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Pre-class conversations

e Recapitulation of provenance semirings, including new exercise
e Projects & scribes: we are past halftime of the class

e Possible exercise: Provenance for relational division

e Today:
— The algebra of provenance
— a quick glimpse at reverse data management

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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What do we exactly lose by not having an inverse?

e Let's take a quick detour and look at some examples to illustrate
what we lose by having monoids instead of groups

https://northeastern-datalab.github.io/cs7240/
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Monoids vs. Groups: Examples

« Commutative group (with inverse)
- (R, +, 0) eg,3+31= 7
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Monoids vs. Groups: Examg%s

« Commutative group (with inverse
- (R, +, 0) e.g., 3 f;®=3 +(-3)=0 recall: inverse w.r.t. (+, 0)
- (R\{0},-,1) eg,3-3t= 7
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Monoids vs. Groups: Examples

« Commutative (with inverse)
- (R, +, 0) e.g.,3+31=3+(-3)=0
- (R\{0},-,1) eg.,3:-31=3:(1/3)=1

« Commutative (w/o inverse)
- ({0,1},A,1) ... logical conjunction
* identity element 1: xA1 = 1Ax=x

* Whatis theinverse 0! s.t. O 1 P,

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Monoids vs. Groups: Examples

« Commutative group (with inverse)
- (R, +, 0) e.g.,3+31=3+(-3)=0 recall: mverse w.r. (+, 0)
- (R\{0},-,1) eg.,3:-31=3:(1/3)=1

« Commutative monoid (w/o inverse)
- ({0,1},A,1) ... logical conjunction

* identity element 1: xA1 = 1Ax=x
« Whatistheinverse 01s.t.0A01=1 There is o such inverse @

= (R*,min,e°)

R * identity element eo:  min[x,oo] =x
* Whatistheinverse 31s.t. min[B?] =co )
U «Eii\ r
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Monoids vs. Groups: Examples

« Commutative group (with inverse)
- (R, +, 0) e.g.,3+31=3+(-3)=0 recall: mverse w.r. (+, 0)
- (R\{0},-,1) eg.,3:-31=3:(1/3)=1

« Commutative monoid (w/o inverse)

- ({0,1},A,1) ... logical conjunction
* identity element 1: xA1 = 1Ax=x
e Whatistheinverse 01s.t.0NO1=1 There is vo such inverse ®

= (R*,min,e°)
* identity element eo: min[x,o°] =x
* Whatisthe inverse 31s.t. min[3,31] = o= There is vo such inverse @
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The power of groups (i.e. of having an inverse)

o Assume(x,y,z) s.t. xpy=z
- Given y and z (and knowing that z was calculated), deduce x
« (R,+,0)and (x,y,z)=(1,2,3)
- X+2=3
wWhat is x7 P

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 97
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The power of groups (i.e. of having an inverse)

o Assume(x,y,z) s.t. xpy=z
- Given y and z (and knowing that z was calculated), deduce x
« (R,+,0)and (x,y,z)=(1,2,3)
- X+2=3
What is X7 x=z+y1=3+(-2)=1
e ({0,1},A,1) and (x,y,2)=(1,0,0)
- XxA0=0
wWhatisx? P
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The power of groups (i.e. of having an inverse)

o Assume(x,y,z) s.t. xpy=z
- Giveny and z (and knowing that z was calculated), deduce x
« (R,+,0)and (x,y,z)=(1,2,3)
- X+2=3
What is X7 x=z+y1=3+(-2)=1
e ({0,1},A,1) and (x,y,z)=(1,0,0)
~ XA0=0 A0 F)
What is x7 x could be O or 1
e (R>,min,*=) and (x,y,z)=(3,2,2)
- Xmin2=2
wWhatisx? P

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 99



https://northeastern-datalab.github.io/cs7240/

The power of groups (i.e. of having an inverse)

Assume(x,y,z) s.t. xPy=z
- Giveny and z (and knowing that z was calculated), deduce x
« (R,+,0)and (x,y,z)=(1,2,3)
— X+2=3
What is X7 x=z+y1=3+(-2)=1
e ({0,1},A,1) and (x,y,2)=(1,0,0)
— xA0=0
What is x7 x could be O or 1
e (R>,min,*=) and (x,y,z)=(3,2,2)
- Xmin2=2
What is X7 x can be anything in [2,9°]
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Rings and Semirings: what we get from two operators

e Groups and group-like structures consider a set and one binary
operator (with various properties)

e Rings and ring-like structures consider a set and two operators (with
various properties and "interactions" like the distributive law)

AN

https://northeastern-datalab.github.io/cs7240/
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(Commutative) Semirings

thus semirings are rings
« Semiring (S,8,&,0,1) / w/o the additive inverse
1.

2.
3.
4

S,,0) is commutative monoid i .
(5,6,0) Commutative semirings

(S,,1) is (commutative) monoid * e.0: martrix multiplication
& distributes over @: (xPy) ® z= (xR z) D (YR z)  is vot commutative
0 annihilates @: 0 @ x=0

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 108
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(Commutative) Semirings

thus semirings are rings
w/o the additive inverse
= 00 P’)

Commutative semirings

(5,&,1) Is (cpmmutative) monoid e.q.: matrix multiplication
Q distributes over D: (xDy) @ 2= (xQ z) D (Y& z)  is not commutative
&
TROPCAC AbBIT IO AYLTipticnTIOV NS
1. T=(Ry; ,min,+,,0) Shortest-distance: mvi/n[x,y] +7z = min[(x+z),(y+z)] < L
min-sum semiring, also called tropical semiring: sum distributes over min N
not the other way: min[x+y,z] # min[x,z] + min[y,z]; e.g. min[3+4,5] =5 # 7 =min[3,5] + min[4,5]
2. R=(R,+ -,0,1) Ring of real numbers
3. B=({0,1},v,A,0,1) Boolean (set semantics)
4. N=(N,+, -,0,1) Number of paths (bag semantics)

5. V=([0,1],max, -,0,1) Probability of best derivation (Viterbi)
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Ring-like structures
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Polynomials with semiring
coefficients (e.g. N[x])

27.: Even integers

Figure credits: https://kevinbinz.com/2014/11/16/goodman-semiring-parsing/,
https://math.stackexchange.com/questions/2361889/graphically-organizing-the-interrelationships-of-basic-algebraic-structures

