Self-Joins. PODS 2020. https://doi.org/10.1145/3375395.3387647

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3375395.3387647

