
1

Topic 1: Data models and query languages
Unit 4: Datalog
Lecture 08

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp22)
https://northeastern-datalab.github.io/cs7240/sp22/
2/11/2022

Updated 2/23/2022

https://northeastern-datalab.github.io/cs7240/sp22/

2Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Where We Are

• Relational query languages we have seen so far:
- SQL
- Relational Calculus
- Relational Algebra

• They can express the same class of relational queries (ignoring
extensions, such as grouping, aggregates, or sorting)
- How powerful are they? What is missing?

https://northeastern-datalab.github.io/cs7240/

3Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which are Relational Queries? Which are not? And Why?

• Given Friend(X,Y): Find all people X whose number of friends is a prime
number

• Find all people who are friends with everyone who is not a friend of Bob

• Partition all people into three sets P1(X),P2(X),P3(X) s.t. any two friends
are in different partitions

• Find all people who are direct or indirect friends with Alice (connected
in arbitrary length)

?

?

?

?Source: Dan Suciu, CSE 554, 2011.

https://northeastern-datalab.github.io/cs7240/

4Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which are Relational Queries? Which are not? And Why?

• Given Friend(X,Y): Find all people X whose number of friends is a prime
number

• Find all people who are friends with everyone who is not a friend of Bob

• Partition all people into three sets P1(X),P2(X),P3(X) s.t. any two friends
are in different partitions

• Find all people who are direct or indirect friends with Alice (connected
in arbitrary length)

NO: needs higher math; not possible with RA

?

?

?Source: Dan Suciu, CSE 554, 2011.

https://northeastern-datalab.github.io/cs7240/

5Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which are Relational Queries? Which are not? And Why?

• Given Friend(X,Y): Find all people X whose number of friends is a prime
number

• Find all people who are friends with everyone who is not a friend of Bob

• Partition all people into three sets P1(X),P2(X),P3(X) s.t. any two friends
are in different partitions

• Find all people who are direct or indirect friends with Alice (connected
in arbitrary length)

NO: needs higher math; not possible with RA

YES: {x | ∀y.(¬Friend(y, 'Bob')⇒Friend(x,y) } DI?

?

?Source: Dan Suciu, CSE 554, 2011.

{x | Person(x) ⋀ ∀y.[Person(y) ⋀ ¬Friend(y,'Bob')⇒Friend(x,y)]}

https://northeastern-datalab.github.io/cs7240/

6Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which are Relational Queries? Which are not? And Why?

• Given Friend(X,Y): Find all people X whose number of friends is a prime
number

• Find all people who are friends with everyone who is not a friend of Bob

• Partition all people into three sets P1(X),P2(X),P3(X) s.t. any two friends
are in different partitions

• Find all people who are direct or indirect friends with Alice (connected
in arbitrary length)

NO: needs higher math; not possible with RA

NO: equivalent to 3-coloring; NP-complete

Source: Dan Suciu, CSE 554, 2011. ?

YES: {x | ∀y.(¬Friend(y, 'Bob')⇒Friend(x,y) }
{x | Person(x) ⋀ ∀y.[Person(y) ⋀ ¬Friend(y,'Bob')⇒Friend(x,y)]}

https://northeastern-datalab.github.io/cs7240/

7Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which are Relational Queries? Which are not? And Why?

• Given Friend(X,Y): Find all people X whose number of friends is a prime
number

• Find all people who are friends with everyone who is not a friend of Bob

• Partition all people into three sets P1(X),P2(X),P3(X) s.t. any two friends
are in different partitions

• Find all people who are direct or indirect friends with Alice (connected
in arbitrary length)

NO: needs higher math; not possible with RA

NO: equivalent to 3-coloring; NP-complete

NO: recursive query; PTIME yet know expressible in RA
Next: Datalog: extends monotone RA with recursion

Source: Dan Suciu, CSE 554, 2011.

