
18

Topic 2: Complexity of Query Evaluation
Unit 1: Conjunctive Queries (continued)
Lecture 12

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp22)
https://northeastern-datalab.github.io/cs7240/sp22/
2/25/2022

Updated 2/25/2022

https://northeastern-datalab.github.io/cs7240/sp22/

19Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Pre-class conversations

• Recapitulation of Datalog & Query Equivalence
• Suggestion: Scribes with 2 iterations

• today:
- Query equivalence of CQs & homomorphisms

https://northeastern-datalab.github.io/cs7240/

20

21

22

23

Outline: T2-1/2: Query Evaluation & Query Equivalence

• T2-1: Conjunctive Queries (CQs)
– CQ equivalence and containment
– Graph homomorphisms
– Homomorphism beyond graphs
– CQ containment
– CQ minimization

• T2-2: Equivalence Beyond CQs
– Union of CQs, and inequalities
– Union of CQs equivalence under bag semantics
– Tree pattern queries
– Nested queries

24Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Complexity of the Query Evaluation Problem

• The Query Evaluation Problem for Relational Calculus (RC):
- Given a RC formula ϕ and a database instance D, find ϕadom(D).

• Theorem: The Query Evaluation Problem for Relational Calculus is ...
... PSPACE-complete.

- PSPACE: decision problems, can be solved using an amount of memory that is
polynomial in the input length (~ in polynomial amount of space).

- PSPACE-complete: PSPACE + every other PSPACE problem can be transformed to it in
polynomial time (PSPACE-hard)

• Proof: We need to show both
• This problem is in PSPACE.
• This problem is PSPACE-hard. (We only focus on this task for Boolean RC queries)

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases

25Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Complexity of the Query Evaluation Problem

• Theorem: The Query Evaluation Problem for Boolean RC is PSPACE-hard.
• Reduction uses QBF (Quantified Boolean Formulas):
- Given QBF ∀x1 ∃x2 …. ∀xk ψ, is it true or false
- (notice every variable is quantified = bound at beginning of sentence; no free variables)

• Proof shows that QBF ≼ Query Evaluation for Relational Calculus
- Given QBF ∀x1 ∃x2 …. ∀xk ψ,
- Let V and P be two unary relations and D be the database instance with V(0), V(1), P(1)
- Obtain ψ* from ψ by replacing every occurrence of xi by P(xi), and ¬xi by ¬P(xi)
- Then the following statements are equivalent:

• ∀x1 ∃x2 …. ∀xk ψ is true
• ∀x1 [V(x1) → ∃x2 [V(x2) ∧ … ∀xk [V(xk) → ψ*]]…] is true on D

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases

28Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Sublanguages of Relational Calculus

• Question: Are there interesting sublanguages of relational calculus
for which the Query Containment Problem and the Query
Evaluation Problem are “easier” than the full relational calculus?

• Answer:
- Yes, the language of Conjunctive Queries (CQs) is such a sublanguage.
- Moreover, conjunctive queries are the most frequently asked queries

against relational databases.

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases

29Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Conjunctive Queries (CQs)

• Definition:
- A CQ is a query expressible by a RC formula in prenex normal form built from atomic

formulas R(y1,…,yn), and ∧ and ∃ only.

{ (x1,…,xk): ∃ z1 … ∃ zm 𝜙(x1, …,xk, z1,…,zk) },
- where 𝜙(x1, …,xk, z1,…,zk) is a conjunction of atomic formulas of the form R(y1,…,ym).
- Prenex formula: prefix (quantifiers & bound variables), then quantifier-free part

• Equivalently, a CQ is a query expressible by a RA expression of the form
- πX(σΘ(R1× …× Rn)), where
- Θ is a conjunction of equality atomic formulas (equijoin).

• Equivalently, a CQ is a query expressible by an SQL expression of the form
- SELECT <list of attributes>

FROM <list of relation names>
WHERE <conjunction of equalities>Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases

30Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Conjunctive Queries (CQs)

• Definition:
- A CQ is a query expressible by a RC formula in prenex normal form built from atomic

formulas R(y1,…,yn), and ∧ and ∃ only.

{ (x1,…,xk): ∃ z1 … ∃ zm 𝜙(x1, …,xk, z1,…,zk) },
- where 𝜙(x1, …,xk, z1,…,zk) is a conjunction of atomic formulas of the form R(y1,…,ym).

• Equivalently, a CQ can be written as a logic-programming rule:
Q(x1,…,xk) :- R1(u1), …, Rn(un), where

- Each variable xi occurs in the right-hand side of the rule.
- Each ui is a tuple of variables (not necessarily distinct)
- The variables occurring in the right-hand side (the body), but not in the left-hand side

(the head) of the rule are existentially quantified (but the quantifiers are not displayed).
Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases

31Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Conjunctive Queries (CQs)

• Every natural join is a conjunctive query with ...
... no existentially quantified variables

• Example: Given P(A,B,C), R(B,C,D)
- P ⋈ R = {(x,y,z,w): P(x,y,z) ∧ R(y,z,w)}
- q(x,y,z,w) :- P(x,y,z), R(y,z,w)

(no variables are existentially quantified)
- SELECT P.A, P.B, P.C, R.D

FROM P, R
WHERE P.B = R.B AND P.C = R.C

• Conjunctive queries are also known as SPJ-queries (SELECT-
PROJECT-JOIN queries)

https://northeastern-datalab.github.io/cs7240/

42Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Examples of Conjunctive Queries

• Return paths of Length 2: (binary output)

RC:

RA:

Datalog:

𝐸 from, to

?
?
?

https://northeastern-datalab.github.io/cs7240/

43Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Examples of Conjunctive Queries

• Return paths of Length 2: (binary output)

RC: 𝑥, 𝑦 ∃𝑧[𝐸 𝑥, 𝑧 ∧ 𝐸 𝑧, 𝑦]}

RA:

Datalog:

𝐸 from, to

?
?

