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Pre-class conversations

• Recapitulation of Datalog & Query Equivalence 
• Suggestion: Scribes with 2 iterations

• today: 
- Query equivalence of CQs & homomorphisms

https://northeastern-datalab.github.io/cs7240/
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Outline: T2-1/2: Query Evaluation & Query Equivalence

• T2-1: Conjunctive Queries (CQs)
– CQ equivalence and containment
– Graph homomorphisms
– Homomorphism beyond graphs
– CQ containment
– CQ minimization

• T2-2: Equivalence Beyond CQs
– Union of CQs, and inequalities
– Union of CQs equivalence under bag semantics
– Tree pattern queries
– Nested queries
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Complexity of the Query Evaluation Problem

• The Query Evaluation Problem for Relational Calculus (RC): 
- Given a RC formula ϕ and a database instance D, find ϕadom(D).

• Theorem: The Query Evaluation Problem for Relational Calculus is ...
... PSPACE-complete.

- PSPACE: decision problems, can be solved using an amount of memory that is 
polynomial in the input length  (~ in polynomial amount of space).

- PSPACE-complete: PSPACE + every other PSPACE problem can be transformed to it in 
polynomial time (PSPACE-hard)

• Proof: We need to show both
• This problem is in PSPACE.
• This problem is PSPACE-hard. (We only focus on this task for Boolean RC queries)

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases
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Complexity of the Query Evaluation Problem

• Theorem: The Query Evaluation Problem for Boolean RC is PSPACE-hard.
• Reduction uses QBF (Quantified Boolean Formulas):
- Given QBF ∀x1 ∃x2 …. ∀xk ψ, is it true or false 
- (notice every variable is quantified = bound at beginning of sentence; no free variables)

• Proof shows that QBF ≼ Query Evaluation for Relational Calculus
- Given QBF ∀x1 ∃x2 …. ∀xk ψ, 
- Let V and P be two unary relations and D be the database instance with V(0), V(1), P(1)
- Obtain ψ* from ψ by replacing every occurrence of xi by P(xi), and ¬xi by ¬P(xi)
- Then the following statements are equivalent:

• ∀x1 ∃x2 …. ∀xk ψ is true
• ∀x1 [V(x1) → ∃x2 [V(x2) ∧ … ∀xk [V(xk) → ψ*]]…] is true on D

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases
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Sublanguages of Relational Calculus

• Question: Are there interesting sublanguages of relational calculus 
for which the Query Containment Problem and the Query
Evaluation Problem are “easier” than the full relational calculus?

• Answer:
- Yes, the language of Conjunctive Queries (CQs) is such a sublanguage.
- Moreover, conjunctive queries are the most frequently asked queries 

against relational databases.

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases
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Conjunctive Queries (CQs)

• Definition: 
- A CQ is a query expressible by a RC formula in prenex normal form built from atomic 

formulas R(y1,…,yn), and  ∧ and ∃ only.

{ (x1,…,xk):   ∃ z1 … ∃ zm 𝜙(x1, …,xk, z1,…,zk) },
- where 𝜙(x1, …,xk, z1,…,zk) is a conjunction of atomic formulas of the form R(y1,…,ym).
- Prenex formula: prefix (quantifiers & bound variables), then quantifier-free part

• Equivalently, a CQ is a query expressible by a RA expression of the form
- πX(σΘ(R1× …× Rn)), where
- Θ is a conjunction of equality atomic formulas (equijoin).

• Equivalently, a CQ is a query expressible by an SQL expression of the form 
- SELECT <list of attributes> 

FROM <list of relation names>
WHERE <conjunction of equalities>Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases
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Conjunctive Queries (CQs)

• Definition: 
- A CQ is a query expressible by a RC formula in prenex normal form built from atomic 

formulas R(y1,…,yn), and  ∧ and ∃ only.

{ (x1,…,xk):   ∃ z1 … ∃ zm 𝜙(x1, …,xk, z1,…,zk) },
- where 𝜙(x1, …,xk, z1,…,zk) is a conjunction of atomic formulas of the form R(y1,…,ym).

• Equivalently, a CQ can be written as a logic-programming rule: 
Q(x1,…,xk) :- R1(u1), …, Rn(un), where

- Each variable xi occurs in the right-hand side of the rule.
- Each ui is a tuple of variables (not necessarily distinct)
- The variables occurring in the right-hand side (the body), but not in the left-hand side 

(the head) of the rule are existentially quantified (but the quantifiers are not displayed).
Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases
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Conjunctive Queries (CQs)

• Every natural join is a conjunctive query with ...
... no existentially quantified variables

• Example: Given P(A,B,C), R(B,C,D)
- P ⋈ R = {(x,y,z,w): P(x,y,z) ∧ R(y,z,w)}
- q(x,y,z,w) :- P(x,y,z), R(y,z,w)

(no variables are existentially quantified)
- SELECT P.A, P.B, P.C, R.D

FROM P, R
WHERE P.B = R.B AND P.C = R.C

• Conjunctive queries are also known as SPJ-queries (SELECT-
PROJECT-JOIN queries)

https://northeastern-datalab.github.io/cs7240/
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Examples of Conjunctive Queries

• Return paths of Length 2: (binary output)

RC:

RA:

Datalog:

𝐸 from, to

?
?
?

https://northeastern-datalab.github.io/cs7240/
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Examples of Conjunctive Queries

• Return paths of Length 2: (binary output)

RC: 𝑥, 𝑦 ∃𝑧[𝐸 𝑥, 𝑧 ∧ 𝐸 𝑧, 𝑦 ]}

RA:

Datalog:

𝐸 from, to

?
?

1 2
2 1

E
Is there a path 
of length 2 ?

https://northeastern-datalab.github.io/cs7240/
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Examples of Conjunctive Queries

• Return paths of Length 2: (binary output)

RC: 𝑥, 𝑦 ∃𝑧[𝐸 𝑥, 𝑧 ∧ 𝐸 𝑧, 𝑦 ]}

𝜋$/,$1(𝜎$23$4 𝐸×𝐸 )RA:

Datalog:

unnamed perspective

𝐸 from, to

?

https://northeastern-datalab.github.io/cs7240/
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Examples of Conjunctive Queries

• Return paths of Length 2: (binary output)

• Is there a cycle of Length 3: (Boolean query)

RC: 𝑥, 𝑦 ∃𝑧[𝐸 𝑥, 𝑧 ∧ 𝐸 𝑧, 𝑦 ]}

RA:

Datalog:

RC:

Datalog:

unnamed perspective

𝐸 from, to

𝑄(x,y) :− 𝐸 𝑥, 𝑧 , 𝐸 𝑧, 𝑦

?
?