(N, +, -, 0, 1): Natural numbers

This graphic describes the interrelationships
between various Group-like algebraic
structures. Structures are connected by
arrows that flow downward and in the direction
of more axioms and increasing specificity. The
arrows themselves are labeled with the
axiom(s) that need to be added to the
upstream structure in order to produce the
downstream structure. This is done in a way
that respects symmetry so that the axioms are
always necessary AND sufficient for producing
the downstream structure. In the language of
symbolic logic, if structure S is downwardly
connected to structure T thru axiom A, then
Sand A<=>T

Graphically, this also means that if it's possible
to travel from one structure to another by
consistently following the arrows, or
consistently going against the arrows, then the
higher structure contains the lower structure

as a special case, and everyi f the
lower is also an i e of the higher.
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* "Reciprocal" means multiplicative inverse. Defined on all non-zero elements.
Also, saying " is a group" means "- is a group on the non-zero elements".

w Finite set

Finite set

Finite
Field
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Rings and Semiring homomorphisms

« We have seen homomorphisms for structures with 1 operator:
— graphs
— conjunctive queries
— groups
— general binary structures

e Semiring homomorphisms generalize this to two operators

https://northeastern-datalab.github.io/cs7240/
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RECALL Homomorphisms on Binary Structures

« Definition (Binary algebraic structure): A binary algebraic structure
is a set together with a binary operation on it. This is denoted by an
ordered pair (S,*) in which S is a set and x is a binary operation on S.

e Definition (homomorphism of binary structures): Let (S,x) and (5,0)
be binary structures. A homomorphism from (S,*) to (5’,2) is a map
h: S — S’ that satisfies, for all x, y in S:

hix * y) = h(x) o h(y)

« We can denote it by h: (5,x) — (5,0).

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 129
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Homomorphisms now for ring-like structures

« A homomorphism between two semirings is a function between
their underlying sets that preserves the two operations of addition
and multiplication and also their identities.

e Definition (homomorphism between semirings): Let (R,+,¢) and
(S,*,0) be semirings. A homomorphism from (R,+,¢) to (S,*,o) is a
map h: S — §’ that satisfies, for all x, y in S:

- h(x +y) = h(x) * h(y) addition preserving
— h(x ® y) = h(x) o h(y) multiplication preserving
- h(1g) = 1 multiplicative identity preserving

- h(0g) = O additive identify preserving

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 130
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A partial provenance hierarchy

most informative

N[X]

/N
Trio(X)

BIX]
NS

Why(X)

N

Lin(X) PosBool(X) least informative

Source: Todd J. Green, "Containment of Conjunctive Queries on Annotated Relations", ICDT 2009. https://doi.org/10.1145/1514894.1514930
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 131



https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/1514894.1514930

Using homomorphisms to relate models

Example: 2x2y + xy + Sy2 + z

N[X]
drop coefficients / \ drop exponents
X2y +Xxy+y2+z _ 3xy + 5y +z
B[X] Trio(X)
drop both exp. and coeff. \ /
Xy+y+z Why(X)
apply absorption
collapse terms / \ (ab + b =b)
Xyz Lin(X) PosBool(X) y+z

A path downward from K to K, indicates that there exists an
onto (surjective) semiring homomorphism h : K, - K,
Furthermore, notice that for these homomorphisms h(x)=x

Source: Todd J. Green, "Containment of Conjunctive Queries on Annotated Relations", ICDT 2009. https://doi.org/10.1145/1514894.1514930
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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The power of Semirings is rediscovered again and again

e Semirings are not "as famous" as rings or groups in abstract algebra,
but form the basis of efficient algorithms

— we often don't need an inverse for the semiring addition

— we calculate "forward" not backwards (we don't solve equations)

« Thus they are "rediscovered" again and again in various branches of
computer science

https://northeastern-datalab.github.io/cs7240/
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Power of semirings is rediscovered again and again

1. Bistarelli, Montanari, Rossi.
and Optimization. JACM 1997 (cited > 800 times, 3/2020)

"We introduce a general framework for constraint satisfaction and
optimization where classical CSPs, fuzzy CSPs, weighted CSPs, partial
constraint satisfaction, and others can be easily cast. The framework is
based on a , Where the set of the semiring specifies the
values to be associated with each tuple of values of the variable domain,
and the two semiring operations (1 and 3) model constraint projection and
combination respectively. , as usually used for
classical CSPs, can be exploited in this general framework as well..."

Paper: Bistarelli, Montanari, Rossi. Semiring-Based Constraint Satisfaction and Optimization. JACM 1997. https://doi.org/10.1145/256303.256306
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 135
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Power of semirings is rediscovered again and again

2. Aji, McEliece: The . I[EEE Transactions
on Information Theory 2000 (cited >950 times in 3/2020)

TABLE 1

SOME COMMUTATIVE SEMIRINGS. HERE A "--- We dlscuss a ’
DE S AN A Com: 'E RING, 5 IS A F . . . . .
O GaT, AND A DENoTES ax Arerrrary Dsmsurve Larnce | Which we call the generalized distributive law (GDL).
K “+.00  .1)" short name The GDL is a synthesis of the work of many authors
;- A?] Eigg H; in the information theory, digital communications,
. ::U L -F . . . . . . . . .
3. Akl (R0 (1) signal processing, statistics, and artificial intelligence
4, [0, oc) (+,0) (1) sum-product .. ] .
5. (0,00 (min,00) (1) min-product communities. It includes as special cases ... Although
6. [0, o) (max, 0) (-,1)  max-product . . . .
s (mbeed)  W6,0)  inm this algorithm is guaranteed to give exact answers
8. [—o0, o .0 ’ . . .
o [{‘j’ff (“‘fﬂ'};,ﬂ?} (H;m L sl only in certain cases (the “ ” condition),
10. 23 (U,0) (n,S) . .
e Vo (AD) ... much experimental evidence, and a few
Z: & L B0 theorems, suggesting that it often works

approximately even when it is not supposed to.

Paper: Aji, McEliece: The generalized distributive law. IEEE Transactions on Information Theory, 2000. https://doi.org/10.1109/18.825794
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 136
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Power of semirings is rediscovered again and again

3. Mobhri: and algorithms for shortest-distance
problems. Journal of Automata, Languages and Combinatorics.
2002 (cited 290 times in 3/2020)

"We define general algebraic frameworks for shortest-distance problems

based on the structure of semirings. We give a generic algorithm for finding
single-source shortest distances in a weighted directed graph when the
weights satisfy the conditions of our general semiring framework.