1 2
2 1

E
Is there a path
of length 2 ?

https://northeastern-datalab.github.io/cs7240/

45Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Examples of Conjunctive Queries

• Return paths of Length 2: (binary output)

RC: 𝑥, 𝑦 ∃𝑧[𝐸 𝑥, 𝑧 ∧ 𝐸 𝑧, 𝑦]}

𝜋$/,$1(𝜎$23$4 𝐸×𝐸)RA:

Datalog:

unnamed perspective

𝐸 from, to

?

https://northeastern-datalab.github.io/cs7240/

46Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Examples of Conjunctive Queries

• Return paths of Length 2: (binary output)

• Is there a cycle of Length 3: (Boolean query)

RC: 𝑥, 𝑦 ∃𝑧[𝐸 𝑥, 𝑧 ∧ 𝐸 𝑧, 𝑦]}

RA:

Datalog:

RC:

Datalog:

unnamed perspective

𝐸 from, to

𝑄(x,y) :− 𝐸 𝑥, 𝑧 , 𝐸 𝑧, 𝑦

?
?

𝜋$/,$1(𝜎$23$4 𝐸×𝐸)

https://northeastern-datalab.github.io/cs7240/

47Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Examples of Conjunctive Queries

• Return paths of Length 2: (binary output)

• Is there a cycle of Length 3: (Boolean query)

RC: 𝑥, 𝑦 ∃𝑧[𝐸 𝑥, 𝑧 ∧ 𝐸 𝑧, 𝑦]}

RA:

Datalog:

RC:

Datalog:

unnamed perspective

𝐸 from, to

𝑄(x,y) :− 𝐸 𝑥, 𝑧 , 𝐸 𝑧, 𝑦

?
∃𝑥 ∃𝑦 ∃𝑧 [𝐸 𝑥, 𝑦 ∧ 𝐸 𝑦, 𝑧 ∧ 𝐸 𝑧, 𝑥]}

𝜋$/,$1(𝜎$23$4 𝐸×𝐸)

https://northeastern-datalab.github.io/cs7240/

48Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

𝑄 :− 𝐸 𝑥, 𝑦 , 𝐸 𝑦, 𝑧 , 𝐸 𝑧, 𝑥

∃𝑥 ∃𝑦 ∃𝑧 [𝐸 𝑥, 𝑦 ∧ 𝐸 𝑦, 𝑧 ∧ 𝐸 𝑧, 𝑥]}

Examples of Conjunctive Queries

• Return paths of Length 2: (binary output)

• Is there a cycle of Length 3: (Boolean query)

RC: 𝑥, 𝑦 ∃𝑧[𝐸 𝑥, 𝑧 ∧ 𝐸 𝑧, 𝑦]}

RA:

Datalog:

RC:

Datalog:

unnamed perspective

𝐸 from, to

𝑄(x,y) :− 𝐸 𝑥, 𝑧 , 𝐸 𝑧, 𝑦

𝜋$/,$1(𝜎$23$4 𝐸×𝐸)

https://northeastern-datalab.github.io/cs7240/

49Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Vardi’s Taxonomy of the Query Evaluation Problem

M.Y Vardi, “The Complexity of Relational Query Languages”, 1982

• Definition: Let L be a database query language.
- The combined complexity of L is the decision problem:

• given an L-sentence and a database instance D, is ϕ true on D?
• In symbols, does D ⊧ ϕ (does D satisfy ϕ)?

- The data complexity of L is the family of the following decision problems Pϕ, where ϕ is
an L-sentence:
• given a database instance D, does D ⊧ ϕ?

- The query complexity of L is the family of the following decision problems PD, where D is
a database instance:
• given an L-sentence ϕ, does D ⊧ ϕ?

Vardi. "The Complexity of Relational Query Languages." STOC 1982. https://doi.org/10.1145/800070.802186

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/800070.802186

50Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Vardi’s Taxonomy of the Query Evaluation Problem

Vardi’s “empirical” discovery:

• For most query languages L:
- The data complexity of L is of lower complexity than both the combined

complexity of L and the query complexity of L.
- The query complexity of L can be as hard as the combined complexity of L.

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases

51

Complexity Classes

LOGSPACE

Taxonomy of the Query Evaluation Problem for Relational Calculus

NLOGSPACE

P

NP

PSPACE

.

.

.

The Query Evaluation Problem
for Relational Calculus

Problem Complexity
Combined
Complexity

PSPACE-complete

Query Complexity • in PSPACE
• can be PSPACE-

complete

Data Complexity In LOGSPACE

Source: Phokion Kolaitis

52Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Summary

• Relational Algebra and Relational Calculus have “essentially” the
same expressive power.

• The Query Equivalence Problem for Relational Calculus is
undecidable.

• Therefore also the Query Containment Problem

• The Query Evaluation Problem for Relational Calculus:
- Data Complexity is in LOGSPACE
- Combined Complexity is PSPACE-complete
- Query Complexity is PSPACE-complete.

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases

62

Outline: T2-1/2: Query Evaluation & Query Equivalence

• T2-1: Conjunctive Queries (CQs)
– CQ equivalence and containment
– Graph homomorphisms
– Homomorphism beyond graphs
– CQ containment
– CQ minimization

• T2-2: Equivalence Beyond CQs
– Union of CQs, and inequalities
– Union of CQs equivalence under bag semantics
– Tree pattern queries
– Nested queries

63Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Injective, Surjective, and Bijective functions

Surjective
function

Bijective
function

Injective
function

Function

𝑓: 𝑋 → 𝑌

?

?

?

?
Source: https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection

64Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Injective, Surjective, and Bijective functions
maps each argument (element from its domain)
to exactly one image (element in its codomain)

𝑓: 𝑋 → 𝑌

∀𝑥 ∈ 𝑋, ∃! 𝑦 ∈ 𝑌[𝑦 = 𝑓(𝑥)]}

Surjective
function

Bijective
function

Injective
function

Function

?

?

?

Source: https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection

65Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

∀𝑥, 𝑥! ∈ 𝑋. [𝑥 ≠ 𝑥′ ⇒ 𝑓(𝑥) ≠ 𝑓(𝑥!)]
∀𝑥, 𝑥! ∈ 𝑋. 𝑓 𝑥 = 𝑓 𝑥! ⇒ 𝑥 = 𝑥!

Injective, Surjective, and Bijective functions

("one-to-one"): each element of the codomain is
mapped to by at most one element of the domain
(i.e. distinct elements of the domain map to
distinct elements in the codomain)

maps each argument (element from its domain)
to exactly one image (element in its codomain)

𝑓: 𝑋 → 𝑌

∀𝑥 ∈ 𝑋, ∃! 𝑦 ∈ 𝑌[𝑦 = 𝑓(𝑥)]}

logical transpose
without inequality:

Surjective
function

Bijective
function

Injective
function

Function

?

