
175

Topic 1: Data models and query languages
Unit 3: Relational Algebra (continued)
Lecture 08

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp22)
https://northeastern-datalab.github.io/cs7240/sp22/
2/11/2022

Updated 2/11/2022

https://northeastern-datalab.github.io/cs7240/sp22/

176Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Pre-class conversations

• Last class recapitulation
• Please keep on pointing out any errors on the slides
• It is time to start to hand in your first scribble notes
• Project discussions
• Where we are

• today:
- Algebra: independence and Codd's theorem
- Recursion (Datalog)

https://northeastern-datalab.github.io/cs7240/

177Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

178

Algebra and the connection to logic and queries

• Algebra
• Relational Algebra

– Operators
– Independence
– Power of algebra: optimizations

• Equivalence RA and safe RC (Codd's theorem)

179Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

5 Primitive Operators

1. Projection (p)
2. Selection (s)
3. Union (⋃)
4. Set Difference (−)
5. Cross Product (×)

Is this a well chosen set of primitives? ?

https://northeastern-datalab.github.io/cs7240/

180Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

5 Primitive Operators

1. Projection (p)
2. Selection (s)
3. Union (⋃)
4. Set Difference (−)
5. Cross Product (×)

Could we drop an operator "without losing anything"?

Is this a well chosen set of primitives?

https://northeastern-datalab.github.io/cs7240/

182Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Independence among Primitives

• Let o be an RA operator, and let A be a set of RA operators

• We say that o is independent of A if o cannot be expressed in A;
that is, no expression in A is equivalent to o

THEOREM: Each of the five primitives
is independent of the other four {π, σ,×, ⋃, –}

Proof:
• Separate argument for each of the five
• Arguments follow a common pattern (next slide)
• We will do one operator here (union)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

183Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Recipe for Proving Independence of an operator o

1. Fix a schema S and an instance I over S

2. Find some property P over relations

3. Prove: for every expression φ that does not use o, the relation φ(I) satisfies P

4. Find an expression ψ such that ψ uses o and ψ(I) violates P

Such proofs are typically by induction on the size of the
expression, since operators compose

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

184Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Concrete Example: Proving Independence of Union ∪

1. Fix a schema S and an instance I over S
S: R(A), S(A) I: {R(0), S(1)}

2. Find some property P over relations
#tuples < 2

3. Prove: for every expression φ that does not use o, the relation φ(I) satisfies P
Induction base: R and S have #tuples<2

4. Find an expression ψ such that ψ uses o and ψ(I) violates P
ψ=R∪S

Induction step: If φ1(I) and φ2(I) have #tuples<2, then so do:
σc(φ1(I)), pA(φ1(I)), φ1(I)×φ2(I), φ1(I)−φ2(I), ρA→B(φ1(I))

R
A
0

S
A
1

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

186

Algebra and the connection to logic and queries

• Algebra
• Relational Algebra

– Operators
– Independence
– Power of algebra: optimizations

• Equivalence RA and safe RC (Codd's theorem)

187Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Commutativity and distributivity of RA operators

• The basic commutators:
- Push projection through selection, join, union
- Push selection through projection, join, union
- Also: Joins can be re-ordered!

• Note that this is not an exhaustive set of operations

This simple set of tools allows us to greatly improve the
execution time of queries by optimizing RA plans!

We next illustrate with an SFW (Select-From-Where) query

What about sorting and joins?

Foundations of Databases 65

Interaction of relational algebra operators

• πA1,...,An(R ∪ S) = πA1,...,An(R) ∪ πA1,...,An(S)

• σc(R ∪ S) = σc(R) ∪ σc(S)

• (R ∪ S) × T = R × T ∪ S × T

• T × (R ∪ S) = T × R ∪ T × S

Relational Query Languages

https://northeastern-datalab.github.io/cs7240/

190Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT R.A,T.D
FROM R,S,T
WHERE R.B = S.B

and S.C = T.C
and R.A < 10;

R(A,B) S(B,C) T(C,D)

An example: SQL to RA to Optimized RA

?

in RA

https://northeastern-datalab.github.io/cs7240/

191Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Π9,;

R(A,B) S(B,C)

T(C,D)

sA<10

Π6,7 𝜎689: 𝑇 ⋈ 𝑅 ⋈ 𝑆

SELECT R.A,T.D
FROM R,S,T
WHERE R.B = S.B

and S.C = T.C
and R.A < 10;

R(A,B) S(B,C) T(C,D)