𝜋$/,$1(𝜎$23$4 𝐸×𝐸 )

https://northeastern-datalab.github.io/cs7240/
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Examples of Conjunctive Queries

• Return paths of Length 2: (binary output)

• Is there a cycle of Length 3: (Boolean query)

RC: 𝑥, 𝑦 ∃𝑧[𝐸 𝑥, 𝑧 ∧ 𝐸 𝑧, 𝑦 ]}

RA:

Datalog:

RC:

Datalog:

unnamed perspective

𝐸 from, to

𝑄(x,y) :− 𝐸 𝑥, 𝑧 , 𝐸 𝑧, 𝑦

?
∃𝑥 ∃𝑦 ∃𝑧 [𝐸 𝑥, 𝑦 ∧ 𝐸 𝑦, 𝑧 ∧ 𝐸 𝑧, 𝑥 ]}

𝜋$/,$1(𝜎$23$4 𝐸×𝐸 )

https://northeastern-datalab.github.io/cs7240/
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𝑄 :− 𝐸 𝑥, 𝑦 , 𝐸 𝑦, 𝑧 , 𝐸 𝑧, 𝑥

∃𝑥 ∃𝑦 ∃𝑧 [𝐸 𝑥, 𝑦 ∧ 𝐸 𝑦, 𝑧 ∧ 𝐸 𝑧, 𝑥 ]}

Examples of Conjunctive Queries

• Return paths of Length 2: (binary output)

• Is there a cycle of Length 3: (Boolean query)

RC: 𝑥, 𝑦 ∃𝑧[𝐸 𝑥, 𝑧 ∧ 𝐸 𝑧, 𝑦 ]}

RA:

Datalog:

RC:

Datalog:

unnamed perspective

𝐸 from, to

𝑄(x,y) :− 𝐸 𝑥, 𝑧 , 𝐸 𝑧, 𝑦

𝜋$/,$1(𝜎$23$4 𝐸×𝐸 )

https://northeastern-datalab.github.io/cs7240/
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Vardi’s Taxonomy of the Query Evaluation Problem

M.Y Vardi, “The Complexity of Relational Query Languages”, 1982

• Definition: Let L be a database query language.
- The combined complexity of L is the decision problem: 

• given an L-sentence and a database instance D, is ϕ true on D?
• In symbols, does D ⊧ ϕ (does D satisfy ϕ)?

- The data complexity of L is the family of the following decision problems Pϕ, where ϕ is 
an L-sentence: 
• given a database instance D, does D ⊧ ϕ?

- The query complexity of L is the family of the following decision problems PD, where D is 
a database instance: 
• given an L-sentence ϕ, does D ⊧ ϕ?

Vardi. "The Complexity of Relational Query Languages." STOC 1982. https://doi.org/10.1145/800070.802186

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/800070.802186
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Vardi’s Taxonomy of the Query Evaluation Problem

Vardi’s “empirical” discovery:

• For most query languages L:
- The data complexity of L is of lower complexity than both the combined 

complexity of L and the query complexity of L.
- The query complexity of L can be as hard as the combined complexity of L.

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases
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Complexity Classes

LOGSPACE

Taxonomy of the Query Evaluation Problem for Relational Calculus

NLOGSPACE

P

NP

PSPACE

.

.

.

The Query Evaluation Problem 
for Relational Calculus

Problem Complexity
Combined
Complexity

PSPACE-complete

Query Complexity • in PSPACE
• can be PSPACE-

complete

Data Complexity In LOGSPACE

Source: Phokion Kolaitis
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Summary

• Relational Algebra and Relational Calculus have “essentially” the 
same expressive power.

• The Query Equivalence Problem for Relational Calculus is 
undecidable.

• Therefore also the Query Containment Problem

• The Query Evaluation Problem for Relational Calculus:
- Data Complexity is in LOGSPACE
- Combined Complexity is PSPACE-complete
- Query Complexity is PSPACE-complete.

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases
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Outline: T2-1/2: Query Evaluation & Query Equivalence

• T2-1: Conjunctive Queries (CQs)
– CQ equivalence and containment
– Graph homomorphisms
– Homomorphism beyond graphs
– CQ containment
– CQ minimization

• T2-2: Equivalence Beyond CQs
– Union of CQs, and inequalities
– Union of CQs equivalence under bag semantics
– Tree pattern queries
– Nested queries
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Injective, Surjective, and Bijective functions

Surjective
function

Bijective
function

Injective
function

Function

𝑓: 𝑋 → 𝑌

?

?

?

?
Source: https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection


64Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Injective, Surjective, and Bijective functions
maps each argument (element from its domain) 
to exactly one image (element in its codomain)

𝑓: 𝑋 → 𝑌

∀𝑥 ∈ 𝑋, ∃! 𝑦 ∈ 𝑌[𝑦 = 𝑓(𝑥)]}

Surjective
function

Bijective
function

Injective
function

Function

?

?

?

Source: https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection
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∀𝑥, 𝑥! ∈ 𝑋. [𝑥 ≠ 𝑥′ ⇒ 𝑓(𝑥) ≠ 𝑓(𝑥!)]
∀𝑥, 𝑥! ∈ 𝑋. 𝑓 𝑥 = 𝑓 𝑥! ⇒ 𝑥 = 𝑥!

Injective, Surjective, and Bijective functions

("one-to-one"): each element of the codomain is 
mapped to by at most one element of the domain 
(i.e. distinct elements of the domain map to 
distinct elements in the codomain)

maps each argument (element from its domain) 
to exactly one image (element in its codomain)

𝑓: 𝑋 → 𝑌

∀𝑥 ∈ 𝑋, ∃! 𝑦 ∈ 𝑌[𝑦 = 𝑓(𝑥)]}

logical transpose
without inequality:

Surjective
function

Bijective
function

Injective
function

Function

?

?