... Classical algorithms such as that of [4, 17] are specific

instances of this generic algorithm ... The [24] is a specific
instance of this algorithm."

the system (K, @, ®) is a semiring

Paper: Mohri. Semiring frameworks and algorithms for shortest-distance problems. Journal of Automata, Languages and Combinatorics, 2002. https://doi.org/10.25596/jalc-2002-321
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Power of semirings is rediscovered again and again

4. Green, Karvounarakis, Tannen. Provenance semirings. PODS 2007.
(PODS 2017 test-of-time award)

Conclusions and Further Work

General and versatile framework.
Dare |l callit “semiring-annotated databases”?
Many apparent applications.

We clarified the hazy picture of multiple models for database
provenance.

Essential component of the data sharing system Orchestra.

* Dealing with negation (progress: [Geerts&Poggi 08, GI&T ICDT 09])
» Dealing with aggregates (progress: [T ProvWorkshop 08])
* Dealing with order (speculations...)

Paper: Green, Karvounarakis, Tannen. Provenance semirings. PODS 2007. https://doi.org/10.1145/1265530.1265535 , Figure credit: Val Tannen's EDBT 2010 keynote.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 139
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Power of semirings is rediscovered again and again

5. Khamis, Ngo, Rudra. FAQ: Questions Asked Frequently. PODS 2016

(PODS 2016 best paper award)

"We define and study the Functional Aggregate

Problem

FAQ formulation

Frosdous Algo.

Our Algo.

Query (FAQ) problem, which encompasses
many frequently asked questions in constraint
satisfaction, databases, matrix operations,
probabilistic graphical models and logic. This is
our main conceptual contribution... We then
present a simple algorithm called InsideOut to
solve this general problem. InsideQOut is a
variation of the traditional

for constraint

programming based on

TR
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Paper: Khamis, Ngo, Rudra. FAQ: Questions Asked Frequently. PODS 2016. https://doi.org/10.1145/2902251.2902280
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Power of semirings is rediscovered again and again

6. Tziavelis+. Optimal Algorithms for Ranked Enumeration of Answers to Full
Conjunctive Queries. PVLDB 2020

k-shortest paths. The literature is rich in algorithms

ABST RACT 1e7 7\ for finding the k-shortest paths in general graphs [10, 17, 34,
1.0 i A 35, 53, 56, 57, 59, 65, 68, 67, 93]. Many of the subtleties of
We study ranked enumeration of join—query results accord- o8 the varlan‘ts arise from issues caused by. cyclic ‘graphs whose
. ] d defined & ] . dicid 0 : structure is more general than the acyclic multi-stage graphs
Ing to very general orders define y selective dioids. ur B0 in our DP problems. Hoffman and Pavley [53] introduces the
main contribution is a framework for ranked enumeration = concept of “deviations” as a sufficient condition for finding
. . z i :
over a class of dynamic programming problems that gener- £ 0.4 thie = shiorfestipath Jumiding on. Gl 1den; Dipeyins: (]
. . . ——— i proposes an algorithm that can be seen as a modification
alizes seemingly different problems that had been studied 0.2 : to the procedure of Bellman and Kalaba [17]. The Recur-
in isolation. 'To this end, we extend classic algorithms that _ L se Entffmemtz%l Alfgomf)h'rg (R?A)tfﬂ uses Ehe same set
v : : 0.0 1% : of equations as Dreyfus, but applies them in a top-down re-
find the k-shortest paths m a Welghted gra‘ph' For full con- 0 5 10 15 cursive manner. OQur ANYK-REC builds upon REA. To the
junctive queries, 1nclud1ng CyChC ones, our a,pproa,ch 1S Oop- Time (sec) best of our knowledge, prior work has ignored the fact that

this algorithm reuses computation in a way that can asymp-

totically outperform sorting in some cases. In another line

A of research, Lawler [65] generalizes an earlier algorithm of
Ranked results Murty [70] and applies it to k-shortest paths. Aside from k-
shortest paths, the Lawler procedure has been widely used
for a variety of problems in the database community [40].
Along with the Hoffman-Pavley deviations, they are one of
the main ingredients of our ANYK-PART approach. Epp-
stein’s algorithm [35, 56] achieves the best known asymp-
totical complexity, albeit with a complicated construction
whose practical performance is unknown. His “basic” ver-
sion of the algorithm has the same complexity as EAGER,
while our TAKE2 algorithm matches the complexity of the
-I—- “advanced” version for our problem setting where output
ime tuples are materialized explicitly.

Generality. Our approach supports any selective dioid,
including less obvious cases such as lexicographic ordering
where two output tuples are first compared on their B; com-
ponent, and if equal then on their R component, and so on.

-

Paper: Tziavelis, Ajwani, Gatterbauer, Riedewald, Yang. Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries. PVLDB 2020. https://dl.acm.org/doi/10.14778/3397230.3397250
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Power of semirings is rediscovered again and again

Tziavelis+. Optimal Algorithms for Ranked Enumeration of Answers to Full

Conjunctive Queries. PVLDB 2020

2.2 Ranked Enumeration Problem

We want to order the results of a full CQ based on the
weights of their corresponding witnesses. For maximal gen-
erality, we define ordering based on selective dioids [41],
which are semirings with an ordering property:

DEFINITION 3 (SEMIRING). A monoid s a S-tuple
(W, ®,0) where W is a non-empty set, @ : W x W — W
is an associative operation, and 0 is the identity element,
ie, Ve € W : 2@ 0 =00z = z. In a commutative
monoid, @ s also commutative. A semiring s a 5-tuple
(W,®,®,0,1), where (W,®,0) is a commutative monoid,
(W, ®,1) is a monoid, ® distributes over &, i.e., Vx,y,z €
W:(z@y)®z=(z®2)® (y® 2), and 0 is absorbing for
®, te,VaeEW :a®0=0® a =0.

DEFINITION 4 (SELECTIVE DIOID). A selective dioid is a
semiring for which @ is selective, i.e., it always returns one
of the inputs: Ve,y e W :(zdy=z)V(z Dy =1y).

