
45

Topic 1: Data models and query languages
Unit 3: Relational Algebra (continued)
Lecture 07

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp22)
https://northeastern-datalab.github.io/cs7240/sp22/
2/8/2022

Updated 2/8/2022

https://northeastern-datalab.github.io/cs7240/sp22/

46Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Pre-class conversations

• Last class recapitulation
• Please keep on pointing out any errors on the slides
• Project discussions
• Where we are

• today:
- Algebra (cont), Codd's theorem

https://northeastern-datalab.github.io/cs7240/

47Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

48Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Commuting functions: a digression

• Do functions commute with taking the expectation?
- 𝔼[f(x)] = f(𝔼[x]) ?

Side-topic

?

https://northeastern-datalab.github.io/cs7240/

49Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Commuting functions: a digression

• Do functions commute with taking the expectation?
- 𝔼[f(x)] = f(𝔼[x]) ?

• Only for linear functions
- Thus f(x)=ax + b
- 𝔼[ax+b] = a 𝔼[x] + b

• Jensen's inequality for convex f

Side-topic

?

https://northeastern-datalab.github.io/cs7240/

50Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Commuting functions: a digression

• Do functions commute with taking the expectation?
- 𝔼[f(x)] = f(𝔼[x]) ?

• Only for linear functions
- Thus f(x)=ax + b
- 𝔼[ax+b] = a 𝔼[x] + b

• Jensen's inequality for convex f
- 𝔼[f(x)] ≥ f(𝔼[x])

• Example f(x) = x2

- Assume 0 £ x £ 1
- f(𝔼[x]) = f(0.5) = 0.25

- 𝔼[f(x)] =
∫"
"
$%&

= /#$

'
$
& = 0.33 0 1

1

0.25

0
0.5

0.33

Side-topic

https://northeastern-datalab.github.io/cs7240/

51Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Ratio of averages != average of ratios Side-topic

Variant 1 Variant 2 Ratio '()*(+, -
'()*(+, .

North

South

20

10

10

20

20/10 = 2

10/20 = 0.5

AVG = 1.25 + 25%

Variant 1 is on average 25%
better across North and South ?L

https://northeastern-datalab.github.io/cs7240/

52

RA Operators are Compositional, in general

SELECT DISTINCT sname, gpa
FROM Student
WHERE gpa > 3.5

Student(sid,sname,gpa)

?

How do we represent
this query in RA?

53

RA Operators are Compositional, in general

Π!"#$%,'(#(σ'(#)*.,(Students))

σ'(#)*.,(Π!"#$%,'(#(Students))

SELECT DISTINCT sname, gpa
FROM Student
WHERE gpa > 3.5

Student(sid,sname,gpa)

Which of those two variants is correct? ?

54

RA Operators are Compositional, in general

Π!"#$%,'(#(σ'(#)*.,(Students))

σ'(#)*.,(Π!"#$%,'(#(Students))

SELECT DISTINCT sname, gpa
FROM Student
WHERE gpa > 3.5

Student(sid,sname,gpa)

Both are correct: logically equivalent J

55

• Five basic operators:
1. Selection: s ("sigma")
2. Projection: P
3. Cartesian Product: ´
4. Union: ⋃
5. Difference: –

• Auxiliary (or special) operator
6. Renaming: ρ ("rho")

• Derived (or implied) operators
7. Joins ⨝ (natural, theta join, equi-join, semi-join)
8. Intersection / complement
9. Division

Relational Algebra (RA) operators

56Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

3. Cross-Product (×)

• Each tuple in R with each tuple in S
• Notation: R ´ S
• Example:
- Students ´ Advisors

• Rare in practice; mainly used to
express joins

SELECT *
FROM People, Student

SQL:

RA:

Student(sid,sname,gpa)
People(ssn,pname,address)

?

https://northeastern-datalab.github.io/cs7240/

57Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

3. Cross-Product (×)

• Each tuple in R with each tuple in S
• Notation: R ´ S
• Example:
- Students ´ Advisors

• Rare in practice; mainly used to
express joins

SELECT *
FROM People, Student

SQL:

RA:
People × Student

Student(sid,sname,gpa)
People(ssn,pname,address)

https://northeastern-datalab.github.io/cs7240/

58Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

ssn pname address
1234545 John 216 Rosse
5423341 Bob 217 Rosse

sid sname gpa
001 John 3.4
002 Bob 1.3

People × Student

×

People Student

3. Cross join example

?

https://northeastern-datalab.github.io/cs7240/

59Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

People × Student

×

ssn pname address sid sname gpa
1234545 John 216 Rosse 001 John 3.4
5423341 Bob 217 Rosse 001 John 3.4
1234545 John 216 Rosse 002 Bob 1.3

5423341 Bob 216 Rosse 002 Bob 1.3

People Student

3. Cross join example

ssn pname address
1234545 John 216 Rosse
5423341 Bob 217 Rosse

sid sname gpa
001 John 3.4
002 Bob 1.3

https://northeastern-datalab.github.io/cs7240/

60

• Five basic operators:
1. Selection: s ("sigma")
2. Projection: P
3. Cartesian Product: ´
4. Union: ⋃
5. Difference: –

• Auxiliary (or special) operator
6. Renaming: ρ ("rho")

• Derived (or implied) operators
7. Joins ⨝ (natural, theta join, equi-join, semi-join)
8. Intersection / complement
9. Division

Relational Algebra (RA) operators

61Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

4. Union (∪) and 5. Difference (–)

• Examples:
- Students ∪ Faculty
- AllNEUEmployees – RetiredFaculty

R ∪ S
R – S

R S

R S

What about the union of
Student and Faculty? ?