An example: SQL to RA to Optimized RA

Query tree / expression tree /
computation tree / data flow graph

1. Leaves are
base relations

in RA

2. Other nodes
are operators

3. Root node
= query results

Heuristic: have selection and projection earlier to
have fewer (or smaller) "intermediate" tuples

https://northeastern-datalab.github.io/cs7240/

192Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Π9,;

R(A,B) S(B,C)

T(C,D)

sA<10

An example: SQL to RA to Optimized RA

SELECT R.A,T.D
FROM R,S,T
WHERE R.B = S.B

and S.C = T.C
and R.A < 10;

R(A,B) S(B,C) T(C,D)

Heuristic: have selection and projection earlier to
have fewer (or smaller) "intermediate" tuples

Pushing down may be suboptimal if selection condition is very expensive (e.g. running some image
processing algorithm). Projection could be unnecessary effort (but more rarely).

Π6,7 𝜎689: 𝑇 ⋈ 𝑅 ⋈ 𝑆

1. Push down selection on A

in RA

https://northeastern-datalab.github.io/cs7240/

193Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

R(A,B)

S(B,C)

T(C,D)

An example: SQL to RA to Optimized RA

sA<10

SELECT R.A,T.D
FROM R,S,T
WHERE R.B = S.B

and S.C = T.C
and R.A < 10;

R(A,B) S(B,C) T(C,D)

Π6,7 𝑇 ⋈ 𝜎689:𝑅 ⋈ 𝑆

Π9,;

Heuristic: have selection and projection earlier to
have fewer (or smaller) "intermediate" tuples

1. Push down selection on A

in RA

https://northeastern-datalab.github.io/cs7240/

194Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

An example: SQL to RA to Optimized RA

SELECT R.A,T.D
FROM R,S,T
WHERE R.B = S.B

and S.C = T.C
and R.A < 10;

R(A,B) S(B,C) T(C,D)

R(A,B)

S(B,C)

T(C,D)

sA<10Π6,7 𝑇 ⋈ 𝜎689:𝑅 ⋈ 𝑆

Π9,;

Π-B,C

Π-B,C

Heuristic: have selection and projection earlier to
have fewer (or smaller) "intermediate" tuples

1. Push down selection on A

2. Push down projection

in RA

https://northeastern-datalab.github.io/cs7240/

195Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

An example: SQL to RA to Optimized RA

SELECT R.A,T.D
FROM R,S,T
WHERE R.B = S.B

and S.C = T.C
and R.A < 10;

R(A,B) S(B,C) T(C,D)

Π6,7 𝑇 ⋈ Π6,; 𝜎689:𝑅 ⋈ 𝑆
R(A,B)

S(B,C)

T(C,D)

Π9,;

sA<10

Π9,<

We now eliminate B earlier

In general, when is an
attribute not needed?

Π-C Π-B

Π-C

Π-B

Variable Elimination!

in RA

https://northeastern-datalab.github.io/cs7240/

210

Algebra and the connection to logic and queries

• Algebra
• Relational Algebra

– Operators
– Independence
– Power of algebra: optimizations

• Equivalence RA and safe RC (Codd's theorem)

214Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

An example Person(id, name, country)
Spouse(id1, id2)

?

{ x |	∃z,w.	Person(x,z,w)	⋀	∀y.[¬Spouse(x,y)]	}

In RA:

In RC:

https://northeastern-datalab.github.io/cs7240/

215Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

An example

πidPerson − πid1Spouse

{ x |	∃z,w.	Person(x,z,w)	⋀	∀y.[¬Spouse(x,y)]	}

In RA:

In RC:

πidPerson − rid1→id (πid1Spouse)
Recall: named vs ordered perspective

Person(id, name, country)
Spouse(id1, id2)

https://northeastern-datalab.github.io/cs7240/

216Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Equivalence Between RA and Domain-Independent RC

More formally, on every schema S:

1. For every RA expression E, there is a
domain-independent RC query Q s.t. Q≡E

2. For every domain-independent RC query Q,
there is an RA expression E s.t. Q≡E

CODD'S THEOREM:
RA and domain-independent RC
have the same expressive power.

