
1

Topic 3: Efficient query evaluation
Unit 1: Acyclic query evaluation
Lecture 16

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp22)
https://northeastern-datalab.github.io/cs7240/sp22/
3/11/2022

Updated 3/12/2022

https://northeastern-datalab.github.io/cs7240/sp22/

2Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Islands of Tractability of CQ Evaluation

• Major Research Program: Identify tractable cases of the combined complexity
of conjunctive query evaluation.

• Over the years, this program has been pursued by
two different research communities:
- The Database Theory community
- The Constraint Satisfaction community

• Explanation: Problems in those community are closely related:

Constraint Satisfaction Problem ≡ Homomorphism Problem ≡ CQ evaluation
[Chandra, Merlin 1977][Feder, Vardi 1993]

Feder, Vardi: Monotone monadic SNP and constraint satisfaction, STOC 1993 https://doi.org/10.1145/167088.167245 / Kolaitis, Vardi: Conjunctive-Query Containment and Constraint Satisfaction,
JCSS 2000 https://doi.org/10.1006/jcss.2000.1713 / Chandra, Merlin. "Optimal implementation of conjunctive queries in relational data bases", STOC 1977. https://doi.org/10.1145/800105.803397
Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

[Kolaitis, Vardi 2000]

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/167088.167245
https://doi.org/10.1006/jcss.2000.1713
https://doi.org/10.1145/800105.803397
https://simons.berkeley.edu/talks/logic-and-databases

3Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Acyclic queries

• Like many areas in computer science, cycles complicate things
- Same with conjunctive query (CQ) evaluation

• Acyclic CQs are a large and useful tractable case CQs
• A query is acyclic if its relations can be placed in a tree (join tree) s.t.
- the set of nodes that contain any variable form a connected set

• Yannakakis’ algorithm [81]: any acyclic query can be computed in
time: O(|Input| + |Output|)

Yannakakis, "Algorithms for acyclic database schemes", VLDB 1981. https://dl.acm.org/doi/10.5555/1286831.1286840

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/10.5555/1286831.1286840

5

Outline: T3-1: Acyclic conjunctive queries

• T3-1: Acyclic conjunctive queries
– The semijoin operator
– Join trees & Yannakakis algorithm
– Query hypergraphs & GYO reduction
– A detailed Yannakakis example
– Full semijoin reductions

• T3-2: Cyclic conjunctive queries

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

6Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semijoin (⋉): derived RA operator

• Find tuples in R for which there is a matching tuple in S
that is equal on their common attribute names.

• Example:
"Find actors who play some role."

Actor (aid, name, gender)
Play (aid, mid, role)
Movie(mid, name, year)

R ⋉ S = 𝜋!!,…,!"(R ⋈ S)

?

where A1, …, An are the attributes in R

RA:

Intuition: remove "dangling tuples" in R

RA

https://northeastern-datalab.github.io/cs7240/

7Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Actor (aid, name, gender)
Play (aid, mid, role)
Movie(mid, name, year)

Semijoin (⋉): derived RA operator

• Find tuples in R for which there is a matching tuple in S
that is equal on their common attribute names.

• Example:
"Find actors who play some role."

R ⋉ S = 𝜋!!,…,!"(R ⋈ S)
where A1, …, An are the attributes in R

RA:

Intuition: remove "dangling tuples" in R

Actor ⋉ Casts

SQL: ?
RA

https://northeastern-datalab.github.io/cs7240/

8Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semijoin (⋉): derived RA operator

• Find tuples in R for which there is a matching tuple in S
that is equal on their common attribute names.

• Example:
"Find actors who play some role."

R ⋉ S = 𝜋!!,…,!"(R ⋈ S)
where A1, …, An are the attributes in R

RA:

Intuition: remove "dangling tuples" in R

Actor ⋉ Casts

SELECT *
FROM Actor
WHERE aid IN

(SELECT aid
FROM Casts)

SELECT DISTINCT
A.aid, name, age

FROM Actor A, Casts C
WHERE A.aid = C.aid

Semijoins have no "direct"
representation in SQL
(just like relational division)

Duplicates
in R are
preserved!

RA
SQL:

Equivalent
only if no dupli-
cates in R!

Actor (aid, name, gender)
Play (aid, mid, role)
Movie(mid, name, year)

Alternative
WHERE

EXISTS

https://northeastern-datalab.github.io/cs7240/

9Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semijoins in Distributed Databases

• Semijoins are often used to compute equijoins in distributed databases
Goal: send less data to reduce network bandwidth!