Difference also sometimes written with "\", thus as R\S

Student (neuid, fname, lname)
Faculty (neuid, fname, lname, college)

https://northeastern-datalab.github.io/cs7240/

62Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

4. Union (∪) and 5. Difference (–)

• Examples:
- Students ∪ Faculty
- AllNEUEmployees – RetiredFaculty

R ∪ S
R – S

R S

R S

No! Only makes sense if R and S are
"compatible", thus have the same schema!

Difference also sometimes written with "\", thus as R\S

Student (neuid, fname, lname)
Faculty (neuid, fname, lname, college)

What about the union of
Student and Faculty?

𝜋-college()

Other example: find actor ids
who don't play in any movie:

?

Actor (aid, fname, lname)
Play (aid, mid, role)

https://northeastern-datalab.github.io/cs7240/

63Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

4. Union (∪) and 5. Difference (–)

• Examples:
- Students ∪ Faculty
- AllNEUEmployees – RetiredFaculty

R ∪ S
R – S

R S

R S

No! Only makes sense if R and S are
"compatible", thus have the same schema!

Difference also sometimes written with "\", thus as R\S

Student (neuid, fname, lname)
Faculty (neuid, fname, lname, college)

What about the union of
Student and Faculty?

𝜋-college()

πaid(Actor)–πaid(Play)

Other example: find actor ids
who don't play in any movie:

Actor (aid, fname, lname)
Play (aid, mid, role)

https://northeastern-datalab.github.io/cs7240/

64

• Five basic operators:
1. Selection: s ("sigma")
2. Projection: P
3. Cartesian Product: ´
4. Union: ⋃
5. Difference: –

• Auxiliary (or special) operator
6. Renaming: ρ ("rho")

• Derived (or implied) operators
7. Joins ⨝ (natural, theta join, equi-join, semi-join)
8. Intersection / complement
9. Division

Relational Algebra (RA) operators

65Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

𝜌-(𝑅)

Student(sid,sname,gpa)

6. Renaming (𝜌 rho)

• Does not change the instance, only the
schema (table or attribute names)

• Only needed in named perspective, thus a
'special' operator (neither basic nor derived)

• Several existing conventions:

SELECT
sid AS studId,
sname AS name,
gpa AS gradePtAvg

FROM Student

SQL:

RA:

?
𝜌-(/(,…,/))(𝑅)
𝜌-(2(→/(,…,2)→/))(𝑅)
𝜌2(→/(,…,2)→/)(𝑅)

S new table name

𝜌/(,…,/)(𝑅)

if positions can be used

if attribute names,
not order matters

Alternative to "→ " is the substitution symbol "/ ", e.g. 𝐵!/𝐴! same as 𝐴! → 𝐵!

https://northeastern-datalab.github.io/cs7240/

66Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Student(sid,sname,gpa)

6. Renaming (𝜌 rho)

• Does not change the instance, only the
schema (table or attribute names)

• Only needed in named perspective, thus a
'special' operator (neither basic nor derived)

• Several existing conventions:

SELECT
sid AS studId,
sname AS name,
gpa AS gradePtAvg

FROM Student

SQL:

RA:

ρ!"#$%$,'()*,+,($*-"./+(Student)

𝜌-(𝑅)
𝜌-(/(,…,/))(𝑅)
𝜌-(2(→/(,…,2)→/))(𝑅)
𝜌2(→/(,…,2)→/)(𝑅)

S new table name

𝜌/(,…,/)(𝑅)

if positions can be used

if attribute names,
not order matters

Alternative to "→ " is the substitution symbol "/ ", e.g. 𝐵!/𝐴! same as 𝐴! → 𝐵!

https://northeastern-datalab.github.io/cs7240/

69Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

6. Why we need renaming
R

R ´ S

S

?

A B
1 2
3 4

B C D
2 5 6
4 7 8
9 10 11

https://northeastern-datalab.github.io/cs7240/

70Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

6. Why we need renaming
R

R ´ S

S

But what if we had R ´ R? ?

A B
1 2
3 4

A R.B S.B C D
1 2 2 5 6
1 2 4 7 8
1 2 9 10 11
3 4 2 5 6
3 4 4 7 8
3 4 9 10 11

B C D
2 5 6
4 7 8
9 10 11

https://northeastern-datalab.github.io/cs7240/

71Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

6. Why we need renaming
A B
1 2
3 4

R

R ´ S

A R.B S.B C D
1 2 2 5 6
1 2 4 7 8
1 2 9 10 11
3 4 2 5 6
3 4 4 7 8
3 4 9 10 11

B C D
2 5 6
4 7 8
9 10 11

S

𝜌!→#(R) ´ S

A E B C D
1 2 2 5 6
1 2 4 7 8
1 2 9 10 11
3 4 2 5 6
3 4 4 7 8
3 4 9 10 11

But what if we had R ´ R?

https://northeastern-datalab.github.io/cs7240/

72Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

6. Named vs Unnamed perspective on a Graph

1 2
2 1
2 3
1 4
3 4

A:

Q: Nodes that have a grand-child1

32

4
In RC:

{1,2}

S T

In RA:

?