?

Source: https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection

66Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Injective, Surjective, and Bijective functions

("onto"): each element of the codomain is mapped
to by at least one element of the domain (i.e. the
image and the codomain of the function are equal)

("one-to-one"): each element of the codomain is
mapped to by at most one element of the domain
(i.e. distinct elements of the domain map to
distinct elements in the codomain)

maps each argument (element from its domain)
to exactly one image (element in its codomain)
∀𝑥 ∈ 𝑋, ∃! 𝑦 ∈ 𝑌[𝑦 = 𝑓(𝑥)]}

∀𝑦 ∈ 𝑌, ∃𝑥 ∈ 𝑋[𝑦 = 𝑓 𝑥]

Surjective
function

Bijective
function

Injective
function

Function

?
Source: https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection

∀𝑥, 𝑥! ∈ 𝑋. [𝑥 ≠ 𝑥′ ⇒ 𝑓(𝑥) ≠ 𝑓(𝑥!)]
∀𝑥, 𝑥! ∈ 𝑋. 𝑓 𝑥 = 𝑓 𝑥! ⇒ 𝑥 = 𝑥!

logical transpose
without inequality:

𝑓: 𝑋 → 𝑌

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection

67Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

∀𝑥, 𝑥! ∈ 𝑋. [𝑥 ≠ 𝑥′ ⇒ 𝑓(𝑥) ≠ 𝑓(𝑥!)]
∀𝑥, 𝑥! ∈ 𝑋. 𝑓 𝑥 = 𝑓 𝑥! ⇒ 𝑥 = 𝑥!

logical transpose
without inequality:

Injective, Surjective, and Bijective functions

("onto"): each element of the codomain is mapped
to by at least one element of the domain (i.e. the
image and the codomain of the function are equal)

("invertible"): each element of the codomain is
mapped to by exactly one element of the domain
(both injective and surjective)

("one-to-one"): each element of the codomain is
mapped to by at most one element of the domain
(i.e. distinct elements of the domain map to
distinct elements in the codomain)

maps each argument (element from its domain)
to exactly one image (element in its codomain)

𝑓: 𝑋 → 𝑌

∀𝑥 ∈ 𝑋, ∃! 𝑦 ∈ 𝑌[𝑦 = 𝑓(𝑥)]}

∀𝑦 ∈ 𝑌, ∃𝑥 ∈ 𝑋[𝑦 = 𝑓 𝑥]

∀𝑦 ∈ 𝑌, ∃! 𝑥 ∈ 𝑋[𝑦 = 𝑓(𝑥)]}

Surjective
function

Bijective
function

Injective
function

Function

Source: https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection

68Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Mappings: Injection, Surjection, and Bijection

?
?
?
?
?
?

https://northeastern-datalab.github.io/cs7240/

69Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Mappings: Injection, Surjection, and Bijection

?
?
?
?
?

not a mapping (or function)!

https://northeastern-datalab.github.io/cs7240/

70Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Mappings: Injection, Surjection, and Bijection

?
?
?
?

not a mapping (or function)!

injective function (or one-to-one): maps distinct elements
of its domain to distinct elements of its codomain

https://northeastern-datalab.github.io/cs7240/

71Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Mappings: Injection, Surjection, and Bijection

?
?
?

not a mapping (or function)!

injective function (or one-to-one): maps distinct elements
of its domain to distinct elements of its codomain

surjective (or onto): every element y in the codomain Y of f
has at least one element x in the domain that maps to it

https://northeastern-datalab.github.io/cs7240/

72Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Mappings: Injection, Surjection, and Bijection

?
?

not a mapping (or function)!

injective function (or one-to-one): maps distinct elements
of its domain to distinct elements of its codomain

surjective (or onto): every element y in the codomain Y of f
has at least one element x in the domain that maps to it

injective & surjective = bijection

https://northeastern-datalab.github.io/cs7240/

73Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Mappings: Injection, Surjection, and Bijection

?

not a mapping (or function)!

injective function (or one-to-one): maps distinct elements
of its domain to distinct elements of its codomain

surjective (or onto): every element y in the codomain Y of f
has at least one element x in the domain that maps to it

injective & surjective = bijection

neighter

https://northeastern-datalab.github.io/cs7240/

74Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Mappings: Injection, Surjection, and Bijection

injective function (or one-to-one): maps distinct elements
of its domain to distinct elements of its codomain

surjective (or onto): every element y in the codomain Y of f
has at least one element x in the domain that maps to it

injective & surjective = bijection

neighter

not a mapping (or function)!

not even a mapping!

https://northeastern-datalab.github.io/cs7240/

75Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Bijection, Injection, and Surjection

Sources: http://mathonline.wikidot.com/injections-surjections-and-bijections,
https://www.intechopen.com/books/protein-interactions/relating-protein-structure-and-function-through-a-bijection-and-its-implications-on-protein-structur,

https://northeastern-datalab.github.io/cs7240/
http://mathonline.wikidot.com/injections-surjections-and-bijections
https://www.intechopen.com/books/protein-interactions/relating-protein-structure-and-function-through-a-bijection-and-its-implications-on-protein-structur

76Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Bijection, Injection, and Surjection

Sources: https://www.mathsisfun.com/sets/injective-surjective-bijective.html, https://twitter.com/jdhamkins/status/841318019397779456,

https://northeastern-datalab.github.io/cs7240/
https://www.mathsisfun.com/sets/injective-surjective-bijective.html
https://twitter.com/jdhamkins/status/841318019397779456

77Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

We make a detour to Graph matching

• Finding a correspondence between the nodes and the edges of two
graphs that satisfies some (more or less stringent) constraints

https://northeastern-datalab.github.io/cs7240/

78Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Homomorphism

• A graph homomorphism h from graph G(VG,EG) to H(VH,EH), is a
mapping from VG to VH such that {x,y} ∈ EG implies {h(x),h(y)} ∈ EH
- "edge-preserving": if two nodes in G are linked by an edge, then they are

mapped to two nodes in H that are also linked

1

2

3

4

a b

c

G H

?Is there a homomorphism
from G to H

https://northeastern-datalab.github.io/cs7240/

79Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Homomorphism

• A graph homomorphism h from graph G(VG,EG) to H(VH,EH), is a
mapping from VG to VH such that {x,y} ∈ EG implies {h(x),h(y)} ∈ EH
- "edge-preserving": if two nodes in G are linked by an edge, then they are

mapped to two nodes in H that are also linked

1

2

3

4

a b

c

h: {(a,1), (b,3), (c,4)}
G H

does not need to be surjective!