Note that & being selective induces a total order on W
by setting z < y iff x ® y = x. We define result weight as
an aggregate of input-tuple weights using ®:

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Ranked enumeration. Both [26] and [90] provide any-
k algorithms for graph queries instead of the more general
CQs; they describe the ideas behind LAZY and ALL respec-
tively. [60] gives an any-k algorithm for acyclic queries with
polynomial delay. Similar algorithms have appeared for the
equivalent Constraint Satisfaction Problem (CSP) [44, 50].
These algorithms fit into our family ANYK-PART, yet do not
exploit common structure between sub-problems hence have
weaker asymptotic guarantees for delay than any of the any-
k algorithms discussed here. After we introduced the general
idea of ranked enumeration over cyclic CQs based on mul-
tiple tree decompositions [91], an unpublished paper [33] on
arXiv proposed an algorithm for it. Without realizing it,
the authors reinvented the REA algorithm [57], which cor-
responds to RECURSIVE, for that specific context. We are
the first to guarantee optimal time-to-first result and optimal
delay for both acyclic and cyclic queries. For instance, we re-
turn the top-ranked result of a 4-cycle in O(n'-®), while [33]
requires O(n?). Furthermore, our work (1) addresses the
more general problem of ranked enumeration for DP over a
union of trees, (2) unifies several approaches that have ap-
peared in the past, from graph-pattern search to k-shortest
path, and shows that neither dominates all others, (3) pro-
vides a theoretical and experimental evaluation of trade-offs
including algorithms that perform best for small k, and (4)
is the first to prove that it is possible to achieve a time-to-
last that asymptotically improves over batch processing by
exploiting the stage-wise structure of the DP problem.

Paper: Tziavelis, Ajwani, Gatterbauer, Riedewald, Yang. Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries. PVLDB 2020. https://dl.acm.org/doi/10.14778/3397230.3397250
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Multiplying 2x2 matrices

(@ &)- () i)

21 C'22 A21 }

A11B11 + A12Bo;

012 = AllBlg A12B22 VV\(AI‘l‘iHiG&\ﬂOV]S
_ L 4 additions

Co1 = Ao1Bi1 + AseBog

Coo = A1 Bio + AgoBao

B 2
Works over any sewi-ring! a O/H >

Strassen. Gaussian Elimination is not Optimal. Numerical Mathematics, 1969. https://doi.org/10.1007/BF02165411
https://en.wikipedia.org/wiki/Strassen_algorithm, https://en.wikipedia.org/wiki/Matrix_multiplication algorithm
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Strassen’s 2x2 al g0 rithm WMatrix muttiplication exponent w

C,=4,B,+4,B8, M, = (A4, + 4, )(B,, + B,,)
C,=4,8,+A4,8, M, =(4, +4,,)B,, w<2.4
C, =4,B,, + 4,8, M; =4, (316322) s [
C,, =4,B,+ 4,8, M, =4, (32@311

M. =(A,+A4,)B, Subtraction!

C11:M1+M4_M5+M7 M6:(A21_A11)(311+Blz)

Cpo = M5+ M, M; = (4, = 4, )(B,, + By,) O (I,’(’O)
C,,=M,+M,

Cpy = M{ M, + M, + M, 7 multiplications

Works over any ring 1% additions/sulrtractions
(requirees additive inverse, but does not assume multiplication o be commutative)

Strassen. Gaussian Elimination is not Optimal. Numerical Mathematics, 1969. https://doi.org/10.1007/BF02165411
https://en.wikipedia.org/wiki/Strassen_algorithm, https://en.wikipedia.org/wiki/Matrix_multiplication algorithm
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M1 M2 M3 M4 M5 M6

ALLT ARITATI AT

i ML) T 11 (177 7777 ﬂ
.. T

.

https://en.wikipedia.org/wiki/Strassen algorithm
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Table 1. Strassen’s Algorithm

Phase 1 717 = A1+ Ass T = B11 + Boo
Ty = Ag1 + Ags T7 = Bia — B
T3 = A11+ A2 T3 = B — By
Ty = As1 — A1n Ty = B11 + Bro
Ts = Ajg — Az Tio = B21 + B2

Phase2 Q1 =11 x Tg Q5 = T3 X Bag
Q2=T>x B11 Qe=TyxTy
Qs =A1n xT7 Q7 =T5xTy
Q4 = Az x T3

Phase3 T; =Q1+ Q4 T3 = @3+ Q1
To=Qs—Qr Ty=Q2— Qs

Phase4 Chi1 =11 —1T5 Ci2 =Q3+ Qs
Co1=Q2+Qs Cop=T3-T}4

Figure 4. Task graph of Strassen’s Algorithm.

Song, Dongarra, Moore. Experiments with Strassens' Algorithm: from sequential to parallel. PDCS 2006. https://scholar.google.com/scholar?cluster=11243079065050760755
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Figure 1: The base graph (G; of Strassen’s algorithm
for multiplying two 2 x 2 matrices A and B. Here
b="17.

vertices

Multiplication

Scott, Holtz, Schwartz. Matrix Multiplication |/O-Complexity by Path Routing, SPAA 2015. https://doi.org/10.1145/2755573.2755594
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 147
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Dec,C
11 12 21 22

| n? |
b C g
Dec, ,C :I:Ig n
s nee |
[ "
Enc|g nA ErlcIg nB
A B
2

(c) (d)

Figure 4.1. The computation graph of Strassen’s algorithm (see
Algorithm 4.1): (a) Dec; C, (b) Hy, (c) Decig,, C, (d) Higp.-

Ballard, Carson, Demmel, Hoemmen, Knight, Schwartz. "Communication lower bounds and optimal algorithms for numerical linear algebra." Acta numerica 2014. https://doi.org/10.1017/50962492914000038
Ballard, Demmel, Holtz, Schwartz. "Graph Expansion and Communication Costs of Fast Matrix Multiplication." ACM 2012. https://doi.org/10.1145/2395116.2395121
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Outline: T2-3/4: Provenance & Reverse Data Management

— Query-rewrite-insensitive provenance

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 159
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Queries & provenance

ExternalTours

Agencies name destination type price
name based_in phone t3: | BayTours San Francisco | cable car $50

t1: | BayTours San Francisco | 415-1200 ta: | BayTours Santa Cruz bus 3100
ta: | HarborCruz | Santa Cruz 831-3000 ts: | BayTours Santa Cruz boat $250
te: | BayTours Monterey boat $400

t7: | HarborCruz | Monterey boat $200

ts: | HarborCruz | Carmel train $90

PV e T

Qn:

SELECT|a.name, a.phone

FROM Agencies a, ExternalTours e

WHERE  aname =  ename AND ?
e.type=‘boat’ °

Example taken from “Provenance in databases: why, how, and where” by Cheney, Chiticariu, Tan, 2009. https://doi.org/10.1561/1900000006
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Queries & provenance