?

https://northeastern-datalab.github.io/cs7240/

73Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

6. Named vs Unnamed perspective on a Graph

1 2
2 1
2 3
1 4
3 4

A:

Q: Nodes that have a grand-child1

32

4
In RC:

{1,2}

S T

In RA:

?

{ x |	∃y,z.[A(x,y)	⋀	A(y,z)]}
{ x |	∃y,z,u,w.[A(y,z)	⋀	A(u,w)	⋀	z=u	⋀	y=x]}

https://northeastern-datalab.github.io/cs7240/

74Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

6. Named vs Unnamed perspective on a Graph

1 2
2 1
2 3
1 4
3 4

A:

Q: Nodes that have a grand-child1

32

4

{ x |	∃y,z.[A(x,y)	⋀	A(y,z)]}
In RC:

{1,2}

S T

𝜋1 𝜎231.(𝐴´𝜌1→1. 𝐴
In RA:

{ x |	∃y,z,u,w.[A(y,z)	⋀	A(u,w)	⋀	z=u	⋀	y=x]}

named perspective

? unnamed perspective

"unnamed"

"named"
?

https://northeastern-datalab.github.io/cs7240/

75Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

6. Named vs Unnamed perspective on a Graph

1 2
2 1
2 3
1 4
3 4

A:

Q: Nodes that have a grand-child1

32

4

{ x |	∃y,z.[A(x,y)	⋀	A(y,z)]}
In RC:

{1,2}

S T

𝜋1 𝜎231.(𝐴´𝜌1→1. 𝐴
In RA:

𝜋$- 𝜎$.3$6(𝐴´𝐴)

{ x |	∃y,z,u,w.[A(y,z)	⋀	A(u,w)	⋀	z=u	⋀	y=x]}

$2 was used in Ullman’s old textbook. Often just written as "𝜋! 𝜎"#$(𝐴´𝐴) ". A more
recent database textbook uses " ̇2 = 3" for ”$2=$3" which gets confusing for ”$2=3"...

named perspective

{ q(S) |	∃a1,	a2∈A[a1.T=a2.S	⋀	a1.S=q.S]}

unnamed perspective

"named"

"unnamed"

https://northeastern-datalab.github.io/cs7240/

76Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Another example

Q: Find the ID and name of those employees who earn more than
the employee whose ID is 123?

Employee(id, name, salary)

?

https://northeastern-datalab.github.io/cs7240/

77Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Another example

Q: Find the ID and name of those employees who earn more than
the employee whose ID is 123?

𝜋*.:$,*.'()* 𝜎*.!(;(,<=>.!(;(,< 𝜌* employee ×𝜎:$?@AB(𝜌>(employee))

Employee(id, name, salary)

https://northeastern-datalab.github.io/cs7240/

78

• Five basic operators:
1. Selection: s ("sigma")
2. Projection: P
3. Cartesian Product: ´
4. Union: ⋃
5. Difference: –

• Auxiliary (or special) operator
6. Renaming: ρ ("rho")

• Derived (or implied) operators
7. Joins ⨝ (natural, theta join, equi-join, semi-join)
8. Intersection / complement
9. Division

Relational Algebra (RA) operators

Derived relational operators:
• can be expressed in basic RA; thus not needed

But enhancing the basic operator set with derived
operators is a good idea:
• Queries become easier to write/understand/maintain
• Easier for DBMS to apply specialized optimizations

(recall the conceptual evaluation strategy)

most important

we discuss later in class in detail

79

7a. Natural Join (⋈)

• Notation: R ⋈ S
• Joins R and S on equality of all shared attributes

- Only makes sense in named perspective!
- If R has attribute set A, and S has attribute set B, and they

share attributes A⋂B = C, can also be written as R⋈C S

• Natural join in basic RA:
- Meaning: R⋈ S = PA U B(sR.C=S.C(R ´ S))
- Meaning: R ⋈ S = PA U B(sC=D(𝜌$→%(R) ´ S))

• The rename 𝜌%→' renames the shared attributes in one of
the relations

• The selection sC=D checks equality of the shared attributes
• The projection PA U B eliminates the duplicate common

attributes

SQL

316Product(pname, price, category, cid)
Company(cid, cname, stockprice, country)

SELECT pname, price, category,
P.cid, cname, stockprice, country
FROM Product P, Company C
WHERE P.cid= C.cid

SQL (alternative syntax)

?

80

7a. Natural Join (⋈)

• Notation: R ⋈ S
• Joins R and S on equality of all shared attributes

- Only makes sense in named perspective!
- If R has attribute set A, and S has attribute set B, and they

share attributes A⋂B = C, can also be written as R⋈C S

• Natural join in basic RA:
- Meaning: R⋈ S = PA U B(sR.C=S.C(R ´ S))
- Meaning: R ⋈ S = PA U B(sC=D(𝜌$→%(R) ´ S))

• The rename 𝜌%→' renames the shared attributes in one of
the relations

• The selection sC=D checks equality of the shared attributes
• The projection PA U B eliminates the duplicate common

attributes

SELECT *
FROM Product
NATURAL JOIN Company

SQL

RA:

316Product(pname, price, category, cid)
Company(cid, cname, stockprice, country)

SELECT pname, price, category,
P.cid, cname, stockprice, country
FROM Product P, Company C
WHERE P.cid= C.cid

SQL (alternative syntax)

?