https://northeastern-datalab.github.io/cs7240/

80Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Homomorphism

• A graph homomorphism h from graph G(VG,EG) to H(VH,EH), is a
mapping from VG to VH such that {x,y} ∈ EG implies {h(x),h(y)} ∈ EH
- "edge-preserving": if two nodes in G are linked by an edge, then they are

mapped to two nodes in H that are also linked

1

2

3

4

a b

c

a b

c

h: {(a,1), (b,3), (c,4)}
G H G

?Is there a homomorphism
from H to Gdoes not need to be surjective!

https://northeastern-datalab.github.io/cs7240/

81Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Homomorphism

• A graph homomorphism h from graph G(VG,EG) to H(VH,EH), is a
mapping from VG to VH such that {x,y} ∈ EG implies {h(x),h(y)} ∈ EH
- "edge-preserving": if two nodes in G are linked by an edge, then they are

mapped to two nodes in H that are also linked

1

2

3

4

a b

c

a b

c

h: {(a,1), (b,3), (c,4)} h: {(1,a), (2,a), (3,b), (4,c)}
does not need to be injective!

G H G

Correspondence can be many-to-one: nothing
prevents that 2 nodes in the first graph
are mapped to the same node in the second

does not need to be surjective!

Graphs are homomorphically equivalent

https://northeastern-datalab.github.io/cs7240/

82Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Graph Isomorphism

• Graphs G(VG,EG) and H(VH,EH) are isomorphic iff there is an invertible
h from VG to VH s.t. {x,y} ∈ EG iff {h(u),h(v)} ∈ EH
- We need to find a one-to-one correspondence

1

2

3

4

a b

c

G H

?Is there an isomorphism
from G to H

https://northeastern-datalab.github.io/cs7240/

83Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Graph Isomorphism

• Graphs G(VG,EG) and H(VH,EH) are isomorphic iff there is an invertible
h from VG to VH s.t. {x,y} ∈ EG iff {h(u),h(v)} ∈ EH
- We need to find a one-to-one correspondence

1

2

3

4

a b

c

G H
They are homomorphically equivalent,
but not isomorphic!

Is there an isomorphism
from G to H?

https://northeastern-datalab.github.io/cs7240/

84Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Graph Isomorphism

• Graphs G(VG,EG) and H(VH,EH) are isomorphic iff there is an invertible
h from VG to VH s.t. {x,y} ∈ EG iff {h(u),h(v)} ∈ EH
- We need to find a one-to-one correspondence

1 2

43

5

a

b

c

d

e

G H
Is there an isomorphism
from G to H?

https://northeastern-datalab.github.io/cs7240/

85Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Graph Isomorphism

• Graphs G(VG,EG) and H(VH,EH) are isomorphic iff there is an invertible
h from VG to VH s.t. {x,y} ∈ EG iff {h(u),h(v)} ∈ EH
- We need to find a one-to-one correspondence

1 2

43

5

a

b

c

d

e

G H
Is there an isomorphism
from G to H?

h: {(1,a), (2,b), (3,d), (4,c), (5,e)}
bijection = surjective and injective mapping

Yes:

https://northeastern-datalab.github.io/cs7240/

97

Outline: T2-1/2: Query Evaluation & Query Equivalence

• T2-1: Conjunctive Queries (CQs)
– CQ equivalence and containment
– Graph homomorphisms
– Homomorphism beyond graphs
– CQ containment
– CQ minimization

• T2-2: Equivalence Beyond CQs
– Union of CQs, and inequalities
– Union of CQs equivalence under bag semantics
– Tree pattern queries
– Nested queries

98Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Graph Homomorphism beyond graphs
Definition : Let G and H be graphs. A homomorphism of G to H is a function
f: V(G) → V(H) such that

(x,y) ∈ E(G) ⇒ (f(x),f(y)) ∈ E(H).

We sometimes write G → H (G ↛ H) if there is a homomorphism (no
homomorphism) of G to H

Definition of a homomorphism naturally extends to:
• digraphs (directed graphs)
• edge-colored graphs
• relational systems
• constraint satisfaction problems (CSPs)

https://northeastern-datalab.github.io/cs7240/

99Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

An example

G

H

2 3

1

3 "colors" of the vertices

Based upon an example from Rick Brewster's Graph homomorphism tutorial, 2006

a

b

cd

e

https://northeastern-datalab.github.io/cs7240/

100Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

An example

G

H

2 3

1

1

1

?Can this assignment be extended to a homomorphism?
Based upon an example from Rick Brewster's Graph homomorphism tutorial, 2006

a

b

cd

e

https://northeastern-datalab.github.io/cs7240/

101Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

An example

G

H

2 3

1

Can this assignment be extended to a homomorphism? No, this assignment requires a
loop on vertex 1 (in H)

Based upon an example from Rick Brewster's Graph homomorphism tutorial, 2006

a

b

cd

e

1

1

https://northeastern-datalab.github.io/cs7240/

102Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

An example

G

H

2 3

1

Can this assignment be extended to a homomorphism??
Based upon an example from Rick Brewster's Graph homomorphism tutorial, 2006

a

b

cd

e

1

2

https://northeastern-datalab.github.io/cs7240/

103Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

An example

G

H

2 3

1

Definition: Let G and H be graphs. A homom.
of G to H is a function f: V(G) → V(H) s.t. that

(x,y) ∈ E(G) ⇒ (f(x),f(y)) ∈ E(H).

Can this assignment be extended to a homomorphism??
Based upon an example from Rick Brewster's Graph homomorphism tutorial, 2006

a

b

cd

e

1

2

https://northeastern-datalab.github.io/cs7240/

104Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

An example

G

H

2 3

12

1 3

Definition: Let G and H be graphs. A homom.
of G to H is a function f: V(G) → V(H) s.t. that

(x,y) ∈ E(G) ⇒ (f(x),f(y)) ∈ E(H).

Based upon an example from Rick Brewster's Graph homomorphism tutorial, 2006

a

b

cd

e

1

2

https://northeastern-datalab.github.io/cs7240/

105Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

An example

G

1

Basically a partitioning problem!

