Updated 2/23/2022

Topic 1: Data models and query languages
Unit 4: Datalog

Lecture 08

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp22)

https://northeastern-datalab.github.io/cs7240/sp22/
2/11/2022

https://northeastern-datalab.github.io/cs7240/sp22/

Where We Are

e Relational query languages we have seen so far:
- SQL
— Relational Calculus
— Relational Algebra

« They can express the same class of relational queries (ignoring
extensions, such as grouping, aggregates, or sorting)
— How powerful are they? What is missing?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

Which are Relational Queries? Which are not? And Why?

e Given Friend(X,Y): Find all people X whose number of friends is a prime
number f?

« Find all people who are friends with everyone who is not a friend of Bob

?

o Partition all people into three sets P1(X),P2(X),P3(X) s.t. any two friends
are in different partitions

?

e Find all people who are direct or indirect friends with Alice (connected
in arbitrary length)

?

Source: Dan Suciu, CSE 554, 2011. u
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

Which are Relational Queries? Which are not? And Why?

e Given Friend(X,Y): Find all people X whose number of friends is a prime
number

« Find all people who are friends with everyone who is not a friend of Bob

?

o Partition all people into three sets P1(X),P2(X),P3(X) s.t. any two friends
are in different partitions

?

e Find all people who are direct or indirect friends with Alice (connected
in arbitrary length)

?

Source: Dan Suciu, CSE 554, 2011. u
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

Which are Relational Queries? Which are not? And Why?

e Given Friend(X,Y): Find all people X whose number of friends is a prime

number NO: needs higher math; vot possible with RA

e Find all people who are friends with everyone who is not a friend of Bob
VES: {x | Yy.(=Friend(y, "Bob')=>Friend(x,y) } DI
£ | Person(x) A Yy.[Person(y) A ~Friend(y, Bob')=>Friend(x)13
o Partition all people into three sets P1(X),P2(X),P3(X) s.t. any two friends

are in different partitions

?

e Find all people who are direct or indirect friends with Alice (connected
in arbitrary length)

?

Source: Dan Suciu, CSE 554, 2011. u
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

Which are Relational Queries? Which are not? And Why?

e Given Friend(X,Y): Find all people X whose number of friends is a prime

number NO: needs higher math; vot possible with RA

e Find all people who are friends with everyone who is not a friend of Bob
VES: {x | Yy.(=Friend(y, "Bob')=>Friend(x,y) }
£ | Person(x) A Yy.[Person(y) A ~Friend(y, Bob')=>Friend(x)13
« Partition all people into three sets P1(X),P2(X),P3(X) s.t. any two friends

are in different partitions
NO: equivalewt to 3-coloring; NP-complete

e Find all people who are direct or indirect friends with Alice (connected
in arbitrary length)

?

Source: Dan Suciu, CSE 554, 2011. u
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

Which are Relational Queries? Which are not? And Why?

Given Friend(X,Y): Find all people X whose number of friends is a prime

number NO: needs higher math; vot possible with RA

Find all people who are friends with everyone who is not a friend of Bob
VES: {x | Yy.(=Friend(y, "Bob')=>Friend(x,y) }
£ | Person(x) A Yy.[Person(y) A ~Friend(y, Bob')=>Friend(x)13
Partition all people into three sets P1(X),P2(X),P3(X) s.t. any two friends

are in different partitions
NO: equivalewt to 3-coloring; NP-complete

Find all people who are direct or indirect friends with Alice (connected

in arbitrary length) yo. recursive auery; PTIME yet know expressible in RA
Next: Datalog: extends monotone RA with recursion

Source: Dan Suciu, CSE 554, 2011.
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

Transitive closure |edit]

Although relational algebra seems powerful enough for most practical purposes, there are some simple and
natural operators on relations that cannot be expressed by relational algebra. One of them is the transitive
closure of a binary relation. Given a domain D, let binary relation R be a subset of DxD. The transitive
closure R* of Ris the smallest subset of DxD that contains R and satisfies the following condition:

VzVyvz ((z,y) € R* A (y,2) € R" = (z,2) € R")

There is no relational algebra expression E(R) taking R as a variable argument that produces R*. This can
be proved using the fact that, given a relational expression E for which it is claimed that E(R) = R*, where R
is a variable, we can always find an instance r of R (and a corresponding domain d) such that E(r) = r+.[14]

SQL however officially supports such fixpoint queries since 1999, and it had vendor-specific extensions in
this direction well before that.