ExternalTours
Agencies name destination type price
name based_in phone t3: | BayTours San Francisco | cable car $50
t1: | BayTours San Francisco | 415-1200 ta: | BayTours Santa Cruz bus 3100
t2: | HarborCruz | Santa Cruz 831-3000 ts: | Baylours Santa Cruz boat 3250
te: | BayTours Monterey boat $400
t7: | HarborCruz | Monterey boat $200
ts: | HarborCruz | Carmel train $90
Q1
SELECT a.name, a.phone Result of ();:
FROM Agencies a, ExternalTours e — phone
WHERE  aname = ename AND Lineage = ?
e.type:‘boat’ HarborCruz 831-3000 ®

Definition Lineage:
Lineage for an output tuple t is a subset of the input tuples which are relevant to the output tuple

Example taken from “Provenance in databases: why, how, and where” by Cheney, Chiticariu, Tan, 2009. https://doi.org/10.1561/1900000006
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 161
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Queries & provenance

to:

Agencies
name based_in phone
HarborCruz | Santa Cruz 831-3000

1

SELECT a.name, a.phone
FROM Agencies a, ExternalTours e

WHERE

e.type=*‘boat’

a.name =

Definition Lineage:
Lineage for an output tuple t is a subset of the input tuples which are relevant to the output tuple

Problem: Not very precise.
e.g., lineage above does not specify that ts and ts do not both need to exist.

e.namnie

AND

ExternalTours

name destination type price
BayTours San Francisco | cable car $50
BayTours Santa Cruz bus $100

BayTours
BayTours

Santa Cruz
Monterey

HarborCruz | Monterey poat p200
HarborCruz | Carmel train $90
Result of Q::
name phone

HarborCruz

BayTours 415-1200

831-3000

Example taken from “Provenance in databases: why, how, and where” by Cheney, Chiticariu, Tan, 2009. https://doi.org/10.1561/1900000006
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Lineage = {t, t;, t;}
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“Why Provenance” & Witnesses

to:

Agencies
name based_in phone
HarborCruz | Santa Cruz 831-3000

1

SELECT a.name, a.phone
FROM Agencies a, ExternalTours e

WHERE

e.type=*‘boat’

a.name =

Definition Witness of t:
Any subset of the database sufficient to reconstruct tuple t in the query result

Witness basis:

Leaves of the “proof tree” showing how result tuple t is generate

e.namnie

AND

ExternalTours

name destination type price
BayTours San Francisco | cable car $50
BayTours Santa Cruz bus $100

BayTours
BayTours

Santa Cruz
Monterey

HarborCruz | Monterey poat p200

HarborCruz | Carmel train $90
Result of Q::

name phone

HarborCruz

BayTours 415-1200

831-3000

{t1,t5} {t1,t6} {tl,t2,t6,t8)

Example taken from “Provenance in databases: why, how, and where” by Cheney, Chiticariu, Tan, 2009. https://doi.org/10.1561/1900000006
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

{{t1, t5}, {t1, t6}}

Lineage = {t, t;, t;}
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Output of

I\/I C Al | t & Instance I: /
Inimality B . . Q(I), Q'(I):
; A B Two equivalent queries: A | B
guery v T2 Q:Ans(ey) - R(oy). —=
iy t: |1 ]3 Q" : Ans(z,y) :— R(ﬂf’y 1|3
rewriting TR E x@@; 1 ]2
Fig. 1.2 Example queries, input arﬁ output.
Instance I: Output of Output of
Minimal witness basis: R Q(I) Q'(I)
Minimal witnesses in the A|B A | B | why A | B | why
. /
witness basis E 12 L2 | {th L2 | {{tH {6t}
ge 1oy 3 L3 | {t'h 13 | {{t'H{tt'H
4 |2 4 12 | {t'n 4 12 | {t'"y
Fig. 1.3 Example showing that why-provenance is sensitive to query rewriting.
Instance I: Output of Output of
R Q) Q'(1)
A | B A | B | how A | B | how
t: [ 1 ]2 I [ 2 |t L [2 ]|+ttt
t': |1 |3 1|3 |t 1|3 | )+t -t
t//: 4 2 4 2 t// 4 2 (t//)2

Fig. 1.5 Example showing that how-provenance is sensitive to query rewriting.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 164
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FIXINng query-
rewrite
sensitivity for
where
provenance

s sl

N

ot

Instance I:

R

t:
'

g

N

DN W N

Two equivalent queries:

Q : Ans(z,y) :— R(x,y).
Q' : Ans(z,y) :— R(z,y), R(x, 2).

Fig. 1.2 Example queries, input and output.

Output of Q(/%) Owutput of Q'(I*) Output of Q(I%), Q' (I*)
(DEFAULT-ALL

Output of
QU), Q'(I):

B

A
1
1
4

N W N

Annotated

instance 1%: (DEFAULT (DEFAULT

R propagation): propagation):
A B A B A B

t: 121 a2 101 2az 101,03 5a3

t- 193 304 193 3a4 191,43 3a4

- 495 a6 405 a6 425 206

Fig. 1.6 Example showing that where-provenance is sensitive to query rewriting.

If a query Q propagates annotations under the default-all propaga-

tion scheme in DBNotes, then equivalent formulations of () are guaran-

teed to produce identical annotated results. In the default-all scheme,

annotations are propagated based on where data is copied from accord-

ing to all equivalent queries of (). Hence, this propagation scheme can be

perceived as a “better” method for propagating annotations for (). The
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

propagation):
A B
1a1,a3 202,06
101,a3 | 3a4
405 902,06
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Default-all /

Where provenance /
Query rewriting



The DEFAULT Scheme

Propagate annotations
according to where
data is copied from

SELECT DISTINCT B
FROM R r
PROPAGATE DEFAULT

UNION

SELECT DISTINCT B
FROM S s
PROPAGATE DEFAULT

R A B s A B
;2] ], [c] g4l |, La]
ZEI 3 5 3
3 5 ] 6 4 Le]
r.B TO B Result
| S TeTe]
;
. &
s.B TO B >

Natural semantics for tracing the provenance of data

Source: Laura Chiticariu. "Systems for tracing the provenance of data". Talk at University of Washington, 2008.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

171


https://northeastern-datalab.github.io/cs7240/

Annotation Propagation under
the DEFAULT Scheme

R A B S B C

1 ZEl Z‘E 3

(%
SELECT DISTINCT r.A,|r.B] s.C
FROM R r, S s

WHERE r.B[=_|s.B Quiput of 0
PROPAGATE DEFAULT 1 |27 |3
\

Versus equivalent queries,
0, but different
SELECT DISTINCT * OMWH,,?f'bwd output
FROM R‘NATURAL JOIN |S o
PROPAGATE DEFAULT 1 3 °

Source: Laura Chiticariu. "Systems for tracing the provenance of data". Talk at University of Washington, 2008.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

172


https://northeastern-datalab.github.io/cs7240/

The DEFAULT-ALL scheme

Propagate annotations according to where data is
copied from according to all equivalent
formulations of the given query

User Query 0:

SELECT DISTINCT r.A, s.B, s.C
FROM R r, S s

WHERE r.B = s.B

PROPAGATE DEFAULT-ALL

«the SOL query
() )
corresponding to QO

Compute the results of QO on a database D - idea:

m E(Q) denotes the set of all queries that are equivalent to
O (more precisely, (%).

m Execute each query in E(Q) on the database D under the
DEFAULT scheme, then combine the results under u,.