32

The quotient set of the partition (set of equivalence classes of the
partition) is a subgraph of H.

Partition: {{a,d}, {b,e}, {c}}

a

b

d

ce

Quotient set: {[a], [b], [c]}

Based upon an example from Rick Brewster's Graph homomorphism tutorial, 2006

H

2 3

1

https://northeastern-datalab.github.io/cs7240/

106Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Some observations
When does G → K3 hold? (K3 = 3-clique = triangle)

?

https://northeastern-datalab.github.io/cs7240/

107Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Some observations

?
When does G → Kd hold? (Kd = d-clique)

When does G → K3 hold? (K3 = 3-clique = triangle)

iff G is 3-colorable

https://northeastern-datalab.github.io/cs7240/

108Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Some observations
When does G → K3 hold? (K3 = 3-clique = triangle)

iff G is 3-colorable

When does G → Kd hold? (Kd = d-clique)
iff G is d-colorable

Thus homomorphisms generalize colorings:
Notation: G → H is an H-coloring of G.

What is the complexity of testing for the existence of a homomorphism
(in the size of G)? ?

https://northeastern-datalab.github.io/cs7240/

109Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Some observations
When does G → K3 hold? (K3 = 3-clique = triangle)

iff G is 3-colorable

When does G → Kd hold? (Kd = d-clique)
iff G is d-colorable

Thus homomorphisms generalize colorings:
Notation: G → H is an H-coloring of G.

What is the complexity of testing for the existence of a homomorphism
(in the size of G)?

NP-complete

https://northeastern-datalab.github.io/cs7240/

110Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The complexity of H-coloring

Theorem [Hell, Nesetril'90]:
If H is bipartite or contains a self-loop, then H-coloring is
polynomial time solvable; otherwise, H is NP-complete.

H-coloring:
Let H be a fixed graph.
Instance: A graph G.
Question: Does G admit an H-coloring?

[Hell, Nesetril'90]: Hell, Nešetřil. On the complexity of H-coloring. Journal of Combinatorial Theory, 1990. https://doi.org/10.1016/0095-8956(90)90132-J

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1016/0095-8956(90)90132-J

111

Repeated variable names

Which of formulas implies the other??

In sentences with multiple quantifiers, distinct variables do not need
to range over distinct objects! (cp. homomorphism vs. isomorphism)

Wolfgang Gatterbauer. CS 7240: Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

$x.$y.	E(x,y)	 $x.	E(x,x)⟹
⟸

https://northeastern-datalab.github.io/cs7240/

112

$x.$y.	E(x,y)	

Repeated variable names

In sentences with multiple quantifiers, distinct variables do not need
to range over distinct objects! (cp. homomorphism vs. isomorphism)

$x.	E(x,x)

s t
1 1

E

⟸

Wolfgang Gatterbauer. CS 7240: Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

s t
1 2

E

https://northeastern-datalab.github.io/cs7240/

113

A more abstract (general)
view on homomorphisms

114Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Homomorphisms on Binary Structures

• Definition (Binary algebraic structure): A binary algebraic structure
is a set together with a binary operation on it. This is denoted by an
ordered pair (S,⋆) in which S is a set and ⋆ is a binary operation on S.

• Definition (homomorphism of binary structures): Let (S,⋆) and (S’,∘)
be binary structures. A homomorphism from (S,⋆) to (S’,∘) is a map
h: S⟶ S’ that satisfies, for all x, y in S:

h(x ⋆ y) = h(x) ∘ h(y)

• We can denote it by h: (S,⋆) ⟶ (S’,∘).

https://northeastern-datalab.github.io/cs7240/

115Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: from addition to multiplication

• Let h(x) = ex. Is h a homomorphism b/w two binary structures?

?

https://northeastern-datalab.github.io/cs7240/

116Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: from addition to multiplication

• Let h(x) = ex. Is h a homomorphism b/w two binary structures?
- Yes, from the real numbers with addition (ℝ,+) to
- the positive real numbers with multiplication (ℝ+,⋅)
- It is even an isomorphism!

• Let g(x) = eix. Is g also a homomorphism?

h:(ℝ,+) ⟶ (ℝ+,⋅)
h(x+y) = h(x) ⋅ h(y)

?
Paragraph screenshot from p.37 in 2004 - Dummit, Foote - Abstract algebra (book, 3rd ed). https://www.wiley.com/en-us/Abstract+Algebra%2C+3rd+Edition-p-9780471433347

https://northeastern-datalab.github.io/cs7240/
https://www.wiley.com/en-us/Abstract+Algebra%2C+3rd+Edition-p-9780471433347

117Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: from addition to multiplication

• Let h(x) = ex. Is h a homomorphism b/w two binary structures?
- Yes, from the real numbers with addition (ℝ,+) to
- the positive real numbers with multiplication (ℝ+,⋅)
- It is even an isomorphism!

• Let g(x) = eix. Is g also a homomorphism?
- Yes, from the real numbers with addition (ℝ,+) to
- the unit circle in the complex plane with rotation

Paragraph screenshot from p.37 in 2004 - Dummit, Foote - Abstract algebra (book, 3rd ed). https://www.wiley.com/en-us/Abstract+Algebra%2C+3rd+Edition-p-9780471433347

h:(ℝ,+) ⟶ (ℝ+,⋅)
h(x+y) = h(x) ⋅ h(y)

https://northeastern-datalab.github.io/cs7240/
https://www.wiley.com/en-us/Abstract+Algebra%2C+3rd+Edition-p-9780471433347

118Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: from addition to multiplication

Source: Socratica. Homomorphisms, 2014: https://www.youtube.com/watch?v=cYzp5IWqCsg

https://northeastern-datalab.github.io/cs7240/
https://www.youtube.com/watch?v=cYzp5IWqCsg

119Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: from addition to multiplication

Source: 3blue1brown. Euler's formula with introductory group theory, 2017: https://www.youtube.com/watch?v=mvmuCPvRoWQ

https://northeastern-datalab.github.io/cs7240/
https://www.youtube.com/watch?v=mvmuCPvRoWQ

120Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Isomorphism

• Definition: A homomorphism of binary structures is called an
isomorphism iff the corresponding map of sets is:
- one-to-one (injective) and
- onto (surjective).

https://northeastern-datalab.github.io/cs7240/

121Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Some homomorphisms

Binary structure (S,⋆)