The proof has two directions:

RA→RC:
by induction on the size
of the RA expression

RC→RA:
more involved

See also: https://en.wikipedia.org/wiki/Codd%27s_theorem

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Codd%27s_theorem

218Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RA → DRC: Intuition
• Construction by induction
• Key technical detail: need to maintain a mapping b/w attribute names and variables

RA	expression

R (n columns)

E1 × E2

π,!,…,,%(E1)

σ/ E1

DRC	formula	ϕ

R(X1,…,Xn)

Here, ϕi is the formula constructed for expression Ei

Intuition: {x |∃y.[R(x,y)] ⋀ ∃y.[S(x,y)]}
contrast with: {x |∃y.[R(x,y)] ⋀ ∃z.[S(x,z)]}

E1 − E2

E1 ∪ E2

Q(1) ← R(1,2), S(1,3)
y=2 y=3

https://northeastern-datalab.github.io/cs7240/

219Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RA → DRC: Intuition
• Construction by induction
• Key technical detail: need to maintain a mapping b/w attribute names and variables

RA	expression

R (n columns)

E1 × E2

π,!,…,,%(E1)

σ/ E1

R(X1,…,Xn)

ϕ1 ∧ ϕ2 disjoint variables (rename)

contrast with:

ϕ1 ∧ ¬ϕ2 use idenBcal variables (rename)

ϕ1 ∨ ϕ2 use idenBcal variables (rename)

E1 − E2

E1 ∪ E2

DRC	formula	ϕ Here, ϕi is the formula constructed for expression Ei

Intuition: {x |∃y.[R(x,y)] ⋀ ∃y.[S(x,y)]}
{x |∃y.[R(x,y)] ⋀ ∃z.[S(x,z)]}

https://northeastern-datalab.github.io/cs7240/

220Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RA → DRC: Intuition
• Construction by induction
• Key technical detail: need to maintain a mapping b/w attribute names and variables

RA	expression

R (n columns)

E1 × E2

E1 − E2

E1 ∪ E2

π,!,…,,%(E1)

σ/ E1

R(X1,…,Xn)

ϕ1 ∧ ϕ2 disjoint variables (rename)

ϕ1 ∧ ¬ϕ2 use idenBcal variables (rename)

ϕ1 ∨ ϕ2 use idenBcal variables (rename)

∃X1… ∃Xm. ϕ1 where X1, …, Xm are the variables not among a1,…, ak
ϕ1 ∧ c

contrast with:

Correspondence more natural with
project-away operator: πD(!,…,(!(E1)

DRC	formula	ϕ Here, ϕi is the formula constructed for expression Ei

Intuition: {x |∃y.[R(x,y)] ⋀ ∃y.[S(x,y)]}
{x |∃y.[R(x,y)] ⋀ ∃z.[S(x,z)]}

https://northeastern-datalab.github.io/cs7240/

222Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RA → DRC: Example R÷S
RA

R(A,B)			S(B)

π0 π0 R ×S − R

π0 R −
π0 π0 R ×S − R

π0 R ×S − R

π0 R ×S

S

π0 R

R

MappingDRC

https://northeastern-datalab.github.io/cs7240/

223Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RA → DRC: Example R÷S
RA

R(A,B)			S(B)

π0 π0 R ×S − R

π0 R −
π0 π0 R ×S − R

π0 R ×S − R

π0 R ×S

S

π0 R

R

Mapping
x:R.A, y:R.B

x:R.A

z:S.B

DRC

S(z)

∃y. R x, y

R x, y

https://northeastern-datalab.github.io/cs7240/

224Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RA → DRC: Example R÷S
RA DRC

R(A,B)			S(B)

π0 π0 R ×S − R

¬∃z ∃y. R x, y ∧ S z ∧ ¬R(x, z)

∃y. R x, y ∧ S(z)

∃y. R x, y ∧ S z ∧ ¬R(x, z)

∃z ∃y. R x, y ∧ S z ∧ ¬R(x, z)

∃y. R x, y ∧π0 R −
π0 π0 R ×S − R

π0 R ×S − R

π0 R ×S

S

π0 R

R

S(z)

∃y. R x, y

R x, y

Mapping
x:R.A,	y:R.B

x:R.A

z:S.B

x:R.A,	z:S.B

x:R.A,	z:S.B

x:R.A

x:R.Ax's need to be same variable

y's don't need to be same variable

z needs to be
different from y

https://northeastern-datalab.github.io/cs7240/

226Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

"Clear" variables*

∀x. ∃y. R x, y, z ∧ ¬∃x. S(y, x)

Formula	with	clear	variables	:	each	quantifier	"has	its	own	variables"	&	
each	variable	has	only	free	or	only	bound	occurrences

? which variables are free or bound?