Source: https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection
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Injective, Surjective, and Bijective functions

("onto"): each element of the codomain is mapped 
to by at least one element of the domain (i.e. the 
image and the codomain of the function are equal)

("one-to-one"): each element of the codomain is 
mapped to by at most one element of the domain 
(i.e. distinct elements of the domain map to 
distinct elements in the codomain)

maps each argument (element from its domain) 
to exactly one image (element in its codomain)
∀𝑥 ∈ 𝑋, ∃! 𝑦 ∈ 𝑌[𝑦 = 𝑓(𝑥)]}

∀𝑦 ∈ 𝑌, ∃𝑥 ∈ 𝑋[𝑦 = 𝑓 𝑥 ]

Surjective
function

Bijective
function

Injective
function

Function

?
Source: https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection

∀𝑥, 𝑥! ∈ 𝑋. [𝑥 ≠ 𝑥′ ⇒ 𝑓(𝑥) ≠ 𝑓(𝑥!)]
∀𝑥, 𝑥! ∈ 𝑋. 𝑓 𝑥 = 𝑓 𝑥! ⇒ 𝑥 = 𝑥!

logical transpose
without inequality:

𝑓: 𝑋 → 𝑌

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection
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∀𝑥, 𝑥! ∈ 𝑋. [𝑥 ≠ 𝑥′ ⇒ 𝑓(𝑥) ≠ 𝑓(𝑥!)]
∀𝑥, 𝑥! ∈ 𝑋. 𝑓 𝑥 = 𝑓 𝑥! ⇒ 𝑥 = 𝑥!

logical transpose
without inequality:

Injective, Surjective, and Bijective functions

("onto"): each element of the codomain is mapped 
to by at least one element of the domain (i.e. the 
image and the codomain of the function are equal)

("invertible"): each element of the codomain is 
mapped to by exactly one element of the domain 
(both injective and surjective)

("one-to-one"): each element of the codomain is 
mapped to by at most one element of the domain 
(i.e. distinct elements of the domain map to 
distinct elements in the codomain)

maps each argument (element from its domain) 
to exactly one image (element in its codomain)

𝑓: 𝑋 → 𝑌

∀𝑥 ∈ 𝑋, ∃! 𝑦 ∈ 𝑌[𝑦 = 𝑓(𝑥)]}

∀𝑦 ∈ 𝑌, ∃𝑥 ∈ 𝑋[𝑦 = 𝑓 𝑥 ]

∀𝑦 ∈ 𝑌, ∃! 𝑥 ∈ 𝑋[𝑦 = 𝑓(𝑥)]}

Surjective
function

Bijective
function

Injective
function

Function

Source: https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection
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Mappings: Injection, Surjection, and Bijection

?
?
?
?
?
?

https://northeastern-datalab.github.io/cs7240/
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Mappings: Injection, Surjection, and Bijection

?
?
?
?
?

not a mapping (or function)!

https://northeastern-datalab.github.io/cs7240/
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Mappings: Injection, Surjection, and Bijection

?
?
?
?

not a mapping (or function)!

injective function (or one-to-one): maps distinct elements 
of its domain to distinct elements of its codomain

https://northeastern-datalab.github.io/cs7240/
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Mappings: Injection, Surjection, and Bijection

?
?
?

not a mapping (or function)!

injective function (or one-to-one): maps distinct elements 
of its domain to distinct elements of its codomain

surjective (or onto): every element y in the codomain Y of f 
has at least one element x in the domain that maps to it

https://northeastern-datalab.github.io/cs7240/
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Mappings: Injection, Surjection, and Bijection

?
?

not a mapping (or function)!

injective function (or one-to-one): maps distinct elements 
of its domain to distinct elements of its codomain

surjective (or onto): every element y in the codomain Y of f 
has at least one element x in the domain that maps to it

injective & surjective = bijection

https://northeastern-datalab.github.io/cs7240/
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Mappings: Injection, Surjection, and Bijection

?

not a mapping (or function)!

injective function (or one-to-one): maps distinct elements 
of its domain to distinct elements of its codomain

surjective (or onto): every element y in the codomain Y of f 
has at least one element x in the domain that maps to it

injective & surjective = bijection

neighter

https://northeastern-datalab.github.io/cs7240/
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Mappings: Injection, Surjection, and Bijection

injective function (or one-to-one): maps distinct elements 
of its domain to distinct elements of its codomain

surjective (or onto): every element y in the codomain Y of f 
has at least one element x in the domain that maps to it

injective & surjective = bijection

neighter

not a mapping (or function)!

not even a mapping!

https://northeastern-datalab.github.io/cs7240/
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Bijection, Injection, and Surjection

Sources: http://mathonline.wikidot.com/injections-surjections-and-bijections, 
https://www.intechopen.com/books/protein-interactions/relating-protein-structure-and-function-through-a-bijection-and-its-implications-on-protein-structur,

https://northeastern-datalab.github.io/cs7240/
http://mathonline.wikidot.com/injections-surjections-and-bijections
https://www.intechopen.com/books/protein-interactions/relating-protein-structure-and-function-through-a-bijection-and-its-implications-on-protein-structur
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Bijection, Injection, and Surjection

Sources: https://www.mathsisfun.com/sets/injective-surjective-bijective.html, https://twitter.com/jdhamkins/status/841318019397779456, 

https://northeastern-datalab.github.io/cs7240/
https://www.mathsisfun.com/sets/injective-surjective-bijective.html
https://twitter.com/jdhamkins/status/841318019397779456
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We make a detour to Graph matching

• Finding a correspondence between the nodes and the edges of two 
graphs that satisfies some (more or less stringent) constraints

https://northeastern-datalab.github.io/cs7240/
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Homomorphism

• A graph homomorphism h from graph G(VG,EG) to H(VH,EH), is a 
mapping from VG to VH such that {x,y} ∈ EG implies {h(x),h(y)} ∈ EH
- "edge-preserving": if two nodes in G are linked by an edge, then they are 

mapped to two nodes in H that are also linked

1

2

3

4

a b

c

G H

?Is there a homomorphism 
from G to H

https://northeastern-datalab.github.io/cs7240/
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Homomorphism

• A graph homomorphism h from graph G(VG,EG) to H(VH,EH), is a 
mapping from VG to VH such that {x,y} ∈ EG implies {h(x),h(y)} ∈ EH
- "edge-preserving": if two nodes in G are linked by an edge, then they are 

mapped to two nodes in H that are also linked

1

2

3

4

a b

c

h: {(a,1), (b,3), (c,4)} 
G H

does not need to be surjective!