Group (G,⋆) like (ℝ,+)Graph (V, E(x,y))

CQs (Var ∪ Constants, Relations {Ri(x,y,z), ...})

Restriction to operations that
closed, associative, with
identify element, and inverse

Restriction to Binary operator
that maps to 𝔹 = {True, False}

Extension to multiple
d-ary relations

https://northeastern-datalab.github.io/cs7240/

125

Outline: T2-1/2: Query Evaluation & Query Equivalence

• T2-1: Conjunctive Queries (CQs)
– CQ equivalence and containment
– Graph homomorphisms
– Homomorphism beyond graphs
– CQ containment
– CQ minimization

• T2-2: Equivalence Beyond CQs
– Union of CQs, and inequalities
– Union of CQs equivalence under bag semantics
– Tree pattern queries
– Nested queries

126Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query Containment

Two queries q1, q2 are equivalent, denoted q1 ≡ q2, if

Query q1 is contained in query q2 , denoted q1 ⊆ q2, if

Corollary
q1 ≡ q2 is equivalent to (q1 ⊆ q2 and q1 ⊇ q2)

If queries are Boolean, then query containment = logical implication:
q1 ⇔ q2 is equivalent to

for every database instance D, we have q1(D) = q2(D).

for every database instance D, we have q1(D) ⊆ q2(D)

?

the answer (set of tuples)
returned by one is guaranteed to
be identical to the other answer

https://northeastern-datalab.github.io/cs7240/

127Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query Containment

Two queries q1, q2 are equivalent, denoted q1 ≡ q2, if

Query q1 is contained in query q2 , denoted q1 ⊆ q2, if

Corollary
q1 ≡ q2 is equivalent to (q1 ⊆ q2 and q1 ⊇ q2)

If queries are Boolean, then query containment = logical implication:
q1 ⇔ q2 is equivalent to (q1 ⇒ q2 and q1 ⇐ q2)

for every database instance D, we have q1(D) = q2(D).

for every database instance D, we have q1(D) ⊆ q2(D)

the answer (set of tuples)
returned by one is guaranteed to
be identical to the other answer

https://northeastern-datalab.github.io/cs7240/

128Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query homomorphisms (and containment)
A homomorphism h from Boolean q2 to q1 is a function

for every atom R(x1,x2,...) in q2, there is an atom R(h(x1), h(x2), ...) in q1

Example
q1(x) :- R(x,y), R(y,y), R(y,z)
q2(s) :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)

y z

x
q1(x)

v

u

w

s

q2(x)

h2→1:

h: var(q2) → var(q1) ∪ const(q1) such that:

?

need to be same relation!

https://northeastern-datalab.github.io/cs7240/

129Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query homomorphisms (and containment)

Example
q1(x) :- R(x,y), R(y,y), R(y,z)
q2(s) :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)

y z

x
q1(x)

v

u

w

s

q2(x)

h2→1: {(s,x),(u,y),(v,y),(w,z)}

A homomorphism h from Boolean q2 to q1 is a function

for every atom R(x1,x2,...) in q2, there is an atom R(h(x1), h(x2), ...) in q1

h: var(q2) → var(q1) ∪ const(q1) such that:

Also: h2→1’: {s,u,v,w}→{y};
recall [Hell, Nesetril'90]

need to be same relation!

https://northeastern-datalab.github.io/cs7240/

130Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query homomorphisms (and containment)

Example
q1(x) :- R(x,y), R(y,y), R(y,z)
q2(s) :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)

y z

x
q1(x)

v

u

w

s

q2(x)

h2→1: {(s,x),(u,y),(v,y),(w,z)}

h1→2: ?

A homomorphism h from Boolean q2 to q1 is a function

for every atom R(x1,x2,...) in q2, there is an atom R(h(x1), h(x2), ...) in q1

h: var(q2) → var(q1) ∪ const(q1) such that:

need to be same relation!

https://northeastern-datalab.github.io/cs7240/

131Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query homomorphisms (and containment)

Example
q1(x) :- R(x,y), R(y,y), R(y,z)
q2(s) :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)

y z

x
q1(x)

v

u

w

s

q2(x)

h2→1: {(s,x),(u,y),(v,y),(w,z)}

h1→2: {(x,s),(y,v),(z,w)}

A homomorphism h from Boolean q2 to q1 is a function

for every atom R(x1,x2,...) in q2, there is an atom R(h(x1), h(x2), ...) in q1

h: var(q2) → var(q1) ∪ const(q1) such that:

?
What about:

need to be same relation!

https://northeastern-datalab.github.io/cs7240/

132Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query homomorphisms (and containment)

Example
q1(x) :- R(x,y), R(y,y), R(y,z)
q2(s) :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)

y z

x
q1(x)

v

u

w

s

q2(x)

h2→1: {(s,x),(u,y),(v,y),(w,z)}

h1→2: {(x,s),(y,v),(z,w)}

, R(v,v)

A homomorphism h from Boolean q2 to q1 is a function

for every atom R(x1,x2,...) in q2, there is an atom R(h(x1), h(x2), ...) in q1

h: var(q2) → var(q1) ∪ const(q1) such that:

need to be same relation!

https://northeastern-datalab.github.io/cs7240/

133Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query homomorphisms and containment

Example
q1(x) :- R(x,y), R(y,y), R(y,z)
q2(s) :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)

y z

x
q1(x)

v

u

w

s

q2(x)

h2→1: {(s,x),(u,y),(v,y),(w,z)}

h1→2: {(x,s),(y,v),(z,w)}

q1 ⊆ q2

q1 ⊉ q2

A homomorphism h from Boolean q2 to q1 is a function

for every atom R(x1,x2,...) in q2, there is an atom R(h(x1), h(x2), ...) in q1

h: var(q2) → var(q1) ∪ const(q1) such that:

$x.	E(x,x) $x.$y.	E(x,y)	
Compare to our earlier example:

?
⟹⟸

We will use homomorphisms to
reason about query containment.
We try to understand the direction

https://northeastern-datalab.github.io/cs7240/

134Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query homomorphisms and containment

