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Pre-class conversations

• Last class recapitulation
• Please keep on pointing out any errors on the slides
• It is time to start to hand in your first scribble notes
• Project discussions
• Where we are

• today: 
- Algebra: independence and Codd's theorem
- Recursion (Datalog)

https://northeastern-datalab.github.io/cs7240/
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https://northeastern-datalab.github.io/cs7240/
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Algebra and the connection to logic and queries

• Algebra
• Relational Algebra

– Operators
– Independence
– Power of algebra: optimizations

• Equivalence RA and safe RC (Codd's theorem)



179Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

5 Primitive Operators

1. Projection (p)
2. Selection (s)
3. Union (⋃)
4. Set Difference (−)
5. Cross Product (×)

Is this a well chosen set of primitives? ?

https://northeastern-datalab.github.io/cs7240/
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5 Primitive Operators

1. Projection (p)
2. Selection (s)
3. Union (⋃)
4. Set Difference (−)
5. Cross Product (×)

Could we drop an operator "without losing anything"?

Is this a well chosen set of primitives? 

https://northeastern-datalab.github.io/cs7240/
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Independence among Primitives

• Let o be an RA operator, and let A be a set of RA operators

• We say that o is independent of A if o cannot be expressed in A; 
that is, no expression in A is equivalent to o

THEOREM: Each of the five primitives 
is independent of the other four {π, σ,×, ⋃, –}

Proof:
• Separate argument for each of the five
• Arguments follow a common pattern (next slide)
• We will do one operator here (union)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/
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Recipe for Proving Independence of an operator   o

1. Fix a schema S and an instance I over S

2. Find some property P over relations

3. Prove: for every expression φ that does not use o, the relation φ(I) satisfies P

4. Find an expression ψ such that ψ uses o and ψ(I) violates P

Such proofs are typically by induction on the size of the 
expression, since operators compose

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/
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Concrete Example: Proving Independence of Union ∪

1. Fix a schema S and an instance I over S
S: R(A), S(A)          I: {R(0), S(1)}

2. Find some property P over relations
#tuples < 2

3. Prove: for every expression φ that does not use o, the relation φ(I) satisfies P
Induction base: R and S have #tuples<2 

4. Find an expression ψ such that ψ uses o and ψ(I) violates P
ψ=R∪S

Induction step: If φ1(I) and φ2(I) have #tuples<2, then so do:
σc(φ1(I)),    pA(φ1(I)),    φ1(I)×φ2(I),     φ1(I)−φ2(I),                          ρA→B(φ1(I))

R
A
0

S
A
1

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/
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Algebra and the connection to logic and queries

• Algebra
• Relational Algebra

– Operators
– Independence
– Power of algebra: optimizations

• Equivalence RA and safe RC (Codd's theorem)
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Commutativity and distributivity of RA operators

• The basic commutators:
- Push projection through selection, join, union
- Push selection through projection, join, union
- Also: Joins can be re-ordered!

• Note that this is not an exhaustive set of operations

This simple set of tools allows us to greatly improve the 
execution time of queries by optimizing RA plans!

We next illustrate with an SFW (Select-From-Where) query

What about sorting and joins?

Foundations of Databases 65

Interaction of relational algebra operators

• πA1,...,An(R ∪ S) = πA1,...,An(R) ∪ πA1,...,An(S)

• σc(R ∪ S) = σc(R) ∪ σc(S)

• (R ∪ S) × T = R × T ∪ S × T

• T × (R ∪ S) = T × R ∪ T × S

Relational Query Languages

https://northeastern-datalab.github.io/cs7240/
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SELECT R.A,T.D
FROM R,S,T
WHERE R.B = S.B

and S.C = T.C
and R.A < 10;

R(A,B) S(B,C) T(C,D)

An example: SQL to RA to Optimized RA

?

in RA

https://northeastern-datalab.github.io/cs7240/
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Π9,;

R(A,B) S(B,C)

T(C,D)

sA<10

Π6,7 𝜎689: 𝑇 ⋈ 𝑅 ⋈ 𝑆

SELECT R.A,T.D
FROM R,S,T
WHERE R.B = S.B

and S.C = T.C
and R.A < 10;

R(A,B) S(B,C) T(C,D)

An example: SQL to RA to Optimized RA

Query tree / expression tree / 
computation tree / data flow graph

1. Leaves are 
base relations

in RA

2. Other nodes 
are operators

3. Root node 
= query results

Heuristic: have selection and projection earlier to 
have fewer (or smaller) "intermediate" tuples

https://northeastern-datalab.github.io/cs7240/
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Π9,;