YES: {x | ∀y.(¬Friend(y, 'Bob')⇒Friend(x,y) }
{x | Person(x) ⋀ ∀y.[Person(y) ⋀ ¬Friend(y,'Bob')⇒Friend(x,y)]}

https://northeastern-datalab.github.io/cs7240/

8
Source: https://en.wikipedia.org/wiki/Relational_algebra#Transitive_closure

https://en.wikipedia.org/wiki/Relational_algebra

9Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Datalog

• Database query language designed in the 80’s
• Simple, concise, elegant
- "Clean" restriction of Prolog with DB access
- Expressive & declarative:
• Set-of-rules semantics
• Independence of execution order
• Invariance under logical equivalence

• Few open source implementations, mostly academic
implementations

• Recently a hot topic, beyond databases:
- network protocols, static program analysis, DB+ML

Path(x,y) :- Arc(x,y).
Path(x,z) :- Arc(x,y), Path(y,z).
InCycle(x) :- Path(x,x).

Based on slides by Dan Suciu

501
E(S,T)

https://northeastern-datalab.github.io/cs7240/

10Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Manager(eid) :- Manages(_, eid)

DirectReports(eid, 0) :-
Employee(eid), not Manager(eid)

DirectReports(eid, level+1) :-
DirectReports(mid, level), Manages(mid, eid)

Recursion with SQL server vs. Datalog

SQL Query vs. Datalog: which
would you rather write?

Proprietary	SQL Datalog

Query on the left from Bieker, Lee. Mastering SQL server 2008. Example on the right by Dan Suciu

https://northeastern-datalab.github.io/cs7240/

12Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
https://cs.stackexchange.com/questions/14694/smallest-set-of-features-that-would-make-relational-algebra-turing-complete

CTE = Common Table Expession = WITH clause

https://northeastern-datalab.github.io/cs7240/
https://cs.stackexchange.com/questions/14694/smallest-set-of-features-that-would-make-relational-algebra-turing-complete

13Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
https://www.quora.com/Why-is-relational-algebra-not-Turing-complete , https://wiki.postgresql.org/wiki/Cyclic_Tag_System , https://en.wikipedia.org/wiki/Tag_system#Cyclic_tag_systems

https://northeastern-datalab.github.io/cs7240/
https://www.quora.com/Why-is-relational-algebra-not-Turing-complete
https://wiki.postgresql.org/wiki/Cyclic_Tag_System
https://en.wikipedia.org/wiki/Tag_system

14Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
https://www.quora.com/Why-is-relational-algebra-not-Turing-complete , https://wiki.postgresql.org/wiki/Cyclic_Tag_System , https://en.wikipedia.org/wiki/Tag_system#Cyclic_tag_systems

https://northeastern-datalab.github.io/cs7240/
https://www.quora.com/Why-is-relational-algebra-not-Turing-complete
https://wiki.postgresql.org/wiki/Cyclic_Tag_System
https://en.wikipedia.org/wiki/Tag_system

15Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Query Language Design

Query language design is still a popular topic, especially for
graphs. See e.g. https://www.tigergraph.com/gsql/

And the slides
https://courses.cs.washington.edu/courses/csed516/20au/le
ctures/lecture05-advanced-query-evaluation.pdf
from “DATA516/CSED516: Scalable Data Systems and
Algorithms!” Dan Suciu
https://courses.cs.washington.edu/courses/csed516/20au/

https://northeastern-datalab.github.io/cs7240/
https://www.tigergraph.com/gsql/
https://courses.cs.washington.edu/courses/csed516/20au/lectures/lecture05-advanced-query-evaluation.pdf
https://courses.cs.washington.edu/courses/csed516/20au/

16

Outline: T1-4: Datalog

• Datalog
– Datalog rules
– Recursion
– Semantics
– Datalog¬: Negation, stratification
– Datalog±
– Stable model semantics (Answer set programming)
– Datalog vs. RA
– Naive and Semi-naive evaluation (incl. Incremental View

Maintenance)

17Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Datalog: Facts and Rules Actor(id, fname, lname)
Plays(aid, mid)
Movie(id, name, year)

Rules: queriesFacts: tuples in the database

Q1(y) :- Movie(x,y,z), z='1940'.

Q2(f,l) :- Actor(u,f,l), Plays(u,x),
Movie(x,y,z), z<'1940'.

Q3(f,l) :- Actor(z,f,l), Plays(z,x1), Movie(x1,y1,1910),
Plays(z,x2), Movie(x2,y2,1940).

Schema

?

?

?

Actor(344759,'Douglas', 'Fowley').
Casts(344759, 7909).
Casts(344759, 29000).
Movie(7909, 'A Night in Armour', 1910).
Movie(29000, 'Arizona', 1940).
Movie(29445, 'Ave Maria', 1940).