81

7a. Natural Join (⋈)

• Notation: R ⋈ S
• Joins R and S on equality of all shared attributes

- Only makes sense in named perspective!
- If R has attribute set A, and S has attribute set B, and they

share attributes A⋂B = C, can also be written as R⋈C S

• Natural join in basic RA:
- Meaning: R⋈ S = PA U B(sR.C=S.C(R ´ S))
- Meaning: R ⋈ S = PA U B(sC=D(𝜌$→%(R) ´ S))

• The rename 𝜌%→' renames the shared attributes in one of
the relations

• The selection sC=D checks equality of the shared attributes
• The projection PA U B eliminates the duplicate common

attributes

SELECT *
FROM Product
NATURAL JOIN Company

SQL

RA:
Product ⋈ Company

316Product(pname, price, category, cid)
Company(cid, cname, stockprice, country)

SELECT pname, price, category,
P.cid, cname, stockprice, country
FROM Product P, Company C
WHERE P.cid= C.cid

SQL (alternative syntax)

82Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7a. Natural Join (⋈): an alternative perspective

Sources: Garcia-Molina, Ullman, Widom. Database Systems -- The Complete Book (2nd ed, international ed), 2014. http://infolab.stanford.edu/~ullman/dscb.html ,
https://en.wikipedia.org/wiki/Relational_algebra#Natural_join

https://northeastern-datalab.github.io/cs7240/
http://infolab.stanford.edu/~ullman/dscb.html
https://en.wikipedia.org/wiki/Relational_algebra

84Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7a. Natural Join (⋈): An example
A B
1 2
3 4

R
B C D
2 5 6
4 7 8
9 10 11

S

𝜌!→#(R) ´ S

?

https://northeastern-datalab.github.io/cs7240/

85Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7a. Natural Join (⋈): An example
A B
1 2
3 4

R

R ⨝ S

B C D
2 5 6
4 7 8
9 10 11

S

𝜌!→#(R) ´ S

A E B C D
1 2 2 5 6
1 2 4 7 8
1 2 9 10 11
3 4 2 5 6
3 4 4 7 8
3 4 9 10 11

?

https://northeastern-datalab.github.io/cs7240/

86Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7a. Natural Join (⋈): An example
A B
1 2
3 4

R

R ⨝ S

A B C D
1 2 5 6
3 4 7 8

B C D
2 5 6
4 7 8
9 10 11

S

𝜌!→#(R) ´ S

A E B C D
1 2 2 5 6
1 2 4 7 8
1 2 9 10 11
3 4 2 5 6
3 4 4 7 8
3 4 9 10 11

R ⨝ S = in basic RA

?

https://northeastern-datalab.github.io/cs7240/

87Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7a. Natural Join (⋈): An example
A B
1 2
3 4

R

R ⨝ S

A B C D
1 2 5 6
3 4 7 8

B C D
2 5 6
4 7 8
9 10 11

S

𝜌!→#(R) ´ S

A E B C D
1 2 2 5 6
1 2 4 7 8
1 2 9 10 11
3 4 2 5 6
3 4 4 7 8
3 4 9 10 11

R ⨝ S =
PABCD(sR.B=S.B(R × S)) =
PAR.BCD(sR.B=S.B(R × S)) =
PABCD(sB=E(𝜌!→#(R) ´ S))

https://northeastern-datalab.github.io/cs7240/

88Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7a. Natural Join (⋈): practice

?
• Given schemas R(A, B, C, D), S(A, C, E), what is the schema of R ⋈ S ?

https://northeastern-datalab.github.io/cs7240/

89Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7a. Natural Join (⋈): practice

• Given schemas R(A, B, C, D), S(A, C, E), what is the schema of R ⋈ S ?

Answer(A, B, C, D,E)

• Given R(A, B, C), S(D, E), what is R ⋈ S ?

?

https://northeastern-datalab.github.io/cs7240/

90Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7a. Natural Join (⋈): practice

• Given schemas R(A, B, C, D), S(A, C, E), what is the schema of R ⋈ S ?

Answer(A, B, C, D,E)

• Given R(A, B, C), S(D, E), what is R ⋈ S ?

• Given R(A, B), S(A, B), what is R ⋈ S ?

?

R ´ S

no condition in the selection
that could be violated:

https://northeastern-datalab.github.io/cs7240/

91Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7a. Natural Join (⋈): practice

• Given schemas R(A, B, C, D), S(A, C, E), what is the schema of R ⋈ S ?

Answer(A, B, C, D,E)

• Given R(A, B, C), S(D, E), what is R ⋈ S ?

• Given R(A, B), S(A, B), what is R ⋈ S ?

?

R ´ S

R ∩ S

https://northeastern-datalab.github.io/cs7240/

92Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7a. Natural Join (⋈): practice

• Given schemas R(A, B, C, D), S(A, C, E), what is the schema of R ⋈ S ?

Answer(A, B, C, D,E)

• Given R(A, B, C), S(D, E), what is R ⋈ S ?