Example
q1(x) :- R(x,y), R(y,y), R(y,z)
q2(s) :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)

y z

x
q1(x)

v

u

w

s

q2(x)

h2→1: {(s,x),(u,y),(v,y),(w,z)}

h1→2: {(x,s),(y,v),(z,w)}

q1 ⊆ q2

q1 ⊉ q2

A homomorphism h from Boolean q2 to q1 is a function

for every atom R(x1,x2,...) in q2, there is an atom R(h(x1), h(x2), ...) in q1

h: var(q2) → var(q1) ∪ const(q1) such that:

$x.	E(x,x) $x.$y.	E(x,y)	⟹
Compare to our earlier example:

We will use homomorphisms to
reason about query containment.
We try to understand the direction

https://northeastern-datalab.github.io/cs7240/

135Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Recap: "All homomorphisms" in one slide

G

q1 q2

h h

h
q1 ⊆ q2

G-coloring of q1

q1 ⇒ q2

Query evaluation
q2-coloring of G

CSP
PTIME in size of G NPC in size of G

https://northeastern-datalab.github.io/cs7240/

136Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Canonical database
Definition Canonical database
Given a conjunctive query q, the canonical database Dc[q] is the database
instance where each atom in q becomes a fact in the instance.

Example
q1(x) :- R(x,y), R(y,y), R(y,z)

Dc[q1] =?

https://northeastern-datalab.github.io/cs7240/

137Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Canonical database

Example
q1(x) :- R(x,y), R(y,y), R(y,z)

Just treat each variable as different constant J

{R('x','y'), R('y','y'), R('y','z')}Dc[q1] =

≡ {R(a,b), R(b,b), R(b,c)}

Definition Canonical database
Given a conjunctive query q, the canonical database Dc[q] is the database
instance where each atom in q becomes a fact in the instance.

≡ {R(1,2), R(2,2), R(2,3)}

https://northeastern-datalab.github.io/cs7240/

138Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

[Chandra and Merlin 1977]

We will only look at 2) ⇒ 1)

THEOREM (Query Containment)
Given two Boolean CQs q1, q2, the following statements are equivalent:

1) q1 ⊆ q2

2) There is a homomorphism h2→1 from q2 to q1

3) q2(DC[q1]) is true

Chandra, Merlin. "Optimal implementation of conjunctive queries in relational data bases." STOC 1977. https://doi.org/10.1145/800105.803397

(q1⇒ q2)

G

q1 q2q1 ⊆ q2

Query eval.

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/800105.803397

139Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

[Chandra and Merlin 1977]

G

q1 q2q1 ⊆ q2

Query eval.

g=v ∘ h
g(x)=v(h(x))

1. For q1(D) to hold, there is a valuation v s.t. v(q1) ∈ D
2. We will show that the composition g = v ∘ h is a valuation for q2

2a. By definition of h, for every R(x1,x2,...) in q2, R(h(x1),h(x2),...) in q1
2b. By definition of v, for every R(x1,x2,...) in q2, R(v(h(x1)),v(h(x2)),...) in D

We show: If there is a homomorphism h2→1, then for any D: q1(D) ⇒ q2(D)

https://northeastern-datalab.github.io/cs7240/

140Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

[Chandra and Merlin 1977]

y z

x
q1(x)

v

u

w

s

q2(x)

h2→1: {(s,x),(u,y),(v,y),(w,z)}

Example
q1() :- R(x,y), R(y,y), R(y,z)
q2() :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)

1. For q1(D) to hold, there is a valuation v s.t. v(q1) ∈ D

2a. By definition of h, for every R(x1,x2,...) in q2, R(h(x1),h(x2),...) in q1
2b. By definition of v, for every R(x1,x2,...) in q2, R(v(h(x1)),v(h(x2)),...) in D

We show: If there is a homomorphism h2→1, then for any D: q1(D) ⇒ q2(D)
g=v ∘ h

g(x)=v(h(x))2. We will show that the composition g = v ∘ h is a valuation for q2

https://northeastern-datalab.github.io/cs7240/

141Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

[Chandra and Merlin 1977]

y z

x
q1(x)

v

u

w

s

q2(x)

h2→1: {(s,x),(u,y),(v,y),(w,z)}

Example
q1() :- R(x,y), R(y,y), R(y,z)
q2() :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)

v={(x,a),(y,b),(z,c)}

R A B
a b
b b
b c

1. For q1(D) to hold, there is a valuation v s.t. v(q1) ∈ D

2a. By definition of h, for every R(x1,x2,...) in q2, R(h(x1),h(x2),...) in q1
2b. By definition of v, for every R(x1,x2,...) in q2, R(v(h(x1)),v(h(x2)),...) in D

We show: If there is a homomorphism h2→1, then for any D: q1(D) ⇒ q2(D)
g=v ∘ h

g(x)=v(h(x))2. We will show that the composition g = v ∘ h is a valuation for q2

https://northeastern-datalab.github.io/cs7240/

142Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

[Chandra and Merlin 1977]

y z

x
q1(x)

v

u

w

s

q2(x)

h2→1: {(s,x),(u,y),(v,y),(w,z)}

v={(x,a),(y,b),(z,c)}

Example
q1() :- R(x,y), R(y,y), R(y,z)
q2() :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v) R A B

a b
b b
b cg= {(s,a),(u,b),(v,b),(w,c)}

1. For q1(D) to hold, there is a valuation v s.t. v(q1) ∈ D

2a. By definition of h, for every R(x1,x2,...) in q2, R(h(x1),h(x2),...) in q1
2b. By definition of v, for every R(x1,x2,...) in q2, R(v(h(x1)),v(h(x2)),...) in D

We show: If there is a homomorphism h2→1, then for any D: q1(D) ⇒ q2(D)
g=v ∘ h

g(x)=v(h(x))2. We will show that the composition g = v ∘ h is a valuation for q2

https://northeastern-datalab.github.io/cs7240/

143Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Combined complexity of CQC and CQE
Corollary:
The following problems are NP-complete (in the size of Q or Q'):

2) Given a Boolean conjunctive query Q and an instance D, does D ⊨ Q ?

(a) Membership in NP follows from the Homomophism Theorem:

1) Given two (Boolean) conjunctive queries Q and Q’, is Q ⊆ Q’ ?

Proof:

(b) NP-hardness follows from 3-Colorability:

Q ⊆ Q' if and only if there is a homomorphism h: Q' → Q

G is 3-colorable if and only if QK3 ⊆ QG.

https://northeastern-datalab.github.io/cs7240/

144Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The Complexity of Database Query Languages

Relational
Calculus

CQs

Query Eval.:
Data Complexity

In LOGSPACE
(hence, in P)

In LOGSPACE
(hence, in P)

Query Eval.:
Combined Compl.