(notice position matters: unnamed perspective)

Examples by Dan Suciu

https://northeastern-datalab.github.io/cs7240/

18Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Datalog: Facts and Rules

Rules: queriesFacts: tuples in the database

Schema

Find movies from 1940

?

?

Actor(344759,'Douglas', 'Fowley').
Casts(344759, 7909).
Casts(344759, 29000).
Movie(7909, 'A Night in Armour', 1910).
Movie(29000, 'Arizona', 1940).
Movie(29445, 'Ave Maria', 1940).

(notice position matters: unnamed perspective)

Examples by Dan Suciu

Actor(id, fname, lname)
Plays(aid, mid)
Movie(id, name, year)

Q3(f,l) :- Actor(z,f,l), Plays(z,x1), Movie(x1,y1,1910),
Plays(z,x2), Movie(x2,y2,1940).

Q2(f,l) :- Actor(u,f,l), Plays(u,x),
Movie(x,y,z), z<'1940'.

Q1(y) :- Movie(x,y,z), z='1940'.

https://northeastern-datalab.github.io/cs7240/

19Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Datalog: Facts and Rules

Rules: queriesFacts: tuples in the database

Actor(344759,'Douglas', 'Fowley').
Casts(344759, 7909).
Casts(344759, 29000).
Movie(7909, 'A Night in Armour', 1910).
Movie(29000, 'Arizona', 1940).
Movie(29445, 'Ave Maria', 1940).

Schema

Find movies from 1940

Find actors who played in a movie before 1940

?

(notice position matters: unnamed perspective)

Examples by Dan Suciu

Actor(id, fname, lname)
Plays(aid, mid)
Movie(id, name, year)

Q2(f,l) :- Actor(u,f,l), Plays(u,x),
Movie(x,y,z), z<'1940'.

Q1(y) :- Movie(x,y,z), z='1940'.

Q3(f,l) :- Actor(z,f,l), Plays(z,x1), Movie(x1,y1,1910),
Plays(z,x2), Movie(x2,y2,1940).

https://northeastern-datalab.github.io/cs7240/

20Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Actor(id, fname, lname)
Plays(aid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Rules: queriesFacts: tuples in the database

Actor(344759,'Douglas', 'Fowley').
Casts(344759, 7909).
Casts(344759, 29000).
Movie(7909, 'A Night in Armour', 1910).
Movie(29000, 'Arizona', 1940).
Movie(29445, 'Ave Maria', 1940).

Schema

Find movies from 1940

Find actors who played in a movie before 1940

Find actors who played in a movie from 1910 and from 1940

(notice position matters: unnamed perspective)

Examples by Dan Suciu ?

Q2(f,l) :- Actor(u,f,l), Plays(u,x),
Movie(x,y,z), z<'1940'.

Q1(y) :- Movie(x,y,z), z='1940'.

Q3(f,l) :- Actor(z,f,l), Plays(z,x1), Movie(x1,y1,1910),
Plays(z,x2), Movie(x2,y2,1940).

https://northeastern-datalab.github.io/cs7240/

21Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Actor(id, fname, lname)
Plays(aid, mid)
Movie(id, name, year)

Q2(f,l) :- Actor(u,f,l), Plays(u,x),
Movie(x,y,z), z<'1940'.

Q4(f,l) :- Actor(z,f,l), Plays(z,x1), Movie(x1,y1,1910).
Q4(f,l) :- Actor(z,f,l), Plays(z,x2), Movie(x2,y2,1940).

Datalog: Facts and Rules

Extensional Database (EDB) predicates: Actor, Plays, Movie
Intensional Database (IDB) predicates: Q1, Q2, Q3, Q4

Rules: queriesFacts: tuples in the database

Actor(344759,'Douglas', 'Fowley').
Casts(344759, 7909).
Casts(344759, 29000).
Movie(7909, 'A Night in Armour', 1910).
Movie(29000, 'Arizona', 1940).
Movie(29445, 'Ave Maria', 1940).

Q1(y) :- Movie(x,y,z), z='1940'.

Schema

Find movies from 1940

Find actors who played in a movie before 1940

Find actors who played in a movie from 1910 and from 1940

(notice position matters: unnamed perspective)

Examples by Dan Suciu

https://northeastern-datalab.github.io/cs7240/