𝜋$(𝑆)

𝑅 ⋉ 𝑆
𝑅(𝑋, 𝑌) 𝑆(𝑌, 𝑍)

R⨝ S

R⨝ S = (R ⋉ S)⨝ S law of semijoins

𝑅⨝ 𝑆

https://northeastern-datalab.github.io/cs7240/

10Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semijoins in Distributed Databases

Employee Dependent

Assumptions:
1. Very few employees have dependents.
2. Very few dependents have age > 71.
3. “Photo” is big.

?

Based upon an example by Dan Suciu

SSN Name Photo
.

EmpSSN DepName Age Photo
.

Employee⨝SSN=EmpSSN (sage>71 Dependent))
Task: compute with minimum data transfer:

https://northeastern-datalab.github.io/cs7240/

11Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semijoins in Distributed Databases

Employee
SSN Name Photo
.

EmpSSN DepName Age Photo
.

Dependent

Task: compute with minimum data transfer:
Employee⨝SSN=EmpSSN (sage>71 Dependent))

R(SSN) =𝜋!"#$$%𝜎&'()*+(Dependents)

L =Employee⨝SSN=EmpSSN R
=Employee ⋉SSN=EmpSSN (𝜎age>71 Dependent))
=Employee ⋉SSN=EmpSSN R

Answer=L⨝SSN=EmpSSN Dependent

Assumptions:
1. Very few employees have dependents.
2. Very few dependents have age > 71.
3. “Photo” is big.

R

L
Based upon an example by Dan Suciu

https://northeastern-datalab.github.io/cs7240/

12Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semijoins in Distributed Databases

Employee
SSN Name Photo

1
2
3
...

1mio

Dependent

Assumptions:
1. Very few employees have dependents.
2. Very few dependents have age > 71.
3. “Photo” is big.

?

?

?

EmpSSN DepName Age Photo
1 Alice 72 ...
1 Bob 73 ...
1 Charly 50 ...
5 Dorothee 15 ...
...

990900 Zilly 25 ...

Task: compute with minimum data transfer:
Employee⨝SSN=EmpSSN (sage>71 Dependent))

Based upon an example by Dan Suciu

https://northeastern-datalab.github.io/cs7240/

13Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semijoins in Distributed Databases

Employee
SSN Name Photo

1
2
3
...

1mio

EmpSSN DepName Age Photo
1 Alice 72 ...
1 Bob 73 ...
1 Charly 50 ...
5 Dorothee 15 ...
...

990900 Zilly 25 ...

Dependent

Assumptions:
1. Very few employees have dependents.
2. Very few dependents have age > 71.
3. “Photo” is big.

1

1

1 Alice 72 ...
1 Bob 73 ...

Task: compute with minimum data transfer:
Employee⨝SSN=EmpSSN (sage>71 Dependent))

Based upon an example by Dan Suciu

https://northeastern-datalab.github.io/cs7240/

14Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

• Definition: the semi-join operation is:

- Formally, R ⋉ S means: retain from R only those tuples that have some matching tuple
in S (in bag semantics: duplicates in R are preserved / Duplicates in S don't matter)

- Data complexity: O(|R| + |S|) ignoring log-factors
- Input: R(A1,…,An), S(B1,…,Bm), Output: T(A1,…,An)

• The law of semijoins is:

- Thus, removing "dangling tuples" from a table does not change the query result

Summary: Law of Semijoins

R ⋉ S = 𝜋!!,…,!"(R ⋈ S)

R ⋈ S = (R ⋉ S) ⋈ S

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

15Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semi-joins can also help if data are local 601

What is the problem?

Q = R ⋈! S ⋈" T
R

-1 n
-1 2
-1 1

B C

S
C D

T

-2 1
-2 2
-2 n

0 0

A B

1 -2
2 -2
n -2

0 0

n -1
2 -1
1 -1
0 0 ?

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

16Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semi-joins can also help if data are local 601

What is the problem?

• Query output cardinality is 1
• But quadratic intermediate

result sizes

Q = R ⋈! S ⋈" T

Thus the query takes O(n2)
despite constant output L

R

-1 n
-1 2
-1 1

B C

S
C D

T

-2 1
-2 2
-2 n

0 0

A B

1 -2
2 -2
n -2

0 0

n -1
2 -1
1 -1
0 0

What is a typical query plan?