PSPACE-
complete

NP-complete

Query Equivalence
& Containment

Undecidable NP-complete

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases

185Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Exercise: Find Homomorphisms
q1: {E(x,y),E(y,z),E(z,w)}

Order of subgoals in the query does not
matter (thus written here as sets)

q2: {E(x,y),E(y,z),E(z,x)} q3: {E(x,y),E(y,x)}

q5: {E(x,x)}q4: {E(x,y),E(y,x),E(y,y)}

?
What is the containment relation
between these queries

Example by Andreas Pieris: https://homepages.inf.ed.ac.uk/apieris/courses/atfd2020/index.html

https://northeastern-datalab.github.io/cs7240/
https://homepages.inf.ed.ac.uk/apieris/courses/atfd2020/index.html

186Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Exercise: Find the Homomorphisms
q1: {E(x,y),E(y,z),E(z,w)}

q2: {E(x,y),E(y,z),E(z,x)} q3: {E(x,y),E(y,x)}

q5: {E(x,x)}q4: {E(x,y),E(y,x),E(y,y)}

?
What is the containment relation
between these queries

x y z w

x

y

z

x y

xx y

Example by Andreas Pieris: https://homepages.inf.ed.ac.uk/apieris/courses/atfd2020/index.html

Order of subgoals in the query does not
matter (thus written here as sets)

https://northeastern-datalab.github.io/cs7240/
https://homepages.inf.ed.ac.uk/apieris/courses/atfd2020/index.html

187Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Exercise: Find the Homomorphisms
q1: {E(x,y),E(y,z),E(z,w)}

q2: {E(x,y),E(y,z),E(z,x)} q3: {E(x,y),E(y,x)}

q5: {E(x,x)}q4: {E(x,y),E(y,x),E(y,y)}

?
What is the containment relation
between these queries

x y z w

x

y

z

x y

xx y

Example by Andreas Pieris: https://homepages.inf.ed.ac.uk/apieris/courses/atfd2020/index.html

https://northeastern-datalab.github.io/cs7240/
https://homepages.inf.ed.ac.uk/apieris/courses/atfd2020/index.html

188Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Exercise: Find the Homomorphisms
q1: {E(x,y),E(y,z),E(z,w)}

q2: {E(x,y),E(y,z),E(z,x)} q3: {E(x,y),E(y,x)}

q5: {E(x,x)}q4: {E(x,y),E(y,x),E(y,y)}

?
What is the containment relation
between these queries

x y z w

x

y

z

x y

xx y

Example by Andreas Pieris: https://homepages.inf.ed.ac.uk/apieris/courses/atfd2020/index.html

https://northeastern-datalab.github.io/cs7240/
https://homepages.inf.ed.ac.uk/apieris/courses/atfd2020/index.html

189Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

x y z w

Exercise: Find the Homomorphisms

{x⟶x, y⟶y, z⟶z, w⟶x}

q1: {E(x,y),E(y,z),E(z,w)}

q2: {E(x,y),E(y,z),E(z,x)}

x

y

z

q3: {E(x,y),E(y,x)}
x y

{x⟶x, y⟶y, z⟶x, w⟶y}

q5: {E(x,x)}
x

q4: {E(x,y),E(y,x),E(y,y)}
x y

{x⟶y, y⟶x, z⟶y}
{x⟶y, y⟶y}

{x⟶x, y⟶x}

{x⟶y}

or {x⟶y, y⟶z, z⟶x, w⟶y}, etc.

or {x⟶y, y⟶y, z⟶y}, etc.

⊆ ⊇

⊆⊇

Example by Andreas Pieris: https://homepages.inf.ed.ac.uk/apieris/courses/atfd2020/index.html

https://northeastern-datalab.github.io/cs7240/
https://homepages.inf.ed.ac.uk/apieris/courses/atfd2020/index.html

190Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query Homeomorphism Practice

q1(x,y) :- R(x,u),R(v,u),R(v,y)

q2(x,y) :- R(x,u),R(v,u),R(v,w),R(t,w),R(t,y)

?Are these queries equivalent

var(q1) = {x, u, v, y}

var(q2) = {x, u, v, w, t, y}

https://northeastern-datalab.github.io/cs7240/

191Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query Homeomorphism Practice

var(q1) = {x, u, v, y}

var(q2) = {x, u, v, w, t, y}

q1(x,y) :- R(x,u),R(v,u),R(v,y)

q2(x,y) :- R(x,u),R(v,u),R(v,w),R(t,w),R(t,y)

Thus

q1 ⟶ q2

?
Which query contains the other?

https://northeastern-datalab.github.io/cs7240/

192Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query Homeomorphism Practice

var(q1) = {x, u, v, y}

var(q2) = {x, u, v, w, t, y}

q1(x,y) :- R(x,u),R(v,u),R(v,y)

q2(x,y) :- R(x,u),R(v,u),R(v,w),R(t,w),R(t,y)

Thus q2 Í q1

q1 ⟶ q2

!

https://northeastern-datalab.github.io/cs7240/

193Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query Homeomorphism Practice

var(q1) = {x, u, v, y}

var(q2) = {x, u, v, w, t, y}

q1(x,y) :- R(x,u),R(v,u),R(v,y)

q2(x,y) :- R(x,u),R(v,u),R(v,w),R(t,w),R(t,y)

and then q1 Í q2

q2 ⟶ q1Is there any homomorphism

?

https://northeastern-datalab.github.io/cs7240/

194Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query Homeomorphism Practice

var(q1) = {x, u, v, y}

var(q2) = {x, u, v, w, t, y}

q1(x,y) :- R(x,u),R(v,u),R(v,y)

q2(x,y) :- R(x,u),R(v,u),R(v,w),R(t,w),R(t,y)

Thus q1 Í q2

q2 ⟶ q1

?

https://northeastern-datalab.github.io/cs7240/

195Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query Homeomorphism Practice

var(q1) = {x, u, v, y}

var(q2) = {x, u, v, w, t, y}

q1(x,y) :- R(x,u),R(v,u),R(v,y)

q2(x,y) :- R(x,u),R(v,u),R(v,w),R(t,w),R(t,y)

Thus q1 Í q2

https://northeastern-datalab.github.io/cs7240/