10

Source: Laura Chiticariu. "Systems for tracing the provenance of data". Talk at University of Washington, 2008.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

173


https://northeastern-datalab.github.io/cs7240/

Computing the results of a
DEFAULT-ALL query

Question:

Given a pSOL query O with DEFAULT-ALL
propagation scheme and a database D,
can we compute the result of O(D)?

Problem:

There are infinitely many queries in E(Q). It is
therefore impossible to execute every query in
E(Q) in order to obtain the result of O(D).

Solution: Compute a finite basis of E(Q)
first.

11

Source: Laura Chiticariu. "Systems for tracing the provenance of data". Talk at University of Washington, 2008.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 174
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Default-all is dangerous!

Wolfgang Gatterbauer
Alexandra Meliou
Dan Suciu

34 USENIX Workshop on the Theory and Praxis of Provenance (Tapp'11)

Database group
University of Washington http://db.cs.washington.edu/causality/

Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395
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Overview Provenance Definitions

Why?% Where? roshn

Naive Witness "SQL interpretation”
Why-provenance = Where-provenance =
Provenance witness basis (a,,) propagation (a,)
definition
Buneman et al. [ICDT’01] Buneman et al. [PODS’02]
QRI definition Minimalb ' ) Qefault—a.ll ;
(Query-Rewrite- witness basis (a,,") propagation (a,°)
Insensitive) Buneman et al. [ICDT’01] Bhagwat et al. [VLDB’04]
Has problems if Minimal
We do not discuss here whether QRI is one interprets propagation (apm)

Proposed in this paper!

desirable (see also Glavic, Miller [Tapp'11]y), annotations on
but merely point out that, if aiming for attribute values
QRI, care has to be taken about the

\ramifications of the proposed Sema”ticsy\lndependent work presented at this WS

Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395 176
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Overview Provenance Definitions

Why? Where?
Naive Withess "SQL interpretation”
Why-provenance = Where-provenance =
Provenance witness basis (a,,) propagation (a,)
definition

Buneman et al. [ICDT’01]

(B pr——— =\
~
o
L g2 £ =
) ) o)
= & E £ =z
o Q n n ®
Semantics O 2 £ & &
Wit - X - X X X
Why Why - X - - X X
IWhy X X X X X
Where - - - - ? 4
Where IWhere | - - - X K -
How - X - - X
Lineage | X X - - - X
Lineage-based PI-CS X X - - - X
C-CS X - - - - X
Causality - X X X X X
= _/

Buneman et al. [PODS’02]

Default-all

(a,)  propagation (a,

DT'01]

Bhagwat et al. [VLDB’04]

/

Has problems if
one interprets

annotations on
attribute values

Minimal
propagation (a,™)
Proposed in this paper!

Note that Minimal propagation is
"stable", in contrast to Default-all

Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395
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Example 1: Query-Rewrite-Insensitivity (QRI)

Why Why-provenance = witness basis (a,,) Lineage (a))
Minimal witness basis (a,,™)
Input Query 1 Query 2 = Query 1
R Qi(x,y):-R(x,y) Qa(x,¥):-R(x,y),R(_,Y)
AlB AlB AlB !
ti| 1 ]2 12 [{{t:}} 112 [{{tih{t,t3}} {{t:}} {t1,t3}
tb| 13 1|3 [{{th 113 [{{th {t,}} {t,}
t3| 2| 2 2 | 2 [{{t:}} 2 | 2 |{{tsh{tyts}} {{t:}} {t1,t3}
Where Where-provenance = propagation (o) Minimal propagation (a,™)
Default-all propagation (o,
Input Query 1 Query 2 = Query 1
Re Qu(xy):-R?(xy)  Qalxy):-Re(xy),R*(_y)
A|B A|B A | B A | B AR
12 | 2b 12 | 2b 12 | 2b.f 1a.c| 2bf 1a | 2b
1¢ 3d 1¢ 3d 1¢ 3d 1a.c 3d 1¢ 3d
Je 2f Je 2f Je zb,f Je 2b,f Je 2f

Example adapted from Cheney, Chiticariu, Tan. Provenance in databases: why, how, and where. Foundations and trends in databases 2009. https://dl.acm.org/doi/abs/10.1561/1900000006
Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395
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Real example: Why Default-all is dangerous

Hanako queries a community DB for contents of LF-milk™:

Community Database

Ra
Food Content b [ Bob, March 18, 2011
LE Milk Cesium-137P Don't drink, lots of Cesium!
LF Milk | Calciumd f [ Fuyumi, March 19, 2011 |
SC Water Cesium-137fﬂ/ No Cesium, save to drink!

Hanako's query
Q(y):-R(‘LF Milk’y)

Content N
Cesium-131222)
Calciumd

Default-all propagation makes her drink the milk:

Default-all propagation (a,")

Content

Cesium-137bf
Calciumd

"semantically irrelevant
information": annota-
tions leak over from SC

b [ Bob, March 18, 2011
Don't drink, lots of Cesium!

Water tuple to LF Milk

f [ Fuyumi, March 19, 2011
No Cesium, save to drink!

e

Minimal propagation (o,™)

Content

Cesium-137b
Calciumd

b | Bob, March 18, 2011

Don't drink, lots of Cesium!