?

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

17Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semi-joins can also help if data are local

Q = R ⋈! S ⋈" T

ABC

ABCD

AB BC

R(AB) S(BC)

⋈B

⋈C

T(CD)

CD

n+1 2n+1

n+1

601

What is the problem?

• Query output cardinality is 1
• But quadratic intermediate

result sizes

Q = R ⋈! S ⋈" T

Thus the query takes O(n2)
despite constant output L

R

-1 n
-1 2
-1 1

B C

S
C D

T

-2 1
-2 2
-2 n

0 0

A B

1 -2
2 -2
n -2

0 0

n -1
2 -1
1 -1
0 0

What is a typical query plan?

What are the cardinalities at each stage?

?

?
"query tree"

tree data
structure
representing a
RA expression

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

18Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semi-joins can also help if data are local

Q = R ⋈! S ⋈" T

ABC

ABCD

AB BC

R(AB) S(BC)

⋈B

⋈C

T(CD)

CD

n+1 2n+1

n+1

n2 +1

1

601

What is the problem?

• Query output cardinality is 1
• But quadratic intermediate

result sizes

Q = R ⋈! S ⋈" T

Thus the query takes O(n2)
despite constant output L

R

-1 n
-1 2
-1 1

B C

S
C D

T

-2 1
-2 2
-2 n

0 0

A B

1 -2
2 -2
n -2

0 0

n -1
2 -1
1 -1
0 0

What is a typical query plan?

What are the cardinalities at each stage?

"query tree"

tree data
structure
representing a
RA expression

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

19Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semi-joins can also help if data are local

R

-1 n
-1 2
-1 1

B C

S
C D

T

-2 1
-2 2
-2 n

0 0

A B

1 -2
2 -2
n -2

0 0

n -1
2 -1
1 -1
0 0

601

n=1000:
n=2000:

tQ1=1451 msec
tQ1=6104 msec

?
Can you think of a faster evaluation plan?

tQ2=5 msec
tQ2=8 msec

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

20Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semi-joins can also help if data are local

R

-1 n
-1 2
-1 1

B C

S
C D

T

-2 1
-2 2
-2 n

0 0

A B

1 -2
2 -2
n -2

0 0

n -1
2 -1
1 -1
0 0

601

n=1000:
n=2000:

tQ1=1451 msec
tQ1=6104 msec

tQ2=5 msec
tQ2=8 msec

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

WITH clauses (also CTE = Common
Table Expression) act like temporary
views

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

21Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

WITH clauses (also CTE = Common
Table Expression) act like temporary
views
• Allow to deconstruct more complex

queries into simple blocks to be
used and reused if necessary.

• Can increase readability by
emphasizing a more procedural
interpretation of a query in a
workflow

• Especially useful if you need to
reference a derived table multiple
times in a single query or you
perform the same calculation
multiple times across multiple
query components (= memoization)

Diversion into CTE's (Common Table Expressions) 601

SQL example available at: https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

https://northeastern-datalab.github.io/cs7240/
https://github.com/northeastern-datalab/cs3200-activities/tree/master/sql

23Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The more general idea: "Sideways information passing"

Q = R ⋈! S ⋈" T

ABC

ABCD

AB BC

R(AB) S(BC)

⋈B

⋈C

T(CD)

CD

n+1 2n+1

n+1

n2 +1

1

[Bernstein, Goodman 81]. "Using Semi-Joins to Solve Relational Queries", JACM 1981. https://doi.org/10.1145/322234.322238
[Beeri, Ramakrishnan 91]: "On the power of magic", Journal of Logic Programming, 1991. https://doi.org/10.1016/0743-1066(91)90038-Q
Definition from: [Ives, Taylor 08]. "Sideways Information Passing for Push-Style Query Processing", ICDE 2008. https://doi.org/10.1109/ICDE.2008.4497486

Sideways information passing:
• "sending information from one subexpression not

simply to its parent expression, but also to some
other correlated portion of the query computation,
in order to prune irrelevant results" [Ives, Taylor 08]

• includes techniques like two-way semijoins
[Bernstein, Goodman 81] and magic sets [Beeri,
Ramakrishnan 91]

"query tree"

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/322234.322238
https://doi.org/10.1016/0743-1066(91)90038-Q
https://doi.org/10.1109/ICDE.2008.4497486