Source: https://en.wikipedia.org/wiki/Relational algebra#Transitive closure

https://en.wikipedia.org/wiki/Relational_algebra

Datalog EST) o &

« Database query language designed in the 80’s

e Simple, concise, elegant (xy) = Arc(xy).

— "Clean" restriction of Prolog with DB access (x,z) - Arc(x,y), Path(y,z).
(x) :- (X,X).

— Expressive & declarative:

* Set-of-rules semantics
* Independence of execution order
* |nvariance under logical equivalence

« Few open source implementations, mostly academic
implementations 4!

e Recently a hot topic, beyond databases:

— network protocols, static program analysis, DB+ML

dlvsystem

¢ 4" SPIN-OFF

V OF UNIVERSITY OF CALABRIA

LogicBlox
Based on slides by Dan Suciu

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 9

https://northeastern-datalab.github.io/cs7240/

Recursion with SQL server vs. Datalog E(A,

)

Proprietary SQL Datalog F1 (Q)YM\M/O

LISTING 4.7 Using Common Table Expressions for Recursive Operations Mana ge r(ei d) - Mana geS(ei d)
¢ —

USE AdventureWorks;
WITH DirectReports (ManagerID, EmployeeID, EmployeeName, Title)

e DirectReports(eid, Q) :-
-- Anchor member definition Emp|oyee(eid)’ No anager(eid)
SELECT e.ManagerID, e.EmployeeID, c.FirstName + ' ' + c.LastName, e.Title
FROM HumanResources.Employee AS e
INNER JOIN Person.Contact as ¢ . -a .
ON e.ContactID = c.ContactID DlreCtRepOrtS(éT ’ |eve|+1) -
WHERE ManagerID IS NULL
UNTON ALL DirectReports(mid, level), Manages(rhid, ¢id)
-- Recursive member definition 28 « \,\
SELECT e.ManagerID, e.EmployeeID,c.FirstName + ' ' + c.LastName ,e.Title

FROM HumanResources.Employee AS e
INNER JOIN DirectReports AS d

ON e.ManagerID = d.EmpTloyeelD Q\/

INNER JOIN Person.Contact as c
ON e.ContactID = c.ContactID

) AN

-- Statement that executes the CTE V\ .
SELECT EmployeeID, EmployeeName, Title, ManagerID SQL QM@V‘\,{ VS‘ _Da—l‘alo@: WVNGV]
FROM DirectReports

w M ,f\ wounld you rather write?

4
4

Query on the left from Bieker, Lee. Mastering SQL server 2008. Igample on the right by Dan Suciu
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

10

https://northeastern-datalab.github.io/cs7240/

Smallest set of features that would make relational algebra Turing complete

Asked 8 years, 4 months ago Active 5 years, 5 months ago Viewed 296 times

You need just two things: new values and recursion/while.

il New values means the ability to execute some external function that returns values that were
not already to be found in the database. Obviously most implementations (including SQL)

have that. CTE = Comwmon Table Expession = WL TH claunse

V Recursion/while means the ability to e a loop or iterative computation that may not
terminate. The CTE RECURSIVE feature of SQL is one such.

SQL with CTE RECURSIVE is Turing Complete (without stored procedures).

See the Alice book http://webdam.inria.fr/Alice/ for a detailed treatment.

Share Cite Improve this answer Follow answered Sep 12016 at 5:47

david.pfx
Dz 176 o4

https://cs.stackexchange.com/questions/14694/smallest-set-of-features-that-would-make-relational-algebra-turing-complete
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 12

https://northeastern-datalab.github.io/cs7240/
https://cs.stackexchange.com/questions/14694/smallest-set-of-features-that-would-make-relational-algebra-turing-complete

Q Jan Hidders, Database researcher

Answered 2 years ago - Author has 615 answers and 840K answer views

Why is SQL not Turing complete?

Some variants of SQL, including some of the ISO standards, are actually Turing
complete.

The most obvious example is SQL:1999 with the SQL/PSM extension, which adds
stored procedures and therefore recursive functions and programming
constructs that were intended to turn SQL into a programming language.