https://northeastern-datalab.github.io/cs7240/
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Homomorphism

• A graph homomorphism h from graph G(VG,EG) to H(VH,EH), is a 
mapping from VG to VH such that {x,y} ∈ EG implies {h(x),h(y)} ∈ EH
- "edge-preserving": if two nodes in G are linked by an edge, then they are 

mapped to two nodes in H that are also linked

1

2

3

4

a b

c

a b

c

h: {(a,1), (b,3), (c,4)} 
G H G

?Is there a homomorphism 
from H to Gdoes not need to be surjective!

https://northeastern-datalab.github.io/cs7240/
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Homomorphism

• A graph homomorphism h from graph G(VG,EG) to H(VH,EH), is a 
mapping from VG to VH such that {x,y} ∈ EG implies {h(x),h(y)} ∈ EH
- "edge-preserving": if two nodes in G are linked by an edge, then they are 

mapped to two nodes in H that are also linked

1

2

3

4

a b

c

a b

c

h: {(a,1), (b,3), (c,4)} h: {(1,a), (2,a), (3,b), (4,c)}
does not need to be injective!

G H G

Correspondence can be many-to-one: nothing 
prevents that 2 nodes in the first graph 
are mapped to the same node in the second

does not need to be surjective!

Graphs are homomorphically equivalent

https://northeastern-datalab.github.io/cs7240/
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Graph Isomorphism

• Graphs G(VG,EG) and H(VH,EH) are isomorphic iff there is an invertible
h from VG to VH s.t. {x,y} ∈ EG iff {h(u),h(v)} ∈ EH
- We need to find a one-to-one correspondence

1

2

3

4

a b

c

G H

?Is there an isomorphism 
from G to H

https://northeastern-datalab.github.io/cs7240/
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Graph Isomorphism

• Graphs G(VG,EG) and H(VH,EH) are isomorphic iff there is an invertible
h from VG to VH s.t. {x,y} ∈ EG iff {h(u),h(v)} ∈ EH
- We need to find a one-to-one correspondence

1

2

3

4

a b

c

G H
They are homomorphically equivalent,
but not isomorphic!

Is there an isomorphism 
from G to H?

https://northeastern-datalab.github.io/cs7240/
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Graph Isomorphism

• Graphs G(VG,EG) and H(VH,EH) are isomorphic iff there is an invertible
h from VG to VH s.t. {x,y} ∈ EG iff {h(u),h(v)} ∈ EH
- We need to find a one-to-one correspondence

1 2

43

5

a

b

c

d

e

G H
Is there an isomorphism 
from G to H?

https://northeastern-datalab.github.io/cs7240/
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Graph Isomorphism

• Graphs G(VG,EG) and H(VH,EH) are isomorphic iff there is an invertible
h from VG to VH s.t. {x,y} ∈ EG iff {h(u),h(v)} ∈ EH
- We need to find a one-to-one correspondence

1 2

43

5

a

b

c

d

e

G H
Is there an isomorphism 
from G to H?

h: {(1,a), (2,b), (3,d), (4,c), (5,e)} 
bijection = surjective and injective mapping

Yes:

https://northeastern-datalab.github.io/cs7240/
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Outline: T2-1/2: Query Evaluation & Query Equivalence

• T2-1: Conjunctive Queries (CQs)
– CQ equivalence and containment
– Graph homomorphisms
– Homomorphism beyond graphs
– CQ containment
– CQ minimization

• T2-2: Equivalence Beyond CQs
– Union of CQs, and inequalities
– Union of CQs equivalence under bag semantics
– Tree pattern queries
– Nested queries
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Graph Homomorphism beyond graphs
Definition : Let G and H be graphs. A homomorphism of G to H is a function 
f: V(G) → V(H) such that

(x,y) ∈ E(G) ⇒ (f(x),f(y)) ∈ E(H).

We sometimes write G → H (G ↛ H) if there is a homomorphism (no 
homomorphism) of G to H

Definition of a homomorphism naturally extends  to:
• digraphs (directed graphs)
• edge-colored graphs
• relational systems
• constraint satisfaction problems (CSPs)

https://northeastern-datalab.github.io/cs7240/
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An example

G

H

2 3

1

3 "colors" of the vertices

Based upon an example from Rick Brewster's Graph homomorphism tutorial, 2006

a

b

cd

e

https://northeastern-datalab.github.io/cs7240/
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An example

G

H

2 3

1

1

1

?Can this assignment be extended to a homomorphism?
Based upon an example from Rick Brewster's Graph homomorphism tutorial, 2006

a

b

cd

e

https://northeastern-datalab.github.io/cs7240/
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An example

G

H

2 3

1

Can this assignment be extended to a homomorphism? No, this assignment requires a 
loop on vertex 1 (in H)

Based upon an example from Rick Brewster's Graph homomorphism tutorial, 2006

a

b

cd

e

1

1

https://northeastern-datalab.github.io/cs7240/
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An example

G

H

2 3

1

Can this assignment be extended to a homomorphism??
Based upon an example from Rick Brewster's Graph homomorphism tutorial, 2006

a

b

cd

e

1

2

https://northeastern-datalab.github.io/cs7240/
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An example

G

H

2 3

1

Definition: Let G and H be graphs. A homom. 
of G to H is a function f: V(G) → V(H) s.t. that

(x,y) ∈ E(G) ⇒ (f(x),f(y)) ∈ E(H).

Can this assignment be extended to a homomorphism??
Based upon an example from Rick Brewster's Graph homomorphism tutorial, 2006

a

b

cd

e

1

2

https://northeastern-datalab.github.io/cs7240/
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An example

G

H

2 3

12

1 3

Definition: Let G and H be graphs. A homom. 
of G to H is a function f: V(G) → V(H) s.t. that

(x,y) ∈ E(G) ⇒ (f(x),f(y)) ∈ E(H).

Based upon an example from Rick Brewster's Graph homomorphism tutorial, 2006

a

b

cd

e

1

2

https://northeastern-datalab.github.io/cs7240/
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An example

G

1

Basically a partitioning problem!

32

The quotient set of the partition (set of equivalence classes of the 
partition) is a subgraph of H. 