• Given R(A, B), S(A, B), what is R ⋈ S ?

R ´ S

R ∩ S

https://northeastern-datalab.github.io/cs7240/

93Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7b. Theta Join (⋈q)

• A join that involves a predicate

• q ("theta") can be any condition
• No projection: #attributes in output

= sum #attributes in input
• Example: band-joins for approx.

matchings across tables
AnonPatient (age, zip, disease)
Voters (name, age, zip)

?

𝑅4⨝q𝑅5 = sq 𝑅4×𝑅5

Assume relatively fresh
data (within 1 year)

Note that natural join is
a theta join + a selection

https://northeastern-datalab.github.io/cs7240/

94Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7b. Theta Join (⋈q)

• A join that involves a predicate

• q ("theta") can be any condition
• No projection: #attributes in output

= sum #attributes in input
• Example: band-joins for approx.

matchings across tables

SELECT *
FROM
Students,People

WHERE q

SQL:

RA:

AnonPatient (age, zip, disease)
Voters (name, age, zip)

Student(sid,name,gpa)
People(ssn,name,address)

?

𝑅4⨝q𝑅5 = sq 𝑅4×𝑅5

Assume relatively fresh
data (within 1 year)

Note that natural join is
a theta join + a selection

A ⨝P.zip=V.zip ∧ P.age>=V.age -1 ∧ P.age<=V.age +1 V

https://northeastern-datalab.github.io/cs7240/

95Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7b. Theta Join (⋈q)

• A join that involves a predicate

• q ("theta") can be any condition
• No projection: #attributes in output

= sum #attributes in input
• Example: band-joins for approx.

matchings across tables

SELECT *
FROM
Students,People

WHERE q

SQL:

RA:

A ⨝P.zip=V.zip ∧ P.age>=V.age -1 ∧ P.age<=V.age +1 V

AnonPatient (age, zip, disease)
Voters (name, age, zip)

Student(sid,name,gpa)
People(ssn,name,address)

𝑅4⨝q𝑅5 = sq 𝑅4×𝑅5

Assume relatively fresh
data (within 1 year)

Note that natural join is
a theta join + a selection

Students ⋈2 People

https://northeastern-datalab.github.io/cs7240/

96Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7c. Equi-join (⋈ A=B)

• A theta join where q is an equality

• Example over Gizmo DB:
- Product ⋈ manufacturer=cname Company

• Most common join in practice!

SQL:

Student(sid,sname,gpa)
People(ssn,pname,address)

SELECT *
FROM

Students S, People P
WHERE sname = pname

RA:

?

𝑅4⨝A=B𝑅5 = sA=B 𝑅4×𝑅5

https://northeastern-datalab.github.io/cs7240/

97Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

7c. Equi-join (⋈ A=B)

• A theta join where q is an equality

• Example over Gizmo DB:
- Product ⋈ manufacturer=cname Company

• Most common join in practice!

SQL:

Student(sid,sname,gpa)
People(ssn,pname,address)

SELECT *
FROM

Students S, People P
WHERE sname = pname

RA:

𝑅4⨝A=B𝑅5 = sA=B 𝑅4×𝑅5

S ⋈()#*+3")#*+ P

What is the connection with a natural join? ?

https://northeastern-datalab.github.io/cs7240/

107Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Join Summary

• Theta-join: R ⨝q S = σq (R × S)
- Join of R and S with a join condition θ
- Cross-product followed by selection θ
- No projection

• Equijoin: R ⨝θ S = σθ (R × S)
- Join condition θ consists only of equalities
- No projection

• Natural join: R ⨝ S = πA (σθ (R × S))
- Equality on all fields with same name in R and in S
- Projection πA drops all redundant attributes

https://northeastern-datalab.github.io/cs7240/

108

Example: Converting SFW Query -> RA
Student(sid,name,gpa)
People(ssn,name,address)

SELECT DISTINCT gpa, address
FROM Student S, People P
WHERE S.name = P.name
AND gpa > 3.5

How do we represent this query in RA?

?

109

Example: Converting SFW Query -> RA

Π'(#,#667%!!(𝜎'(#)*.,(𝑆 ⋈ 𝑃))

Student(sid,name,gpa)
People(ssn,name,address)

SELECT DISTINCT gpa, address
FROM Student S, People P
WHERE S.name = P.name
AND gpa > 3.5

How do we represent this query in RA?

Π'(#,#667%!!(𝜎'(#)*.,∧ 8."#$%9:."#$%(𝑆×𝑃))
Π'(#,#667%!!(𝜎'(#)*.,∧ "#$%9"#$%5(𝑆×𝜌"#$%⟶"#$%5𝑃))

110Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Some Examples

Name of supplier of parts with size greater than 10

Name of supplier of red parts or parts with size greater than 10

?
?

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

https://northeastern-datalab.github.io/cs7240/

111Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Some Examples

Name of supplier of parts with size greater than 10

Name of supplier of red parts or parts with size greater than 10

?