A less obvious example is SQL:2003 without stored procedures. It can be shown
to be Turing complete using a clever combination of recursive queries (using
Common Table Expressions) and Windowing, the first introduced in SQL:1999
and the latter since SQL:2003. See: http://assets.en.oreilly.com/1/event
[27/High%20Performance%20SQL%20with%20PostgreSQL%20Presentation.pd
T4).

Nevertheless, it is true that the core of SQL was deliberately designed to be not
Turing complete. The main reasons for this are:

1. By restricting the query language the programmer is encouraged to
separate the computational task into a part that can be efficiently
computed and optimised by the DBMS (namely the part that can be
formulated in SQL) and a part that the programmer probably can better
implement by themselves.

2. By restricting the query language to computations that always terminate
and can be computed in polynomial time and logarithmic space, we can
reduce the risk of burdening the database server with a workload that it
cannot deal with.

1.4K views - View upvotes

Cyclic Tag System

Fun Snippets
This SQL query (requires PostgreSQL 8.4) forms a cyclic tag system (wikipedia), which is sufficient to demonstrate that

SQL is Turing-complete. It is written entirely in SQL:2003-conformant SQL. Cyclic Tag System

Thanks to Andrew (RhodiumToad) Gierth, who came up with the concept and wrote the code. Works with PostgreSQL
The productions are encoded in the table "p" as follows: 8.4
Written in

"iter" is the production number; saL

"rnum" is the index of the bit;

"tag" is the bit value. Depends on

Nothin
This example uses the productions: 9

110 01 0000

The initial state is encoded in the non-recursive union arm, in this case just '1'

The mod(r.iter, n) subexpression encodes the number of productions, which can be greater than the size of table "p", because empty productions are
not included in the table.

Parameters:

the content of "p"
the content of the non-recursive branch
the 3 in mod(r.iter, 3)

"p" encodes the production rules; the non-recursive branch is the initial state, and the 3 is the number of rules
The result at each level is a bitstring encoded as 1 bit per row, with rnum as the index of the bit number.

At each iteration, bit 0 is removed, the remaining bits shifted up one, and if and only if bit 0 was a 1, the content of the current production rule is
appended at the end of the string.

WITH RECURSIVE
p(iter,rnum,tag) AS (
VALUES (0,0,1),(0,1,1),(0,2,0),
(1,0,0),(1,1,1),
) (2,0,0),(2,1,0),(2,2,0),(2,3,0)
’
r(iter,rnum,tag) AS (
VALUES (0,0,1)
UNION ALL
SELECT r.iter+1,
CASE
WHEN r.rnum=0 THEN p.rnum + max(r.rnum) OVER ()
ELSE r.rnum-1
END,
CASE
WHEN r.rnum=0 THEN p.tag
ELSE r.tag
END
FROM

.
LEFT JOIN p

ON (r.rnum=0 and r.tag=1 and p.iter=mod(r.iter, 3))
WHERE

r.rnum>0
OR p.iter IS NOT NULL

)

SELECT iter, rnum, tag
FROM r

ORDER BY iter, rnum;

https://www.quora.com/Why-is-relational-algebra-not-Turing-complete , https://wiki.postgresql.org/wiki/Cyclic Tag System, https://en.wikipedia.org/wiki/Tag system#Cyclic tag systems

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://www.quora.com/Why-is-relational-algebra-not-Turing-complete
https://wiki.postgresql.org/wiki/Cyclic_Tag_System
https://en.wikipedia.org/wiki/Tag_system

Cyclic tag systems |edit]

A cyclic tag system is a modification of the original tag system. The alphabet consists of only two symbols, 0 and 1,
and the production rules comprise a list of productions considered sequentially, cycling back to the beginning of the
list after considering the "last" production on the list. For each production, the leftmost symbol of the word is
examined—if the symbol is 1, the current production is appended to the right end of the word; if the symbol is 0, no
characters are appended to the word; in either case, the leftmost symbol is then deleted. The system halts if and
when the word becomes empty.

Example |edit]

Cyclic Tag System
Productions: (010, 000, 1111)

Computation
Initial Word: 11001
Production Word
010 11001
000 1001010
1111 001010000
010 01010000
000 1010000
1111 010000000
010 10000000

Cyclic tag systems were created by Matthew Cook and were used in Cook's demonstration that the Rule 110
cellular automaton is universal. A key part of the demonstration was that cyclic tag systems can emulate a Turing-
complete class of tag systems.