T

"all relevant and only relevant”

* Note the one-to-one correspondence of this example with example 1 from previous page
Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395
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Definition Minimal propagation (a,”)

o (t,A,Q) = o (1 A Intuition:
p( m ) ) U p( ’ ) Return the intersection between:
/ t E/@ay‘}(t’Q) * query-specific where-provenanc (a,)
A’ attributes of ¢ ting to cell(z,A . : ) P
SRR O cpagating to cell(7.) <- and QRI minimal witness basis (a,,M)
U transforms 'sets of sets' into 'sets’,

"all relevant ... and only relevant”
hence something like QRI lineage

Example 1
Where provenance (a)) Minimal propagation (a,™)
Input Query 2 ‘
Re QZ(X/y):_'?a(XIy)IRa (_;y)
A|B AlB, A Bai
ty | 12 2b 1a | 2bf {{tl}} {tl} th] 12C2 )OC?(M,B,QQ): U OCp(t/,A/)

N ———
t, | 1¢| 3d 1¢| 34 |{{t,}} {t,} tg| 1¢| 3d r'e{n} A
ty| 2¢| 2 2¢| 2060 {{ts}}  {ts} tg| 2¢| 2f =0, (11,B) = {b}

Minimal witness basis (a,,™)

Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395
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Example 1: lllustration of "minimal"” versus "all"

Why-provenance o (ta, 01) = 0" (ts, 0>)
W.hY-prove.nance (av.f) [ (1) {t1,12} }
Minimal witness basis (a,,™)

( N
Oy (24, 01) Oy (14,02)

Where-provenance
ag(m,A,Ql) :ag(m,A,Qz)
Where-provenance (a,) o (t4,A,01) =y (t4,A,02)
Default-all propagation (a,°)
Minimal propagation (a,™) [@ C }

( {
a,(01) op(02)

Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395 181
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Interpretation of Annotations 1: Attribute Value®

GOUS@E Sq uared athens heraklion chania

labs

Square it || Add to this Square

athens heraklion chania
Iterm Name
athens

heraklion

kania

Crete

Mykonos

Istanbul

Description

PIRAEUS (Athens) - HERAKLION
(Crete) - PIRAEUS (Athens) .
PIRAEUS (Athens) - CHANIA

M by DIDACI IS Aoy
Heraklion or Iraklion is the largest
city and capital of Crete. It is also
the 4th largest city in Greece.

Harmlrflimm in tha anmital ~F

Chania confusingly is sometimes
written Hania though it can also be
written Khania, Cania, Canea and

B omumion o] e T e e e Wi |

A superb way of enjoying the
journey to Crete is to fly to Athens
and take the ferry from Piraeus

il N A bl et e e e R e
Heraklion and Chania are
international airports, Sitia airport is
currently receiving domestic flights

s falbaebae fllabdbe s sosceendoc] o
14 Days - Depart USA, stops
include, Istanbul, Mount Athos,
Skithos, Samos, Kusadasi, Delos,

Population Add columns

4 possible values

1 possible value

1 possible value

623,666

9,320

8,260,000

* Interpretation of annotations on entity attribute values favored by us and underlying our model
Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395
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Interpretation of Annotations 1: Attribute Value®

GO L'}S:aﬁ Sq uared athens heraklion chania Square it || Add to this Square
labs
athens heraklion chania
ltem Name Description Population ——— —
athens PIRAEUS (Athens) - HERAKLION Annotations on values of an
(Crete) - PIRAEUS (Athens) . attribute (here "population”) for
FUTAEWR AN - SR AP a particular entity (here "Athens")
heraklion Heraklion or Iraklion is the large| Possible values
city and capital of Crete. It is alsq O 750000 Low confidence
the 4th |argest c"'_yr in Greece, Greece. LOCATION. Officil Website:
Llnsnklinm in the annibal ~f http:a'rl.l.w.citynfatr'!ens rl. Fupulgtilan: 750000. Population
kania Chania confusingly is sometimeq ~ °f Athens metropolitgffarea, 3.7 millic

| Z soUrces »

written Hania though it can also
written Khania, Cania, Canea a<- -

fmmmim e A e sl im Wil

) 22936, 24234 Low confide
Population for Athens

Crete A superb way of enjoying the
journey to Crete is to fly to Athel ) 1,102 Low confidence
and take the ferry from Piraeus pop. for Athens
Pl I, W R el G Wy Y | Sy www.citytowninfo.com
Mykonos Heraklion and Chania are

O

; f : o 5 13195-" Low confidence
international airports, Sitia airpor|  pop. for Athens

current]y re{:ei\..ring domestic ﬂigh www.citvtowninfo.com - all 2 sources »

el fabarbae fliakbis ses soeee sdeoel

Search for more values »

Istanbul 14 Days - Depart USA, stops A —
include, Istanbul, Mount Athos,

Argument: Interpreting cell annotations as relevant to the tuple (entity)
adds something that is not trivially modeled with normalized tables.

* Interpretation of annotations on entity attribute values favored by us and underlying our model
Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395 183
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Interpretation of Annotations 2: Domain Value®

Domain value annotations”

Input Re:
A | B b
12 | 2P /
1c | 3d f
2e | of ¢/
Input 59

Date /b This is a holiday.

f | This is a holiday too !!!
Dec ZSﬂ/

[ Bob, March 18, 2011
This number is a prime number.

( Fuyumi, March 19, 2011

because it is even.

Two is not a prime number

Argument for default-all: If annotations
are on domain values, then retrieving
all annotations are relevant.

Alternative representation

Annotation table S°:
B | annotation

2 | b: Bob, March 18, 2011
This number is a prime number.

2 | f: Fuyumi, March 19, 2011
Two is not a prime number
because it is even

Annotation table S°:
Date annotation

Dec 25 | This is a holiday.

Counter-Argument: But then these anno-
tations can be modeled in a separate
table as normalized tables.

* Alternative interpretation suggested by Wang-Chiew Tan (example created after conversation at Sigmod 2011)
Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395
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Backup: Detailed Example 2

RG

Al B
t,| 12| 2P
t,| 1¢]| 3d
ty| 2¢| 2f
t,| 28| 4h

QS(X/ y):_Ra(X/ y)/ Ra(y/_)/ RG(X’_)

A

B

1a.c
e

2beg | {{ty,t3},{t,to, 3}, {ty, tah {ts, o, ta}} {{ty,t3}, {to,tal} {ty,t3,t4}

2¢fe | {{ts}h{ts,ta}}

}

Why-provenance (a,,)

Where-provenance (a))

{{ts1} {ts}
}

wa,™ (“QRI lineage)

Minimal witness basis (a,,™)

Default-all propagation (o)

A

B

1a.c (20818

Jeg

25,e,f

apd(t4/ B/ Q5) = ap(t4lB/ Q6) Wlth
Qg(X,y).'-Ra(X,y),Ra(y,_),Ra(X,_) /Sa(_/y)

Note minimal propagation is not equivalent to just
evaluating the where-provenance for the query:

Q(x,y):-R°(x,y),R(y,_). E.g. a,(t5,B,Q;) = {e,f,g} = >

Minimal propagation (a,™)

A B

t (T 207
ts| 28 (25

o' (t4,A,05) = | op(fA)

el i3ta},A

= ap(tlaA) - {a}

(Xg(l‘&B,Qs): U (Xp(l‘/,A/)
t'e{},A

Source: Gatterbauer, Meliou, Suciu. "Default-al is dangerous". Tapp 2011. https://arxiv.org/pdf/1105.4395

> = Ocp(t3,B) UOCp(t3,A) = {eaf}
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Outline: T2-3/4: Provenance & Reverse Data Management

» [2-4: Reverse Data Management
— View Deletion Problem
— Resilience & Causality

https://northeastern-datalab.github.io/cs7240/
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The view deletion problem

“ D a database instance and V=Q(D) a view defined over D.