* "Clear variable" is used in slides by Marie Duzi: http://www.cs.vsb.cz/duzi/

https://northeastern-datalab.github.io/cs7240/
http://www.cs.vsb.cz/duzi/

227Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

"Clear" variables*

∀x. ∃y. R x, y, z ∧ ¬∃x. S(y, x)

Formula	with	clear	variables	:	each	quantifier	"has	its	own	variables"	&	
each	variable	has	only	free	or	only	bound	occurrences

bound boundfree

recall operator precedence: ∃ before ∧
∀x.∃y.[R(x,y,z)]∧¬∃x.[S(y,x)]

? how to make it "clear"

* "Clear variable" is used in slides by Marie Duzi: http://www.cs.vsb.cz/duzi/

Not “clear”: Two x's and y's are
different variables.

https://northeastern-datalab.github.io/cs7240/
http://www.cs.vsb.cz/duzi/

228Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

"Clear" variables*

∀x. ∃y. R x, y, z ∧ ¬∃x. S(y, x)

Formula	with	clear	variables	:	each	quantifier	"has	its	own	variables"	&	
each	variable	has	only	free	or	only	bound	occurrences

bound boundfree

recall operator precedence: ∃ before ∧
∀x.∃y.[R(x,y,z)]∧¬∃x.[S(y,x)]

Not “clear”: Two x's and y's are
different variables.

∀x. ∃y. R x, y, z ∧ ¬∃u. S(v, u)

z, v ∀x. ∃y. R x, y, z ∧ ¬∃u. S v, u } Now a query. But how
to make it domain-independent

now “clear”

* "Clear variable" is used in slides by Marie Duzi: http://www.cs.vsb.cz/duzi/

?

https://northeastern-datalab.github.io/cs7240/
http://www.cs.vsb.cz/duzi/

229Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

"Clear" variables*

∀x. ∃y. R x, y, z ∧ ¬∃x. S(y, x)

Formula	with	clear	variables	:	each	quantifier	"has	its	own	variables"	&	
each	variable	has	only	free	or	only	bound	occurrences

bound boundfree

recall operator precedence: ∃ before ∧
∀x.∃y.[R(x,y,z)]∧¬∃x.[S(y,x)]

Not “clear”: Two x's and y's are
different variables.

z, v ∀x. ∃y. R x, y, z ∧ ¬∃u. S v, u }

* "Clear variable" is used in slides by Marie Duzi: http://www.cs.vsb.cz/duzi/

∀x.[∃w,t.R(x,w,t) → ∃y.R(x,y,z)]

∃s,t.R(s,t,z) ∧ ∃p.S(p,v) ∧
Now a query. But how
to make it domain-independent

∀x. ∃y. R x, y, z ∧ ¬∃u. S(v, u) now “clear”

https://northeastern-datalab.github.io/cs7240/
http://www.cs.vsb.cz/duzi/

230Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Repeated variable names

Which of the following formulas imply each other??

In sentences with multiple quantifiers, distinct variables do not need
to range over distinct objects! (cp. homomorphism vs. isomorphism)

$x.$y.	E(x,y)	

"x."y.	E(x,y) "x.	E(x,x)

$x.	E(x,x)

https://northeastern-datalab.github.io/cs7240/

231Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

$x.$y.	E(x,y)	

Repeated variable names

In sentences with multiple quantifiers, distinct variables do not need
to range over distinct objects! (cp. homomorphism vs. isomorphism)

"x."y.	E(x,y) "x.	E(x,x)

$x.	E(x,x)

⟹

⟸

s t
1 1
1 2
2 1
2 2

E

s t
1 2

E

Assume DOM = {1, 2}:

https://northeastern-datalab.github.io/cs7240/

232Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Repeated variable names

⇓Only if domain is
not empty! Dom ≠ ∅⇓

In sentences with multiple quantifiers, distinct variables do not need
to range over distinct objects! (cp. homomorphism vs. isomorphism)

$x.$y.	E(x,y)	

"x."y.	E(x,y) "x.	E(x,x)

$x.	E(x,x)

⟹

⟸

s t
E

Assume DOM = ∅ :

https://northeastern-datalab.github.io/cs7240/

235Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

DRC → RA: Intuition

Proof (Sketch):
• Show first that for every relational database schema S, there is a

relational algebra expression E such that for every database
instance D, we have that ADom(D) = E(D).

• Use the above fact and induction on the construction of RC formulas
to obtain a translation of RC under the active domain interpretation
to RA.