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

πsname(Supplier ⨝ Supply ⨝ (σpsize>10 (Part))
πsname(σpsize>10(Supplier ⨝ Supply ⨝ Part))

https://northeastern-datalab.github.io/cs7240/

112Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Some Examples

Name of supplier of parts with size greater than 10

Name of supplier of red parts or parts with size greater than 10

πsname(Supplier ⨝ Supply ⨝ (σpsize>10 (Part))

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

πsname(σpsize>10(Supplier ⨝ Supply ⨝ Part))

πsname(Supplier ⨝ Supply ⨝ (σ psize>10 ∨pcolor='red' (Part)))
πsname(Supplier ⨝ Supply ⨝ (σ psize>10 (Part) ∪ σpcolor='red' (Part)))

Representation
of RA as tree? ?

https://northeastern-datalab.github.io/cs7240/

113Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Some Examples

Name of supplier of parts with size greater than 10

Name of supplier of red parts or parts with size greater than 10

πsname(Supplier ⨝ Supply ⨝ (σpsize>10 (Part))

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

πsname(σpsize>10(Supplier ⨝ Supply ⨝ Part))

πsname(Supplier ⨝ Supply ⨝ (σ psize>10 ∨pcolor='red' (Part)))
πsname(Supplier ⨝ Supply ⨝ (σ psize>10 (Part) ∪ σpcolor='red' (Part))) Part

Supplyσpsize >10

πsname

Answer

Supplier

Representation
of RA as tree?

Usually unary or binary. Think of:
• abstract syntax trees
• binary expression trees
• parse trees

https://en.wikipedia.org/wiki/Binary_expression_tree

https://northeastern-datalab.github.io/cs7240/
https://en.wikipedia.org/wiki/Binary_expression_tree

114

• Five basic operators:
1. Selection: s ("sigma")
2. Projection: P
3. Cartesian Product: ´
4. Union: ⋃
5. Difference: –

• Auxiliary (or special) operator
6. Renaming: ρ ("rho")

• Derived (or implied) operators
7. Joins ⨝ (natural, theta join, equi-join, semi-join)
8. Intersection / complement
9. Division

Relational Algebra (RA) operators

115Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

8. What about Intersection ∩?

• As derived operator using union and minus
R S?

https://northeastern-datalab.github.io/cs7240/

118Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

8. What about Intersection ∩?

• As derived operator using union and minus

• Derived operator using minus only!

R SR ∩ S = ((R ∪ S) − (R − S)) − (S − R)
R ∩ S = (R ∪ S) − ((R − S) ∪ (S − R))

?

https://northeastern-datalab.github.io/cs7240/

119Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

8. What about Intersection ∩?

• As derived operator using union and minus

• Derived operator using minus only!

• Derived using join

R S

?

R ∩ S = S − (S − R)

R ∩ S = ((R ∪ S) − (R − S)) − (S − R)
R ∩ S = (R ∪ S) − ((R − S) ∪ (S − R))

https://northeastern-datalab.github.io/cs7240/

120Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

8. What about Intersection ∩?

• As derived operator using union and minus

• Derived operator using minus only!

• Derived using join
R ∩ S = R ⨝ S

R S

R ∩ S = S − (S − R)

Schemas need to be compatible:
not

R(A,B,C)
S(A,B)

R ∩ S = ((R ∪ S) − (R − S)) − (S − R)
R ∩ S = (R ∪ S) − ((R − S) ∪ (S − R))

https://northeastern-datalab.github.io/cs7240/

122

• Five basic operators:
1. Selection: s ("sigma")
2. Projection: P
3. Cartesian Product: ´
4. Union: ⋃
5. Difference: –

• Auxiliary (or special) operator
6. Renaming: ρ ("rho")

• Derived (or implied) operators
7. Joins ⨝ (natural, theta join, equi-join, semi-join)
8. Intersection / complement
9. Division

Relational Algebra (RA) operators

123Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

9. Division (R ÷ S)

• Consider two relations R(X,Y) and S(Y)
• Then R ÷ S is ...

X, Y are sets of attributes

?What could be a meaningful definition of division

Compare to Integer division: 7/2=3

https://northeastern-datalab.github.io/cs7240/

124Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

9. Division (R ÷ S)

• Consider two relations R(X,Y) and S(Y)
• Then R ÷ S is ...
- ... the largest relation T(X) s.t. S✕ T ⊆ R, or
- ... the relation T(X) that contains the X's that occur with all Y's in S

X Y
Alice 1
Alice 2
Bob 1
Bob 2
Bob 3

R
Y
1
2
3

S T
DivisorDividend

X, Y are sets of attributes

?

(safetY: T ⊆ πXR)

https://northeastern-datalab.github.io/cs7240/

125Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

9. Division (R ÷ S)

• Consider two relations R(X,Y) and S(Y)
• Then R ÷ S is ...
- ... the largest relation T(X) s.t. S ✕ T ⊆ R, or
- ... the relation T(X) that contains the X's that occur with all Y's in S

X Y
Alice 1
Alice 2
Bob 1
Bob 2
Bob 3

R
Y
1
2
3

S T
X

Bob

DivisorDividend

X, Y are sets of attributes

(safetY: T ⊆ πXR)

https://northeastern-datalab.github.io/cs7240/

126Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

9. Division: More formal Definition

• Legal input: (R,S) such that R has all the attributes of S and more

• R÷S is the relation T with:
- The header of R, with all attributes of S removed
- Tuple set {t[X] | t[X,Y]∊R for all s[Y]∊S}

Notice the different notation for projection here
(t[X] instead of t.X).
Also minor abuse of notation, since the attributes
in X need not necessarily come before those of Y

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

127Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Questions

?