Partition: {{a,d}, {b,e}, {c}}

a

b

d

ce

Quotient set: {[a], [b], [c]}

Based upon an example from Rick Brewster's Graph homomorphism tutorial, 2006

H

2 3

1

https://northeastern-datalab.github.io/cs7240/
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Some observations
When does G → K3 hold? (K3 = 3-clique = triangle)

?

https://northeastern-datalab.github.io/cs7240/


107Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Some observations

?
When does G → Kd hold? (Kd = d-clique)

When does G → K3 hold? (K3 = 3-clique = triangle)

iff G is 3-colorable

https://northeastern-datalab.github.io/cs7240/
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Some observations
When does G → K3 hold? (K3 = 3-clique = triangle)

iff G is 3-colorable

When does G → Kd hold? (Kd = d-clique)
iff G is d-colorable

Thus homomorphisms generalize colorings:
Notation: G → H is an H-coloring of G.

What is the complexity of testing for the existence of a homomorphism
(in the size of G)? ?

https://northeastern-datalab.github.io/cs7240/
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Some observations
When does G → K3 hold? (K3 = 3-clique = triangle)

iff G is 3-colorable

When does G → Kd hold? (Kd = d-clique)
iff G is d-colorable

Thus homomorphisms generalize colorings:
Notation: G → H is an H-coloring of G.

What is the complexity of testing for the existence of a homomorphism
(in the size of G)?

NP-complete

https://northeastern-datalab.github.io/cs7240/
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The complexity of H-coloring

Theorem [Hell, Nesetril'90]: 
If H is bipartite or contains a self-loop, then H-coloring is 
polynomial time solvable; otherwise, H is NP-complete.

H-coloring:
Let H be a fixed graph.
Instance: A graph G.
Question: Does G admit an H-coloring?

[Hell, Nesetril'90]:  Hell, Nešetřil. On the complexity of H-coloring. Journal of Combinatorial Theory, 1990. https://doi.org/10.1016/0095-8956(90)90132-J

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1016/0095-8956(90)90132-J
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Repeated variable names

Which of formulas implies the other??

In sentences with multiple quantifiers, distinct variables do not need 
to range over distinct objects! (cp. homomorphism vs. isomorphism)

Wolfgang Gatterbauer. CS 7240: Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

$x.$y.	E(x,y)	 $x.	E(x,x)⟹
⟸

https://northeastern-datalab.github.io/cs7240/
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$x.$y.	E(x,y)	

Repeated variable names

In sentences with multiple quantifiers, distinct variables do not need 
to range over distinct objects! (cp. homomorphism vs. isomorphism)

$x.	E(x,x)

s t
1 1

E

⟸

Wolfgang Gatterbauer. CS 7240: Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

s t
1 2

E

https://northeastern-datalab.github.io/cs7240/
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A more abstract (general)
view on homomorphisms
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Homomorphisms on Binary Structures

• Definition (Binary algebraic structure): A binary algebraic structure 
is a set together with a binary operation on it.  This is denoted by an 
ordered pair (S,⋆) in which S is a set and ⋆ is a binary operation on S.

• Definition (homomorphism of binary structures): Let (S,⋆) and (S’,∘) 
be binary structures.  A homomorphism from (S,⋆) to (S’,∘) is a map 
h: S⟶ S’ that satisfies, for all x, y in S:

h(x ⋆ y) = h(x) ∘ h(y)

• We can denote it by h: (S,⋆) ⟶ (S’,∘).

https://northeastern-datalab.github.io/cs7240/
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Example: from addition to multiplication

• Let h(x) = ex. Is h a homomorphism b/w two binary structures? 

?

https://northeastern-datalab.github.io/cs7240/
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Example: from addition to multiplication

• Let h(x) = ex. Is h a homomorphism b/w two binary structures? 
- Yes, from the real numbers with addition (ℝ,+) to 
- the positive real numbers with multiplication (ℝ+,⋅)
- It is even an isomorphism!

• Let g(x) = eix.  Is g also a homomorphism? 

h:(ℝ,+) ⟶ (ℝ+,⋅)
h(x+y) = h(x) ⋅ h(y)

?
Paragraph screenshot from p.37 in 2004 - Dummit, Foote - Abstract algebra (book, 3rd ed). https://www.wiley.com/en-us/Abstract+Algebra%2C+3rd+Edition-p-9780471433347

https://northeastern-datalab.github.io/cs7240/
https://www.wiley.com/en-us/Abstract+Algebra%2C+3rd+Edition-p-9780471433347
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Example: from addition to multiplication

• Let h(x) = ex. Is h a homomorphism b/w two binary structures? 
- Yes, from the real numbers with addition (ℝ,+) to 
- the positive real numbers with multiplication (ℝ+,⋅)
- It is even an isomorphism!

• Let g(x) = eix.  Is g also a homomorphism? 
- Yes, from the real numbers with addition (ℝ,+) to 
- the unit circle in the complex plane with rotation 

Paragraph screenshot from p.37 in 2004 - Dummit, Foote - Abstract algebra (book, 3rd ed). https://www.wiley.com/en-us/Abstract+Algebra%2C+3rd+Edition-p-9780471433347

h:(ℝ,+) ⟶ (ℝ+,⋅)
h(x+y) = h(x) ⋅ h(y)

https://northeastern-datalab.github.io/cs7240/
https://www.wiley.com/en-us/Abstract+Algebra%2C+3rd+Edition-p-9780471433347
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Example: from addition to multiplication

Source: Socratica. Homomorphisms, 2014: https://www.youtube.com/watch?v=cYzp5IWqCsg

https://northeastern-datalab.github.io/cs7240/
https://www.youtube.com/watch?v=cYzp5IWqCsg
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Example: from addition to multiplication

Source: 3blue1brown. Euler's formula with introductory group theory, 2017: https://www.youtube.com/watch?v=mvmuCPvRoWQ

https://northeastern-datalab.github.io/cs7240/
https://www.youtube.com/watch?v=mvmuCPvRoWQ
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Isomorphism

• Definition: A homomorphism of binary structures is called an 
isomorphism iff the corresponding map of sets is:
- one-to-one (injective) and 
- onto (surjective).

https://northeastern-datalab.github.io/cs7240/
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Some homomorphisms

Binary structure (S,⋆)

Group (G,⋆) like (ℝ,+)Graph (V, E(x,y))