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases

236Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

DRC → RA: Intuition

• In this translation, the most interesting part is the simulation of the
universal quantifier ∀ in relational algebra

∀y. ϕ ≡

E(A,B)

uses the logical equivalence:

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

?

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases

237Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

DRC → RA: Intuition

• In this translation, the most interesting part is the simulation of the
universal quantifier ∀ in relational algebra

• As an illustration, consider:
¬∃y.¬ϕ∀y. ϕ ≡

∀y. E(x, y) ≡

E(A,B)

uses the logical equivalence:

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

?

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases

238Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

DRC → RA: Intuition

• In this translation, the most interesting part is the simulation of the
universal quantifier ∀ in relational algebra

• As an illustration, consider:

ADom(D)=
¬∃y.¬E x, y
¬∃y. ¬ϕ∀y. ϕ ≡

∀y. E(x, y) ≡

E(A,B)

uses the logical equivalence:

and recall:

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

?

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases

239Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

DRC → RA: Intuition

• In this translation, the most interesting part is the simulation of the
universal quantifier ∀ in relational algebra

• As an illustration, consider:

RA	expression	for	ϕadomDRC	formula	ϕ

¬∃y.¬E x, y

πA E ∪πB EADom(D)=
¬∃y.¬E x, y
¬∃y. ¬ϕ∀y. ϕ ≡

∀y. E(x, y) ≡

E(A,B)

uses the logical equivalence:

and recall:

∃y.¬E x, y
¬E x, y

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

?

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases

240Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

DRC → RA: Intuition

• In this translation, the most interesting part is the simulation of the
universal quantifier ∀ in relational algebra

• As an illustration, consider:

RA	expression	for	ϕadomDRC	formula	ϕ

¬∃y.¬E x, y

πA E ∪πB EADom(D)=
¬∃y.¬E x, y
¬∃y. ¬ϕ∀y. ϕ ≡

∀y. E(x, y) ≡

E(A,B)

uses the logical equivalence:

and recall:

∃y.¬E x, y
¬E x, y ADom(D)×ADom(D) − E

πG ADom(D)×ADom(D) − E
πG ADom(D)×ADom(D) − EADom(D) −

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases

243Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Entire Story in One Slide (repeated slide)

1. RC = FOL over DB

2. RC can express “bad queries” that depend not only on the DB, but also on
the domain from which values are taken (domain dependence)

3. We cannot test whether an RC query is “good,” but we can use a ”good”
subset of RC that captures all “good” queries (safety)

4. “Good” RC and RA can express the same queries! (equivalence = Codd's theorem)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

244Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Discussion

• What is the monotone fragment of RA ?

• What are the safe queries in RA ?

• Where do we use RA (applications) ?

?
?

?

Source: Dan Suciu, CSE 554, 2011.

https://northeastern-datalab.github.io/cs7240/

245Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Discussion

• What is the monotone fragment of RA ?
- Basic except difference (–): ∪, 𝜎, 𝜋, ⋈

• What are the safe queries in RA ?

• Where do we use RA (applications) ?

?
?

Source: Dan Suciu, CSE 554, 2011.

https://northeastern-datalab.github.io/cs7240/

246Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Discussion

• What is the monotone fragment of RA ?
- Basic except difference (–): ∪, 𝜎, 𝜋, ⋈

• What are the safe queries in RA ?
- All RA queries are safe

• Where do we use RA (applications) ?

?
Source: Dan Suciu, CSE 554, 2011.

https://northeastern-datalab.github.io/cs7240/

247Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Discussion

• What is the monotone fragment of RA ?
- Basic except difference (–): ∪, 𝜎, 𝜋, ⋈

• What are the safe queries in RA ?
- All RA queries are safe

• Where do we use RA (applications) ?
- Translating SQL (from WHAT to HOW)
- Directly as query languages (e.g. Pig-Latin) See next pages

Source: Dan Suciu, CSE 554, 2011.

https://northeastern-datalab.github.io/cs7240/

248Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: Olston, Reed, Srivastava, Kumar, Tomkins . Pig Latin -- a not-so-foreign language for data processing. SIGMOD 2008. https://doi.org/10.1145/1376616.1376726

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/1376616.1376726

249Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: Olston, Reed, Srivastava, Kumar, Tomkins . Pig Latin -- a not-so-foreign language for data processing. SIGMOD 2008. https://doi.org/10.1145/1376616.1376726

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/1376616.1376726