Cyclic Tag System

Fun Snippets
This SQL query (requires PostgreSQL 8.4) forms a cyclic tag system (wikipedia &), which is sufficient to demonstrate that

SQL is Turing-complete. It is written entirely in SQL:2003-conformant SQL. Cyclic Tag System

Thanks to Andrew (RhodiumToad) Gierth, who came up with the concept and wrote the code. Works with PostgreSQL
The productions are encoded in the table "p" as follows: 8.4
Written in
"iter" is the production number; saL

"rnum" is the index of the bit;

"tag" is the bit value. Depends on

Nothin
This example uses the productions: 9

110 01 0000

The initial state is encoded in the non-recursive union arm, in this case just '1'

The mod(r.iter, n) subexpression encodes the number of productions, which can be greater than the size of table "p", because empty productions are
not included in the table.

Parameters:

the content of "p"
the content of the non-recursive branch
the 3 in mod(r.iter, 3)

"p" encodes the production rules; the non-recursive branch is the initial state, and the 3 is the number of rules
The result at each level is a bitstring encoded as 1 bit per row, with rnum as the index of the bit number.

At each iteration, bit 0 is removed, the remaining bits shifted up one, and if and only if bit 0 was a 1, the content of the current production rule is
appended at the end of the string.

WITH RECURSIVE
p(iter,rnum,tag) AS (
VALUES (0,0,1),(0,1,1),(0,2,0),
(1,0,0),(1,1,1),
) (2,0,0),(2,1,0),(2,2,0),(2,3,0)
’
r(iter,rnum,tag) AS (
VALUES (0,0,1)
UNION ALL
SELECT r.iter+1,
CASE
WHEN r.rnum=0 THEN p.rnum + max(r.rnum) OVER ()
ELSE r.rnum-1
END,
CASE
WHEN r.rnum=0 THEN p.tag
ELSE r.tag
END
FROM

-
LEFT JOIN p

ON (r.rnum=0 and r.tag=1 and p.iter=mod(r.iter, 3))
WHERE

r.rnum>0
OR p.iter IS NOT NULL

)

SELECT iter, rnum, tag
FROM r

ORDER BY iter, rnum;

https://www.quora.com/Why-is-relational-algebra-not-Turing-complete , https://wiki.postgresql.org/wiki/Cyclic Tag System , https://en.wikipedia.org/wiki/Tag system#Cyclic tag systems

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://www.quora.com/Why-is-relational-algebra-not-Turing-complete
https://wiki.postgresql.org/wiki/Cyclic_Tag_System
https://en.wikipedia.org/wiki/Tag_system

Query Language Design

Query language design is still a popular topic, especially for
graphs. See e.g. https://www.tigergraph.com/gsql/

And the slides
https://courses.cs.washington.edu/courses/csed516/20au/le

ctures/lecture05-advanced-guery-evaluation.pdf
from “DATA516/CSED516: Scalable Data Systems and
Algorithms!” Dan Suciu

https://courses.cs.washington.edu/courses/csed516/20au/

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

15

https://northeastern-datalab.github.io/cs7240/
https://www.tigergraph.com/gsql/
https://courses.cs.washington.edu/courses/csed516/20au/lectures/lecture05-advanced-query-evaluation.pdf
https://courses.cs.washington.edu/courses/csed516/20au/

Outline: T1-4: Datalog

 Datalog

— Datalog rules

— Recursion

— Semantics

— Datalog™ Negation, stratification

— Datalog®

— Stable model semantics (Answer set programming)

— Datalog vs. RA

— Naive and Semi-naive evaluation (incl. Incremental View
Vaintenance)

16

Schema | Actor(id, fname, Iname)
Plays(aid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts: tuples in the database Rules: queries
(votice position matters: umamed perspective)
Actor(344759,'Douglas’, 'Fowley'). (y) :- Movie(x,y,z), z='1940".
Casts(344759, 7909). ?
Casts(344759, 29000). f
Movie(7909, 'A Night in Armour’, 1910). (£1) - Actor(u,f1), Plays(u.x),
Movie(29000, 'Arizona’, 1940). Vovie(x,y,z), z<'1940'.
Movie(29445, 'Ave Maria', 1940).

?