" Find a set of tuples AD to remove from D so that a specific tuple t is
removed from the view

¥ Minimize the number of side-effects in the view \/ %
" View side-effect problenT
i Hard:queries with joins and projection or union

" PTIME:the rest

" Minimize the number of tuples deleted from D LourRCcC

M/,”\ .
" Source side-effect problem

i ,
" Same dichotomy

Source: Buneman, Khanna, Tan. On Propagation of Deletions and Annotations Through Views. PODS 2002. https://doi.org/10.1145/543613.543633

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Dichotomy theorems

Dichotomy theorem
classifying every member of a family of problems
as easy or hard.

In database context
Given a certain problem and a query. Solving this
problem for a query is either easy or hard.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 188



https://northeastern-datalab.github.io/cs7240/

Dichotomy theorems

Every problem is either in P or NP-complete.

Why are such theorems surprising”?

Theorem [Ladner, 197 3]
It P # NP, then there is a language L € NP\ P that is
not NP-complete.

NP-complete
fete

NP -intermediate

Source: Daniel Marx. Every graph is easy or hard: dichotomy theorems for graph problems, 2015.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 189
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Dichotomy theorems

« Dichotomy theorems give goods research programs: easy to formulate, but can be hard to
complete.

« The search for dichotomy theorems may uncover algorithmic results that no one has
thought of.

e Proving dichotomy theorems requires attacking the problem both from the algorithmic and
the complexity side. Requires good command of both algorithmic and hardness proof

techniques.
e Possible outcomes:

— Everything is hard, except some trivial cases.
— Everything is hard, except the famous known nontrivial positive cases.

— Some unexpected easy cases are found.

Source: Daniel Marx. Every graph is easy or hard: dichotomy theorems for graph problems, 2015.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 190
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Example dichotomy theorems in DB theory

e Probabilistic databases
— Self-join (SJ) free: [Dalvi, Suciu, VLDB 2004]
— SJ: [Dalvi, Suciu, JACM 2012]

e Resilience

— SJ-free: [Freire+, VLDB 2015]
— SJ: open (some progress in [Freire+, PODS 2020])

e View-side effect problem
— SJ free with FDs [Kimelfeld, PODS 2012]

e Consistent query answering
— SJ-free: [Koutris, Wijsen, PODS 2015]

Source : Dalvi, Suciu. "Efficient query evaluation on probabilistic databases", VLDB 2004. https://dl.acm.org/doi/abs/10.5555/1316689.1316764 , Dalvi, Suciu. "The dichotomy of probabilistic inference for unions of conjunctive queries", JACM 2012.
https://doi.org/10.1145/2395116.2395119 , Freire, Gatterbauer, Immerman, Meliou, The complexity of resilience and responsibility for self-join-free conjunctive queries. PVLDB 2015. https://doi.org/10.14778/2850583.2850592 , Freire, Gatterbauer, Immerman, Meliou. New Results for
the Complexity of Resilience for Binary Conjunctive Queries with Self-Joins. PODS 2020. https://doi.org/10.1145/3375395.3387647 , Kimelfeld. "A dichotomy in the complexity of deletion propagation with functional dependencies". PODS 2012. https://doi.org/10.1145/2213556.2213584
,Koutris, Wijsen, "The Data Complexity of Consistent Query Answering for Self-Join-Free Conjunctive Queries Under Primary Key Constraints", PODS 2015, https://doi.org/10.1145/2745754.2745769

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 191
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Reverse Data Management

g
u
L
|
[
N~

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 192
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Dichotomy theorems: Example: Resilience
Definition
Given a database and a query, what is the minimum set of
tuples we must delete in order to change the query result?

Example
Consider Boolean query g:.— Rx,y), S(y,z,w), Tz,w).
R S T
XY Y \Z |\W AL /4
ry 1113 s/ |3 157 !
r, |1 |4 S>3 |6 | 7
rs |2 |5 Sz 14 |5 |7

Tuples {r1,s1,11} and {rz,s3,t1} join. Therefore g is true.

Delete set I'= {ro, s1}. I is a contingency set.
['min = {ﬁ}.

Source: Freire, Gatterbauer, Immerman, Meliou, The complexity of resilience and responsibility for self-join-free conjunctive queries. PVLDB 2015. https://doi.org/10.14778/2850583.2850592
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Dichotomy theorems: Example: Resilience

Reserach question
How difficult is it to find a minimal contingency set”?

QA:_R(XLV)’ S(y,z), T(Z,X) qrats:_A(X)’ R(X’y)’ S(y,Z), T(Z,X)

l\ \ Triangle query rats query

— Lemma
RES(qp) 1s NP-complete. But RES(rats) 1s in P!

Source: Freire, Gatterbauer, Immerman, Meliou, The complexity of resilience and responsibility for self-join-free conjunctive queries. PVLDB 2015. https://doi.org/10.14778/2850583.2850592
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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Fig_SourceSideEffect
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Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Fig_ViewSideEffect
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Fig_Resilience Fig_Responsibility

R' S T
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4 3|6|7
457| -1
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ces of R (“2-patterns” for this paper) 190611

position in linear order P Vo
R R Or O
g ‘35 —
2 permutation R ( = (
R R [ P
: T > Y > 2
1 chain —_— 3 I\/ F

confluence TE—plie— % 9 P E 0 P

R R

0 path & > Y &=
R R

r—rY Z —w

Source: Freire, Gatterbauer, Immerman, Meliou. New Results for the Complexity of Resilience for Binary Conjunctive Queries with Self-Joins. PODS 2020. https://doi.org/10.1145/3375395.3387647
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
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