?

÷ =

÷ =

Studies Course

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

sid student course
1 Alice AI
1 Alice DB
2 Bob DB
2 Bob ML
3 Charly AI
3 Charly DB
3 Charly ML

course
AI
DB
ML

course
ML

https://northeastern-datalab.github.io/cs7240/

128Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Questions

÷ =

÷ =

(RxS)÷S =

(RxS)÷R =

sid student
2 Bob
3 Charly

sid student
3 Charly

?
?

recall set semantics for RAStudies Course

Assume R,S have disjoint attribute sets (possibly by renaming)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

sid student course
1 Alice AI
1 Alice DB
2 Bob DB
2 Bob ML
3 Charly AI
3 Charly DB
3 Charly ML

course
AI
DB
ML

course
ML

https://northeastern-datalab.github.io/cs7240/

129Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Questions

÷sid student course
1 Alice AI
1 Alice DB
2 Bob DB
2 Bob ML
3 Charly AI
3 Charly DB
3 Charly ML

=

÷ =

(RxS)÷S =

(RxS)÷R =

course
AI
DB
ML

course
ML

sid student
2 Bob
3 Charly

sid student
3 Charly

R

S

recall set semantics for RAStudies Course

Assume R,S have disjoint attribute sets (possibly by renaming)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

Q: If R has 1000 tuples
and S has 100 tuples, how
many tuples can be in R÷S?

Q: If R has 1000 tuples
and S has 1001 tuples, how
many tuples can be in R÷S?

?
?

https://northeastern-datalab.github.io/cs7240/

130Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Questions

÷sid student course
1 Alice AI
1 Alice DB
2 Bob DB
2 Bob ML
3 Charly AI
3 Charly DB
3 Charly ML

=

÷ =

(RxS)÷S =

(RxS)÷R =

course
AI
DB
ML

course
ML

sid student
2 Bob
3 Charly

sid student
3 Charly

R

S

recall set semantics for RAStudies Course

Assume R,S have disjoint attribute sets (possibly by renaming)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

Q: If R has 1000 tuples
and S has 100 tuples, how
many tuples can be in R÷S?

Q: If R has 1000 tuples
and S has 1001 tuples, how
many tuples can be in R÷S?

https://northeastern-datalab.github.io/cs7240/

131Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Questions

sid student course
1 Alice AI
1 Alice DB
2 Bob DB
2 Bob ML
3 Charly AI
3 Charly DB
3 Charly ML

course type
AI elective
DB core
ML core

Studies CourseType

Who took all core courses in RA with relational division?

?
Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

132Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Questions

sid student course
1 Alice AI
1 Alice DB
2 Bob DB
2 Bob ML
3 Charly AI
3 Charly DB
3 Charly ML

Studies CourseType
course type

AI elective
DB core
ML core

Studies ÷ 𝜋<=>7!% 𝜎?@(%9+<=7%+CourseType
Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

Who took all core courses in RA with relational division?

https://northeastern-datalab.github.io/cs7240/

133Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

How to write R÷S in Primitive RA? (×,−, π)

R(X,Y)	÷ S(Y) X Y
a 0
a 1
a 2
b 1

Y
1
2
?

R S Q÷ =

https://northeastern-datalab.github.io/cs7240/

134Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

How to write R÷S in Primitive RA? (×,−, π)

R(X,Y)	÷ S(Y)
?

X Y
a 0
a 1
a 2
b 1

Y
1
2

X
a

b 2

1

2

3
4: {a} = {a,b} – {b}

R S Q÷ =

https://northeastern-datalab.github.io/cs7240/

135Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

How to write R÷S in Primitive RA? (×,−, π)

Each X of R w/ each Y of S

R(X,Y)	÷ S(Y)

πXR	× S

X Y
a 0
a 1
a 2
b 1

Y
1
2

X
a

b 2

1

2

3
4: {a} = {a,b} – {b}

R S Q÷ =

https://northeastern-datalab.github.io/cs7240/

136Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

How to write R÷S in Primitive RA? (×,−, π)

Each X of R w/ each Y of S

(X,Y) s.t. X in R, Y in S, but (X,Y) not in R

R(X,Y)	÷ S(Y)

πXR × S()− R

X Y
a 0
a 1
a 2
b 1

Y
1
2

X
a

b 2

1

2

3
4: {a} = {a,b} – {b}

R S Q÷ =

https://northeastern-datalab.github.io/cs7240/

137Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

How to write R÷S in Primitive RA? (×,−, π)

Each X of R w/ each Y of S

(X,Y) s.t. X in R, Y in S, but (X,Y) not in R

Xs in R where for some Y in S, (X,Y) is not in R

R(X,Y)	÷ S(Y)

πX()πXR × S()− R

X Y
a 0
a 1
a 2
b 1

Y
1
2

X
a

b 2

1

2

3
4: {a} = {a,b} – {b}

R S Q÷ =

https://northeastern-datalab.github.io/cs7240/

138Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

How to write R÷S in Primitive RA? (×,−, π)

Each X of R w/ each Y of S

(X,Y) s.t. X in R, Y in S, but (X,Y) not in R

Xs in R where for some Y in S, (X,Y) is not in R

R÷S

R(X,Y)	÷ S(Y) X Y
a 0
a 1
a 2
b 1

Y
1
2

X
a

b 2
πX()πXR × S()− RπXR −

1

2

3
4: {a} = {a,b} – {b}

R S Q÷ =

https://northeastern-datalab.github.io/cs7240/

139Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What if S=∅?