(f,1) :- Actor(z,f,1), Plays(z,x1), Movie(x1,y1,1910),
Plays(z,x2), Movie(x2,y2,1940).

Examples by Dan Suciu
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 17

https://northeastern-datalab.github.io/cs7240/

Schema | Actor(id, fname, Iname)
Plays(aid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts: tuples in the database Rules: queries
(votice position matters: ummamed perspective)
Actor(344759,'Douglas’, 'Fowley'). (y) :- Movie(x,y,z), z='1940".

Casts(344759, 7909).
Casts(344759, 29000).
Movie(7909, 'A Night in Armour’, 1910). (£1) == Actor(u,fl), Plays(u,x),
Movie(29000, 'Arizona’, 1940). Movie(x,y,z), z<'1940'.
Movie(29445, 'Ave Maria', 1940). ?

(f,1) :- Actor(z,f,1), Plays(z,x1), Movie(x1,y1,1910),
Plays(z,x2), Movie(x2,y2,1940).

Find movies from 1440

Examples by Dan Suciu
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 18

https://northeastern-datalab.github.io/cs7240/

Datalog: Facts and Rules

Schema | Actor(id, fname, Iname)
Plays(aid, mid)
Movie(id, name, year)

Facts: tuples in the database Rules: queries
(votice position matters: ummamed perspective)
Actor(344759,'Douglas’, 'Fowley'). (y) :- Movie(x,y,z), z='1940".

Casts(344759, 7909).

Casts(344759, 29000).
Movie(7909, 'A Night in Armour’, 1910). (£1) == Actor(u,fl), Plays(u,x),
Movie(29000, 'Arizona’, 1940). Movie(x,y,z), z<'1940'.
Movie(29445, 'Ave Maria', 1940).

Find movies from 1440

Find actors who plaved in a movie before 1440

(f,1) :- Actor(z,f,1), Plays(z,x1), Movie(x1,y1,1910),
Plays(z,x2), Movie(x2,y2,1940).

Examples by Dan Suciu
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 19

https://northeastern-datalab.github.io/cs7240/

Datalog: Facts and Rules

Facts: tuples in the database

Schema | Actor(id, fname, Iname)
Plays(aid, mid)
Movie(id, name, year)

Rules: queries
(votice position matters: ummamed perspective)

Actor(344759,'Douglas’, 'Fowley').
Casts(344759, 7909).

Casts(344759, 29000).

Movie(7909, 'A Night in Armour’, 1910).
Movie(29000, 'Arizona’, 1940).
Movie(29445, 'Ave Maria', 1940).

(y) :- Movie(x,y,z), z='1940'.

Find movies from 1440

(f,1) :- Actor(u,f,l), Plays(u,x),
Viovie(x,y,z), z<'1940'.

Find actors who plaved in a movie before 1440

(f,1) :- Actor(z,f,1), Plays(z,x1), Movie(x1,y1,1910),

Plays(z,x2), Movie(x2,y2,1940).

Find actors who plaved in a movie from 1a10 ayd from 1940

Examples by Dan Suciu

OR

?

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 20

https://northeastern-datalab.github.io/cs7240/

Datalog: Facts and Rules

Schema | Actor(id, fname, Iname)
Plays(aid, mid)
Movie(id, name, year)

Facts: tuples in the database Rules: queries
(votice position matters: ummamed perspective)
Actor(344759,'Douglas’, 'Fowley'). (y) :- Movie(x,y,z), z='1940".

Casts(344759, 7909).

Casts(344759, 29000).
Movie(7909, 'A Night in Armour’, 1910). (£1) == Actor(u,fl), Plays(u,x),
Movie(29000, 'Arizona’, 1940). Movie(x,y,z), z<'1940'.
Movie(29445, 'Ave Maria', 1940).

Find movies from 1440

Find actors who plaved in a movie before 1440

(f,1) :- Actor(z,f1), Plays(z,x1), Movie(x1,y1,1910).
(f,1) :- Actor(z,f1), Plays(z,x2), Movie(x2,y2,1940).

Find actors who plaved in a movie from 1a10 ayd from 1940
Extensional Database (EDB) predicates: Actor, Plays, Movie OR
Database (IDB) predicates: Q1, Q2, Q3, Q4
Examples by Dan Suciu

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 21

https://northeastern-datalab.github.io/cs7240/