CQs (Var ∪ Constants, Relations {Ri(x,y,z), ...})

Restriction to operations that 
closed, associative, with 
identify element, and inverse

Restriction to Binary operator 
that maps to 𝔹 = {True, False}

Extension to multiple 
d-ary relations

https://northeastern-datalab.github.io/cs7240/
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Outline: T2-1/2: Query Evaluation & Query Equivalence

• T2-1: Conjunctive Queries (CQs)
– CQ equivalence and containment
– Graph homomorphisms
– Homomorphism beyond graphs
– CQ containment
– CQ minimization

• T2-2: Equivalence Beyond CQs
– Union of CQs, and inequalities
– Union of CQs equivalence under bag semantics
– Tree pattern queries
– Nested queries
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Query Containment

Two queries q1, q2 are equivalent, denoted q1 ≡ q2, if 

Query q1 is contained in query q2 , denoted q1 ⊆ q2, if 

Corollary
q1 ≡ q2 is equivalent to (q1 ⊆ q2 and q1 ⊇ q2)

If queries are Boolean, then query containment = logical implication:
q1 ⇔ q2 is equivalent to

for every database instance D, we have q1(D) = q2(D).

for every database instance D, we have q1(D) ⊆ q2(D)

?

the answer (set of tuples) 
returned by one is guaranteed to 
be identical to the other answer

https://northeastern-datalab.github.io/cs7240/


127Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query Containment

Two queries q1, q2 are equivalent, denoted q1 ≡ q2, if 

Query q1 is contained in query q2 , denoted q1 ⊆ q2, if 

Corollary
q1 ≡ q2 is equivalent to (q1 ⊆ q2 and q1 ⊇ q2)

If queries are Boolean, then query containment = logical implication:
q1 ⇔ q2 is equivalent to (q1 ⇒ q2 and q1 ⇐ q2)

for every database instance D, we have q1(D) = q2(D).

for every database instance D, we have q1(D) ⊆ q2(D)

the answer (set of tuples) 
returned by one is guaranteed to 
be identical to the other answer

https://northeastern-datalab.github.io/cs7240/
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Query homomorphisms (and containment)
A homomorphism h from Boolean q2 to q1 is a function 

for every atom R(x1,x2,...) in q2, there is an atom R(h(x1), h(x2), ...) in q1

Example
q1(x) :- R(x,y), R(y,y), R(y,z)
q2(s) :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)

y z

x
q1(x)

v

u

w

s

q2(x)

h2→1:

h: var(q2) → var(q1) ∪ const(q1) such that:

?

need to be same relation!

https://northeastern-datalab.github.io/cs7240/
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Query homomorphisms (and containment)

Example
q1(x) :- R(x,y), R(y,y), R(y,z)
q2(s) :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)

y z

x
q1(x)

v

u

w

s

q2(x)

h2→1: {(s,x),(u,y),(v,y),(w,z)} 

A homomorphism h from Boolean q2 to q1 is a function 

for every atom R(x1,x2,...) in q2, there is an atom R(h(x1), h(x2), ...) in q1

h: var(q2) → var(q1) ∪ const(q1) such that:

Also: h2→1’: {s,u,v,w}→{y};
recall [Hell, Nesetril'90]

need to be same relation!

https://northeastern-datalab.github.io/cs7240/
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Query homomorphisms (and containment)

Example
q1(x) :- R(x,y), R(y,y), R(y,z)
q2(s) :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)

y z

x
q1(x)

v

u

w

s

q2(x)

h2→1: {(s,x),(u,y),(v,y),(w,z)} 

h1→2: ?

A homomorphism h from Boolean q2 to q1 is a function 

for every atom R(x1,x2,...) in q2, there is an atom R(h(x1), h(x2), ...) in q1

h: var(q2) → var(q1) ∪ const(q1) such that:

need to be same relation!

https://northeastern-datalab.github.io/cs7240/
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Query homomorphisms (and containment)

Example
q1(x) :- R(x,y), R(y,y), R(y,z)
q2(s) :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)

y z

x
q1(x)

v

u

w

s

q2(x)

h2→1: {(s,x),(u,y),(v,y),(w,z)} 

h1→2: {(x,s),(y,v),(z,w)} 

A homomorphism h from Boolean q2 to q1 is a function 

for every atom R(x1,x2,...) in q2, there is an atom R(h(x1), h(x2), ...) in q1

h: var(q2) → var(q1) ∪ const(q1) such that:

?
What about:

need to be same relation!

https://northeastern-datalab.github.io/cs7240/
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Query homomorphisms (and containment)

Example
q1(x) :- R(x,y), R(y,y), R(y,z)
q2(s) :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)

y z

x
q1(x)

v

u

w

s

q2(x)

h2→1: {(s,x),(u,y),(v,y),(w,z)} 

h1→2: {(x,s),(y,v),(z,w)} 

, R(v,v)

A homomorphism h from Boolean q2 to q1 is a function 

for every atom R(x1,x2,...) in q2, there is an atom R(h(x1), h(x2), ...) in q1

h: var(q2) → var(q1) ∪ const(q1) such that:

need to be same relation!

https://northeastern-datalab.github.io/cs7240/
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Query homomorphisms and containment

Example
q1(x) :- R(x,y), R(y,y), R(y,z)
q2(s) :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)

y z

x
q1(x)

v

u

w

s

q2(x)

h2→1: {(s,x),(u,y),(v,y),(w,z)} 

h1→2: {(x,s),(y,v),(z,w)} 

q1 ⊆ q2

q1 ⊉ q2

A homomorphism h from Boolean q2 to q1 is a function 

for every atom R(x1,x2,...) in q2, there is an atom R(h(x1), h(x2), ...) in q1

h: var(q2) → var(q1) ∪ const(q1) such that:

$x.	E(x,x) $x.$y.	E(x,y)	
Compare to our earlier example:

?
⟹⟸

We will use homomorphisms to 
reason about query containment. 
We try to understand the direction

https://northeastern-datalab.github.io/cs7240/
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Query homomorphisms and containment

Example
q1(x) :- R(x,y), R(y,y), R(y,z)
q2(s) :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)

y z

x
q1(x)

v

u

w

s

q2(x)

h2→1: {(s,x),(u,y),(v,y),(w,z)} 

h1→2: {(x,s),(y,v),(z,w)} 

q1 ⊆ q2

q1 ⊉ q2

A homomorphism h from Boolean q2 to q1 is a function 

for every atom R(x1,x2,...) in q2, there is an atom R(h(x1), h(x2), ...) in q1

h: var(q2) → var(q1) ∪ const(q1) such that:

$x.	E(x,x) $x.$y.	E(x,y)	⟹
Compare to our earlier example:

We will use homomorphisms to 
reason about query containment. 
We try to understand the direction

https://northeastern-datalab.github.io/cs7240/
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Recap: "All homomorphisms" in one slide

G

q1 q2

h h

h
q1 ⊆ q2

G-coloring of q1

q1 ⇒ q2

Query evaluation
q2-coloring of G

CSP
PTIME in size of G NPC in size of G

https://northeastern-datalab.github.io/cs7240/
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Canonical database
Definition Canonical database
Given a conjunctive query q, the canonical database Dc[q] is the database 
instance where each atom in q becomes a fact in the instance.

Example
q1(x) :- R(x,y), R(y,y), R(y,z)

Dc[q1] =?

https://northeastern-datalab.github.io/cs7240/
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Canonical database

Example
q1(x) :- R(x,y), R(y,y), R(y,z)

Just treat each variable as different constant J

{R('x','y'), R('y','y'), R('y','z')}Dc[q1] =

≡ {R(a,b), R(b,b), R(b,c)}

Definition Canonical database
Given a conjunctive query q, the canonical database Dc[q] is the database 
instance where each atom in q becomes a fact in the instance.

≡ {R(1,2), R(2,2), R(2,3)}

https://northeastern-datalab.github.io/cs7240/
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[Chandra and Merlin 1977]

We will only look at 2) ⇒ 1) 

THEOREM (Query Containment)
Given two Boolean CQs q1, q2, the following statements are equivalent:

1) q1 ⊆ q2

2) There is a homomorphism h2→1 from q2 to q1

3) q2(DC[q1]) is true

Chandra, Merlin. "Optimal implementation of conjunctive queries in relational data bases." STOC 1977. https://doi.org/10.1145/800105.803397

(q1⇒ q2)

G

q1 q2q1 ⊆ q2

Query eval.

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/800105.803397
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[Chandra and Merlin 1977]

G

q1 q2q1 ⊆ q2

Query eval.

g=v ∘ h
g(x)=v(h(x))

1. For q1(D) to hold, there is a valuation v s.t. v(q1) ∈ D
2. We will show that the composition g = v ∘ h is a valuation for q2

2a. By definition of h, for every R(x1,x2,...) in q2, R(h(x1),h(x2),...) in q1
2b. By definition of v, for every R(x1,x2,...) in q2, R(v(h(x1)),v(h(x2)),...) in D

We show: If there is a homomorphism h2→1, then for any D: q1(D) ⇒ q2(D)

https://northeastern-datalab.github.io/cs7240/
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[Chandra and Merlin 1977]

y z

x
q1(x)

v

u

w

s

q2(x)

h2→1: {(s,x),(u,y),(v,y),(w,z)} 

Example
q1() :- R(x,y), R(y,y), R(y,z)
q2() :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)

1. For q1(D) to hold, there is a valuation v s.t. v(q1) ∈ D

2a. By definition of h, for every R(x1,x2,...) in q2, R(h(x1),h(x2),...) in q1
2b. By definition of v, for every R(x1,x2,...) in q2, R(v(h(x1)),v(h(x2)),...) in D

We show: If there is a homomorphism h2→1, then for any D: q1(D) ⇒ q2(D)
g=v ∘ h

g(x)=v(h(x))2. We will show that the composition g = v ∘ h is a valuation for q2

https://northeastern-datalab.github.io/cs7240/
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[Chandra and Merlin 1977]

y z

x
q1(x)

v

u

w

s

q2(x)

h2→1: {(s,x),(u,y),(v,y),(w,z)} 

Example
q1() :- R(x,y), R(y,y), R(y,z)
q2() :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)

v={(x,a),(y,b),(z,c)} 

R A B
a b
b b
b c

1. For q1(D) to hold, there is a valuation v s.t. v(q1) ∈ D

2a. By definition of h, for every R(x1,x2,...) in q2, R(h(x1),h(x2),...) in q1
2b. By definition of v, for every R(x1,x2,...) in q2, R(v(h(x1)),v(h(x2)),...) in D

We show: If there is a homomorphism h2→1, then for any D: q1(D) ⇒ q2(D)
g=v ∘ h

g(x)=v(h(x))2. We will show that the composition g = v ∘ h is a valuation for q2

https://northeastern-datalab.github.io/cs7240/
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[Chandra and Merlin 1977]

y z

x
q1(x)

v

u

w

s

q2(x)

h2→1: {(s,x),(u,y),(v,y),(w,z)} 

v={(x,a),(y,b),(z,c)} 

Example
q1() :- R(x,y), R(y,y), R(y,z)
q2() :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v) R A B

a b
b b
b cg= {(s,a),(u,b),(v,b),(w,c)} 

1. For q1(D) to hold, there is a valuation v s.t. v(q1) ∈ D

2a. By definition of h, for every R(x1,x2,...) in q2, R(h(x1),h(x2),...) in q1
2b. By definition of v, for every R(x1,x2,...) in q2, R(v(h(x1)),v(h(x2)),...) in D

We show: If there is a homomorphism h2→1, then for any D: q1(D) ⇒ q2(D)
g=v ∘ h

g(x)=v(h(x))2. We will show that the composition g = v ∘ h is a valuation for q2

https://northeastern-datalab.github.io/cs7240/
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Combined complexity of CQC and CQE
Corollary:
The following problems are NP-complete (in the size of Q or Q'):

2) Given a Boolean conjunctive query Q and an instance D, does D ⊨ Q ?

(a) Membership in NP follows from the Homomophism Theorem:

1) Given two (Boolean) conjunctive queries Q and Q’, is Q ⊆ Q’ ?

Proof:

(b) NP-hardness follows from 3-Colorability: 

Q ⊆ Q' if and only if there is a homomorphism h: Q' → Q

G is 3-colorable if and only if QK3 ⊆ QG.

https://northeastern-datalab.github.io/cs7240/
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The Complexity of Database Query Languages

Relational 
Calculus

CQs

Query Eval.: 
Data Complexity

In LOGSPACE
(hence, in P)

In LOGSPACE
(hence, in P)

Query Eval.: 
Combined Compl.