R(A,B) S(B,C)

T(C,D)

sA<10

An example: SQL to RA to Optimized RA

SELECT R.A,T.D
FROM R,S,T
WHERE R.B = S.B

and S.C = T.C
and R.A < 10;

R(A,B) S(B,C) T(C,D)

Heuristic: have selection and projection earlier to 
have fewer (or smaller) "intermediate" tuples

Pushing down may be suboptimal if selection condition is very expensive (e.g. running some image 
processing algorithm). Projection could be unnecessary effort (but more rarely).

Π6,7 𝜎689: 𝑇 ⋈ 𝑅 ⋈ 𝑆

1. Push down selection on A

in RA

https://northeastern-datalab.github.io/cs7240/
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R(A,B)

S(B,C)

T(C,D)

An example: SQL to RA to Optimized RA

sA<10

SELECT R.A,T.D
FROM R,S,T
WHERE R.B = S.B

and S.C = T.C
and R.A < 10;

R(A,B) S(B,C) T(C,D)

Π6,7 𝑇 ⋈ 𝜎689:𝑅 ⋈ 𝑆

Π9,;

Heuristic: have selection and projection earlier to 
have fewer (or smaller) "intermediate" tuples

1. Push down selection on A

in RA

https://northeastern-datalab.github.io/cs7240/
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An example: SQL to RA to Optimized RA

SELECT R.A,T.D
FROM R,S,T
WHERE R.B = S.B

and S.C = T.C
and R.A < 10;

R(A,B) S(B,C) T(C,D)

R(A,B)

S(B,C)

T(C,D)

sA<10Π6,7 𝑇 ⋈ 𝜎689:𝑅 ⋈ 𝑆

Π9,;

Π-B,C

Π-B,C

Heuristic: have selection and projection earlier to 
have fewer (or smaller) "intermediate" tuples

1. Push down selection on A

2. Push down projection

in RA

https://northeastern-datalab.github.io/cs7240/
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An example: SQL to RA to Optimized RA

SELECT R.A,T.D
FROM R,S,T
WHERE R.B = S.B

and S.C = T.C
and R.A < 10;

R(A,B) S(B,C) T(C,D)

Π6,7 𝑇 ⋈ Π6,; 𝜎689:𝑅 ⋈ 𝑆
R(A,B)

S(B,C)

T(C,D)

Π9,;

sA<10

Π9,<

We now eliminate B earlier

In general, when is an 
attribute not needed?

Π-C Π-B

Π-C

Π-B

Variable Elimination!

in RA

https://northeastern-datalab.github.io/cs7240/
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Algebra and the connection to logic and queries

• Algebra
• Relational Algebra

– Operators
– Independence
– Power of algebra: optimizations

• Equivalence RA and safe RC (Codd's theorem)
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An example Person(id, name, country)
Spouse(id1, id2)

?

{ x |	∃z,w.	Person(x,z,w)	⋀	∀y.[¬Spouse(x,y)]	}

In RA:

In RC:

https://northeastern-datalab.github.io/cs7240/
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An example

πidPerson − πid1Spouse

{ x |	∃z,w.	Person(x,z,w)	⋀	∀y.[¬Spouse(x,y)]	}

In RA:

In RC:

πidPerson − rid1→id (πid1Spouse)
Recall: named vs ordered perspective

Person(id, name, country)
Spouse(id1, id2)

https://northeastern-datalab.github.io/cs7240/
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Equivalence Between RA and Domain-Independent RC

More formally, on every schema S:

1. For every RA expression E, there is a 
domain-independent RC query Q s.t. Q≡E

2. For every domain-independent RC query Q, 
there is an RA expression E s.t. Q≡E

CODD'S THEOREM: 
RA and domain-independent RC
have the same expressive power. 