R(X,Y)	÷ S(Y) X Y
a 0
a 1
a 2
b 1

Y
R S Q÷ =

?

https://northeastern-datalab.github.io/cs7240/

140Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What if S=∅?

R(X,Y)	÷ S(Y) X Y
a 0
a 1
a 2
b 1

Y X
a
b

πX()πXR × S()− RπXR −

R S Q÷ =

Now you see why we needed the safetY condition "T ⊆ πXR" when
defining "R ÷ S as the largest relation T(X) s.t. S ✕ T ⊆ R"

Recall: {t[X] | t[X,Y]∊R for all s[Y]∊S}

https://northeastern-datalab.github.io/cs7240/

141Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

R÷S in Primitive RA vs. RC

In RA:

In DRC:

πXR × S()− RπXR	− πX()
?

R(X,Y)	÷ S(Y)
R S Q÷ =
X Y
a 0
a 1
a 2
b 1

Y
1
2

X
a

b 2

R S Q÷ =

https://northeastern-datalab.github.io/cs7240/

142Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

R÷S in Primitive RA vs. RC

In RA:

{ X |	∃Z.[R(X,Z)] ⋀																																							}
In DRC:

πXR × S()− RπXR − πX()

X is "guarded": safe and thus domain independent

R(X,Y)	÷ S(Y)

?

R S Q÷ =
X Y
a 0
a 1
a 2
b 1

Y
1
2

X
a

b 2

R S Q÷ =

https://northeastern-datalab.github.io/cs7240/

143Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

R÷S in Primitive RA vs. RC

In RA:

{ X |	∃Z.[R(X,Z)] ⋀	∀Y.[S(Y)	→	R(X,Y)] }
In DRC:

πXR × S()− RπXR − πX()
what if S(Y)=∅ ? ?

R(X,Y)	÷ S(Y)
R S Q÷ =
X Y
a 0
a 1
a 2
b 1

Y
1
2

X
a

b 2

R S Q÷ =

https://northeastern-datalab.github.io/cs7240/

144Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

R÷S in Primitive RA vs. RC

In RA:

{ X |	∃Z.[R(X,Z)] ⋀	∀Y.[S(Y)	→	R(X,Y)] }
In DRC:

πXR × S()− RπXR − πX()
what if S(Y)=∅ ?

? without universal quantification

R(X,Y)	÷ S(Y)
R S Q÷ =
X Y
a 0
a 1
a 2
b 1

Y
1
2

X
a

b 2

R S Q÷ =

https://northeastern-datalab.github.io/cs7240/

145Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

R÷S in Primitive RA vs. RC

In RA:

{ X |	∃Z.[R(X,Z)] ⋀	∀Y.[S(Y)	→	R(X,Y)] }
In DRC:

{ X |	∃Z.[R(X,Z)] ⋀	∄Y.[S(Y)	∧	¬R(X,Y)] }

πXR × S()− RπXR − πX()

?

what if S(Y)=∅ ?

R(X,Y)	÷ S(Y)
R S Q÷ =
X Y
a 0
a 1
a 2
b 1

Y
1
2

X
a

b 2

R S Q÷ =

In TRC:

https://northeastern-datalab.github.io/cs7240/

146Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

R÷S in Primitive RA vs. RC

In RA:

{ X |	∃Z.[R(X,Z)] ⋀	∀Y.[S(Y)	→	R(X,Y)] }
In DRC:

{ X |	∃Z.[R(X,Z)] ⋀	∄Y.[S(Y)	∧	¬R(X,Y)] }

πXR × S()− RπXR − πX()

{ r.A |	∃r∊R.[∄s∊S.[∄r2∊R.[r2.B=s.B ∧	r2.A=r.A)] }
In TRC:

? in SQL

what if S(Y)=∅ ?

R(X,Y)	÷ S(Y)
R S Q÷ =
X Y
a 0
a 1
a 2
b 1

Y
1
2

X
a

b 2

R S Q÷ =

https://northeastern-datalab.github.io/cs7240/

147Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

R÷S in Primitive RA vs. RC

X Y
a 0
a 1
a 2
b 1

Y
1
2

X
a

b 2

In SQL
SELECT DISTINCT R.A
FROM R
WHERE not exists (

SELECT *
FROM S
WHERE not exists (

SELECT *
FROM R AS R2
WHERE R2.B=S.B
AND R2.A=R.A))

R S Q÷ =

{ r.A |	∃r∊R.[∄s∊S.[∄r2∊R.[r2.B=s.B ∧	r2.A=r.A)] }
In TRC:

https://northeastern-datalab.github.io/cs7240/

148Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Parentheses Convention

• We have defined 3 unary operators and 3 binary operators
• It is acceptable to omit the parentheses from o(R) when o is unary
- Then, unary operators take precedence over binary ones

• Example:

(scourse='DB'(Course)) ×(rcid→cid1(Studies))

becomes

scourse='DB'Course× rcid→cid1Studies

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