PSPACE-
complete

NP-complete

Query Equivalence 
& Containment

Undecidable NP-complete

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases


185Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Exercise: Find Homomorphisms
q1: {E(x,y),E(y,z),E(z,w)}

Order of subgoals in the query does not 
matter (thus written here as sets)

q2: {E(x,y),E(y,z),E(z,x)} q3: {E(x,y),E(y,x)}

q5: {E(x,x)}q4: {E(x,y),E(y,x),E(y,y)}

?
What is the containment relation 
between these queries

Example by Andreas Pieris: https://homepages.inf.ed.ac.uk/apieris/courses/atfd2020/index.html

https://northeastern-datalab.github.io/cs7240/
https://homepages.inf.ed.ac.uk/apieris/courses/atfd2020/index.html
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Exercise: Find the Homomorphisms
q1: {E(x,y),E(y,z),E(z,w)}

q2: {E(x,y),E(y,z),E(z,x)} q3: {E(x,y),E(y,x)}

q5: {E(x,x)}q4: {E(x,y),E(y,x),E(y,y)}

?
What is the containment relation 
between these queries

x y z w

x

y

z

x y

xx y

Example by Andreas Pieris: https://homepages.inf.ed.ac.uk/apieris/courses/atfd2020/index.html

Order of subgoals in the query does not 
matter (thus written here as sets)

https://northeastern-datalab.github.io/cs7240/
https://homepages.inf.ed.ac.uk/apieris/courses/atfd2020/index.html
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Exercise: Find the Homomorphisms
q1: {E(x,y),E(y,z),E(z,w)}

q2: {E(x,y),E(y,z),E(z,x)} q3: {E(x,y),E(y,x)}

q5: {E(x,x)}q4: {E(x,y),E(y,x),E(y,y)}

?
What is the containment relation 
between these queries

x y z w

x

y

z

x y

xx y

Example by Andreas Pieris: https://homepages.inf.ed.ac.uk/apieris/courses/atfd2020/index.html

https://northeastern-datalab.github.io/cs7240/
https://homepages.inf.ed.ac.uk/apieris/courses/atfd2020/index.html
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Exercise: Find the Homomorphisms
q1: {E(x,y),E(y,z),E(z,w)}

q2: {E(x,y),E(y,z),E(z,x)} q3: {E(x,y),E(y,x)}

q5: {E(x,x)}q4: {E(x,y),E(y,x),E(y,y)}

?
What is the containment relation 
between these queries

x y z w

x

y

z

x y

xx y

Example by Andreas Pieris: https://homepages.inf.ed.ac.uk/apieris/courses/atfd2020/index.html

https://northeastern-datalab.github.io/cs7240/
https://homepages.inf.ed.ac.uk/apieris/courses/atfd2020/index.html
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x y z w

Exercise: Find the Homomorphisms

{x⟶x, y⟶y, z⟶z, w⟶x}

q1: {E(x,y),E(y,z),E(z,w)}

q2: {E(x,y),E(y,z),E(z,x)}

x

y

z

q3: {E(x,y),E(y,x)}
x y

{x⟶x, y⟶y, z⟶x, w⟶y}

q5: {E(x,x)}
x

q4: {E(x,y),E(y,x),E(y,y)}
x y

{x⟶y, y⟶x, z⟶y}
{x⟶y, y⟶y}

{x⟶x, y⟶x}

{x⟶y}

or {x⟶y, y⟶z, z⟶x, w⟶y}, etc.

or {x⟶y, y⟶y, z⟶y}, etc.

⊆ ⊇

⊆⊇

Example by Andreas Pieris: https://homepages.inf.ed.ac.uk/apieris/courses/atfd2020/index.html

https://northeastern-datalab.github.io/cs7240/
https://homepages.inf.ed.ac.uk/apieris/courses/atfd2020/index.html
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Query Homeomorphism Practice

q1(x,y) :- R(x,u),R(v,u),R(v,y)

q2(x,y) :- R(x,u),R(v,u),R(v,w),R(t,w),R(t,y)

?Are these queries equivalent

var(q1) = {x, u, v, y}

var(q2) = {x, u, v, w, t, y}

https://northeastern-datalab.github.io/cs7240/
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Query Homeomorphism Practice

var(q1) = {x, u, v, y}

var(q2) = {x, u, v, w, t, y}

q1(x,y) :- R(x,u),R(v,u),R(v,y)

q2(x,y) :- R(x,u),R(v,u),R(v,w),R(t,w),R(t,y)

Thus

q1 ⟶ q2

?
Which query contains the other?

https://northeastern-datalab.github.io/cs7240/
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Query Homeomorphism Practice

var(q1) = {x, u, v, y}

var(q2) = {x, u, v, w, t, y}

q1(x,y) :- R(x,u),R(v,u),R(v,y)

q2(x,y) :- R(x,u),R(v,u),R(v,w),R(t,w),R(t,y)

Thus q2 Í q1

q1 ⟶ q2

!

https://northeastern-datalab.github.io/cs7240/
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Query Homeomorphism Practice

var(q1) = {x, u, v, y}

var(q2) = {x, u, v, w, t, y}

q1(x,y) :- R(x,u),R(v,u),R(v,y)

q2(x,y) :- R(x,u),R(v,u),R(v,w),R(t,w),R(t,y)

and then q1 Í q2

q2 ⟶ q1Is there any homomorphism

?

https://northeastern-datalab.github.io/cs7240/
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Query Homeomorphism Practice

var(q1) = {x, u, v, y}

var(q2) = {x, u, v, w, t, y}

q1(x,y) :- R(x,u),R(v,u),R(v,y)

q2(x,y) :- R(x,u),R(v,u),R(v,w),R(t,w),R(t,y)

Thus q1 Í q2

q2 ⟶ q1

?

https://northeastern-datalab.github.io/cs7240/
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Query Homeomorphism Practice

var(q1) = {x, u, v, y}

var(q2) = {x, u, v, w, t, y}

q1(x,y) :- R(x,u),R(v,u),R(v,y)

q2(x,y) :- R(x,u),R(v,u),R(v,w),R(t,w),R(t,y)

Thus q1 Í q2

https://northeastern-datalab.github.io/cs7240/