The proof has two directions:

RA→RC:
by induction on the size 
of the RA expression

RC→RA:
more involved

See also: https://en.wikipedia.org/wiki/Codd%27s_theorem

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Codd%27s_theorem
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RA → DRC: Intuition
• Construction by induction
• Key technical detail: need to maintain a mapping b/w attribute names and variables

RA	expression

R (n columns)

E1 × E2

π,!,…,,%(E1)

σ/ E1

DRC	formula	ϕ

R(X1,…,Xn)

Here, ϕi is the formula constructed for expression Ei

Intuition:  {x |∃y.[R(x,y)] ⋀ ∃y.[S(x,y)]} 
contrast with: {x |∃y.[R(x,y)] ⋀ ∃z.[S(x,z)]}

E1 − E2

E1 ∪ E2

Q(1) ← R(1,2), S(1,3)
y=2 y=3

https://northeastern-datalab.github.io/cs7240/
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RA → DRC: Intuition
• Construction by induction
• Key technical detail: need to maintain a mapping b/w attribute names and variables

RA	expression

R (n columns)

E1 × E2

π,!,…,,%(E1)

σ/ E1

R(X1,…,Xn)

ϕ1 ∧ ϕ2 disjoint variables (rename)

contrast with: 

ϕ1 ∧ ¬ϕ2 use idenBcal variables (rename)

ϕ1 ∨ ϕ2 use idenBcal variables (rename)

E1 − E2

E1 ∪ E2

DRC	formula	ϕ Here, ϕi is the formula constructed for expression Ei

Intuition:  {x |∃y.[R(x,y)] ⋀ ∃y.[S(x,y)]} 
{x |∃y.[R(x,y)] ⋀ ∃z.[S(x,z)]}

https://northeastern-datalab.github.io/cs7240/
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RA → DRC: Intuition
• Construction by induction
• Key technical detail: need to maintain a mapping b/w attribute names and variables

RA	expression

R (n columns)

E1 × E2

E1 − E2

E1 ∪ E2

π,!,…,,%(E1)

σ/ E1

R(X1,…,Xn)

ϕ1 ∧ ϕ2 disjoint variables (rename)

ϕ1 ∧ ¬ϕ2 use idenBcal variables (rename)

ϕ1 ∨ ϕ2 use idenBcal variables (rename)

∃X1… ∃Xm. ϕ1 where X1, …, Xm are the variables not among a1,…, ak
ϕ1 ∧ c

contrast with: 

Correspondence more natural with 
project-away operator: πD(!,…,(!(E1)

DRC	formula	ϕ Here, ϕi is the formula constructed for expression Ei

Intuition:  {x |∃y.[R(x,y)] ⋀ ∃y.[S(x,y)]} 
{x |∃y.[R(x,y)] ⋀ ∃z.[S(x,z)]}

https://northeastern-datalab.github.io/cs7240/
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RA → DRC: Example R÷S
RA

R(A,B)			S(B)

π0 π0 R ×S − R

π0 R −
π0 π0 R ×S − R

π0 R ×S − R

π0 R ×S

S

π0 R

R

MappingDRC

https://northeastern-datalab.github.io/cs7240/
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RA → DRC: Example R÷S
RA

R(A,B)			S(B)

π0 π0 R ×S − R

π0 R −
π0 π0 R ×S − R

π0 R ×S − R

π0 R ×S

S

π0 R

R

Mapping
x:R.A, y:R.B

x:R.A

z:S.B

DRC

S(z)

∃y. R x, y

R x, y

https://northeastern-datalab.github.io/cs7240/
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RA → DRC: Example R÷S
RA DRC

R(A,B)			S(B)

π0 π0 R ×S − R

¬∃z ∃y. R x, y ∧ S z ∧ ¬R(x, z)

∃y. R x, y ∧ S(z)

∃y. R x, y ∧ S z ∧ ¬R(x, z)

∃z ∃y. R x, y ∧ S z ∧ ¬R(x, z)

∃y. R x, y ∧π0 R −
π0 π0 R ×S − R

π0 R ×S − R

π0 R ×S

S

π0 R

R

S(z)

∃y. R x, y

R x, y

Mapping
x:R.A,	y:R.B

x:R.A

z:S.B

x:R.A,	z:S.B

x:R.A,	z:S.B

x:R.A

x:R.Ax's need to be same variable

y's don't need to be same variable

z needs to be 
different from y

https://northeastern-datalab.github.io/cs7240/
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"Clear" variables*

∀x. ∃y. R x, y, z ∧ ¬∃x. S(y, x)

Formula	with	clear	variables	:	each	quantifier	"has	its	own	variables"	&	
each	variable	has	only	free	or	only	bound	occurrences

? which variables are free or bound?

* "Clear variable" is used in slides by Marie Duzi: http://www.cs.vsb.cz/duzi/

https://northeastern-datalab.github.io/cs7240/
http://www.cs.vsb.cz/duzi/
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"Clear" variables*

∀x. ∃y. R x, y, z ∧ ¬∃x. S(y, x)

Formula	with	clear	variables	:	each	quantifier	"has	its	own	variables"	&	
each	variable	has	only	free	or	only	bound	occurrences

bound boundfree

recall operator precedence: ∃ before ∧
∀x.∃y.[R(x,y,z)]∧¬∃x.[S(y,x)]

? how to make it "clear"

* "Clear variable" is used in slides by Marie Duzi: http://www.cs.vsb.cz/duzi/

Not “clear”: Two x's and y's are 
different variables.

https://northeastern-datalab.github.io/cs7240/
http://www.cs.vsb.cz/duzi/
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"Clear" variables*

∀x. ∃y. R x, y, z ∧ ¬∃x. S(y, x)

Formula	with	clear	variables	:	each	quantifier	"has	its	own	variables"	&	
each	variable	has	only	free	or	only	bound	occurrences

bound boundfree

recall operator precedence: ∃ before ∧
∀x.∃y.[R(x,y,z)]∧¬∃x.[S(y,x)]

Not “clear”: Two x's and y's are 
different variables.

∀x. ∃y. R x, y, z ∧ ¬∃u. S(v, u)

z, v ∀x. ∃y. R x, y, z ∧ ¬∃u. S v, u } Now a query. But how
to make it domain-independent

now “clear”

* "Clear variable" is used in slides by Marie Duzi: http://www.cs.vsb.cz/duzi/

?

https://northeastern-datalab.github.io/cs7240/
http://www.cs.vsb.cz/duzi/
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"Clear" variables*

∀x. ∃y. R x, y, z ∧ ¬∃x. S(y, x)

Formula	with	clear	variables	:	each	quantifier	"has	its	own	variables"	&	
each	variable	has	only	free	or	only	bound	occurrences

bound boundfree

recall operator precedence: ∃ before ∧
∀x.∃y.[R(x,y,z)]∧¬∃x.[S(y,x)]

Not “clear”: Two x's and y's are 
different variables.

z, v ∀x. ∃y. R x, y, z ∧ ¬∃u. S v, u }

* "Clear variable" is used in slides by Marie Duzi: http://www.cs.vsb.cz/duzi/

∀x.[∃w,t.R(x,w,t) → ∃y.R(x,y,z)]

∃s,t.R(s,t,z) ∧ ∃p.S(p,v) ∧
Now a query. But how
to make it domain-independent

∀x. ∃y. R x, y, z ∧ ¬∃u. S(v, u) now “clear”

https://northeastern-datalab.github.io/cs7240/
http://www.cs.vsb.cz/duzi/
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Repeated variable names

Which of the following formulas imply each other??

In sentences with multiple quantifiers, distinct variables do not need 
to range over distinct objects! (cp. homomorphism vs. isomorphism)

$x.$y.	E(x,y)	

"x."y.	E(x,y) "x.	E(x,x)

$x.	E(x,x)

https://northeastern-datalab.github.io/cs7240/
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$x.$y.	E(x,y)	

Repeated variable names

In sentences with multiple quantifiers, distinct variables do not need 
to range over distinct objects! (cp. homomorphism vs. isomorphism)

"x."y.	E(x,y) "x.	E(x,x)

$x.	E(x,x)

⟹

⟸

s t
1 1
1 2
2 1
2 2

E

s t
1 2

E

Assume DOM = {1, 2}:

https://northeastern-datalab.github.io/cs7240/
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Repeated variable names

⇓Only if domain is 
not empty! Dom ≠ ∅⇓

In sentences with multiple quantifiers, distinct variables do not need 
to range over distinct objects! (cp. homomorphism vs. isomorphism)

$x.$y.	E(x,y)	

"x."y.	E(x,y) "x.	E(x,x)

$x.	E(x,x)

⟹

⟸

s t
E

Assume DOM = ∅ :

https://northeastern-datalab.github.io/cs7240/
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DRC → RA: Intuition

Proof (Sketch):
• Show first that for every relational database schema S, there is a 

relational algebra expression E such that for every database 
instance D, we have that ADom(D) = E(D).

• Use the above fact and induction on the construction of RC formulas 
to obtain a translation of RC under the active domain interpretation
to RA.

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases
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DRC → RA: Intuition

• In this translation, the most interesting part is the simulation of the 
universal quantifier ∀ in relational algebra

∀y. ϕ ≡

E(A,B)

uses the logical equivalence:

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

?

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases
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DRC → RA: Intuition

• In this translation, the most interesting part is the simulation of the 
universal quantifier ∀ in relational algebra

• As an illustration, consider:
¬∃y.¬ϕ∀y. ϕ ≡

∀y. E(x, y) ≡

E(A,B)

uses the logical equivalence:

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

?

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases
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DRC → RA: Intuition

• In this translation, the most interesting part is the simulation of the 
universal quantifier ∀ in relational algebra

• As an illustration, consider:

ADom(D)=
¬∃y.¬E x, y
¬∃y. ¬ϕ∀y. ϕ ≡

∀y. E(x, y) ≡

E(A,B)

uses the logical equivalence:

and recall:

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

?

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases
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DRC → RA: Intuition

• In this translation, the most interesting part is the simulation of the 
universal quantifier ∀ in relational algebra

• As an illustration, consider:

RA	expression	for	ϕadomDRC	formula	ϕ

¬∃y.¬E x, y

πA E ∪πB EADom(D)=
¬∃y.¬E x, y
¬∃y. ¬ϕ∀y. ϕ ≡

∀y. E(x, y) ≡

E(A,B)

uses the logical equivalence:

and recall:

∃y.¬E x, y
¬E x, y

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

?

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases
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DRC → RA: Intuition

• In this translation, the most interesting part is the simulation of the 
universal quantifier ∀ in relational algebra

• As an illustration, consider:

RA	expression	for	ϕadomDRC	formula	ϕ

¬∃y.¬E x, y

πA E ∪πB EADom(D)=
¬∃y.¬E x, y
¬∃y. ¬ϕ∀y. ϕ ≡

∀y. E(x, y) ≡

E(A,B)

uses the logical equivalence:

and recall:

∃y.¬E x, y
¬E x, y ADom(D)×ADom(D) − E

πG ADom(D)×ADom(D) − E
πG ADom(D)×ADom(D) − EADom(D) −

Based on Phokion Kolaitis' "Logic and Databases" series at Simons Institute, 2016. https://simons.berkeley.edu/talks/logic-and-databases

https://northeastern-datalab.github.io/cs7240/
https://simons.berkeley.edu/talks/logic-and-databases
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Entire Story in One Slide (repeated slide)

1. RC = FOL over DB

2. RC can express “bad queries” that depend not only on the DB, but also on 
the domain from which values are taken  (domain dependence)

3. We cannot test whether an RC query is “good,” but we can use a ”good” 
subset of RC that captures all “good” queries  (safety)

4. “Good” RC and RA can express the same queries! (equivalence = Codd's theorem)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/
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Discussion

• What is the monotone fragment of RA ?

• What are the safe queries in RA ?

• Where do we use RA (applications) ?

?
?

?

Source: Dan Suciu, CSE 554, 2011. 

https://northeastern-datalab.github.io/cs7240/
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Discussion

• What is the monotone fragment of RA ?
- Basic except difference (–): ∪, 𝜎, 𝜋, ⋈

• What are the safe queries in RA ?

• Where do we use RA (applications) ?

?
?

Source: Dan Suciu, CSE 554, 2011. 

https://northeastern-datalab.github.io/cs7240/
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Discussion

• What is the monotone fragment of RA ?
- Basic except difference (–): ∪, 𝜎, 𝜋, ⋈

• What are the safe queries in RA ?
- All RA queries are safe

• Where do we use RA (applications) ?

?
Source: Dan Suciu, CSE 554, 2011. 

https://northeastern-datalab.github.io/cs7240/
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Discussion

• What is the monotone fragment of RA ?
- Basic except difference (–): ∪, 𝜎, 𝜋, ⋈

• What are the safe queries in RA ?
- All RA queries are safe

• Where do we use RA (applications) ?
- Translating SQL (from WHAT to HOW)
- Directly as query languages (e.g. Pig-Latin) See next pages

Source: Dan Suciu, CSE 554, 2011. 

https://northeastern-datalab.github.io/cs7240/
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Source: Olston, Reed, Srivastava, Kumar, Tomkins . Pig Latin -- a not-so-foreign language for data processing. SIGMOD 2008. https://doi.org/10.1145/1376616.1376726

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/1376616.1376726
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Source: Olston, Reed, Srivastava, Kumar, Tomkins . Pig Latin -- a not-so-foreign language for data processing. SIGMOD 2008. https://doi.org/10.1145/1376616.1376726

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/1376616.1376726

